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ABSTRACT
Consider a matching problem on a graph where disjoint sets
of vertices are privately owned by self-interested agents. An
edge between a pair of vertices indicates compatibility and
allows the vertices to match. We seek a mechanism to maxi-
mize the number of matches despite self-interest, with agents
that each want to maximize the number of their own ver-
tices that match. Each agent can choose to hide some of its
vertices, and then privately match the hidden vertices with
any of its own vertices that go unmatched by the mecha-
nism. A prominent application of this model is to kidney
exchange, where agents correspond to hospitals and vertices
to donor-patient pairs. Here hospitals may game an ex-
change by holding back pairs and harm social welfare.

In this paper we seek to design mechanisms that are strat-
egyproof, in the sense that agents cannot benefit from hiding
vertices, and approximately maximize efficiency, i.e., pro-
duce a matching that is close in cardinality to the maximum
cardinality matching. Our main result is the design and
analysis of the eponymous Mix-and-Match mechanism; we
show that this randomized mechanism is strategyproof and
provides a 2-approximation. Lower bounds establish that
the mechanism is near optimal.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity; J.4 [Computer Applications]:
Social and Behavioral Sciences—Economics

General Terms
Algorithms, Theory, Economics
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Approximate mechanism design without money, Kidney ex-
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1. INTRODUCTION
Treatment for many types of kidney disease relies on

transplantation of a kidney. Since humans have two kid-
neys and only need one to survive, many patients have a
family member or friend willing to donate them a kidney.
However, for various reasons, not all potential donors are
compatible with their desired recipient. A recent innova-
tion is the idea of a kidney exchange, where incompatible
donor-patient pairs u and v such that the donor of pair u is
compatible with the patient of pair v and the donor of pair v
is compatible with the patient of pair u can effectively trade
kidneys.

Kidney exchanges have attracted researchers from eco-
nomics (see, e.g., [19, 21, 20, 22]) and computer science (see,
e.g., [1, 5]). Much of this research considers the incentives
of the donor-patient pairs participating in exchanges. How-
ever, as centralized kidney exchanges are growing, another
important decision maker becomes involved: hospitals. Hos-
pitals act as agents to find matches for their patients. To
do so they may join a group of hospitals that pool their pa-
tients and try to find as many matches as possible. This
introduces strategic issues for the hospitals: they may be
able to match more of their patients if they selectively omit
some of them from the pool and instead match them with
other local patients. While this may be better for the hospi-
tal’s patients, it is worse for other patients that might have
been matched with them.

In this paper we examine an abstract model of exchanges
where each agent acts on behalf of a set of clients to find ex-
changes. In addition to kidney exchanges this model applies
to other settings such as house exchanges (where the agents
are real estate agents and the clients are house owners).

Consider a set of agents, each of whom has a set of clients
who seek to exchange objects with each other. In this paper
we assume that each exchange involves two clients and each
client can participate in at most one exchange. We assume
that each agent only cares about its own clients and therefore
seeks to maximize the number of its clients that participate
in an exchange.1

A centralized mechanism to which agents report their
clients’ information can enable exchanges between clients of
different agents. This yields more exchanges and increases

1Exchanges in our model are abstract and it is irrelevant
to our results whether or not monetary transfers between
clients are involved, as long as the terms of the exchange are
always the same.



social welfare compared to a situation in which each agent
operates on its own. In other words, we would like agents to
share their individual databases of clients and apply a cen-
tralized matching algorithm to the resulting global database.

More formally, the possible exchanges among a set of
clients can be represented as an undirected graph in which
the vertices represent clients and an undirected edge between
clients u and v means that u and v can exchange their ob-
jects. A matching of the graph then corresponds to a set
of two-way exchanges. We assume that the set of clients
of each agent is private information of that agent, while for
any pair of clients it is verifiable by anyone whether an ex-
change can be conducted between them. Each agent wishes
to maximize the number of its own clients that are matched.

A mechanism receives the graph induced by the agents’
reported subsets of clients, and outputs a matching of that
graph. However, since agents need not report all their
clients, a second stage takes place in which each agent finds a
matching in the graph induced by the set of its clients that
have not been matched in the first stage, which includes
those clients not reported by the agent, and those reported
but not matched by the mechanism. The utility of an agent
then equals the number of its clients that were matched in
one of the two stages.

The above model was first studied by Sönmez and Ün-
ver [23] and Ashlagi and Roth [4] in order to deal with in-
centives of the hospitals. Sönmez and Ünver [23] observed
that there are no efficient and strategyproof (SP) mecha-
nisms, where strategyproofness means that it is a dominant
strategy for each agent to report all of its clients. Ashlagi
and Roth then proceeded to study efficient mechanisms in
the Bayesian setting (see Section 2 for more details).

In this paper we take a fundamentally different, prior-
free approach to the nonexistence of efficient and SP mech-
anisms, by relaxing efficiency rather than strategyproofness.
More specifically, we study the strength of SP mechanisms in
terms of the fraction of social welfare they recover. We say
that a mechanism is an α-approximation mechanism if the
cardinality of the maximum cardinality matching is always
at most α times the cardinality of the matching returned
by the mechanism.2 Our goal is to design mechanisms that
are SP and at the same time provide a good approximation
ratio.

Since in most countries it is both illegal and considered
immoral to make payments in return for organs, we are in-
terested in mechanisms without payments. This goal is com-
patible with the agenda of approximate mechanism design
without money [18].

Our results. In Section 4 we establish some lower bounds.
Our starting point is an example, due to Sönmez and Ün-
ver [23] (see also [4]), which implies that a mechanism
that always returns an optimal matching cannot be strat-
egyproof. We refine their result by observing that no deter-
ministic SP mechanism can provide an approximation ratio
better than 2, and no randomized SP mechanism can pro-
vide an approximation ratio better than 4/3 (Theorem 4.1).

In Section 5 we introduce a mechanism, termed MatchΠ,
that is parameterized by a bipartition Π = (Π1,Π2) of the

2Since the cardinality of a matching is exactly twice its social
welfare, approximating the cardinality of the maximum car-
dinality matching is equivalent to approximating the maxi-
mum social welfare.

agents. Roughly speaking, for a given graph the mechanism
returns a matching that has maximum cardinality among all
the matchings that (i) contain no edges between the vertex
sets of two agents on the same side of the bipartition, and
(ii) are a maximum cardinality matching when restricted to
the vertex set of each individual agent. Our main technical
result is the following theorem.

