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Abstract

This thesis explores extensions of Random Utility Models (RUMs), providing more �exible

models and adopting a computational perspective. This includes building new models and

understanding their properties such as identi�ability and the log concavity of their likelihood

functions as well as the development of estimation algorithms.

A special case of RUMs that has received signi�cant attention is the Luce model, for which

there are fast inference methods for maximum likelihood estimation. This thesis introduces

RUMs including those with exponential family utility distributions, mixture of RUMs, and

non-parametric RUMs. Fast inference is achieved through the Monte-Carlo Expectation-

Maximization (MC-EM) algorithm. Results on both real-world and simulated data provide

support for the ability of these models to better capture heterogeneity in data and for scalable

model estimation.

A class of Generalized Method-of-Moments (GMM) algorithms for computing parameters

of the Luce model and RUMs is also proposed. The technique is based on breaking full

rankings into pairwise comparisons, and then computing parameters that satisfy a set of

generalized moment conditions. The conditions for the output of GMM to be unique are

identi�ed, leading to a class of pairwise consistent and inconsistent breakings. Theoretical

and empirical results show that the algorithms run signi�cantly faster than the classical

Minorize-Maximization (MM) and MC-EM approaches, while achieving competitive statistical

e�ciency.

I propose two preference elicitation scheme for generalized RUMs, in which the utilities

can also depend on attributes of agents and alternatives. An empirical study shows that the
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proposed elicitation scheme increases the precision of estimation for a given number of queries

relative to existing approaches.

Furthermore, a model for di�erentiated items is developed, where I interpret the data as

representing preference orders expressed by a population of agents on items, and each agent

and item is associated with attributes. I extend the mixture of RUMs method to this setting,

with reversible jump MCMC techniques adopted to estimate the parameters of the model

and classify agent types. I develop theoretical conditions that establish the uni-modality of

the likelihood function and posterior. Empirical results on real and simulated data provide

support for improved model �t relative to single type models and for the scalability of the

approach.
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Chapter 1

Introduction

Human behavior is identi�ed with the actions that people take, these actions generally coming

about through the choices that we make [5, 43]. As a result of this, understanding human

choice is an essential problem and one studied across many �elds. As Donagan [43] explains,

the problem of understanding choice dates back to Socrates and Aristotle, who viewed choice

as being based on wishes and beliefs.

However, it was not until the nineteenth century that we started to develop a quantita-

tive understanding of human choice. Ernst Heinrich Weber, known as one of the founders of

experimental psychology, developed a framework, known as Weber's law, to connect psycho-

logical events to physical stimulus values that can be measured. These values are supposed

to be the backbone of psychological events such as choices. Weber's work emphasizes the

existence of a linear physical relation between a stimulus and sensation (such as force and

acceleration). Weber's work was continued by his student Gustav Theodor Fechner, leading

to a more accurate framework known as Fechner's law. However, the generality of Weber's

and Fechner's theories was criticized in the late nineteenth century by William James, who

argued that sensation is a rather complex function of multidimensional stimuli.

In his seminal work in the early twentieth century, Thurstone [111] formalized the law of

comparative judgment, building fromWeber and Fechner's theory. Moreover, he assumed that

the stimulus values have a random component which he modeled as a Normal distribution.
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Thurstone built di�erent scenarios for the distribution of psychological stimuli which led to

the Thurstone's model for pairwise comparisons.

Thurstone continued applying variations of his model to di�erent settings and showed the

generality of his model for human choice platforms. Even though Thurstone's model was

appealing and explanatory, the estimation approaches were not as �exible as the model itself,

and this led to the partial failure of his model in empirical studies.

With the start of the mathematization era in economics from the middle of the twentieth

century [42], choice theory also started to grow in the direction of axiomatic models. Von

Neumann and Morgenestern formalized the notion of random utilities and the existence of

expected utilities that can capture a choice set under reasonable axioms [117].

Along the same lines, Luce provided a choice axiom that led to his model of choice [76, 77].

Luce's axiom led to a model that was easier to �t to data from experimental studies than

Thurstone's models and found signi�cant applicability. A pairwise version of Luce's model was

proposed by Bradley and Terry [29] for the analysis of data from block design in statistical

experimental design. Moreover, Bradley [28, 27] provided the relation between this model

and Thurstone's setting. Adams and Messik [2] provided axiomatization for the Thurstone's

setting, and Block and Marschak [23] argued for the value of the random component in

Thurstone's model.

The relationship between the axiomatic approach of Luce's and Thurstone's model is

established in Yellott's work [123]. Yellot shows that Luce's model uniquely satis�es Luce's

axiom and Thurstone's comparative law with independent random components.

Even though the axioms provided important support for research in the modeling of choice,

the rise in computation power and move toward empirical economics in the late twentieth

century brought about a new shift. One revealing comment is from Plackett [99], where

he criticizes both Thurstone's and Luce's models for under-parameterizing the space of ob-

servations. He proposes an over-parameterized model to overcome this issue along with an

estimator for his extended model. Ironically, Plackett later gets his name on Luce's model

following a book by Marden [80]. Plackett was concerned with the complexity of data and
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the need for more complex models. However, his work seems to be under-noticed because of

the simultaneous developments in econometrics mainly by McFadden, on formalizing Random

Utility models [83].

In the economics, the psychophysical stimulus values from Thurstone's setting are viewed

as utilities and it is assumed that choice makers are maximizing their utilities. McFadden

generalized Luce's setting by representing the parameters of Luce's model as a function of the

characteristics of alternatives and agents (who make the choice), allowing for more �exibility

in capturing complexity in data. The resulting model is called the multinomial logit model

(MNL). This direction was very successful since it took advantage of the simplicity in Luce's

model and also built an explanatory component into the model that helped with econometrics

research [87], earning McFadden a Noble prize (The Sveriges Riksbank Prize in Economic

Sciences) of economic sciences in 2000 [86].

McFadden's MNL model was generalized to Nested MNL, generalized extreme value

(GEV) models, and the multinomial probit model to overcome some limitations of the MNL

model. Furthermore, a mixed multinomial logit model (MMNL) has been shown to be capable

of approximating any reasonable RUM model [88]. As explained by McFadden, the extensions

to the RUM framework have limits because of computational issues.

RUMs remain a very large set of models, of which only a small fraction are tractable. In

McFadden's own words [86]:

Looking back at the development of discrete choice analysis based on the RUM hypothesis, I

believe that it has been successful because it emphasized empirical tractability and could address

a broad array of policy questions within a framework that allowed results to be linked back to

the economic theory of consumer behavior.

Some possibilities for development of the approach have not yet been realized. The RUM

foundation for applied choice models has been only lightly exploited. Models have generally

conformed to the few basic qualitative constraints that RUM imposes, but have not gone be-

yond this to explore the structure of consumer preferences or the connections between economic

decisions along di�erent dimensions and in di�erent areas. The potentially important role of
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perceptions, ranging from classical psychophysical perception of attributes, through psycholog-

ical shaping of perceptions to reduced dissonance, to mental accounting for times and costs,

remains largely unexplored in empirical research on economic choice. Finally, the feedback

from the empirical study of choice behavior to the economic theory of the consumer has begun,

through behavioral and experimental economics, but is still in its adolescence.

What lies ahead? I believe that the basic RUM theory of decision-making, with a much

larger role for experience and information in the formation of perceptions and expression of

preferences, and allowance for the use of rules as agents for preferences, can describe most

economic choice behavior in markets, surveys, and the laboratory. If so, then this frame-

work can continue for the foreseeable future to form a basis for microeconometric analysis of

consumer behavior and the consequences of economic policy.

Even though McFadden expresses hope for research on more complex RUMs, economet-

rics research in the last decade has mainly focused on the applications of the MMNL model

and new estimators for MMNL model extensions based on methods such as the EM algo-

rithm [113, 115, 114]. From the statistical perspective we see a continuing interest in building

new estimators for the Luce model such as the minorize-maximize algorithm [67], �xed point

estimators for Bradley-Terry Model [100], and rank-centrality algorithm [96].

This motivates the research presented in the present thesis in revisiting the vast set of

RUMs from a computational perspective and providing a general framework to estimate and

develop inference methods for �exible RUMs that are well suited to choice behavior. Further-

more, this research explores the computational and statistical e�ciency trade-o�s between

di�erent models, and provides a better understanding of the bene�ts of di�erent estimators.

In terms of new applications, there are many new domains that provide choice data, and

the richness of the data is considerably greater than in the classical econometrics setting. The

goal is to be able to extend the existing RUM framework to provide a general and powerful

methodology that can be used in settings such as crowd-sourcing, online search, and online

marketing, in addition to classical econometric applications.

The following provides an overview of the contributions in each chapter. I begin with
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presenting a general approach for RUMs, including parametric and non-parametric models

where observations can be full rankings or any form of partial ranking on the choice set.

An estimator based on the Monte-Carlo-EM (MC-EM) algorithm is developed for general

RUMs. Moreover, three di�erent model speci�cations are studied. The �rst speci�cation is a

RUM with exponential family distributions. The second speci�cation is a mixture of general

RUMs, and the third speci�cation adopts a non-parametric joint utility distribution through

kernel density estimators on latent utility scores. For each model, theoretical properties

such as identi�ability and log-concavity of the likelihood functions are studied. Empirical

results establish scalability and e�ciency on di�erent datasets. Flexible exponential family

distributions, such as Normal distribution with a variance parameter, perform better than

classic models such as Luce's. Moreover, mixture models provide interpretable groups of

agents, and non-parametric models introduce a higher predictive power for applications such

as rank completion.

The second chapter pursues a di�erent set of estimators using generalized method of

moments (GMM) techniques and builds a theory for estimators de�ned on pairwise data

generated by breaking full-rank observations. This theory includes a new characterization

of consistent moment-based estimators results for Luce's model and other RUMs. Empir-

ical results con�rm that the GMM approaches are much faster than MC-EM and achieve

comparable quality of �t.

The third chapter extends the results in the �rst chapter to settings where we observe

agent and alternative characteristics along with rank data. Furthermore, it provides a method

for selecting which agent to elicit ranks from, based on maximizing the gain in expected

information. This approach uses the Bayesian experimental design framework. The results

show that classical optimality methods such as D-optimality and E-optimality will sometime

perform worse than random elicitation. Hence, a new metric is proposed for eliciting rank

data, providing better performance in comparison with existing approaches.

The fourth chapter continues the setting in Chapter Three where we observe agent and

alternative characteristics and estimate a mixture model based on characteristics on any RUM
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extending McFadden's mixture model on MNL model. Identi�ability of mixture models is

studied, and experimental results demonstrate that a model with multiple types performs

better than single-type models.

The �nal chapter o�ers some conclusion and suggestions for future work.

The chapters in this thesis have been written to be largely self-contained with minimum

cross-references to other chapters.

6



Chapter 2

Random Utility Theory for Rank Data

2.1 Introduction

A lot of di�erent kinds of data takes the form of rank ordering on alternatives. For examples,

rank data from sports competitions, consumption data in markets, elections, meta search

and crowd-sourcing applications that use user judgments. Rank data presents an interesting

and challenging machine learning problem, because of the factorial size of the rank space.

For example, �nding an optimal ranking by searching over the whole space of ranking is

computationally di�cult.

Learning to rank [72] and the adoption of probabilistic models for rank aggregation in

social choice [41, 39, 122, 121, 105, 103] are gaining in prominence in recent years. In part,

this is due to the explosion of socio-economic platforms, where opinions of users need to

be aggregated; e.g., judges in crowd-sourcing contests, or the ranking of movies or user-

generated content. Moreover, rank aggregation problems exists in determining the winners of

tournaments [67], aggregating search rankings into meta-search results [44], and declaring the

winner of an election [51]. Problems of social choice and the aggregation of opinions occur in

many other settings as well, for example in peer reviewing and committee work.

In the problem of rank aggregation, we are given ranks over m alternatives from n agents

and a single rank order must be selected to be representative of the data. Rank data comes
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in many forms. It may consist of full ranks where each observation is a full rank order. It

may consist of partial orders, for example when each observation or agent provides ranks on

a subset of alternatives (e.g. games, competitions, races) or provides only top preferences out

of a set of alternatives (e.g. candidates in elections).

Since Condorcet [37], one approach to rank aggregation has been to formulate rank data

as the problem of estimating a true underlying world state (e.g., a true quality ranking of

alternatives), where the individual reports are viewed as noisy data in regard to the true state.

In this way, the problem can be framed as a problem of inference. Condorcet assumed the

existence of a true ranking over alternatives, with a agents's preference between any pair of

alternatives a and b generated to agree with the true ranking with probability p > 1/2 and

disagree otherwise.

Condorcet proposed to choose as the outcome of social choice the ranking that maximizes

the likelihood of observing the agents' preferences. Later, Kemeny's rule was shown to provide

the maximum likelihood estimator (MLE) for this model [124]. But Condorcet's probabilis-

tic model assumes identical and independent distributions on pairwise comparisons. This

ignores the strength in agents' preferences (the same probability p is adopted for all pairwise

comparisons), and allows for cyclic preferences. In addition, computing the winner through

the Kemeny rule is ΘP
2 -complete [62], which is generally thought to be computationally in-

tractable.

To overcome the �rst criticism regarding the existence of cycles, a vast literature adopts

probabilistic methods to model rank data. Parametric probabilistic modeling of rank data

in the form of ranking of alternatives dates back to Thurstone's model [111]. Mosteller

elaborated on Thurstone's models for pairwise data [93] and later Bradly, Terry et al. [30]

considered analysis of pairwise comparisons between experiments (e.g. control and treatment).

Their work was followed by Luce's [77] probabilistic approach for studying individual choice

behavior and axiomatic development. The relationship between the axiomatic approach and

probabilistic modeling was later established in Yellott's work [123].

Adopting RUMs rules out cyclic preferences, because each agent's outcome corresponds to
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an order on real numbers, and it also captures the strength of preference, and thus overcomes

the second criticism, by assigning a di�erent parameter to each alternative.

The most important class of probabilistic ranking models are the random utility models

(RUMs) [111, 85, 82]. RUMs assume that agents observe latent utilities for each alternative

from some joint distribution on utilities. RUMs are statistical methods for rank data, and

can be used to infer preferences between alternatives [120, 11]. The systematic study of such

models (known as choice theory) has been an important topic in psychology and economics

since Thurstone's seminal work in 1927 [111], and is well-known as random utility theory in

economics.

RUMs include the Thurstone and Bradley-Terry models [85, 22]. A popular RUM is

Plackett-Luce (P-L) [77, 99], where the random utility terms are generated according to

Gumbel distributions with a �xed shape parameter [22, 123]. For P-L, the likelihood function

has a simple analytical solution, making MLE inference tractable. P-L has been extensively

applied in econometrics [82, 17], and more recently in machine learning and information

retrieval (see [72] for an overview). E�cient methods of EM inference [67, 33], and more

recently expectation propagation [57], have been developed for P-L and its variants. In

application to social choice data, the P-L model has been used to analyze political elections [51,

52, 53, 54].

Although P-L overcomes the two di�culties of the Condorcet-Kemeny approach regarding

the existence of cycles and computational hardness, it is still quite restricted, assuming that

the random utility terms are distributed as Gumbel, with each alternative characterized by

one parameter, the mean of its corresponding distribution. Plackett [99] in his 1975 paper

considers parameterizing each alternative with a single parameter a disadvantage. Plackett

mentions:

�A disadvantage of both methods (The generalization of the Bradley-Terry model to full

ranks and RUM with normal distributions with known variance as noise) is that r! − 1 in-

dependent probabilities are expressed in terms of only r − 1 parameters. In what follows, we

construct a saturated model with r!− 1 parameters, consider the problems of inference which
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arise for unsaturated models in the same class, and apply the results to practical examples.�1

Even so, the so called Plackett-Luce model has become a commonly used model in dealing

with rank data and it is named due to the mention in Plackett's paper to the generalization

from Bradley-Terry model, see section 5.6.1 in Marden [81], and despite Placket's criticism.

In fact, RUMs can provide �exible models that can address Plackett's earlier criticism. For

example, Stern [108] proposes a new RUM with the Gamma distribution adopted for random

utilities. However, because of the computational bottlenecks regarding inference with RUMs,

most of the research on parametric models has been focused on Plackett-Luce for full ranks

and Thurstone and Bradley-Terry model for pairwise observations [71, 36, 67, 33, 57, 53, 51].

Still, little is known about inference in RUMs beyond P-L. We are not aware of either an

analytical solution or an e�cient algorithm for MLE inference for one of the most natural

models proposed by Thurstone [111], in which utility is Normally distributed.

2.2 Contributions

In this chapter we propose three di�erent extensions to RUMs. The �rst model considers

RUMs in which the random utilities are independently generated from distributions in the

exponential family (EF) [92]. This extends the P-L model, since the Gumbel distribution with

�xed shape parameters belongs to the EF. As an example of this extension, adding a variance

parameter for each alternative in Thurstone's Normal model is shown to outperform other

methods discussed in the literature such as Luce model.

The improved model performance can be explained through such as �exibility introduced

by the variance parameter. One viewpoint is that di�erent groups of agents have di�erent

preference behavior; i.e., have a distinct distribution of random utility scores on alternatives.

Di�erent preference behaviors can lead to a greater variance in the random utility model.

Hence, considering a �exible variance parameter for the random utility of an alternative can

capture this di�erence, and lead to an improved model.

1r represents the number of alternatives in Plackett's paper. A saturated model means to adding as many
parameters as possible to the model so that the model stays identi�able.
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The second model adopts a mixture over RUMs, hypothesizing that rank data is generated

in a setting with multiple types of agents. Types are latent groups of agents which can corre-

spond to unobserved characteristics of the agents. The estimated types can be interpretation

revealing interesting latent structures in the data.

Mixture models for rank aggregation are appealing for various applications. In social choice

[39], multiple types can correspond to di�erent social beliefs among agents (e.g. Democrats

and Republicans in US elections). Rank aggregation can also be used in information re-

trieval [71] and in this case multiple types can be assumed to be generated by using di�erent

search engines. In preference aggregation [69], multiple types can capture the personal pref-

erences (e.g. in customers' preferences, some people prefer a product while others do not and

capturing the di�erent customer behaviors will help to asses the quality of an aggregation).

In rank aggregation problems such as car racing [67] types can model the e�ect of di�erent

conditions for the race (e.g. weather conditions can change the ranking of racers). In rank-

ing data produced from gene expression data [65], di�erent types can correspond to di�erent

modes of actions by which treatments a�ect gene expression. We will outline an application

in this direction.

In standard RUMs, the joint distribution on latent utility scores is a product distribution or

a mixture of product distributions. This restricts the space of possible random utility models,

precluding conditional dependence on the utilities of di�erent alternatives. The third model

adapts a nonparametric model that allows �exible densities and correlation between the ran-

dom utilities on alternatives. Although non-parametric methods are not directly interpretable,

non-parametric RUMS (NPRUMs) can unlock new understandings via post-processing and

visualization.

We apply the MC-EM algorithm for inference and estimation in all three models. We treat

the random utilities as latent variables, and adopt the Expectation Maximization method to

estimate parameters. The E-step for this problem is not analytically tractable, and for this

we adopt a Monte Carlo approximation. We establish through experiments that the Monte-

Carlo error in the E-step is controllable across all models and does not a�ect inference, as
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long as numerical parameterizations are chosen carefully. In addition, the ε− is small, and

shrinks along the MC-EM iterations for some models. In addition, for the E-step we suggest a

parallelization for the agents and alternatives and a Rao-Blackwellized method, which further

increases the scalability of the approach.

MC-EM also extends easily to handle data with partial rank orders.

In the NPRUM case we use a variational version of MC-EM, forgoing distributional as-

sumptions and retaining the correlation structure between utilities. We directly estimate

the density function via kernel density estimation (KDE) with a Gaussian kernel, applied to

sampled latent utility scores.

The main theoretical contributions in this chapter are Theorem 1 and Theorem 2, which

propose conditions under which the log-likelihood function is concave and the set of global

maxima solutions is bounded for the location family, which are RUMs where the shape of each

distribution µj is �xed and the only latent variables are the locations, i.e., the means of µj 's.

These results hold for existing special cases, such as the P-L model, and other RUMs where the

distributions are chosen from Normal, Laplace and Cauchy. In understanding multimodality

for likelihood in the mixture model, we de�ne the new notion of the ε−log-concavity of a

function. In Theorem 4, we develop conditions for the likelihood function of mixture of RUM

models to be ε−log-concave.

We evaluate these new RUMs on synthetic data as well as two real-world data-sets: a public

election data-set and one involving rank preferences on sushi. The experimental results suggest

that the approaches are scalable and provide signi�cantly improved modeling �exibility over

existing approaches.

The Luce model performs well on some data-sets (e.g. Election), while RUM with Normal

distributions performs well on others (e.g. Sushi). The non-parametric RUM outperforms

Luce model and Normal RUMs on all tested data-sets with regard to various metrics because of

its �exibility to capture features and describe various types of data. For example, the NPRUM

has a better out-of-sample �t in multiple real-world data-sets. It also outperforms existing

RUMs in multiple predictive metrics, including predictive log-likelihood, predictive pairwise
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preferences, and distribution estimation, and rank completion. Of course, the parametric

models are more interpretable than the non-parametric models.

2.3 Related Work

Learning to aggregate full and partial ranks is a well-studied problem [44, 38, 3, 116, 120],

and random utility models have been used in economics to model preferences [82].

Mixture models are studied widely in the statistics literature [89], but generally not for

rank data. There are multiple issues with mixture models such as non-identi�ability and non-

uniqueness of maximum likelihood estimators. These issues are di�cult in the general case,

however, there is an extensive literature on addressing identi�ability and uniqueness for special

cases [49, 89]. Mixture models are well known to be multi-modal in general, both due to label

switching and also non-uniqueness of modes in the equivalence class on the permutations of

labels [49]. Gormley et al. [53, 51] apply mixture of Luce model to college application and

election data. However, Gormley et al. [53, 51] focus on the Luce model, and do not provide

theoretical results in regard to identi�ability or uniqueness.

The EM algorithm has been used to learn the Mallows model (closely related to the

Condorcet's probabilistic model) in Lu et al. [74]. They also introduce a mixture of Mallow

models for rank data, and the identi�ed types in their work support the hypothesis of the

multiple types of agents. However, their mixture model applies only to the limited case of

Mallow's model, and inference appears hard to scale.

2.4 Preliminaries

We de�ne C = {c1, . . . , cm} as the set of m alternatives. Let π denote a permutation of

{1, . . . ,m}, which naturally corresponds to a linear order: [cπ(1) � cπ(2) � · · · � cπ(m)].

Slightly abusing notation, we also use π to denote this linear order.
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2.4.1 Random Utility Models

Suppose there is a ground truth utility (or score) associated with each alternative in C =

{c1, . . . , cm} . These are real-valued parameters, denoted by ~θ = (θ1, . . . , θm). Given this, an

agent independently samples a random utility (Uj) for each alternative cj with conditional

distribution µj(·|θj).

Usually θj is the mean of µj(·|θj).2 Random utility (U1, . . . , Um) generates a distribution

on preference orders, as:

Pr(π | ~θ) = Pr(Uπ(1) > Uπ(2) > . . . > Uπ(m)) (2.1)

The preference pro�le is viewed as data, D = {π1, . . . , πn}. Given this, the probability

(likelihood) of the data given ground truth ~θ (and for a particular ~µ) is,

Pr(D | ~θ) =
n∏
i=1

Pr(πi | ~θ) =
n∏
i=1

∫ ∞
−∞

∫ ∞
uπ(m)

..

∫ ∞
uπ(2)

m∏
j=1

µπ(j)(uπ(j))duπ(m−j) (2.2)

The generative process is illustrated in Figure 2.1.

Figure 2.1: The generative process for RUMs.

For the �rst two proposed extensions, we focus on probabilistic models where each µj

belongs to the exponential family (EF). The density function for each µ in EF has the following

2µj(·|θj) might be parameterized by other parameters, for example variance.
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format:

Pr(X = u) = µ(u) = eη(θ)T (u)−A(θ)+B(u), (2.3)

where η(·) and A(·) are functions of θ, B(·) is a function of u, and T (u) denotes the su�cient

statistics for u, which could be multidimensional.

