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Abstract

Electronic markets are based on classic market design assumptions that often do not

hold. This thesis examines the conflict between theory and practice for the class of

Vickrey-Clarke-Groves mechanisms (VCG) and the auctions it has inspired in elec-

tronic commerce, most notably the iterative auctions found on eBay. VCG mecha-

nisms provide bidders with an optimal strategy to truthfully reveal their valuations

to the marketplace, and in so doing VCG mechanisms enable efficient allocations of

goods. VCG assumes not only that consumers are able to coordinate themselves to

a single market and moment in time when conducting their transactions, but also

that consumers can determine and express their valuations at no cost. However, in

systems like eBay, bidders and sellers are highly uncoordinated, and the market is

iterative because consumers are often assumed in practice not to have a complete

sense of their valuation initially, but to incur costs in order to derive better beliefs of

their value.
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The theory-practice conflict is investigated through analytic and empirical analy-

ses of three facets of markets and consumers with independent, private valuations.

First, an analysis of 1,956 auctions on eBay for a Dell E193FP LCD monitor re-

veals the extent to which bidders on eBay are successfully handling their lack of

coordination, and the extent to which their inability to behave optimally is hamper-

ing the efficiency of eBay. Many bidders may be experiencing regret with efficiency

hampered by as much as 7% as a result. Second, the design of a marketplace for

uncoordinated consumers is given that provides consumers with an optimal bidding

strategy to truthfully reveal their valuation to a bidding proxy. A simulation study

demonstrates that this novel marketplace provides greater efficiency than eBay, while

also increasing seller revenue. Finally, the efficiency of the Iterative Combinatorial

Exchange (ICE), designed to accommodate bidders with costly value refinement, is

compared to that of a sealed-bid VCG-based marketplace, where the amount of value

refinement available to bidders is limited. ICE provides more efficient results, but not

dramatically so as compared to the VCG-based market.
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Chapter 1

Introduction

1.1 Electronic Markets and Automated Agents

Electronic markets have generated significant new trading opportunities while

allowing for the dynamic pricing of goods (Brynjolfsson and Kahin 2000; Brynjolf-

sson and Smith 2000; Smith et al. 2000). These applications of information sys-

tems are used today not only for person-to-person transactions (e.g., auctions), but

also increasingly for such business-to-consumer auctions as selling surplus inventory

(Lucking-Reiley and Spulber 2001). Indeed, many authors have written about a fu-

ture in which commerce is mediated by online, automated trading agents (Sandholm

and Lesser 1995; Greenwald and Kephart 1999; Anthony and Jennings 2003).

A key challenge for systems with automated trading agents is ensuring that users

of the system trust the agents working on their behalf (Cassell and Bickmore 2002;

Lee and See 2004), which can be particularly difficult as Sanfey et al. (2003) show that

users may have different beliefs for automated agents than human agents regarding
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what constitutes acceptable behavior. As one might expect, Parasuraman and Miller

(2004) show that users’ trust in an automated system decreases when an automated

system is more prone to making mistakes. While Parasuraman and Miller’s study was

examining an automated system for detecting airplane malfunctions, their finding is

no less true within automated marketplaces. When the London International Fi-

nancial Futures Exchange (Liffe) intended to introduce automated trading into their

marketplace, there was much debate on the topic, so much so that the Financial

Times said at the time that “Electronic trading is the biggest single issue to face the

futures community today and the industry has long confronted a philosophical split

on its merits.”1

A key area of concern in both domains is that users could not be certain that the

automated systems would behave “optimally” in all situations. (Of course, part of

the debate here must settle the question of what “optimal” means.) Consequently,

the decreased level of trust resulted in users in the work of Parasuraman and Miller

ignoring the automated system, while the intended users of Liffe called for the au-

tomated system never to be implemented in the first place. However, that these

automated systems do not have explicit performance guarantees does not imply that

other automated bidding systems cannot be created with such guarantees.

One insight offered by mechanism design is that one can seek to design market-

places that enable the design of optimal automated bidding agents. I next describe

one such classic mechanism, Vickrey-Clarke-Groves (Groves 1979), before continuing

to question the assumptions made therein.

1Financial Times. “Liffe’s new automated trading system has sparked a debate on automated
trading.” November 30, 1989.
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1.2 Vickrey-Clarke-Groves (VCG) Mechanisms

Within Vickrey-Clarke-Groves (VCG) mechanisms (a survey of which is provided

by de Vries and Vohra 2003), a participant is charged the negative impact her presence

in the market has on the other participants. VCG mechanisms are suitable when

one seeks to design efficient markets in private value environments. Participants

have private values when they possess intrinsic worth for items that is independent

of the worth others possess, while efficient markets allocate goods such that the

summation of value among all participants for the allocation is maximal across all

possible allocations.

One example of a VCG-based marketplace is the second-price auction, where an

auction winner pays the second highest bid the auctioneer receives.

Example 1 Consider a seller of an apple with no value for it, and two bidders Alice

(whose value for the apple is $10), and Bob (whose value for the apple is $6). Alice

will receive the apple and be charged $6 (as her presence in the market prevented Bob

from winning the apple, and so Alice has reduced the values other would have by $6),

while Bob will receive nothing and be charged $0 (as Alice would receive the apple

independent of Bob’s participation in the market).

In fact, the payment scheme in VCG is sufficiently well constructed that partic-

ipants should truthfully reveal their valuation to the market maker. In Example 1,

Alice has been charged the minimal possible value she could have declared within the

marketplace while still winning the item. Because bidders have a (weakly) dominant

strategy to be truthful, there are two important ramifications:
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• The allocation of the VCG mechanism is perfectly efficient: the item goes to

the participant with the highest private value.

• An automated bidding proxy can play a provably optimal bidding strategy on

behalf of the bidder.

The second ramification is particularly poignant. Users of VCG-based marketplaces

with automated bidding agents can trust that their bidding agent will behave opti-

mally on their behalf (provided users are not seeking to behave collusively with other

bidders, or engage in other strategic behavior outside of submitting a bid).

The VCG mechanism generalizes to complex allocation problems such as com-

binatorial auctions (in which multiple different items are sold simultaneously, with

participants bidding on any number of combinations) and multi-unit auctions (in

which multiple copies of the same item are auctioned simultaneously). It is perhaps

not surprising that VCG can be considered to be the basis on which today’s most well

known online auction systems are based. Auctions on eBay2 are primarily for single

items, with automated agents bidding on behalf of users. While an auction is open, a

bidder provides an automated agent with a ceiling. The agent then observes what the

current winning price of the auction is, and if the ceiling it has received from its bidder

is greater than that winning price, the agent will submit a bid ε above the current

winning price (where ε is set by eBay anywhere from cents to dollars depending on

the value of the item). Therefore, when an auction ends, the winning bidder will pay

a price ε above the highest ceiling another bidder submitted, and so the outcome of

an isolated auction is nearly identical to the outcome of a VCG second-price auction.

2http://www.ebay.com
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1.3 Assumptions of VCG versus Reality

However, there are reasons the participants on eBay should not actually truthfully

reveal their valuation ceiling to an eBay bidding agent. While each isolated auction

resembles a VCG mechanism, the overall eBay marketplace is not a VCG mechanism.

In addition, there are a number of modeling assumptions made in the analysis of a

VCG mechanism regarding the abilities of the bidding population in developing the

proof of optimality that do not hold.

One assumption is that bidders possess independent, private valuations. Bidders

with private values for goods have an intrinsic worth for items that is independent

of the perception of worth that other bidders have for the same objects. The VCG

mechanism is not truthful when bidders values are interdependent, as bidders will

not truthfully reveal their perceptions of value to their competitors in an effort to im-

prove their position, resulting in bidders overbidding or underbidding. However, even

when the private values assumption is valid (as assumed in this thesis), there remain

other assumptions which when relaxed make the strategic bidding problem difficult

for bidders participating in electronic markets: coordination and costly preference

elicitation. I introduce each of these considerations in turn.

1.3.1 Coordination

A standard assumption made in the analysis of VCG is that all market participants

are able to coordinate themselves to a single market and moment in time. However,

for many reasons, market participants may be unable to coordinate in this way.
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One coordination issue is timing - not only may consumers not simultaneously

appreciate a desire for the same object or an interest in selling the same item, but

also consumers may want to explicitly uncoordinate themselves for strategic reasons

(Porter 2004; Hajiaghayi et al. 2005; Parkes 2007). As an example, consumers may

purchase groceries when their pantries run empty, but heterogeneities in their con-

sumption rates will result in consumers being interested in purchasing groceries at

different times. Alternatively, consumers may have different deadlines by which they

are interested in acquiring or selling objects. For example, a child may be interested

in acquiring a particular baseball card within the next week or not at all, while an

adult baseball card collector may be willing to pursue the item indefinitely. In this

latter example, the collector may even try to hide her interest in the card until the

child leaves in an effort to acquire the item in a less competitive environment.

Another coordination issue is cost - coordinating all consumers (even if they were

all simultaneously interested in buying and selling items) may be prohibitively expen-

sive. For example, the coordination costs and computation costs would be prohibitive

if all consumers and producers of food had to organize themselves to a single moment

in time for conducting their marketplace.

How Coordination is a Problem

eBay, the aforementioned marketplace in which individual auctions operate as

open VCG mechanisms, is an example of an uncoordinated electronic marketplace.

Buyers and sellers arrive and depart eBay continuously, and many items listed in

one eBay auction are essentially identical to those in other auctions, especially in the
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Consumer Electronics category (Gopal et al. 2005), where the sum of all successfully

closed listings during 2005 was $3.5B (of $44B in total for all of eBay). I refer to

coordination problems like the multiple copies problem and the exposure problem (to

be described below) as the sequential auction problem, because they relate to issues

with composing strategies across a sequence of multiple auctions (see also Parkes

2003).

A significant strategic problem that bidders face is how to bid when multiple

copies of an item are offered for sale sequentially. For example, Alice may want

an LCD monitor, and could potentially bid in either a 1 o’clock or 3 o’clock eBay

auction. (Alternatively, Alice may be the head of a procurement office where she may

participate in either this week’s or next week’s supplier auction for one million ball

bearings.) Alice would prefer to participate in the auction that will have the lower

winning price, but she cannot determine beforehand which auction that will be. As

a result, she could end up winning the “wrong” auction. (While economic models

of this scenario exist for which there are equilibrium bidding strategies, this thesis

demonstrates that such equilibrium behaviors are not played in practice.)

Another problem bidders may face is the exposure problem. Exposure problems

exist when buyers desire a bundle of goods but may only participate in single-item

auctions. Bykowsky et al. (2000) primarily studied the context of simultaneous single-

item auctions. This thesis focuses on the context of sequential single-item auctions,

which are noted by Bykowsky et al. (page 213, Footnote 24) as potentially imposing

a greater burden on bidders coupled with greater economic inefficiencies. Buyers

face risk as they must determine with limited information the extent to which they
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will incorporate into their bid for a single item the synergy value of the bundle to

which the item belongs. For example, if Alice values a video game console by itself

for $200, a video game by itself for $30, and both a console and game for $250,

Alice must determine how much of the $20 of synergy value she might include in her

bid when bidding for the console alone. If Alice incorporates some of the synergy

value in her bid for a console (e.g., by placing a bid of $210), she may incur a loss

if she can not subsequently win the video game for less than $40. Alternatively, by

not incorporating synergies into her bids, Alice may forgo an opportunity to acquire

surplus. For instance, if Alice does not incorporate synergy into her bid, but could

have acquired a console in auction at a price of $205 and a game at a price of $35,

she will have done herself a disservice.

1.3.2 Costly Preference Elicitation

Another assumption made in the analysis of the VCG mechanism is that partici-

pants are able to determine and express their private valuations at no cost. However,

consumers may face difficult strategic decisions if it is in fact costly for them to deter-

mine their values, which is possible even when their valuations are private (Compte

and Jehiel 2005; Parkes 2005). For example, consider an avid reader who is interested

in mystery novels, and discovers that a new one has just been released. Clearly there

is some value the reader will derive from reading the novel, but she may not be fully

aware exactly how much she would be willing to pay for the novel until she spends

some time reading the first few pages and is able to determine the specific value that

reading the entire novel will provide her.
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Alternatively, consider a widget company that is bidding on the rental of trucks

to distribute its widgets. While there is a minimal number of trucks required by

the widget company to fulfill its distribution needs, calculating this minimal number

requires solving a hard problem (Sandholm 1993). (In particular, solving this problem

is equivalent to solving the NP-complete “Traveling Salesman Problem,” which in the

worst case may require effort exponential in the size of the problem to solve.)

How Costly Preference Elicitation is a Problem

The primary difficulty a consumer faces when it is costly for her to determine her

valuations lies in deciding when she should exploit her current beliefs of value and

submit a bid, and when she should explore her valuation by bearing additional costs

to refine her beliefs of value (Sandholm 2000; Compte and Jehiel 2005; Parkes 2005).

For instance, imagine Alice is currently interested in acquiring a widget priced

at $8. Alice believes her value for the widget is likely $10, but has not yet read

the fine print on the widget which provides details revealing the widget’s actual value

(between $2 and $13). Alice estimates it will take her $2 worth of time to read the fine

print and identify the exact worth of the widget. Alice faces the following dilemma:

1. If Alice reads the fine print, she will discover one of three things after identifying

the true value of the object:

• The widget is worth less than $6, Alice will not purchase the object, and

Alice has done herself a service, as she will only incur the reading cost of

$2, instead of incurring a cost much greater than that had she purchased

the widget for $8 only to realize a value much less than that.
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• The widget is worth between $6 and $8, Alice will not purchase the item,

and Alice has done herself a disservice, as she will incur the reading cost

of $2, but would have incurred a loss less than $2 had she purchased the

object without having read the fine print.

• The widget is valued over $8, Alice will purchase the widget, and Alice

has done herself a disservice, as she has incurred the reading cost while

purchasing the object anyway.

2. If Alice does not read the fine print, she will discover one of two things by

purchasing and using the object:

• The widget is worth less than $6, and Alice has done herself a disservice,

as she would have incurred less of a loss had she read the fine print and

not purchased the widget.

• The widget is worth more than $6, and Alice has done herself a service, as

she was better off not having incurred the cost of reading the fine print.

3. If Alice does not read the fine print, and does not purchase the item, she will

never know if she made the correct decision, but will suspect that she made a

mistake as her belief of value is greater than the posted price.

Consequently, Alice does not have a dominant purchasing strategy, as any decision

she makes may not maximize her realized surplus in comparison to some alternative

she had. However, just as in the case with an uncoordinated market, the negative

ramifications of this scenario extend beyond the consumer. Overall efficiency can also

be negatively impacted when consumers make a bad decision in pursuing items when

preferences are costly to refine or discover.
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Figure 1.1: A perspective on the types of populations with independent, private values
that various marketplaces are intended to serve, or do serve in practice. While VCG
assumes populations are coordinated and able to refine their sense of value for free,
the VCG-based eBay marketplace serves consumers who are neither. Highlighted are
areas to which this thesis contributes.

1.4 Examining Theory versus Practice

The dilemma examined in this thesis that relates to the place of theoretical as-

sumptions in practical electronic markets is, of course, not new. Marketplaces de-

signed with VCG-based mechanisms and with participants with independent private

values may nevertheless still suffer from bidding mistakes due to strategic complexi-

ties because either participants are uncoordinated or participants cannot refine their

value for free. Considering a classification of marketplaces by the characteristics of

the population it serves or is intended to serve, Figure 1.1 illustrates where markets

lie, as well as where this body of work contributes.

In three studies, I ask and answer three questions pertaining to academic market

assumptions not aligning with realities of user populations:
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1. To what extent are eBay bidders successfully handling their lack of coordination,

and to what extent is their inability to behave optimally hampering efficiency?

2. Can one design a marketplace for uncoordinated consumers in which they do

have optimal bidding strategies?

3. Is a marketplace designed to accommodate bidders with costly value refinement

more efficient than a sealed-bid VCG-based marketplace?

Each of these questions is answered in a subsequent chapter of this thesis.

Answering Question 1: eBay and the Multiple Copies Problem

eBay provides an excellent example of a marketplace that accommodates a bidding

population that is uncoordinated, allowing both buyers and sellers to enter and leave

the marketplace continuously. eBay also accommodates a bidding population that

possesses costly value refinement processes, allowing bidders to bid multiple times

within a given auction. Consequently, a bidder never has to definitively calculate her

true value for an object, but rather must determine only whether her value for a good

is above the current winning price within the auction, a less costly act when a bidder

can approximate her value but must incur a cost to refine her approximation.

However, the manner in which eBay has decided to address the uncoordinated

attributes of its bidding population does not provide bidders with optimal bidding

strategies; consequently, allocations on eBay may be inefficient. The major contribu-

tions of the thesis in this area are

• the examination of the extent to which the bidding population on eBay is ex-

periencing regret when pursuing LCD monitors;
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• the extension of a methodology for approximating an upper bound on the value

distribution of eBay bidders based on their observed bidding behavior; and

• the estimation of the inefficiency on eBay for reasons at least in part attributable

to a lack of coordination of the bidding population.

I examine the strategic difficulties explicitly associated with the bidding popu-

lation facing multiple auctions that sell the same good, and assume that bidders

definitively know their willingness to pay. At present, uncoordinated consumers who

desire items online primarily face two styles of markets, that akin to eBay and that

akin to posted price channels such as the online versions of retail stores. Therefore,

while eBay may be best suited to a population with costly value refinement, it is

reasonable to consider how effective the marketplace is when bidders values are able

to be determined at no cost.

The analysis will provide a few disturbing results. Significant portions of the

bidding population may be experiencing regret, and some certainly witness evidence

of possible regret. Some bidders appear to be acquiring monitors at prices higher than

necessary, while other bidders appear not to be acquiring monitors despite having

higher values than other bidders who were present at the same time who do acquire

monitors. This latter observation would indicate that the overall efficiency of the

marketplace is being hampered.

While it may not be true in all situations that maximal revenue is achieved when

a market is perfectly efficient (Myerson 1981), maximizing the efficiency of a system

does not have to come at the expense of seller revenue. In fact, Kwasnica et al. (2005)

mention that in general the amount of revenue collected is limited by the efficiency of
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the market and that high efficiency is coupled with low revenue if and only if bidder

profits are high, while high revenue is coupled with low efficiency if and only if bidders

incur losses. Therefore, in inefficient markets where neither seller revenue is low nor

are bidders regularly incurring losses (as is the case on eBay), the inefficiencies of

the system may be hurting seller revenue. Consequently, improving the allocative

efficiency of such markets may increase seller revenue.

Answering Question 2: An Options Based Solution to the Sequential Auc-

tion Problem

Many of the strategic difficulties bidders face in markets such as eBay are also faced

by consumers acquiring items in the offline retail sector; however, retail stores have

developed policies to assist their customers that are facing these problems. Return

policies alleviate the exposure problem by allowing customers to return goods at the

purchase price. Price matching alleviates the multiple copies problem by allowing

buyers to receive from sellers after purchase the difference between the price paid

for a good and a lower price found elsewhere for the same good (Lin 1988; Hess and

Gerstner 1991; Chen et al. 2001).

With clear means for resolving the core strategic issues facing bidders, these two

retail policies provide the basis for a new market scheme - the options based market.

The major contributions of the thesis in this area are

• the design and analysis of a novel marketplace that explicitly reduces the strate-

gic difficulties bidders face when they are uncoordinated, but able to determine

their valuation at no cost;
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• the conducting of simulations of the options based market using a population

identical to the estimated eBay population pursuing LCD monitors; and

• the conducting of simulations of the options based market for bidding popula-

tions with more general valuations.

Simulations allow for market to market comparisons of eBay to the options based

market, and demonstrate that the options based market outperforms eBay: it gener-

ates more revenue in the simulation, and also generates a more efficient allocation of

goods.

By providing a system in which bidders posses a simple, dominant strategy, sellers

reduce the participation costs of bidders. While the magnitude of the effects of

reducing these costs is not estimated in this thesis, it can be expected that reducing

the participation costs of bidders in the market should both improve bidder loyalty to

the sellers and make the market more appealing for new entrants. These two effects

ought to preserve and enhance seller revenue in the long term.

Corporations would be particularly well suited as users of the options based

scheme, as the options based scheme is relevant to all those who sell goods by auction

on a regular basis, and could be incrementally implemented as an additional set of

rules on top of an existing marketplace. The inclusion of the new rules that would

convert a standard sequential auction market to an options based market scheme

would be relatively straightforward, and the relationship between sellers and bidders

ought to enable such changes in auction policies if so desired by the corporation.

Uncoordinated markets selling less traditional goods may also be interested in in-

corporating the rules to be presented in Chapter 3. There is an ever increasing market
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for computational services on demand, with computational requirements exceeding

locally available resources resulting in universities and institutions requesting services

from large collections of intertwined computers, such as grid computing systems like

Condor3 and PlanetLab,4 and Amazon.com’s EC25 and S36 web services. As such

systems transition to using auctions for acquiring these distributed resources rather

than priority systems or fixed prices, the need for mechanisms that can accommodate

temporal issues will be ever increasing, and this thesis is relevant for these markets.

Answering Question 3: ICE and Sealed-Bid Markets when Values are Un-

known

An issue that may be encountered when designing marketplaces is that bidders

may be uncertain about their value for goods, particularly if a new type of good is

for sale. Not only can determining the values of these new goods be costly, but also

these new goods may be only one part of a large and complex valuation, which is

private and not interdependent on other bidders’ valuations.

Parkes et al. (2005) designed an Iterative Combinatorial Exchange (ICE) to ac-

commodate bidding populations with arbitrarily complex valuations, but uncertainty

as to what their specific valuations on given combinations of goods may be.7 While

work to date on ICE (and its tree based bidding language) has focused on the com-

3http://www.cs.wisc.edu/condor
4http://www.planet-lab.org
5http://aws.amazon.com/ec2
6http://aws.amazon.com/s3
7The ICE project began as a class-wide term project in Harvard University’s CS286r during the

spring of 2004. Some members of the class, including myself, continued working on the project after
the semester, resulting in the work of Parkes et al. (2005) and Cavallo et al. (2005). Ben Lubin,
David C. Parkes and I continue to advance the work, currently in the form of Lubin et al. (2007).
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putational efficacy of the exchange, I study for the first time not only the efficacy

of ICE against a sealed-bid VCG-based marketplace, but also the influence of costly

information revelation. The major contributions of the thesis in this area are

• the extension of a value belief system and value refinement process for modeling

users of ICE;

• the design of an optimal bidding strategy for participants in ICE given a model

of costly value refinement; and

• the conducting of simulations of the market performance of ICE and sealed-bid

markets given identical populations with finite value refinement budgets.

Modeling users as able to refine beliefs about their values but at a cost, I examine

the utilities achieved by market participants in ICE compared to market participants

who can only submit a single bid in a VCG-based market, limiting the number of

the latter populations’ refinements to as many as their respective counterparts make

in ICE. In so doing, an evaluation can be made as to whether ICE provides more

efficient allocations than VCG-based markets at comparable information revelation

costs. Based on simulations, ICE provides more efficient allocations than the VCG-

based market. However, the amount by which the allocation is more efficient is small.

One area of concern regarding the good performance of the VCG-based market is

that bidders’ beliefs may be too accurate because of an artifact in the way that beliefs

are modeled. Therefore, I also conduct simulations where the beliefs of bidders are

somewhat inaccurate in both ICE and the VCG-based markets. However, comparable

results were achieved under these conditions, while the relative performance of ICE

increases, the efficiency of the VCG-based allocation remains good.
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1.5 Outline of Thesis

Chapter 2, “eBay and the Multiple Copies Problem,” examines the extent to which

bidders on eBay successfully handle their lack of coordination, and to what extent

their inability to behave optimally is hampering the efficiency of eBay. Chapter 3, “An

Options Based Solution to the Sequential Auction Problem,” provides a marketplace

design for uncoordinated consumers that provides optimal bidding strategies. Chapter

4, “ICE and Sealed-Bid Markets when Values are Unknown,” examines the efficiency

of a marketplace designed to accommodate bidders with costly value refinement,

comparing it to a VCG-based marketplace. Chapter 5 concludes the thesis. Related

work will be discussed toward the end of each chapter.
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Chapter 2

eBay and the Multiple Copies

Problem

2.1 Introduction

Many auctions sell similar items on eBay, raising a series of questions. To what

extent do auctions selling similar items interact with each other? To what extent

are bidders aware of other auctions selling similar items to the auction in which they

are bidding? Do bidders behave in a sufficiently optimal fashion that they are not

experiencing regret?

This chapter describes an empirical analysis of the “multiple copies” problem on

eBay based on data of bids for 19-inch Dell LCD computer monitors (model E193FP)

collected over four months starting in the summer of 2005. Using a conservative

model for the arrival and departure time of bidders in the eBay marketplace for LCD

screens during this period, this analysis demonstrates that many bidders face multiple
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auctions selling the same item and that many bidders appear not to secure an optimal

result given the sequences of auctions they face.

This chapter extends the work of Haile and Tamer (2003) to derive a conserv-

ative estimate of the distribution of value of the eBay bidding population for this

domain, with the extensions accounting for the multiple copies problem. Using this

extended estimate technique, it is possible to approximate how much greater an eBay

bidder’s true value is than the maximum bid she was observed to have placed. This

estimation can be used to calculate the efficiency of eBay, and thus to estimate how

inefficient eBay may be for reasons attributed to the multiple copies problem. The

calculation shows eBay is 93% efficient with respect to the optimal offline matching

that maximizes the total value of goods allocated.

2.2 eBay

eBay is an online marketplace most well known for goods being sold by auction,

where thousands of auctions a day are selling a variety of items. Buyers and sellers

acquire usernames when they register on eBay (allowing for pseudo-anonymity), and

may enter and leave the market dynamically.

The most common type of auction held on eBay is a single-item proxy auction.

Auctions open at a given time and remain open for a set period of time, usually on the

order of days. Potential buyers bid for an item by giving their bidding proxy a value.

The proxy will bid on behalf of the buyer only as much as is necessary to maintain a

winning position in the auction, up to the value it received from the buyer.

20



Buyers may communicate with the proxy as many times as they wish before the

auction closes. Therefore, in the event that a buyer’s proxy has been outbid, a buyer

may give the proxy a new, higher value to use in the auction. In essence, eBay

implements an incremental version of a Vickrey auction, with the item being sold to

the highest bidder for the second-highest bid plus a relatively small increment.

2.2.1 The E193FP Monitor Market on eBay

The market analyzed in this chapter consists of eBay auctions for a specific LCD

computer monitor, a 19” Dell LCD Model E193FP. This market was selected for a

variety of reasons including that

• the mean closing price of the monitors on eBay is sufficiently high at $240 with

standard deviation $32 that in combination with the typical use of monitors

makes it reasonable to assume that bidders are interested in acquiring one copy

of the item on eBay;1

• the volume transacted is fairly high, at approximately 500 units sold per month;

• the item is not usually bundled with other items in a given auction; and

• the item is typically sold as new, so product differentiation based on quality of

the product should not be an issue.

Raw auction information was acquired using a PERL script that accesses the eBay

search engine,2 and returns all auctions containing the terms ‘Dell’ and ‘LCD’ that

have closed within the past month. Data was stored in a text file for post-processing.

1For reference, Dell’s October 2005 mail order catalogue quotes the price of the monitor as being
$379 without a desktop purchase, and $240 as part of a desktop purchase upgrade.

2http://search.ebay.com

21



To isolate the auctions in the domain of interest, queries were made against the

titles of eBay auctions that closed between 27 May, 2005 through 1 October, 2005.

Specifically, the query found all auctions where the auction title contained all of

the following terms: ‘Dell,’ ‘LCD’ and ‘E193FP,’ while excluding all auctions that

contained any of the following terms: ‘Dimension,’ ‘GHZ,’ ‘desktop,’ ‘p4’ and ‘GB.’

The exclusion terms exist so that the only auctions analyzed would be those selling

exclusively the LCD of interest. For example, the few bundled auctions selling both

a Dell Dimension desktop and the E193FP LCD are excluded. Further information

on the fields for each auction and how those fields were processed is in Appendix A.

2.3 The Multiple Copies Problem and Strategic

Bidding Behavior

Analysis of the market shows the following: bidders on eBay face the multiple

copies problem, they are as a collective employing several different tactics in deter-

mining how to bid when facing sequences of auctions, and the results of these tactics

seem poor, which may cause problems for sellers as well.

Figure 2.1(a) provides a general sense of how the LCD market is shaped, and shows

that most auctions close on eBay between noon and midnight EDT, with almost two

auctions for the Dell LCD monitor closing each hour on average during peak time

periods. The average time a bidder is observed to be in the market is 3.9 days, with

a standard deviation of 11.4 days, with Table 2.2(a) providing additional information

on the amount of time bidders spent in the market (also referred to as “patience”).
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Figure 2.1: Average number of auctions closing each hour, distribution of number of
auctions available to each bidder, and number of auctions in which each bidder bid.

This amount of time is calculated as that which passes between when a bidder first

submits a bid to a bidding proxy and the latest closing time of an auction in which

a bidder has participated. Figure 2.1(b) shows how many LCD auctions close while

a bidder is in the market.

2.3.1 Existence of the Multiple Copies Problem

While 8,746 bidders (86%) had more than one auction close while they were in the

market, with an average of 78 auctions available, only 32.3% of those bidders (27.8%

of the bidders in total), are observed to participate in more than one auction. Figure

2.1(b) illustrates the number of auctions in which each bidder participates, with the

average bidder particpating in 3.6 auctions.
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Figure 2.2: Information on time bidders spend in market, and histogram of number
of bids each bidder places in each auction. The presence of many bids in each auction
indicates that no simple strategy is being followed.

2.3.2 Strategic Behavior

The idea that bidders do not act as though each auction has a simple strategy to

bid a single time their true willingness to pay is supported by Figure 2.2(b), which

shows the frequency of the number of bids bidders place in each auction. If bidders

viewed the auctions as being truthful, bidders would only need to place a single bid in

any given auction. However, there are many occasions where bidders submit multiple

bids to the bidding proxy for a given auction.