Theorem 5.1. For any number of agents, and for any
bipartition Π of the set of agents, MatchΠ is SP.

The main idea behind the proof of this theorem is rather
subtle. It relies on the fact that if one takes the union of the
two matchings produced by the mechanism before and after
an agent hides some of its vertices, then this union cannot
contains a cycle that visits the vertex sets of an odd number
of agents. This property holds because the mechanism does
not match edges between vertex sets of agents on the same
side of the bipartition.

We further show that MatchΠ can be executed in polyno-
mial time. Unfortunately, for any deterministically fixed bi-
partition Π, MatchΠ does not generally provide a bounded
approximation ratio. We however observe that MatchΠ

yields a 2-approximation in the two agent case when used
with the obvious bipartition that places the two agents on
opposite sides (Corollary 5.3). This mechanism is in fact
the optimal deterministic SP mechanism when there are two
agents, since the deterministic lower bound of 2 holds even
in this case.

In Section 6 we consider randomized mechanisms, and
leverage Theorem 5.1 to establish a strong randomized up-
per bound. We introduce a mechanism, termed Mix-and-
Match, which consists of two steps: the mechanism first
mixes the agents by choosing a random bipartition Π, then
matches the vertices by applying MatchΠ. The following
theorem is conceptually the main result of the paper.

Theorem 6.1. For any number of agents, Mix-and-
Match is (universally) SP and provides a 2-approximation
with respect to social welfare.

Strategyproofness of the mechanism follows from Theo-
rem 5.1 in a straightforward way, but showing its approxi-
mation guarantee is nontrivial.

Open problems and future work. There are several gaps
between our upper and lower bounds. The most enigmatic
gap concerns deterministic mechanisms when the number
of agents is at least three. While Theorem 4.1 provides a
deterministic lower bound of 2, we were unable to design a
deterministic SP mechanism with a constant approximation
ratio, and indeed we conjecture that such a mechanism does
not exist (Conjecture 5.4).

For randomized mechanisms, there is a small gap between
the lower bound of 4/3 and the upper bound of 2 provided
by Mix-and-Match. In Section 6, we present a mechanism,
termed Flip-and-Match, for the case of two agents, which
clearly provides a (4/3)-approximation. We conjecture that
this mechanism is also SP (Conjecture 6.2), and discuss this
conjecture in Appendix A. Our unfounded guess is that the
randomized lower bound for more than two agents is 2.

There also exist a number of possible extensions to our
work, of which we briefly point out a few. As we assume that
agents wish to maximize the number of their clients being
matched, a natural and realistic extension would be to in-
corporate weights into the model. For example, a client may



value two feasible exchanges differently, or some clients may
be more important than others. Another direction would
be to allow exchanges of length greater than two; in this
case one should consider directed graphs and look for sets of
disjoint cycles that cover many vertices. Finally, we could
ask for the stronger requirement of group-strategyproofness,
which requires that no group of agents would want to devi-
ate in a coordinated fashion. A related approach would be
to consider solution concepts like the core, to ensure that no
group of hospitals would want to leave and form a smaller
pool. In the case of kidney exchanges, however, such be-
havior seems rather unlikely (at least in our simple model),
because hospitals would presumably not want to leave a pool
to help a few patients in the current match at the cost of
not having access to the pool for all their future patients.

2. RELATED WORK
Incentives in kidney exchange. The incentives of in-
compatible donor-patients pairs have been studied for quite
some time [19, 21]. However, as centralized kidney exchange
clearinghouses grow, hospitals’ incentives become a real is-
sue. For example, reports from the Alliance for Paired Do-
nation indicate that hospitals do not commit to assigned
exchanges and perform internal exchanges instead.

To this end, Sönmez and Ünver [23] introduced a model
of kidney exchanges in which hospitals are agents. They
show that no individually rational (IR) and efficient mech-
anism can be SP, where individual rationality requires that
a mechanism matches for each agent at least the number
of clients that it can match on its own with respect to its
reported set of clients. In our model individual rationality
is a special case of strategyproofness. Ashlagi and Roth [4]
demonstrate that there exists an ε-Bayesian incentive com-
patible IR mechanism that is also efficient. Furthermore,
they show that exchanges of size at most four are sufficient to
reach efficiency for large enough graphs. The priors in their
Bayesian setting stem from data-driven parameters like the
structure and frequency of blood types; no such information
is required in our prior-free setting.

Approximate mechanism design without money.
Procaccia and Tennenholtz [18] recently introduced the
notion of approximate mechanism design without money,
which was already implicit in earlier work on truthful learn-
ing [7]. The starting point is the large body of work on algo-
rithmic mechanism design, the study of truthful approxima-
tion mechanisms for game-theoretic versions of optimization
problems (see, e.g., [17, 13, 12, 6, 8]). The mechanisms in
this area typically allow the use of monetary payments to
align agents’ incentives. Procaccia and Tennenholtz argue
that the use of money is infeasible in many settings due to
ethical, legal, or practical considerations. In such cases it
is more desirable to design SP mechanisms that are only
approximately efficient but do not utilize payments. This
approach is particularly interesting in the context of com-
putationally tractable optimization problems: while there
is no need to resort to approximate solutions for computa-
tional reasons, they might be used to achieve strategyproof-
ness when the optimal solution is not SP.

Procaccia and Tennenholtz [18] specifically study a facil-
ity location problem on the real line. Some of their results
were recently improved by Lu et al. [14], and extended to
graphs by Alon et al. [2]. Other domains to which the above

principle was recently applied include the selection of ver-
tices in a directed graph [3], the allocation of items [11], and
classification [15, 16].

Most recently, Dughmi and Ghosh [9] studied approxi-
mate mechanism design without money in the context of
the generalized assignment problem. Their setting consists
of a bipartite graph with jobs on one side and machines on
the other, where machines have capacities and edges have
values and sizes. The agents in their setting are the jobs
(which in our setting would be the clients rather than the
agents), and edges incident to a job are private informa-
tion of that job. Dughmi and Ghosh in fact briefly consider
maximum matching as a first special case of their model, but
their motivation, setting and results are all fundamentally
different from ours. In particular, in the context of maxi-
mum unweighted matching their model easily admits an SP
optimal mechanism, whereas this problem is quite intricate
in our model and forms the topic of this entire paper.