Example 1 (Plackett-Luce as an RUM [11, 22]) In the RUM, let µj's be Gumbel dis-

tributions. That is, for alternative j ∈ {1, . . . ,m} we have µj(uj |θj) = e−(uj−θj)e−e
−(uj−θj)

.

Then, we have:

Pr(π | ~λ) =

m∏
j=1

λπ(j)∑m
j′=j λπ(j′)

,

where η(θj) = λj = eθj , T (uj) = −e−uj , B(uj) = −uj and A(θj) = −θj. This gives us the

Plackett-Luce model.

The Gumbel distribution with �xed shape parameter belongs to the EF, next example

shows that MLE inference under P-L is equivalent to MLE inference for RUMs with an

exponential distribution for the inverse pro�le.

Example 2 Let π′ denote the inverse of π, that is, for every j ≤ m, π(j) = π′(m + 1 − j).

In RUM, let µj's be exponential distributions. That is, for alternative j ∈ {1, . . . ,m} we have

µj(uj |θj) = e−(uj−θj)e−e
−(uj−θj)

.

Likelihood of π given θ under Gumbel is the same as the likelihood of π′, which is the

inverse of π, given θ under the exponential distribution. Therefore, P-L is equivalent to RUM

with exponential distribution for the reverse pro�le.

Example 3 (Normal Model) The Normal model adopts the Normal distribution for sam-

pling an agent's score on each alternative. For alternative j ∈ {1, . . . ,m}, we have, Pr(Uj =

uj | νj , σ2
j ) = 1√

2π
e

−(uj−νj)
2

2σ2
j .

One can consider σjs as known constant or treat them as unknown parameters and estimate

them along with νjs. This is similar to Thurstone's model [111]. For the Normal model the
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integral in equation (2.2) is an analytically intractable integral. Harville [59] proposed an

approach to approximate it using a Taylor expansion of the likelihood function.

2.4.2 Di�erent Data sets

There are di�erent kinds of ranking data. In this chapter we consider full ranking, sub ranking,

and top ranking data:

De�nition 1 Full Ranking: A full ranking has all alternatives C ranked. We observe the

ranking π = [π(1) � π(2) � · · · � π(m)]3, containing all m alternatives.

Given Pr, the probability for a ranking π = [π(1) � π(2) � · · · � π(m)] (which implies

[uπ(1) > uπ(2) > · · · > uπ(m)]) is de�ned as follows:

Pr(π) =

∫
uπ(m)<···<uπ(1)

Pr(~uπ)d~uπ

De�nition 2 Top Ranking: A top ranking provides rankings on a proper subset C′ ( C with

at least two alternatives. All elements of C′ are preferred over the elements of C′c (compliment

of C′). No information is gained of the preference relationship within the set C′c.

In a top ranking we observe the ranking π = [π(1) � π(2) � · · · � π(m′) � {πc}c∈C′c ],

where the set of m′ (where m′ < m) alternatives in C′ are ranked and preferred over the

other alternatives in C′c. We note that this ranking π implies [uπ(1) > · · · > uπ(m′) >

max ({uc}c∈C′c)]. The probability of observing such a ranking is:

Pr(π) =

∫
max({uc}c∈C′c)<uπ(m′)<···<uπ(1)

Pr(~uπ)d~uπ

This kind of data occurs in elections with many candidates. Agents �ll out their top positions

with their preferred candidates, and then leave their less desired candidates unranked.

3WE will use π(i) and cπ(i) exchangeably.
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De�nition 3 Sub Ranking: A sub ranking provides full rankings on a proper subset C′ ( C

with at least two alternatives. However, no information is learned about the alternatives in

the set C′c or about the relationship between the sets C′c and C′.

In sub ranking data we observe the ranking π = [π(1) � π(2) � · · · � π(m′)] on the set of m′

(where m′ < m) alternatives C. We note that this ranking π implies [uπ(1) > · · · > uπ(m′))].

The probability of observing such a ranking is:

Pr(π) =

∫
uπ(m′)<···<uπ(1)

Pr(~u′π)d~u′π

where ~u′ is the vector of all u ∈ C′.

This commonly occurs in race or competition data, where only a subset of the racers and

competitors is compared in each ranking.

The integrals for computing the probabilities of rankings are computationally di�cult

to compute without any distributional assumptions. Yet understanding them is vital to

perform inference. We use Monte Carlo methods to estimate probabilities of rank orders and

likelihoods of observed data.

2.4.3 Maximum Likelihood Estimator

In the maximum likelihood (MLE) approach to social choice, the preference pro�le is viewed

as data, D = {π1, . . . , πn}. Given this, the probability (likelihood) of the data given ground

truth ~θ (and for a particular ~µ) is,

Pr(D | ~θ) =

n∏
i=1

Pr(πi | ~θ), (2.4)

The MLE approach to social choice selects as the winning ranking that which corresponds

to the ~θ that maximizes Pr(D | ~θ). In the case of multiple parameters that maximize the

likelihood then the MLE approach returns a set of rankings, one ranking corresponding to

each parameterization.
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2.5 Three Extensions

2.5.1 Model Extension to Exponential Families

In this section we focus on RUMs in which the random utilities are independently generated

with respect to distributions in the exponential family (EF) [92].

This extends the P-L model, since the Gumbel distribution with �xed shape parameters

belongs to the EF. Our main theoretical contributions are Theorem 1 and Theorem 2, which

propose conditions such that the log-likelihood function is concave and the set of global

maxima solutions is bounded for the location family, which are RUMs where the shape of

each distribution µj is �xed and the only latent variables are the locations, i.e., the means

of µj 's. These results hold for existing special cases, such as the P-L model, and many other

RUMs, for example the ones where each µj is chosen from Normal, Gumbel, Laplace and

Cauchy.

Global Optimality and Log-Concavity

We provide a condition on distributions that guarantees that the likelihood function (2.2)

is log-concave in parameters ~θ. We also provide a condition under which the set of MLE

solutions is bounded when any one latent parameter is �xed.

Together, this can guarantees the convergence of algorithms such as gradient descent or

EM algorithm approach to a global mode. We focus on the location family, which is a subset

of RUMs where the shapes of all µj 's are �xed, and the only parameters are the means of the

distributions. For the location family, we can write Uj = θj + ζj , where Uj ∼ µj(·|θj) and

ζj = Uj − θj is a random variable whose mean is 0 and models an agent's subjective noise.

The random variables ζj 's do not need to be identically distributed for all alternatives j;

e.g., they can be normal with di�erent �xed variances. We focus on computing solutions (~θ)

to maximize the log-likelihood function,

l(~θ;D) =

n∑
i=1

log Pr(πi | ~θ) (2.5)
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Theorem 1 For the location family, if for every j ≤ m the probability density function for

ζj is log-concave, then l(~θ;D) is concave.

Proof: The theorem is proved by applying the following lemma, which is Theorem 9 in [102].

Lemma 1 Suppose g1(~θ, ~ζ), ..., gR(~θ, ~ζ) are concave functions in R2m where ~θ is the vector of

m parameters and ~ζ is a vector of m real numbers that are generated according to a distribution

whose pdf is logarithmic concave in Rm. Then the following function is log-concave in Rm.

Li(~θ,G) = Pr(g1(~θ, ~ζ) ≥ 0, ..., gR(~θ, ~ζ) ≥ 0), ~θ ∈ Rm (2.6)

To apply Lemma 1, we de�ne a set Gi of function gi's that is equivalent to an order πi in

the sense of inequalities implied by RUM for πi and Gi (the joint probability in (2.6) for

Gi to be the same as the probity of πi in RUM with parameters ~θ). Suppose gir(
~θ, ~ζ) =

θπi(r) + ζi
πi(r)

− θπi(r+1) − ζiπi(r+1)
for r = 1, ..,m− 1.

Then considering that the length of order πi is R+ 1, we have:

Li(~θ, π
i) = Li(~θ,G

i) = Pr(gi1(~θ, ~ζ) ≥ 0, ..., giR(~θ, ~ζ) ≥ 0), ~θ ∈ Rm (2.7)

This is because gir(
~θ, ~ζ) ≥ 0 is equivalent to that in πi alternative πi(r) is preferred to alter-

native πi(r + 1) in the RUM sense.

To see how this extends to the case where preferences are speci�ed as partial orders,

we consider in particular an interpretation where an agent's report for the ranking of mi

alternatives implies that all other alternatives are worse for the agent, in some unde�ned

order. Given this, de�ne gir(
~θ, ~ζ) = θπi(r) + ζi

πi(r)
− θπi(r+1) − ζiπi(r+1)

for r = 1, ..,mi − 1 and

gir(
~θ, ~ζ) = θπi(mi) + ζi

πi(mi)
− θπi(r+1) − ζiπi(r+1)

for r = mi, ..,m − 1. Considering that gir(·)s

are linear (hence, concave) and using log concavity of the distributions of ~ζi = (ζi1, ζ
i
2, .., ζ

i
m)'s,

we can apply Lemma 1 and prove log-concavity of the likelihood function. �

It is not hard to verify that pdfs for Normal and Gumbel are log-concave under reasonable

conditions for their parameters, made explicit in the following corollary.

Corollary 1 For the location family where each ζj is a Normal distribution with mean zero

and with �xed variance, or Gumbel distribution with mean zeros and �xed shape parameter,
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l(~θ;D) is concave. Speci�cally, the log-likelihood function for P-L is concave.

The concavity of log-likelihood of P-L has been proved [47] using a di�erent technique. Using

Fact 3.5. in [104], the set of global maxima solutions to the likelihood function, denoted by

SD, is convex since the likelihood function is log-concave. However, we also need that SD is

bounded, and would further like that it provides one unique order as the estimation for the

ground truth.

For P-L, Ford, Jr. [47] proposed the following necessary and su�cient condition for the

set of global maxima solutions to be bounded (more precisely, unique) when
∑m

j=1 e
θj = 1.

Condition 1 Given the data D, in every partition of the alternatives C into two non-empty

subsets C1 ∪ C2, there exists c1 ∈ C1 and c2 ∈ C2 such that there is at least one ranking in D

where c1 � c2.

Condition 1 is also a necessary and su�cient condition for the set of global maxima solutions

SD to be bounded in location families, when we set one of the values θj to be 0 (w.l.o.g., let

θ1 = 0). If we do not bound any parameter, then SD is unbounded, because for any ~θ, any

D, and any number s ∈ R, l(~θ;D) = l(~θ + s;D).

Theorem 2 Suppose we �x θ1 = 0. Then, the set SD of global maxima solutions to l(θ;D)

is bounded if and only if the data D satis�es Condition 1.

Proof: If Condition 1 does not hold, then SD is unbounded because the parameters for

all alternatives in C1 can be increased simultaneously to improve the log-likelihood. For

su�ciency, we use the following lemma.

Lemma 2 If alternative j is preferred to alternative j′ in at least in one ranking then the

di�erence of their mean parameters θj′ − θj is bounded from above (∃Q where θj′ − θj < Q)

for all the ~θ that maximize the likelihood function.

Now consider a directed graph GD, where the nodes are the alternatives, and there is edge

from cj to cj′ if in at least one ranking cj � cj′ . By Condition 1, for any pair j 6= j′, there is

a path from cj to cj′ (and conversely, a path from cj′ to cj). To see this, consider building a
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path between j and j′ by starting from a partition with C1 = {j} and following an edge from

j to j1 in the graph where j1 is an alternatives in C2 for which there must be such an edge, by

Condition 1. Consider the partition with C1 = {j, j1}, and repeat until an edge can be followed

to vertex j′ ∈ C2. It follows from Lemma 2 that for any ~θ ∈ SD we have |θj − θj′ | < Qm,

using the telescopic sum of bounded values of the di�erence of mean parameters along the

edges of the path, since the length of the path is no more than m (and tracing the path from

j to j′ and j′ to j), meaning that SD is bounded. �

Now that we have the log concavity and bounded property, we want conditions under

which the bounded convex space of estimated parameters corresponds to a unique order. The

next theorem provides a necessary and su�cient condition for all global maxima to correspond

to the same order on alternatives. Suppose that we order the alternatives based on estimated

θ's (meaning that cj is ranked higher than cj′ i� θj > θj′).

Theorem 3 The order over parameters is strict and is the same across all ~θ ∈ SD if, for all

~θ ∈ SD and all alternatives j 6= j′, θj 6= θj′ .

Proof: Suppose for the sake of contradiction there exist two maxima, ~θ, ~θ∗ ∈ SD and a pair

of alternatives j 6= j′ such that θj > θj′ and θ
∗
j′ > θ∗j . Then, there exists an α < 1 such that

the jth and j′th components of α~θ + (1− α)~θ∗ are equal, which contradicts the assumption.

�

Hence, if there is never a tie in the scores in any ~θ ∈ SD, then any vector in SD will reveal

the unique order.

2.5.2 Model Extension to Multiple Type

For this extension, we assume there exists multiple types of agents and we propose a model

using mixture of RUMs. Intuitively, we are considering di�erent components each di�erent

parameters to represent a di�erent behavior in preference. In other words the probability of

a preference is a mixture of a set of RUM models as follows:

Pr(π|Ψ)=
K∑
k=1

γk Pr(π|~θk, zk = 1), (2.8)
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Figure 2.2: The generative process for multiple type RUMs. There are di�erent types of agents with
di�erent random utilities for the alternatives.

where ~z indicates the type of the data point and Pr(zk = 1) = γk, Θ = {~θ1, .., ~θK} and

Ψ = {Θ, ~γ}. Given this, we have:

Pr(D | Ψ) =
n∏
i=1

Pr(πi | Ψ), (2.9)

The generative process is illustrated in Figure 4.1.

Approximate Log concavity

Here, we address the multimodality of mixture models by de�ning an approximate version of

log concavity for the likelihood function (4.2.2) for parameters in Ψ.

We again focus on the location family for their generality and canonical form of repre-

sentation. In order to explore the uniqueness of the solutions for the maximum likelihood

estimator, we use Theorem (1) which can provide log concavity conditions for each of the

mixture components. However, we need conditions on the log concavity of the mixture like-

lihood in equation (2.8). As aforementioned, mixture models are multi-modal due to label

switching or the shape of likelihood function (the label of mixtures does not matter and we

can always switch their labels and get a new mixture model with the same likelihood).
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De�nition 4 A function f(Ψ) is called ε-log-concave if it can be decomposed into two com-

ponents where one of them is log-concave and the other one is bounded in logarithm within an

ε ≥ 0 interval. In other words:

f(Ψ) = g(Ψ)e(Ψ),

where g is log-concave and for all Ψ in the parameter space, we have 0 ≤ log e(Ψ) ≤ ε.

In the following we prove that mixture models are ε−log-concave with some extra constraints

on the parameter space.

Theorem 4 If we have the following constraints:

1. For all k, the k-th mixture component Prk(D|~θk) is log concave in θk;

2. The prior Pr(~z|~γ) is not dogmatic (has non-zero values for any z) and it is log concave

for ~γ; and

3. Components are diverse, meaning that for two components k < k′:

KL(Pr
k

(π|~θk)||Pr
k′

(π|~θk′)) ≥ ∆,

where KL is the Kullback-Leibler divergence between two distributions; then

Pr(D|~γ,Θ) is almost surely ε−log-concave in Ψ = {~γ,Θ} for a C > 0 and

ε = n(K − 1)e−∆/C

Proof: Using Bayes rule and taking the logarithm we have the following:

log Pr(π|Ψ) = log Pr(π, ~z|Ψ)−
∑
k

zk log Pr(zk = 1|π,Ψ)

We take the expectation over ~z with respect to the distribution: Pr′(~z|π,Ψ∗) = 1(~z =

arg max~z Pr(~z|π,Ψ∗)) (for a Ψ∗ which is consistent with assumption 3) from both sides of the

above equation, and obtain:

log Pr(π|Ψ) = E~z{log Pr(π, ~z|Ψ)|π,Ψ∗} −
K∑
k=1

Pr′(zk = 1|π,Ψ∗) log Pr(zk = 1|π,Ψ)
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The concavity of log Pr(π, ~z|Ψ) = log Pr(π|~z,Ψ)+log Pr(~z|~γ) is now a direct result of concavity

of log Pr(π|~z,Ψ) = log Pr(π|θk) for (zk = 1) from Theorem 1 and concavity of log Pr(~z|~γ)

(from assumption 2). Hence, the term E~z{log Pr(π, ~z|Ψ)|π,Ψ∗} is concave as well. In the

following we show that the absolute value of the term,

H(Ψ|π,Ψ∗) = −
K∑
k=1

Pr′(zk = 1|π,Ψ∗) log Pr(zk = 1|π,Ψ) (2.10)

is bounded in an epsilon interval if the components satisfy the proposed constraint in assump-

tion 1.

Using a concentration inequality we show that for every π almost surely there exists a k

such that for any k′ 6= k, there exists a �xed constant C such that we have:

Pr(zk = 1|π,Ψ)

Pr(zk′ = 1|π,Ψ)
≥ e∆/C Pr(zk = 1|~γ)

Pr(zk′ = 1|~γ)

Then if there is no switching between Ψ and Ψ∗, (meaning if Pr(zk = 1|π,Ψ∗) is close to

1, then Pr(zk = 1|π,Ψ) is close to 1 as well), and by assuming a uniform prior for type

memberships WLOG, we have:

H(Ψ|π,Ψ∗) ≤ (K − 1)e−∆/C ,

This provides the decomposition leading to the ε-log-concavity of the function Pr(π|Ψ). �

Even though the ε−log-concavity of the likelihood function in (2.9) does not directly lead

to uniqueness of MLE, when ε is very small the log likelihood function will have a maximum

that can be reached by EM algorithms that are able to skip any local optima that have ε

depth.

We will illustrate some empirical results on behavior of ε for the likelihood function in the

empirical studies on the data sets we are using.

We have computed ε from equation (2.10) and the average log likelihood function values

for both the sushi data along 20 iterations of our MC-EM algorithm. The values are plotted

in Figure 2.3 for the iterations revealing the shrinking behavior of the ε (clustering quality)

while the average log likelihood converges. Clustering quality is computed from the MC-E
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Figure 2.3: Convergence of the MCEM algorithm for the average log likelihood in the right panel
and the ε for the ε−log-concavity in the left panel The lower the ε the better the quality of clustering.
Both of the plots are for the 2NFV.

step in every iteration of the algorithm and it corresponds to the Kullback Leibler divergence

between components of the mixture model as shown in Theorem 4. More distinguishable

components lead to smaller (improved) clustering quality.

We can show that Condition 1 is also a necessary and su�cient condition for the set of

global maxima solutions to be bounded in each component of the mixture for location families.

Here we need to set one of the values θkj for each component k to be 0 (w.l.o.g., let θk1 = 0).

Theorem 5 Suppose we �x θk1 = 0 for all of the components and γks are all non-zero. Then,

the parameters providing a maxima solution to l(Ψ;D) are bounded if and only if the data D

satis�es Condition 1.

Proof: The proof for the above theorem follows from the boundedness result for each com-

ponent. �

2.5.3 Model Extension to Non-parametric settings

As the third extension, we propose non-parametric random utility model, with a non-parametric

joint distribution on random utilities.

We impose restrictions on the non-parametric distribution using kernel density estimators

(KDE) with Normal kernels [106, 97]. The samples for KDE are generated from MC-E step
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of the algorithm. Hence, our NPRUM will be continuous with smoothness imposed by the

bandwidth h > 0. Speci�cally, given a set of sample utilities uij for a speci�c alternative j,

we estimate Prj , the marginal utility distribution of alternative j, as:

Prj(x) ∝


0 if x /∈ (0, 1)∑

i φh(x− uij) if x ∈ (0, 1)

where φh(x) ∝ exp{− x2

2h2
}, the density function of kernel N (0, h2). Prj(x) is rescaled to

integrate to 1. To store the function, we evaluate the Prj(x) on a set of evenly-spaced

evaluation points x ∈ {0, 1/d, 2/d, .., 1} for a d which indicates the resolution of our non-

parametric densities. As shown in Figure 2.4, a larger h leads to more smoothing of the

resulting marginal utility distribution.
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Figure 2.4: Sample KDE. If h is too low, there are spurious artifacts. If h is too high, it
drowns out the features of the distribution.

We want a bounded range for our random utilities in order to �x the e�ect of h, and

prevent the need to consider positive a�ne transformations of our RUMs. Picking a set of

evaluation points for the KDE is simpler when the support of distributions is �nite. The

speci�c bounded interval [0, 1] is chosen for simplicity.

2.6 Maximum Likelihood Estimator

We propose a novel application of MC-EM to estimate all three proposed models. We treat the

random utilities (~U) and the type variables (Z) as latent variables, and adopt the Expectation

Maximization (EM) method to estimate the utility distributions. The E-step for this problem

is not analytically tractable, and for this we adopt a Monte Carlo approximation.
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We generally assume that the data provides total orders on alternatives from agents, but

comment on how to extend the method and theory to the case where the input preferences

are partial orders.

2.6.1 EM algorithm for Latent Space Models

Computing the likelihood involves a multidimensional integral and hence direct optimization

of the likelihood function is intractable. Thus, we use an MC-EM algorithm. The EM

algorithm determines the MLE joint distribution Pr∗(~U) iteratively and it is composed of

iterations on an E-step and an M-step. Given Prt(~U) from the previous iteration, we perform

the following on each iteration t+ 1:

E-step : Q(Pr,Prt) = E~U

{
log

n∏
i=1

Pr(~ui, πi) | D,Prt

}

M-step : Prt+1 ∈ arg max
Pr

Q(Pr,Prt)

2.6.2 MC-EM for Exponential Family RUM

In this section, we propose an MC-EM algorithm for MLE inference for RUMs where every

µj belongs to the EF.4 The EM algorithm determines the MLE parameters ~θ iteratively,

and proceeds as follows. In each iteration t + 1, given parameters ~θt from the previous

iteration, the algorithm is composed of an E-step and an M-step. For the E-step, for any given

~θ = (θ1, . . . , θm), we compute the conditional expectation of the complete-data log-likelihood

(latent variables ~x and data D), where the latent variables ~x are distributed according to data

D and parameters ~θt from the last iteration.

For the M-step, we optimize ~θ to maximize the expected log-likelihood computed in the

4Our algorithm can be naturally extended to compute a maximum a posteriori probability (MAP) estimate,

when we have a prior over the parameters ~θ. Still, it might be hard to motivate the imposition of a prior on
parameters in some application such as social choice domains.
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E-step, and use it as the input ~θt+1 for the next iteration:

E-Step : Q(~θ, ~θt) = E~U

{
log

n∏
i=1

Pr(~ui, πi | ~θ) | D, ~θt
}

M-step : ~θt+1 ∈ arg max
~θ
Q(~θ, ~θt)

Monte Carlo E-step by Gibbs sampler

The E-step can be simpli�ed using (2.3) as follows:

E~U{log

n∏
i=1

Pr(~ui, πi | ~θ) | D, ~θt} = E~U{log

n∏
i=1

Pr(~ui| ~θ) Pr(πi|~ui) | D, ~θt}

=

n∑
i=1

m∑
j=1

EU ij
{logµj(u

i
j |θj) | πi, ~θt} =

n∑
i=1

m∑
j=1

(η(θj)EU ij
{T (uij) | πi, ~θt} −A(θj) +W,

where W = EU ij
{B(uij) | πi, ~θt} only depends on ~θt and D (not on ~θ), which means that it

can be treated as a constant in the M-step.

Hence, in the E-step we only need to compute Si,t+1
j = EU ij

{T (uij) | πi, ~θt} where T (uij)

is the su�cient statistic for the parameter θj in the model. We are not aware of an analytical

solution for EU ij
{T (uij) | πi, ~θt}. However, we can use a Monte Carlo approximation, which

involves sampling ~xi from the distribution Pr(~ui | πi, ~θt) using a Gibbs sampler, and then

approximates Si,t+1
j by 1

N

∑N
k=1 T (ui,kj ) where N is the number of samples in the Gibbs

sampler.