While 28% of bidders bid in more than one auction, one may wonder the extent

to which bidders participate in auctions in sequence, or are simultaneously active in

multiple auctions. I define the activity window of a bidder within an auction as the

time from when a bidder first places a bid in an auction until the last time in an

auction when a bid was provisionally winning (or the end of the auction if the bid-
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0.0 - 0.2 1869
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(b) Number of bidders with a given over-
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Figure 2.3: Example of overlap metric and histogram of overlap metric among eBay
bidding population who bid in more than one auction. There is a large variance in
the extent to which bidders are being active in more than one auction simultaneously.
While 66% of bidders are active in auctions in a sequential fashion, 26% of bidders
are active in multiple auctions simultaneously.

der wins the item). For a bidder who bids in multiple auctions, the extent to which

activity windows overlap can indicate a relatively complex strategy on the part of a

bidder whereby they are particpating back and forth over multiple auctions. I calcu-

late what fraction of a bidder’s activity windows overlap, with Figure 2.3(a) providing

a schematic example of how the overlap metric is calculated for a hypothetical bidder

who participated in three auctions. Among all bidders that bid in more than one

auction, 34.1% had some activity windows overlap. Additionally, of the bidders that

bid in more than one auction, 26.1% of them had more than 60% of their activity

windows overlapping. This is strong evidence that buyers hop back and forth among

auctions, and excercise relatively complex strategies.
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2.3.3 Regression Analysis

I conduct a simple regression analysis, where the maximal bid submitted by a

bidder in an auction is regressed on various aspects of the environment at the time

of bidding, including: bidder fixed effects, seller reputation, if the bidder’s activity

window in this auction overlapped with the bidder’s activity window in another auc-

tion, the total number of opponents who had bid in an auction, the log of time in

seconds that a bidder had been in the market, the log of time in seconds remaining in

the auction when the bid was placed, and the number of auctions in which a bidder

had already bid previously. Table A.1 in Appendix A.3 introduces some summary

statistics of these variables as well as the OLS regression-determined values for the

coefficients (and errors).

There are several interesting statistically significant behaviors. Perhaps most rel-

evant in capturing behavior related to the multiple copies problem, bidders tend to

submit maximal bids to an auction that are $1.22 higher after spending twice as much

time in the system, as well as bids that are $0.27 higher in each subsequent auction.

With the amount of time that a bidder has spent in the system being significantly

correlated statistically to a bidder’s maximum bid in an auction, this may be further

evidence that bidders are engaged in a sequential auction bidding strategy. Bidders

may be placing bids below their maximum willingness to pay upon entering the mar-

ket, hoping to win at a low price, and raising their bids closer to their true willingness

to pay in auctions over time as they approach their departure from the market.

A concern within this dataset is that bidders perceive the value of items as dif-

ferent whereas I assume bidders have comparable value for all items in this dataset.
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Because the monitors have identical model numbers and are typically sold in brand

new condition, there would be no apparent reason for bidders to perceive the objects

being sold across auctions as different. However, the reputation of sellers does vary

from auction to auction, and so could be a cause for bidders to perceive different

values across auctions (as bidders may believe that sellers with higher reputation are

more likely to list honestly an object for sale). However, for this data, there is an

absence of statistical significance for the impact of a seller’s reputation on the value of

bids submitted. Therefore, the statistical results suggest that bidders are not viewing

the items in this dataset at heterogeneous.

2.4 True Regret and Bidder-Observed Regret

Because bidders are participating in multiple auctions, often simultaneously, and

submitting multiple bids within the auctions in which they participate, this chapter

investigates how well bidders actually perform in light of the total number of auctions

that were available. In particular, I investigate the extent to which bidders may be

experiencing regret.

2.4.1 Defining Regret and Bidder-Observed Regret

I assume bidders are interested in maximizing surplus. In pursuing a single item,

a bidder has acquired the maximum possible surplus if she wins a copy of the item at

the lowest possible price during the time in which she was in the market, because the

value of all monitors in each auction is assumed identical. To do so she must win the

auction with the lowest winning price among auctions available.
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A question arises how to describe a scenario where a bidder wins an item at a price

higher than another winning price among the set of auctions she faced (e.g., when

a bidder wins an auction at a price of $200, but there was another auction selling

an identical item that closed 5 minutes previously for $175). If a winning bidder by

bidding differently would have won another auction at a price below what she paid,

securing greater surplus, a bidder is defined as experiencing regret.

Definition 1 (Regret) A bidder experiences regret if she would have been able to

realize greater surplus by bidding differently against the actual bids placed by others

in all auctions.

However, it is not necessarily true that a bidder has experienced regret when

another auction closes for a lower price than what that bidder paid. Consider the

following:

Example 2 Alice values an apple at $12 and wins Auction B at a price of $10. Alice

later observes that Auction A had closed at the same time as Auction B but at a lower

price of $7. Unknown to Alice, the winning bid in Auction A was $14.

Because the winner of Auction A submitted a winning bid greater than Alice’s

value, Alice would not have been able to realize greater surplus by participating in

Auction A instead of Auction B (as she only would have raised the price the winner

of Auction A would have paid). However, because winning bids are shielded from

other participants, Alice is unable to determine when viewing Auction A whether she

has experienced regret or not. We define such a scenario as bidder-observed regret.

28



Definition 2 (Bidder-observed Regret) A bidder experiences bidder-observed re-

gret when she is unable to prove to herself based on observed information that she has

not experienced regret.

In essence, a bidder experiences bidder-observed regret if she may have been able to

realize greater surplus by bidding differently, based on the prices she observes of all

auctions that were available to her.

2.4.2 Identifying Bidder-Observed Regret in the Data

I identify that bidder-observed regret exists when either of the following two sce-

narios occurs:

1. A bidder wins an auction at a price higher than the closing price of another

available auction.

2. A bidder never wins an auction despite placing a bid in an auction that is higher

than the closing price of another available auction.

If the winning bidders in all other auctions submitted bids higher than a bidder’s

value, the bidder has not experienced regret despite possibly experiencing bidder-

observed regret. She neither would have been unable to secure a lower price than the

one she realized, nor would ever have been able to win an auction. However, it is true

in both instances from the perspective of the bidder that she might have been able to

increase her surplus by bidding differently, and so would experience bidder-observed

regret.
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2.4.3 Number Experiencing Bidder-Observed Regret

Among the 1,817 distinct bidders that won an item via auction, 998 (or 55%)

of those bidders won at a price that was higher than the closing price of another

auction that closed while the bidder was in the system. This metric is calculated by

comparing the price that each winner paid to the minimum closing price among all

auctions that were available to the bidder. Furthermore, among the 8,334 bidders

that never won an item, 2,708 (or 32%) of those bidders placed a bid higher than the

closing price of another auction that closed while the bidder was in the market system.

This is calculated by comparing the maximum bid that each non-winning bidder was

observed to submit on eBay and comparing it to the minimum closing price among

auctions available to the bidder. With more than half of auction winners potentially

having been able to do better by winning a different auction, and roughly one third

of non-winning bidders potentially having been able to win an auction below their

losing bids, the current system appears to have opportunities for improvement.3

2.4.4 Is Regret due to Search Errors or Strategy Errors?

As implied by Figure 2.1(b), bidders generally have more auctions available than

the number of auctions in which they participated. Table 2.1 shows the number of

bidders that participated in all auctions available, for a varying number of auctions.

Very few bidders actually participate in all auctions available. Among the 454

bidders that had two auctions available, only 53 bidders (12%) participated in both

3One area of bias here is the inclusion of buyers at the end of the observation window who may
eventually win an auction outside of the observation window. One means to address this concern is
to look only at auctions that closed well before the end of the observation window.
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Table 2.1: Number of bidders who had X auctions available, and the number of
bidders who actually participated in all X auctions.

Number of auctions, Bidders that had X Bidders who bid in all X %
X auctions available auctions that were available
2 454 53 11.67
3 322 1 0.31
4 263 1 0.38

5+ 1785 0 0

auctions; among the 585 bidders that had three and four auctions available, only 2

bidders participated in all auctions available; and among the 1,785 bidders that had

five or more auctions available, no bidders participated in all auctions available.

Given that so few bidders are participating in all available auctions, a natural

question to ask is, “Should knowing that bidders are not participating in all available

auctions change my interpretation of when a bidder experiences regret?” The answer

to this question is likely “yes,” particularly if one would like to infer that bidders

experiencing regret are making errors in their bidding strategy.

There are two different ways in which one can interpret a bidder not participating

in an auction:

1. A bidder was unaware that the auction existed. While the auction was available

in an absolute sense, the auction was not perceived as being available to the

bidder, and so a bidder may have never considered the auction when devising

her bidding strategy.

2. A bidder was fully aware that the auction existed, but chose not to participate

in that auction for strategic reasons. For example, the auction may already

have a price higher than a bidder’s maximum willingness to pay, or the bidder

may have thought for some reasons that she would not win the auction.
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Unfortunately, it is impossible to know which scenario exists for any bidder that

did not bid in a particular auction without interviewing that bidder. Therefore, while

the summary information in Section 2.4.3 is correct when examining all auctions ac-

tually available to bidders, it is worth examining how many bidders would experience

regret when only considering those auctions in which a bidder actually bid.

Among the 508 bidders that won exactly one monitor and participated in multiple

auctions, 201 (40%) paid at least $10 more than the closing price of another auction

in which they bid, paying on average $35 more (standard deviation $21) than the

closing price of the cheapest auction in which they bid but did not win. Furthermore,

among the 2,216 bidders that never won an item despite participating in multiple

auctions, 421 (19%) placed a losing bid in one auction that was at least $10 higher

than the closing price of another auction in which they bid, submitting a losing bid

on average $34 more (standard deviation $23) than the closing price of the cheapest

auction in which they bid but did not win.

Given all the bidder-observed regret demonstrated even when only considering

auctions in which a bidder participated, the tie between bidder regret and the strategic

decisions (and errors) of bidders appears even stronger.

2.4.5 Bidder-Observed Regret does not Imply Irrational Bid-

ding

While regret may imply that a bidder made a strategic bidding error, a bidder

experiencing bidder-observed regret does not imply automatically that a bidder was

acting irrationally when bidding. In fact, there are rational explanations for why a
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bidder would engage in behavior that would result in experiencing bidder-observed

regret, and indeed true regret. These reasons get to the heart of the coordination

problem present in the eBay market.

First, consider the form of bidder-observed regret where a bidder wins an auction

at a price higher than the closing price of another available auction. A bidder may

rationally bid in a manner that results in this form of bidder-observed regret due

to risk aversion. A bidder may observe two auctions, with the first auction to close

having a higher provisional winning price than the second auction. However, the

bidder may choose to bid in the first auction for multiple reasons, including:

• She may believe the second auction will close at a higher price than at what

the first auction will close.

• She may feel like the risk of skipping the first auction and possibly losing the

second auction outweighs the risk of possibly paying more in the first auction.

In both of these situations, a bidder may end up experiencing bidder-observed regret,

but would have made a perfectly rational bid at the time when a decision was made.

Second, consider the form of bidder-observed regret where a bidder never wins

an auction despite placing a losing bid in an auction that is higher than the closing

price of another available auction. Again, a rational bid may have been placed that

resulted in bidder-observed regret.

Example 3 Alice values a monitor at $100, and observes two auctions. Because

Alice thinks she ought to be able to win at least one of the auctions with a bid of $80,

Alice submits a bid of $80 in the first auction to close, losing that auction to someone

who bid at least $81. Between the closing of the first auction and the second auction,
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Alice observes the provisional winning price of the second auction at $95, and submits

a bid of $100 in an effort to win the item; however, Alice loses that auction at well

to someone who bid at least $101.

As illustrated in Example 3, Alice experiences bidder-observed regret because she

never won an auction despite placing a losing bid of $100 in the second auction that

was higher than the $81 closing price in the first auction. However, Alice behaved

rationally in both auctions given her beliefs.

However, bidder-observed regret is still worth measuring, even though bidders

experiencing bidder-observed regret may not necessarily have true regret nor have

made an irrational bid. Because bidders experience bidder-observed regret (which

can be observed) whenever they experience regret (which can not), measuring bidder-

observed regret provides an upper bound on how much regret is actually experienced

within this bidding population. Furthermore, a bidder that experiences bidder-

observed regret may also feel as though she has experienced the “winner’s curse,”

having paid more for an item than she would have had to otherwise, which increases

perceptions of cost of bidding in a marketplace (Bajari and Hortacsu 2003).4

2.5 How Inefficient is eBay?

While Sections 2.4.3 and 2.4.4 demonstrate that many bidders are experiencing

bidder-observed regret, it is important to determine the extent to which these errors

affect overall market efficiency. Efficiency, defined as the ratio between the value of

4I use “winner’s curse” loosely here, as the term normally refers to regret in a common value
auction (Krishna 2002).
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the allocation and the value-maximizing allocation of goods, is an important measure

for determining the strength of a market as a whole. When allocative value can be in-

creased, it can be accompanied by increased buyer surplus, increased seller surplus, or

both depending on the pricing mechanisms in place. Therefore, determining efficiency

can be used as a proxy for how competitive a market is in an abstract sense, as an

efficient market does not leave the opportunity for another market to simultaneously

increase the surplus to both sides of the market; an equally competitive market can

only increase bidder surplus by decreasing seller surplus.

2.5.1 Simple Metrics Demonstrating Inefficiency on eBay

Fraction of High Bidders among Auction Winners

A simple technique for demonstrating inefficiency on eBay without explicitly ap-

proximating the values bidders have was performed by Gopal et al. (2005) in studying

if the auction winners among N auctions were the N highest bidders. They observed

that in general not all of the highest bidders were winners of auctions.

In my data, given the 1,956 auctions, I ask how many of the 1,956 bidders with

the highest bids actually won an auction. The quantity that each eBay bidder is

estimated as wanting is the number of times they won an LCD on eBay, or one if

they never won an item. Given this, I calculate the fraction of highest-valued bidders

that won an auction as the following:

PercentWinners =

∑j
i=0 wini ∗ max(1, numWoni)

numAuctions
, (2.1)

such that j = argmax
k

k∑
i=0

max(1, numWoni) ≤ numAuctions

35



where wini is a binary variable indicating if bidder i ever won an item, numWoni

is the number of monitors bidder i won on eBay, numAuctions is the number of

auctions (1956), and where bidders are sorted in decreasing order of maximum bid.

The number calculated using this technique, 48.6%, indicates that less than half of

the top 1,956 bidders actually won an auction. While this calculation did not include

the arrival and departure times of bidders, and so it may be impossible for all 1,956

of the top bidders to win an item in reality due to insufficient temporal supply, this

metric still indicates that it is likley that the allocation of goods in practice is not

maximizing the value of goods allocated. Therefore, this metric indicates that the

market is likley inefficient.

Sum of Closing Prices over Sum of High Bids

A simple means for estimating the efficiency of eBay is to compare the sum of the

1,956 auction closing prices to the sum of the top 1,956 unique bids submitted:∑X
i=0 Pricei∑X

j=0 HighBidj

(2.2)

where Pricei is the closing price of auction i, HighBidj is the j’th highest bid, and X

is the number of auctions (1,956). Such a calculation has two significant omissions.

First, such a calculation in no way accounts for the timing effects in the system, it

assumes that the bidders are timed in such a fashion that all 1,956 of the top bidders

could feasibly win all the monitors. Additionally, efficiency is a value metric, while

Equation 2.2 is based on prices and bids (although this may be fine if bidders’ values

are a constant factor away from the prices and bids observed). However, the equation

can provide initial evidence for how inefficient the market may be.
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The value of this ratio, 90.8% ($469,821
$517,445

), provides evidence that the system is ineffi-

cient. Bidders with relatively high bids do not always win auctions, hurting efficiency

if the auction winners with relatively low bids possess less value than those bidders

that do not win auctions but have relatively high bids. While this calculation is a sim-

ple estimate, the 9.2% of inefficiency calculated is likely not exclusively attributable

to the assumptions made in developing this metric.

2.5.2 MIP-based Efficiency Calculation

A more accurate calculation for explicitly determining the maximum possible al-

location of value, incorporating all timing concerns, can be formulated with a mixed-

integer program (MIP). While an offline calculation, the MIP fully conditions for

individual bidder’s arrival and departure time in relation to when auctions closed on

eBay. Given all bidders, with each bidder i having an arrival time, tai , departure time,

tdi , and valuation, vi, and given all auctions, with each auction j having a closing time,

tj , the maximum potential allocative value can be calculated by solving the following

optimization problem:
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max
∑

j

∑
i viaji

subject to:∑
j ajit

a
i ≤ ∑

j ajitj , ∀i∑
j ajitj ≤ ∑

j ajit
d
i , ∀i∑

j aji ≤ 1 , ∀i∑
i aji ≤ 1 , ∀j

aji ∈ {0, 1} , ∀i, j

(2.3)

where aji is a binary variable which is set to one by the optimization problem if

auction j should be allocating its item to buyer i.

2.5.3 Efficiency Requiring Knowledge of Value

An obstacle in determining the value of goods allocated on eBay is that I only

have access to the bids submitted by bidders, and not the actual values those bidders

possess for the items for which they bid. Therefore, I require a methodology for

inferring the values bidders possess.

Having a method for estimating bidder values comes with multiple benefits. Not

only would knowing the values of bidders allow me to determine the value of the

allocation of goods on eBay as well as provide an opportunity to analytically calculate

the value-maximizing allocation, but also knowing the value of bidders may allow

for simulating the bidding population using different market mechanisms than that

employed by eBay.

Because the observed maximum bid that a bidder places on eBay is presumably

only a lower bound on the true value that a bidder possesses for the item, a simple
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first order method for recouping the true value bidders have for an item is to multiply

bidder i’s observed maximum bid by a constant factor α in order to estimate her true

value for the item. For example, if Alice truly values an LCD screen at $330, but

only ever placed a bid as high as $300 on eBay, the value of α that would correctly

estimate Alice’s true valuation based on her observed maximum bid would be 1.10.

In general, one could imagine there being two different populations among the

bidders for whom one may want to use scaling techniques in an effort to estimate

true value based on the observed maximum bid. The first population would be eBay

winners. Because eBay is a second price auction, I only observe up to the second

highest bid received in an auction. Therefore, it is reasonable to believe that winning

bidders placed bids that were higher than the winning price by a certain factor. In

addition, one could consider scaling all bidders. Because eBay is not a truthful system

as a whole, it is quite possible to believe that no bidders submit as their bid their

true value, independent of whether they actually win an auction.

2.5.4 Haile and Tamer

In this section, I describe a technique by which one can infer an appropriate value

for α. Haile and Tamer (2003) proposed a method for conservatively estimating the

bounds of a bidding population’s distribution of value, based on the observed bids

that a bidding population makes over a sequence of auctions. Efforts before Haile

and Tamer often based their estimations not only on observations of bids placed by

bidders in auctions, but also on what were at times strong assumptions of bidding

behavior (e.g., assuming that the population was following a certain equilibrium bid-
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ding strategy). Rather than making a modeling assumption regarding the behavior of

bidders, Haile and Tamer use only a “lightweight” set of assumptions when deriving

their estimates.

1. Bidders do not bid more than they are willing to pay.

2. Bidders do not allow an opponent to win at a price they are willing to beat.

From the first of their two assumptions, given the bids placed by each bidder in

each auction, Haile and Tamer derive a method for estimating an upper bound of

the bidding population’s true value distribution. This value provides a lower bound

estimate for the fraction of the population that possesses a value less than a certain

amount. From Assumption 2 and the winning price of each auction, Haile and Tamer

derive a method for estimating a lower bound of the bidding population’s true value

distribution. This value provides an upper bound for what fraction of the population

possesses a value less than a certain amount. The estimate of an upper bound is of

particular interest in this chapter as it can provide a basis for determining at least

how much greater a bidder’s true value is compared to her observed maximum bid.

Following Haile and Tamer, I use F (.) to represent the true value distribution of

the bidding population, and G(.) the distribution of bids among the bidding pop-

ulation. For an individual bidder, i, bi represents the bid a bidder placed, and vi

the bidder’s true value. The first of Haile and Tamer’s assumptions implies that

bi ≤ vi, ∀i. Therefore G(v) ≥ F (v), ∀v; for at any given value, there are (weakly)

more bidders who will bid an amount less than v than there are bidders whose value

is truly less than v. Furthermore, within a given auction of n bidders, let bi:n be

the i’th lowest bid among the n bids received, while vi:n is the i’th lowest true value
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among the n bidders. The bidder with the i’th lowest bid does not have to be the

same bidder as the one with the i’th lowest true value. The first assumption also

implies that bi:n ≤ vi:n.

One can leverage properties of order statistics established by Arnold et al. (1992)

if one assumes that the n bidders in an auction are a random sample of n bidders

drawn from the population of eBay participants at large. Given independent and

identically distributed random variables {Vi}n
i=1 drawn from F(.), the relationship

among the distribution of the i’th order statistic of Vi:n, Fi:n(.) and F (.) is as follows:

F (v) = φ(Fi:n(v); i, n) (2.4)

where φ(H ; i, n) is bounded between 0 and 1, and can be found by solving the following

equation numerically:

H =
n!

(n − i)!(i − 1)!

∫ φ

0

si−1(1 − s)n−ids (2.5)

Haile and Tamer note that while Vi:n cannot be observed, and thus F (.) cannot be

inferred from Equation 2.4 directly, one does know the following (from Assumption

1):

Fi:n(v) ≤ Gi:n(v), ∀i, n, v (2.6)

Therefore, Haile and Tamer (2003) Theorem 1 states:

F (v) ≤ FU(v) ≡ min
n∈[2...M ],i∈[1...n]

φ(Gi:n(v); i, n) (2.7)

where M is the maximum number of bidders in a given auction.

To estimate the upper bound of F (v), FU(v), using finite observations, one must

first construct a variable Tn that provides the number of auctions observed with n

bidders. From there, one can define the following empirical distribution:
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Ĝi:n(v) =
1

Tn

T∑
t=1

1[nt = n, bi:nt ≤ v] (2.8)

where 1[.] is an indicator function equal to 1 when the argument is true, 0 otherwise.

Given Ĝi:n(v), one can estimate the upper bound as:

F̂U(v) ≡ min
n∈[2...M ],i∈[1...n]

φ(Ĝi:n(v); i, n) (2.9)

With this estimate, Haile and Tamer (2003) develop Theorem 3: For n = 2, ..., M ,

suppose that Tn → ∞ and Tn/T → λn as T → ∞, with 0 < λn < 1. Then as T → ∞,

F̂U(v)
a.s.→ FU (v) uniformly in v.

To address small sample bias, Haile and Tamer replace the min function in Equa-

tion 2.9 with the following weighted average that approximates the minimum:

µ(ŷ1, ..., ŷJ ; ρT ) =
J∑

j=1

ŷj

[
exp(ŷjρT )∑J

k=1 exp(ŷkρT )

]
(2.10)

where for ρ ∈ 
, µ(ŷ1, ..., ŷJ ; ρT ) > min(ŷ1, ..., ŷJ).

2.5.5 Extending the Methods of Haile and Tamer

The Haile and Tamer estimates are problematic for analyzing eBay for several

reasons. In deriving their model of the marketplace, Haile and Tamer assume bidders

participate in a single auction. On eBay, as shown in Figure 2.1(b), individual bidders

are known to participate in multiple auctions. Furthermore, Haile and Tamer leverage

the independence of the bidding population from auction to auction in deriving their

estimates. On eBay, it is reasonable to believe that winners of auctions have a rela-

tively lower probability of participating in subsequent auctions, while a losing bidder
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has a relatively higher probability of participating in subsequent auctions. Therefore,

bidding populations are not independent from auction to auction.

I extend the work of Haile and Tamer to allow for estimates of the upper bound of

the distribution of bidder value despite eBay bidders’ behavior causing many of the

assumptions of Haile and Tamer to be invalid. As an illustration of how Haile and

Tamer’s methods can be extended, consider the following example:

Example 4 On Monday, Alice submits a bid of $50 in an LCD monitor auction

that closes on Monday. Alice loses the auction, whereas Bob wins the auction among

8 bidders at a price of $250. On Wednesday, still wanting an LCD monitor, Alice

submits a bid of $200 in an auction that closes on Wednesday. Alice loses this auction

as well, whereas Charlie wins the auction among 6 bidders at a price of $245. Alice

bids in no further auctions.

To see how the first assumption that Haile and Tamer make can be improved,

consider that while it is true that Alice only bid $50 in the Monday auction, I can

presume based on her future activity that her true value is not only (weaker) greater

than $50, but also (weakly) greater than $200. Therefore, my first extension to the

work of Haile and Tamer is to make the following assumption to account for bidders

participating in multiple auctions:

• Within a given auction, each individual bidder’s true value is assumed (weakly)

greater than the maximum bid that a bidder submits among all auctions par-

ticipated (either before or after that auction).

Returning to the example, the bidding population is in all likelihood not a true

random sampling of the overall population. Those who win auctions are less likely to
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bid in subsequent auctions, while those who lose auctions are more likely to remain

bidders in subsequent auctions as they still demand the item. However, it is not

immediately obvious what type of losing bidder is more likely to remain in the sys-

tem. Low value bidders may figure they might get lucky if they participate in many

subsequent auctions, while high value bidders may believe they are on the verge of

winning and so should remain as well.

In an effort not to have an individual bidder bias the estimate due to their bidding

in multiple auctions, the following adjustment is made to the estimation technique:

• If a buyer bids in more than one auction, randomly select one auction in which

the bidder bid, and only use that one observation for the estimation.

By making this adjustment, the bidders in each auction are unique to that one

auction, hence making the bidding observations more appropriate for using the tech-

niques originally suggested by Haile and Tamer. I assume that removing duplicate

instances of a bidder is sufficient to make the bidding population random over auc-

tions. If one believes that certain portions of the population are drawn to certain

auctions, then further adjustments would be required in order to utilize the estima-

tion techniques.

Returning to Example 4, when implementing the Haile and Tamer algorithm the

following adjustments are made when incorporating Alice into the model:

1. The maximum bid Alice ever submits is $200. Therefore, assume that Alice’s

true value is weakly greater than $200.

2. Because Alice bid in two auctions, randomly include her in only one of those

auctions for the estimation. Therefore, either:
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(a) Alice is randomly assigned to the Monday auction, where she is noted as

having a value (in effect) of $200 for the purposes of estimating the value

distribution. Wednesday’s auction is considered to have only 5 bidders.

(b) Alice is randomly assigned to the Wednesday auction, where she is noted

as having a value (in effect) of $200 for the purposes of estimating the

value distribution. Monday’s auction is considered to have only 7 bidders.

Censoring of Bidders

Another concern regarding the bidding population is that there may be a bidder

(or many bidders) who would have bid in an auction had the provisionally winning

price been below her valuation, but was unable to do so because the price was above

her valuation when she found the auction. This censoring of the bidder could be

problematic for multiple reasons. First, as the bidder never placed a bid, I would have

no way of observing that she “had been” in that auction, resulting in the number of

bidders observed as being within that auction being fewer than the total true sample of

bidders who observed that auction. Second, because the censored bid is not seen, the

effective value of the n’th-highest bidder among all bidders may be different. However,

the direction of the bias that this censored bid has on my estimate is unclear.

In one extreme scenario, a censored bidder may have a value very close to the final

winning price. Consequently, what I observe to be the third highest bid (and so a

lower bound on the third highest value) is actually lower than what the third highest

bid could have been. Therefore, the estimation of the upper bound would be further

below the distribution of observed bids had the auction observers been incorporated.
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However, in the alternative extreme scenario, a censored bidder may have a value

very close to zero. Consequently, what I observe to be the third highest bid among

the N bidders I observe is actually the third highest bid among a number of bidders

much greater than that. Therefore, in this scenario, the estimation of the upper bound

would be closer to the distribution of observed bids had all bidders who observed the

auction been incorporated. Consequently, as censored bidders could be biasing the

estimation of the upper bound of value in either direction, I make no corrections in

this chapter to try and account for censored bidders.ed the auction been incorporated.

Consequently, as censored bidders could be biasing the estimation of the upper bound

of value in either direction, I make no corrections in this chapter to try and account

for censored bidders.

Applying Extensions to My Data

Using the two extensions to the work of Haile and Tamer, I generate estimates

of the upper bound of the true valuation distribution using a smoothing parameter

value of 1000 (as was done in the original work of Haile and Tamer). I do not

consider auctions with more than 17 bidders, as such auctions are sufficiently rare so

as to introduce significant small number bias using these estimation techniques.

Figure 2.4 displays a variety of distributions of eBay bidders. The “Observed

Max Bids” displays the cumulative distribution function (CDF) of bidders’ observed

maximum bids on eBay. The “HT upper Bound Est.” displays the estimation of

the upper bound of the bidders’ true value distribution based on Haile and Tamer’s

algorithm.
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Figure 2.4: Cumulative distribution function (CDF) of maximum bids observed, orig-
inal Haile and Tamer upper bound estimate of bidders’ true value distribution, upper
bound estimate incorporating the first extension, and upper bound estimate incorpo-
rating both extensions. The true value distribution lies (weakly) below the estimated
upper bound.

The “Est. w/ 1st Extension” displays the results of incorporating the first ex-

tension to the Haile and Tamer model: acknowledging that the true value a bidder

possesses is at least as great as the maximum bid placed among all auctions partic-

ipated. This adjustment results in the curve being shifted to the right. Such a shift

is expected, as each observation of each order statistic is weakly greater after the

adjustment than before. However, this extension is not by itself sound because it still

leaves in place the bias that I remove with the second extension.

The “Est. w/ 2nd Extension” displays the results of my first and second exten-

sions: only using each unique bidder in a single auction when estimating the upper

bound. These extensions result in a curve between the “HT Upper bound Est.”

and the “Est. w/ 1st Extension” curve, and indicates a disproportionate presence of

unique high value bidders bidding multiple times in auctions.

In the context of these distributions, α is a multiplicative factor which stretches

the CDF of maximum bids to the right. Table 2.2 shows the values corresponding
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Table 2.2: Estimates of the scaling factor, α, from the observed distribution of bids on
eBay to the estimated upper bound of true value. An α = 1.42 at the 50th percentile
implies that while half of the bidding population placed maximum bids below $180
on eBay, half the population has a true value no less than $255 (42% higher).