3. PRELIMINARIES
Let N = {1, . . . , n} be a set of agents. For each i ∈ N , let

Vi be a set of private vertices of agent i. Let G = (V,E) with
V =

⋃
i∈N Vi be an undirected labeled graph, that is, each

vertex is labeled by its agent. We slightly abuse terminology
by simply referring to such labeled graphs as “graphs.”

A matching M ⊆ E on G is a subset of edges such that
each vertex is incident to at most one edge ofM . For i, j ∈ N
we denote

Mij = {(u, v) ∈M : u ∈ Vi ∧ v ∈ Vj}.

Given i ∈ N , we refer to edges in Mii as internal edges and
to edges in Mij , where j ∈ N \ {i}, as external edges.

Given a graph G and a matching M on G, the utility of
agent i for this matching is

ui(M) = |{u ∈ Vi : ∃v ∈ V s.t. (u, v) ∈M}|,

that is, it is equal to the number of vertices of Vi that are
matched under M .

We now turn to the definition of a mechanism, without
being too formal. For a fixed number n of agents, a deter-
ministic mechanism is a function that maps any (labeled)
graph for n agents to a matchings of this graph. A ran-
domized mechanism maps any graph to a probability dis-
tribution over matchings, that is, it can select a matching
randomly. For conciseness, we treat deterministic mecha-
nisms as a special case of randomized mechanisms in the
rest of this section.

For a randomized mechanism f and a (possibly random)
graph G, define

ui(f(G)) = EM∼f(G)[ui(M)],

where the expectation is taken over the distribution on
matchings returned by the mechanism. In other words, the
utility of an agent simply equals the expected number of its
vertices being matched.

We are concerned with situations where an agent “hides”
a subset of its vertices and then internally matches them
among themselves or with vertices not matched by the mech-
anism. To make this formal we need some notation. We
however feel that the idea is rather intuitive, and will avoid
the rather cumbersome formalism in the rest of the paper.
For any subset V ′ ⊆ V , let G[V ′] be the subgraph of G



v1 v2 v3 v4 v5 v6 v7

(a) Graph G. Vertices of V1 are shown in white,
vertices of V2 in gray.

v1 v2 v3 v4 v5 v6 v7

(b) Graph G′ obtained from G when agent 1
hides the vertices v5 and v6. The hidden ver-
tices are not part of the graph, but are shown to
give the complete picture.

v1 v2 v3 v4 v5 v6 v7

(c) Graph G′′ obtained from G when agent 2
hides vertices v2 and v3.

Figure 1: Construction used in the proof of Theorem 4.1.

induced by V ′. For a graph G, an agent i ∈ N , and a
matching M , let Xi(M) be the set of vertices in Vi that are
not matched in M ; if M is chosen randomly, then Xi(M)
is a random variable. Furthermore, let f∗ be a mechanism
that maps each graph G to a maximum cardinality match-
ing of G. We say that a mechanism f is strategyproof (SP)
if for every graph G = (V,E) with V =

⋃
i∈N Vi, for every

i ∈ N , and for every V ′i ⊆ Vi it holds that

ui(f(G)) ≥ ui(f(G[V \ V ′i ]))

+ ui(f
∗(G[V ′i ∪Xi(f(G[V \ V ′i ]))])).

In other words, a mechanism is SP if an agent can never
benefit by hiding some of his vertices. The agent’s utility
after hiding a subset V ′i of its vertices equals the (expected)
number of its vertices that the mechanism matches given
the subgraph induced by all vertices but those in V ′i , plus
the (expected) number of vertices in a maximum cardinality
matching of the subgraph induced by V ′i and the vertices
not matched by the mechanism. In our model, individual
rationality (IR) requires that an agent cannot benefit from
the special case when V ′i = Vi, and is therefore implied by
strategyproofness.

We are interested in mechanisms that, while being SP,
produce matchings that maximize social welfare, i.e., the
sum of agent utilities. For any matching M ,

∑
i∈N ui(M) =

2|M |, so what we are looking for are matchings that are as
large as possible. We say that a randomized mechanism f
provides an α-approximation if for every graph G,

|f∗(G)|
E[|f(G)|] ≤ α, (1)

where once again f∗(G) is a maximum cardinality matching
of G. For deterministic mechanisms, the expectation in (1)
can simply be dropped.

4. LOWER BOUNDS
It may not be immediately apparent that the optimal

mechanism is not SP. Given a graph, the optimal mecha-
nism simply returns a maximum cardinality matching (while
employing a consistent tie-breaking rule to decide between
different maximum cardinality matchings).

To see how this can fail to be SP, consider the graph G
in Figure 1(a). This graph has an odd number of vertices,
so every matching leaves some vertex unmatched. However,
each agent has a pair of vertices such that removing these
vertices from the graph results in a graph with a unique
maximum cardinality matching in which all of that agent’s
vertices are matched (Figures 1(b) and 1(c)). Thus, one of
the agents must have an unmatched vertex in G, and this

agent can hide two of his vertices to increase his utility. This
simple example, which is due to Sönmez and Ünver [23] (see
also [4]), can be used to derive lower bounds that will later
turn out to be, at least in one case, tight.

Theorem 4.1. If there are at least two agents,

1. no deterministic SP mechanism can provide an α-ap-
proximation with respect to social welfare for α < 2,
and

2. no randomized SP mechanism can provide an α-ap-
proximation with respect to social welfare for α < 4/3.

Proof. For the first part of the theorem, we consider the
case where N = {1, 2}; the proof can easily be extended
to the case where n > 2 by adding agents with vertices
that are not incident to any edges. Let f be a deterministic
mechanism, and consider the graph G given in Figure 1(a).
Since G has an odd number of vertices, it does not have
a perfect matching, so f(G) must leave some v ∈ V1 or
some v ∈ V2 unmatched. Thus, either u1(f(G)) ≤ 3 or
u2(f(G)) ≤ 2.