In each step of our Gibbs sampler for agent i, we randomly choose a position j in πi and

sample xi
πi(j)

according to a TruncatedEF distribution Pr(·| uπi(−j), ~θt, πi), where uπi(−j) =

( uπi(1), . . . , uπi(j−1), uπi(j+1), . . . , uπi(m)). The TruncatedEF is obtained by truncating the

tails of µπi(j)(·|θtπi(j)) at uπi(j−1) and uπi(j+1), respectively. For example, a truncated normal

distribution is illustrated in Figure 2.5.

Rao-Blackwellized: To further improve the Gibbs sampler, we use Rao-Blackwellized

[32] estimation using E{T (ui,kj ) | ui,k−j , πi, ~θt} instead of the sample x
i,k
j , where ui,k−j is all of ~u

i,k

except for ui,kj . Finally, we estimate E{T (ui,kj ) | ui,k−j , πi, ~θt} in each step of the Gibbs sampler
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Figure 2.5: Sampling from a truncated Normal distribution.

using M samples as Si,t+1
j ' 1

N

∑N
k=1E{T (ui,kj ) | uk−j , πi, ~θt} ' 1

NM

∑N
k=1

∑M
l=1 T (ui

l,k
j ),

where ui
l,k
j ∼ Pr(ui

l,k
j | ui,k−j , πi, ~θ). Rao-Blackwellization reduces the variance of the estimator

because of conditioning and expectation in E{T (ui,kj ) | ui,k−j , πi, ~θt}.

M-step

In the E-step we have (approximately) computed Si,t+1
j . In the M-step we compute ~θt+1 to

maximize
∑n

i=1

∑m
j=1(η(θj)EU ij

{T (uij) | πi, ~θt} − A(θj) + EU ij
{B(uij) | πi, ~θt}). Equivalently,

we compute θt+1
j for each j ≤ m separately to maximize

∑n
i=1{η(θj)EU ij

{T (uij) | πi, ~θt} −

A(θj)} = η(θj)
∑n

i=1 S
i,t+1
j − nA(θj). For the case of the normal distribution with �xed

variance, where η(θj) = θj and A(θj) = (θj)
2, we have θt+1

j = 1
n

∑n
i=1 S

i,t+1
j . The algorithm

is illustrated in Figure 2.6. Theorem 1 and Theorem 2 guarantee the convergence of MC-EM

Figure 2.6: The MC-EM algorithm for normal distribution.

for an exact E-step. In order to control the error of approximation in the MC-E step we can
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increase the number of samples with the iterations, in order to decrease the error in Monte

Carlo step [119].

2.6.3 MC-EM for the Multiple Type RUM

The E-step can be simpli�ed using (2.3) as follows:

E~U,~Z

{
log

n∏
i=1

Pr(~xi, ~zk, πi | Ψ) | D,Ψt

}
=
∑
i,j,k

[EZi{1(Zi = k)| πi, ~Θt} log γk

+ EU ij ,Zi
{1(Z = k) logµj(u

i
j |θkj) | πi, θkjt}]

And we de�ne the ESTEP functions as following,

ESTEP1tijk(θkj) = η(θkj)EU ij ,Zi
{1(Z = k)T (uij) | πi, ~θkj

t
} −A(θkj) + EU ij ,Zi

{1(Z = k)B(uij) | πi, ~θkj
t
},

ESTEP2tik = EZi{1(Zi = k)| πi,Θt}

where EU ij
{B(uij) | πi,Θt} only depends on Θt and D (not on ~θ), which means that it can be

treated as a constant in the M-step.

Hence, in the E-step we only need to compute Si,t+1
j,k = EU ij

{1(Z = k)T (uij) | πi, ~θkj
t
}

where T (uij) is the su�cient statistic for the parameter θj in the model.

2.6.4 MC-EM for Non-parametric RUM

E-step:

The E-step draws from the joint utility distribution conditional on observed rank data.

Drawing directly from the joint density is intractable, so we rely on Monte-Carlo methods.

We want to sample a vector of utility observations for each observation (agent), conditional

on their observed rank preference. Sampling the whole vector simultaneously is di�cult, so

we adopt a Gibbs method to sample each utility sequentially. Conditioning each sample on

the rank order and other utilities, we sample from the alternative's utility distribution. In

the case of full ranks, the rank order and other utilities imposes the following restriction on
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Algorithm 1 MC-EM Algorithm for multiple type RUMs with Normal random utility dis-
tributions

Initialize: Ψ0 and ui,0k,j
Variables: T1, T2

for t1 = 0 : T1 do
MC E-Step:
set T2 = 3000 + 300 ∗ T1

for t2 = 0 : T2 do
i ∼ Uniform(1 : n)

zi ∼ Pr(Z|U t2 ,Ψt1) =
γ
t1
zi

Pr(ut2−1|Z=zi,Θt1 )∑
k γ

t1
k Pr(ut2−1|Z=k,Θt1 )

k = zi

for j = 1 : m do
xi,t2j ∼ TruncatedEF(X|xi,t2k,−j , π

i, θt1kj)
end for

end for
for k = 1 : K and j = 1 : m do
Si,t1+1
j,k = 1

T2

∑T2
t2=1 1(zi = k)T (ui,t2j )

end for
M-Step:
for k = 1 : K and j = 1 : m do

θt1kj = 1
n

∑
i S

i,t1
j,k , γ

t1+1
k =

∑
i ESTEP2

t1
ik∑

k

∑
i ESTEP2

t1
ik

end for
end for
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utility orderings:

uπ(j) ∈


(0, uπi(j+1)) if j = 1(
uπi(j−1), uπi(j+1)

)
if 1 < j < m(

uπi(j−1), 1
)

if j = m

In the case of partial ranks, we can modify the restriction in a way any observation, any

alternative ranked above another must also have a higher utility.

Within the Gibbs sampler, we use slice sampling [95] to sample latent utilities. Tarlow

et al. [110] argues slice sampling is well suited for sampling latent variables in MC-EM. We

rely on Neal's implementation of his slice sampler [94], and leave a more detailed explanation

of this method to Neal [95].

M-step:

The M-step estimates the non-parametric joint density over the utilities using kernel den-

sity estimation, assuming Normal kernels with a bandwidth h. However, KDE on many

dimensions is intractable as the number of evaluation points grows exponentially with the m.

Therefore, we adopt a variational method and estimate the joint distribution as a product

distribution P̂r(~u) =
∏
j Prj(~u).

The variational M-step can be done for each of the marginal distributions separately. We

note that even though the M-step uses the marginal distributions for inference, the output of

the MC-EM algorithm keeps the correlation structure.

Algorithm: From the output of the MC-EM algorithm, we construct the joint distribu-

tion over utilities using the KDE. This joint distribution is easy to sample from, as we can

draw a random ~ui and a corresponding value from the kernel associated with the point. See

Algorithm 2 for a summary.

2.7 Experimental Results

We evaluate our methods on the datasets in Table 2.1. Via experiments, we compare the

ability of various RUMs to:
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Algorithm 2 MC-EM algorithm for NPRUM
1: t← 0
2: repeat
3: (Variational MCMC E-step)
4: for all agents i do
5: repeat
6: for all alternatives j do
7: ut+1

ij ← slice sample from Prtj(uij |ui(−j), πi)
8: end for
9: until Gibbs convergence
10: end for
11: (Variational M-step)
12: for all alternatives j do
13: (KDE estimation of Prj)

14: Pr′j(x)← Ix∈(0,1)

∑
i exp

{
−(x−ut+1

ij )2

2h2

}
15: Prt+1

j (x)← Pr′j(x)/
∫ 1

0 Pr′j(x)dx
16: end for
17: t← t+ 1
18: until Convergence of all Prtj
19: return Joint KDE on the n×m matrix of latent uij

1. Capture heterogeneity and correlation of alternatives in rank data

2. Predict out-of-sample data and pairwise matrices

3. Complete ranks

Table 2.1: Our datasets. † denotes a subset of the full data

Rank Type m n

Election [112] Top Partial 10 380
Nascar [67] Sub Partial 7† 36
Sushi [69] Full 10 5000

We used log likelihood for test data as well as total variation distance and mean squared

error for the metrics of prediction power.

Simulations have been performed in R on an i5 3.30GHz Intel(R). We contribute the R

package StatRank [7] for existing methods.
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2.7.1 Capturing heterogeneity and correlation

Heterogeneity: The heterogeneity of the utility distribution for an alternative represents di-

versity of opinion. To understand this heterogeneity, we �t various RUMs to 5000 data points

of the Sushi data and plot the estimated marginal utility distributions for �ve alternatives in

Figure 2.7.
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Figure 2.7: (top to bottom) Plackett-Luce RUM, Normal di�erent variances (DV) RUM, 2x
Normal �xed variances (FV) RUM (variance is �xed to 1), NPRUM, Empirical distribution
of the sushi dataset. The x-axis denotes the utilities and the y-axis denotes the densities.

Generally, the richer the possible space of models, the richer the data sets that a RUM can

encode. With more parameters, a model can go beyond capturing only the location parameter
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of utilities (e.g. go beyond Gumbel). A model can also capture multi-modality and di�ering

variances across alternatives. The most notable example is the utility of the sea urchin sushi

in Figure 2.7.

Comparing the empirical distribution and NPRUM within Figure 2.7, we notice that

the estimated utility distributions are very similar to the empirical rank distributions. As

mentioned in Section 2.5.3, we know that the empirical rank distribution given all observations

(agents) can be a good approximation of a possible random utility distribution.

Utility Correlation: A key bene�t of NPRUM over existing RUM methods and the

two extensions is NPRUM's ability to capture the correlation structure between utilities.

Figure 2.8 illustrates this correlation structure for two pairs of sushi. We believe the two

modes in the joint distribution of salmon roe and sea urchin utility correspond to two di�erent

types of agents. One type ranks both high, while the other ranks both low. Similarly, we see

agents that tend to like fatty tuna tend to dislike cucumber roll sushi. Modeling correlation

allows to better understand agents' taste preferences, and will assist in rank completion.
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Figure 2.8: Joint distribution for two sets of positively correlated (salmon roe and sea urchin)
and negatively correlated (cucumber roll and fatty tuna) sushi. The orange region represents
the preference of salmon roe over sea urchin or cucumber roll over fatty tuna, respectively.
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2.7.2 Rank distribution prediction via smoothing

As discussed in Section 2.5.3, estimating the rank distribution of rank data has been performed

for small n. However, rank distribution can be useful in many contexts. For example, we

might want to estimate What will be the demand for this sushi? using the rank distribution

as non parametric approach.

The empirical rank distribution is not a good estimate for the true rank distribution

because of noise. Instead, we smooth out the noise by �tting a RUM. After �tting the RUM,

we recreate ranked data by drawing a large number of samples from the model. As we see

by comparing the top and bottom rows of Figure 2.9 with the actual rank distribution in

Figure 2.7, the smoothed data is a better estimate of the rank distribution. In order to
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Figure 2.9: (top) Empirical rank distribution of �rst 50 sushi agents. (middle) NPRUM �t
on �rst 50 sushi agents. (bottom) rank distribution of 5000 simulated agents drawn from
NPRUM �t on �rst 50 sushi agents.

explore this concretely, we compare NPRUM with the following other RUMs in their ability

to estimate rank distributions:

• Empirical: Unsmoothed rank distribution as a baseline.
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• Plackett-Luce: Gumbel RUM

• 2 x Normal Fixed Variance (FV): Each agent is in one of two �types� with a certain

probability. The two types each have a di�erent multivariate normal distribution (with

covariance matrix I) for the joint utility density.

• Normal Di�erent Variance (DV): The alternatives each have independent normally-

distributed utilities with di�erent variances.

We measure the success of smoothing by comparing the smoothed rank distribution from

a random n = 50 or 100 agents from the sushi dataset with the rank distribution of the

remaining 5000 − n. We use total variation distance (TVD) between the rank distributions

as our metric, with

δ(P,Q) =
1

2
||P −Q||1

where Q is the smoothed rank distribution of the original n agents, and P is the rank dis-

tribution of the remaining 5000 − n agents. We present the results of this experiment in

Figure 2.10. In the case where n = 50, a bandwidth of 0.12 outperforms all other bandwidths
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Figure 2.10: Rank distribution prediction performance. x-axis is bandwidth (h). y-axis
is TVD. 75 repetitions are done for each data point. Error bars represent 95% con�dence
intervals. n represents the number of agents for which rank distribution was smoothed.

with a TVD of 0.0856 ± 0.0026 (95% interval), which is 7% and 47% less than the TVDs of
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Normal RUM and empirical, respectively. Non-parametric RUM for n = 50 outperforms all

other RUMs with statistical signi�cance (α = 0.05) at bandwidths h ∈ {0.10, . . . , 0.16}. We

see that NPRUM's advantage is more pronounced with a smaller n.

2.7.3 RUM Comparison Results

To compare predictive and estimation capabilities of various RUM models, we establish two

metrics. The �rst metric, average log-likelihood, evaluates both in-sample and out-of-sample

�t. The second metric measures error in estimating the pairwise matrix P . In this matrix,

pij(∀i 6= j) is the probability that alternative i is preferred over alternative j. We use the

same procedure from the previous section involving TVD on the pairwise matrices.

We compare Plackett-Luce, Normal FV, 2x Normal FV, and Normal DV, to the proposed

non-parametric RUM. For the pairwise matrix metrics, we also include the error metrics for

the �Empirical� model, where the model matrix is exactly the preference matrix of the training

dataset. We run each model and dataset pair for 20 repetitions and 20 iterations each,5 and

report the mean and standard error for each metric. Our results are shown in Table 2.2.

Table 2.2: (top) Average log likelihood. (bottom) Total variation distance between pairwise
matrices. Numbers in bold are signi�cantly better than other methods. * means that the
method does not converge

Election Nascar Sushi
Method Test Test Test

Plackett-Luce -5.98 (3e-02) -4.43 (5e-02) -14.37 (1e-02)
Normal FV -7.44 (3e-02) -6.89 (3e-01) -14.06 (1e-02)
2 x NormalFV -8.41 (3e-02) -4.17 (3e-02) -14.21 (2e-02)
Normal DV -7.66 (2e-02) * -13.96 (1e-02)

Plackett-Luce 14.51 (6e-02) 5.83 (3e-02) 4.35 (3e-02)
Normal FV 6.16 (4e-02) 3.07 (2e-02) 5.85 (4e-02)
2 x NormalFV 5.64 (5e-02) 2.80 (2e-02) 4.94 (4e-02)
Normal DV 5.27 (7e-02) * 5.29 (6e-02)
Empirical 4.68 (4e-02) 3.19 (2e-02) 3.86 (3e-02)

We note that the non-parametric outperforms the parametric RUMs on every out-of-

sample metric for all of the data-sets. In the Sushi data, Normal DV outperforms NPRUM on

5Converging methods need fewer than 10 iterations. We chose to run 20 iterations for all methods to have
a fair time comparison.
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Table 2.3: Runtime (seconds). Numbers in bold are signi�cantly better than other methods.
* means the method does not converge.

Method Election Nascar Sushi

Plackett-Luce 28390 (2e+02) 930 (8e+00) 150 (1e+00)
Normal FV 28570 (1e+02) 920 (3e+00) 13680 (7e+01)
2x Normal FV 39120 (2e+02) 1910 (9e+00) 22280 (1e+02)
Normal DV 27570 (1e+02) * 13610 (7e+01)
NP (h = .11) 210 (1e+00) 60 (3e-01) 180 (8e-01)

in-sample log-likelihood but NPRUM outperforms Normal DV on out-of-sample log-likelihood,

which is evidence that Normal DV may have over�t to the training set. In the same data,

the same behavior is evident when comparing 2x Normal FV to Normal FV. 2x Normal FV

outperforms in training but not in the test set.

The non-parametric method takes signi�cantly less time than any other method on any

given data-set (with the exception of PL on Sushi). Estimation of parameters for PL model

for Nascar and Sushi data was done with the MM algorithm [67] which is faster than the

general MC-EM algorithm.

We have additional experimental results with more RUMs and more data-sets.

2.7.4 Rank Completion

We can apply the propose RUMs to rank completion, a recommendation problem where we

may want to predict the full rankings for an agent given observed partial rankings.

We design an experiment where given an agent's top-ranked sushi, we predict the agent's

second-ranked sushi. From the n-agent training set, we estimate the conditional distribution

Pr(π(2)|π(1)) for each �rst-ranked distribution. We calculate the TVD between this predicted

conditional distribution and the actual conditional distribution on the 5000−n agents used as

test data. We take the average of the conditional TVDs as our performance metric, weighted

by the frequency of each �rst-ranked alternative.

We show in Figure 2.11 the performance of the existing RUM methods at this rank com-

pletion problem. Interestingly, we note that the parametric RUMs barely improve when we

increase sample size from n = 50 to n = 100. NPRUM's advantage widens with more data
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because NPRUM is the only existing RUM able to capture correlation, which is vital for rank

completion.

Normal DV does not capture correlation, we believe the �exible variance structure is the

reason for good performance. Our rank completion question can be generalized to answer a

wide variety of recommendation and customization questions.
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Figure 2.11: Rank completion performance. x-axis is bandwidth (h). y-axis is weighted mean
TVD. 100 repetitions are done for each data point. Error bars represent 95% con�dence
intervals. n represents the number of agents used as training for rank completion.

2.8 Discussion

Here we discuss the advantages and disadvantages of di�erent extensions of RUMs. Naturally,

increasing the model complexity and relaxing assumptions comes with challenges involving

estimation and inference.

2.8.1 Distributional assumptions (inductive bias)

NPRUM's weak assumptions (weak inductive bias) regarding continuity and smoothing make

it more generally applicable than RUMs with distributional and independence assumptions.

However, assumptions are useful in certain settings. For example, PL outperforms Normal for
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Election data, but Normal outperforms PL for Sushi data (see Table 2.2). Hence, one model's

assumptions may be more correct than others. However, NPRUM outperforms both PL and

Normal in our data-sets, indicating that NPRUM's weak assumptions work better than the

strong ones of PL and Normal RUM.

2.8.2 Estimation

The MC-EM algorithm is used for all methods. We compare the complexity of MC-EM in

the parametric and non-parametric settings.

Time Complexity: In the E-step, sampling from truncated the parametric and non-

parametric distributions can be accomplished via similar techniques. This leads to similar

run time. We believe that our implementation of MC-EM for NPRUM is more e�cient,

leading to better running times in comparison to existing methods (Table 2.2).

In the M-step, �tting utility densities for Exponential Family distributions [92] is simple

because of the relationship between the su�cient statistics and the MLE parameters. Fitting

the non-parametric model is more di�cult as it requires kernel density estimation, a choice

of kernel (�xed at Gaussian for this chapter), and a bandwidth. Identifying the distribution

in the M-step of a parametric RUM is O(mn), while identifying the KDE in the M-step of

NPRUM is O(dmn), where d is the number of evaluation points we want in a dimension. d

can be a large constant.

Space Complexity: Representing a parametric RUM is storing m location parameters

for a Plackett-Luce model or 2m parameters for a Normal model. The non-parametric model

needs to be represented by the original vectors of utilities from the agents, which is propor-

tional in size to the data.

This leads us to conclude that parametric RUMs are O(m) in space complexity while

NPRUMs are O(mn). The other option for representing NPRUM, storing values of the density

function on a lattice grid, quickly becomes unfeasible with many alternatives (exponential in

m, leading to curse of dimensionality).
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2.8.3 Inference

Tasks such as identifying the maximal posterior probability ranking and specifying the dis-

tribution over ranks are intractable because of the m! size of the permutation space.

However, distributional assumptions such as independence from irrelevant alternative

(IIA) in the Luce model allows maximal posterior probability rankings and distributions

over ranks to be found easily. Pairwise preferences are also found easily in Normal and PL

RUMs.

For NPRUM, we must rely on Monte-Carlo and resampling methods to perform these

inferential tasks. Integration and summarizing properties of multivariate kernel density esti-

mates is di�cult, but sampling from multivariate kernel density estimates is easy.

2.9 Conclusions

This chapter describes a framework to estimate extensions of classical RUM models. We

provide three extensions to establish e�ectiveness of the method. The extensions are designed

to capture di�erent aspects of the data such as heterogeneity, multiple types in the data and

nonparametric representation of distribution on rankings.

Our work is a comprehensive study of various RUMs with di�erent evaluation metrics.

This evaluation has been done for multiple predictive metrics, including rank position distri-

bution prediction, out-of-sample average log-likelihood, and rank completion. We �nd that

RUMs are �exible enough to capture the best features in every setting, leading to superior

performance against existing RUMs for description, interpretation and prediction. The para-

metric extensions, on the other hand, provide a descriptive model with interpretation of the

parameters for the data.

We provide an application to rank data, where we can complete an agent's partial ranks

(useful for recommendation systems). NPRUM outperforms existing RUMs in rank comple-

tion. This is a result of a more expressive latent utility model that accounts for features

such as correlation, which is imperative in any rank model that seeks to complete ranks given
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partial data. We have better empirical results compared to prior work on clustering and other

RUMs.

For future work, we think it is interesting to look to adopt regularization when �tting

a model, in order to insist that, for each data point, the data point is assigned with high

probability to a particular component.
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Chapter 3

Generalized Method of Moments

Estimators for RUMs

3.1 Introduction

In many applications, we need to aggregate the preferences of agents1 over a set of alternatives

to produce a joint ranking. For example, in systems for ranking the quality of products,

restaurants, or other services, we can generate an aggregate rank through feedback from

individual users. This idea of rank aggregation also plays an important role in multi-agent

systems, meta-search engines [44], belief merging [46], crowdsourcing [79], and many other

e-commerce applications.

A standard approach towards rank aggregation is to treat input rankings as data gener-

ated from a probabilistic model, and then learn the MLE of the input data. As described in

Chapter 1 , this idea has been explored in both the machine learning community and the (com-

putational) social choice community. The most popular statistical models are the Bradley-

Terry-Luce model (BTL for short) [29, 77], the Plackett-Luce model (PL for short) [99, 77],

the random utility model [111], and the Mallows (Condorcet) model [78, 37]. In machine

learning, researchers have focused on designing e�cient algorithms to estimate parameters

1We will consider that ranks are generated from agents, but the approach is applicable to any rank data.
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for popular models; e.g. [67, 74, 11]. This line of research is sometimes referred to as learning

to rank [72].

However, for many parametric ranking models the MLE is hard to compute. For example,

computing MLE for the Mallows models is PNP
‖ -complete [62]. Among the Random Utility

Models (RUMs), only the Plackett-Luce (PL) model [99, 77] is known to have an analytical

solution to the likelihood function. Some previous work has focused on computing speci�c

parametric ranking models. For example, Hunter [67] propose a Minorize-Maximization (MM)

algorithm for MLE in the PL model. In the former chapter we proposed a Monte-Carlo

Expectation-Maximization (MC-EM) algorithm to compute MLE for a general class of RUMs.

While this extends the computational reach to more expressive RUMs beyond PL, the running

time may still be too large for data sets of practical interest.

Recently, Negahban et al. [96] proposed a rank aggregation algorithm, called Rank Central-

ity (RC), based on computing the stationary distribution of a Markov chain whose transition

matrix is de�ned according to the data (pairwise comparisons among alternatives). The au-

thors describe the approach as being model independent, and prove that for data generated

according to BTL, the output of RC converges to the ground truth, and the performance of

RC is almost identical to the performance of MLE for BTL. Moreover, they characterized the

convergence rate and showed experimental comparisons. However, their method is used for

pairwise rank data and can not be applied to full ranks.

Another alternative to MLE is to adopt a Generalized Method of Moments (GMM) al-

gorithm for estimation.We introduce the idea of rank-breaking as a way to apply GMM to

full ranking data. In rank-breaking, each ranking in the data is decomposed into a subset of

pairwise comparisons, to which GMM is then applied; e.g., for example we might take the

statistics used for GMM as a count of all pairs of alternatives that appear in �rst position and

second position, or we can consider all possible pairs of positions (this is called full breaking).

Rank breaking is of interest because it can allow for estimation methods that are consid-

erably quicker than MLE. We fully characterize conditions for a breaking to provide a GMM

that is consistent for PL. Consistency is a desired statistical property that says as the size of

45



data generated according to a model within the class assumed by the estimator grows without

bound, the output of the estimator converges to the true parameters. We answer the question

about how to extend rank-breaking to other parametric ranking models beyond PL as well.