Percentile ValueObserved ValueEstimate α ≡ Estimate
Observed

20th 75 235 3.13

50th 180 255 1.42

80th 240 280 1.17

to the 20th, 50th and 80th percentiles of the distribution functions, as well as the

implications for a lower bound of α. At these percentiles the estimates of the lower

bound for a value of α vary from 1.17 at higher values (also the observed minimum

value among the percentiles) to 3.13 at lower values, indicating that a uniform value

for α to be applied to the entire population of 1.15 is reasonably conservative.

2.5.6 Applying Value Estimates to Valuation of Allocation

To estimate the efficiency of eBay given the observations, I estimate vi as the

maximum observed bid placed by a bidder scaled by α, tai as the time a bidder first

communicated with an eBay proxy, and tdi as the latest closing time of an auction

in which a bidder bid on eBay. Bidders who won more than one item on eBay are

cloned so that they appear to be multiple bidders of identical type each wanting one

item.

While the estimation of the total value allocated to eBay winners is $551,242, the

MIP-based calculation (Equation 2.3) estimates that the maximum potential value

that could have been allocated is $593,301. Therefore, while the current allocation
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on eBay appears to be fairly good with respect to allocative value, at 92.9% efficient,

there is still a sizeable amount of value not being allocated that could have been, at

$42,059. In other terms, while the typical value possessed by a winner on eBay is

estimated as $281, an optimal allocation of the goods would have the typical winner

possessing a value of $303 for the good.

In fact, if one believes that every bidder’s true value is a constant factor α away

from their maximum bid, the 92.9% efficiency calculation holds for any value of α.

However, this belief may not be reasonable, and may alter claims on how efficient

the system is. For example, if a bidder on eBay places a bid in a losing effort of

$0.50, but truly possesses the highest, unknown value among all bidders, she will not

have had her loss properly incorporated into the efficiency calculation, introducing

upward bias. Alternatively, if losing bidders on eBay tend to have true values close

to their observed maximum bids, but eBay winners have true values much greater

than their observed maximum bids, then downward bias is introduced in the efficiency

calculation at present.

2.5.7 An Alternative Mapping of Maximum Bids to Values

While using a constant multiplicative factor of α to transform bids to values

enables the efficiency estimate of 92.9% to be independent of the exact value of α, I

also investigate to what extent the efficiency estimate changes if using a non-uniform

mapping from bids to values.

In particular, I map bids to values according to Table 2.3, adding an amount βi

to each bidder’s bid in order to estimate their true value. Bidders whose maximum
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Table 2.3: Estimates of the additive factor, βi, mapping the observed bid of a bidder
on eBay to an estimate of their true value. A βi = 75 at the 50th percentile implies
that bidders who were observed to have placed maximum bids on eBay of $180 will
be estimated as having true value $75 greater.

Percentile ValueObserved ValueEstimate βi = ValueEstimate − ValueObserved

20th 75 235 160

50th 180 255 75

80th 240 280 40

bids are not at these exact percentiles have βi values estimated by linear interpo-

lation.5 This alternative mapping results in the estimated total value allocated to

eBay winners being $558,301. (This amount is similar to the previous estimate of

$551,242, reflecting an offsetting of higher estimated value for low-value winners and

lower estimated value for high-value winners.) The MIP-based calculation (Equation

2.3) estimates that the maximum potential value that could have been allocated is

$577,615. (This amount is less than the previously estimated $593,301, likely reflect-

ing the lower estimates of value for the bidders with the highest of bids.) Therefore,

the allocation on eBay using this modified estimation technique appears to be better

than previously estimated, at 96.7% efficient. However, there is still a sizeable amount

of value not being allocated that could have been, at $19,314. While the typical value

possessed by a winner on eBay is estimatd at $285, an optimal allocation of the goods

would have the typical winner possessing a value of $295 for the good.

5The βi for any bidder below the 20th percentile is estimated as $160, while the βi for any bidder
with a maximum bid above $350 is estimated as $0.
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2.6 Comparing eBay to Posted Price Equivalents

In an effort to further investigate the quality of the efficiency claims in Section

2.5.6, I compare eBay to the efficiency and revenue that could be generated using a

posted-price sales channel, given the same estimated bidding population examined in

that section. In particular, I assume a marketplace where for each auction conducted

on eBay, a seller will sell their item at a predetermined posted price if there is an

interested bidder, rather than conducting an auction for that good.

2.6.1 Best-Case Posted Price Results

As an optimistic assumption, let us assume that the bidders who acquire the

items at the posted price are the ones that maximize overall system efficiency. With

this assumption, the set of bidders who acquire items, as well as the overall system

efficiency, can be determined using a mixed-integer program very similar to that of

Equation 2.3. In particular, Equation 2.3 can be modified such that the maximum

possible allocative value given a posted price, PRICE, is the following:
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Figure 2.5: Maximum possible allocative value, revenue and number of items sold in an
online posted price marketplace consisting of the eBay buying and selling population.

max
∑

j

∑
i viaji

subject to:∑
j ajit

a
i ≤ ∑

j ajitj , ∀i∑
j ajitj ≤ ∑

j ajit
d
i , ∀i∑

i aji ≤ 1 , ∀j∑
j aji ≤ 1 , ∀i : vi ≥ PRICE∑
j aji = 0 , ∀i : vi < PRICE

aji ∈ {0, 1} , ∀i, j

(2.11)

The only difference between Equations 2.3 and 2.11 is that a buyer is only eligible

to be allocated an item if her value for the item is (weakly) greater than the posted

price.

Figure 2.5(a) shows the maximum possible allocative value and revenues with

the population on eBay but using a posted price marketplace, as well as horizontal
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lines representing the revenue and estimated allocative value of eBay. While revenue

initially increases with increasing posted price with no decrease in maximum allocative

value possible, both revenue and maximum allocative value possible begin to rapidly

decline after a tipping point near a posted price of $275. This can be readily explained

by Figure 2.5(b), where the total number of items sold appears to quickly decrease

once the posted price is beyond $275. Due to the limited number of people that

possess values above those high posted prices, per item revenue increases but not by

nearly enough to compensate the reduction in quantity sold.

Comparing these data to what actually happened on eBay, posted-price mecha-

nisms have the opportunity to allocate greater value than eBay when the posted price

is below $275. This is because it is possible for the posted-price mechanism to achieve

perfect efficiency in such scenarios. However, as the posted price begins to increase,

the number of bidders eligible to purchase items decreases, reducing the maximum

possible value of goods allocated beneath that achieved on eBay.

Comparing revenue levels, the posted price mechanism achieves generally, but not

always, inferior results to eBay. When the posted price is below $250, the revenue

generated at each sale prevents it from surpassing the revenue achieved on eBay.

Alternatively, when the posted price is above $275, the relatively high revenue per

item is offset by the reduced quantity actually sold, resulting in lower overall total

revenue. However, at prices between $250-$275, both the revenue achieved in the

posted price scheme (as well as the maximum possible allocative value) are superior

to that achieved on eBay, conditional on the perfect allocation being achieved.
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This introduces two interesting lessons regarding the use of a posted price scheme

in place of the eBay market as it currently stands. First, a poor selection of a posted

price can hamper both system-wide efficiency and total seller revenue in comparison to

other market mechanisms. Second, an ideal selection of a posted price could achieve

both higher total revenue as well as higher value allocated as compared to eBay’s

mechanism of holding sequential auctions.

2.6.2 Simulated Average-Case Posted Price Results

I also consider what a more ‘typical’ posted-price result may be rather than the

maximum possible result. Rather than using the mixed-integer program of Equation

2.11 to determine the maximum possible value that could be allocated, I instead

consider a market where any buyer in the system might obtain the item if they have

value beyond the posted price. When an item becomes available at the posted price, a

bidder is selected as the winner uniformly at random among all bidders in the system

at the time of that sale that possess a value greater than the posted price.

Figure 2.6(a) shows the average value allocated and revenues of such an online,

posted price marketplace. Similar to Figure 2.5(a), revenue initially increases with

increasing posted price, then rapidly declines after a tipping point near a posted price

of $250. The slightly earlier tipping point can be explained by comparing Figures

2.5(b) and 2.6(b), where one sees that the total number of items sold decreases sooner

in Figure 2.6(b). The trend of allocative value is particularly interesting in 2.6(a).

Unlike in Figure 2.5(a), Figure 2.6(a) shows that the total value of goods allocated

increases with increasing posted price. This can be explained by viewing the increase
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Figure 2.6: Average (over 30 simulated runs) of allocative value, revenue and number
of items sold in an online posted price marketplace consisting of the eBay population.

in posted price as a filtering process whereby low value bidders are excluded from

acquiring an item. However, similar to Figure 2.5(a), once the quantity sold begins

to decrease, total allocative value decreases.

Comparing these data to what actually happened on eBay, Figure 2.6(a) also

displays the levels equal to the estimated value allocated on eBay as well as the total

revenue achieved on eBay. Comparing allocative value, while Figure 2.5(a) showed

that posted price mechanisms could have the opportunity to allocate greater value

than eBay, Figure 2.6(a) shows that greater allocative value by the posted price

mechanisms is actually not likely in practice as the eligibility for lower valued bidders

to acquire items at the posted price reduces the expected allocative value.

Similar results appear to be true when comparing revenue. The posted price

mechanism achieves inferior revenue results as compared to eBay. With the decrease

in items sold occurring earlier in the average-case posted price environment, by the

time the per-item revenue is sufficiently high to possibly exceed eBay, the decrease in

quantity sold is too great for the posted price to perform better.
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This introduces a third interesting lesson regarding the use of a posted price

scheme in place of the eBay market. While it is true that an ideal selection of a

posted price could achieve both higher total revenue as well as higher allocative value

as compared to eBay’s mechanism of holding sequential auctions, it is unlikely that

such a result could occur in practice without some other mechanism in place to not

only prevent low value bidders from taking advantage of low posted prices, but also

having high value bidders win items at the correct times to fully maximize revenue

subject to the timing constraints of the bidders.

2.7 Related Work

Shah et al. (2003), Bapna et al. (2004) and Slavova (2006) have developed data-

driven approaches toward developing a taxonomy of strategies employed by bidders

in practice when facing multi-unit auctions. Unlike their work, this chapter does

not aim to classify the various strategies employed by bidders, but rather assess the

extent to which bidders are making strategic mistakes whatever their strategy may be.

Furthermore, this chapter differs from their work as I am considering the strategic

behavior of bidders trying to acquire a single item offered by multiple auctions, while

their work considers the strategic behavior of bidders trying to acquire a single item

offered by a single multi-unit auction.

An alternative approach to the work of Haile and Tamer (2003) for bid identi-

fication in online auctions has been developed by Jiang and Leyton-Brown (2005)

and utilizes machine learning techniques. A significant difference of the work by

Jiang and Leyton-Brown is that they generate hidden bids intended to be consistent
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with the bids observed before computing their maximum-likelihood estimate, whereas

Haile and Tamer (and consequently this chapter) base estimates exclusively on the

observed bids when generating an upper bound over the unknown, true distribution.

2.8 Conclusion

As many auctions sell similar items on eBay, I study the extent to which bidders

appreciate the presence of other auctions when bidding. Conducting an empirical

analysis of the “multiple copies” problem on eBay by collecting over four months of

bids for computer monitors, I infer a conservative model for the arrival and departure

time of bidders in the eBay marketplace for LCD screens during this period. This

model demonstrates that many bidders appear to fail in maximizing their surplus

given the sequences of auctions they face. I also extend the work of Haile and Tamer

(2003) to estimate conservatively the distribution of value of the eBay bidding pop-

ulation for this domain. Based on this extension, I estimate that strategic bidding

difficulties are contributing to reducing the efficiency of the marketplace to 93%.

2.8.1 Opportunities for Future Work

There are a number of interesting extensions that one could pursue in continuing

the work of this chapter. Classifying the strategies employed by eBay bidders facing

multiple auctions each selling the same item, perhaps extending the work of Bapna

et al. (2004), is a worthwhile endevour. Not only would doing so provide additional

insight into how users interact with current electronic marketplaces, but also would

make it easier to more accurately simulate users within eBay-style markets.
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Complementary Items Another extension could be to examine a marketplace

where bidders desire goods that are complementary, but can only participate in single-

item auctions, and so face the exposure problem. One significant obstacle would be in

trying to determine how much of a pursued bundle is already held by a bidder before

entering the market (e.g., it will be important to have a sound belief as to whether

Alice already has or does not have a video game console in her possession when seeing

her bidding on a video game). Such an examination would provide valuable insight

toward the strategic difficulties of current schemes and accompanying inefficiencies.

Lab Experiments Lab experiments may provide additional insight into how prob-

lematic multiple copies and exposures problems are in practice. By explicitly pro-

viding lab participants with their valuation, one could explicitly calculate how many

bidders fail to maximize their surplus, explicitly calculate how efficient the experi-

mental marketplace is, explicitly calculate by how much bidders bid below their true

values, and conduct surveys to gain insight into why bidders behave as they do.

Validating Haile and Tamer Extensions It would be interesting to validate the

appropriateness of the Haile and Tamer extensions through Monte Carlo analysis.

Alternatively, in conjunction with lab experiments, one could apply the extended

techniques of Haile and Tamer to the bids submitted by lab participants, examining

to what extent the extended techniques actually generate conservative bounds of the

known true value distribution.

Sniping Finally, an empirical phenomenon observed in this data, and noted before

in much literature, is that bidders have a tendency to submit bids toward the end
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of an auction’s duration. While there are many reasons for bidders to submit bids

at the last second, also known as “sniping” (Ockenfels and Roth 2002), this chapter

suggests another compelling reason why bidders may snipe even when they possess

private valuations. As bidders must consider all auctions they face when trying to

maximize their surplus, if a bidder submits a bid to an auction well before an auction

closes, they are potentially locking themselves into a bid that would not have been

placed conditional on new auctions of which a bidder might become aware between

the time at which the bid is placed and when the auction closes. By bidding toward

the very end of an auction, a bidder is able to process the best information of both

current and future auctions when constructing her bid for the current auction.
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Chapter 3

An Options Based Solution to the

Sequential Auction Problem

3.1 Introduction

I propose a new real options based market infrastructure, coupled with proxy

bidding, that enables simple, yet optimal, bidding strategies, while retaining the seller

autonomy that is the defining feature of the most successful of today’s open electronic

markets, eBay. The options based infrastructure is computationally simple, handles

temporal issues, and retains seller autonomy in deciding when to enter the market and

conduct individual auctions. The model allows for a market with multiple different

goods, but assumes that each seller offers a single unit of a good at a time, consistent

with common practice on eBay. Bidders may have general valuations on bundles of

goods, and the analytic focus of this chapter is for this general model. However,

given the prevalence of bidders desiring single items in practice through single item
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auctions, the empirical focus of this chapter is on bidders who desire a single item and

face the multiple copies problem. I do not address the issue of quality of goods, but

rather assume that goods can be placed into equivalence classes so that all bidders

are indifferent between goods in the same class.

A seller allocates an option for her good, which will ultimately either lead to a sale

of the good or require that the seller return to the market and offer another option

on the same good. Sellers agree to price-match their goods against others of equal

type, with the payment a seller finally receiving defined in terms of the minimal price

that the winning bidder could have bid and still traded with a seller in some auction

during a bidder’s patience (i.e., the period of time in which a bidder is in the market

looking to obtain the item).

Bidders must interact through proxy agents, defining a value on all possible bun-

dles of goods in which they have interest. While such an enumeration may seem

daunting at first glance, there are several reasons not to view this as a major concern.

First, a very common purchasing scenario is for a bidder to want a single item, or is in-

different among only a few different items. Second, Cantillon and Pesendorfer (2006)

provide empirical support that bidders can manage to construct bids in large com-

binatorial settings. Third, work like that of Cavallo et al. (2005) demonstrates that

compact expressions of complete valuations are possible when there exists underlying

structure to a valuation.

In my proposal, a bidder also declares to her proxy the latest time period in which

she is willing to wait to receive the good(s). The proxy agent uses the information

about value and patience to determine how much to bid for options, and follows a
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dominant bidding strategy across all relevant auctions. A proxy agent finally exercises

options held when the bidder’s patience has expired, choosing options that maximize

surplus given the reported valuation. All other options are returned to the market and

not exercised. The options based protocol makes truthful and immediate revelation

to a proxy a dominant strategy for bidders, whatever the future auction dynamics.

3.2 Model

Goods

Consider a world with K different types of goods G1...GK .1 Let T = {0, 1, ...}

denote time periods. Let L denote a bundle of goods, represented as a vector of size

K, where Lk ∈ {0, 1} denotes the quantity of good type Gk in the bundle. I extend

notation whereby a single item k of type Gk refers to a vector L : Lk = 1.

Bidders

Consider B bidders (sometimes called buyers). The type of a bidder i ∈ B is

(ai, di, vi), with arrival time ai ∈ T , departure time di ∈ T , and private, known,

representable valuation vi(L) ≥ 0 for each bundle of goods L received between ai and

di, and zero value otherwise. Modeling a bidder’s value as constant during the time

in which she is interested in acquiring the bundle is most appropriate when the value

of goods will be realized at a specific moment in time (e.g., Saturday night movie

tickets providing a buyer with equivalent value whether they are obtained the prior

Monday or Tuesday), or when the range of values for an item is minimal within the

1A fruit market might sell K=3 types of goods [G1 = apple, G2 = banana, G3 = pomegranate].
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time period (e.g., an LCD monitor that a buyer plans on using for 3 years provides

a buyer with roughly equivalent value if held for 1000 days or 998 days). The arrival

time models the period in which a bidder first realizes her demand and enters the

market, while the departure time models the period in which a bidder loses interest in

acquiring the good(s). For example, a bidder may lose interest in an item if a time has

passed to acquire an item whose value was realized at a specific past moment in time

(e.g., Saturday night movie tickets providing a buyer no value the following Sunday),

or a bidder simply wishes to take advantage of an outside opportunity to acquire the

item (e.g., a bidder deciding to acquire an item at a posted price on a certain date if

she is unable to secure a better price first via an online auction marketplace).

In settings with general valuations, I will need an additional assumption (for

reasons highlighted in Footnote 4): an upper bound on the difference between a

bidder’s arrival and departure time, denoted ∆Max. While an arbitrarily high ∆Max

might be all that can be reasonably assumed in some domains, other domains may lend

themselves to lower values. For example, a market maker may be able to determine

empirically that buyers interested in acquiring an LCD monitor may always leave the

market after unsuccessfully spending no more than one month in the system. Bidders

have quasi-linear utilities, so that the utility of bidder i receiving bundle L and paying

p, in some period no later than di, is ui(L, p) = vi(L) − p.

Sellers

Each seller j ∈ S brings a single item kj to the market, has no intrinsic value for

the item, and is interested in maximizing revenue. Seller j has an arrival time, aj ,
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which models the period in which she is first interested in listing the item, while the

departure time, dj, models the latest period in which she is willing to consider having

an auction for the item close. A seller will receive payment at the end of the reported

departure of the winning bidder. This model makes no assumption as to when a seller

needs to receive the funds for the item sold. While this appears restrictive on the

seller, it is not significantly different than what sellers on eBay currently endure in

practice. An auction on eBay closes at a specific time, but a seller must wait until a

bidder relinquishes payment before being able to realize the revenue, an amount of

time that could easily be days (if payment is via a money order sent through courier) to

much longer (if a bidder is slow but not overtly delinquent in remitting her payment).

In this chapter, I assume that sellers are relatively unsophisticated. Without clear

incentives to deviate, I assume that sellers will enter the market truthfully.

3.3 The Sequential Auction Problem

In a direct revelation mechanism, each bidder i interacts with the electronic market

only once by declaring a bid, bi, which is defined as an announcement of its type, where

the announcement may or may not be truthful. I denote all received bids other than

i’s as b−i (and at any moment in time, only a subset of these bids may be known

to the market as some bids will be received in the future). Given bids, b = (bi, b−i),

the market determines allocations, xi(b), and payments, pi(b) ≥ 0, to each bidder

using an online algorithm. Prices are assumed explicitly dependent on the bids (e.g.,

auctions are not fixed price mechanisms that ignore bids and simply return a constant

value for the price).
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A dominant strategy in this context exists for a bidder if there is a single bid,

b∗i , that maximizes the bidder’s utility with respect to all other bids, independent of

what other bidders bid. Formally, a dominant strategy equilibrium requires that for

each buyer i:

∃b∗i : vi(xi(b
∗
i , b−i)) − pi(b

∗
i , b−i) ≥ vi(xi(b

′
i, b−i)) − pi(b

′
i, b−i), ∀b′i �= b∗i , ∀b−i (3.1)

An auction is deemed strategyproof, when announcing true type is a dominant

bidding strategy. As an example, a Vickrey auction (see Vickrey 1961), where a good

is allocated to the bidder who submits the highest bid, but the price is the value of the

second highest bid, is truthful in isolation. Following Parkes (2003), I define a locally

strategyproof (or truthful) auction, which recognizes participation opportunities in

multiple markets, as follows:

Definition 3 Locally strategyproof. An auction is locally strategyproof when truthful

bidding is a dominant strategy for a bidder that can only bid in that auction.

In practice, there are few instances when a bidder can only participate in a single

auction. Generally, such instances occur either because an item for sale is unique and

only available for auction once in a bidder’s lifetime (e.g., a unique piece of artwork

for which there is no substitute and where the winner of the auction intends to retain

ownership forever after), or because a bidder is so impatient in wanting to acquire an

item that either she wins the occurring auction for the item or ceases to pursue the

item. However, in each of these scenarios, a bidder will have a dominant strategy to

bid truthfully provided that the auction is a truthful mechanism.
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3.3.1 Defining the Sequential Auction Problem

While the discussion in Section 3.2 models what a dominant strategy is in a

mechanism where a bidder only makes a single declaration of type, let us now focus

on scenarios in practice where bidders must make repeated declarations of type over

a sequence of auctions. In this chapter, I focus on the existence (or lack) of strongly

dominant strategies (also referred to as “dominant” in this chapter). A strongly

dominant strategy will always provide a bidder with (weakly) more surplus than any

other strategy no matter the strategies played by other bidders, non-determinism in

market clearing rules, or random events that may occur in nature.

First, consider the following example in which a bidder does not have a strongly

dominant strategy even though each individual auction is locally strategyproof.

Example 5 Concrete mixer Alice values acquiring one ton of Sand before Wednesday

for $1, 000. Bob will hold a Vickrey auction for one ton of Sand on Monday, and

another such auction on Tuesday.

In this context, Alice has no dominant bidding strategy. The basic problem is

that Alice cannot predict if the price of the Tuesday auction will be greater or less

than the price of the Monday auction, which she needs to know when deciding on an

optimal bidding strategy on Monday.

Example 6 Alice values one ton of Sand with one ton of Stone at $2, 000. Bob holds

a Vickrey auction for one ton of Sand on Monday. Charlie holds a Vickrey auction

for one ton of Stone on Tuesday.
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Again, Alice has no dominant bidding strategy because she needs to know the

price for Stone on Tuesday in order to know her maximum willingness to pay for

Sand on Monday. If Alice bids too high on Monday, she may be left with one ton of

Sand but no ability to buy the one ton of Stone required to complete her construction

project. If Alice bids too low on Monday, she might forfeit the opportunity to buy

both the Sand and Stone despite realizing that she could have afforded to do so after

the fact.

Definition 4 The sequential auction problem. Given a sequence of auctions, despite

each auction being locally strategyproof, a bidder has no dominant bidding strategy.

Consider a sequence of auctions. Assume that a bidder has full knowledge of

the rules of the auctions she is about to face, as well as the domain of values of

other bidders. Generally, auctions selling the same item will be uncertainly-ordered,

because a bidder will not know the ordering of closing prices among the auctions.

Define the interesting bundles for a bidder as all bundles that could maximize the

bidder’s profit for some combination of auctions and bids of other bidders (with the

empty set being an interesting bundle). Within the interesting bundles, say that an

item has uncertain marginal value if the marginal value of an item depends on the

other goods held by the bidder. Formally, an item k has uncertain marginal value if

the following condition is true:

|{m : m = vi(Q) − vi(Q − k), ∀Q ⊆ L ∈ InterestingBundle, Q ⊇ k}| > 1. (3.2)

Say that an item is over-supplied if there is more than one auction offering an item of

that type. Say two bundles are substitutes if one of those bundles has the same value
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as the union of both bundles. Formally, two bundles A and B are substitutes if

vi(A ∪ B) = max(vi(A), vi(B)). (3.3)

Proposition 1 Given locally strategyproof single-item auctions, the sequential auc-

tion problem exists for a bidder if and only if either of the following two conditions

is true: (1) within the set of interesting bundles (a) there are two bundles that are

substitutes, or (b) there is an item with uncertain marginal value, or (c) there is an

item that is over-supplied; (2) a bidder faces competitors’ bids that are conditioned

on the bidder’s past bids.

Proof. (⇒) By contradiction. Assume the sequential auction problem and that

both (1) and (2) are false. If (a) is not true, then the value of a bundle that covers

any two interesting bundles is greater than the value of either individual bundle,

vi(A ∪ B) > max(vi(A), vi(B)), ∀A, B �= φ. Therefore, the bundle containing one

copy of each item type Gk must be a bundle strictly valued by the bidder. Formally,

a bundle L that is strictly valued has value greater than that implied by free disposal:

vi(L) > max
Q⊂L

vi(Q). (3.4)

If (b) is not true, then acquiring an additional item, k, of a given type returns the

same marginal value, vi(Q) = vi(Q−k)+ck, ∀Q ⊆ L ∈ InterestingBundleSet, Q ⊇ k,

where ck is the constant marginal value associated with items of type Gk. Therefore,

(a) and (b) both not being true implies that the valuation of any bundle L, must

be vi(L) =
∑

k Lkck by induction.2 Therefore, any item k won (up to one copy)

2Let M be the maximal bundle covering all interesting bundles, which is strictly valued by the
bidder as (a) is not true. As a base case, consider all bundles of size one covered by M , each of
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below a price of ck increases the profit of the bidder. (c) not being true implies that

a bidder would like to win the one auction selling an item if the price is below ck.

Therefore, because the auctions are given as locally strategyproof, and by virtue of

the bidder not facing competitors’ bids that are conditioned on the bidder’s past bids

(i.e., (2) being false by assumption), the bidder has a dominant strategy to bid ck in

each auction selling an item of type Gk, which gives a contradiction. (⇐) By case

analysis. If (a) is true, then a bidder cannot profitably pursue two bundles at the same

time, as she could spend money in acquiring both bundles but not receive value from

both. However, a bidder does not know ex-ante which bundle to avoid. Therefore,

the bidder does not have a dominant strategy, as ex-post she might win a bundle that

she would have been better off avoiding given the strategies actually played by other

bidders.�If (b) is true, it is unknown how much to bid on the first instance of an

item of the given type, as it is unknown which bundle a bidder will eventually win.

Therefore, the bidder does not possess a dominant strategy, as ex-post it may be clear

that she bid the wrong marginal value for the item given the strategies actually played

by other bidders .�If (c) is true, given uncertainly-ordered auctions, it is unknown

which auction offers the lowest price for some good contained in the bundle that has

an over-supplied type. Therefore, there is no dominant strategy, as ex-post a bidder

may win the wrong auction selling an item given the strategies actually played by

other bidders.�If (2) is true, a bidder does not have a dominant strategy as she does

not know how to optimally influence competitors’s bids.�
which has value ck as (b) is not true. Given bundles of size z covered by M , all bundles of size z +1
covered by M must be strictly valued as (a) is not true. Each covered bundle of size z + 1, formed
by adding k to some covered bundle L of size z, has value vi(L) + ck as (b) is not true. Therefore,
by induction, as every bundle L covered by M is constructed by adding each item type Lk times to
the empty set, bundle L must have value

∑
k Lkck.
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As an example, consider a bidder who values one ton of Sand for $1,000, or one

ton of Stone for $2,000, but not both Sand and Stone. If the bidder could participate

in either a Sand auction or a Stone auction, she faces the sequential auction problem

due to condition (a) of Proposition 1 (i.e., Sand and Stone are substitutes, and the

bidder might choose the wrong item to pursue). As a second example, consider a

bidder who values one ton of Sand for $1,000, and one ton of Sand and one ton of

Stone for $1,500. Such a bidder faces the sequential auction problem due to condition

(b) of Proposition 1 (i.e., the marginal value for one ton of Sand is uncertain being

either $1,000 or $500, and so the bidder might bid the wrong value for Sand in a Sand

auction). As a final example, consider a bidder who values one ton of Sand for $1,000.

If the bidder could participate in more than one auction selling Sand, she faces the

sequential auction problem due to condition (c) of Proposition 1 (i.e., there are more

auctions selling Sand than quantity demanded by the bidder, and the bidder might

not win the cheapest auction available).

If a bidder has perfect knowledge about the prices in auctions or that specific

auctions will have a lower or higher price than other auctions, then a bidder may

have a dominant strategy and not face the sequential auction problem. For example,

if a bidder desires a single item and has two auctions available to her, but the bidder

knows that one auction will have a lower closing price, then a bidder may have a

dominant strategy to participate in only that lower-priced auction. Alternatively, if

a bidder desires a multi-item bundle, and knows how much she will have to spend to

win all but one of the items, then the bidder may possess a dominant strategy for

bidding for the remaining item the value of the bundle minus the known summation.
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However, in practice, bidders are regularly arriving and leaving over time and sub-

mitting ex-ante unknown bids, with auction prices dependent on those bids. There-

fore, a typical bidder will have no means for perfectly knowing the prices they will

pay in auctions, or which auctions will have a lower price than other auctions. Sub-

sequently, the assumption of uncertainly-ordered single-item auctions with unknown

prices is reasonable in general, thus establishing the sequential auction problem.