We first deal with the case where u1(f(G)) ≤ 3. Consider
the graph G′ that is obtained when agent 1 hides vertices v5

and v6 (see Figure 1(b)). The unique maximum cardinality
matching of this graph is {(v1, v2), (v3, v4)}, a matching of
cardinality 2. However, agent 1 could internally match the
pair (v5, v6) and obtain a utility of 4, contradicting strate-
gyproofness. Therefore, f(G′) must have cardinality at most
1, meaning that its approximation ratio on G′ cannot be
smaller than 2.

The case where u2(f(G)) ≤ 2 can be handled similarly.
Consider the graph G′′ obtained when agent 2 hides vertices
v2 and v3 (see Figure 1(c)). Once again there is a unique
maximum matching of cardinality 2, but f cannot return
this matching since it would yield a utility of 3 to agent 2,
in contradiction to strategyproofness. As before the mecha-
nism is forced to select a matching of cardinality at most 1.

The second part of the theorem can be derived using the
same construction. Let f be a randomized SP mechanism.
Since G does not have a perfect matching, it must be the
case that f(G) either does not match some vertex of V1

with probability at least 1/2, or it does not match some
vertex of V2 with probability at least 1/2, that is, either
u1(f(G)) ≤ 7/2 or u2(f(G)) ≤ 5/2.

We now proceed as before. If u1(f(G)) ≤ 7/2, we consider
the graph G′; by strategyproofness f can only match 3/2
pairs in expectation, but the optimum is 2. If u2(f(G)) ≤
5/2, we use the graph G′′ to show that f can only match
3/2 pairs in expectation, while the optimum is 2.
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(a) The original graph G, where the vertices of V1 are
white, the vertices of V2 are gray, and the vertices of V3

are black.

v1

v2 v3 v4 v5 v6 v7 v8 v9

v10

(b) The graph G′, agent 2 hides vertices v5 and v6.

Figure 2: The näıve 3-agent mechanism is not SP.

5. DETERMINISTIC MECHANISMS
Let us now consider deterministic mechanisms. We begin

by designing a deterministic mechanism that is SP for any
number of agents, but may not provide a bounded approx-
imation ratio. We then leverage this mechanism to obtain
an optimal deterministic SP mechanism for two agents. The
more powerful application of our deterministic mechanism
will only appear in the next section, when we discuss ran-
domized mechanisms.

Let us first address the issue of designing SP determinis-
tic mechanisms without worrying, for now, about approxi-
mate efficiency or computational tractability. Consider the
following mechanism for two agents. Given a graph G, the
mechanism computes the set of all matchings on G that have
maximum cardinality on V1 and V2, and among these selects
a matching with maximum overall cardinality. Since every
matching that this mechanism considers has maximum car-
dinality on V1 and V2, it clearly is individually rational. We
will show momentarily that it is also SP.

But let us first consider what this mechanism does when
applied to the graph of Figure 1(a). Any matching that is a
maximum cardinality matching on V2 would have to match
(v2, v3), and there are two maximum cardinality matchings
on V1: one can either match (v4, v5) or (v5, v6). If we
match (v5, v6), no additional edges can be added. Hence, the
unique matching of cardinality 3 that maximizes the num-
ber of internal edges is {(v2, v3), (v4, v5), (v6, v7)}. The only
unmatched vertex in this matching is v1. With the proof
of Theorem 4.1 in mind, let us verify that agent 1 cannot
benefit by hiding v5 and v6. Given the graph G′ in Fig-
ure 1(b), the mechanism would simply return the matching
(v2, v3), since this is the unique matching that is a maximum
cardinality matching on V2.

The two-agent mechanism suggested above seems promis-
ing from the perspective of strategyproofness. Let us extend
it to an n-agent mechanism in the natural way, and consider
the mechanism that selects a matching of maximum cardi-
nality among the matchings that have maximum cardinality
on each Vi, i = 1, . . . , n. In addition, let us break ties seri-
ally : among all the matchings that meet the above criteria,
we select a matching that maximizes the utility of agent 1;
if there are several such matchings, we choose one that max-
imizes the utility of agent 2, and so on.

Interestingly enough, this n-agent mechanism is not SP,
even when n = 3. Consider the graph G given in Fig-
ure 2(a). Any matching that has maximum cardinal-
ity on V2 must match (v4, v5) and (v6, v7); by the tie-
breaking rule the mechanism then returns the matching
{(v2, v3), (v4, v5), (v6, v7), (v8, v9)}. When agent 2 hides
v5 and v6 we obtain the graph G′ given in Figure 2(b).
On this graph the mechanism returns a perfect matching
{(v1, v2), (v3, v4), (v7, v8), (v9, v10)}. After internally match-

ing (v5, v6) agent 1 gains two additional matched vertices
compared to the matching on G. Clearly this example can
be modified to work if ties are broken in a different order.

The deeper reason why the above mechanism fails to be
strategyproof is rather subtle, and has to do with the fol-
lowing observation. If one takes the union of the matchings
generated on the graphs of Figures 2(a) and 2(b), and con-
tracts each Vi to one vertex, one obtains an odd length cycle
between V1, V2, and V3, as the matching on G has an edge
between V1 and V3, and the matching on G′ has edges be-
tween V1 and V2, and V2 and V3. We proceed to refine the
above mechanism in order to avoid such odd cycles; this
turns out to be sufficient to guarantee strategyproofness.
The following is in fact a family of mechanisms, parameter-
ized by a fixed bipartition Π = (Π1,Π2) of the set of agents.

MatchΠ

1. Given a graph G, consider all the matchings that have
maximum cardinality on each Vi and do not have any
edges between Vi and Vj when i, j ∈ Πl for some l ∈
{1, 2}, i.e., those that maximize the number of internal
edges and do not have any edges between sets on the
same side of the bipartition.

2. Among these matchings select one of maximum cardi-
nality, breaking ties serially in favor of agents in Π1

and then agents in Π2.

By letting N = {1, 2}, Π1 = {1}, and Π2 = {2}, we obtain
the two-agent mechanism described above. The näıve gen-
eralization of this mechanism to three agents, on the other
hand, is not an instance of MatchΠ: for the example of Fig-
ure 2 showing that the mechanism is not SP, the sets M12,
M13, and M23 are all non-empty. We proceed to show that
MatchΠ is SP for any bipartition of the set of agents.

Theorem 5.1. For any number of agents, and for any
bipartition Π of the set of agents, MatchΠ is SP.