Finding consistent, partial breakings is interesting because computing the statistics that

are used for GMM becomes the bottleneck as the size of datasets grows.

3.2 Our Contributions

The main contribution is to introduce a class of GMMs for parameter estimation in RUMs. As

a summary, we explore the idea of breaking for a general set of distributions and we address

these questions. For the �rst question we propose a GMM algorithm (Algorithm 4) for any

model in the location family of RUMs, which includes PL and Normal-RUM and develop a

general condition for when the breaking will provide a consistent estimator. We provide a

trichotomy theorem that characterizes what is required for single-edge breakings, which are

simple breakings with only a particular pair of rank positions, to be consistent.

The proposed algorithms �rst break full rankings into pairwise comparisons, and then solve

the generalized moment conditions to �nd the parameters. Each GMM is characterized by

a way of breaking full rankings. We characterize conditions for the output of the algorithm

to be unique, and obtain characterizations about which method of breaking leads to a con-

sistent GMM. Speci�cally, full breaking (which uses all pairwise comparisons in the ranking)

is consistent for all RUMs, but adjacent breaking (which only uses pairwise comparisons in

adjacent positions) is inconsistent for PL model. Full breaking is the only consistent approach

for models with mean-symmetric utility distributions. In addition, we fully characterize the

class of consistent breakings for the widely studied PL model, and establish that the natural

approach of adjacent breaking is not consistent.

We characterize the computational complexity of our GMMs, and show that the asymp-

totic complexity is better than for the classical Minorize-Maximization (MM) algorithm for

MLE in the PL model [67].

We �rst reveal a new and natural connection between the RC algorithm [96] and the BTL
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model by showing that RC algorithm can be interpreted as a GMM estimator applied to the

BTL model. Technically our technique in the case of pairwise ranking is related to the random

walk approach [96]. However, we note that our algorithms aggregate full rankings under PL

and RUMs in general, while the RC algorithm aggregates pairwise comparisons solely for the

BTL model. Therefore, it is quite hard to directly compare our GMMs and RC fairly since

they are designed for di�erent types of data. Moreover, by taking a GMM point of view,

we prove the consistency of our algorithms on top of theories for GMMs, while Negahban et

al. proved the consistency of RC directly.

We compare statistical e�ciency and running time of proposed methods experimentally

using both synthetic and real-world data. All GMMs run much quicker than the MM al-

gorithm and MC-EM algorithm. For the synthetic data, we observe that many consistent

GMMs converge as quick as the MM algorithm, while there exists a clear tradeo� between

computational complexity and statistical e�ciency among consistent GMMs for PL model.

3.3 Preliminaries

Let A = {a1, . . . , am} denote the set of alternatives. Let Dr = (d1, . . . , dn) denote the data,

where each dj is a full ranking over A. Let L(A) denote the set of all full rankings (that is, all

antisymmetry, transitive, and complete binary relationships) over A. For any d ∈ L(A) and

any pair of alternatives a, a′, we a �d a′ if and only if a is preferred to a′ in d, i.e., (a, a′) ∈ d.

In a parametric ranking model Mr, we let Ω ⊆ Rs denote the parameter space and for any

~γ ∈ Ω, let PrMr(·|~γ) denote a distribution over L(A). Sometimes the subscript in PrMr is

omitted when it does not cause confusion.

3.3.1 Random Utility Models (RUMs)

In a RUM, each alternative a is characterized by a utility distribution µa, parameterized by a

vector ~γa. Given any ground truth ~γ = (~γ1, . . . , ~γm), an agent generates a full ranking over A

in the following way: she independently samples a random utility Uj for each alternative aj

with conditional distribution Pra(·|~γa), then ranks the alternatives according to their respec-
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tive perceived utilities, such that she prefers a to a′ if and only if Ua > Ua′ .
2 The probability

for a ranking d is the following, where d(j) is the index of the alternative ranked in the jth

position:

Pr(d|~γ) = Pr(Ud(1) > Ud(2) > . . . > Ud(m))

In this chapter, the location family refers to the class of RUMs where each distribution

is only parameterized by its mean. In other words, the shapes of utility distributions are

�xed, though they are not necessarily identical for each alternative. A homogeneous location

family is a location family where the shapes of the distributions are identical.3 We study

homogeneous location families with the following distributions:

• Gumbel distribution with λ = 1, whose PDF is PrG(x) = e−xe−e
−x
: the corresponding

homogeneous location family is PL.

The PL model is a parametric model where each alternative ci is parameterized by γi ∈

(0, 1), such that
∑m

i=1 γi = 1. Let ~γ = (γ1, . . . , γm) and Ω denote the parameter space. Let

Ω̄ denote the closure of Ω. That is, Ω̄ = {~γ : ∀i, γi ≥ 0 and
∑m

i=1 γi = 1}. Given ~γ∗ ∈ Ω, the

probability for a ranking d = [ci1 � ci2 � · · · � cim ] is de�ned as follows,

PrPL(d|~γ) =
γi1∑m
l=1 γil

× γi2∑m
l=2 γil

× · · · ×
γim−1

γim−1 + γim

In the BTL model, the data is composed of pairwise comparisons instead of rankings, and

the model is parameterized in the same way as PL, such that PrBTL(ai1 � ai2 |~γ) =
γi1

γi1 + γi2
.

BTL can be thought of as a special case of PL via marginalization, since PrBTL(ai1 � ai2 |~γ) =∑
d:ai1�ai2

PrPL(d|~γ). In the rest of the chapter, we denote Pr = PrPL.

• Flipped Gumbel distribution: the PDF is PrG(−x), where PrG is the PDF of the Gumbel

distribution with λ = 1. Fliped Gumbel is not the same as the Gumbel distribution. However

it can be seen as a Gumbel distribution case where the smaller the x the better the alternative

in ranking (e.g. a latent space x can be the time each horse takes to �nish the race in a horse

2We ignore the case of ties where Ua = Ua′ since this happens with negligible probability for popular
utility distributions.

3In this chapter we will use Pr(d|~γ) and Pr(d) exchangeably.
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race competition).

• Normal distribution: no analytic solution to the likelihood function is known. The MC-EM

algorithm proposed for this case is accurate however, we propose a quick algorithm for this

case.

3.3.2 Generalized Method-of-Moments

The Generalized Method-of-Moments (GMM) provides a wide class of algorithms for parame-

ter estimation. In GMM, we are given a parametric model whose parametric space is Ω ⊆ Rs,

an in�nite series of q × q matrices W = {Wn : n ≥ 1}, and a column-vector-valued function

g(d,~γ) ∈ Rq.

For any vector ~h ∈ Rq and any q×q matrixW , let ‖~h‖W = (~h)TW~h. For any data Dr, let

g(Dr, ~γ) = 1
n

∑
d∈Dr g(d,~γ). The GMM method computes parameters ~γ′ ∈ Ω that minimize

‖g(Dr, ~γ
′)‖Wn :

GMMg(Dr,W) =

{~γ′ ∈ Ω : ‖g(Dr, ~γ
′)‖Wn = inf

~γ∈Ω
‖g(Dr, ~γ)‖Wn}

(3.1)

Since Ω may not be compact (as in PL), the set of parameters GMMg(Dr,W) can be empty.

A GMM is consistent if and only if for any ~γ∗ ∈ Ω, GMMg(Dr,W) converges in probability

to ~γ∗ as n→∞ when the data is drawn i.i.d. given ~γ∗.

In this chapter, we let Wn = I for all n. Let ‖ · ‖2 denote the L-2 norm. Equation (3.1)

becomes

GMMg(Dr) = {~γ′ ∈ Ω : ‖g(Dr, ~γ
′)‖2 = inf

~γ∈Ω
‖g(Dr, ~γ)‖2} (3.2)

It is well-known that GMMg(D,W) is consistent if it satis�es some regularity conditions

plus the following condition [58]:

Condition 2 Ed|~γ∗ [g(d,~γ)] = 0 if and only if ~γ = ~γ∗.

Example 1 MLE as a consistent GMM: Suppose the likelihood function is twice-di�erentiable,

then the MLE is a consistent GMM where g(d,~γ) = 5~γ log Pr(d|~γ) and Wn = I.
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Example 2 Negahban et al. [96] proposed the Rank Centrality (RC) algorithm that aggregates

pairwise comparisons DP = {Y1, . . . , Yn}.4 Let aij denote the number of ci � cj in DP and it

is assumed that for any i 6= j, aij + aji = k. Let dmax denote the maximum pairwise defeats

for an alternative. RC �rst computes the following m×m column stochastic matrix:

PRC(DP )ij =

 aij/(kdmax) if i 6= j

1−
∑

l 6=i ali/(kdmax) if i = j

Then, RC computes (PRC(DP ))T 's stationary distribution ~γ as the output.

Let Xci�cj (Y ) =

 1 if Y = [ci � cj ]

0 otherwise
and P ∗RC(Y ) =

 Xci�cj if i 6= j

−
∑

l 6=iX
cl�ci if i = j

. Let

gRC(d,~γ) = P ∗RC(d)·~γ. It is not hard to check that the output of RC is the output of GMMgRC .

Moreover, GMMgRC satis�es Condition 2 under the BTL model, and as we will show later in

Corollary 4, GMMgRC is consistent for BTL.

3.4 Breakings

A rank-breaking (breaking for short) BG is de�ned as a function L(A) → 2{a�a
′:a,a′∈A} that

is represented by an undirected graph G. The vertices of G correspond to the m positions

in a full ranking. For any full ranking d = [ai1 � ai2 � · · · � aim ], BG(d) = {aij � ail :

aij �d ail and {j, l} ∈ G}. That is, BG breaks d into pairwise comparisons for all pairs of

alternatives at position j and l such that {j, l} is an edge in G. If G only contains a single

edge, then BG is called a single-edge breaking.5

We extend the BG de�nition to apply to data D, so for any data Dr composed of full

rankings, we let BG(Dr) =
⋃
d∈Dr BG(d) where the union is in multiset sense.

Intuitively, a breaking is an undirected graph over the m positions in a ranking, such that

for any full ranking d, the pairwise comparisons between alternatives in the ith position and

4The BTL model applied in [96] is slightly di�erent from our model. Therefore, in this example we adopt
an equivalent description of the RC algorithm.

5The direction is implicit in graph G; e.g., edge 2-4 will only ever generate a count for the alternative in
position 2 being ahead of that in position 4. It doesn't also include a count for the one in position 4 being
behind the one in position 2.
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jth position are counted to construct PG(d) if and only if {i, j} ∈ G.

De�nition 1 A breaking is a non-empty undirected graph G whose vertices are {1, . . . ,m}.

Given any breaking G, any full ranking d over C, and any ci, cj ∈ C, we let

• Xci�cj
G (d) =

 1 {Pos(ci, d),Pos(cj , d)} ∈ G and ci �d cj

0 otherwise
, where Pos(ci, d) is the

position of ci in d.

• PG(d) be an m×m matrix where PG(d)ij =

 X
ci�cj
G (d) if i 6= j

−
∑

l 6=iX
cl�ci
G (d) if i = j

• gG(d,~γ) = PG(d) · ~γ

• GMMG(D) be the GMM method that solves Equation (3.1) for gG and Wn = I.6

In this chapter, we focus on the following breakings, illustrated in Figure 3.1.

• Full breaking: GF is the complete graph. Example 3 is the GMM with full breaking.

• Top-k breaking: for any k ≤ m, GkT = {{i, j} : i ≤ k, j 6= i}.

• Bottom-k breaking: for any k ≥ 2, GkB = {{i, j} : i, j ≥ m+ 1− k, j 6= i}.7

• Adjacent breaking: GA = {{1, 2}, {2, 3}, . . . , {m− 1,m}}.

• Position-k breaking: for any k ≥ 2, GkP = {{k, i} : i 6= k}. Intuitively, the

full breaking contains all the pairwise comparisons that can be extracted from each agent's

full rank information in the ranking; the top-k breaking contains all pairwise comparisons

that can be extracted from the rank provided by an agent when she only reveals her top k

alternatives and the ranking among them; the bottom-k breaking can be computed when an

agent only reveals her bottom k alternatives and the ranking among them; and the position-k

breaking can be computed when the agent only reveals the alternative that is ranked at the

kth position and the set of alternatives ranked in lower positions.

We note that GmT = GmB = GF , G
1
T = G1

P , and for any k ≤ m − 1, GkT ∪ G
m−k
B =

GF , and G
k
T =

⋃k
l=1G

l
P . We are now ready to present our GMM algorithm (Algorithm 3)

parameterized by a breaking G.

6To simplify notation, we use GMMG instead of GMMgG .

7We need k ≥ 2 since GkB is empty.
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(a) Full breaking. (b) Top-3 breaking. (c) Bottom-3 breaking.

6	

 3	



4	

5	



2	

1	



6	

 3	



4	

5	



2	

1	



(d) Adjacent breaking. (e) Position-2 breaking.

Figure 3.1: Example breakings for m = 6.

3.5 Generalized Method-of-Moments for the Plakett-Luce model

In this section we introduce our GMMs for rank aggregation under PL model. The PL model

is a good model to start with because of its simplicity and wide application. In our methods,

q = m, Wn = I and g is linear in ~γ. We start with a simple special case to illustrate the idea.

Example 3 For any full ranking d over C, we let

• Xci�cj (d) =

 1 ci �d cj

0 otherwise

• P (d) be an m×m matrix where P (d)ij =

 Xci�cj (d) if i 6= j

−
∑

l 6=iX
cl�ci(d) if i = j

• gF (d,~γ) = P (d) · ~γ and P (D) = 1
n

∑
d∈D P (d)

For example, let m = 3, D = {[c1 � c2 � c3], [c2 � c3 � c1]}. Then P (D) =
−1 1/2 1/2

1/2 −1/2 1

1/2 0 −3/2

. The corresponding GMM seeks to minimize ‖P (D) · ~γ‖22 for ~γ ∈ Ω.
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It is not hard to verify that (Ed|~γ∗ [P (d)])ij =


γ∗i

γ∗i +γ∗j
if i 6= j

−
∑

l 6=i
γ∗l

γ∗i +γ∗l
if i = j

, which means

that Ed|~γ∗ [gF (d,~γ∗)] = Ed|~γ∗ [P (d)] ·~γ∗ = 0. It is not hard to verify that ~γ∗ is the only solution

to Ed|~γ∗ [gF (d,~γ)] = 0. Therefore, GMMgF satis�es Condition 2. Moreover, we will show in

Corollary 3 that GMMgF is consistent for PL model.

In the above example, we count all pairwise comparisons in a full ranking d to build P (d),

and de�ne g = P (D) ·~γ to be linear in ~γ. As aforementioned, we may consider some subset of

pairwise comparisons, which leads to the de�nition of the class of GMMs based on the notion

of breakings.

Algorithm 3 GMMG(D)

A breaking G and data D = {d1, . . . , dn} composed of full rankings. Estimation GMMG(D)

of parameters under PL. Compute PG(D) = 1
n

∑
d∈D PG(d) in De�nition 2. Compute

GMMG(D) according to (3.1). Return GMMG(D).

Theorem 6 For any breaking G and any data D, there exists ~γ ∈ Ω̄ such that PG(D) ·~γ = 0.

Theorem 6 implies that in Equation (3.1), inf~γ∈Ω g(D,~γ)TWng(D,~γ)} = 0. Therefore, Step 3

can be replaced by: 3∗ Let GMMG = {~γ ∈ Ω : PG(D) · ~γ = 0}.

3.5.1 Uniqueness of Solution

It is possible that for some data D, GMMG(D) is empty or non-unique. Our next theorem

characterizes conditions for |GMMG(D)| = 1 and |GMMG(D)| 6= ∅. A Markov chain (row

stochastic matrix) M is irreducible, if any state can be reached from any other state. That

is, M only has one communicating class.

Theorem 7 Among the following three conditions, 1 and 2 are equivalent for any breaking G

and any data D. Moreover, conditions 1 and 2 are equivalent to condition 3 if and only if G

is connected.

1. (I + PG(D)/m)T is irreducible.

2. |GMMG(D)| = 1.
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3. GMMG(D) 6= ∅.

Corollary 1 For the full breaking, adjacent breaking, and any top-k breaking, the three state-

ments in Theorem 7 are equivalent for any data D. For any position-k (with k ≥ 2) and any

bottom-k (with k ≤ m− 1), 1 and 2 are not equivalent to 3 for some data D.

Ford, Jr. [47] identi�ed a necessary and su�cient condition on data D for the MLE under

PL to be unique, which is equivalent to condition 1 in Theorem 7. Therefore, we have the

following corollary.

Corollary 2 For the full breaking GF , |GMMGF (D)| = 1 if and only if |MLEPL(D)| = 1.

3.5.2 Consistency

We say a breaking G is pairwise consistent (for RUMs), if GMMG is consistent.

Theorem 8 A breaking G is pairwise consistent if and only if Ed|~γ∗ [g(d,~γ∗)] = 0, which is

equivalent to the following equalities:

for all i 6= j,
Pr(ci � cj |{Pos(ci, d),Pos(cj , d)} ∈ G)

Pr(cj � ci|{Pos(ci),Pos(cj)} ∈ G)
=
γ∗i
γ∗j
. (3.3)

Theorem 9 Let G1, G2 be a pair of pairwise consistent breakings.

1. If G1 ∩G2 = ∅, then G1 ∪G2 is also consistent.

2. If G1 ( G2 and (G2 \G1) 6= ∅, then (G2 \G1) is also consistent.

Continuing, we show that position-k breakings are pairwise consistent, then use this and

Theorem 9 as building blocks to prove additional consistency results.

Proposition 1 For any k ≥ 1, the position-k breaking GkP is pairwise consistent.

We recall that GkT =
⋃k
l=1G

l
P , GF = GmT , and G

k
B = GF \ Gm−kT . Therefore, we have the

following corollary.

Corollary 3 The full breaking GF is pairwise consistent; for any k, GkT is pairwise consistent,

and for any k ≥ 2, GkB is pairwise consistent.
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Theorem 10 Adjacent breaking GA is pairwise consistent if and only if all components in ~γ∗

are the same.

Lastly, the technique developed in this section can also provide an independent proof that the

RC algorithm is consistent for BTL, which is implied by the main theorem in [96]:

Corollary 4 [96] The RC algorithm is consistent for BTL.

RC is equivalent to GMMgRC , which satis�es Condition 1. By checking conditions that are

analogues to those in the proof of Theorem 11, we can prove that GMMgRC is consistent for

BTL.

For the case of PL model, the results in this section suggest that if we want to learn

the parameters of PL, we should use pairwise consistent breakings, including full breaking,

top-k breakings, bottom-k breakings, and position-k breakings. The adjacent breaking seems

quite natural, but it is not pairwise consistent, thus will not provide a good estimate to the

parameters of PL. This will also be veri�ed by experimental results in Section 4.6. We will

provide results on GMM for some other cases of RUMs as well.

3.5.3 Complexity

Proposition 2 The computational complexity of the MM algorithm for PL [67] and our

GMMs are listed below.

• MM: O(m3n) per iteration.

• GMM (Algorithm 3) with full breaking: O(m2n + m2.376), with O(m2n) for

breaking and O(m2.376) for computing step 2∗ in Algorithm 3 (matrix inversion).

• GMM with adjacent breaking: O(mn + m2.376), with O(mn) for breaking and

O(m2.376) for computing step 2∗ in Algorithm 3.

• GMM with top-k breaking: O((m+k)kn+m2.376), with O((m+k)kn) for breaking

and O(m2.376) for computing step 2∗ in Algorithm 3.

It follows that the asymptotic complexity of the GMM algorithms is better than for the

classical MM algorithm. In particular, the GMM with adjacent breaking and top-k breaking
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for constant k's are the quickest. However, we recall that the GMM with adjacent breaking

is not consistent, while the other algorithms are consistent. We would expect that as data

size grows, the GMM with adjacent breaking will provide a relatively poor estimation to ~γ∗

compared to the other methods.

Moreover in the statistical setting in order to gain consistency we need regimes that

m << n and large ns are going to lead to major computational bottlenecks. All the above

algorithms (MM and di�erent GMMs) have linear complexity in n, hence, the coe�cient for

n is essential in determining the tradeo�s between these methods. As it can be seen above

the coe�cient for n is linear in m for top-k breaking and quadratic for full breaking while

it is cubic in m for the MM algorithm. This di�erence is illustrated through experiments in

Figure 4.5.

3.6 A GMM Algorithm for the Location Family of RUM

We recall that in the location family, each utility distribution has only one parameter (its

mean). Therefore, we can write ~γ = (γ1, . . . , γm), where for any i ≤ m, γi is the mean

parameter of the utility distribution for ai. W.l.o.g. let γm = 0.

To specify the GMM, it su�ces to specify the moment conditions. Given a parametric

ranking model Mr in the location family, for any two alternatives a 6= a′, any ~γ ∈ Ω, and

any breaking BG, we let f
aa′
G (~γ) denote the probability that given ~γ, a � a′ in BG(d). That

is, faa
′

G (~γ) = PrMr(a � a′ ∈ BG(d)|~γ). When G = GF , that is, G is the complete graph, we

use shorthand notation faa
′

= faa
′

G . Since the perceived utilities are generated independently,

faa
′
is a function of γa − γa′ . Therefore, we sometimes write faa

′
(γa − γa′). We note that in

general faa
′

G may depend on other components of ~γ.

De�nition 2 Given any breaking BG, any d ∈ L(A), and any a, a′ ∈ A, we let:

• Xa�a′
G (d) =

 1 a � a′ ∈ BG(d)

0 otherwise
, and

• Xa�a′
G (Dr) = 1

n

∑
d∈Dr X

a�a′
G (d)
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In words, Xa�a′
G (Dr) is the normalized frequency of times that alternative a is preferred to

alternative a′ (i.e., a � a′). By de�nition, E[Xa�a′
G (d)] = faa

′
G . We now present the moment

conditions used in our algorithm, and then comment on why we do not use other seemingly

more natural ones. Our moment conditions are: for a 6= a′,

gaa
′

G (d,~γ) = Xa�a′
G (d)× fa′a(~γ)−Xa′�a

G (d)× faa′(~γ) (3.4)

We are now ready to present our algorithm as Algorithm 4. We note that in (3.4) we use faa
′

Algorithm 4 GMMG(Dr)

For all a, a′, compute Xa�a′
G (Dr).

Compute GMMG(Dr) according to (3.2) using the moment conditions in (3.4) (e.g. using
gradient descent).
return GMMG(Dr).

and fa
′a instead of faa

′
G and fa

′a
G . Therefore it is not immediately clear whether the moment

conditions equal to 0 in expectation for a graph G that is not the complete graph. The next

de�nition provides a condition used to guarantee that when a pairwise consistent breaking G

is used in Algorithm 4, the moment conditions (3.4) equal to 0 in expectation.

De�nition 3 A breaking BG is consistent for a location family RUM, if G has at least one

edge and for any ~γ and any a 6= a′,8

faa
′

G (~γ)

fa
′a

G (~γ)
=
faa

′
(~γ)

fa′a(~γ)

Where,

faa
′
(~γ)

fa′a(~γ)
=

PrMr(a � a′|~γ)

PrMr(a
′ � a|~γ)

We will be interested in understanding when breakings are consistent. By de�nition, the full

breaking is consistent. Let CDFa denote the CDF of Pra(·|0). For the location family we

8The de�nition of pairwise consistent breakings is more general than the de�nition in [8], which was de�ned
only for PL.
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have:

faa
′
(~γ) =faa

′
(γa − γa′) =∫ ∞

−∞
Pra′(y)(1− CDFa(y − γa + γa′))dy

(3.5)

We have the following proposition for faa
′
(γa − γa′).

Proposition 3 For any model in the location family where each utility distribution has sup-

port (−∞,∞), faa
′
is monotonic increasing (as a function of γa − γa′) on (−∞,∞) with

limx→−∞ f
aa′(x) = 0 and limx→∞ f

aa′(x) = 1. Moreover, if Pra and Pra′ are continuous

then faa
′
is continuously di�erentiable with faa

′
(x)′ =

∫∞
−∞ Pra′(y) Pra(y − x)dy.