3.4 Options Based Scheme

3.4.1 Retail Sector as Inspiration

While the Sequential Auction Problem is defined with respect to markets of auc-

tions, many of the meta-strategic problems bidders face are also experienced when

consumers try acquire products in the retail sector. The issues around the multi-

ple copies problem are experienced by consumers when multiple stores sell identical

products (e.g., eggs, textbooks or shampoo); at any given time, when a consumer is

in a store, she can purchase a product at the posted price, but another store might be

selling an identical product for a lower price. The issues around the exposure problem

can also be experienced; a consumer who wishes to obtain a collection of items at a

set budget but must obtain the items at individual stores (e.g., a necktie from one

shop and a dress shirt from another) may have to make a purchasing decision without

absolute knowledge that she will be able to purchase the necessary complementary

items (e.g., she may need to decide whether to purchase a colorful necktie without

being certain she will be able to find a matching shirt).
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However, unlike many auctions systems, the retail sector has already developed

policies to assist their customers in addressing sequential purchasing problems. Re-

turn policies alleviate the exposure problem by allowing customers to return goods

at the purchase price without penalty. Additionally, price matching alleviates the

multiple copies problem by allowing customers to receive from sellers after purchase

the difference between the price paid for a good and a lower price found elsewhere for

the same good (Lin 1988; Hess and Gerstner 1991; Chen et al. 2001).

Furthermore, price matching can reduce the impact of exactly when a seller brings

an item to market, as the price will in part be set by others selling the same item.

These two retail policies provide the basis for the scheme proposed in this chapter.

While a concern of price matching within the retail sector is that it could be used as

a means for colluding firms to set monopoly prices, within the options based market

prices will be matched that are not explicitly set by sellers but rather by bidders’

bids. Therefore, the traditional collusion mechanism that exploits price matching is

not available to sellers in this market.

The novel solution proposed in this chapter to resolve the sequential auction prob-

lem consists of two primary components: the use of real options to implement return

and price matching policies, and the use of proxy agents to provide bidders with a

dominant strategy while preventing the abuse of these options.

3.4.2 Real Options

A real option is a right to acquire a real good at a certain price, called the exercise

price. For instance, Alice may obtain from Bob the right to buy Sand from him at
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an exercise price of $1, 000. What makes options unique is that the right to purchase

a good at an exercise price does not imply the obligation to purchase a good at

an exercise price. This flexibility makes options useful in addressing the sequential

auction problem. Buyers can put together a collection of options on goods, and then

decide whether to exercise each option.

How Options are Traditionally Priced

While the buyer of an option has the right to purchase the good(s), a seller has

the obligation to honor the contract if the option is exercised. Therefore, options are

typically sold by the seller to the buyer at a premium called the option price.

Several factors are often considered when a seller tries to determine how much to

charge for her option, including the relationship between the exercise price and the

perceived value of the good available in the option, the volatility of value the good

may experience over time, and the length of time over which a buyer can decide to

exercise the option.

Real options are often difficult to price as the metrics for determining a price are

difficult to quantify. However, among traded options (i.e., options for traded securities

such as stock), much progress has been made in determining the prices of options,

with one of the most celebrated being the formula of Black and Scholes (1973).

The Strategic Problem of Costly Real Options

Options obtained at a non-zero option price cannot generally support a simple,

dominant bidding strategy, as an agent must compute the expected value of an option

to justify the cost (Dixit and Pindyck 1994). This computation requires a model of
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the future, which in turn requires agents to possess a model of the bidding strategies

and the values of other bidders. This is the very reasoning I am trying to avoid in

designing the options based marketplace!

3.4.3 Costless Real Options

Costless options have an option price of zero. The traditional issue with costless

options is that bidders are always (weakly) better off with a costless option than

without one, whatever its exercise price (including infinity), as bidders would choose

to exercise the option(s) only if doing so would result in a gain of surplus, and would

bear no costs by not exercising all other options obtained. However, multiple bidders

that pursue options with no intention of exercising them would cause market efficiency

to unravel. To prevent the hording of options by bidders who have no intention of

exercising any of the options held, bidders are obligated to make use of proxy agents,

which intermediate between bidders and the market.

3.4.4 The Bidding Proxy

When a buyer enters the marketplace in period âi ≥ ai, she submits her valuation

v̂i (perhaps untruthfully) to her proxy, and a claim about her departure time d̂i ≥ âi.

The Auctions in which Proxies Participate

The individual auctions that are linked together through options and proxies in

this infrastructure are Vickrey auctions. However, any locally strategyproof single-

item auction should be viable within the options based scheme. Vickrey auctions
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were selected not only because of convenience, but also as they nicely model eBay

auctions. Rather than a physical good, each auction is modified to sell an option

to the highest bidding proxy, with an initial exercise price set to the second-highest

bid received.3 Each option is costless, and is set to expire at the end of the winning

proxy’s patience.

Acquiring Options

When an option in which a bidder is interested becomes available for the first time,

the proxy determines its bid by computing the bidder’s maximum marginal value for

the item, submitting a bid for this amount. A proxy does not bid for an item when

it already holds an option. The bid amount is:

bidt
i(k) = max

L
[v̂i(L ∪ k) − v̂i(L)] (3.5)

By having a proxy compute a bidder’s maximum marginal value for an item and bid

only that amount, a bidder’s proxy will win any auction that could be of benefit to

the bidder and lose any auction that could never be of value to the bidder.

Theorem 3.4.1 A proxy will never be interested in an item that is priced above its

maximum marginal value.

Proof. Consider item k with price pk above the maximum marginal value of k,

maxL[v̂i(L ∪ k) − v̂i(L)]. Each bundle M ∪ k (where M is priced at pM) has utility

3The system can also set a reserve price for each type of good, provided that the reserve is
universal for all auctions selling the same type of good. Without a universal reserve price, price
matching would not be possible as a seller might be “forced” to match a price below their personal
reserve, which a seller would not accept.
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v̂i(M ∪ k) − pk − pM . Because pk is above the maximum marginal value of k,

v̂i(M ∪ k) − pk − pM < v̂i(M ∪ k) − max
L

[v̂i(L ∪ k) − v̂i(L)] − pM , (3.6)

and by definition of maximum marginal value,

v̂i(M ∪ k) − max
L

[v̂i(L ∪ k) − v̂i(L)] − pM ≤ v̂i(M) − pM . (3.7)

v̂i(M) − pM is exactly the utility of M ! Therefore, when k is priced above maximum

marginal value, any bundle with k is less preferred than that bundle without k.

When a proxy wins an auction for an option, the proxy will store in its local

memory the identity (which may be a pseudonym) of the proxy not holding an option

because of the proxy’s win (i.e., the proxy that it “bumped” from winning), if any.

This information will be used for price matching.

Pricing Options

Sellers agree by joining the market to allow the proxy representing a bidder to

adjust the exercise price of an option that it holds downward if the proxy discovers it

could have achieved a better price by waiting to bid in a later auction for an option on

the same good. It will be necessary for the market system to have an infrastructure

where the proxy can determine that goods are identical. This can happen in practice

by sellers classifying their items upon entering the market, perhaps with a UPC code

and quality grade. As on eBay today, there is an opportunity for sellers to improve

revenue by overstating the quality of their item and mislead the proxy. However, also

as on eBay, a well-functioning reputation system should mitigate this concern.

To assist in the implementation of the price matching scheme, each proxy tracks

future auctions for an option that it has already won and will determine who would
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be bidding in that auction had the proxy delayed its entry into the market until this

later auction. The proxy will request price matching from the seller that granted it

an option if the proxy discovers that it could have secured a lower price by waiting.

The proxy does not acquire more than one option for any good. Rather, it reduces

the exercise price on its already issued option if a better deal is discovered.

The proxy is able to discover these deals by asking each future auction to report

the identities of the bidders in that auction together with their bids (and would likely

need to be enforced by a central authority, such as eBay). The highest bidder in this

later auction, across those whose identity is not stored in the proxy’s memory for the

given item, is exactly the bidder against whom the proxy would be competing had it

delayed its entry until this auction. If this high bid is lower than the current option

exercise price held, the proxy “price matches” down to this high bid amount.

After price matching, one of two adjustments will be made by the proxy for

bookkeeping purposes. If the identity of the winner of this latest auction is stored in

the proxy’s local memory, the proxy replaces the stored identity with the identity of

the bidder whose bid was price matched, as that bidder is now the one the proxy has

prevented from obtaining an option (Lemma 3.5.4 proves that at most one bidder’s

identity need be stored in the proxy’s local memory for price matching purposes). If

this latest auction winner’s identity is not stored in the proxy’s local memory, the

memory may be cleared. In this case, the proxy will simply price match against the

bids of future auction winners on this item until the proxy departs.
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Table 3.1: Three-bidder example with each wanting a single item and one auction
occurring on Monday and Tuesday. “XY ” implies an option with exercise price X
and bookkeeping that a proxy has prevented Y from currently possessing an option.
“→” is the updating of exercise price and bookkeeping for an option already held.

Buyer Reported Type Monday Tuesday
Molly (Monday, Tuesday, $8) 6Nancy 6Nancy → 4Polly

Nancy (Monday, Tuesday, $6) - 4Polly

Polly (Monday, Tuesday, $4) - -

Example 7 (Explanation of Table 3.1) Consider three bidders, all of whom en-

ter the market on Monday and depart the market after Tuesday. Molly values an

item for $8, Nancy for $6 and Polly for $4. On Monday, an auction occurs where

all three proxies bid, with Molly’s proxy winning the Monday auction, with the high-

est bid of $8, and receiving an option for $6. Molly’s proxy adds Nancy to its local

memory as Nancy’s proxy would have won had Molly’s proxy not bid. On Tuesday,

another auction occurs where only Nancy’s and Polly’s proxy bid (as Molly’s proxy

holds an option), with Nancy’s proxy winning an option for $4 and noting that it

bumped Polly’s proxy. At this time, Molly’s proxy will price match its option down

to $4 and replace Nancy with Polly in its local memory for bookkeeping purposes, as

Polly would be holding an option had Molly never bid.

Exercising Options

At the reported departure time, the proxy chooses which options to exercise.

Therefore, a seller of an option must wait until period d̂w for the option to be exercised

and receive payment, where w was the winner of the option. For bidder i, in period

d̂i, the proxy chooses the option(s) that maximize the (reported) utility of the bidder:

θ∗t = argmax
θ⊆Θ

[v̂i(γ(θ)) − π(θ)] (3.8)

78



where Θ is the set of all options held, γ(θ) are the goods corresponding to a set of

options, and π(θ) is the sum of exercise prices for a set of options. All other options

are returned.4 No options are exercised when no set of options have positive utility.

3.4.5 Additional Examples of Market and Proxy Behavior

As an illustration of how the options based scheme handles the exposure problem

in practice, consider the following example where Alice desires a bundle of two goods

but must participate in multiple auctions in order to obtain the bundle.

Example 8 Alice values one ton of Sand and one ton of Stone for $3, 000. Bob

values one ton of Sand for $800. Charlie values one ton of Stone for $2, 000. All

bidders have a patience of 2 days. On day one, a Stone auction is held, where Alice’s

proxy bids $3, 000 and Charlie’s bids $2, 000. Alice’s proxy wins an option to purchase

Stone for $2, 000. On day two, a Sand auction is held, where Alice’s proxy bids $3, 000

and Bob’s bids $800. Alice’s proxy wins an option to purchase Sand for $800. At the

end of the second day, Alice’s proxy holds an option to buy Sand for $800 and an

option to buy Stone for $2, 000, and so exercises both options, spending a total of

$2, 800 to acquire Alice’s entire desired bundle.

As an illustration of how the options based scheme handles a slightly more complex

valuation function, consider the following example where Alice desires a single item,

but the item could be one of either two different types.

4The system will not allow a seller to reauction an option until ∆Max after the option was first
issued in order to maintain a truthful mechanism (by removing the opportunity for bidders to try
and tie up options in the short term in hopes of securing them for less at a later time). Alternatively,
if there is a method in place that prevents bidders from being able to reenter the marketplace, it
would be sufficient for a seller to wait until the maximum departure time among those bidders who
originally bid in the auction (rather than waiting until ∆Max from the time of issue).
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Example 9 Alice values either one ton of Coarse Sand for $1, 000, or one ton of

Fine Sand for $800. Bob values Coarse Sand for $800. Charlie values Fine Sand for

$900. On day one, a Coarse Sand auction is held where Alice’s proxy bids $1, 000 and

Bob’s proxy bids $800, resulting in Alice’s proxy winning an option for the Coarse

Sand with an exercise price of $800. On day two, a Fine Sand auction is held where

Alice’s proxy bids $800 and Charlie’s proxy bids $900, resulting in Charlie’s proxy

winning an option for the Fine Sand with an exercise price of $800. At the end of

day two, Alice’s proxy exercises its Coarse Sand option and Charlie’s proxy exercises

its Fine Sand option.

Bidders possess pure linear-additive value among individual items when the value

of possessing two bundles is equivalent to the summation of value of the individual

bundles:

v(A ∪ B) = v(A) + v(B), ∀A, B : A ∩ B = φ. (3.9)

(Bidders who are only interested in a single item vacuously possess pure linear-additive

valuations.) When bidders possess pure linear-additive value among individual items,

such bidders will always exercise every option they win at auction (and so no option

will be returned), as the maximum marginal value of each item is exactly the value a

bidder will realize by exercising that option. Therefore, because a bidder wins each

option with an exercise price (weakly) below the marginal value, a bidder will be

interested in exercising each option she holds.
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Table 3.2: Examples demonstrating why bookkeeping will lead to a truthful system
whereas simply matching to the lowest winning price will not. Nancy’s misreport
does not change the price she faces with bookkeeping ($4), but does reduce the price
if the market were to simply match her option’s exercise price to the lowest winning
price.

Buyer Type Monday Tuesday
Truthful report:
Molly (Monday, Monday, $8) 6Nancy -
Nancy (Monday, Tuesday, $6) - 4Polly

Polly (Monday, Tuesday, $4) - -
Misreport with
bookkeeping:
Molly (Monday, Monday, $8) - -

Nancy (Monday, Tuesday, $1̂0) 8Molly 8Molly → 4φ

Polly (Monday, Tuesday, $4) - 0φ

Misreport with
matching low price:
Molly (Monday, Monday, $8) - -

Nancy (Monday, Tuesday, $1̂0) 8 8 → 0
Polly (Monday, Tuesday, $4) - 0

3.4.6 Bookkeeping and Matching Observed Winning Prices

While one may think that a viable alternative method for implementing a price

matching scheme would be to simply have proxies match the lowest winning price they

observe after winning an option, such a scheme will not lead to a truthful marketplace,

as demonstrated in Table 3.2.

The first scenario in Table 3.2 demonstrates the outcome if all bidders were to

truthfully report their type (unlike the example in Table 3.1, Molly is only active

on Monday). Molly wins the Monday auction and receives an option with an ex-

ercise price of $6 (subsequently exercising that option at the end of Monday), and

Nancy wins the Tuesday auction and receives an option with an exercise price of $4

(subsequently exercising that option at the end of Tuesday).
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The second scenario in Table 3.2 demonstrates the outcome if Nancy were to

misreport her value for the good by reporting an inflated value of $10, using the

proposed bookkeeping method in Section 3.4.4 (Pricing Options). Nancy wins the

Monday auction and receives an option with an exercise price of $8. On Tuesday,

Polly wins the auction and receives an option with an exercise price of $0. Nancy’s

proxy would observe that the highest bid submitted on Tuesday among those proxies

not stored in local memory is Polly’s bid of $4, and so Nancy’s proxy would price

match the exercise price of its option down to $4. The exercise price Nancy’s proxy

has obtained at the end of Tuesday is the same as when she truthfully revealed her

type to her proxy.

The third scenario in Table 3.2 demonstrates the outcome if Nancy were to misre-

port her value for the good by reporting an inflated value if the price matching scheme

were for proxies simply to match their option price to the lowest winning price at any

time while in the system. Nancy wins the Monday auction and receives an option

with an exercise price of $8. On Tuesday, Polly wins the auction and receives an

option with an exercise price of $0. Nancy’s proxy would observe that the lowest

price on Tuesday was $0, and so Nancy’s proxy would price match the exercise price

of its option down to $0. The exercise price Nancy’s proxy has obtained at the end

of Tuesday is lower than when she truthfully revealed her type to the proxy.

Therefore, a price matching policy of simply matching the lowest price paid does

not guarantee that bidders should truthfully reveal their type to bidding proxies.

However, the bookkeeping method for matching price does guarantee that bidders

should truthfully reveal their type (a proof of which is in Section 3.5.2).
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3.5 Complexity Analysis

3.5.1 Computational Complexity

An XOR-valuation of size M for bidder i is a set of M terms, < L1, vi(L
1) >

...< LM , vi(L
M ) >, that maps distinct bundles to values, where i is interested in

acquiring at most one such bundle. For any bundle S, vi(S) = maxLm⊆S[vi(L
m)].

Theorem 3.5.1 Given an XOR-valuation of size M , there is an O(KM2) algorithm

for computing all maximum marginal values, where K is the number of different item

types in which a bidder may be interested.

Proof. For each item type, recall Equation 3.5, which defines the maximum marginal

value of an item. For each bundle L in the M-term valuation, vi(L+k) may be found

by iterating over the M terms. Therefore, the number of terms explored to determine

the maximum marginal value for any item is O(M2), and so the total number of

bundle comparisons to be performed to calculate all maximum marginal values is

O(KM2).

Theorem 3.5.2 The total memory required by a proxy for implementing price match-

ing is O(K), where K is the number of distinct item types. The total work performed

by a proxy in each auction is O(1).

Proof. By construction of the algorithm, the proxy stores one maximum marginal

value for each item for bidding, of which there are O(K); at most one bidder’s identity

for each item, of which there are O(K); and one current option exercise price for

each item, of which there are O(K). For each auction, the proxy either submits a

precomputed bid or price matches, both of which take constant work.
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3.5.2 Truthful Bidding to the Proxy Agent

Proxies transform the market into a direct revelation mechanism, where each

bidder i interacts with the proxy only once, and does so by declaring a bid, bi, which

is defined as an announcement of her type, (âi, d̂i, v̂i), where the announcement may

not be truthful. For analysis purposes, I view the mechanism as an opaque market

so that the bidder cannot condition her bid on bids placed by others.

It is a dominant strategy for a bidder to reveal her true valuation and true de-

parture time to her proxy agent immediately upon arrival to the system. The proof

builds on the price-based characterization of strategyproof single-item online auctions

by Hajiaghayi et al. (2005), and originally formalized by Juda and Parkes (2006).

Define a monotonic and value-independent price function psi(ai, di, L, v−i) which

can depend on the values of other agents v−i and represents the price available to

agent i for bundle L if it announces an arrival ai and departure di. The price may

depend on ai, di and L provided it satisfies a monotonicity condition.

Definition 5 A price function, psi(ai, di, L, v−i), is a monotonic price function if

psi(a
′
i, d

′
i, L

′, v−i) ≤ psi(ai, di, L, v−i) for all a′
i ≤ ai, all d′

i ≥ di, all bundles L′ ⊆ L

and all v−i.

Lemma 3.5.3 An online combinatorial auction will be strategyproof (with truth-

ful reports of arrival, departure and value a dominant strategy) when there exists

a monotonic and value-independent price function, psi(ai, di, L, v−i), such that for

each bidder i, all times ai, di ∈ T , and all valuations vi, bidder i is allocated the

bundle L∗ = argmaxL [vi(L) − psi(ai, di, L, v−i)] in period di and makes payment

psi(ai, di, L
∗, v−i).
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Proof. Agent i cannot benefit from reporting a departure d̂i later than di because the

allocation is made in period d̂i and the agent would have no value for this allocation.

Agent i cannot benefit from reporting a later arrival âi ≥ ai or earlier departure

d̂i ≤ di because of price monotonicity. Finally, the agent cannot benefit from reporting

some v̂i �= vi because its reported valuation does not change the prices it faces and

the mechanism maximizes its utility given its reported valuation and given the prices.

Lemma 3.5.4 At any given time, there is at most one bidder in the system whose

proxy does not hold an option for a given item type because of bidder i’s presence in

the system, and the identity of that bidder will be stored in i’s proxy’s local memory

at that time if such a bidder exists.

Proof. By induction. Consider the first proxy that a bidder prevents from winning

an option. Either (a) the bumped proxy will leave the system having never won

an option, or (b) the bumped proxy will win an auction in the future. If (a), the

bidder’s presence prevented exactly that one bidder from winning an option, but

not any other proxies from winning an option (as the bidder’s proxy will not bid

on additional options upon securing one), and will have had that bumped proxy’s

identity in its local memory by definition of the bookkeeping algorithm. No price

matching will have occurred during the time period in which the bumped proxy was

stored in the local memory, as each winning bidder in each subsequent auction (from

the bumped proxy being placed in local memory) must have submitted a bid higher

than the bumped proxy’s bid, so the bidder’s proxy would not want to price match

her option against these bids which must be higher than the price of the option which
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was set at the bumped proxy’s bid. If (b), the bidder has not prevented the bumped

proxy from winning an option after all, but rather has prevented only the proxy that

lost to the bumped proxy from winning (if any), whose identity will now be stored in

the proxy’s local memory by definition of the bookkeeping algorithm. For this new

identity in the bidder’s proxy’s local memory, either scenario (a) or (b) will be true,

ad infinitum.

Given this, I show that the options based infrastructure implements a price-based

auction with a monotonic and value-independent price schedule to every agent.

Theorem 3.5.5 Truthful revelation of valuation, arrival and departure is a dominant

strategy for a bidder in the options based market.

Proof. First, define a simple agent-independent price function pk
i (t, v−i) as the high-

est bid by the proxies not holding an option on an item of type Gk at time t (∞ if no

supply at t), not including the proxy representing i herself and not including any prox-

ies that would have already won an option had i never entered the system (i.e., whose

identity is stored in i’s proxy’s local memory). This set of proxies is independent of

any declaration i makes to its proxy (as the set explicitly excludes the at most one

proxy (see Lemma 3.5.4) that i has prevented from holding an option), and each bid

submitted by a proxy within this set is also independent of any declaration i makes to

its proxy as the bids are only a function of their own bidders’ declared valuations (see

Equation 3.5). Furthermore, i cannot influence the supply she faces as any options

returned by other bidders due to a price set by i’s proxy’s bid will be re-auctioned

after i has departed the system (see Footnote 4). Therefore, pk
i (t, v−i) is independent

of i’s declaration to its proxy. Next, define psk
i (âi, d̂i, v−i) = minâi≤τ≤d̂i

[pk
i (τ, v−i)]
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(possibly ∞) as the minimum price over pk
i (t, v−i), which is clearly monotonic. By

construction of price matching, this is exactly the price obtained by a proxy on any

option that it holds at departure. Define psi(âi, d̂i, L, v−i) =
∑k=K

k=1 psk
i (âi, d̂i, v−i)Lk,

which is monotonic in âi, d̂i and L since psk
i (âi, d̂i, v−i) is monotonic in âi and d̂i and

(weakly) greater than zero for each k. Given the set of options held at d̂i, which

may be a subset of those items with non-infinite prices, the proxy exercises options

to maximize the reported utility. Left to show is that all bundles that could not be

obtained with options held are priced sufficiently high as to not be preferred. For each

such bundle, either there is an item priced at ∞ (in which case the bundle would not

be desired) or there must be an item in that bundle for which the proxy does not

hold an option that was available. In all auctions for such an item there must have

been a distinct bidder with a bid greater than bidt
i(k), which subsequently results

in psk
i (âi, d̂i, v−i) > bidt

i(k), and so the bundle without k would be preferred to the

bundle itself (see Theorem 3.4.1).

Theorem 3.5.6 The options based scheme is individually-rational for both bidders

and sellers.

Proof. By construction, the proxy exercises the profit maximizing set of options

obtained, or no options if no set of options derives non-negative surplus. Therefore,

bidders are guaranteed non-negative surplus by participating in the scheme. For

sellers, the price of each option is based on a non-negative bid or zero.
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3.5.3 Competitive Analysis

With truthful revelation of type a dominant strategy, one may ask if any claims

can be made regarding how well the system will perform given this truthful revela-

tion. In particular, one may ask how well the mechanism performs compared to the

optimally efficient system if a social planner were to know omnisciently exactly when

bidders would arrive, depart and for how much they value goods, then calculating

the optimal allocation of resources to maximize allocative value among the bidders.5

A mechanism is said to be k − competitive if it is guaranteed to achieve an alloca-

tion with allocative value no less than 1/k of the optimal omniscient allocation. For

example, if a mechanism is 2 − competitive, it is guaranteed to allocate goods at a

value of more than half the optimal, offline, full information allocation.

Theorem 3.5.7 In settings where bidders desire one item type, the options based

scheme is 2−competitive in efficiency with respect to full information. Furthermore,

no truthful online mechanism exists that is better than 2 − competitive in efficiency

with respect to full information.

Hajiaghayi et al. (2004) consider a domain where a seller has a reusable good

(e.g., a computer processor) and bidders arrive over time desiring a single unit of

time for the resource between their arrival and departure. Consider instead that each

unit of time is an auction for a single real item of identical type. One can see that

the problem explored by Hajiaghayi et al. is exactly the problem addressed by the

options based scheme when bidders desire a single item type.

5When calculating efficiency, one is only considering the value of the allocation. The price that
winners pay to acquire the allocation is not part of the calculation.
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When bidders desire only a single item type, a bidder that wins an option will

exercise it when she reaches her departure, as the option price will be less than her

value. Furthermore, the winner of an option in any auction is the bidder with the

highest bid for the item that does not have an option yet for the good. As the options

based scheme is strategyproof, this high bidder is also the bidder with the highest

true value for that one good at that time among bidders with no options. With this

information, the allocation of the options based scheme is identical to the greedy

allocation of goods described in Theorem 7 of the work of Hajiaghayi et al. which

is shown by a charging argument to be 2 − competitive. Furthermore, Theorem 10

of the work of Hajiaghayi et al. shows that no truthful online mechanism exists that

can be better than 2 − competitive, proved by contradiction.

One of the more significant assumptions made in this chapter is that winning

bidders in the scheme could have a value of $0 for the items. However, if one knows

that there is a ratio between the maximum and minimum values bidders possibly

have, one can improve the competitive ratio. In particular:

Theorem 3.5.8 In settings where bidders desire one item type, and each auction

within the options based scheme has at least one bidder, the options based scheme is

no worse than 2
1+α

− competitive in efficiency with respect to full information, where

α is the ratio of the minimum to maximum values in the bidding population.

Proof. Following Hajiaghayi et al. (2005), I show this by a charging argument.

Consider an offline optimal solution OFF . For any bidder i who wins an auction in

OFF , I charge her value to a bidder who wins in the options based market. If i herself

is a winner in the options based market, I charge her value to herself. Otherwise, let
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auc be the auction in the options based scheme that i wins in OFF . Since i never

wins in the options based market, she was present in the market when auc closed,

and so the options based scheme must have picked a winner j for auction auc whose

value is (weakly) greater than the value of i (as a winner of an auction in the options

based scheme has the (weakly) highest value for the item at that time among all

bidders not holding an option). I charge the value of i to j. It is not hard to see that

this charging scheme charges each agent j in the options based market at most twice,

each time for a value less than the value of j. Therefore, the value of OFF is at most

twice the value of the bidders charged in the options based market.

Because each bidder in the options based scheme can only be charged at most

twice, at most half of the bidders in the options based scheme are not charged.

Therefore, the minimum value possibly achieved in the options based scheme occurs

when half of the bidders (those that are not charged) possess a value α of the maximum

possible value, while the other half of the bidders (those that are charged) possess a

value one half of what is achieved in OFF . Given 2N auctions, a maximum bidder

value of M and a value of O for OFF , the minimum value possibly achieved in the

options based scheme is 1
2
O + NαM , providing a competitive ratio of O

1
2
O+NαM

. The

maximum value this ratio can possess occurs when the value O is maximized, which

given the finite maximum value bidders possess occurs when O = 2NM . Therefore,

an upper bound on the competitive ratio is 2NM
1
2
2NM+NαM

= 2
1+α

.

This competitive ratio is exactly equal to that in Theorem 3.5.7 when α = 0 (i.e.,

when bidders can have no value for the item). However, what is more interesting

about Theorem 3.5.8 is the implication for what happens when the bidding population
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is more homogeneous. For example, if the value of bidders is known to be bounded

between $200 and $300, α = 0.67, and so the competitive ratio is equal to 1.2, implying

that the value of the allocation made by the options based scheme is guaranteed within

17% of the optimally efficient allocation. In the most extreme instance, when bidders

are homogoneous, the options based scheme is guaranteed to acheive a perfectly

efficient result.

However, a perfectly efficient result is not guaranteed in a market like eBay even

when the population is homogeneous. Because bidders on eBay do not have a dom-

inant bidding strategy, the resulting strategic behavior employed by the bidders on

eBay may result in items not being sold. For example, a bidder may choose not to

bid in an auction thinking that she will face competition in that auction, but not

if she waits until the next auction. However, if that bidder was actually the only

bidder in the market at that time, nobody participates in that auction, and efficiency

is reduced.

While competitive analysis is at its heart a worst-case analysis, and so does not

make any claims about how efficient a market will be “on average,” Theorems 3.5.7

and 3.5.8 do have merit. If a market is such that sellers do not have a good model of

the marketplace (e.g., a good sense of the distribution of arrival, departure and value

of bidders over time), an algorithm with a good competitive ratio can provide sellers

with a baseline level of assurance that a certain amount of value will be created, and

so there is some amount of value creation from which sellers can extract revenue.

Furthermore, knowing that a market possesses the best competitive ratio possible

assures sellers that they are maximizing their worst-case efficiency. Alternatively,
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when a mechanism has a poor competitive ratio, it is possible that an assignment

of goods will occur that will result in a small amount of value creation from which

sellers could extract little revenue. However, when a marketplace is well established

and sellers have a good model of bidders, competitive analysis may be less useful as

sellers are likely to be more inclined to choose a set of market rules that might have

a lower competitive ratio but higher expected revenue performance given the sellers’

model (assuming that such a set of rules exist).

Finally, while the theorems may appear at first to be restrictive in terms of the

applicability of the result, it is worth noting that it is exactly this scenario to which

the sequential auction problem and my solution is most commonly found in practice

- the multiple copies problem as found in markets like eBay.