Proof. Fix some bipartition Π = (Π1,Π2) of N . Con-
sider a graph G, and let M = MatchΠ(G). Assume that
agent i ∈ N hides a subset of vertices, inducing a subgraph
G′, and let M ′ be the matching that results from applying
the mechanism to G′, along with the internal matching of
agent 1 on its hidden and unmatched vertices, that is,

M ′ = MatchΠ(G′) ∪ M̂,

where M̂ is a maximum cardinality matching of agent i on
its hidden and unmatched vertices.

The symmetric difference

M∆M ′ = M ∪M ′ \ (M ∩M ′)

then consists of vertex-disjoint paths (some of which may be
cycles) with alternating edges of M and M ′. For example,



v1 v2 v3 v4 v5 v6 v7 v8
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v10v11v12v13v14
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V2 V1 V3

Figure 3: Illustration of Case 1 of the proof of Theorem 5.1, with i = 1 as the manipulator, and Π = ({1}, {2, 3}).
M∆M ′ is shown as a single directed path with alternating edges of M and M ′. It holds that 3 = |M11| > |M ′11| = 2.
Every subpath inside V2 and V3 has even length (those from v1 to v3 and from v8 to v10), but subpaths inside
V1 may not have (like that from v4 and v7). The subpath of M∆M ′ \ (M11 ∪M ′11) from v1 to v4 enters V1 but
does not exit it, while the subpath from v13 to v14 exits V1 but does not enter it. This example satisfies (2)
with equality.

consider the two-agent version of MatchΠ applied to the
graphs G and G′ given in Figures 1(a) and Figure 1(b). It
holds that

M = MatchΠ(G) = {(v2, v3), (v4, v5), (v6, v7)},

whereas, say, M ′ = {(v2, v3), (v5, v6)}. Then, M∆M ′ is
the single path {(v4, v5), (v5, v6), (v6, v7)} where the first and
last edge are in M and the middle edge is in M ′.

In order to simplify notation, we henceforth assume that
M∆M ′ consists of just one path. This assumption is made
without loss of generality, because we show that each such
path satisfies one of the following properties: either M
matches at least as many vertices of Vi as M ′ for every
i ∈ N , or one can derive a contradiction to the way M or
M ′ were selected by switching between some (or all) of their
edges on the path. Since the contradiction can be derived
for each path separately, it follows that the first property
holds on every path, that is, the overall utility of agent i for
M is at least as large as its utility for M ′.

If the path in M∆M ′ is a cycle, then this cycle must be of
even length, because otherwise there would be a vertex that
is incident to two edges of the same matching. It follows
that both M and M ′ match all the vertices on the cycle,
hence agent i is indifferent between the two matchings. We
may therefore assume that M∆M ′ is not a cycle.

It will prove useful to arbitrarily fix a direction over the
(undirected) edges of the single path in M∆M ′. Since the
path is not a cycle, this direction pinpoints two specific ver-
tices as the start and the end of the path. We further say
that the (directed) edge (u, v) enters Vj if u /∈ Vj and v ∈ Vj ,
and exits Vj if u ∈ Vj and v /∈ Vj .

We consider two cases.
Case 1: |Mii| > |M ′ii|. We claim that∑

j∈N\{i}

|Mij | ≥
∑

j∈N\{i}

|M ′ij | − 2. (2)

Since both M and M ′ are maximum cardinality matchings
on Vj for all j 6= i, it must hold that every subpath of
M∆M ′ on Vj has even length (see Figure 3); otherwise we
would have, say, more edges of M than M ′ on the subpath,
and by switching from M ′ to M on the subpath we would
be able to increase the size of M ′ on Vj . This implies that
for any j ∈ N \ {i}, any subpath entering Vj with an edge
of M ′ must exit Vj with an edge of M , and any subpath
entering Vj with and edge of M must exit Vj with an edge
of M ′.

The next part of the proof is crucial, and uses the main
idea behind mechanism MatchΠ. We argue that it also
holds that a subpath exiting Vi with an edge of M ′ can
only enter Vi with an edge of M . Assume without loss of
generality that i ∈ Π1. By the above argument the subpath
enters Vj1 , j1 ∈ Π2, with an edge of M ′, and therefore exits
it with an edge of M , entering some Vj2 in Π1. If j2 6= i, and
the subpath exits Vj2 , then it does so with an edge of M ′,
and by the same arguments returns to the vertex set of an
agent in Π1 with an edge of M . If eventually the subpath
enters Vi again, it must be with an edge of M . Analogously,
if the subpath exits Vi with an edge of M , it can only enter
Vi with an edge of M ′. See Figure 3 for an illustration.

Now consider (M∆M ′) \ (Mii ∪ M ′ii), which again is a
collection of vertex-disjoint subpaths. Some start and end in
Vi, and it follows by the discussion above that such subpaths
have exactly one edge in Mij and one edge in M ′ik, for k, j ∈
N \ {i}. There can only be one subpath that starts in Vi

but does not end in Vi, and at most one subpath that ends
in Vi but does not start in Vi. Equation (2) directly follows.

We now have that

ui(M) = 2|Mii|+
∑

j∈N\{i}

|Mij |

≥ 2(|M ′ii|+ 1) +

 ∑
j∈N\{i}

|M ′ij | − 2


= ui(M

′),

where the inequality follows from the fact that |Mii| > |M ′ii|
and from (2).
Case 2: |M ′ii| = |Mii|. Note that it holds that |Mjj | = |M ′jj |
for all j ∈ N , that is, M∆M ′ has to be of even length
inside every Vj . This includes Mii and M ′ii, because the
total number of internal edges for i is even. If some subpath
of i’s internal edges has odd length with more edges from
M there must be another subpath with more internal edges
from M ′. Swapping the edges of M for those of M ′ in the
second subpath results in a matching M ′′ such that |M ′′ii| >
|Mii|, contradicting the construction of M to have maximum
cardinality on each Vi. It follows that |M | ≥ |M ′|, since M is
a maximum cardinality matching under the constraint that
it has maximum cardinality inside each Vi.

We claim that if |M | > |M ′| then
∑

j |Mij | ≥
∑

j |M
′
ij |.