Theorem 11 For any model in the location family with (possibly) inhomogeneous distribu-

tions and any pairwise consistent breaking BG, if the PDF of every utility distribution is

continuous, then Algorithm 4 is consistent.

Proof: We prove the theorem by verifying the conditions in Theorem 2.1 in [58].

Assumption 2.1: The distribution on D is stationary and ergodic. This holds because in

any RUM, data in D are generated i.i.d.

Assumption 2.2: Ω is a separable metric space. Since Rm is a metric separable space and

Ω is an subset of Rm, Ω is also separable.

Assumption 2.3: gaa
′

G (·, ~γ) is Borel measurable for any a 6= a′ and each ~γ ∈ Ω and gaa
′

G (d, ·)

is continuous on Ω for each d. Since the domain of gaa
′

G (·, ~γ) is discrete, gaa
′

G (·, ~γ) is continuous,

which means that gaa
′

G (·, ~γ) is Borel measurable. We note that gaa
′

G (d, ·) is linear in faa
′
(~γ)

and by Proposition 3, faa
′
is continuous in ~γ.

Assumption 2.4: Ed|~γ∗ [g
aa′
G (d,~γ)] exists and is �nite for all ~γ ∈ Ω, and Ed|~γ∗ [g

aa′
G (d,~γ∗)] =

0. The former is because Ed|~γ∗ [g
aa′
G (d,~γ)] is linear in faa

′
(~γ) and by Proposition 3, faa

′
(Ω)

is bounded above by 1. The second part holds because Ed|~γ∗ [X
a�a′
G (d)] = faa

′
G (~γ∗), which

means that Ed|~γ∗ [g
aa′
G (d,~γ∗)] = faa

′
G (~γ∗)fa

′a(~γ∗)− fa′aG (~γ∗)faa
′
(~γ∗) = 0.

Assumption 2.5: The sequence W converges almost surely to a positive semi-de�nite

matrix. This holds since Wn = I for all t.

Premise (1): gaa
′

G (d,~γ) is �rst moment continuous. Since |gaa′G (d,~γ)| ≤ 2, by Lemma 2.1

of [58], we have that gaa
′

G (d,~γ) is �rst moment continuous.
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Premise (2): Ω is compact, which is the assumption of our theorem.

Premise (3): Ed|~γ∗ [g
aa′
G (d,~γ)] has a unique zero at ~γ∗. By Proposition 3 we have that

faa
′
(γa − γa′) is monotonic increasing in γa − γa′ and fa

′a(γa′ − γa) is monotonic increasing

in γa′ − γa. Therefore,
faa

′
(γa − γa′)

fa′a(γa − γa′)
is monotonic increasing in γa − γa′ . Hence if ~γ′ is

another zero point for Ed|~γ∗ [g
aa′
G (d,~γ)] with γ′m = 0, then we must have that for all pairs

(a, a′), γ′a − γ′a′ = γ∗a − γ∗a′ . Given that γ′m = γ∗m = 0, this means that ~γ′ = ~γ∗, which is a

contradiction. Therefore, ~γ∗ is the only zero point of Ed|~γ∗ [g
aa′
G (d,~γ)]. �

A direct result of the above theorem is that, for any pairwise consistent breaking BG for

PL, RUM with �ipped Gumbel distributions, and RUM with Normal distributions (e.g. the

full breaking), Algorithm 4 is consistent for PL, RUM with �ipped Gumbel distributions, and

RUM with Normal distributions respectively.

Compared to the MC-EM algorithm [11], Algorithm 4 runs quicker since optimizing Equa-

tion (3.2) is much easier through e.g., gradient descent or Newton-Raphson. This is because

faa
′
(x)′ is usually easy to compute, and sometimes has a concise analytic solution, as shown

in the following example. Breaking is particularly helpful here since it enables an analytic

expression for gradient.

Example 4 Consider RUM with normal distributions whose variances are 1. For any a 6= a′

we have:

faa
′
(x)′ =

1

2π

∫ ∞
−∞

e−
y2

2 e−
(y−x)2

2 dy =
1

2
√
π
e−

x2

4

A similar formula exists for location families with normal distributions whose variances are

not identical.

Why do we use the moment conditions in (3.4)? The following moment conditions

seem to be more natural.

gaa
′

G (d,~γ) =

Xa�a′
G (d)× fa′aG (~γ)−Xa�a′

G (d)× faa′G (~γ)

(3.6)

The only di�erence between (3.6) and (3.4) is that the former uses faa
′

G and fa
′a

G while the

latter uses faa
′
and fa

′a. However, for models in the location family, optimizing (3.6) is often
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hard due to the lack of analytical solutions to faa
′

G or (faa
′

G )′. As shown in Example 4, (faa
′
)′

is easy to compute. This is the main reason we choose (3.4) over (3.6).

Why are we interested in breakings beyond the full breaking? The optimization

problem (2) is m−dimensional, but requires as input the counts in equation 3.4 to be com-

puted for every ordered pair of alternatives. Computing these counts scales a O(m2n) for

full breaking but as O(mn) for adjacent breaking or position-k breaking. For large n this

can become the bottleneck with the di�erence between O(m2n) and O(mn) making a mean-

ingful di�erence and starting to become the bottleneck in computation [8]. In such cases we

may would prefer to use a partial breaking and explore the tradeo� between computational

e�ciency and statistical e�ciency. However, it is important to do this while maintaining

consistency of the estimator.

3.7 Which Breakings are Consistent?

This section provides theoretical results on the consistency of partial breakings (breakings

which take only part of the available ranks) for the location family. We will �rst present the

theorems, then introduce four lemmas in Section 3.7.1, and �nally in Section 3.7.2 use them

as building blocks to provide proofs for the theorems. We start with the following positive

results.

Theorem 12 For PL, a breaking BG is consistent if and only if G is the union of position-k

breakings.

In a similar way the following Theorem holds if we change PL to PL∗.

Theorem 13 For the RUM with �ipped Gumbel distributions (PL∗), BG is consistent if and

only if G is the union of position*-k breakings.

Theorem 12 gives a complete characterization of pairwise consistent breakings for PL (thus

answering an open question in [8]) and Theorem 13 gives a complete characterization of

pairwise consistent breakings for the RUM with �ipped Gumbel distributions.
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Theorem 14 LetMr be a model in the (possibly) inhomogeneous location family where each

utility distribution has support (−∞,∞). If the PDF of each utility distribution in Mr is

symmetric around its mean, then the only pairwise consistent breaking is the full breaking.

Since the normal distribution is symmetric, we immediately have the following corollary of

Theorem 14.

Corollary 5 For the RUM with Normal distributions (the variances are not necessary iden-

tical), the only pairwise consistent breaking is the full breaking.

Theorem 14 and Corollary 5 tell us that for certain natural models in the location family,

the only pairwise consistent breaking is the full breaking. This will also be demonstrated by

experimental results in the next section. The next theorem provides a quick check to see if

the full breaking is the only pairwise consistent breaking by just checking the m = 3 case.

Theorem 15 For any model in the homogeneous location family where each utility distri-

bution has support (−∞,∞), if the full breaking is the only pairwise consistent breaking for

m = 3, then the full breaking is the only pairwise consistent breaking for any m.

The last result of this section is a trichotomy theorem for single-edge breakings to be consistent

for the homogeneous location family.

Theorem 16 For any m and any model in the homogeneous location family (with support

(−∞,∞)), exactly one of the following holds.

1. No single-edge breaking is consistent.

2. Among all single-edge breakings, only {1, 2} is consistent.

3. Among all single-edge breakings, only {m− 1,m} is consistent.

This theorem corresponds to a symmetry notion in the speci�c location family. Using this

theorem and Theorem 14 we know that case (1) corresponds to the symmetric location families

and we conjecture that the cases (2) and (3) correspond to negative and positive skewness in

the location family distributions respectively.
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The next example shows that each of the three cases in Theorem 16 (but not any two of

them) holds for some natural location family.

Example 5 By Corollary 5, the location family with normal distributions belongs to Case 1

in Theorem 16; by Theorem 12, PL belongs to Case 2 in Theorem 16; by Theorem 13, PL∗

belongs to Case 3 in Theorem 16.

3.7.1 Four Core Lemmas

To prove the theorems we introduce some notation and four core lemmas in this subsection.

For any modelMr in the location family, letM∗r denote the model in the location family where

the PDF of each distribution (conditioned on the mean parameter being 0) is �ipped around

the y-axis. That is, for any i ≤ m and any x, PrMr,i(x|0) = PrM∗r ,i(−x|0). For any breaking

BG, we let BG∗ denote the breaking such that (i, j) ∈ G∗ if and only if (m+1−i,m+1−j) ∈ G.

Example 6 PL∗ is the RUM with �ipped Gumbel distribution. Let MN denote the RUM

with normal distributions. We haveMN =M∗N . For any k ≥ 2, we have (GkP )∗ = Gm−kP ∗ .

Lemma 3 For any Mr in the location family, if BG is consistent for Mr, then BG∗ is

consistent forM∗r.

For any graph G and any 1 ≤ k1 < k2 ≤ m, we let G[k1,k2] denote the subgraph of G

where the vertices 1, . . . , k1 − 1 and k2 + 1, . . . ,m are removed,and the vertices are renamed

to 1, . . . , k2 + 1− k1 by subtracting k1 − 1 from all vertices.

Example 7 For m = 6, a breaking BG and its restriction to [2, 4] are shown in Figure 3.2.

Lemma 4 For any model Mr in the location family, if BG is consistent then for any 1 ≤

k1 < k2 ≤ m, either G[k1,k2] = ∅, or BG[k1,k2]
is consistent for any location family for k2 −

k1 + 1 alternatives where the utility distributions can be any combination of k2− k1 + 1 utility

distributions inMr.

Lemma 5 For any location family where each utility distribution has support (−∞,∞), the

single-edge breaking B{{1,m}} is not consistent.
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Figure 3.2: A breaking graph G and G[2,4] for m = 6.

The last lemma (speci�cally, part (3), (4), (5)) is a natural extension of Theorem 4 in [8].

Lemma 6 Let BG1 , BG2 be a pair of breakings.

• Suppose both BG1and BG2 are consistent,

(1) if G1 ∩G2 = ∅, then BG1∪G2 is also consistent;

(2) if G1 ( G2, then BG2\G1
is also consistent.

• Suppose BG1 is consistent but BG2 is not consistent,

(3) if G1 ∩G2 = ∅, then BG1∪G2 is not consistent;

(4) if G1 ( G2, then BG2\G1
is not consistent.

(5) if G2 ( G1, then BG1\G2
is not consistent.

Proof: The proof is based on the following two observations. 1) If G1 ∩ G2 = ∅, then

faa
′

G1∪G2
(d) = faa

′
G1

(d) + faa
′

G2
(d) and Xa�a′

G1∪G2
(d) = Xa�a′

G1
(d) + Xa�a′

G2
(d). 2) If G1 ( G2, then

faa
′

G1\G2
(d) = faa

′
G1

(d)− faa′G2
(d) and Xa�a′

G1\G2
(d) = Xa�a′

G1
(d)−Xa�a′

G2
(d). �

3.7.2 Proofs of the Theorems

Proof of Theorem 12. The �if� direction was proved in above ??. We now prove the �only if�

part by induction on m. When m = 3, the theorem obviously holds. Suppose the theorem

holds for l. When m = l+ 1, we �rst apply Lemma 4 to G[2,m]. By the induction hypothesis,

G[2,m] must be the union of position-k breakings for some k ≥ 2. Now apply Lemma 4 to

G[1,m−1]. There are two cases.

Case 1: for all i ≤ m− 1, {1, i} ∈ G. We claim that {1,m} ∈ G. This is because B{1,m}∪G

is consistent, and B{1,m} is not consistent due to Lemma 5. Hence BG\{1,m} is not consistent.
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Case 2: for all i ≤ m − 1, {1, i} 6∈ G. In this case {1,m} 6∈ G following a similar argument

as in Case 1.

This means that the theorem holds for m = l + 1, which proves the theorem. �

Proof of Theorem 13. The proof follows immediately after Theorem 12 and Lemma 3. �

Proof of Theorem 14. Let BG denote a pairwise consistent breaking. We prove the theorem

by induction on m. When m = 3, the full breaking is consistent and by Lemma 5, the single

edge-breaking B{(1,3)} is not consistent. By Lemma 6 part (5), B{(1,2),(2,3)} is not consistent.

We now prove that the single-edge breaking B{(1,2)} is not consistent. For the sake of

contradiction suppose it is. By Lemma 3, B{(1,2)}∗ = B{(2,3)} is consistent forM∗r . Since all

utility distributions in Mr are symmetric, M∗r = Mr. Therefore, B{(2,3)} is consistent for

Mr. By Lemma 6 part (1), B{(1,2),(1,3)} is consistent, which is a contradiction.

Similarly the single-edge breaking B{(2,3)} is not consistent. It follows from Lemma 6

part (5) that B{(1,2),(1,3)} and B{(1,3),(2,3)} are not consistent. Therefore, the only pairwise

consistent breaking for m = 3 is the full breaking.

Suppose the theorem holds for m = l. When m = l+ 1, we �rst apply Lemma 4 to G[2,m]

and G[1,m−1]. By the induction hypothesis, G[2,m] (G[1,m−1]) is either empty or the full graph.

We have the following two cases.

Since m > 3, if G[2,m] is empty, then G[1,m−1] is empty as well. Since G is non-empty,

G = {(1,m)}, which contradicts Lemma 5.

If G[2,m] is full, then G[1,m−1] is full as well. Hence G can be either the full graph GF , or

GF \ {(1,m)}. By Lemma 5, B{(1,m)} is inconsistent, which means that BGF \{(1,m)} is not

consistent (Lemma 6 part (5)).

Therefore, the only remaining case is that G is the full breaking, which means that the

theorem holds for m = l + 1, which proves the theorem. �

Proof of Theorem 15. The proof is similar to the proof of Theorem 14. We prove the theorem

by induction on m. m = 3 is the assumption. Suppose the theorem holds for l. When
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n F−T M−T M−F
5 −10−4 (10−3) 17 (.05) 17 (.05)

50 .004 (.005) 198 (1.3) 198 (1.3)

100 .008 (.0005) 359 (11) 359 (11)

150 .035 (.004) 970 (10) 970 (10)

200 .017 (.0015) 1021 (31) 1021 (31)

F−T M−T M−F
.09 (.55) .08 (.57) -.01 (.001)

.27 (.4) .26 (.37) -.01 (.001)

.08 (.08) .04 (.08) -.04 (.004)

.34 (.1) .33 (.11) -.01 (.001)

.29 (.027) .27 (.022) -.02 (.0057)

(a) Run time (seconds). (b) Kendall correlation.

Table 3.1: Paired t-tests for the three algorithms. F, T, M represents values for full breaking,
top-3 breaking, and MC-EM, respectively. Mean (std) are shown. Signi�cance results with
95% con�dence are in bold.

m = l + 1, we �rst apply Lemma 4 to G[2,m]. By the induction hypothesis, G[2,m] is either

empty or full.

If G[2,m] is empty, then G[1,m−1] is empty as well. Hence if G is non-empty, then G =

{(1,m)}, which contradicts Lemma 5.

If G[2,m] is full, then G[1,m−1] is full as well. Hence G can be either the full graph GF ,

or GF \ {(1,m)}. By Lemma 5, B{(1,m)} is inconsistent, which means that BGF \{(1,m)} is

inconsistent (since GF is always consistent by de�nition).

Therefore, the theorem holds for m = l + 1, which completes the proof. �

Proof of Theorem 16. For any k2 > k1 + 1, let us �rst consider G[k1,k2]. By Lemma 5,

B{(1,k2−k1+1)} is not consistent. Therefore by Lemma 4, any non-adjacent single-edge breaking

is not consistent.

Now for an adjacent single-edge graph {(k1, k1 + 1)} that is di�erent from {(1, 2)} and

{(m−1,m)}, by applying Lemma 4 on G[k1−1,k1+1] and G[k1,k1+2], we have that both B{{1,2}}

and B{(2,3)} are consistent for the model in the location family with m = 3 and any combina-

tion of 3 utility distributions inMr. By Lemma 6 part (1), {(1, 2), (2, 3)} is consistent, which

contradicts Lemma 6 part (5) applied to Lemma 5.

Now, we only need to prove that it is impossible for both B{(1,2)} and B{(m−1,m)} to

be consistent. If on the contrary both are consistent, then we apply Lemma 4 on G[1,3]

and G[m−2,m]. Following a similar argument as in the previous paragraph, we can show a

contradiction. This proves the theorem. �

We conjecture that the converse of Theorem 11 holds for natural models in the location
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family.

3.8 Experiments

We implemented the MC-EM algorithm , Algorithm 4 with the full breaking, and Algorithm 4

with top-3 breaking for the Normal RUM with �xed variance. We evaluate the algorithms

according to run-time and the following two representative criteria. For this, let ~γ∗ denote

the ground truth parameters, and ~γ denote the output of the algorithm.

• Kendall Rank Correlation Coe�cient: Let K(~γ,~γ∗) denote the Kendall tau distance

between the ranking over components in ~γ and the ranking over components in ~γ∗. The

Kendall correlation is 1− 2 K(~γ,~γ∗)
m(m−1)/2 .

The synthetic data-sets are generated as follows. Letm = 5. The ground truth ~γ∗ is gener-

ated from the Dirichlet distribution Dirichlet(~1) which is a distribution on an m−dimensional

unit simplex. Then, for any given ~γ∗ we generate up to n = 200 full rankings from the location

family with normal distributions. All experiments are run on a 2.4 Ghz, Intel Core 2 duo 32

bit laptop.

Table 3.1 (a) shows the paired t-test on running time for the three methods for n =

5, 50, 100, 150, 200, where F, T, M represents values for full breaking, top-3 breaking, and

MC-EM, respectively. We clearly observe that the running time of Algorithm 4 with full

breaking and Algorithm 4 with top-3 breaking are signi�cantly lower than the running time

of MC-EM.

Table 3.1 (b) show paired t-tests for the three methods, for Kendall correlation. We note

that a higher Kendall correlation means that the estimation is more accurate. Surprisingly,

for Kendall correlation, Algorithm 4 with full breaking outperforms MC-EM with 95% con�-

dence for almost all n in our experiments despite that Algorithm 4 runs much quicker. Both

algorithms are signi�cantly better than Algorithm 4 with top-3 breaking with 95% con�dence

when n is not too small. The latter observation is because Algorithm 4 with top-3 breaking

is not consistent for the location family with normal distributions.

In the sushi data-set [69], there are 10 kinds of sushi (m = 10) and the amount of data
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Figure 3.3: Comparison of GMM with top-k breakings as k is varied. The x-axis represents k in the
top-k breaking. Error bars are 95% con�dence intervals and m = 10, n = 100.
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Figure 3.4: The MSE and Kendall correlation criteria and computation time for MM (10 iterations),
GMM-F (full breaking), and GMM-A (adjacent breaking) on sushi data.

n is varied, randomly sampling with replacement. We set the ground truth to be the output

of MM applied to all 5000 data points. This choice is motivated by providing a comparison

of the out of the new algorithm with the MLE estimates. For the running time, we observe

the same as for the synthetic data: GMM (adjacent breaking) runs quicker than GMM (full

breaking), which runs quicker than MM.

Comparisons for MSE and Kendall correlation are shown in Figure 3.4. In both �gures,

95% con�dence intervals are plotted but too small to be seen. Statistics are calculated over

1970 trials. For MSE and Kendall correlation, we observe that MM converges quickest,

followed by GMM (full breaking), which outperforms GMM (adjacent breaking) which does

not converge. Di�erences between performances are all statistically signi�cant with 95%

con�dence (with exception of Kendall correlation and both GMM methods for n = 200,

where p = 0.07). This is di�erent from comparisons for synthetic data (Figure 3.5). We
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Figure 3.5: The MSE and Kendall correlation of MM (10 iterations), GMM-F (full breaking), and
GMM-A (adjacent breaking). Error bars are 95% con�dence intervals.

believe that the main reason is because PL does not �t sushi data well. Therefore, we cannot

expect that GMM converges to the output of MM on the sushi dataset, since the consistency

results (Corollary 3) assumes that the data is generated under PL.

3.9 Conclusions

We studied consistency of rank breaking for random utility models and provides a quick

algorithm to compute parameters of these models. The method is based on generalized

method of moments and uses a preprocess for turning complex forms of data as permutations

to pairwise alternatives. The code is provided in the R package �StatRank" [7].

We plan to extend the algorithms and analysis to partial orders, non-location families such

as RUMs parameterized by mean and variance, and to GRUMs [12] and GRUMs with multiple

types [10]. The challenge with these settings is �nding right conditions for the consistency

when the breaking needs to be done on partial rankings.
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Chapter 4

Random Utility for Personalized Rank

Data and Elicitation

4.1 Introduction

In many situations, we need to know the preferences of agents over a set of alternatives in

order to make decisions. For example, in recommender systems, we can compute recommen-

dations of new products for a user based on his reported preferences over some products. In

social choice, we need to know agent preferences over alternatives, to make a joint decision

about which alternative is socially chosen. Predicting consumer behavior based on reported

preferences is an important topic in econometrics [17, 19].

There are two closely related challenges in building a decision support system: preference

elicitation and semi-autonomous decision making [26].

Given preferences, the decision making problem can typically be solved through optimiza-

tion techniques (e.g., computing the choice that minimizes the maximum regret). However,

there is often a preference bottleneck, where it is too costly or even impossible for users to

report full information about their preferences. This happens, for example, in airline recom-

mendation systems, where the number of possible itineraries is large [26]. Another instance

is combinatorial voting, where agents vote on multiple related issues [70].
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To overcome the preference bottleneck, a well accepted approach is preference elicitation.

This aims to elicit as little as possible of the agents' preferences as is required, to make a good

decision. Previous work focused on achieving one of the following two goals:

1. Social choice. We want to make a decision that will a�ect all agents. Applications

include combinatorial auctions [107], voting [40, 75], and crowdsourcing [98].

2. Personalized choice. We want to �learn� an agent's preferences based on a part of her

own preferences or preferences of other similar agents. Applications include product

con�guration [26], matching problems such as public school choice and recommender

systems [66] . See [24, 66] for recent developments.

In this chapter, we focus on elicitation for ordinal preferences, which means that preferences

are represented by rankings. We assume that preferences are generated by general random

utility models (GRUMs).

GRUMs are a signi�cant extension of random utility models (RUMs) [111], where the e�ect

of attributes of alternatives and agents are not considered. RUMs have been extensively

studied and applied in prior work but generally in ways that are specialized to particular

parametric forms; e.g., the Bradley-Terry model [29] and the Plackett-Luce model [77, 99].

In a GRUM, an agent's preferences are generated as follows: Each alternative is character-

ized by a utility distribution, and the agents rank the alternatives according to the perceived

utilities, which are generated from the corresponding utility distributions. Parameters for

each utility distribution are computed by a combination of attributes of the alternative and

attributes of the agent. Parameters of the GRUM model the interrelationship between alter-

native attributes and agent attributes. See Section 4.2.1 for more details.

4.1.1 Contributions

We propose a general adaptive method (Algorithm 5) for preference elicitation within the

Bayesian experimental design framework (see, e.g., [35]), guided by maximum expected infor-

mation gain. In this chapter, we focus on a special case, where in each step a targeted agent

reports her preferences in full.
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We target an agent for elicitation who, based on agent attributes, will provide the greatest

expected information gain. In addition to using classical criteria in Bayesian experimental

design, we also propose two new criteria that are designed to best improve the quality of

the inferred rank preferences, one for predicting social choice, and the other for predicting

personalized choice.

Directly computing the optimal agent to target next can be challenging due to the lack

of e�cient algorithms for MAP inference and lack of e�cient computation of observed Fisher

information [45]. To overcome this, we extend the MC-EM algorithm and conditions for

convergence developed for RUMs in Chapter 1 to handle GRUMs. We compute observed

Fisher information within the E-step.