3.6 Validating Design for Simple Bidders

An additional benefit of the empirical analysis of eBay from Chapter 2 is that I

may build a realistic simulation of how the options based scheme would perform if

used by a population of bidders and sellers like those on eBay.

I simulate a sequence of auctions that match the timing of auctions on eBay.

When running the simulations, the final ten days worth of observed auctions are not

simulated, to reduce edge effects that come from viewing a discrete time window of

a continuous process. Ten days also is past the 90-percentile of the distribution of

bidder patience. Buyers bidding toward the end of the window are likely to bid higher

in the future than what they are currently bidding (as determined by the regression

analysis in Section 2.3.3), which results in inaccurately low estimates for bidder value
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among bidders in these latter auctions. Similarly, I must allow for the start effect

when the initial revenue will be artificially high in the options scheme because no

bidders in the initial period will have already traded. For this, the options simulation

starts from the initial period but revenue is only accounted after the first ten days.

When an auction successfully closes on eBay, I simulate a Vickrey auction for an

option on the item in that period. Auctions that do not successfully close on eBay

are not simulated in the options based scheme. Unsuccessful auctions are likely either

completely unseen by the bidding population or reserve auctions where the reserve

price was not met. In either scenario, these auctions are deemed too unique to include

in my simulation of the options based scheme while still allowing for direct compar-

isons of market performance. For example, if unsuccessful auctions were modeled in

the options based scheme, then more items would be sold in the options scheme than

on eBay, making it significantly more difficult to compare the total revenue generated

between the two markets. Not including these unique auctions also implies that my

simulation is conservatively estimating the total gains realizable.

I estimate the arrival, departure and value of each bidder on eBay from their ob-

served behavior. The quantity demanded by each bidder is estimated as the number

of items won on eBay in practice, or one if a bidder never won an item. (Because

true demand may be greater than this estimate, current simulations may be underes-

timating competition, with the revenue and value allocated given true demand being

greater than that simulated in this chapter.) Arrival is estimated as the first time

that a bidder interacts with the eBay proxy, while departure is estimated as the latest

closing time among eBay auctions in which a bidder participates.
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(a) The PDF of revenue among auctions.

While the average closing price on eBay and

in the options scheme are comparable, the

variance is significantly lower in the options

scheme.

Options eBay

Price $239.66 $240.24
stddev(Price) $12 $32

V alue $263 $244

BuyerSurplus $23 $4

(b) The average price paid per good, aver-

age bidder value among winners, and aver-

age winning bidder surplus on eBay for Dell

E193FP LCD screens as well as the simulated

options based market using worst-case esti-

mates of bidders’ values.

Figure 3.1: Comparisons between empirically observed results on eBay and simulation
results of the options scheme using a worst-case estimate of bidders’ true valuations.

Conservative Estimate of the Option Based Scheme’s Performance

I initially adopt a particularly conservative estimate for bidder value, estimating

it as the highest bid a bidder was observed to have placed on eBay. For bidders who

demand multiple units, each item is modeled as having this same value.

Figure 3.1(a) shows the distribution of closing prices in auctions both on eBay

and in the simulated options scheme. The standard deviation of prices is significantly

greater among the observations from eBay ($32 on eBay, $12 in the options scheme),

while the mean price in the options scheme is slightly lower though almost identical

to that on eBay ($240.24 on eBay, $239.66 in the options scheme).
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Figure 3.2: A scatter of price paid to winner’s patience (measured in sec). More
patient bidders tend to secure goods for lower prices in the options scheme, whereas
patience does not seem to be correlated with price paid on eBay.

While the difference in average revenue for sellers in not significantly different

between the two schemes, the same may not be said for the benefits to bidders or the

efficiency of the system as a whole, as illustrated in Figure 3.1(b). While the winning

bidders on eBay possess a mean value of $244 and mean surplus of $4, the options

scheme’s winning bidders have a value for the LCD screens that is more than 7%

higher (at $263), with a consumer surplus roughly five times as large at $23.

Figure 3.2 shows a very distinct difference between eBay and the options scheme.

For both the options scheme and eBay, points illustrate the relationship between the

closing price of an auction or option, and the patience of the auction’s winner. In the

options scheme, not only do bidders with a larger patience generally pay lower prices

than bidders with smaller patience, but also the variance of price paid decreases with

patience. This is a nice, intuitive, feature of the options scheme. This effect is not

seen on eBay.
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eBay and in the simulated options-scheme un-

der an adjusted Haile and Tamer estimate of

true willingness to pay being 15% higher than

a bidder’s observed highest bid.

Options eBay

Price $275.80 $240.24
stddev(Price) $14 $32

V alue $302 $281

BuyerSurplus $26 $40

(b) The average price paid per good, aver-

age bidder value among winners, and aver-

age winning bidder surplus on eBay for Dell

E193FP LCD screens as well as in the sim-

ulated options based market using extended

Haile and Tamer estimates of bidders’ values.

Figure 3.3: Results of the options based scheme using an adjusted Haile and Tamer
estimate of bidders’ true values being 15% higher than their maximum observed bid.

Less Conservative Estimate of the Option Based Scheme’s Performance

Given my analysis in Section 2.5.4, I now perform a less conservative simulation

of the options based scheme, using bidder values based on those estimated using the

extended Haile and Tamer technique (estimating that bidders’ true values are 15%

greater than their observed maximum bids).

Figure 3.3(a) shows the distribution of closing prices in auctions both on eBay

and in the simulated options scheme. As can be seen in figure 3.3(b), the standard

deviation of closing prices is again significantly greater among the observations from

eBay ($32 on eBay, $14 in the options scheme). Noteworthy, the mean price in the

options scheme is significantly higher, at 15% greater, than the prices on eBay ($240
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on eBay, $276 in the options scheme). Therefore, not only is the expected revenue

stream higher for sellers in the options scheme, but the lower variance assures sellers

more stability around realizing that higher revenue.

Furthermore, the efficiency of the options based scheme is higher than on eBay.

While the winning bidders on eBay possess a mean value of $281 and mean surplus

of $40, the options scheme’s winning bidders have a value for the LCD screens that is

7.5% higher (at $302), with a consumer surplus roughly three quarters that of eBay

users at $26.6

Finally, while the typical bidder surplus is noted as decreasing between eBay

and the options based scheme, there are several factors worth considering before

assuming that bidders will be negatively affected by the options based scheme. First,

bidder surplus was calculated in this context by subtracting from bidder value the

price the bidder paid. Therefore, this calculation does not include bidding costs,

which presumably are higher on eBay (where there is no dominant strategy and for

which there is unusual and presumably costly bidding behavior) than in the options

based scheme (where bidders have a simple, straightforward, and truthful strategy).

Additionally, because the options based scheme is more efficient, the seller revenue is

increased by an amount greater than the decrease in bidder surplus. Therefore, it is

possible to intelligently (i.e., in a manner that does not break the dominant strategy

of the mechanism) transfer some of the increased seller revenue back to bidders so that

both bidders and sellers benefit in the options based scheme even without considering

bidding costs.

6Applying the value estimation technique in Section 2.5.7 results in the options scheme’s winning
bidders having a value for the LCD screens that is 1% higher ($564,266 versus $558,301).
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Table 3.3: Average results of 50 bootstrapped simulations of the options based scheme
(standard deviations in parentheses), compared to the options based scheme and eBay.

Options Bootstrap
Options

Bootstrap Bootstrap
eBay

eBay

Price $275.80 0.95 $261.89 1.09 $240.24
($1.37)

V alue $302 0.97 $292 1.04 $281
($0.86)

BuyerSurplus $26 1.14 $30 0.74 $40
($0.95)

Bootstrapping

While the simulation of the options based market produces greater efficiency and

revenue results as compared to eBay, a reasonable concern may be that the per-

formance of the options based market may be influenced by specific nuances of the

bidding population.

To alleviate these concerns, I have performed bootstrapped simulations. Rather

than using the 10,151 unique bidders observed to have participated on eBay in the

simulation, I instead simulate the options based market using 10,151 bidders where

each bidder has been drawn uniformly among all bidders observed to have bid on

eBay. Such a method will create a bidding population that is similar to that observed

on eBay, providing insight into how sensitive my results are to the exact combination

of bidders observed. (One area of bias with this bootstrapping method is that it may

generate multiple bidders with identical type, creating bidding populations that may

be slightly unrealistic in practice.)

Table 3.3 provides the average result of 50 bootstrapped simulations, together

with the performance of the options based scheme and the results on eBay. The

bootstrapped simulations appear to perform at a level in between the options based
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scheme and eBay. While average revenue of the bootstrapped simulations is 5% lower

than the options based scheme, it is still 9% higher than eBay. Similarly, despite the

bootstrapped simulations being 3% lower than the options based scheme, they are

still on average 4% higher than eBay. Finally, the bootstrapped simulations provide

$14 more buyer surplus on average than the options based scheme, but $10 less than

that on eBay. Therefore, while there appear to be some effects that are somewhat

nuanced about the specific nature of the bidding population observed, it nonetheless

appears to be a robust result that the options based scheme increases both revenue

and efficiency.

3.7 Validating Design for Complex Bidders

While the options based market appears effective when the bidding population

has simple preferences (i.e., only wanting a single good), I now examine the efficacy

of the system when bidders have more complex preferences. Such an examination

is important as it is possible for bidders with complex valuations to hamper the

efficiency of the system:

Example 10 Alice values one of either an apple or banana by Tuesday for $10. Bob

values one of either an apple or banana by Tuesday for $8. On Sunday, an apple

auction is held where Alice’s proxy wins an option for the apple for $8. On Monday,

a banana auction is held where Alice’s proxy wins an option for the banana for $8.

At the end of Tuesday, Alice’s proxy exercises one of her two options, returning the

other option, while Bob leaves the market having acquired nothing.
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Clearly, it would have been more efficient for Bob to have won an option for

one of the pieces of the fruit. However, the current allocation protocol has Alice’s

proxy holding both options. This “holdup” problem could be problematic if it occurs

in more generalized setting, and is the primary motivation for the analysis in this

section.

While the analysis in Section 3.6 was able to leverage empirically observed behav-

ior of bidders on eBay in order to create a realistic environment for simulation, no

such observations will be leveraged here. The reasons for this are twofold:

1. When bidders have substitute preferences, it would be impossible to determine

the entire set of substitutes in which a bidder may be interested, as a bidder on

eBay may have never bid on their substitute.

2. When bidders have complementary preferences, it would be impossible to de-

termine based solely on their bidding behavior the extent to which they already

possess the complementary goods.7

Therefore, I analyze the market using purely hypothetical market scenarios. Priming

the population with distributions inspired by those of Section 3.6, but not grounded

in such. In particular, I investigate the frequency with which sellers leave the market

having not sold their item. While it is true that sellers are not guaranteed to sell their

items, as they were when bidders were only interested in single items, I investigate to

what extent sellers being able to reauction returned options alleviates some efficiency

concerns. In particular, if bidders possessing general valuations results in options

7For example, if I were to observe a bidder bidding on a left shoe, there is no way to know
definitively if the bidder already possesses a right shoe, or only intends to start bidding on a right
show once a left shoe has been acquired.
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being regularly returned, but sellers are able to sell their items eventually after con-

ducting multiple auctions for those items, then it may be reasonable to believe that

the options based market performs well for “typical” market scenarios.

Bidders with Substitute Preferences

First, consider a market where bidders have substitute preferences over two items

(e.g., wish to obtain exactly one LCD monitor among two different models). Inspired

by the observed population of eBay, consider the market over a 120-day time period

where each bidder’s value is distributed normally over a Gaussian distribution for

Monitor A with mean $265 and standard deviation $45 and for Monitor B with mean

$240 and standard deviation $20. 5,000 bidders arrive uniformly over the 120-day

time period, and possess a patience distributed over a Gaussian with mean of 3.9

days and standard deviation 11.4 days (as was observed to be the mean and standard

deviation of patience among the eBay bidders). In this model, bidders bid in all

auctions available on each day in which they are in the system. Therefore, bidders

whose patience is 0 (or in effect 0 when the Gaussian draw is negative) will still bid in

as many auctions that close on the day in which the bidder entered the market, even

though they have been assigned a 0 patience. 2,000 sellers enter the market uniformly

over the 120-day time period, with the patience of each seller being set as a Gaussian

with mean 7 days and standard deviation 1 day. Each seller offers Monitor A with

probability 0.50, Monitor B otherwise.

Furthermore, I consider a market scenario where a bidder’s value for Monitor A

and Monitor B are positively correlated to each other rather than uncorrelated. Such a
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Table 3.4: Market performance (averaged over 30 instances) with 5,000 bidders and
2,000 sellers in a 120 day marketplace. Bidders possess substitute preferences over 2
items.

Bidders’ Items Total Buyer Efficiency
Values Sold (%) Value Surplus (%) (%)

- Correlated 100.0 569,665 7.6 96.5
Uncorrelated 87.1 500,571 8.5 85.2
+ Correlated 61.4 362,704 9.2 63.3

scenario may exist if one believes that some bidders possess generally higher valuations

across all items than other bidders. In such a scenario, if a bidder’s valuation for

Monitor A is X standard deviations above the mean, her valuation for Monitor B

is set to X standard deviation above the mean. Alternatively, I also consider a

market scenario where a bidder’s value for Monitor A and Monitor B are negatively

correlated to each other. Such a scenario may exist if one believes that bidders who

are particularly interested in type of monitor are particularly disinterested in the

other monitor. In such a scenario, if a bidder’s valuation for Monitor A is X standard

deviations above the mean, her valuation for Monitor B is set to X standard deviations

below the mean.

Table 3.4 shows summary statistics of how the market performed under these

market conditions (averaged over 30 instances). As one might expect, the relative

value bidders share for the two items plays a very important role in how efficient the

market is. When bidders values across the two items are negatively correlated, the

market essentially breaks itself up into two disjoint markets, one for the first and one

for the second item, as bidders do not possess a sufficiently high value on both items

to make them reasonably eligible to win both items. Therefore, all items are typically

sold, and the efficiency of the market it relatively high.
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Table 3.5: Market performance (averaged over 30 instances) with 5,000 bidders and
3,000 sellers in a 120 day marketplace. Bidders possess substitutes preferences over
3 items.

Bidders’ Items Total Buyer Efficiency
Values Sold (%) Value Surplus (%) (%)

Uncorrelated 75.0 632,504 7.5 74.5
+ Correlated 44.4 388,191 8.6 47.2

Alternatively, as bidders value across items become uncorrelated or positively

correlated, bidders are more likely to hold options on both items, thus blocking lower

valued bidders who may never hold an option. Consequently, fewer items end up

being sold in the marketplace, and overall market efficiency begins to plummet.

Similar results of market performance are also true when bidders possess substitute

preferences over three items (where the distribution of value for the third item has a

mean of $265 and standard deviation of $45). As demonstrated in Table 3.5, when

the values across three items are correlated, the number of items sold plummets, as

does market efficiency.

The relative proportion of buyer surplus increases as the correlation among values

increases. This can be intuitively explained by virtue of bidders being more likely

to hold multiple options on multiple items when values are correlated. As they are

holding multiple options, bidders are price matching multiple goods simultaneously

rather than price matching a single item, and so are able to secure better surplus in

such an environment.

Bidders with Complements Preferences

Alternatively, consider bidders who possess complementary preferences among

items rather than substitute preferences. While bidders possess individual values for
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Table 3.6: Market performance with 5,000 bidders and 2,000 sellers in a 120 day
marketplace. Bidders possess complements preferences over 2 items.

Bidders’ Items Total Buyer Sellers who had
Values Sold (%) Value Surplus (%) Options Returned (%)

- Correlated 80.0 477,388 6.4 31.4
Uncorrelated 80.7 487,841 7.5 29.7
+ Correlated 77.3 477,257 9.0 35.1

each item, they are also interested in acquiring both items.8 The synergy (or lack

thereof) of acquiring both items is a Gaussian distributed multiplicative factor of the

summation of the values of the individual components of the bundle, such that the

value for two items, v(A + B) = (1 + N(0, 0.1))(v(A) + v(B)).

Table 3.6 shows summary statistics of how the market performed under these mar-

ket conditions (averaged over 30 instances). Unlike what was seen when examining

substitute preferences, the relative value bidders share between the two items does

not play an important role in how the market performs. No matter the correlation

between items value, the market has roughly 80% of its total items sold, with roughly

one third of sellers having their option returned to them at least once. The fact that

the number of items sold appears to be relatively constant should not be surprising.

Because bidders who hold multiple options can actually exercise both options given

their complementary preferences, efficiency will not be hampered to nearly the extent

that would be possible when bidders have substitute preferences.

However, bidders do acquire greater surplus when bidder values become corre-

lated between items. This can be most readily explained by examining bidders who

8Alternatively, imagine that bidders are only interested in acquiring the bundle. However, bidders
have an outside opportunity via a retail channel to acquire components of the bundle at a posted
price. Consequently, bidders effectively have a willingness to pay for individual items defined as the
total bundle value minus the retail prices that would be incurred to complete the bundle via the
outside retail channels.
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Table 3.7: Market performance (averaged over 30 instances) with 5,000 bidders and
3,000 sellers in a 120 day marketplace. Bidders possess complements preferences over
3 items.

Bidders’ Items Total Buyer Sellers who had
Values Sold (%) Value Surplus (%) Options Returned (%)

Uncorrelated 82.2 732,703 7.3 29.4
+ Correlated 77.5 696,589 8.0 36.3

are holding multiple options. When bidders who possess high values on both items

hold options for both items, they are in an excellent position to price match both op-

tions against bidders who possess relatively low value for both items. Consequently,

the ability to price match both options simultaneously enables bidders to acquire

greater relative surplus as compared to bidders who possess negatively correlated or

uncorrelated values between items.

Similar results of market performance exist when bidders possess complementary

preferences over three items. Demonstrated in Table 3.7, the total number of items

sold is similar in both value instances, around 80%. Additionally, the relative share

of buyer surplus increases as values become positively correlated among items.

The Importance of Market Liquidity

When bidders possess substitute preferences (and valuations are not correlated

among the items in which they interested), the bidder to seller ratio can have a

significant and non-monotonic influence on the efficacy of the market.

Initially, for extremely low bidder to seller ratios, the relatively small competition

in the market at any time prevents bidders from blocking each other from acquiring

items, and so efficiency should be expected to be relatively high. As the bidder to

seller ratio increases, there are more bidders who may be blocked from acquiring
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Figure 3.4: Efficiency of options based scheme at various bidder to seller ratios (av-
eraged over 30 runs). Bidders’ substitutes preferences vary over a number of items.

items, and so efficiency should be hampered due to bidders holding multiple options

but only exercising one.

However, at some point, efficiency should begin to increase. As the bidder to seller

ratio becomes very large, the likelihood that any single bidder will have a relatively

high value for multiple items with respect to the bidding population decreases. There-

fore, one would expect that bidders, while interested in acquiring multiple options,

will not possess sufficiently high values on multiple items in order to actually win

multiple options via auction. Consequently, bidders will not be blocked as much by

competitors, and efficiency would be expected to increase.

Figure 3.4 confirms the expectations previously described. Efficiency is calculated

as the ratio of total value of goods allocated in the options based scheme to a greedy

online allocation that approximates the total possible realizable value.9 As seen in

9In particular, the greedy online allocation looks at all bidders and sellers in the market each
day, and optimally allocates goods among that population provisionally utilizing a mixed-integer
program. For each pair of bidders and sellers that have been matched in the allocation, if either one
would depart the market at the end of that day, the allocation between them is finalized. Otherwise,
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all problem instances involving multiple item valuations, efficiency initially tends to

decrease with increasing bidder to seller ratio, but then begins to increase as the bidder

to seller ratio increases. For the problem instance where bidders are only interested

in a single item, efficiency tends to always be very close to 100% independent of

the bidder to seller ratio. While there is a data point above 1.0, this should not

be interpreted as a spurious result, as the baseline greedy online heurisitic is not

guaranteed to be optimal, and so it is possible that the options based scheme can

outperform the greedy online heuristic.

The results displayed in Figure 3.4 confirm that the extent to which bidders may

hold each other up in practice may not be as severe as could be feared. In partic-

ular, eBay boasts a bidder to seller ratio well above 5.0 in my empirical analysis.

Consequently, if one assumes that bidders valuations among substitute items are in-

dependent, the efficiency of the system may not be significantly hampered.

Size of Bidder Valuations

The extent to which bidders are interested in the same items can influence to what

extent a bidder may acquire multiple options in which other bidders would also be

interested. I investigate the extent to which the size of bidders’ valuations influence

the efficacy of the options based market. Consider a marketplace with 10,000 bidders

and 2,000 sellers and 10 different items types. Bidders possess substitutes preferences

over a varying number of items, with uncorrelated value among items.10

both bidder and seller carry over into the next day, making themselves available to be reallocated
by the greedy heuristic if they continue to be among the daily optimally calculated trade.

10The specific distributions from which valuations are drawn are as follows: v1 ≈ N(260, 45), v2 ≈
N(240, 10), v3 ≈ N(250, 5), v4 ≈ N(280, 5), v5 ≈ N(260, 20), v6 ≈ N(230, 55), v7 ≈ N(220, 60), v8 ≈
N(245, 5), v9 ≈ N(260, 5), v10 ≈ N(290, 5).
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Figure 3.5: Market performance (averaged over 30 runs) with 1,000 bidders and 1,000
sellers in a 120 day marketplace with 10 different types of goods being offered. Bidders
possess substitutes preferences over a varying number of the items.

Figure 3.5 illustrates the average market performance of the options based scheme

where bidders are interested in a varying number of items among the 10 item types

for sale. As the number of items in which a bidder may be interested increases, the in-

creased competition over each item type reduces relative buyer surplus. Additionally,

bidders being interested in and able to hold more options reduces efficiency. How-

ever, the actual number of items sold is fairly constant at around 53%, presumably

on account of sellers having the opportunity to relist their items when options are

returned.

While the increasing size of bidders’ valuations has a significant influence on mar-

ket behavior, this relationship is highly conditioned on the bidder to seller ratio being

1.0. When bidder to seller ratios are much greater, increasing the size of bidders’

valuations has little impact on market performance metrics, as one might anticipate

given the prior observations made when examining bidder to seller ratios.
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3.8 Extensions

While various relationships among bidders’ values for individual components can

improve overall market performance, it is still true that there exist instances where

market efficiency can be relatively low when bidders possess substitute preferences

(particularly when the size of bidders’ preferences is large, values are positively cor-

related among the items, and the buyer to seller ratio is at some moderate value).

Therefore, extensions to the current work may be needed in order to improve market

performance.

Two factors that limit the market efficiency at present are:

1. Bidders are bidding maximum marginal value.

2. Bidders are holding onto options that they will likely not exercise.

Regarding the first point, bidders may be submitting excessively large values when

bidding maximum marginal values. Perhaps there is a lower bid that bidders could

submit under certain circumstances that would prevent them from holding multiple

options on multiple items when it is not useful. Regarding the second point, there

may be occasions when a bidder holds multiple options but already know they are

not going to exercise one of them. At present, bidders continue to hold all options

until departure, but perhaps a better alternative to this perpetual holding exists.

This section not only explores the preceding two issues, but also a wealth of

other issues that can improve the market performance of the options based market,

or accommodate a more diverse or sophisticated bidding or selling population than

assumed to date.
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3.8.1 Buyer Extensions

Bid Refinement Due to Valuation ‘Shocks’

While it is true that each bidder has a dominant strategy to truthfully report her

type, this chapter has assumed that a bidder has full knowledge about her valuation

and departure time. In practice, a bidder may not know upon her arrival to the

system

• her true maximum willingness to pay for an item(s);

• all of the items in which she may be interested; or

• her exact departure time.

Alternatively, assume a scenario where a bidder believes with complete certainty to

know her type, but despite that belief subsequently experience a “shock” whereby

she immediately realizes her type is different (e.g., realizes after pursuing an apple

for five days that she would be just as happy with either an apple or a banana). It

is natural to investigate how easily a bidder can make changes to her bid while her

proxy is actively acquiring options on her behalf.

The current design can allow the following changes to type to be immediately

reported or updated to the bidding proxy while preserving the established dominant

strategy equilibrium:

• A bidder can change her declaration of value on any bundle in her valuation.

• A bidder can add/subtract additional items and values to her valuation.

• A bidder can change her departure time.
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The reasons for why these changes do not break the dominant strategy equilibrium

are fairly straightforward. While it is true that the first two changes imply that a

proxy should have been bidding higher or lower for items in the past, a bidder can

only affect what their proxy can do in the future, and truthfully submitting this

information will result in the proxy bidding correctly from that point forward, while

exercising options optimally upon departure. Regarding the third change to type, a

change in departure time only means that the proxy will participate in more or less

auctions and delay or hasten its decision to exercise or return options. However, given

that value is assumed consistent throughout the time window in which a bidder is

interested in acquiring the item(s), and zero after departure, a bidder will (weakly)

improve their result by changing their departure time if the newly discovered time is

later than that previously reported (by virtue of having more auctions in which to

participate and price match), and will (weakly) improve their result by changing their

departure time if the newly discovered time is earlier than that previously reported

(as options will be exercised at a time when the goods still possess value).

When a bidder discovers she has lower value(s) for items in her valuation function,

her proxy may have already obtained an option at a now prohibitively high price.

However, with the bidder updating her valuation, the proxy will not exercise the

options if the prices on them do not sufficiently decline. Therefore, some degradation

in the efficacy of the system is possible due to these valuation shocks.

It is important to mention that a valuation shock is not the same as a bidder

having a belief that her valuation may change over time. One reason for seeing how

beliefs are problematic is illustrated in the following example:
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Example 11 Alice knows she wants a movie ticket for a show on Friday (retail price

$10), but does know how much she is willing to pay for them. Alice faces an options

based scheme that accommodates a bidder changing her valuation if she experiences a

shock to her valuation. Alice decides to submit an initial valuation of $1,000 for the

ticket to her proxy, deciding she can always lower this declared amount to her proxy

before her departure when she learns her true willingness to pay.

Alice exploiting the market in such a fashion could result in tremendous inefficiencies

in the system, as many people could behave like Alice, resulting in very high option

prices which will never be exercised by the bidders when they begin to drastically

reduce the valuations they declared to their proxies immediately before departure.

Therefore, while a system can support valuation shocks, the shocks must be truly

unexpected by the bidders for the dominant strategy property to be retained.

Outside Opportunities

From an analytical perspective, this chapter does not explicitly address the possi-

bility of bidders possessing outside opportunities for acquiring items. That is to say,

a bidder who values a monitor at $300 may have the outside option at the end of

their auction patience to purchase the monitor from a store for $270. A bidder still

has a dominant strategy to truthfully report a modified valuation to the proxy that

incorporates into her valuation the existence of her outside opportunity.

Example 12 Alice values acquiring Monitor Type A by Friday in an options based

scheme for $300. Furthermore, Alice knows that if she is unsuccessful in acquiring a

monitor in the options based scheme, she can purchase a different, substitute monitor
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she values at $250 from a mail order catalogue for $225. In such a scenario, Alice

has a dominant strategy to submit a valuation for Monitor Type of A of $275 to her

proxy [$300 - ($250-$225)].

Theorem 3.8.1 When outside opportunities exist, bidders have a dominant strategy

to truthfully submit their departure time to the proxy, and a valuation function that

is the truthful valuation shifted down by the maximum surplus that can be obtained

from an outside opportunity.

By decreasing her valuation by an amount equal to the available outside surplus, a

proxy will in effect only exercise options if they will result in obtaining at least the

maximum outside surplus, which is exactly what the bidder desires.

While the options based scheme readily extends to provide bidders with a dom-

inant strategy when possessing an outside opportunity, interpreting the efficiency

ramifications of the options based scheme under such an assumption must be done

with care. Looking back at the increasing efficiency implications made in Figure

3.3(b), rather than the options based scheme increasing bidder value for the goods

allocated, the options based scheme in the presence of outside opportunities is either

increasing allocative value or allocating goods to bidders who had inferior outside op-

portunities. This is because the effective value of a bid is value for the object minus

outside opportunity surplus. Therefore, allocating to bidders with higher effective

values means either having a larger first term or smaller second term. Both of these

differences place the options based scheme in a positive light. However, the latter

benefit is not one traditionally associated with increased efficiency.
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However, I show that when the options based scheme is either increasing allocative

value or allocating goods to bidders who had inferior outside opportunities, overall

world efficiency is increasing, assuming that the bidding population has only a single

outside opportunity price.

Let B be the overall population of consumers, consisting of consumers E ⊆ B that

win an item on eBay (with !E ⊆ B those that do not), and O ⊆ B those consumers

that win in the options based market (with !O ⊆ B those that do not). Consumers

in !E and !O would use outside opportunities to acquire their item of interest. Let vi

represent the value a consumer has for winning an item in the market place, and vout
i

be the value a consumer has for the item acquired via the outside opportunity, at a

price of p.

Observing that the options based scheme allocated goods to those who have higher

effective value implies:

∑
i∈E

(vi − (vout
i − p)) <

∑
i∈O

(vi − (vout
i − p)). (3.10)

Subtracting from both sides those consumers that are both in E and O yields:

∑
i∈E∩!O

(vi − (vout
i − p)) <

∑
i∈O∩!E

(vi − (vout
i − p)), (3.11)

where rearranging terms yields:

∑
i∈E∩!O

vi +
∑

i∈O∩!E

(vout
i − p) <

∑
i∈O∩!E

vi +
∑

i∈E∩!O

(vout
i − p). (3.12)

Given that there were an equal number of items sold on both eBay and the options

based scheme, |O∩!E| = |!O ∩ E|. Therefore, prices cancel out:

∑
i∈E∩!O

vi +
∑

i∈O∩!E

vout
i <

∑
i∈O∩!E

vi +
∑

i∈E∩!O

vout
i . (3.13)
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Adding to both sides
∑

i∈O∩E vi and
∑

i∈!O∩!E vout
i yields:

∑
i∈E

vi +
∑
i∈!E

vout <
∑
i∈O

vi +
∑
i∈!O

vout. (3.14)

Equation 3.14 is precisely saying that the allocative value in a world using eBay is

less than the allocative value of a world using the options based scheme. Therefore,

the options based scheme makes for a more efficient world.