Together with the assumption that |M ′ii| = |Mii| this implies
that agent i cannot benefit. Indeed, in this case M∆M ′ is



v1 v2 v3 v4 v5 v6 v7
M ′ M M ′ M M ′ M

M ′′ M ′′ M ′′

Figure 4: An illustration of the last argument in
Case 2 of the proof of Theorem 5.1 with i = 3 and j =
2. The vertices of V1 are white, the vertices of V2 are
gray, and the vertices of V3 are black. By switching
from M ′ to M ′′ we increase the utility of agent 2 and
decrease the utility of agent 3, thereby obtaining a
legal matching that contradicts the choice of M ′.

a path of odd length that starts and ends with an edge of
M . Recall that every subpath of M∆M ′ consisting of i’s
internal edges has even length. This means that when the
path enters Vi with an edge of M ′ it cannot end inside Vi, as
otherwise it would end with an edge of M ′. In other words,
every time the path enters Vi with an edge of M ′ it must
exit Vi with an edge of M . Similarly, every time the path
exits Vi with an edge of M ′ it must have entered Vi with an
edge of M , otherwise the path must start in Vi with an edge
of M ′. This proves our claim, so |M | = |M ′|.

Since |M | = |M ′| we have that M∆M ′ has even length,
and moreover we know it has even length inside each Vi.
Note that all the vertices on the path are matched under
both M and M ′, except for the start and the end vertices.
Hence, if agent i gains from the manipulation, it must be
the case (when fixing a specific direction on the edges) that
the start vertex is a vertex of Vi and the first edge is an edge
of M ′, whereas the end vertex is in Vj , for some j ∈ N \{i},
and the last edge is an edge of M .

Now, if tie-breaking favors i over j, then by switching the
edges of M with those of M ′ we get a matching of equal size
that has maximum cardinality on each Vi and is better for
i, in contradiction to the tie-breaking rule. If tie-breaking
favors j over i, consider the subpath of M∆M ′ that starts
with the last edge that exits Vi and ends with the last edge
in M∆M ′. This path must start with an edge of M ′. To
see why, note that M∆M ′ starts in Vi with an edge of M ′.
This subpath has even length, so it exits with an edge of M ′.
By the same argument as in Case 1, the bipartition ensures
that, if the path re-enters Vi, it does so with an edge from
M . Since all subpaths of vertices in Vi are of even length,
the path always exits Vi with an edge of M ′.

By replacing all the edges of M ′ with the edges of M on
this subpath, we can obtain a matching M ′′ that is identical
to M ′ inside Vi, has maximum cardinality on Vk for each k ∈
N , is as large asM ′ overall, and satisfies uj(M ′′) = uj(M ′)+
1, ui(M

′) = ui(M
′′) − 1, and uk(M ′′) = uk(M ′) for all

k ∈ N \ {i, j}. By removing the edges of M̂ (recall that this
is the second stage internal matching of i) from both M ′ and
M ′′ we get a contradiction to the way the mechanism broke
ties when constructing M ′ (specifically, when constructing
MatchΠ(G′)). See Figure 4 for an illustration.

We next show that MatchΠ can be executed in polyno-
mial time by a reduction to the maximum weighted match-
ing problem (for a polynomial time algorithm for the latter
see [10]).

Theorem 5.2. MatchΠ can be executed in polynomial
time.

Proof. Assume without loss of generality that |E| > 1,
and let εi = 1/|E|i+1. We assign weights to edges as follows.

An (internal) edge (u, v) such that u, v ∈ Vi for some i ∈ N
receives weight |E|+ 3. An (external) edge (u, v) such that
u ∈ Vi and v ∈ Vj with i ∈ Π1 and j ∈ Π2 receives weight
1+εi +εj/|E|n+1. An (external) edge (u, v) such that u ∈ Vi

and v ∈ Vj with i 6= j but i, j ∈ Π1 or i, j ∈ Π2 receives
weight 0.

The sum of the weights of all external edges is at most
|E|(1 + 1/|E|2 + 1/|E|n+3) < |E|+ 3, which is less than the
weight of a single internal edge. Thus a maximum weight
matching of this graph maximizes the number of internal
edges. All edges between sets on the same side of the bipar-
tition have weight zero, so no such edges will be included.

To complete the proof we need to verify that the max-
imum weight matching has maximum cardinality among
those with a maximum number of internal edges and no
edges across the bipartition, and that ties are broken ap-
propriately. Each edge across the bipartition has weight at
least 1 and at most 1 + 1/|E|2 + 1/|E|n+3. Thus, given two
matchings M and M ′ satisfying the above constraints such
that |M | > |M ′|, the difference in their weights is at least

1− |M ′|(1/|E|2 + 1/|E|n+3) ≥ 1− |E|(1/|E|2 + 1/|E|n+3)

= 1− 1/|E| − 1/|E|n+2 > 0.

The maximum weight matching thus has maximum cardi-
nality subject to the constraints. For tie-breaking, observe
that εi ≥ |E|εj if i < j, meaning that among agents on the
same side of the bipartition those with smaller indices have
higher priority. The factor of 1/|E|n+1 finally ensures that
agents in Π1 have priority over agents in Π2.

Recall that by Theorem 4.1 no deterministic SP mecha-
nism can have an approximation ratio smaller than 2, even
when there are only two agents. We will see momentarily
that MatchΠ provides an approximation ratio of 2 when
N = {1, 2} and Π = ({1}, {2}), i.e., it is the best possi-
ble deterministic SP mechanism for the case of two agents.
Indeed, consider a graph G, let M∗ be an optimal match-
ing of G, and M the matching returned by Match({1},{2}).
M is inclusion-maximal. Therefore, for every (u, v) ∈ M∗,
either u is matched by M or v is matched by M . We con-
clude that |M | ≥ |M∗|/2. Strategyproofness is obtained
from Theorem 5.1.

Corollary 5.3. Let N = {1, 2}. Then, Match({1},{2})
is SP and provides a 2-approximation with respect to social
welfare.

Unfortunately, when n ≥ 3, MatchΠ does not provide a
finite approximation ratio for any fixed bipartition. To see
this, let Π = (Π1,Π2) be a bipartition of the set of agents.
Then there must be two distinct agents i, j ∈ N such that
i, j ∈ Πl for some l ∈ {1, 2}. Now consider a graph where
the only edge is an external edge between Vi and Vj ; given
this graph MatchΠ returns an empty matching, whereas
the optimum is a matching of cardinality 1.