We test the proposed methods for MAP/MLE inference and preference elicitation for

GRUMs on a synthetic data-set as well as the Sushi data-set [69].

We compare the performance under the new criteria and performance under the standard

criteria from Bayesian experimental design literature. Results show that our elicitation frame-

work can signi�cantly improve the precision of estimation for a moderate number of samples

in social choice, relative to random agent and some ordering elicitation criteria.

4.1.2 Related Work

GRUMs are a speci�c case of the generative model studied by Berry, Levinsohn and Pakes [17].

The BLP model explicitly considers unobserved attributes of alternatives and agents, whereas

GRUMs only consider observed attributes. The focus of this chapter is to provide a platform

for elicitation which has not been considered in the BLP setting.

However, most work on the BLP model has focused on calculating aggregate properties

(for example, the demand curve) when a distribution of the values of unobserved attributes

are given. Moreover, the methodologies developed in [17] and subsequent papers only work

for the logit model. That is: the utility distributions are the standard Gumbel distribution,

which is a special case. Even when there are no unobserved variables, BLP was not known to

be computationally tractable, beyond the logit case.
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The approximate method of maximum simulated likelihood has been proposed for GRUMs [118].

We focus on the use of MAP/MLE inference to drive preference elicitation for GRUMs. We

developed an MC-EM algorithm for a large class of GRUMs. To the best of our knowledge,

this is the �rst practical algorithm for MAP/MLE inference for general GRUMs, beyond the

logit case. We note that RUMs are a special class of GRUMs. Therefore, the new algorithm

naturally extends the algorithm developed in Chapter 1 for RUMs. 1

For social choice, the elicitation scheme designed by Lu and Boutilier [75] aims at com-

puting the outcomes of di�erent commonly studied voting rules. In comparison, the proposed

elicitation scheme aims at computing the MAP of GRUMs, which we believe to be di�erent

from any commonly studied voting rules.

Compared to the elicitation scheme designed by Pfei�er et al. [98, 101] for the Bradley-

Terry model, this chapter focuses on the more general family of GRUMs. Also, as we will see

later in the chapter in Example 9, the elicitation scheme by Pfei�er et al. is closely related to a

well studied criterion under the Bayesian experimental design framework called D-optimality.

The new elicitation framework presented here allows us to use many other classical criteria

in Bayesian experimental design, including D-optimality. Experimental results on synthetic

data show that D-optimality might not be a good choice for social choice for rankings.

The new elicitation framework considers the attributes of agents and alternatives, allowing

for more options for elicitation (e.g. we can target an agent with speci�c attributes). The

proposed method for elicitation is related to the general idea used for the same goal in [66, 34,

25]. However, the proposed method is more general, in the sense that we can handle orders

with any length (e.g. Sushi dataset which includes full orders and not only pairwise data). It

can also handle any partial order situation due to missing data or design of voting rule (e.g.

k �rst voting or ranks for some missing parties).

1Inference and elicitation for GRUMs with unobserved attributes are two interesting directions for future
research.
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4.2 Preliminaries

In this section, we formally de�ne GRUMs and their corresponding MAP mechanism. Further,

we recall basic ideas in Bayesian experimental design.

4.2.1 General Random Utility Models

We consider a preference aggregation setting with a set of alternatives C = {c1, .., cm}, and

multiple agents indexed by i ∈ {1, . . . , n}. In GRUMs, for every j ≤ m, alternative j is

characterized by a vector of L ∈M real numbers, denoted by ~zj . And for every i ≤ n, agent i

is characterized by a vector of K ∈ N real numbers, denoted by ~xi.
2 Throughout the chapter,

j denotes an alternative, i denotes an agent, l denotes the attribute of an alternative, and k

denotes an agent attribute.

The agents' preferences are generated through the following process.Let uij be agent i's

perceived utility for alternative j, and let B be a K × L real matrix that models the linear

inter-relation between attributes of alternatives and attributes of agents.

uij = δj + ~xiB(~zj)
T + εij , (4.1)

uij ∼ Pr(·|~xi, ~zj , δj , B) (4.2)

In words, agent i's utility for alternative j is composed of the following three parts:

1. δj : The intrinsic utility of alternative j, which is the same across all agents;

2. ~xiB(~zj)
T : The agent-speci�c utility, where B is the same across all agents;

3. εij : The random noise generated independently across agents and alternatives.

Given this, an agent ranks the alternatives according to her perceived utilities for the alter-

natives in the descending order. That is, for agent i, cj1 �i cj2 if and only if uij1 > uij2 .
3 The

2In this chapter we focus on the case where all ~xi and ~zj are numerical attributes rather than categorical
attributes.

3For all reasonable GRUMs the situations with tied perceived utilities have zero probability measure.
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parameters for a GRUM are denoted by Θ = (~δ,B). When K = L = 0, the GRUM model

degenerates to RUM.

Figure 4.1: The generative process for GRUMs.

Example 8 Figure 4.1 illustrates a GRUM for three alternatives (di�erent kinds of sushi) and

n agents. Each alternative is characterized by its attributes including heaviness, price, and

custom loyalty. Each agent is characterized by attributes including gender and age. Agent

attributes have di�erent relationships with alternative attributes. For instance, a person's

salary can be related to a preference in regard to the sushi's price rather than heaviness. The

outcome of this relationship is a vector of random utilities, assigned to the alternatives by

each agent.

4.2.2 MAP Inference

Given a GRUM, the preference pro�le is viewed as data, D = {π1, . . . , πn}, where each πi

is a permutation (πi(1), . . . , πi(m)) of {1, . . . ,m} that represents the full ranking [cπi(1) �i

cπi(2) �i · · · �i cπi(m)]. We take the standard maximum a posteriori (MAP) approach to
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estimate the parameters.

MAP is di�erent from MLE which is used in former chapters. The purpose of MAP is to

combine the prior in the estimation as well which is essential in the sequential estimation of

parameters.

Recall that each agent's preferences are generated conditionally independently given the

parameters Θ. Therefore, in GRUMs, the probability (likelihood) of the data given the ground

truth Θ is: Pr(D | Θ) =
∏n
i=1 Pr(πi | Θ), where:

Pr(πi|Θ) =∫
uiπi(1)>···>uiπi(n)

∏
j

Pr(uiπi(j)|~xi, ~zj ,Θ) duiπi(j)

Suppose we have a prior over the parameters, for MAP inference we aim at computing Θ to

maximize the posterior function:

Pr(Θ|D) =

n∏
i=1

Pr(πi | Θ) Pr(Θ)

After computing Θ∗ that maximizes posterior, we can make joint decisions for the agents based

on Θ∗.For example, we can choose the winner to be the alternative whose utility distribution

has the highest mean, or choose a winning ranking over alternatives by ranking the means of

the utility distributions.

4.2.3 One-Step Bayesian Experimental Design

Suppose we have a parametric probabilistic model. Let Pr(Θ∗) denote the prior distribution

over the parameters. A one-step Bayesian experimental design problem is composed of two

parts: a set of designs H and a quality function G(·) de�ned on any distribution over the

parametric space.

A design h ∈ H is mathematically characterized by Pr(·|Θ∗, h), which controls the way

the data D are generated for any ground truth parameter vector Θ∗. Therefore, for any given

design h, we can compute the probability for dataD as Pr(D|h). Given any dataD and design

h, we can compute the posterior distribution of parameters Pr(·|D,h). One step refers to the
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step by step procedure which chooses an optimal elicitation at every step. The objective of

Bayesian experimental design is to choose the design h that maximizes the expected quality

of the posterior of MAP parameters, where the randomness comes from the data that are

generated given h. Formally, we aim at computing h∗ as follows.

h∗ = arg max
h

∫
G(Pr(·|D,h))× Pr(D|h) dD (4.3)

The quality function G(Pr(·|D,h)) represents the performance of the decision process for

an observed data and a design. The purpose is to search for designs that provide good

performance given all possible data-sets.

Often, directly computing (4.3) is hard. Even G(Pr(·|D,h)) is di�cult to compute given

D and h. Researchers have taken various approximations to (4.3). A common approach is to

approximate Pr(·|D,h) by a normal distribution N (Θ̂, [R(Θ̂) + Ih(Θ̂)]−1), where:

• Θ̂ is the MAP of D,

• R(Θ) is the precision matrix of the prior over Θ, that is, R = ∇2
Θ log Pr(Θ), and

• Ih(Θ̂) is the Fisher information matrix de�ned as follows. Let Xπ = ∇Θ log Pr(π|~Θ, h),

we have

Ih(Θ̂) = Eπ(Xπ(Xπ)T |Θ=Θ̂).

Equivalently, if log Pr(π|Θ, h) is twice di�erentiable w.r.t. Θ for each ranking π, then

Ih(Θ̂) = −Eπ(∇2
Θ log Pr(π|Θ, h)|Θ=Θ̂).

If we approximate Pr(·|D,h) by N (Θ̂, [R(Θ̂) + Ih(Θ̂)]−1), then the most commonly studied

quality functions are functions of Θ̂ and h. More precisely, they are functions of Θ̂ and

R(Θ̂) + Ih(Θ̂). In such cases, we can rewrite G(N (Θ̂, Ih(Θ̂))) = G∗R(Θ̂, h). Then, (4.3)

becomes:

h∗ = arg max
h

∫
G∗R(Θ̂, h) · Pr(Θ̂|h)dΘ̂ (4.4)
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Still the integration in (4.4) is often hard to compute, and is approximated by G∗R(Θ∗, h),

where Θ∗ is the mode of Pr(Θ). Some popular quality functions and corresponding approxi-

mations are summarized in Table 4.1.

Name Quality function Heuristics G∗
R(Θ̂, h)

D-optimality Gain in Shannon information det(R+ Ih(Θ̂))

E-optimality Minimum eigenvalue of the information matrix λmin{R+ Ih(Θ̂)}
social choice Minimum inverse of pairwise coe�cient of variation Equation (4.5)

personalized choice Minimum inverse of pairwise coe�cient of variation Equation (4.6)

Table 4.1: Di�erent criteria for experimental design.

Example 9 The adaptive elicitation approach by Pfei�er et al. [98] is a special case of

Bayesian D-optimality design, where H is the set of all pairwise questions between alterna-

tives. Pfei�er et al. derived formulas for Pr(·|Θ∗, h) for each h ∈H , and chose h∗ according

to (4.3). The quality function they use is the negative Shannon entropy, which is exactly

D-optimality as shown in Table 4.1.

4.3 A Preference Elicitation Scheme

In applications to preference elicitation, we adapt the one-step Bayesian experimental design

to multiple iterations. For any iteration t, let Dt denote the preferences elicited in all previous

iterations. The prior distribution Prt over parameters is the posterior of observing Dt, that

is: for any Θ, Prt(Θ) = Pr(Θ|Dt). Then we solve a standard one-step Bayesian experimental

design problem w.r.t. the prior Prt to elicit a new agents' preferences, and then form Dt+1

for the next iteration.

Our general elicitation framework for GRUMs is presented as Algorithm 5. To allow

�exibility of using various criteria of Bayesian experimental design, we let the input consist

of the heuristic G∗R(Θ̂, h), which is usually a function of Θ̂ and R(Θ̂) + Ih(Θ̂). To present

the main idea, in this chapter the set of designs H is the multi-set of all agents attributes.

That is, in each iteration (Steps 1∼3) we will compute an h ∈ H and query the preferences

of a random agent whose attributes are h.4 Steps 1∼3 are hard to compute. In this chapter,

4The elicitation scheme can be extended to other types of elicitation questions, for instance, pairwise
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Algorithm 5 Preference Elicitation for GRUMs

Heuristic: G∗R(Θ̂, h).
Randomly choose an initial set of data D1.
for t = 1 to T do
1: Compute Θt = MAP(Dt).
2: Compute the precision matrix Rt of Pr(Θ|Dt) at Θt.
3: Compute ht ∈H that maximizes G∗Rt(Θ

t, ht).
4: Query an agent whose attributes are ht. Let πt denote her preferences. Dt+1 ←
Dt ∪ {πt}, H ←H \ {ht}.

end for

we will use a multivariate normal distribution N (Θ̂, JDt(Θ̂)−1) to approximate Pr(Θ|Dt) in

Step 2, where JDt(Θ̂) is the observed Fisher information matrix, and we immediately have

Rt = JDt(Θ̂).5 Given any data D, JD(Θ̂, h) is de�ned as follows. Again, let Θ̂ = MAP(D).

JD,h(Θ̂) =
∑
π∈D

(Xπ × (Xπ)T |Θ=Θ̂).

Equivalently, if log Pr(π|Θ, h) is twice di�erentiable w.r.t. Θ for each ranking π, then we have:

JD,h(Θ̂) = −
∑
π∈D

(∇2
Θ log Pr(π|Θ, h)|Θ=Θ̂).

In Section 4.4 we propose an MC-EM algorithm to compute MAP(Dt) in Step 1. In Sec-

tion 4.4.3 we study how to compute the observed Fisher information matrix Rt = JDt(Θ
t),

and use it for elicitation as well as accelerating MC-EC algorithm. Computation of the Fisher

information matrix Ih(Θ̂) used in Step 3 will also be discussed in Section 4.4.3.

The choice of G∗R is crucial for the performance of the elicitation algorithm. The two

criteria summarized in Table 4.1 are generic criteria for making the posterior as certain as

possible, which may not work well for eliciting the aggregated ranking or individual rankings.

4.3.1 A New Elicitation Criterion for Social Choice

The social choice ranking is the ranking over the components of ~δ. Therefore, if the objective is

to elicit preferences for the aggregated ranking, it makes sense to make each pairwise compar-

comparisons and �top-k�.

5See e.g. page 224 [15] for justi�cation of this approximation.
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ison as certain as possible. Following the idea in t-test, we propose to use
|mean(δj1 − δj2)|
std(δj1 − δj2)

(which is the inverse of coe�cient of variation) to evaluate the certainty in pairwise com-

parison between cj1 and cj2 . The larger the value is, the more certain we are about the

comparison between cj1 and cj2 . Therefore, we propose to use the following quality function

G distributions over Θ. We recall that Θ = (~δ,B).

G(Pr) = min
j1 6=j2

|mean(δj1 − δj2)|
std(δj1 − δj2)

.

In words, G is the minimum inverse of the coe�cient of variation across all pairwise compar-

isons. The corresponding G∗R is thus the following.

G∗R(Θ, h) = min
j1 6=j2

|mean(δj1 − δj2)|√
Var(δj1) + Var(δj2) + 2cov(δj1 , δj2)

, (4.5)

Where |mean(δj1 − δj2)| can be computed from Θ and
√
Var(δj1) + Var(δj2) + 2cov(δj1 , δj2)

can be computed from R+ Ih(Θ).

4.3.2 Generalization to Personalized Choice

Following the idea proposed in the last subsection, we can de�ne a similar quality function

G~x(Pr) for any agent with attributes ~x. This makes the ranking of the alternatives w.r.t. the

deterministic parts of the perceived utilities as certain as possible, as follows. For any j ≤ m,

let µj = δj + ~xB(~zj)
T . We note that µj is a linear combination of the parameters in Θ.

G~x(Pr) = min
j1 6=j2

|mean(µj1 − µj2)|
std(µj1 − µj2)

(4.6)

G∗~x(Θ, h) can be de�ned in a similar way. However, usually we want to predict the rankings

for a population of agents, for which only a distribution over agent attributes is known.

Mathematically, let ∆ denote a probability distribution over RL. We can extend the criterion

for personalized choice w.r.t. ∆ as follows.

G∆(Pr) =

∫
~x∈RT

G~x(Pr) ·∆(~x) d~x.

79



G∆ is usually hard to compute since it involves integrating G~x over all ~x in support of ∆,

which is often not analytically or computationally tractable. In the experiments, we will use

the criterion de�ned in (4.5) for personalized ranking and surprisingly it works well.

4.4 An MC-EM Inference Algorithm

In this section, we extend MC-EM algorithm for RUMs to GRUMs. We focus on GRUMs

where the conditional probability Pr(·|~xi, ~zj , δj , B) belongs to the exponential family, which

takes the following form: Pr(U = u|~xi, ~zj , δj , B) = eηij ·T (u)−A(ηij)+H(u), where ηij is the vector

of natural parameters, which is a function of ~xi, ~zj ,Θ. A is a function of ηij and T and H are

functions of u.

Let U = ( ~u1, . . . , ~un) denote the latent space, where ~ui = (ui1, . . . , uim) represent agent i's

perceived utilities for the alternatives. The general framework of the proposed EM algorithm

is illustrated in Algorithm 6. The algorithm has multiple iterations, and in each iteration

there is an E-step and a general M-step with a regression due to the generalization of RUM.

Therefore, the algorithm is a general EM (GEM) algorithm. We recall that Θ = (~δ,B)

represents the parameters.

Algorithm 6 Framework of the EM algorithm

In each iteration.

E-Step : Q(Θ,Θt)

= E~U

{
log

n∏
i=1

Pr(~ui, π
i|Θ) + log(Pr(Θ))|D,Θt

}
(4.7)

M-step : compute Θt+1 s.t. Q(Θt+1,Θt) > Q(Θt,Θt)

The algorithm builds in the prior in both E-step and M-step and hence it is �nding an

MAP estimator. The algorithm is performed for a �xed number of iterations or until no Θt+1

in the M-step can be found. However, the E-step cannot be done analytically in general, and

we will use a Monte Carlo approximation for the E-step.
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4.4.1 Monte Carlo E-Step: Gibbs Sampling

E-step is similar to the E-step in Chapter 2 with a modi�cation that considers the prior.

We recall that Pr(·|~xi, ~zj , δj , B) belongs to the exponential family. We have the following

calculation for iteration t, where µij = δij + ~xiB(~zj)
T for any given Θ = (~δ,B), and µtij =

δtij + ~xjB
t(~zi)

T .

Q(Θ,Θt) = E~U{log
n∏
i=1

Pr(~Ui, π
i | Θ) + log Pr(Θ) | D,Θt}

=
n∑
i=1

m∑
j=1

Euij{log Pr(uij |Θ) | πi,Θt}

=

n∑
i=1

m∑
j=1

ηijS
t
ij −A(ηij) +W,

where Stij = Euij∼Pr(uij |ηtij){uij |π
i}. (4.8)

We use a Monte Carlo approximation similar to that used in Chapter 2, which involves

sampling U from the distribution Pr(U | D,Θt) using a Gibbs sampler, and then approximate

St+1
ij by 1

N

∑N
k=1 u

k
ij . Each step of the Gibbs sampler is sampling from a truncated exponential

distribution, illustrated in Figure 2 in Chapter 2.

4.4.2 General M-Step

After we compute St+1
ij 's, the M-step aims at improving Q(Θ,Θt):

Q(Θ,Θt) =

m∑
j=1

n∑
i=1

logPrj(uij = St+1
ij | Θ) + log(Pr(Θ))

We use steps of Newton's method to improve Q(Θ,Θt) in the M-step (we can use as many

steps at each iteration to ensure the convergence for each M-step).

Θt+1 = Θt − (∇2
ΘQ(Θ,Θt)|Θt)−1∇ΘQ(Θ,Θt)|Θt (4.9)
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∇2
ΘQ(Θ,Θt) and ∇ΘQ(Θ,Θt) can be computed immediately from Stij as follows.

∇2
ΘQ(Θ,Θt) =

n∑
i=1

m∑
j=1

∇2
ΘηijS

t
ij −∇2

ΘA(ηij)

∇ΘQ(Θ,Θt) =

n∑
i=1

m∑
j=1

∇ΘηijS
t
ij −∇ΘA(ηij)

4.4.3 Computing Observed Fisher information

Computation of the observed Fisher information will not only be used in Step 2 of the new

elicitation scheme Algorithm 5, but also will accelerate the GEM algorithm [73]. Fisher

information can be computed by the following method proposed by Louis [73]. From the

independence of agents we have: JD(Θ̂) =
∑

i Jπi(Θ̂), where,

Jπi(Θ) = EUi{−∇2
Θ logP (πi, Ui|Θ)|Θ, πi}

− EUi{∇Θ logP (πi, Ui|Θ)∇Θ logP (πi, Ui|Θ)T |Θ, πi}

Jπi(Θ̂) is computed using the samples (uij 's) generated in MC step in every iteration of EM

algorithm as follows.

∇2
Θ logP (πi, Ui|Θ) =

n∑
i=1

m∑
j=1

∇2
ΘηijUij −∇2

ΘA(ηij)

∇Θ logP (πi, Ui|Θ) =

n∑
i=1

m∑
j=1

∇ΘηijUij −∇ΘA(ηij)

The Fisher information matrix Ih(Θ̂) used in Step 3 of Algorithm 5 can be approximated

by limn→∞
JDn (Θ̂)

n , where Dn is the data-set of n rankings randomly generated according to

Pr(π|Θ̂). Therefore, we can use the techniques developed in this subsection to approximately

compute Ih(Θ̂).

4.4.4 MC-EM Algorithm in Detail

The details of the proposed EM algorithm (with �xed number of iterations) are illustrated in

Algorithm 7.
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Algorithm 7 MAP for GRUM

Input: D = (π1, . . . , πn), Θstart, T ∈ N
Let Θ0 = Θstart

for t = 1 to T do
for every πi ∈ D do
Compute St+1

ij and J(Θt+1) according to (4.8) for all j ≤ m.
end for
Compute Θt+1 according to (4.9).

end for

4.5 Global Optimality for Posterior Distribution

In this section, we generalize theorems on the global optimality of the likelihood function

for RUMs in Chapter 2 to GRUMs. The EM algorithm tends to �nd local optimal of the

posterior distribution, hence, proving global optimality of MAP helps to avoid issues due to

EM. First, we present the concavity of the posterior distribution in GRUMs.

Theorem 17 For the location family, if for every j ≤ m the joint probability density func-

tion for ~εi and the prior Pr(Θ) are log-concave, then Pr(Θ|D) is concave up to a known

transformation.

For P-L, Ford, Jr. [47] proposed the following necessary and su�cient condition for the set

of global maxima solutions to be bounded (more precisely, unique) when
∑m

j=1 e
Θj = 1. The

conditions are generalized to the case of RUMs in Chapter 2. We prove that this condition is

also necessary and su�cient for global maxima solutions of the likelihood function of GRUMS

to be bounded.

Condition 3 Given the data D, in every partition of the alternatives C into two nonempty

subsets C1 ∪ C2, there exists c1 ∈ C1 and c2 ∈ C2 such that there is at least one ranking in D

where c1 � c2.

Theorem 18 Suppose we �x µ11 = 0. Then, the set SD of global maxima solutions to

Pr(D|Θ) is bounded in Θ if and only if the data D satis�es Condition 3 and the linear model

describing µ in terms of Θ is identi�able.
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4.6 Experimental Results

In this section, we report experimental results on synthetic data and a Sushi dataset from

Kamishima [69] for three types of tests described below.

4.6.1 Social Choice and Synthetic Data

We �rst show the consistency of the model for social choice. We generate random data sets

with δj ∼ Normal(1, 1), Bij ∼ Normal(0, 1), Xi ∼ Normal(0, 1), Zi ∼ Normal(0, 1), and then

generate random utilities with the random noise εij generated with mean zero and variance

of 1. The results in Figure 4.2 are generated by varying the number of agents for which we

have preference information. For each number of agents, we estimate the parameter set Θ,

and evaluate the Kendall correlation between estimated and true ranks with respect to δj 's.

These results illustrate the improvement in estimated social choice order as the number of

agents in the population increases.
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Figure 4.2: Asymptotic behavior for synthetic data and social choice in left panel. Asymptotic

behavior for synthetic data and personalized choice in right panel. The y-axis is the average

Kendal correlation between the estimated social choice and the ground truth order.

In studying elicitation for social choice, we test the performance of the elicitation schemes

shown in Table 4.1, i.e. D-optimality, E-optimality, and the proposed criterion in (4.5), and

compare the results to random elicitation. We adopt the following two synthetic datasets:
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(a) Social choice: Dataset 1. (b) Social choice:
Dataset 2.

Figure 4.3: Comparison of elicitation criteria described in Table 4.1 for synthetic data and
social choice.
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(a) Personalized choice: Dataset 1. (b) Personalized choice:
Dataset 2.