Proxies Bidding Maximum Willingness to Pay

A significant concern with the options based scheme is that proxy agents may

acquire many more options than they finally exercise, which can lead to efficiency

loss. Notice that this is not an issue for bidders that demand a single-item, or have

linear-additive values on items (as discussed in Section 3.4.5), but is an issue in general

(e.g., when bidders have substitutes or complements preferences).

Proxy agents should use more caution in acquiring options, employing a more

adaptive bidding strategy than that in Equation 3.5. I formulate a more sophisticated

bidding strategy, calculating a proxy’s maximum willingness to pay for an item of type

Gk. Such a proxy takes several factors into consideration:

F1 If the proxy can already guarantee some surplus for the bidder by exercising some

subset of options already held, the proxy will not bid more than the value of a

bundle minus this guaranteed surplus.

F2 Willingness to pay will be no more than the maximum marginal value of a good.

F3 If the surplus already guaranteed is greater than the value of all bundles requir-

ing additional options being held, the proxy will not bid as the bidder cannot

improve its position by acquiring additional options.
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For example, let Alice value exactly one piece of fruit (either an apple at $10,

banana at $5, or orange at $5). Factor F1 implies that if Alice’s proxy already holds

an option for an apple with an exercise price of $8, she should only bid $3 (instead

of $5) in future auctions for bananas and oranges, as securing an option for a banana

or orange at a price above $3 would be dominated by the apple option (as the $2 of

apple surplus would exceed the less than $2 of banana or orange surplus). Factor F2

implies that Alice should not bid more than her value for any piece of fruit, consistent

with the standard bidding strategy in the options based scheme. Factor F3 implies

that if Alice’s proxy already holds an option for an apple with an exercise price of $2,

she should not bid at all for bananas or oranges, as the maximum surplus possible

from acquiring a banana or orange is guaranteed to be less than the minimum apple

surplus (as 5− 0 < 8− 2), so there is no use in pursuing either the banana or orange.

Formalizing, let Θt be the set of all options a proxy for bidder i already possesses

at time t. Let θt ⊆ Θt, be a subset of those options, the sum of whose exercise

prices are π(θt), and the goods corresponding to those options being γ(θt). Let

Π(θt) = v̂i(γ(θt)) − π(θt) be the (reported) available surplus associated with a set of

options. Let θ∗t be the set of options currently held that would maximize the bidder’s

surplus (i.e., θ∗t = argmaxθt⊆Θt
Π(θt)).

Let the maximal willingness to pay for an item k represent a price above which the

proxy knows it would never exercise an option on the item given the current options

held. This can be computed as follows:

bidt
i(k) = max

L
[0, min[v̂i(L + k) − Π(θ∗t ), v̂i(L + k) − v̂i(L)]] (3.15)

where v̂i(L+k)−Π(θ∗t ) considers surplus already held (F1), v̂i(L+k)−v̂i(L) considers
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the marginal value of a good (F2), and taking the max[0, .] considers the overall use

of pursuing the good (F3).

Theorem 3.8.2 Equation 3.15 exactly calculates the greatest amount a bidder might

be willing to spend on an item given current options held, uncertainty as to what

future items will appear in auctions and uncertain future auction prices.

Proof. First, for every bundle of goods L such that L + k �⊆ γ(Θt), one should

not pay more than v̂i(L + k) − Π(θ∗t ) for k in order to make L + k. Let X be

the exercise price of the option for k. If X > v̂i(L + k) − Π(θ∗t ), then rearranging

Π(θ∗t ) > v̂i(L + k)−X ≥ v̂i(L + k)− π(L)−X. Therefore, the profit from L + k will

be less than a profit already secured, so X ≤ v̂i(L + k) − Π(θ∗t ).�

Second, for every bundle of goods L such that L + k �⊆ γ(Θt), one should not pay

more than v̂i(L+k)− v̂i(L) for k in order to make L+k. Let X be the exercise price

of the option for k. If X > v̂i(L+k)− v̂i(L), then rearranging v̂i(L) > v̂i(L+k)−X,

and adding like quantities to both sides presents v̂i(L)−π(L) > v̂i(L+k)−π(L)−X,

which means that Π(L) > Π(L + k), making L strictly preferred to L + k. Therefore,

X ≤ v̂i(L + k) − v̂i(L).�

What is left to show is that there is no reason to bid less than the minimum over

all L of v̂i(L + k) − Π(θ∗t ) and v̂i(L + k) − v̂i(L) when considering whether to add k

to L (such that L + k �⊆ γ(Θt)).

First, assume that v̂i(L+k)− v̂i(L) < v̂i(L+k)−Π(θ∗t ); therefore, v̂i(L) > Π(θ∗t ).

To bid less than v̂i(L + k) − v̂i(L) implies that it is not worth bidding up to the

marginal value of k in order to acquire L ∪ k. Given that L + k can have a potential

profit of v̂i(L) if v̂i(L+ k)− v̂i(L) is spent on k, it must be that v̂i(L) < Π(θ∗t ), which
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contradicts! Therefore, one cannot bid below the minimum of v̂i(L + k) − Π(θ∗t ) and

v̂i(L + k) − v̂i(L) if v̂i(L + k) − v̂i(L) is the smaller of the two terms.�

Second, assume that v̂i(L+k)−Π(θ∗t ) < v̂i(L+k)−v̂i(L); therefore, v̂i(L) < Π(θ∗t ).

To bid less than v̂i(L + k) − Π(θ∗t ) implies that one must be bidding too much to

incrementally add k to L. Therefore v̂i(L + k) − v̂i(L) < v̂i(L + k) − Π(θ∗t ), or that

v̂i(L) > Π(θ∗t ), which contradicts! Therefore, one cannot bid below the minimum of

v̂i(L + k) − Π(θ∗t ) and v̂i(L + k) − v̂i(L) if the first term is the smaller of the two.�

Therefore, for each bundle L, min[v̂i(L + k)−Π(θ∗t ), v̂i(L + k)− v̂i(L)] calculates

a value above which no option would be exercised with that price for adding k to

L, and below which one might be missing an opportunity for surplus. Therefore, by

taking the maximum over all bundles of this minimal value, one exactly finds a value

above which no option would be exercised, but below which a profitable opportunity

might be forfeited.

However, this bidding scheme cannot be implemented without forfeiting truthful-

ness. The Π(θ∗t ) term in Equation 3.15 (i.e., the amount of guaranteed surplus bidder

i has already obtained) can be influenced by some other proxy j’s bid. Therefore,

bidder j may have the incentive to misrepresent her valuation to her proxy if she

believes doing so will cause i to bid differently in the future in a manner beneficial

to j. Consider the following example where the proxy scheme is refined to bid the

maximum willingness to pay.

Example 13 Alice values either one ton of Sand for $2,000 or one ton of Stone for

$1,900. Bob values either one ton of Sand for $1,800 or one ton of Stone for $1,500.

Both bidders have a patience of 2 days. On day one, a Sand auction is held, where
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Alice’s proxy bids $2,000 and Bob’s bids $1,800. Alice’s proxy wins an option to

purchase Sand for $1,800. On day two, a Stone auction is held, where Alice’s proxy

bids $1,700 [as she has already obtained a guaranteed $200 of surplus from winning

a Sand option, and so reduces her Stone bid by this amount], and Bob’s bids $1,500.

Alice’s proxy wins an option to purchase Stone for $1,500. At the end of the second

day, Alice’s proxy would exercise the option she holds for Stone with an exercise price

of $1,500 to obtain a good valued for $1,900, and so obtains $400 in surplus. Alice

will not exercise the Sand option instead, as she could only obtain $200 in surplus

from that option, and so prefers the Stone option.

Now, consider what would happen if Alice declared that she valued only Stone:

Example 14 Alice declares valuing only Stone for $1,900. Bob values either one ton

of Sand for $1,800 or one ton of Stone for $1,500. All bidders have a patience of

2 days. On day one, a Sand auction is held, where Bob’s proxy bids $1,800. Bob’s

proxy wins an option to purchase Sand for $0. On day two, a Stone auction is held,

where Alice’s proxy bids $1,900, and Bob’s bids $0 [as he has already obtained at least

$1,800 of surplus from winning the Sand option, and so is not interested in winning

the Stone option]. Alice’s proxy wins the Stone option for $0. At the end of the second

day, Alice’s proxy holds an option with an exercise price of $0 to obtain a good valued

for $1,900, and so obtains $1,900 in surplus.

By misrepresenting her valuation (i.e., excluding her value of Sand), Alice was

able to secure higher surplus by guiding Bob’s bid for Stone to $0. In essence, proxies

bidding maximum willingness to pay explicitly results in competitors’ bids being
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conditioned on a proxy’s past bids. As seen in Condition 2 of Proposition 1, this

conditioning prevents a truthful marketplace from existing.

Perhaps more unsettling, consider what happens if Alice were to bid truthfully,

but Bob only declared interest in Stone rather than interest in both Sand and Stone.

Example 15 Alice values either one ton of Sand for $2,000 or one ton of Stone for

$1,900. Bob only declares value for Stone for $1,500. Both bidders have a patience

of 2 days. On day one, a Sand auction is held, where Alice’s proxy bids $2,000, and

Alice’s proxy wins an option to purchase Sand for $0. On day two, a Stone auction is

held, where Alice’s proxy bids $0 [as she has already obtained $2,000 of surplus from

winning the Sand option, and so is not interested in winning the Stone option], and

Bob’s bids $1,500. Bob’s proxy wins an option to purchase Stone for $0. At the end

of the second day, Alice’s proxy would exercise the option she holds for Sand with

an exercise price of $0 to obtain a good valued for $2,000, and so obtains $2,000 in

surplus. Bob’s proxy would exercise the option he holds for Stone with an exercise

price of $0 to obtain a good valued for $1,500, and so obtains $1,500 in surplus.

By decreasing the size of his bid, Bob has improved his position from truth, going

from winning nothing to winning something at tremendous surplus. Such a possibility

is likely a significant hindrance in trying to make a market truthful for bidders bidding

maximum willingness to pay rather than maximum marginal value.

One possible method for creating a truthful market with this maximum willingness

to pay strategy may exist in restricted environments where bidders do not possess

general valuations. For example, a truthful mechanism is possible in certain restricted

environments when bidders possess single-valued preferences (Babaioff et al. 2005;
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Parkes 2007). In single-value domains, each bidder possesses a constant private value

over all allocations of interest, and no value otherwise. While single-valued preferences

are more restrictive than general preferences, the options based scheme where proxies

bid maximum willingness to pay can be made truthful by breaking ties in favor of

option holders, and if the market maker restricts bidders to submitting single-valued

preferences, and bidders actually possess single-valued preferences over all items.

For example, if each bidder’s preference is exactly one of either “Single-valued

in A XOR B” or “Valuing only AB,” and the market maker only allows bidders to

submit a bid that expresses one of those preferences, then the market is truthful.

Theorem 3.8.3 The options based scheme is truthful when (a) there are only two

types of good, A and B, (b) each bidder is either single-valued over the individual

items or only interested in bundle AB, (c) the market maker will only allow bidders to

express preferences that are either single-valued over the individual items or expressing

interest in only the bundle AB, and (d) if an auction has multiple bidders who have

submitted the highest bid, preference for allocating the option goes to a random bidder

among the high bidders that already hold an option.

First, consider that bidder i values only AB. i would not be interested in ex-

pressing preferences to the market that are single-valued over the individual items, as

doing so would prevent i from acquiring the only bundle in which she is interested.

Therefore, i will express an interest in AB, and will truthfully report her valuation

for the bundle as she cannot benefit by misrepresenting value. The only means by

which i can influence the price she faces for item A is by influencing the price for an

item B held by a bidder j that has single-valued preferences over individual items
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(as bidders who value AB will always submit the value of that bundle as their bid).

However, the bid j would subsequently submit as her bid for A would be identical

to the declared value i has given for bundle AB. Therefore, because preference for

options is given to bidders already holding options, i has not benefited from misrep-

resenting her value. Alternatively, i could hurt herself by misrepresenting her value

by either not acquiring options that she would have won had she bid truthfully, or

exercising options at a loss which would not have occurred had she bid truthfully.

Second, consider that bidder i has single-valued preferences over the individual

items. i has no incentive to represent her preference as being for AB, as she can

acquire A or B for (weakly) less than AB, and so obtain greater surplus. Regarding

the single value i expresses in her valuation, similar logic is true here as when i

was interested in AB. i can only can only reduce another bidder’s bid down to the

one value i declares. However, i would not be able to secure an item at that price

because the other bidder would win the option based on condition (d) of the theorem.

Therefore, i can not benefit by reporting a value other than truth, but can hurt herself

by doing so.

The market is also truthful if bidders may express only single-valued preferences

over individual items; however, this result is not terribly interesting in itself, as this

restricted environment is essentially collapsing the market from one with many item

types to one with essentially a single item type.
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3.8.2 Seller Extensions

Sellers Leaving with Options Issued

While bidders may not be able to return options when they know they will not

exercise them (as discussed in the previous subsection), that does not preclude sellers

from taking advantage of such information. In particular, if a seller wishes to leave the

marketplace and has an option issued, but the proxy already knows that the option

backed by that seller will not be exercised, the proxy could inform the seller that it

may leave the system even though the seller still technically has an option issued. In

so doing, sellers would only remain in the market system past their departure if there

is some possibility that their option will be exercised.

Sellers Passing Options

One concern in this chapter at present is that a seller grants an option that expires

at the end of the winning bidder’s patience, which is not necessarily occurring at the

seller’s end of patiences. One way to address this concern would be to consider

enabling a seller to leave the system at any moment in time, but pass the option

she has issued onto the next arriving seller that is offering an item of the same type.

The newly arriving seller would then not conduct an auction of her own, but simply

become the new backer of the option the first seller had issued.

While such a system may look at first to simply be extending the effective patience

of a seller backing an option, it actually introduces new complexities into the scheme

that would prevent the market from being truthful for bidders. Consider two bidders:

Alice who values an item any time from Monday through Tuesday for $8, and Bob
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who values an item only on Monday for $6. Consider two sellers: Charlie who is

interested in departing the system on Monday, and Dan who arrives on Tuesday.

If both Alice and Bob were to truthfully reveal their type, Alice would win the

Monday auction as the high bidder and have an option with exercise price of $6 from

Charlie. At the end of Monday, Charlie would want to leave the system, and so would

pass the option he has issued onto Dan. Dan would then not conduct an auction on

Tuesday (as he is already backing Alice’s option), and Alice would exercise her option

at the end of Tuesday for $6 as there were no further auctions against which to price

match.

Alternatively, if Alice were to delay her entry, Bob would win Monday’s auction

as the only bidder in the market, and exercise the option Monday evening resulting

in both Bob and Charlie leaving the market. On Tuesday, both Alice and Dan would

enter the system, with Alice being the only bidder in the market and so winning

an option from Dan with an exercise price of $0. Therefore, Alice clearly has the

opportunity to improve her profit by not being truthful.

However, Alice’s ability to improve her profit is more a function of manipulating

the price she faces rather than changing whether or not she received an item. In fact,

a market scheme where sellers may pass options as described above provides bidders

with allocations that are monotonic in their declared bids. Let xk
i (ai, di, vi(k)) be an

allocation function such that xk
i is 1 if bidder i holds an option for good k by her

departure di given a maximum marginal value for the good of vi(k), 0 otherwise.

Definition 6 Allocation function, xk
i (ai, di, vi(k)), is monotonic if xk

i (a
′
i, d

′
i, v

′
i(k)) ≥

xk
i (ai, di, vi(k)) for all a′

i ≤ ai, all d′
i ≥ di, and all v′

i(k) ≥ vi(k).
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Theorem 3.8.4 A bidder’s allocation function is monotonic when sellers may pass

options at the end of their departure.

Proof. It is sufficient to show that if xk
i = 1 when a bidder submits type (ai, di, vi(k)),

that xk
i can not become 0 if a bidder submits (a′

i, d
′
i, v

′
i(k)) for all a′

i ≤ ai, all d′
i ≥ di,

and all v′
i(k) ≥ vi(k). Let ti be the time when bidder i receives her option when

submitting type (ai, di, vi(k)) (implying that i had the highest maximum marginal

value at time ti). (Case 1: a′
i ≤ ai) If bidder i reports an earlier arrival, i will either

win an option at time before ti, or will not in which case she will win as before at

time ti.�(Case 2: d′
i ≥ di) If bidder i reports a later departure, i will win as before at

time ti.�(Case 3: v′
i(k) ≥ vi(k)) If bidder i reports a greater marginal value for item

k, she will either win an option before ti, or will win as before at time ti.� Therefore,

a bidder’s allocation can not decrease with increased declaration of type.

Given that xk
i is monotone, there exists a payment rule such that the options based

scheme with sellers passing options is truthful, as proven in Theorem 6 in work by

Hajiaghayi et al. (2005). Such a payment rule, in order to be calculated dynamically

online and in a decentralized fashion, will likely have proxies not only tracking bidders

that they bumped from winning, but also sellers they forced to assume passed options,

utilizing all of this information to determine what an accurate price would be if they

had never bid previously (e.g., the proxy would need enough information to determine

that the critical value Alice should face is $0 rather than $6 when she is truthful, as

she could have won the item for free had she delayed her entry).
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3.9 Related Work

A number of authors have analyzed the multiple copies problem, often times in

the context of categorizing or modeling sniping behavior for reasons other than those

first brought forward by Ockenfels and Roth (2002). From a perspective of developing

models of the multiple copies problem, Stryszowska (2004) models the problem as

one of a dynamic multi-unit auction, allowing for explanations of sniping as well

as bidding multiple times within an auction. Hendricks et al. (2005) demonstrate

that sniping is a symmetric equilibrium in the absence of a BuyItNow opportunity.

Wang (2003) demonstrates using a two-period model how sniping in the first period

is a unique equilibrium, stressing the incorporation of a common value component

into the environment, and Zeithammer (2005) provides an equilibrium model for

strategic sellers and forward-looking buyers. While Stryszowska, Hendricks et al.,

Wang and Zeithammer all demonstrate equilibria for bidders modeled as only being

able to participate in two auctions, this chapter focuses on considering a model with

an arbitrary number of auctions available in which buyers may participate. Peters

and Severinov (2005) also allow for an arbitrary number of auctions for buyers to

consider, and characterize a perfect Bayesian equilibrium where sellers set a reserve

price equal to their true costs. While Peters and Severinov neither consider buyers

entering at random times nor auctions closing at different times, this chapter allows

for arbitrary buyer arrival and departure, and well as arbitrary closing times across

auctions. Additionally, while these works on a whole focus on determining analytic

Bayesian equilibria based on models intended to approximate eBay-like markets, this

chapter focuses on a dominant strategy equilibrium based on extending an eBay-
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like market into an options based market. Considering domains where buyers are

potentially interested in acquiring more than one copy of the same item, Ausubel

and Cramton (1996) and List and Lucking-Reiley (2000) have investigated multi-unit

demand auctions.

The sequential auction problem was previously observed in Wellman and Wurman

(1998), in the context of a discussion about the boundaries that must inevitably exist

between mechanisms. This theme was continued by Parkes (2003), Ng et al. (2003a)

and Ng et al. (2003b) in the context of strategyproof computing. The problem has

often been identified in the context of simultaneous ascending price auctions, where

it is termed the exposure problem (Bykowsky et al. 2000). Many of the same concerns

arise in both simultaneous ascending price auctions and sequential auctions.

Previous work to address the problem has considered two different directions.

First, one can change the mechanism and define an expressive bidding language and

have it be truthful, as seen in work on combinatorial auctions (Rothkopf et al. 1998).

Second, one can attempt to provide bidders’ proxy agents with smarter bidding strate-

gies, as seen in the work of Boutilier et al. (1999), Byde et al. (2002), Anthony and

Jennings (2003), and Wellman et al. (2004). Unfortunately, it seems hard to design

artificial agents with equilibrium bidding strategies, even for a simple simultaneous

ascending price auction.

Mine is not the first work to consider the role of options in auction design. Iwasaki

et al. (2005) have considered options in the context of a single, monolithic, auction de-

sign to help bidders with marginal-increasing values avoid exposure in a multi-unit,

homogeneous item auction problem. Sandholm and Lesser (2001) have considered
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options in the form of leveled commitment contracts for facilitating multi-way recon-

tracting in a completely decentralized market place, while Rothkopf and Engelbrecht-

Wiggans (1992) discuss the advantages associated with the use of options for selling

coal mine leases. Gopal et al. (2005) also present work on the use of options for re-

ducing the risks of buyers and sellers in the sequential auction problem. However, my

work differs from theirs in a number of ways, including how the options are priced,

which bidders obtain options, and in how much risk remains with bidders once op-

tions are used (all bidders have zero risk in my work, while bidders have either no

reduction in risk or only partial reduction of risk in the work of Gopal et al.). To the

best of my knowledge, this is the first work to study the role of options in explicitly

simplifying bidding strategies to dominant strategies in sequential auctions.

Finally, a more recent direction taken in computational mechanism design is that

of online mechanisms (Parkes and Singh 2003) and online auctions (Lavi and Nisan

2000; Hajiaghayi et al. 2004, 2005; Porter 2004), in which bidders can dynamically

arrive and depart over time. I leverage the price-based characterization of Hajiaghayi

et al. (2004) to provide a dominant strategy equilibrium for buyers within my options

based protocol, creating a truthful online combinatorial auction from a sequence of

single item auctions. In fact, my options based scheme for resolving the multiple

copies problem can be viewed as a transparent implementation of the protocol of

Hajiaghayi et al. (2004), while my general solution can be viewed as extending that

work by creating a truthful, online, decentralized, combinatorial auction.
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3.10 Conclusion

I introduce an options based, proxy bidding, auction protocol to address the se-

quential auction problem that exists when bidders can bid in sequences of single-item

auctions. Buyers have a simple, dominant and truthful bidding strategy in the op-

tions based market, even though the sellers remain fundamentally disintermediated.

Therefore, the options based market provides an interesting new class of open elec-

tronic markets, as well as a channel for sellers when the exposure problem or multiple

copies problem is difficult for bidders to resolve on their own.

3.10.1 Opportunities for Future Work

There are a number of interesting extensions that one could pursue in continuing

the work of this chapter.

Multi-Quantity Valuation Functions This chapter currently assumes that bid-

ders are only interested in acquiring up to one unit of any given item. However, one

could imagine extending the system so that bidders could obtain multiple instances

of any given item (e.g., many apples rather than a single apple). Incorporating such

an extension into the current market is non-trivial, as proxies face the difficult task of

weighing the benefits of acquiring additional options to the benefits of being able to

price match the options they already hold. A possible solution to this dilemma may

be to have the proxy store more information about the state of the market than it

does at present. The proxy would acquire options up the maximum number in which

it could possibly be interested, but use the additional information to determine what
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the prices of options would be if the proxy had chosen to pursue fewer options instead

of the maximum number. Such a protocol seemingly requires a non-trivial increase

in computational storage and resources.

Bundles for Sale In the model proposed, sellers only possess a single item for sale,

but scenarios may exist where sellers are interested in selling multiple items simulta-

neously in a single lot. (A single bundle-auction is not the same as a combinatorial

auction, as only bids on all items would be accepted, and not bids for subsets of

items.) While a marginal value bidding strategy is easy to define, the amount of

information required to conduct the bookkeeping would be much greater than in the

current system. In particular, all bundles in which a bumped bidder is interested

would need to be stored by a proxy, which is a larger storage requirement from that

currently required where only the name of the bumped bidder need be stored. Such

a scenario may in a worst case require exponential storage and computational capa-

bilities, and so limits the nature of this extension. Alternatively, this may indicate

that a more centralized pricing protocol is appropriate.

Value Degrading over Time It is natural to consider domains where bidders’

valuations decrease over time rather than being constant between arrival and depar-

ture. While such a valuation could be expressed, a proxy would not have a dominant

option-execution strategy. The difficulty would lie in a proxy deciding if it should de-

lay the exercising of its option, risking the degradation of value but possibly gaining

a lower exercise price. Consequently, a bidder does not have a dominant strategy to

truthfully report its valuation to the proxy.
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Resolving Strategic Problems Facing Sellers Future work could address and

resolve the strategic problems facing sellers in this chapter. While this chapter shows

that sellers can increase their revenue over the eBay protocol when all sell their goods

in a straightforward and truthful fashion, truthful behavior may not always be in the

best interest of each seller in the current market. For example, a truthful seller would

enter the market as soon as they desire to sell a good; however, a seller may delay

their entry into the market if they believe the market is currently “cold” but will soon

become “hot.” Alternatively, one may want to consider designing the marketplace

such that sellers have dominant strategies to truthfully enter and depart the system

by reversing the options based scheme to allow for the sell-side to be the truthful but

not the buy-side of the market.

Alternatively, one could try to create a marketplace where both bidders and sellers

have optimal strategies, designing a truthful, online, combinatorial exchange. Insights

for such a solution may come from the work of Bredin and Parkes (2005), who have

developed an online truthful marketplace that is budget-balanced, but which requires

more than the incremental changes from current electronic marketplaces that my

work strives to retain, and also fails to preserve consumer sovereignty.

Artificial eBay Simulations While the bootstrapping in Section 3.6 provides

means for assessing how fragile the simulations may be to the specific distribution

of value estimated from the eBay population, one could imagine conducting addi-

tional evaluations based on artificial simulations of eBay, assessing how the options

based scheme improves the outcome for that artificial population. Determining what

strategies these artificial bidders should play across auctions in the eBay environment
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would be a key challenge, but an empirical analysis of bidder behavior comparable to

that of Bapna et al. (2004) could provide insight.

Lab Experiments Lab experiments may provide insight into the difficulties bidders

face when acquiring bundles by participating in sequential auctions for components

of their bundle, and would allow for direct calculations of efficiency and the extent to

which bidders make mistakes. One could also determine how the participants would

fare by bidding in the options based market, allowing for simple and straightforward

comparisons of market performance.

An additional benefit of lab experiments would be that one could survey users

regarding costs of bidding. While market efficiency, bidder utilities and seller revenue

are metrics one can and should use to compare current markets to the options based

market, the fact that bidders within the options based scheme utilize a dominant

strategy, whereas bidders on eBay may need to strategize in order to secure optimal

surplus, implies that the costs of bidding in the options based market are lower than

the bidding costs in current markets. A survey among participants in the experiment

could enable one to quantify bidding costs in non-truthful markets.

Hierarchical Options Scheme Finally, this chapter has shifted the sequential

auction problem from an auction level to an auction site level. Nothing is done within

the scheme to address sequential auction problems across auction sites such as eBay

and Yahoo! auctions. An interesting direction is to consider whether a hierarchical

options based scheme, more loosely coupled than the scheme in this chapter, could

provide some guarantee of a simple and optimal strategy for bidding across sites.
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Chapter 4

ICE and Sealed-Bid Markets when

Values are Unknown

4.1 Introduction

Expressive markets, such as combinatorial auctions and combinatorial exchanges,

promote market efficiency by allowing bidders to straightforwardly represent costs,

values, and business rules as they relate to possible allocations of goods (e.g., the use

of auctions for procurement of goods and services such as wireless spectrum (Cramton

1997), and the proposed landing rights markets for LaGuardia airport as described by

Ball et al. 2006). Bidding in such markets serves the role of preference elicitation (e.g.,

airlines use bids to express values for different landing slots), but bidders typically

have considerable uncertainty about their valuations.

An increasing problem facing end-users in electronic auction markets is that bid-

ders are participating in auctions despite not having full information about their
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valuation. For example, the FCC’s wireless spectrum auctions introduced items for

sale that companies had not previously valued explicitly, as previously they had re-

ceived spectrum from the U.S. government through means like lotteries (Bykowsky

et al. 2000). In an effort to allow bidders to participate in markets while simultane-

ously allowing them to gain a better sense of their true maximum willingness to pay,

market designers have created electronic markets employing incremental, price-based

mechanisms, like those actually employed in the FCC spectrum auctions (Cramton

1997). Based on provisional prices, a bidder submits bids well in advance of an auc-

tion closing, submitting modified bids over time as she better understands her value

for the available goods at the current prices. Iterative markets, in which a bidder can

modify her bid iteratively (e.g., in response to the bids from other bidders), can help

meet a key challenge of facilitating effective preference elicitation.

However, iterative markets bring their own challenges. Notably, bidders must

satisfy activity rules designed to promote early and sincere bidding, often by requiring

that bids are both consistent across rounds and also make sufficient progress (Ausubel

et al. 2006). I consider a specific subclass of iterative markets in which bidders make

explicit claims about lower and upper bounds of value, and refine these bounds over

rounds,1 implemented as the Iterative Combinatorial Exchange (ICE) of Parkes et al.

(2005).

To encourage bidders to provide informative, continual information for more ef-

fective price discovery, price-based mechanisms often employ activity rules. Activity

rules are guidelines a bidder must abide by in order for their bid to be valid, with

1eBay provides a simple example of a such a market, if one considers the raising of an eBay bid
as a refinement of the lower bound of value a bidder possesses for an item (and so an amount of
money that a bidder is certainly willing to pay).
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the failure of meeting an activity rule potentially being accompanied with a penalty

(e.g., quantity eligibility may be reduced in Cramton et al. 1997). A well known

activity rule is the revealed-preference activity rule – a market requires sufficient bid

information to know which single bundle of goods (if any) a bidder most prefers

given the current prices of the market. Marketplaces employing revealed preference

activity rules typically operate differently than ICE, as they are indirect auctions.

Participants in indirect markets typically interact with the activity rule by explicitly

stating the bundle they most prefer at the prices, without explicitly providing value

information on that bundle or any other. This differs from ICE, which is more direct

in nature, as a valuation is provided from which the market must infer which bundle

is most preferred. While the information provided is different from indirect to direct

markets, these activity rules should be viewed as equivalent as they achieve the same

objective - soliciting the most preferred bundle.