We believe that in general deterministic SP mechanisms
can only provide a bad approximation ratio, even for the
case of three agents. The following conjecture makes this
precise.

Conjecture 5.4. If there are more than two agents,
no deterministic SP mechanism can provide an α-
approximation with respect to social welfare for any con-
stant α.



6. RANDOMIZED MECHANISMS
We have seen above that MatchΠ does not provide a

bounded approximation ratio for any fixed bipartition Π.
The natural next step is to choose the bipartition uniformly
at random. This leads to the eponymous Mix-and-Match
mechanism.

Mix-and-Match

1. Mix: Construct a random bipartition Π = (Π1,Π2)
of the agents by independently flipping a fair coin for
each agent to determine whether the agent is in Π1 or
in Π2.

2. Match: Apply MatchΠ to the given graph, where Π
is the bipartition constructed in Step 1.

It immediately follows from Theorem 5.1 that Mix-and-
Match is SP, and in fact in a stronger sense than the one
defined in Section 3, namely universal strategyproofness. A
randomized mechanism is called universally SP if agents can-
not gain by lying regardless of the random choices made by
the mechanism, i.e., if the mechanism is a distribution over
SP deterministic mechanisms.

A näıve analysis of Mix-and-Match would yield a rather
unimpressive approximation ratio. Indeed, the reason why
Match({1},{2}) does not provide a better approximation ra-
tio than two is that it may have to sacrifice two external
edges for one internal edge. The fact that Mix-and-Match
will not be able to match many of the edges in the graph
because they are not between the two elements of the con-
structed bipartition would seem to cause the approximation
ratio to deteriorate further. Fortunately, these two problems
effectively cancel out: sacrificing two external edges for an
internal edge is less of a problem when each of those external
edges is allowed to be part of the matching for only half of
the bipartitions. Formally, we prove the following result.

Theorem 6.1. For any number of agents, Mix-and-
Match is (universally) SP and provides a 2-approximation
with respect to social welfare.

Proof. We prove the theorem by taking a maximum car-
dinality matching M∗ and constructing a matching M ′ that,
when restricted according to a random bipartition (by re-
moving edges between agents on the same side of the bipar-
tition), has at least half the size of M∗ in expectation. The
matching produced by MatchΠ then always is at least as
large as M ′ restricted according to Π.

Consider a graphG, and letM∗ be a maximum cardinality
matching of G. For each i ∈ N , let M∗∗i be a maximum
cardinality matching on Vi, and let M∗∗ =

⋃
i∈N M∗∗i .

We construct a matchingM ′ by considering the symmetric
difference M∗∆M∗∗. As in the proof of Theorem 5.1, it
consists of a set of paths with alternating edges of M∗ and
M∗∗. For each path, if there are more internal edges among
the edges from M∗∗, we put those edges in M ′. Otherwise,
we put the edges from M∗ in M ′.

Since M∗∗ has maximum cardinality on each Vi and M ′

has the same number of internal edges from each path as
M∗∗, M ′ has maximum cardinality on each Vi. Furthermore,
since M∗ is a maximum cardinality matching, each path has
either the same number of edges from M∗ and M∗∗ or one
extra edge from M∗. All external edges on the path are
from M∗, so if the edges from M∗∗ are taken for M ′ then
the number of internal edges gained relative to M∗ is at least

v1 v2 v3 v4

Figure 5: Graph illustrating that Mix-and-Match
cannot provide an approximation ration smaller
than two. V1 is shown in white, V2 is shown in gray.
Mix-and-Match returns the matching (v2, v3).

the number of external edges lost minus one. In the worst
case M ′ has two fewer external edges for each extra internal
edge relative to M∗. Thus M ′ satisfies∑

i∈N

(|M ′ii| − |M∗ii|) ≥
1

2

∑
i∈N

∑
j>i

(|M∗ij | − |M ′ij |),

where we sum over j > i so as not to count the same edges
twice. Rearranging, we get∑

i∈N

|M ′ii|+
1

2

∑
i∈N

∑
j>i

|M ′ij | ≥

∑
i∈N

|M∗ii|+
1

2

∑
i∈N

∑
j>i

|M∗ij |. (3)

Now let MΠ be the matching produced by MatchΠ for
the fixed bipartition Π. Since MΠ has maximum cardinality
under the constraints, we have

|MΠ| =
∑
i∈N

|MΠ
ii |+

∑
i∈Π1

∑
j∈Π2

|MΠ
ij |

≥
∑
i∈N

|M ′ii|+
∑
i∈Π1

∑
j∈Π2

|M ′ij |.

Since each pair of agents appears on opposite sides in ex-
actly half of the bipartitions, the expected size of the match-
ing produced by Mix-and-Match is∑

Π

(
1

2n
· |MΠ|

)
≥
∑
i∈N

|M ′ii|+
1

2

∑
i∈N

∑
j>i

|M ′ij |

≥
∑
i∈N

|M∗ii|+
1

2

∑
i∈N

∑
j>i

|M∗ij |

≥ 1

2
· |M∗|,

where the second inequality follows from (3).

The graph in Figure 5 shows that the analysis of Mix-
and-Match is tight even for n = 2. Still one might hope to
do better, given that Theorem 4.1 only provides a random-
ized lower bound of 4/3. Consider the following randomized
mechanism for the case of two agents.

Flip-and-Match

1. Given a graph G, flip a fair coin.

2. If the outcome is heads, return Match({1},{2})(G).

3. If the outcome is tails, choose a maximum cardinality
matching, breaking ties in favor of a matching that
maximizes the total number of internal edges and then
arbitrarily.

With probability 1/2 this mechanism uses Match({1},{2})
and returns a matching of cardinality at least half the opti-
mum. With probability 1/2 the mechanism returns a maxi-
mum cardinality matching. Hence, the expected cardinality



of the matching returned by the mechanism is at least 3/4
of the cardinality of an optimal one. We conclude that
Flip-and-Match provides an approximation ratio of 4/3.
Whether it is SP, however, remains an open question.

Conjecture 6.2. Flip-and-Match is SP (in expecta-
tion).