Figure 4.4: Comparison of elicitation criteria described in Table 4.1 for synthetic data for
personalized choice.
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(a) Social choice: Sushi dataset. (b) Personalized choice: Sushi
dataset.

Figure 4.5: Comparison of elicitation criteria described in Table 4.1 for the Sushi dataset [69].
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Data-set 1: (Bij ∼ N(0, 1), Xi ∼ N(0, 1), Zi ∼ N(0, 1)), δj ∼ 0.1 ∗ N(1, 1) and the error

term εij ∼ N(0, 1).

Data-set 2: The same as Data-set 1, except that the δj ∼ N(1, 1) and the error term

εij ∼ N(0, 1/4).

Compared to the GRUM in data-set 1, the model adopted in data-set 2 has a stronger

social component and less noise. For each data-set we generate 100 agents' preferences, and

use the three criteria shown in Table 4.1 to elicit n ∈ [1, 100] rankings. For each n, we apply

Algorithm 7 and compare the ranking over the learned δj 's with the ground truth social choice

ranking.

The results are shown in Figure 4.3 (graphs are smoothed with a moving window with

length 25), where the x-axis is the number of agents whose preferences are elicited, and the

y-axis is the Kendall correlation between the learned ranking and the ground truth ranking.

We make the following observations.

• In Dataset 1 where the social component is small, it is not clear which criteria is better, as

shown in Figure 4.3(a), and there are no statistically signi�cant results.

• In data-set 2 where the social component is large, E-optimality generally works better than

the proposed method, while both work better than random, which works surprisingly better

than D-optimality, as shown in Figure 4.3(b). However, only a few of these observations are

statistically signi�cant with 90% con�dence, for example, considering the interval of [34, 44]

agents, E-optimality and the proposed method outperforms Random but the comparison

between the other methods is not signi�cant at 90%.

4.6.2 Personalized Choice and Synthetic Data

For personalized choice we �rst show the consistency results in Figure 4.2, where the bottom

box-plot shows the Kendall correlation between noisy data (i.e., an individual agent's random

utility and thus preference order) and the true preference order for each agent, and the top box-

plot shows Kendall correlation between estimated agent preference orders and true preference

orders, as obtained through the model.
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Turning to preference elicitation, we compare the schemes in Table 4.1 with the random

method for the same two datasets as were adopted for social choice. The results are shown in

Figure 4.4 (graphs are smoothed with a moving window with length 20). For each group of

100 agents, and for any n ∈ [1, 100] and each elicitation scheme, we compute the MAP of Θ,

and use it to compute the Kendall correlation between the true preferences and the predicted

preference for all 100 agents in this group. We make the following observations:

• In data-set 1, where the social component is small, when the number of agents used in

elicitation is not too large (< 50), the proposed method works better than E-optimality,

which is itself comparable to random. Both methods are better than D-optimality. See

Figure 4.4(a). Some of these observations are statistically signi�cant, for example, when

n = [24, 25], E-optimality works better than D-optimality with 90% signi�cance, E-optimality

works better than random with 75% signi�cance, the proposed method works better than E-

optimality with 75% signi�cance, and the proposed method works better than D-optimality

with 75% signi�cance.

• In data-set 2, where the social component is large, E-optimality generally works better

than the proposed method, both work better than random, and random is more e�ective

than D-optimality, as shown in Figure 4.4(b). However, only a few of these observations are

statistically signi�cant with 90% con�dence interval, for example E-optimality outperforms

D-optimality when the number of agents is in the interval [29, 42].

4.6.3 Sushi Data

In synthetic experiments, we have access to the ground truth. However, in the real world data

(Sushi data) there are no data available as ground truth. In this experiment, we estimated

parameters Θ using preferences from 1000 agents, randomly chosen from the 5000 agents in

the data-set. And adopt those parameters as the ground truth for the experimental study.

The categorical features are discarded from the data set.6

The results are shown in Figure 4.5 (graphs are smoothed with a moving window with

6We focus on non categorical features in this work. The method can be extended to categorical features.
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length 10), where (a) shows comparisons for social choice (where we rank δ's), and (b) shows

comparisons for personalized choice. We make the following observations:

• For social choice (a), none of the criteria work well (and note that the Kendall correlations

are low for all criteria). We feel that this is reasonable since preferences over sushi is likely

high personalized with a small social component to preferences.

• For personalized choice (b), we observe that the proposed method is generally the most

e�ective, while the performance of E-optimality and D-optimality is very close to random.

None of these results are statistically signi�cant with 90% con�dence.

4.7 Conclusions

We have proposed a method for preference elicitation of ordinal rank data, adopting the

framework of Bayesian experimental design. This includes two new criteria, each optimal

for social and personalized case respectively. The proposed criterion for social choice can

signi�cantly improve the precision of estimation, relative to random elicitation and some

of the classical elicitation criteria. This work can also be seen as preference elicitation for

learning to rank, since we focus on a learning to rank setting and design elicitation methods.

In the future, we can adopt the methodology in other preference elicitation applications;

for example recommendation systems, product prediction and so forth. Moreover, it is an

interesting direction to use a similar technique to decide what alternatives to choose to elicit

partial ranks on them is an interesting direction.
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Chapter 5

Random Utility for Personalized Rank

Data With Multiple Types

5.1 Introduction

Random utility models (RUM), which presume agent utility to be composed of a deterministic

component and a stochastic unobserved (by the analyst) error component, are frequently

used to model choices by individuals over alternatives. Examples from economics include the

popular random coe�cients logit model [17] where the data may involve a (partial) consumer

ranking of products [19].

In a RUM, each agent receives an intrinsic utility that is common across all agents for a

given choice of alternative, a pairwise-speci�c utility that varies with the interaction between

agent characteristics and the characteristics of the agent's chosen alternative, as well as an

agent-speci�c taste shock (noise) for his chosen alternative. These ingredients are used to

construct a posterior/likelihood function of speci�c data moments, such as the fraction of

agents of each type that choose each alternative.

To estimate preferences across heterogenous agents, one approach described in prior work

[61, 68] is to assume a mixture models with a �nite number of preference types. We build

upon this work by developing an algorithm to learn the classi�cation of agent types within
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this mixture. Empirical researchers are increasingly being presented with rich data on the

choices made by individuals, and asked to classify these agents into di�erent types [90, 91] and

to estimate the preferences of each type [20, 66]. Examples of individual-level data used in

economics include household purchases from supermarket-scanner data [1, 63], and patients'

hospital or treatment choices from health-care data [64].

The non probabilistic partitioning of agents into latent, discrete sets (or �types�) can allow

for the study of the underlying distribution of preferences across a population of heterogeneous

agents. For example, preferences may be correlated with an agent characteristic, such as

income, and the true classi�cation of each agent's type, such as his income bracket, may

be unobserved. In future work we can use a model of demand to estimate the elasticity in

behavioral response of each type of agent and by aggregating these responses over the di�erent

types of agents, it can be possible to simulate the impact of a social or public policy [18], or

simulate the counterfactual outcome of changing the options available to agents [60].

5.1.1 Our Contributions

This chapter focuses on estimating generalized random utility models (GRUM) when the

observed data is partial orders of agents' rankings over alternatives and when latent types are

present.

We build on Chapters 1 and 3 results on estimating GRUMs by allowing for an interaction

between agent characteristics and the characteristics of the agent's chosen alternative. The

interaction term helps us to avoid unrealistic substitution patterns due to the independence

of irrelevant alternatives [83] by allowing agent utilities to be correlated across alternatives

with similar characteristics. For example, this prevents a situation where removing the top

choices of both a rich household and a poor household lead them to become equally likely

to substitute to the same alternative choice. Our model also allows the marginal utilities

associated with the characteristics of alternatives to vary across agent types.

To classify agents' types and estimate the parameters associated with each type, we pro-

pose an algorithm involving a novel application of reversible jump Markov Chain Monte Carlo
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Figure 5.1: A GRUM with multiple types of agents

(RJMCMC) techniques. RJMCMC can be used for model selection and learning a posterior

on the number of types in a mixture model [109]. Here, we use RJMCMC to cluster agents

into di�erent types, where each type exhibits demand for alternatives based on di�erent pref-

erences; i.e., di�erent interaction terms between agent and alternative characteristics.

Allowing individuals to have characteristics and existence of types leads to the opportunity

to understand how characteristics correlate with characteristics of the rank order distribution.

We apply the approach to a real-world data-set involving consumers' preference rankings

and also conduct experiments on synthetic data to perform coverage analysis of RJMCMC.

The results show that our method is scalable, and that the clustering of types provides a better

�t to real world data. The proposed learning algorithm is based on Bayesian methods to �nd

posteriors on the parameters. This di�erentiates us from previous estimation approaches in

econometrics that rely on techniques based on the generalized method of moments.1

1There are alternative methods to RJMCMC, such as the saturation method [31]. However, the memory
required to keep track of former sampled memberships in the saturation method quickly becomes infeasible
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The main theoretical contribution establishes identi�ability of mixture models over data

consisting of partial orders. Previous theoretical results have established identi�ability for

data consisting of vectors of real numbers [4, 56], but not for data consisting of partial orders.

We also establish conditions under which the GRUM likelihood function is uni-modal for

the case of observable types. We do not provide results on the log concavity of the general

likelihood problem with latent type, leaving this for future study.2

5.1.2 Related work

Prior work in econometrics has focused on developing models that use data aggregated across

types of agents, such as geographical location of a market, and that allow heterogeneity

by using random coe�cients on either agents' preference parameters [17, 19] or on a set of

dummy variables that de�ne types of agents [16, 84], or by imposing additional structure on

the covariance matrix of idiosyncratic taste shocks [50]. In practice, this approach typically

relies on restrictive functional assumptions about the distribution of consumer taste shocks

that enter the RUM in order to reduce computational burden. For example, the logit model

[83] assumes i.i.d. draws from a Type I extreme value distribution. This may lead to biased

estimates, in particular when the number of alternatives grow large [14].

Previous work on clustering ranking data for variations of the Placket-Luce (PL) model [90,

91] has been restricted to settings without agent and alternative characteristics. Moreover,

Gormley et al. [90] and Chu et al. [36] performed clustering for RUMs with normal distri-

butions, but this was limited to pairwise comparison data. Inference of GRUMs for partial

ranks involved similar computational challenges addressed in Chapter 1. Moreover, in mixture

models, assuming an arbitrary number of types can lead to biased results, and reduces the

statistical e�ciency of the estimators [48].

The multiple type model in the second chapter does not consider observed user character-

given the combinatorial nature of our problem.

2In the chapter the notation z is used for observed characteristics as opposed to latent characteristics in
Chapter 2.
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istics and tries to capture the heterogeneity using latent user characteristics.

To the best of our knowledge, we are the �rst to study the identi�ability and inference

of GRUMs with multiple types. Inference for GRUMs has been generalized in Chapter 3,

However, the methods in Chapter 3 do not consider existence of multiple types. The proposed

method here also applies to partial orders. The inference method establishes a posterior on the

number of types, resolving the common issue of how the researcher should select the number

of types. Moreover, the use of RJMCMC in order to compute a posterior on the number of

parameters is a novel approach which allows us to have a full posterior on the model.

5.2 Model

Suppose we have N agents and M alternatives {c1, .., cM}, and there are S types (subgroups)

of agents and s(n) is agent n's type. The types are latent in this model.

Agent characteristics are observed and de�ned as an N × K matrix X, and alternative

characteristics are observed and de�ned as an L×M matrix Z, whereK and L are the number

of agent and alternative characteristics respectively.

Let unm be agent n's perceived utility for alternative m, and let W s(n) be a K × L real

matrix that models the linear relation between the attributes of alternatives and the attributes

of agents. We have,

unm = δm + ~xnW
s(n)(~zm)T + εnm, (5.1)

where ~xn is the nth row of the matrix X and ~zm is the mth column of the matrix Z. In

words, agent n's utility for alternative m consists of the following three parts:

1. δm: The intrinsic utility of alternative m, which is the same across all agents;

2. ~xnW
s(n)(~zm)T : The agent-speci�c utility, which is unique to all agents of type s(n), and

where W s(n) has at least one nonzero element;

3. εnm: The random noise (agent-speci�c taste shock), which is generated independently

across agents and alternatives.
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The number of parameters for each type is P = KL+M .

See Figure 5.2 for an illustration of the model. In order to write the model as a linear

regression, we de�ne matrix A
(n)
M×P , such that A

(n)
KL+m,m = 1 for 1 ≤ m ≤ M and

A
(n)
KL+m,m′ = 0 for m 6= m′ and A

(n)
(k−1)L+l,m = ~xn(k)~zm(l) for 1 ≤ l ≤ L and 1 ≤ k ≤

K. We also need to shu�e the parameters for all types into a P × S matrix Ψ, such that

ΨKL+m,s = δ and Ψ(k−1)L+l,s = W s
kl for 1 ≤ k ≤ K and 1 ≤ l ≤ L. We adopt B

(n)
S×1 to

indicate the type of agent n, with B
(n)
s(n),1 = 1 and B

(n)
s,1 = 0 for all s 6= s(n). We also de�ne

an M × 1 matrix, U (n), as U
(n)
m,1 = unm. We can now rewrite (5.1) as:

U (n) = A(n)ΨB(n) + ε (5.2)

Suppose that an agent has type s with probability γs. Given this, the random utility

model can be written as, Pr(U (n)|X(n), Z,Ψ,Γ) =
∑S

s=1 γs Pr(U (n)|X(n), Z,Ψs), where Ψs is

the sth column of the matrix Ψ. An agent ranks the alternatives according to her perceived

utilities for the alternatives. De�ne rank order πn as a permutation (πn(1), . . . , πn(m)) of

{1, . . . ,M}. πn represents the full ranking [cπi(1) �i cπi(2) �i · · · �i cπi(m)] of the alternatives

{c1, .., cM}. That is, for agent n, cm1 �n cm2 if and only if unm1 > unm2 (In this model,

situations with tied perceived utilities have zero probability measure).

The model for observed data π(n), can be written as:

Pr(π(n)|X(n), Z,Γ,Ψ) =

∫
π(n)=order(U(n))

Pr(U (n)|X(n), Z,Ψ,Γ) =
S∑
s=1

γs Pr(π(n)|X(n), Z,Ψs)

Note thatX(n) and Z are observed characteristics, while Γ and Ψ are unknown parameters.

π = order(U) is the ranking implied by U, and π(i) is the ith largest utility in U . D =

{π1, .., πN} denotes the collection of all data for di�erent agents. We have that

Pr(D|X,Z,Ψ,Γ) =
N∏
n=1

Pr(π(n)|X(n), Z,Ψ,Γ)
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Figure 5.2: Graphical representation of the multiple type GRUM generative process.

5.3 Strict Log-concavity and Identi�ability

In this section, we establish conditions for identi�ability of the types and parameters for

the model. Identi�ability is a necessary property in order for researchers to be able to infer

economically-relevant parameters from an econometric model. Establishing identi�ability in

a model with multiple types and ranking data requires a di�erent approach from classical

identi�ability results for mixture models [4, 56, e.g.]. Moreover, we establish conditions for

uni-modality of the likelihood for the parameters Γ and Ψ, when the types are observed.

Although our main focus is on data with unobservable types, establishing the conditions for

uni-modality conditioned on known types remains an essential step because of the sampling

and optimization aspects of RJMCMC. We sample from the parameters conditional on the

algorithm's speci�cation of types.

The uni-modality result establishes that the sampling approach is exploring a uni-modal

distribution conditional on its speci�ed types. Despite adopting a Bayesian point of view

in presenting the model, we adopt a uniform prior on the parameter set, and only impose

nontrivial priors on the number of types in order to obtain some regularization. Given this,

we present the theory with regards to the likelihood function from the data rather than the

posterior on parameters.
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5.3.1 Strict Log-concavity of the Likelihood Function

For agent n, we de�ne a set Gn of function gn's whose positivity is equivalent to giving an

order πn. More precisely, we de�ne gnm(~ψ,~ε) = [µnπn(m) + εnπn(m)]− [µnπn(m+1) + εnπn(m+1)]

for m = 1, ..,M − 1 where µnj = δj +
∑

k,l xn(k)W
s(n)
kl zj(l) for 1 ≤ j ≤ M . Here, ~ψ is a

vector of KL+M variables consisting of all δj 's and Wkl's. We have, L(~ψ, πn) = L(~ψ,Gn) =

Pr(gn1 (~ψ,~ε) ≥ 0, ..., gnM−1(~ψ,~ε) ≥ 0). This is because gnm(~ψ,~ε) ≥ 0 is equivalent to saying

alternative πn(m) is preferred to alternative πn(m+ 1) in the RUM sense.

Then using the result in Chapter 1 and [102], L(~ψ) = L(~ψ, π) is logarithmic concave

in the sense that L(λ~ψ + (1 − λ)~ψ′) ≥ L(ψ)λL(ψ′)1−λ for any 0 < λ < 1 and any two

vectors ~ψ, ~ψ′ ∈ RLK+M . Let's consider all n agents together. We study the function,

l(Ψ, D) =
∑N

n=1 logPr(πn|~ψs(n)). By log-concavity of L(~ψ, π) and using the fact that sum

of concave functions is concave, we know that l(Ψ, D) is concave in Ψ, viewed as a vector in

RSKL+M . To show uni-modality, we need to prove that this concave function has a unique

maximum. Namely, we need to be able to establish the conditions for when the equality holds.

If our data is subject to some mild condition, which implies boundedness of the parameter set

that maximizes l(Ψ, D), Theorem 19 bellow tells us when the equality holds. This condition

has been explained in Chapter 1 as condition (1).

Before stating the main result, we de�ne the following auxiliary (M−1)N ′×(SKL+M−1)

matrix Ã = ÃN
′
(Here, let N ′ ≤ N be a positive number that we will specify later.) such

that, Ã(M−1)(n−1)+m,(s−1)KL+(K−1)l+k is equal to xn(k)(zm(l) − zM (l))if s = s(n) and is

equal to 0 if s 6= s(n), for all 1 ≤ n ≤ N ′, 1 ≤ m ≤ M − 1, 1 ≤ s ≤ S, 1 ≤ k ≤ K, and

1 ≤ l ≤ L. Also, Ã(M−1)(n−1)+m,SKL+m′ is equal to 1 if m = m′ and is equal to 0 if m 6= m′,

for all 1 ≤ m,m′ ≤M − 1 and 1 ≤ n ≤ N ′.

Theorem 19 Suppose there is an N ′ ≤ N such that rank ÃN
′

= SKL + M − 1. Then

l(Ψ) = l(Ψ, D) is strictly concave up to δ-shift, in the sense that,

l(λΨ + (1− λ)Ψ′) ≥ λl(Ψ) + (1− λ)l(Ψ′), (5.3)

for any 0 < λ < 1 and any Ψ,Ψ′ ∈ RSKL+M , and the equality holds if and only if there exists
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c ∈ R, such that:  δm = δ′m + c for all 1 ≤ m ≤M

W s
kl = W ′skl for all s, k, l

Remark 1 We remark that the strictness �up to δ-shift� is natural. A δ-shift results in a

shift in the intrinsic utilities of all the products, which does not change the utility di�erence

between products. So such a shift does not a�ect our outcome. In practice, we may set one of

the δ's to be 0 and then our algorithm will converge to a single maximum.

Remark 2 It's easy to see that N ′ must be larger than or equal to 1 + SKL
M−1 . The reason we

introduce N ′ is to avoid cumbersome calculations involving N .

5.3.2 Identi�ability of the Model

In this section, we show the case of unobserved types our model is identi�able for a certain

class of CDFs for the noise in random utility models. Let's �rst specify this class of �nice�

CDFs:

De�nition 5 Let φ(x) be a smooth pdf de�ned on R or [0,∞), and let Φ(x) be the associated

CDF. For each i ≥ 1, we write φ(i)(x) for the i-th derivative of φ(x). Let gi(x) = φ(i+1)(x)

φ(i)(x)
. The

function Φ is called nice if it satis�es one of the following two mutually exclusive conditions:

(a) φ(x) is de�ned on R. For any x1, x2 ∈ R, the sequence gi(x1)
gi(x2) converges to some value

in R (as i→∞) only if either x1 = x2; or x1 = −x2 and gi(x1)
gi(x2) → −1 as i→∞.

(b) φ(x) is de�ned on [0,∞). For any x1, x2 ≥ 0, the ratio φ(i)(x1)

φ(i)(x2)
is independent of i for i

su�ciently large. Moreover, we require that φ(x1) = φ(x2) if and only if x1 = x2.

This class of nice functions contains Normal distributions and exponential distributions.

Identi�ability is formalized as follows: Let C = {{γs}Ss=1 |S ∈ Z>0, γi ∈ R>0,
∑S

s=1 γs =

1}. Suppose, for two sequences {γs}Ss=1 and {γ′s}S
′

s=1, we have:

S∑
s=1

γs Pr(π|X(n), Z,Ψ) =

S′∑
s=1

γ′s Pr(π|X(n), Z,Ψ′) (5.4)
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for all possible orders π of M products, and for all agents n. Then, we must have S = S′

and (up to a permutation of indices {1, · · · , S}) γs = γ′s and Ψ = Ψ′ (up to δ-shift).

For now, let's �x the number of agent characteristics, K. One observation is that the

number xn(k), for any characteristic k, re�ects certain characteristics of agent n. Varying the

agent n, this amount xn(k) is in a bounded interval in R. Suppose the collection of data D is

su�ciently large. Based on this, assuming that N can be be arbitrarily large, we can assume

that the xn(k)'s form a dense subset in a closed interval Ik ⊂ R. Hence, (5.4) should hold for

any X ∈ Ik, leading to the following theorem:

Theorem 20 De�ne an (M − 1)×L matrix Z̃ by setting Z̃m,l = zm(l)− zM (l). Suppose the

matrix Z̃ has rank L, and suppose,

S∑
s=1

γs Pr(π|X,Z,Ψ) =

S′∑
s=1

γ′s Pr(π|X,Z,Ψ′), (5.5)

for all x(k) ∈ Ik and all possible orders π of M products. Here, the probability measure is

associated with a nice CDF. Then we must have S = S′ and (up to a permutation of indices

{1, · · · , S}), γs = γ′s and Ψ = Ψ′ (up to δ-shift).

Here, we illustrate the idea for the simple case, with two alternatives (m = 2) and no agent

or alternative characteristics (K = L = 1). Equation (5.5) is merely a single identity. Un-

wrapping the de�nition, we obtain:

S∑
s=1

γs Pr(ε1−ε2 > δ1−δ2 +xW s(z1−z2)) =

S′∑
s=1

γ′s Pr(ε1−ε2 > δ′1−δ′2 +xW ′s(z1−z2)). (5.6)

Without loss of generality, we may assume z1 = 1, z2 = 0, and δ2 = 0. We may further

assume that the interval I = I1 contains 0. (Otherwise, we just need to shift I and δ

accordingly.) Given this, the problem reduces to the following lemma:

Lemma 7 Let Φ(x) be a nice CDF. Suppose,

S∑
s=1

γsΦ(δ + xW s) =
S′∑
s=1

γ′sΦ(δ′ + xW ′s), (5.7)
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for all x in a closed interval I containing 0. Then we must have S = S′, δ = δ′ and (up to a

permutation of {1, · · · , S}) γs = γs, W
s = W ′s.

By applying this to (5.6), we can show identi�ablity for the simple case of m = 2 and

K = L = 1.

Theorem 20 guarantees identi�ability in the limit case that we observe agents with charac-

teristics that are dense in an interval. Beyond the theoretical guarantee, we would in practice

expect (5.6) to have a unique solution with a enough agents with di�erent characteristics.

Lemma 7 is a new identi�ability result for scalar observations from a set of truncated distri-

butions.

5.4 RJMCMC for Parameter Estimation

We are using a uniform prior for the parameter space and regularize the number of types with a

geometric prior. We use a Gibbs sampler to sample from the posterior. In each of T iterations,

we sample utilities un for each agent, matrix ψs for each type, and set of assignments of agents

to alternatives Sn. The utility of each agent for each alternative conditioned on the data and

other parameters is sampled from a truncated exponential family (e.g. Normal) distribution.