This chapter looks at the extent to which ICE outperforms a sealed-bid Vickrey-

based marketplace with respect to the amount of information refinement costs incurred

by a bidder. If the iterative feedback provided by ICE to participants is informative,

bidders will be able to focus their refinement efforts on those areas of their valuation

that are most pertinent. Alternatively, in the sealed-bid market, there is no iterative

feedback, so bidders must determine without assistance which areas of their valuation

they should refine. Within the market simulations of this chapter, the amount of

information refinement performed by bidders in ICE will be recorded, establishing an

information refinement budget that will be given to a bidder of identical type that

will participate in the sealed-bid marketplace. Allocative efficiency and participants’
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surplus will be compared, allowing for the determination of the extent to which the

iterative nature of ICE is enabling better market results given comparable information

revelation budgets.

4.2 Model

The iterative market will be described first without mentioning the specifics of

ICE, but captures all of the core elements of the iterative, expressive market as well

as a bidder therein. At the end of each round t ∈ {1...T}, the market returns interim

allocations and prices such that a bidder can determine a price for each combination

of goods that she might desire.

4.2.1 Participants

Suppose participant i (also referred to as a bidder) is interested in engaging in

any one trade of goods (hereto referred as a bundle) from a collection of J bundles,

B1...BJ , each possessing a price at the end of a round of pt(B
j). Rather than knowing

her true value for each bundle, vi(B
j), a bidder only has lower bound and upper

bound estimates of value for each bundle, vL
i (Bj) ≤ vi(B

j) ≤ vH
i (Bj). (As will be

discussed, these estimates are correct with arbitrarily high probability.) If the market

is not truthful, I assume values are estimates of willingness to pay, incorporating all

strategic considerations.
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4.2.2 Tree Based Bidding Language

The value of each bundle Bj may consist of several distinct value-contributing

portions.2 The ability to identify value-contributing portions can often be exploited

as a means to compactly express complex valuations, as demonstrated by Cavallo

et al. (2005) in their Tree-Based Bidding Language (TBBL). TBBL is designed to be

expressive and concise, entirely symmetric with respect to buyers and sellers, and to

extend to capture bids from mixed buyers and sellers, ranging from simple swaps to

highly complex trades. Therefore, I employ the use of this language in this chapter.

Bids are expressed as annotated bid trees, and define a bidder’s change in value

for all possible trades. Leaves of the tree are annotated with traded items and all

nodes are annotated with changes in values (either positive or negative). The main

feature of TBBL is that it has a general “interval-choose” logical operator on internal

nodes coupled with a rich semantic for propagating values within the tree. These

semantics allow the language to capture new structure, making it exponentially more

concise than other languages (Nisan 2000; Boutilier and Hoos 2001; Sandholm 2002)

for preferences that are realistic in important domains for combinatorial exchanges.

A novel feature of TBBL is that it is designed to express values on trades rather

than allocations, as it can be cumbersome to capture trades in languages that specify

values on allocations.

Formally, consider bid tree Ti from bidder i. Such a tree will have nodes β ∈ Ti,

with vL
β ∈ R denoting the lower value specified at β, vH

β ∈ R the higher value. Let

2These portions can be quite general. For example, the value of “apple+orange” could consist of
the value contribution of “apple,” plus the value contribution of “orange,” plus the complementary
value of obtaining both “apple” and “orange.”
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Leaf (Ti) ⊆ Ti be the leaves of Ti and let Child(β) ⊆ Ti denote the children of a node

β. All nodes except leaves are labeled with the interval-choose operator ICy
x(β). Each

leaf β is labeled as a buy or sell of a given quantity of a given good qβj ∈ Z. The IC

operator defines a range of children nodes the bidder is willing to have satisfied. An

IC y
x(β) node (where x and y are non-negative integers) indicates that the bidder is

willing to pay for the satisfaction of at least x and at most y of its children. With

suitable values for x and y, the operator can include AND, OR, XOR, as well as many

other possibilities. For instance: IC 2
2 on a node with 2 children is equivalent to an

AND operator; IC 3
1 on a node with 3 children is equivalent to an OR operator; and

IC 1
1 on a node with 2 children is equivalent to an XOR operator. This equivalence

implies that TBBL can directly express the XOR, OR and XOR/OR languages, and

in fact generalizes many of the existing languages.

Satisfaction of an IC y
x(β) node occurs if and only if at least x and at most y of

its children are satisfied. If a node is not satisfied, then none of its children may

be satisfied. Besides defining how value is propagated, the logical operators act as

constraints on what allocations are acceptable, a richer semantic. Leaves of a TBBL

bid tree are annotated as either buy or sell nodes; an agent may only specify a sell

node for a good that he owns. Leaves can also be annotated with a quantity, which

is either satisfied in its entirety or not at all.

Given a tree Ti, the value of a trade λ is defined as the sum of the values on all

satisfied nodes that provides the maximal total value. In the case of unit quantities

on leaves, every new item assigned allows an additional buy leaf to be satisfied, while

every new item given up requires that an additional sell leaf is considered satisfied.
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Let satβ ∈ {0, 1} denote whether node β is satisfied (equal to 1 if satisfied).

Solution satTi
= 〈satβ, ∀β ∈ Ti〉 is valid for tree Ti and allocation λi, written satTi

∈

valid(Ti, λi), if and only if all nodes are appropriately satisfied or not satisfied relative

to other nodes, or formally:

∑
β∈Leaf (Ti)

qβj · satβ ≤ λij, ∀i ∈ N, ∀j ∈ G (4.1)

ICx(β)satβ ≤
∑

β′∈Child(β)

satβ′ ≤ ICy(β)satβ, ∀β ∈ Ti \ Leaf (i), ∀i ∈ N. (4.2)

A set of leaves can only be considered satisfied given trade λi if the total increase

in quantity summed across all leaves is covered by the trade, for all goods (Equation

4.1). Equation 4.1 is valid for sellers as well as buyers; for sellers, a trade is negative

and requires that the total number of items indicated as sold in the tree be at least

the total number sold as defined in the trade. Equation 4.2 enforces the interval-

choose constraints, by ensuring that no more or less then the appropriate number of

children is satisfied for any node that is satisfied. Further, this equation ensures both

“downward-propagation” and “upward-propagation,” any time a node other than the

root is satisfied then its parent must also be satisfied.

The total pessimistic value of a trade λi, given bid-tree Ti is

vL(Ti, λi) = max
satTi

∈valid(Ti,λi)

∑
β∈T

(vL
β · satβ), (4.3)

while the total optimistic value of a trade λi, given bid-tree Ti is

vH(Ti, λi) = max
satTi

∈valid(Ti,λi)

∑
β∈T

(vH
β · satβ). (4.4)

These semantics make TBBL capable of concisely expressing valuations that depend

on complex combinations of trades.
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[1,1]
0
0

B
4
10

A
1
3

“I value A between 1 and 3, 
and B between 4 and 10,

but want exactly one of them.

[3,3]

[2,3] 10
10

Car
10k
30k

PineLime Mint

[2,2]

Left Right

20
40

0
5

“I want a car for between 10k and 30k, AND
2 or 3 different air fresheners for 10, AND

2 speakers, willing to spend more for the left.

Figure 4.1: Examples of Tree Based Bidding Language (TBBL).

Figure 4.1 provides examples of what can be expressed by TBBL. The first example

demonstrates a simple “A XOR B” valuation, where there is uncertainty surrounding

the values for items A and B. The second example is a bit more complex, with the

consumer wishing to purchase a car, two or three air fresheners of different scents, and

two speakers. In the second example values are annotated on internal nodes as well

as leaf nodes. As seen in the air fresheners component of the valuation, the consumer

has a value of $10 no matter how many or which air fresheners she acquires, provided

that she acquires two or three of them.

Furthermore, the second example is actually expressing preferences for 4 different

bundles (the car and two speakers, together with four different acceptable combina-

tions of air fresheners), while not having to express any additional nodes. For further

analysis of the compactness and expressibility of TBBL, see Cavallo et al. (2005).

For the rest of this chapter, I assume that bidders’ valuations are expressed in

terms of TBBL. Bidders map bundles to a set of TBBL nodes and, if they have

uncertainty about what the precise value of a bundle may be, I assume that they are
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able to correctly express their uncertainty within the TBBL framework by correctly

annotating TBBL nodes.

4.2.3 Belief of Value and Establishing Initial Value Bounds

Given a TBBL tree, let gv̂i(β),σi(β) be a refinable Gaussian distribution belief that

bidder i has for the value of a given IC node, β. v̂i(β) is the mean of the distribution

and σi(β) is the standard deviation of the value belief.

A bidder interacts with the marketplace by submitting lower and upper bounds

of value at each IC node. Let X be a value confidence parameter - the number of

standard deviations a bidder separates her lower and upper bound values from the

mean of her belief:

vL
i (β) = v̂i(β) − Xσi(β), (4.5)

vH
i (β) = v̂i(β) + Xσi(β). (4.6)

As the value of X increases, the probability of the true value lying between the initial

bounds increases (i.e., a bidder can be more confident that the bounds she submits

contain the true value by increasing X). Other considerations will also need to be

taken into account when determining what the value confidence parameter should be,

as will be discussed below.

4.2.4 Belief Refinement

In meeting the various activity rules within an iterative market, a bidder will at

times find it necessary to refine her value bounds on TBBL nodes. Let the sequence

of value refinements of a node’s value bound be indexed by k (vH
i,1(β), ..., vH

i,K(β)).
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I assume that market participants have access to oracles that they may query for

the purpose of value refinement. The cost to a participant for making such a query

to the oracle is fixed.

The following process is employed by the oracle for participant i when refining

value from step k − 1 to step k for node β:

v̂i,k(β) = Normal(v̂i,(k−1)(β) + γiσi,(k−1)(β),
√

1 − α2σi,(k−1)(β)), (4.7)

σi,k(β) = ασi,(k−1)(β), (4.8)

where 0 < α < 1 is an exogenously set constant factor for all market participants, and

γi parameterizes an amount of bias an oracle may possess (with that bias unknown

to the participant). When γi = 0, the refinement is both a correct and consistent

refinement of a bidder’s value belief.3

Having received a more precise belief of a node’s value from the oracle, a bidder

is able to establish new lower bound and upper bound estimates of her true value:4

vL
i,k(β) = v̂i,k(β) − Xσi,k(β), (4.9)

vH
i,k(β) = v̂i,k(β) + Xσi,k(β). (4.10)

Therefore, the oracle has enabled a bidder to reduce the amount of uncertainty at a

node by a relative factor of 1 − α after a single oracle-based refinement.5

3Fong (2003) provides a proof of the consistency of this refinement, leveraging that Gaussian
distributions have the conjugate property.

4If the bounds’ refinement results in less than 0.01 of uncertainty in the node, bidders assume
that the true value of that node has been discovered as the updated upper bound.

5Formally, vH
i,k(β) − vL

i,k(β) = α(vH
i,(k−1)(β) − vL

i,(k−1)(β)).
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The Relationship between X and α

There are a number of difficulties that arise given that bidders possess Gaussian

beliefs, as Gaussian distributions have non-zero weight at all possible values but

bidders are restricted within ICE to submit finite bounds within their bids. One

concern is that a bidder may realize her value lies outside the lower or upper bounds

she had previously expressed to the market. As ICE only permits lower bounds to

be raised, and upper bounds to be lowered, a bidder would be unable to express her

discovered value to the marketplace. However, a bidder can set the value confidence

parameter, X, sufficiently high so that the true value of a TBBL node is very likely

to lie between the value bounds that she has submitted to the market. For example,

if a bidder selects a value for X greater than 4, the probability of the true value lying

outside of the value bounds would be less than 0.0064% (assuming no bias, γi = 0).

While setting a value for X above 4 will ensure with high probability that the

true value lies within the value bounds, such a setting may not ensure that the oracle

makes refinements to values such that the new lower and upper bound can lie inside

the previous lower and upper bounds. If the draw from the normal distribution

establishing the new mean of the value belief is sufficiently far away from the prior

belief distribution’s mean, the new lower bound will lie below the old lower bound

or the new upper bound will lie above the old upper bound. As before, this is

problematic as ICE would not at present permit bidders to express their refined sense

of value if it lies outside the previously declared value window. Therefore, I calculate

the conditions under which a bidder can be certain with high probability that the

oracle’s value refinement will lie within the previously believed value bounds.
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I will only analyze the upper bound refinement process, noting that the analysis

is symmetric for the lower bound. An upper bound is inwardly consistent with the

prior upper bound when:

vH
i,k(β) ≤ vH

i,(k−1)(β). (4.11)

Substituting and rearranging terms from Equations 4.8 and 4.10 yields the following

(assuming no bias, γi = 0):

vH
i,k(β) + Xσi,k(β) ≤ vH

i,(k−1)(β) + Xσi,(k−1)(β), (4.12)

vH
i,k(β) + Xασi,(k−1)(β) ≤ vH

i,(k−1)(β) + Xσi,(k−1)(β), (4.13)

vH
i,k(β) ≤ vH

i,(k−1)(β) + X(1 − α)σi,(k−1)(β), (4.14)

vH
i,k(β) − vH

i,(k−1)(β) ≤ X(1 − α)σi,(k−1)(β). (4.15)

Therefore, the upper bound will be consistent with the prior upper bound when the

new Gaussian belief’s mean is sufficiently close to the old Gaussian belief’s mean with

high probability. Equation 4.15 provides a distance that should not be exceeded with

high probability from a draw of a Gaussian described by Equation 4.7.

Let # be a sufficiently large number of standard deviations such that the oracle’s

update process will generate a new mean sufficiently close to the old mean according

to Equation 4.15 with high probability:

#
√

1 − α2σi,(k−1)(β) ≤ X(1 − α)σi,(k−1)(β). (4.16)

Rearranging terms, I have the following relationship between X and α to ensure

that the upper bound will be consistent with high probability (as defined by #):

#

√
1 + α

1 − α
≤ X (4.17)
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Table 4.1: Appropriate values for the confidence interval (X) given a value refine-
ment process parameterized by α and a probability of consistency of bounds between
refinements parameterized by #.

# [Prob. consistent] α X
3 [99.73 %] 0.25 3.87
4 [99.99 %] 0.25 5.16
3 [99.73 %] 0.50 5.20
4 [99.99 %] 0.50 6.93
3 [99.73 %] 0.75 7.94
4 [99.99 %] 0.75 10.58

Table 4.1 provides a table for what appropriate values of X need be given refine-

ments parameterized by α and probabilities of being consistent. For example, to be

more than 99.99% certain that the upper bound will be consistent (# = 4) when 50%

of information is being refined by the oracle (α = 0.5), one needs to use a value for

X of at least 6.93, essentially submitting initial lower and upper bounds that are are

7 standard deviations away from the initial belief distribution’s mean.

Examining Equation 4.17 to gain intuition about its implications, if full uncer-

tainly will be resolved after a single value refinement (i.e., α = 0, and so the true

value will be immediately revealed), then # ≤ X, suggesting that the refinement of

beliefs to a single point does not require any additional inflation of X beyond what

a bidder is comfortable with for assuring that the true value lies between the value

bounds. Alternatively, if nearly no information is being refined (i.e., α = 1 − ε, and

so nearly no progress will be made), then #
√

1
0
≤ X, suggesting that X would have

to be arbitrarily large in order to ensure that the upper bound is consistent, which is

sensible given that the refinement is essentially shifting the belief distribution without

decreasing its width, and so the width of the distribution has to be arbitrarily wide

for the shifted distribution to be contained within the prior distribution.
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4.2.5 ICE and Activity Rules

While many aspects of the Iterative Combinatorial Exchange (ICE) may be viewed

as a black box without obscuring the contributions of this chapter, details will be

provided below regarding the activity rules utilized within ICE and how bidders must

change their bids over time in order to pass these activity rules. Details are provided

not only because they assist in justifying the complexity of the bidder strategies

implemented, but also as some are novel contributions to the theory of ICE.

The Iterative Combinatorial Exchange

The Iterative Combinatorial Exchange, as designed by Parkes et al. (2005), is

an iterative marketplace explicitly optimized to take advantage of the structure of

the TBBL framework. After bidders submit TBBL bids, ICE computes an interim

allocation, and determines if the allocation is reasonably efficient given the uncertainty

expressed in TBBL bids. If the allocation is deemed sufficiently efficient, ICE will

announce the final allocation and payments.

Alternatively, if the allocation is not known to be sufficiently efficient given the

value uncertainty expressed by market participants, ICE will generate a set of anony-

mous, linear prices, and then inform each market participant what their interim

allocation is as well as the set of computed prices. Subject to these prices and allo-

cations, a bidder must then meet a series of three activity rules, doing so by refining

their TBBL bid, which may require accessing the value refinement oracle.
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The Revealed-Preference Activity Rule

Given the prices returned by ICE in a given round, pt, bidder i possesses pes-

simistic and optimistic quasi-linear utility for each bundle, uL
i,t(B

j) = vL
i (Bj)−pt(B

j)

and uH
i,t(B

j) = vH
i (Bj) − pt(B

j). Let f(Bj , Bk, ui,t) be a function that returns how

much greater the pessimistic utility of bundle Bj is to the optimistic utility of bundle

Bk.6 A bundle, B∗, is known to a bidder as being (weakly) preferred to all other

bundles if f(B∗, Bj, ui,t) ≥ 0, ∀Bj (i.e., if bundle B∗ provides at least as much utility

as any other bundle could provide at most). A bidder may not always know what

bundle it actually (weakly) prefers to all others.7 However, a bidder can always refine

her valuation to a point where a preferred bundle emerges. This is true as a bidder

can always refine her valuation (potentially at great cost) so that she has no uncer-

tainty in her valuation, at which point the bundle with maximum utility is a (weakly)

preferred bundle.

In employing a revealed-preference activity rule (RPAR), the market mandates

that a bidder implicitly reveal via her bid which bundle is (weakly) preferred to all

others given the prices.8

6f() can be a non-trivial function when bundles’ values are interdependent. For example, if the
utility of an apple is known to be $10, a banana known to be $6, and a carrot known to have
uncertain utility between $14 and $18, while uL

i,t(apple + carrot) = 24, and uH
i,t(banana + carrot) =

24, both bundles share the same source of uncertainty in their utilities, the carrot. Therefore,
f(apple + carrot, banana + carrot, ui,t) = 10− 6 = 4, and not 0, as the carrot contributes the same
amount of actual utility to both bundles, no matter what that may be.

7If a bidder values an apple between 4 and 6, and a banana between 2 and 8, and the current
prices for both fruit is 0, a bidder has no preferred bundle. The apple may be preferred (if the true
value for the apple is higher than the true value of the banana), but so too might the banana (if the
true value for the banana is higher).

8Technically, a bidder has to either show that the bundle she has received in the interim allocation
is (weakly) preferred to all other bundles, or that there is some other bundle that is (weakly) preferred
to all other bundles and strictly preferred to the interim allocation she has received. However, the
nature of refinements made by the oracle in this chapter causes for this technicality to be non-binding
(i.e., if a bidder proves a bundle that is not the interim allocation is (weakly) preferred, it will also
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Definition 7 A bid meets the revealed-preference activity rule if and only if:

∃BX : f(BX , Bj, ui,t) ≥ 0, ∀Bj (4.18)

We we refer to both the RPAR-meeting bid and the bundle BX that is (weakly)

preferred to all other bundles as “meeting” RPAR.

Recall that a bidder’s value estimates incorporate all strategic considerations.

Therefore, a bidder can not meet the RPAR with any arbitrary bundle:

Theorem 4.2.1 If bid bounds contain the true values, the RPAR-meeting bundle

from an RPAR-meeting bid must be a bundle that the bidder (weakly) prefers at her

true valuation.

Proof. By contradiction. Suppose no bounds violate actual value, and BX meets

the RPAR but is not a (weakly) preferred bundle. As BX is not a (weakly) pre-

ferred bundle, there must exist a bundle B∗ such that f(BX , B∗, ui,t) < 0. As

value bounds do not violate truth, ui,t(B
X) ≥ uL

i,t(B
X) and ui,t(B

∗) ≤ uH
i,t(B

∗),

so f(BX , B∗, ui,t) ≤ f(BX , B∗, ui,t). However, this contradicts RPAR being met by

BX where f(BX , B∗, ui,t) ≥ 0.

This illustrates the strength of RPAR, as RPAR forces a bidder to reveal via her bid

to the market a bundle that she actually prefers, even if the bidder does not know her

exact value for the bundle.

Meeting RPAR

When a bid fails RPAR, a bidder receives information from the market system

in addition to the fact that her bid currently fails RPAR. In particular, a bidder is

be proven strictly preferred to the interim allocation with very high probability).
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informed of two bundles, L and H , such that:

L = argmaxB(uL
i (B)) (4.19)

H = argminB(f(L, B, ui,t)) (4.20)

f(L, H, ui,t) < 0 (4.21)

These two bundles are ones the market system determines are able to prove that

RPAR has not been met by the current bid.

Theorem 4.2.2 RPAR has not been met if and only if there are bundles L and H

that follow Equations 4.19, 4.20 and 4.21.

Proof. (⇒) If RPAR has not been satisfied, there is no bundle B∗ such that

f(B∗, Bj , ui,t) ≥ 0, ∀Bj. Let L = argmaxB(vL
i (B)) and H = argminB(f(L, B, ui,t))

(satisfying Equations 4.19 and 4.20 by construction). By contradiction, f(L, H, ui,t) <

0 must be true (if not, RPAR would be satisfied), satisfying Equation 4.21.�(⇐) By

contradiction, assume Equations 4.19, 4.20 and 4.21 are all satisfied, but RPAR is

met. RPAR being met implies there is a bundle B∗ such that f(B∗, Bj, ui,t) ≥ 0, ∀Bj .

Given Equation 4.19 that L = argmaxB(vL
i (B)), it must be that f(B∗, L, ui,t) = 0

(as if f(B∗, L, ui,t) > 0, vL
i (B∗) > vL

i (L)). Therefore, given Equation 4.21, it must be

that f(B∗, H, ui,t) < 0, contradicting that RPAR was met by B∗.�

A bidder will heuristically attempt to meet RPAR by resolving the conflict between

L and H (either by demonstrating that L is (weakly) preferred to H , or that H is

(weakly) preferred to L). Let {L} be the set of IC nodes associated with bundle L,

and {H} the set of IC nodes associated with bundle H . Let {X} be the set of IC
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nodes among L and H not contained within both L and H , {X} = ({L} ∪ {H}) −

({L} ∩ {H}).

In trying to resolve the conflict between L and H while minimizing the information

refinement cost, it is optimal for a bidder in expectation to iteratively refine whatever

node in {X} has the greatest difference between lower and upper bounds.

Theorem 4.2.3 Given bundles L and H, the optimal policy to determine the pre-

ferred bundle is to iteratively reduce the value node β∗
i = argmaxβ∈{X}(vH

i (β)−vL
i (β)).

Proof. As it is unknown which bundle between L and H is truly preferred (as

ui(L) ≥ ui(H) or ui(H) ≥ ui(L)), assume ui(L) ≥ ui(H). A bidder must express

in her bid that uL
i (L) ≥ uH

i (H), where we know that vH
i (H) − vL

i (L) = Γ > 0 as

RPAR has failed, where Γ is the amount by which a bidder must lower upper bounds

in {H} and raise lower bounds in {L} to show that L � H . Substituting yields∑
β∈{H}/{L} vH

i (β) − ∑
β∈{L}/{H} vL

i (β) = Γ.

Value nodes are weighted equally in the equality and a single node being refined

has no influence on the summation other than its own reduction. Therefore, one

should select whichever value node reduces the greatest amount of information in

expectation (to recover Γ in an expected minimal number of refinements).

In expectation, each bound for a value node β will be reduced in expectation by

α
vH

i (β)−vL
i (β)

2
in a single refinement, with this expectation occurring at both bounds due

to the symmetric nature of the refinement process. Therefore, the node that should

be selected for refinement is the one with the greatest uncertainty among {L}/{H}
and {H}/{L}, which by definition of {X} is the node with maximum uncertainty in

{X}, β∗
i = argmaxβ∈{X}(vH

i (β) − vL
i (β)).
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Completing the proof, the analysis is symmetric if we assume ui(H) ≥ ui(L),

where again the same node is selected. Therefore, independent of which bundle is

actually preferred, one should iteratively refine β∗
i = argmaxβ∈{X}(vH

i (β) − vL
i (β))

until one of the two bundles is shown preferred to the other.

Therefore, a bidder will iteratively refine whichever value contribution in {X}

has the greatest amount of uncertainty at that moment until one of the two bundles

emerges as being most preferred.

The Delta Improvement Activity Rule

The primary objective of ICE’s RPAR is to solicit a sufficiently large amount of

information from bidders so as to determine the efficient allocation of goods among

all participants. However, market instances may exist where participants’ bids im-

mediately meet RPAR without having to make any changes to their bids, but the

market is unable to determine the efficient allocation. Therefore, ICE employs a sec-

ond activity rule, a Delta Improvement Activity Rule (DIAR), in order to ensure the

solicitation of information when participants bids are stalling with respect to RPAR.

Given interim prices and interim allocation Bα
i to bidder i, each bundle BX ex-

pressed within i’s valuation has a corresponding amount by which it is preferred to

Bα
i , measured as δX

i = f(BX , Bα
i , ui,t). At its core, DIAR forces bidders to improve

the relative standing of Bα
i against whichever bundle is most preferred to it (among

those bundles where such an improvement can be made), or demonstrate that the

relative standing of Bα
i cannot be improved. Formally, bidders must change their

bids until one of the following is true, given an amount ε:
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1. No bundle BX can have δX
i decreased by ε.

2. There is a bundle, B∗, such that

• δ∗i is decreased by at least ε, and

• every bundle BX with δX
i > δ∗i can not have δX

i decreased by ε.

When DIAR fails, there exists a bundle F that has a sufficient amount of uncer-

tainty such that a participant could show that it can or can not have δF
i decreased

by at least ε, but has at that time failed to do so. In attempting to meet DIAR,

a participant in this model iteratively reduces the node in F ∪ Bα
i with the great-

est amount of uncertainty in an effort to resolve the conflict F currently presents in

DIAR.9 The logic for choosing the node with the greatest amount of uncertainty is

very comparable to when bidders are trying to resolve RPAR. Reducing the node

with the greatest amount of uncertainty will most cheaply in expectation result in a

bundle no longer causing DIAR to fail because of that bundle.

If the bidder is able to decrease δF
i by at least ε, then DIAR will immediately pass.

Alternatively, if the bidder is only able to demonstrate via her bid that δF
i cannot be

decreased by an amount ε, then DIAR may or may not pass, depending on whether

Condition 2 of meeting DIAR is met. In other words, the current method a participant

employs in resolving a bundle that currently causes DIAR to fail will either result in

the bundle causing DIAR to pass or in causing DIAR not to fail. However, DIAR

not failing due to a particular bundle does not necessitate that DIAR has passed, as

there may still exist another bundle which will now cause DIAR to fail.

9Technically, not all nodes in F are considered for refinement, but rather only those nodes in F
not contained within Bα

i , as it is against the interim allocation that accuracy is determined, and so
reducing nodes with common uncertainty serves no effect.
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The Threshold Activity Rule

While the marketplace can guarantee participants will reveal additional informa-

tion by selecting a sufficiently small δ in DIAR, there may be instances when δ has

been set to too high of a value. Alternatively, the marketplace may have enough

information to determine the efficient allocation, but still wishes to solicit additional

information in order to determine a more appropriate set of payments. Therefore, as

a final activity rule, and one not intended to have a significant effect, the marketplace

employs a Threshold Activity Rule (TAR).

TAR is a simple activity rule, requiring that each participant resolve at least ∆

uncertainty from their entire bid tree in order to pass TAR. The value that ICE selects

for ∆ tends be a relatively small amount. Consequently, the requirement of TAR is

typically met by the changes made by a participant in meeting RPAR or DIAR.

However, when a participant does need to make changes to her bid in order to have

TAR pass, she will reduce whatever node in her tree has maximum uncertainty. The

logic for choosing the node with the greatest amount of uncertainty is very comparable

to when bidders are trying to resolve RPAR. Reducing the node with the greatest

amount of uncertainty will most cheaply in expectation result in TAR passing.

Iteration

After all bidders refine their bids to meet the activity rules, the market recalculates

interim allocations and prices, with the activity and pricing cycle repeating until the

market closes. At the closing of the market, ICE determines final allocations of goods

and payments based on the threshold payment scheme of Parkes et al. (2001).
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4.2.6 Sealed-Bid Marketplace

Vickrey-Clarke-Groves Allocation and Payments

The sealed-bid combinatorial exchange essentially follows the Vickrey-Clarke-

Groves (VCG) scheme (de Vries and Vohra (2003) provide a survey of this mechanism

as well as many others in the space of combinatorial auctions). Given the declara-

tions of value provided by the participants, the mechanism determines what allocation

maximizes allocative efficiency and then allocates items per that calculation.

VCG mechanisms provide participants with a (weakly) dominant bidding strategy

by charging them the minimal bid amount that would have successfully secured their

allocation. However, this payment scheme is not guaranteed to be budget-balanced in

a combinatorial exchange (i.e., the market maker may have to pay the sellers of items

more than the income it receives from the buyers of items). Therefore, the sealed-bid

marketplace in this chapter leverages the work of Parkes et al. (2001) in creating a

payment scheme that approximates VCG payments while preserving budget-balance.

While such an approximation does technically prevent the marketplace from being

truthful, Parkes et al. demonstrate that the gains from deviating are small. Therefore,

I assume in this chapter that participants in the sealed-bid marketplace bid in a

truthful fashion.

Value Refinement and Bid Construction

While ICE has activity rules that guide participants in refining their valuation, a

sealed-bid marketplace does not provide a participant with any such information. As

participants within ICE held no prior beliefs about the final prices of goods, so too
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participants in the sealed-bid market have no beliefs about the final prices of goods

when constructing the single bids they will submit to the sealed-bid marketplace.

Because participants in ICE limit the amount of information they refine, and con-

sequently the cost of refinement, by only meeting the activity rules within ICE, each

participant in the sealed-bid market has an exogenously set budget for the number

of node refinements she is allowed to make (as will be discussed is more detail in

Section 4.3.1, this set amount will be equal to the number of refinements comparable

participants within ICE made). Because a participant may only submit a single bid,

her decision making process is modeled as consisting of two components: refining her

sense of value, and submitting her bid based on that refined sense of value.