We justify and discuss this conjecture in Appendix A.
Note that Flip-and-Match is similar to Mechanism 1 of
Procaccia and Tennenholtz [18], in the sense that it selects
an optimal solution with probability 1/2 and an SP solution
with probability 1/2.

7. DISCUSSION
We have seen that Mix-and-Match provides near opti-

mal worst-case guarantees. Theorem 6.1 shows that it is 2-
approximate, which according to Theorem 4.1 matches the
lower bound for deterministic mechanisms and is close to
the lower bound for randomized mechanisms. However, a 2-
approximation means a reduction of efficiency of up to 50%
and may not be acceptable in practice for kidney exchanges.
The bipartition used by Mix-and-Match is also somewhat
problematic: it may be hard to convince hospitals that they
best serve their patients by refusing to match them with
patients from about half the other hospitals. Our results
provide several insights into these issues.

To achieve greater social welfare, one could use weaker
notions of incentive compatibility. This is the route taken
by Ashlagi and Roth [4].

At the same time, the average-case performance of Mix-
and-Match might be significantly better than its worst-case
performance. Much of the efficiency loss comes from the
inability to match patients of hospitals assigned to the same
side of the bipartition, a restriction that seems much less
severe in a situation with many hospitals and many potential
matches for each patient. The answer to this question will
depend on the choice of the underlying distribution, but
initial experiments with the distribution used by Ashlagi and
Roth suggest that the loss would probably be quite small (on
the order of a few percent).

Alternatively, a mechanism like the näıve three-agent
mechanism might be “close enough to SP” in practice. If
examples such as that of Figure 2 are rare, then the restric-
tion to edges across the bipartition might not be necessary
and could be eliminated. It should be noted, however, that
the resulting mechanism would still be only 2-approximate
in the worst case.

Another interesting question concerns a characterization
of SP mechanisms, although our results suggest that there
probably is no simple characterization. Quite a few straight-
forward mechanisms are instances of MatchΠ (for example,
only taking internal edges corresponds to a bipartition with
all agents on the same side). On the other hand, a mecha-
nism that selects two agents and runs the two-agent mech-
anism on them does not correspond to any bipartition. If
Conjecture 6.2 is correct, it would yield another mechanism
that does not fit into this framework. While all of these ex-
amples are fairly close to MatchΠ, we also know of a (rela-
tively complex) mechanism that works quite differently.
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Kidney Exchange. In Z. Neeman, M. Niederle, and
N. Vulkan, editors, Oxford Handbook of Market
Design. Oxford University Press, 2010. To Appear.

APPENDIX
A. A DISCUSSION OF FLIP-AND-MATCH

In order to gain some intuition, let us apply Flip-and-
Match to the example graph in Figure 1(a). For this graph,
Match({1},{2}) returns the matching

{(v2, v3), (v4, v5), (v6, v7)},

which is also the unique maximum cardinality matching that
maximizes the number of internal edges. Hence, the utility
of agent 1 is 3. When agent 1 hides v5 and v6 (Figure 1(b),
Match({1},{2}) returns the matching {(v2, v3)}, whereas the
unique maximum cardinality matching is {(v1, v2), (v3, v4)}.
The expected utility of agent 1, also taking into account its
internal matching on (v5, v6), is 3.

While in both cases agent 1 obtains an expected utility
of 3, this happens for different reasons. If agent 1 does not
deviate, it obtains a utility of 3 regardless of which mecha-
nism is used. If it does deviate, it gains when the maximum
cardinality matching is used, but loses by the exact same
amount when Match({1},{2}) is used. Thus, with uniform
randomization, there is no incentive to misreport. This phe-
nomenon occurs in all examples we have considered.

We know from Theorem 5.1 that an agent can never gain
under Match({1},{2}) by hiding some of its vertices. It might
however gain under the maximum cardinality matching. In

v1 v2 v3 v4 v5 v6 v7

Figure 6: Graph illustrating that Lemma A.1 cannot
be generalized to the case of more than two agents.
As usual, vertices of V1 are shown in white, vertices
of V2 in gray, and vertices of V3 in black.

order to prove that Flip-and-Match is SP one would have
to show that any gain under a maximum cardinality match-
ing would imply a loss by at least the same amount un-
der Match({1},{2}). However, proving such a claim requires
considering four different matchings, which causes the tech-
niques used in the proof of Theorem 5.1 to fall short.

The following observation is however somewhat encour-
aging. A priori it seems that Flip-and-Match cannot be
SP, since on the same graph there may be several maximum
cardinality matchings that maximize the number of internal
edges, where some are better for agent 1 and some are bet-
ter for agent 2. Since ties are broken arbitrarily, by hiding
some disconnected vertex an agent could in principle cause
the mechanism to switch between two such matchings. The
following surprising lemma rules out this potential difficulty.

Lemma A.1. Let N = {1, 2}. Then for any two maxi-
mum cardinality matchings M and M ′ such that |M11| +
|M22| = |M ′11| + |M ′22| it holds that u1(M) = u1(M ′) and
u2(M) = u2(M ′).

Proof sketch. Let M and M ′ be two such matchings,
and assume for contradiction that u1(M) 6= u1(M ′). As in
the proof of Theorem 5.1, consider the symmetric difference
M∆M ′, and assume without loss of generality that it con-
sists of a single path with alternating edges of M and M ′.
Since |M | = |M ′|, the path must be of even length. There-
fore, since agents 1 and 2 have different utilities, the path
must have one end in V1 and the other end in V2. This im-
plies that the number of edges between V1 and V2 on the
path, that is, the number |M12|+ |M ′12|, is odd.

On the other hand,

|M11|+ |M22|+ |M12| = |M | = |M ′| = |M ′11|+ |M ′22|+ |M ′12|

and |M11|+ |M22| = |M ′11|+ |M ′22|, so we have that |M12| =
|M ′12|. In particular |M12|+ |M ′12| is even. We have reached
a contradiction.

The generalization of this lemma to more than two agents
turns out to be false. For n = 3, consider the graph in
Figure 6. Both

M = {(v1, v2), (v3, v4), (v5, v6)}

and

M ′ = {(v2, v3), (v4, v5), (v6, v7}

are maximum cardinality matchings of this graph that max-
imize the number of internal edges, but u1(M) 6= u1(M ′)
and u2(M) 6= u2(M ′).