Refining Sense of Value

Two methods are used to model how a participant behaves when interested in

refining her value but only possessing a finite budget of value refinement. First, a

particularly naive bidder may randomly select nodes within her tree, refining ad hoc

until her budget has been exhausted. While such a method is naive, a bidder may

employ such a technique if the size of her valuation is very large, and has absolutely

no preference for refining one node over another.

Another method for refining her sense of value would be to iteratively reduce

whatever node in the tree has the greatest amount of uncertainty until the budget

has been exhausted. The appeal of this method is that it will result in the greatest

amount of information refinement possible given the finite budget, providing the

participant with the least amount of uncertainty across her entire valuation.
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Submitting a Sealed Bid

Two methods are used to model how a participant submits her single bid after

she has refined her belief of value. First, participants may be interested in submitting

a bid where the value at each node is the average of the current lower and upper

value bounds known at that node. This average value is exactly what the participant

believes to be the value of that node in expectation (as node uncertainty is centered

on the mean of the Gaussian belief of value for that node). Therefore, among all

possible bids, submitting a bid of this form has a participant declaring a value that

is most likely true among all possibilities.

However, the risk of submitting such a bid is that the actual value at any given

node may be less that the value submitted. While there is an exponentially small

likelihood that all actual node values are below the node value beliefs, there is still a

more likely possibility that a bidder could be declaring too high of a value for some

bundles. Therefore, the second model has participants’ bids consist of nodes with

values set at the lower bounds of belief. While such a method nearly guarantees that

a bidder is submitting bids on bundles well below her actual value for those bundles,

a bidder is ensuring with very high probability that she will not incur negative sur-

plus for whatever bundles won in the marketplace. However, when little uncertainty

remains in a valuation when a bid is constructed, both methods will produce very

similar looking bids and comparable market results.
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4.3 Experiments

4.3.1 Experimental Setup

I consider two identical sets of participants, with one set participating in ICE and

the other in a sealed-bid market. First, I conduct the ICE marketplace, allowing that

market to run until closure, noting final allocations, payments and the number of in-

formation refinements that each individual participant made within the marketplace.

After ICE runs to completion, I conduct the sealed-bid marketplace. Each par-

ticipant is given an information refinement budget exactly equal to the number of

refinements its equivalent participant made within the ICE marketplace. Further-

more, equivalent participants access an identical value refinement oracle, such that

Bidder A within ICE and Bidder A within the sealed-bid market would each observe

the same sequence of lower and upper bound value refinements on each node, and

each would possess the same actual value at each node. After the sealed-bid market

runs to completion, allocation and payments are recorded.

Once both marketplaces have run to completion, there are two main metrics to

compare. The first is the realized surplus each market participant receives from

each market. This comparison provides insight to the extent to which participants

prefer one market to the other, or if a particular subset of marketplace participants

have a preference (e.g., perhaps the distribution of surplus shifts from participants

who generally buy toward participants who generally sell). The second metric is the

allocative efficiency of each marketplace. This comparison provides insight into what

type of market would be preferred by market makers who are more concerned about
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the overall well-being or competitiveness of the marketplace, rather than concerned

about the benefits of individual participants therein. While a private corporation

selling a majority of the items may be more interested in examining its own utility,

the government would be an example of a market maker that may be more interested

in efficiency, as it is often tasked with creating the most value for everyone.

4.3.2 Market Generator

The market generator leverages the work of Lubin et al. (2007), which provides

reasonable market scenarios for ICE and TBBL. In particular, Lubin et al. produce a

set of goods, an initial allocation of those goods among a set number of participants,

and a value at each node for each participant.

As my work assumes that participants do not know their actual valuations, I

interpret the values generated at each node by the generator of Lubin et al. as

the initial mean of the value belief a participant has at that node, with a standard

deviation of belief at that node randomly selected uniformly from 15% to 25% of that

mean. An exception to this rule is nodes that are assigned no value by the market

generator, as these nodes are interpreted as having definitively no value. Participants

have access to an oracle that refines 25% of the uncertainty at a value node when

queried (α = 0.75), and the initial lower and upper bounds for each node are 12

standard deviations away from the mean (and a confidence interval, X, of 12 will be

used throughout the marketplace).10

10For purposes of instrumentation, the actual value each node possesses is determined prior to the
running of the market (by querying the oracle repeatedly at each node until convergence), and it is
against these actual values that metrics such as agent utilities and overall market efficiency will be
reported. However, neither the participants nor the market are permitted to take advantage of these
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Specific Instance Studied

The market instance studied in this chapter consists of 90 goods (5 instances of

16 different types of goods) and 10 participants. The size of valuations, in the form

of TBBL trees, have a depth and branching factor of 3, with values at leaf nodes

ranging from 10 to 100 for items being purchased and -100 to 10 for items being sold

(typically, items being sold possess negative value, as a participant is losing value by

having the item taken away) and internal nodes ranging from -25 to 25 (where positive

values at internal nodes reflect superadditivity in complements, while negative values

reflect subadditivity in complements). For each variant of the ICE marketplace, the

results will be compared to four different variants of the sealed-bid marketplace, where

participants choose either to refine nodes randomly (Rand) or iteratively based on the

one with maximum slack (Max ), and submit bids based either on pessimistic beliefs

of value (Pess) or their best estimate of value at each node (Mean).

4.3.3 Experimental Results

No Oracle Bias

Table 4.2 provides summary statistics for the five different market scenarios ex-

amined when there is no bias in the value refinement oracles (γi = 0, ∀i). Among the

eight participants that refined their value within ICE, the average number of refine-

ments made was 332, with a standard deviation of 130.4. The average bidder has an

amount of uncertainty in her bid at the closing of ICE that is 81.2% of the orginal

ex-ante determined values. Actual values can only be discoverd within the market by a participant
if she incurs the information refinement costs to discovering these amounts.
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Table 4.2: Market efficiency, fraction of participants trading, and average participant
utilities in ICE and the sealed-bid marketplaces given the four variations in how
sealed-bid participants are modeled, given unbiased oracles (Max - refines maximum
slack nodes, Rand - refines nodes randomly, Mean - submits bid node values at mean
of belief, Pess - submits bid node value at pessimistic belief).

Efficiency Fraction Average Utility Std. Dev.
Trading of Utility

ICE 100% 50% 29.7 55.3
MaxMean 99.2% 60% 29.4 50.5
RandMean 96.6% 50% 28.7 52.1
MaxPess 82.4% 30% 24.5 43.5
RandPess 56.9% 30% 16.9 30.8

uncertainty she expressed in her valuation (where uncertainty is measured as the

summation over all nodes of the distances between lower and upper bounds). While

the market efficiency of ICE is superior to all of the market instances, both sealed-bid

instances where bidders submit final bids with node values set to the mean of their

belief of value achieve very high efficiency as well, particularly the instance where par-

ticipants iteratively refine nodes with maximum slack (instance MaxMean). Insight

for this high performance comes from recognizing that bundle values are determined

by adding together many individual TBBL node value contributions, each of which

has a Gaussian distribution. Therefore, the summation of the means of the distrib-

utions is likely close to the summation of the realizations of those distributions, so

bidders in the sealed-bid market are submitting values very close to their true val-

ues. However, the MaxMean instance also illustrates one of the faults of a sealed-bid

marketplace, as two participants within the marketplace conduct trades that result in

a realized negative surplus. While the amount of negative surplus is relatively small

(each around -2.5), it does illustrate one of the concerns bidders may have when

bidding the mean of their beliefs.
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Table 4.3: Market efficiency, fraction of participants trading, and average participant
utilities in ICE and the sealed-bid marketplaces given the four variations in how
sealed-bid participants are modeled, given biased oracles (Max - refines maximum
slack nodes, Rand - refines nodes randomly, Mean - submits bid node values at mean
of belief, Pess - submits bid node value at pessimistic belief).

Efficiency Fraction Average Utility Std. Dev.
Trading of Utility

ICE 97.2% 50% 168.5 222.7
MaxMean 94.2% 70% 163.5 236.8
RandMean 69.3% 60% 120.2 213.5
MaxPess 24.5% 20% 42.5 107.7
RandPess 24.5% 20% 42.5 107.7

However, when bidders bid pessimisticly, market efficiency begins to seriously

unravel. Market efficiency drops to 80% when bidders iteratively refine nodes with

maximum slack, and barely surpasses 50% when modifying nodes randomly, in both

instances because only 3 of the 10 participants are trading rather than the 5 par-

ticipants trading in the case of ICE. This illustrates a second concern of sealed-bid

marketplaces, where if participants decide to shade their bids in order to avoid incur-

ring losses (as occured when they bid their beliefs directly), they risk damaging the

overall market efficiency.11

Biasing the Oracle

Table 4.3 provides summary statistics for the five different market scenarios ex-

amined when there is bias in the value refinement oracles (half the participants have

γi = −1, while the other half have γi = 1). Among the eight participants that re-

fined their value within ICE, the average number of refinements made was 151, with

11Given the large confidence interval of 12 standard deviations in this problem instance, it is quite
possible that participants could still safely submit much higher bids to the marketplace (e.g., only
shading their bid by 2 standard deviations from the mean).
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a standard deviation of 82.3. The market efficiency of ICE is again superior to all

other market instances, though is no longer 100% efficient. (While internal beliefs

by ICE about the allocation determined the efficient allocation had been discovered,

in reality its belief was incorrect.) While the RandMean problem instance had its

efficiency significantly degrade due to having a biased oracle, the instance where par-

ticipants iteratively refine nodes with maximum slack (instance MaxMean) again

achieved very high efficiency. While some insight for this high performance may be

partly attributable to summation of Guassian distributions as before (with a precise,

but inaccurate, valuation perhaps not being too detrimental), one explanation that

cannot explain this high performance is that participants are refining all of their un-

certainty, as the average bidder has an amount of uncertainty in her bid at the closing

of ICE that is 83.5% of the orginal uncertainty she expressed in her valuation to the

marketplace. (While this fraction will be less for bidders in the MaxMean sealed-bid

market as refinements are made on nodes with maximum slack rather than as directed

by RPAR, the ratio should not be much smaller than 83.5%, and so certainly lies well

above 0%.) Again, the MaxMean instance illustrates one of the faults of a sealed-bid

marketplace, as two participants within the marketplace conduct trades that result

in a realized negative surplus. Furthermore, when bidders bid pessimisticly, market

efficiency begins to seriously unravel, where in both instances an identical allocation

is made that is only 24.5% efficient.

162



4.4 Related Work

This chapter extends the literature on expressive, direct revelation markets, and

makes a particularly strong contribution to the Iterative Combinatorial Exchange of

Parkes et al. (2005), which at present does not evaluate the benefits of iteration.

Many ascending-price one-sided combinatorial auctions are known in the literature

(de Vries and Vohra (2003) provide a survey). Direct elicitation approaches, in which

bidders respond to explicit queries from the market about their valuations, have been

proposed for one-sided combinatorial auctions (Conen and Sandholm 2001; Hudson

and Sandholm 2004) and for combinatorial exchanges with restricted expressiveness

(Smith et al. 2002). Hyafil and Boutilier (2006) investigate the incentive properties of

mechanisms where bidders partially reveal information, where markets use a minimax

regret querying criterion. This chapter differs in that I do not assume bidders are able

to answer order, rank or value queries, but rather model bidders as having estimates

of their values, and access to an oracle that enables them to refine their estimates.

There are a number of papers that consider the cost of value refinement within the

context of auction marketplaces. Compte and Jehiel (2004) consider an environment

where bidders’ values are drawn from a common, known distribution. All but one

bidder know the realization of their values, with the one bidder possibly learning

her value at some time in the future. This chapter as a bidder can explicitly refine

her value by incurring a refinement cost, rather than hoping to discover her value

by waiting. Compte and Jehiel (2005) also consider a scenario where valuations can

be discovered by incurring a cost. However, full information is acquired in their

work by incurring a cost, while incurring a cost in this chapter refines the incomplete
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information but does not necessarily completely resolve all incomplete information.

Bergemann and Valimaki (2005) consider incomplete information via interdependent

valuations where a bidder’s own type is fully known but other bidders’ types are

unknown, while bidders have strictly private valuations in this chapter.

Parkes (2005) considers scenarios where bidders’ private valuations are bounded

both above and below, and at a cost may reduce the uncertainty in the bounds

by a factor (1 − α). However, a bidder in his work believes that her true value is

uniformly distributed between her bounds; consequently, the belief a bidder possesses

after refinements is not consistent with her prior beliefs. This chapter leverages

the consistent belief refinement process of Fong (2003) instead. However, instead of

bidders possessing beliefs that the value could be any possible value, I extend the

work of Fong by incorporating valuation bounds both above and below (as in the

work of Parkes), but that can accommodate a consistent belief with arbitrarily high

probability.

4.5 Conclusion

This chapter examined the extent to which the Iterative Combinatorial Exchange

(ICE) of Parkes et al. (2005) outperforms a sealed-bid, Vickrey-based marketplace

when participants’ values are uncertain and there is a cost to refining this uncer-

tainty. A complex market instance was generated where the amount of information

refinement performed by participants in ICE was recorded, and an equivalent informa-

tion refinement budget provided to participants of identical type within a sealed-bid

marketplace. While ICE achieved greater efficiency, sealed-bid marketplaces where
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participants submitted as bids the means of their beliefs were able to achieve compa-

rable allocative efficiency. However, participants exposed themselves to risk in doing

so, and some participants within the sealed-bid marketplaces achieved negative sur-

plus. Alternatively, when participants in the sealed-bid marketplaces submitted safer

bids, market efficiency began to unravel. Therefore, ICE appears to have provided

a worthwhile benefit to consumers in marketplaces where information is unknown

but refinable, as market efficiency is high while shielding participants from incurring

negative surplus, all while seemingly not exposing participants to high refinement

costs.

4.5.1 Opportunities for Future Work

There are a number of interesting extensions that one could pursue in continu-

ing the work of this chapter. While additional experimental simulations to confirm

the findings of this chapter is one such direction, there are also more substantive

directions.

Beliefs of Item Prices Many different methods for refining value are possible if

participants are provided with a belief system before refining their value or construct-

ing their bids. For example, one could imagine providing participants in the sealed-bid

marketplace with a set of prices that estimate what a bidder would be expected to

pay in order to acquire a bundle. Given the prices, a bidder could refine her value so

as to determine which bundle she prefers among all bundles. In essence, this method

would be very similar to a bidder within ICE refining their bid to meet RPAR. Alter-

natively, a bidder could reduce uncertainty in a manner to determine which bundles
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are expected to have positive utility and which negative utility, choosing not to refine

nodes on bundles that are already estimated to be interesting or not. Such a method

may be beneficial as participants could avoid spending effort on bundles with high

uncertainty if they know it likely to be uninteresting. Additionally, if a bidder is

particularly risk averse, determining bundles that likely are unprofitable would make

it easier for the bidder to exclude bundles from her bid, in so doing assure her that

she will not acquire negative surplus by participating in the sealed-bid market.

However, there are a number of reasons to believe that it may be inappropriate

to provide participants in the sealed-bid marketplace a price-based belief. First,

given that ICE participants are belief free, providing sealed-bid bidders with beliefs

may make for an unfair comparison. Second, because a set of provided linear prices

may not be competitive, the allocation a participant most prefers given the set of

prices may not be the bundle the participant would receive in the efficient allocation.

Therefore, modeling sealed-bid participants as effectively meeting an RPAR given a

price-based belief may actually be directing a participant to refine the “wrong” nodes.

Alternative Methods for Meeting RPAR One could also consider a more so-

phisticated bidding behavior, particularly in meeting RPAR. At present, bidders be-

have in a fairly myopic fashion, attempting to meet RPAR by resolving whatever

conflict of bundles the system provides. However, a less information refinement costly

method for meeting RPAR may be possible by taking a more holistic, but sophisti-

cated approach.

Consider the example provided in Figure 4.2. A bidder values Item A for $21,

Item B between $1 and $23, and Item C between $13 and $23, and faces prices of $0
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Figure 4.2: An example of how the myopic approach for meeting RPAR can be
expensive. The current myopic approach would select the black node, and then would
need to select the patterned node. A more holistic approach would select only the
patterned node, meeting RPAR with a single refinement.

on all items. At present, ICE would return that RPAR fails due to a conflict between

Item A and Item B. As the black node (the leaf node marked with Item B) contains

the greatest amount of uncertainty, it would be the node the participant will refine

currently. After making that refinement, the conflict between Item A and Item B

would be resolved, but RPAR would still fail due to the conflict between Item A and

Item C. Therefore, the participant would have to make a second refinement on the

patterned node (the internal node linking Item B and Item C) in order to resolve

that conflict. In total, the participant will have made two refinements in order to

show that Item A is preferred to all other items. However, had the participant taken

a more holistic approach in trying to pass RPAR, the participant would have made

a single refinement to the patterned node, which is not the node among all nodes

with maximum uncertainty, and have resolved both conflicts against Item A in one

refinement. In essence, there is a structure to trees that may allow for a participant

to pass RPAR more cheaply than when myopically resolving two bundle conflicts
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(where the structure of the tree is irrelevant causing for the selection of the maximum

uncertainty node to be the optimal selection).

Determining the optimal node to refine when resolving several conflicts simul-

taneously is non-trivial. One possible method might entail viewing the meeting of

RPAR as a Markov decision process (MDP). A technique proposed by Kearns et al.

(1999) may provide a means for meeting RPAR more directly than iteratively resolv-

ing RPAR conflicts, as Kearns et al. designed their work for solving MDPs with many

states but few actions.

Alternative Methods for Measuring Information Refinement Costs This

chapter only examines a single notion of information refinement cost - the number

of times an oracle is queried. In some domains it may be unreasonable to believe

that reducing $1,000,000 of uncertainty to $750,000 is equivalent to refining $10.00 of

uncertainty to $7.50. Therefore, an area of future work could be to explore scenarios

where the cost of refinement is proportional to the amount of information refined

rather than the number of times in which an oracle is accessed. One of the key

challenges to this approach lies in determining how participants should select nodes

to refine. While the symmetric nature of the current refinement process provided

bidders with myopic decisions that were optimal in expectation, no such optimal

refinement behavior may exist for alternative cost refinement methods.
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Chapter 5

Conclusion

An insight offered by mechanism design is that one can seek to design marketplaces

that enable the design of optimal automated bidding agents. Vickrey-Clarke-Groves

(VCG) mechanisms seem suitable when one seeks to design efficient markets in private

value settings, and generalize to complex allocation problems such as combinatorial

auctions and multi-unit auctions. It is perhaps not surprising that VCG can be

considered the basis for today’s most well known online auction system - eBay.

However, there are reasons why participants on eBay should not truthfully reveal

their valuation to a proxy. While each auction resembles a VCG mechanism, the

overall eBay marketplace is not a VCG mechanism. In addition, there are a number

of modeling assumptions made in the analysis of VCG in developing the proof of

optimal bidding strategies, two of which are explored in this thesis in detail as they

may not hold true in practice: coordination and costly preference elicitation.

A standard assumption made in the analysis of VCG is that all market partici-

pants are able to coordinate themselves to a single market at a single moment in time.
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However, there are many practical reasons for market participants to be unable to

coordinate in this way, including timing of interest (as consumers may not simultane-

ously appreciate a desire for the same object) and coordination costs (as organizing

all consumers to the same marketplace can be logistically impossible).

eBay is an excellent example of an uncoordinated electronic marketplace. Buyers

and sellers are arriving and departing over time, and many items listed on eBay

are essentially identical to those in other auctions. I refer to coordination problems

like the multiple copies problem and the exposure problem as the sequential auction

problem, because they relate to issues with composing strategies across a sequence

of multiple auctions. The multiple copies exists when a bidder does not possess an

optimal bidding strategy when facing a sequence of auctions each of which is selling

the same item of interest, while the exposure problem exists when buyers desire a

bundle of goods but may only participate in single-item auctions.

Another assumption made in the analysis of the VCG mechanism is that partici-

pants are able to determine and express their private valuations at no cost. However,

consumers may face difficult strategic decisions if it is in fact costly for them to de-

termine their values, and this is possible even when their valuations are private. The

primary difficulty a consumer faces when it is costly to determine her valuations lies

in deciding when she should exploit her current beliefs of value and submit a bid, or

explore her valuation by incurring additional costs to refine her beliefs of value. Just

as in the case with an uncoordinated market, the negative ramifications of bidders

making mistakes extend beyond the consumer not maximizing her surplus. Overall

efficiency can be negatively impacted when consumers make bad decisions.
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This thesis examines the place of theoretical assumptions in practical electronic

markets. Marketplace participants with independent private values in VCG-based

mechanisms may experience regret due to strategic complexities because they are

either uncoordinated or because participants cannot refine their value for free.

I ask and answer three questions pertaining to this issue of academic market

assumptions not aligning with realities of user populations:

1. To what extent are bidders on eBay successfully handling their lack of coordi-

nation, and to what extent is their inability to behave optimally hampering the

efficiency of eBay?

2. Can one design a marketplace for uncoordinated consumers where they do have

optimal bidding strategies?

3. How more efficient is a marketplace designed to accommodate bidders with

costly value refinement than a VCG-based marketplace?

Each of these questions is answered in a chapter of this thesis.

Chapter 2 examines eBay as it provides an excellent example of a marketplace

that accommodates a bidding population that is uncoordinated, allowing both bidders

and sellers to enter and leave the marketplace continuously. However, the manner

in which eBay has decided to address the uncoordinated attributes of its bidding

population not only fails to provide bidders with optimal bidding strategies but also

allows bidders to experience regret even if they submit rational bids over a sequence

of auctions. Within the LCD monitor market examined in this thesis, 40% of winning

bidders who participated in multiple auctions paid at least $10 more than the closing
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price of another auction in which they bid, while 19% of bidders that never won an

item despite participating in multiple auctions placed a losing bid in one auction that

was at least $10 higher than the closing price of another auction in which they bid.

The extent to which high value bidders appear not to be winning items served as

an impetus to estimate the efficiency of the monitor market. As efficiency requires

knowledge of bidders’ values, Chapter 2 extends a methodology initially developed by

Haile and Tamer (2003) for estimating an upper bound on the value distribution based

on their observed bidding behavior. Both a uniform and non-uniform mapping of bids

to values were employed in estimating market efficiency, resulting in the efficiency of

eBay being estimated as low as 92.9%. Considering that eBay is a multi-billion dollar

marketplace, significant value may not currently be realized due to these coordination

problems.

Chapter 3 proposes a novel, options based marketplace design for resolving the

strategic difficulties faced by uncoordinated bidders, and is inspired by retail store

policies that alleviate the multiples copies problem and exposure problem that con-

sumers face offline. Bidders reveal to mandatory bidding proxies their valuation and

timing constraints, with the proxies not only bidding for options based on the in-

formation received from bidders, but also exercising a subset of options it wins to

maximize its bidder’s utility. By price matching the exercise prices of options to the

lowest price that could have been available to bidders, bidders in the options based

scheme have a dominant strategy to truthfully reveal their valuation to the proxy.

Simulations of the options based marketplace for a population identical to that

estimated as participating in eBay’s monitor market show that the options based
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scheme not only generates an allocation with significantly higher efficiency (estimated

as high as 99.7%), but also generates higher revenue than achieved by sellers on eBay.

Because there can be a holdup problem when bidders possess more general valuations,

Chapter 3 conducts a series of simulations to examine the extent to which bidders

hold many options but only exercise one, preventing other bidders from ever winnig

items. These simulations indicate that the holdup problem may not be a frequent

problem. When the bidder to seller ratio is very low, reduced competition at any

moment in time results in high market efficiency. Alternatively, when the bidder to

seller ratio is very high, few bidders will have a relatively high value on multiple items,

so options will not be held up and market efficiency is again high. While efficiency is

typically hampered at moderate bidder to seller ratios, the extent of the hampering is

a function of how correlated bidders’ values are across item types. If bidders possess

relativley low value on one item when possessing relatively high value on another,

efficiency can remain high.

Chapter 4 studies for the first time not only the efficacy of the Iterative Combina-

torial Exchange (ICE) of Parkes et al. (2005) against a sealed-bid VCG-based mar-

ketplace, but also the influence of costly information revelation. ICE was designed

to accommodate bidders with arbitrarily complex valuations, but uncertainty as to

what specific values on given combinations of goods may be, while VCG assumes that

bidders have full knowledge of their valuation. This chapter creates a model where

bidders have a Gaussian belief of value, and access to a costly process for reducing

the uncertainty of that Gaussian belief. An optimal strategy is established for how

bidders can meet a variety of activity rules within the ICE framework.
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Simulations in the chapter examine the market performance of ICE and sealed-

bid markets given identical bidding populations that have finite value refinement

budgets. When bidders have access to an unbiased value refinement process, the

allocation achieved by ICE is 100% efficient, while allocations in the sealed-bid market

fail to exceed 99.2% efficiency. While the high efficiency achieved in the sealed-bid

market cannot be attributed to all uncertainty being resolved, artifacts within the

simulations may be contributing to the positive results within the VCG-based market.

Consequently, Chapter 4 conducts simulations where the value refinement process

is biased in an effort to reduce the impact of the simulation artifacts. While the

allocation achieved by ICE in this new environment is 97.2% efficient, the efficiency

of allocations in the sealed bid market failed to exceed 94.2% efficiency. This provides

evidence that while ICE achieves more efficient results, sealed-bid markets can still

achieve fairly good results provided bidders have strong beliefs of their value.

Collectively, Chapters 2, 3 and 4 offer insight into a number of issues regarding

coordination and costly preference elicitation. Based on these insights, not only may

current participants of electronic markets gain a better appreciation for the risks they

face in modern markets, but also designers of next generation electronic marketplaces

will be equipped better to design markets in which consumers may not only put their

money, but also their trust.
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Appendix A

Appendix for Chapter 2

A.1 Raw Data Fields

The following fields for each auction, 1 . . . J , are those initially obtained as the

raw data:

• IDj - A 10-digit number that uniquely identifies a given auction.

• Titlej - The title of the auction (e.g., NEW DELL E193FP Flat Panel Monitor).

• Sellerj - The eBay username of the auction seller.

• Reputationj - The seller’s reputation at roughly the time of the auction’s closing.

• CloseTimej - The time at which the auction closed in number of seconds since

1970 (e.g., Oct-11-04 12:15:00 PDT = 1097511300).

• Pricej - The price at which the auction closed (e.g., $222.50).

• The sequence of proxy interactions, 1 . . .K, that occurred in this auction:

– Bidderjk - eBay username of a bidder in the auction. Several instances of a

name may appear if a bidder communicated several times with the proxy.

175



– BidTimejk - The moment in time when a bidder gave the proxy a value.

– Bidjk - The value that the bidder gave the proxy. This value is the true

value submitted to the proxy for all bids except that of the winning bid.

For the winning bid, this value is the second highest proxy bid plus the

auction’s minimum bidding increment.

A.2 Computed Data Fields

The raw data is processed so that individual bidder behavior may be examined.

In total, there are 10,151 distinct bidders who participated in at least one auction,

communicating 33,662 times with the proxy, in 1,956 auctions.

For each bidder, 1 . . . I, the following is recorded:

• bidderi - The eBay username of a bidder.

• arrivali - The conservative estimate of entry into the system, defined as the

earliest BidTimej of the bidder among all auctions in which a bidder bid.

• departi - The conservative estimate of exit time from the system, defined as the

latest CloseTimej among all auctions in which a bidder bid.

• maxBidi - The conservative estimate for a bidder’s maximum willingness to pay,

defined as the maximal Bidjk among all auctions in which the bidder bid.

• nAucGi - The number of distinct auctions in which the bidder bid.

• For each auction, 1 . . . J , in which a bidder bid, the following is recorded:

– idLij - The IDj of the auction.

– repLij - The Reputationj of the seller in the auction.
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– closeLij - The CloseTimej of the auction.

– priceij - The Pricej of the auction.

– maxBdLij - The maximal Bidjk of the bidder in the auction.

– winij - A binary variable equal to 1 if the bidder won the auction.

– arrLij - the time at which the bidder arrived to the auction, it is defined

as the earliest BidTimejk of the bidder in that auction.

– dprtLij - The time at which a bidder left the auction, defined as the latest

time a bidder’s proxy was outbid, or CloseTimej if winij is true.

– overlapij - A binary variable indicating if the arrLij to dprtLij activity

window of this auction intersects the activity window of another auction

in which this bidder participated (set to 1 if it overlaps).

– nBdsij - The number of times a bidder gave the proxy a bid for this auction.

– For each proxy interaction in this auction, 1 . . .K, the following is recorded:

∗ bidijk - The value that the bidder gave the proxy. This value is the true

value submitted for all except that of the winning bid. For the win-

ning bid, this value is the second highest proxy bid plus the auction’s

minimum bidding increment.

∗ timeijk - The moment in time when a bidder gave the proxy a value.

∗ nOppijk - The number of distinct other bidders (opponents) who had

bid at timeijk in the auction.

∗ wnBdijk - An estimate of what the winning price appeared as to the

bidder at timeijk (defined as the second highest proxy value among

distinct bidders in that auction that were submitted before timeijk).
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A.3 OLS Regression Data

Table A.1: Mean and bidder fixed-effect OLS regression were estimated using data
on 10,151 bidders’ final bids in auctions, of which there were 17,475 (as some bidders
bid in more than one auction). Standard deviations or errors are given in parentheses
under the means or coefficients. The individual coefficient is statistically significant
at least at the *5% significant level. ln(TI)ij , the log of time in the market, is
max(ln(timebid − arrivei), 0), and ln(TA)ij, the log of time until an auction closes,
is max(ln(closeLij − timebid), 0).

Dependent:
maxBdLij

Regressor:
mean

(stddv)
coeff

(error) stddv ∗ coeff

repLij

713
(1577)

0.0000022
(0.00044) 0.004

overlapij

0.21
(0.41)

1.91
(1.95) 0.78

nOppij

10.8
(3.9)

−0.67∗
(0.173) −2.61

ln(TI )ij
5.87

(5.84)
1.22∗

(0.128) 7.12

ln(TA)ij
9.76

(3.29)
−6.99∗
(0.347) −23.00

j -
0.27∗

(0.102) -
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