In order to sample agent i's utility for alternative j (uij), we set thresholds for lower and

upper truncation based on agent i's former samples of utility for the two alternatives that are

ranked one below and one above alternative j, respectively.

We use reversible-jump MCMC [55] for sampling from conditional distributions of the

assignment function (see Algorithm 8). We consider three possible moves for sampling from

the assignment function S(n):

(1) Increase the number of types by one, through moving a random agent to a new type

of its own. The acceptance ratio for this move is:

Pr
split

= min{1, Pr(S + 1) Pr(M(t+1)|D)

Pr(S) Pr(M(t)|D)
.

1
S+1

1
S

.
p+1

p−1
.

1

p(α)
.J(t)→(t+1)},

where M(t) = {u, ψ,B,S, π}(t), and J(t)→(t+1) = 2P is the Jacobian of the transformation
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from the previous state to the proposed state and Pr(S) is the prior (regularizer) for the

number of types.

(2) Decrease the number of types by one, through merging two random types. The accep-

tance ratio for the merge move is:

Pr
merge

= min{1, Pr(S − 1) Pr(M(t+1)|D)

Pr(S) Pr(M(t)|D)
.

1
S−1

1
S

.
p−1

p+1
.J(t)→(t+1)}

(3) Leave the number of types unchanged and consider moving one random agent from

one type to another. This case reduces to a standard Metropolis-Hastings, where because of

the normal symmetric proposal distribution, the proposal is accepted with probability:

Pr
mh

= min{1, Pr(M(t+1)|D)

Pr(M(t)|D)
}

Algorithm 8 RJMCMC to update S(t+1)(n) from S(t)(n)

Set p−1, p0, p+1, Find S: number of distinct types in S
(t)(n)

Propose move ν from {−1, 0,+1} with probabilities p−1, p0, p+1, respectively.

case ν = +1:

Select random type Ms and agent n ∈ Ms uniformly and Assign n to module Ms1

and remainder to Ms2 and Draw vector α ∼ N (0, 1) and Propose ψs1 = ψs − α and

ψs2 = ψs + α and Compute proposal {un, πn}(t+1)

Accept S(t+1)(Ms1) = S + 1, S(t+1)(Ms2) = s with Prsplit from update S = S + 1

case ν = −1:

Select two random types Ms1 and Ms2 and Merge into one type Ms and Propose ψs =

(ψs1 + ψs1)/2 and Compute proposed {un, πn}(i+1)

Accept S(t+1)(n) = s1 for ∀n s.t. S(t)(n) = s2 with Prmerge update S = S − 1

case ν = 0:

Select two random types Ms1 and Ms2 and Move a random agent n from Ms1 to Ms2

and Compute proposed {u(n), π(n)}(t+1)

Accept S(t+1)(n) = s2 with probability Prmh

end switch
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5.5 Experimental Study

We evaluate the performance of the algorithm on both synthetic data and a real world data

set in which we observe agents' characteristics and their orderings on alternatives. For the

synthetic data, we generate data with di�erent numbers of types and perform RJMCMC in

order to estimate the parameters and number of types. The algorithm is implemented in

MATLAB and scales linearly in the number of samples and agents. It takes on average 60±5

seconds to generate 50 samples for N = 200, M = 10, K = 4 and L = 3 on an i5 2.70GHz

Intel(R).

Coverage Analysis for the number of types S for Synthetic Data: In this experi-

ment, the data is generated from a randomly chosen number of clusters S for N = 200, K = 3,

L = 3 and M = 10 and the posterior on S is estimated using RJMCMC. The prior is chosen

to be Pr(S) ∝ exp(−3SKL). We consider a noisy regime by generating data from noise level

of σ = 1, where all the characteristics (X,Z) are generated from N (0, 1). We repeat the

experiment 100 times. Given this, we estimate 60%, 90% and 95% con�dence intervals for

the number of types from the posterior samples. We also estimate the coverage percentage,

which is de�ned to be the percentage of samples which include the true number of types in the

interval. The simulations show 61%, 73%, 88%, 93% for the intervals 60%, 75%, 90%, 95%

respectively, which indicates that the method is providing reliable intervals for the number of

types.

Performance for Synthetic Data: We generate data randomly from a model with be-

tween 1 and 4 types. N is set to 200, and M is set to 10 for K = 4 and L = 3. We draw

10, 000 samples from the stationary posterior distribution. The prior for S has chosen to

be exp(−αSKL) where α is uniformly chosen in (0, 10). We repeat the experiment 5 times.

Table 5.1 shows that the algorithm successfully provides larger log posterior when the number

of types is the number of true types.
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Clustering Performance for Real World Data: We have tested our algorithm on a

sushi data-set, where 5, 000 users provide rankings on M = 10 di�erent kinds of sushi [69].

We �t the multi-type GRUM for di�erent number of types, on 100 randomly chosen subsets

of the sushi data with size N = 200 , and using the same prior we used in synthetic case. We

provide the performance on the Sushi data in Table 5.1. It can be seen that GRUM with 3

types has signi�cantly better performance in terms of log posterior (with the prior that we

choose, log posterior can be seen as log likelihood penalized for number of parameters) than

GRUM with one, two or four types. We have taken non-categorical agent features age, time

for �lling the questionnaire, region ID and prefecture ID) and sushi features as price,heaviness

and sales volume.

5.6 Extended proofs

5.6.1 On Strict Logarithmic Concavity

The main purpose of this section is to establish a �strict� version of the logarithmic concavity

results in Prékopa [102]. As an application, we shall prove Theorem 19.

Let us �rst prove following Lemma.

Lemma 8 Suppose ~ε is a vector of M real numbers that are generated according to a distri-

bution whose pdf is strictly logarithmic concave in RM . Consider the function

L(~ψ, π) = L(~ψ,G) = Pr(g1(~ψ,~ε) ≥ 0, ..., gM−1(~ψ,~ε) ≥ 0) (5.8)

Then using the result in [11] and [102], L(~ψ) = L(~ψ, π) is logarithmic concave in the

sense that L(λ~ψ + (1 − λ)~ψ′) ≥ L(ψ)λL(ψ′)1−λ for any 0 < λ < 1 and any two vectors ~ψ,

~ψ′ ∈ RLK+M .

This is a direct consequence of Theorem 9 in [102]. Since its proof inspires our work on

strict log-concavity, it is worth presenting here.
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Proof: Similar to approach in [102], we consider sets H(~ψ) = {~ε | gm(ψ,~ε) ≥ 0, m =

1, · · · ,M − 1}. Then L(~ψ) = Pr(~ε ∈ H(~ψ)). We also have H(λ~ψ + (1 − λ)~ψ′) = λH(~ψ) +

(1 − λ)H(~ψ′) because our gm's are linear functions. By Theorem 2 in [102], the probability

measure Pr is strictly log-concave. So we have

L(λ~ψ + (1− λ)~ψ′) = Pr(~ε ∈ H(λ~ψ + (1− λ)~ψ′))

= Pr(~ε ∈ λH(~ψ) + (1− λ)H(~ψ′))

≥ (Pr(~ε ∈ H(~ψ)))λ(Pr(~ε ∈ H(~ψ′)))1−λ (5.9)

= L(~ψ)λL(~ψ′)1−λ

as desired. �

However, in practice, it is important to know when the equality in 5.9 holds. To answer

this question, we need a �strict� version of log-concavity theory.

Strictly Logarithmic Concave Measure

Mimicing the major ideas from [102], we de�ne strictly log-concave measures and strictly

log-concave functions. Roughly speaking, they are the same as log-concave measures and

log-concave functions, but subject to a uniqueness condition on when the equality holds.

De�nition 6 A measure P de�ned on the Borel measurable subsets of Rm is said to be

strictly logarithmic concave if

Pr(λA+ (1− λ)B) ≥ Pr(A)λ Pr(B)1−λ

for every 0 < λ < 1 and for all convex subsets A,B ⊂ Rm, and the equality holds if and only

if µ(A4B) = 0. (Here µ stands for Lebesgue measure and 4 is the symmetric di�erence.)

De�nition 7 A positive continuous function h(x) on Rm (resp., on a convex subset X of Rm)

is said to be strictly logarithmic concave if for every pair x1, x2 ∈ Rm (resp., x1, x2 ∈ X)

and every 0 < λ < 1, we have

h(λx1 + (1− λ)x2) ≥ h(x1)λh(x2)1−λ,
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and the equality holds if and only if x1 = x2.

The following technical lemma is needed later.

Lemma 9 (a) Let h be a logarithmic concave function on Rm. Suppose four points x1, x2, y1, y2

lie on the same line, with x1, y1 lie inside the line segment connecting x2, y2. Moreover assume

that λx1 + (1− λ)y1 = λx2 + (1− λ)y2 for some 0 < λ < 1. Then

h(x1)λh(y1)1−λ ≥ h(x2)λh(y2)1−λ

(b) Let h be a strictly logarithmic concave function on Rm. Let x ∈ Rm and a > 0 be a real

number. Then there exists ε > 0 such that

h(x) ≥ h(y)λh(z)1−λ + ε

whenever λy + (1 − λ)z = x and d(x, z) ≥ a. Moreover, this ε is uniform in x and a if they

vary in compact neighborhoods.

Proof: (a) Let λ1 = y2−x1
y2−x2 and λ2 = y2−y1

y2−x2 . Then 0 < λ1, λ2 < 1 and

x1 = λ1x2 + (1− λ1)y2,

y1 = λ2x2 + (1− λ2)y2.

By log-concavity, we have

h(x1) ≥ h(x2)λ1h(y2)1−λ1

and

h(y1) ≥ h(x2)λ2h(y2)1−λ2

So

h(x1)λh(y1)1−λ ≥ h(x2)λλ1+(1−λ)λ2h(y2)λ(1−λ1)+(1−λ)(1−λ2)

Part (a) follows from the fact that λλ1 +(1−λ)λ2 = λ and λ(1−λ1)+(1−λ)(1−λ2) = 1−λ.
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(b) If d(x, z) ≥ a, then h(x) > h(y)λh(z)1−λ due to strict log-concavity. By part (a),

h(x)− h(y)λh(z)1−λ is the smallest when d(x, z) = a. De�ne a function

g(y, z) := h(x)− h(y)λh(z)1−λ

It is a continuous function on Rm × Rm and it is positive on the compact set

U := {(y, z) ∈ R2m | d(x, z) = a, λy + (1− λ)z = x}

So it achieves a minimum ε > 0 on U . This ε is exactly the one we desired.

Finally, the uniformity of ε follows from the continuity of g and the fact that U is contained

in a ball of radius max{a, (1− λ)a/λ} centered at (x, x).

�

Finally, we present the following generalization of Theorem 2 in [102].

Theorem 21 Let P be a probability measure on Rm generated by a probability density of

the form f(x) = e−Q(x) where Q(x) is a strictly convex function. (Namely, f is a strictly

logarithmic concave function.) Then P is a strictly logarithmic concave probability measure.

Proof: First, we recall the following result used in the proof of Theorem 2 in [102]. This

is the inequality (2.4) in [102].

Lemma 10 Let f, g be nonnegative Borel measurable functions on Rm and 0 < λ < 1 be a

real number. Let

r(t) := sup
λx+(1−λ)y=t

f(x)g(y).

Then we have inequality∫
Rm

r(t) dt ≥ (

∫
Rm

f1/λ(x) dx)λ(

∫
Rm

g1/(1−λ)(y) dy)1−λ.

Come back to the proof of the Theorem. We need to show that

Pr(λA+ (1− λ)B) > Pr(A)λ Pr(B)1−λ
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if µ(A4B) > 0.

Let f1(x) = f(x) if x ∈ A and f1(x) = 0 otherwise;

Let f2(x) = f(x) if x ∈ B and f2(x) = 0 otherwise;

Let f3(x) = f(x) if x ∈ λA+ (1− λ)B and f3(x) = 0 otherwise.

Without loss of generality, let's assume that µ(A\B) > 0. Notice that the set V := (λA +

(1 − λ)B\B has positive Lebesgue measure. Pick a closed m-dimensional ball Ba(x0) inside

V of small enough radius a > 0. We claim that there exist ε > 0 such that

f3(t) ≥ ε+ sup
λx+(1−λ)y=t

f1(x)λf2(x)1−λ

for all t ∈ Ba/2(x0).

Indeed, by Lemma 9 (b), we know for each t ∈ Ba/2(x0),

f3(t) > εt + sup
λx+(1−λ)y=t, d(t,y)>a/2

f1(x)λf2(y)λ

for some εt > 0. Moreover, this εt varies uniformly in the ball Ba/2(x0). So we can simply

take ε = inft∈Ba/2(x0) εt > 0.

Finally, the following inequality concludes the proof:∫
λA+(1−λ)B

f(x) dx =

∫
Rm

f3(t) dt

=

∫
Rm

(f3(t)− sup
λx+(1−λ)y=t

f1(x)λf2(y)1−λ) dt

+

∫
Rm

sup
λx+(1−λ)y=t

f1(x)λf2(y)1−λ dt

≥ εµ(Ba/2(x0)) + (

∫
Rm

f1(x) dx)λ(

∫
Rm

f2(y) dy)1−λ

> (

∫
A
f(x) dx)λ(

∫
B
f(y) dy)1−λ

�
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Proof of Theorem 19

Proof:[Proof of Theorem 19] Based on the proof of Lemma 8, the equality holds if and only

if inequality (5.9) is equality. By Theorem 21, we must have µ(H(~ψ(n))4H(~ψ′(n))) = 0. But

H(~ψ) are closed convex sets cut out by hyperplanes of the form

εnπ(m) − εnπ(m+1) ≥ δπ(m+1) − δπ(m) +
∑
k,l

xn(k)(zπ(m+1)(l)− zπ(m)(l))W
s(n)
kl .

So µ(H(~ψ(n))4H(~ψ′(n))) = 0 if and only if H(~ψ(n)) = H(~ψ′(n)), which happens if and only if

δm− δM +
∑
k,l

xn(k)(zm(l)− zM (l))W
s(n)
kl = (δm)′− (δM )′+

∑
k,l

xn(k)(zm(l)− zM (l))(W
s(n)
kl )′

for all n, k, l and m = 1, · · · ,M − 1. Namely, the vector

~τ =
(
(W s

kl − (W s
kl)
′)s,k,l, (δm − δM − (δm)′ + (δM )′)m

)
∈ RSKL+M

is a solution of Ã~τT = 0. By our assumption, Ã has full rank. So ~τ = 0, which says δm = (δm)′ + c where c = δM − (δM )′

W s
kl = (W s

kl)
′

This concludes the proof of Theorem 19.

�

5.6.2 On Identi�ability

The main purpose of this section is to prove Theorem 20. We �rst recall the de�nition of nice

functions.

De�nition 8 Let φ(x) be a smooth pdf de�ned on R or [0,∞) and let Φ(x) be the associated

cdf. For each i > 0, we write φ(i)(x) for the i-th derivative of φ(x). Let gi(x) = φ(i+1)(x)

φ(i)(x)
. The

function Φ is called nice if it satis�es one of the following two mutually exclusive conditions:

(a) (Type 1) For any two x1, x2, the sequence gi(x1)
gi(x2) converges to some value in R (as

i→∞) only if either
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• x1 = x2; or

• x1 = −x2 and gi(x1)
gi(x2) → −1 as i→∞.

(b) (Type 2) For all x1, x2, the ratio gi(x1)
gi(x2) converges to 1, as i → ∞. Moreover, for any

x1 6= x2, there exists an odd positive number m such that φ(m)(x1) 6= φ(m)(x2).

Proof: [Proof of Lemma 7] Let φ(x) be the pdf associated to the cdf Φ(x). By assump-

tion, φ is nice, which means φ(x) is of Type 1 or Type 2 as in the above de�nition.

Consider the Taylor expansion at 0. Note that the (i+ 1)-th derivatives of Φ(δ+ xW s) is

just (W s)i+1φ(i)(δ + xW s). So, the induced identity on the (i+ 1)-th Taylor coe�cient is

S∑
s=1

γs(W
s)i+1φ(i)(δ) =

S′∑
s=1

γ′s(W
′s)i+1φ(i)(δ′) (5.10)

Let us assume

|W 1| > |W 2| > · · · > |WS |,

|W ′1| > |W ′2| > · · · > |W ′S′ |,

and |W 1| ≥ |W ′1|.

Dividing the (i+ 2)-th coe�cient by the (i+ 1)-th coe�cient, we obtain

φ(i+1)(δ)

φ(i)(δ)
·
∑S

s=1 γs(W
s)i+2∑S

s=1 γs(W
s)i+1

=
φ(i+1)(δ′)

φ(n)(δ′)
·
∑S′

s=1 γ
′
s(W

′s)i+2∑S′

s=1 γ
′
s(W

′s)i+1

Let gn(δ) = φ(i+1)(δ)

φ(i)(δ)
. Then gi(δ)

gi(δ′)
→ W ′1

W 1 ∈ R as i → ∞. Now let's discuss Type 1 and Type

2 separately.

(i) (Type 1)

In this case, we must have δ = δ′, W ′1 = W 1 or, δ = −δ′, W ′1 = −W 1. However, if i is

odd, the equation (5.10) tells us that φ(i)(δ) and φ(i)(δ′) must have the same sign. This

rules out the possibility of δ = −δ′. Thus δ = δ′ and W 1 = W ′1. Now equation (5.10)

becomes
S∑
s=1

γs(W
s)i+1 =

S′∑
s=1

γ′s(W
′s)i+1.
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A classical identi�ability result concludes that S = S′, γs = γ′s, and W
s = W ′s for all s

(after a permutation).

(ii) (Type 2)

In this case, W
′1

W 1 must equal 1. Namely, W 1 = W ′1. Now look at equation (5.10). Since

gi(δ)

gi(δ′)
=
φ(i+1)(δ)/φ(i+1)(δ′)

φ(i)(δ)/φ(i)(δ′)
→ 1

as i→∞, we know that φ(i)(δ)

φ(i)(δ′)
does not grow as fast as exponentially. So, again by the

classical identi�ability result, we know that γ1 = γ′1. Repeating this process, we know

that W 2 = W ′2, γ2 = γ′2, and so on. Therefore, we also know φ(i)(δ) = φ(i)(δ′) for all

odd i. However, by assumption, we must have δ = δ′.

�

Proof:[Proof of Theorem 20] Consider all possible permutations in which product 2 is

more preferred to product 1. De�ne S(1; 2) := {π | 1 shows after 2 in the order π}. Then

S∑
s=1

γs Pr(u1 > u2|X,Z,Ψ) =
∑

π∈S(1;2)

S∑
s=1

γs Pr(π|X,Z,Ψ)

So
S∑
s=1

γs Pr(u1 > u2|X,Z,Ψ) =

S′∑
s=1

γ′s Pr(u1 > u2|X,Z,Ψ′)

Unwinding the de�nition, this means

S∑
s=1

γs Pr(ε2 > ε1|δ1 − δ2 +
∑
k,l

x(k)W s
kl(z1(l)− z2(l)))

=

S′∑
s=1

γ′s Pr(ε2 > ε1|δ′1 − δ′2 +
∑
k,l

x(k)W ′skl(z1(l)− z2(l)))

Namely,

S∑
s=1

γsΦ(δ1 − δ2 +
∑
k,l

x(k)W s
kl(z1(l)− z2(l)))

=

S′∑
s=1

γ′sΦ(δ′1 − δ′2 +
∑
k,l

x(k)W ′skl(z1(l)− z2(l)))

109



Again, we may assume all of the intervals Ik contain 0. If we �x x(2), · · · , x(K), we can think

of x(1) as a variable. By the previous Lemma, we must have

• S = S′

• δ1 − δ2 +
∑

k≥2W
s
kl(z1(l)− z2(l)) = δ′1 − δ′2 +

∑
k≥2W

′s
kl(z1(l)− z2(l))

• after a permutation of {1, · · · , S}, γs = γ′s, and
∑

lW
s
1l(z1(l)− z2(l)) =

∑
lW
′s
1l (z1(l)−

z2(l)).

Since x(k)'s can be arbitrary in the intervals Ik's, we must have δ1 − δ2 = δ′1 − δ′2 and

∑
l

W s
kl(z1(l)− z2(l)) =

∑
l

W ′skl(z1(l)− z2(l))

for all 1 ≤ k ≤ K. Now we can repeat the above for any two products. In particular, we

know that δ = δ′ (up to a shift), and

∑
l

(W s
kl −W ′skl)(zm(l)− zM (l)) = 0

for all 1 ≤ m ≤ M − 1. By assumption, the M − 1 by L matrix Z ′ = (zm(l) − zM (l)) had

rank L. So the above systems of equation has a unique solution. Namely, W s
kl = W ′skl for all

k, l, s. �

5.6.3 Examples of Nice CDFs

Normal Distributions

Let φ(x) = e−
x2

2 . Write φ(i)(x) = fi(x)e−
x2

2 . For example, f0(x) = 1, f1(x) = −x, and so

on. We have the recursive relation fi+1(x) = −xfi(x) + f ′i−1(x). In particular, we know that

fi(x) is a polynomial in R[x] of degree i.

Lemma 11 We have the following recursive relations.

(a) fi+1(x) = −xfi(x)− (i− 1)fi−1(x)

(b) f ′i+1(x) = −ifi(x)
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Proof: Assume the result holds for stage i. For stage i+ 1, we have

fi+2(x) = −xfi+1(x) + f ′i+1(x) = −xfi+1(x)− ifi(x)

and

f ′i+2(x) = (−xfi+1(x)− ifi(x))′

= −fi+1(x)− xf ′i+1(x)− if ′i(x)

= −fi+1(x)− ixfi(x)− if ′i(x)

= −fi+1(x)− i(xfi(x) + f ′i(x))

= −fi+1(x)− ifi+1(x)

= −(i+ 1)fi+1(x)

�

De�ne gi(x) = fi+1(x)
fi(x) , which is, a priori, a rational function with real coe�cients. Dividing

fi(x) on both side of the relation (a) in the previous lemma, we obtain

gi(x) = −x− i− 1

gi−1(x)

Lemma 12 Given any δ ∈ R, the sequence {gi(δ)} does not converge to any number in

R ∪ {±∞}, as i→∞.

Proof: If {gi(δ)} does converge to some a ∈ R, then

a = lim
i→∞

gi(δ) = lim
i→∞

(−δ − i− 1

gi−1(δ)
) = −δ − lim

i→∞

i− 1

gi−1(δ)
→∞,

a contradiction.

On the other hand, if gi(x) → +∞, then −δ − i−1
gi−1(δ) → +∞. But it's less than |δ|, a

contradiction. Similarly, gi(δ) cannot converge to −∞. �

Lemma 13 Let δ, δ′ be two real numbers. Then gi(δ)
gi(δ′)

→ c ∈ R (as i → ∞) if and only if

either c = 1, δ = δ′ or c = −1, δ = −δ′.
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Proof: We have gi(δ) + δ = − i−1
gi−1(δ) and gi(δ

′) + δ′ = − i−1
gi−1(δ′) . Let ci = gi(δ)

gi(δ′)
. Then

gi(δ) + δ

gi(δ′) + δ′
=
gi−1(δ′)

gi−1(δ)
.

Thus

ci +
δ − ciδ′

gi(δ′) + δ′
=

1

ci−1
.

Taking limit, we get

lim
i→∞

δ − cδ′

gi(δ′) + δ′
=

1

c
− c.

However, according to the lemma, 1
gi(δ′)+δ′

does not converge to any real number. So we must

have δ − cδ′ = 0. This implies 1
c − c = 0. Namely, c = ±1. If c = 1, we must have δ = δ′ and

if c = −1, we get δ = −δ′.

On the other hand, it's easy to see that gi(δ)
gi(δ′)

≡ 1 if δ = δ′, while gi(δ)
gi(δ′)

= −1 if δ = −δ′.

This completes the proof. �

Exponential Distributions

Let φ(x) = λe−λx (x ≥ 0). Then φ(i)(x) = (−1)iλi+1e−λx and gi(x) = φ(i+1)(x)

φ(i)(x)
= −λ, a

constant! In particular, for any x1, x2, the ratio
gi(x1)
gi(x2) is always 1. Moreover, if x1 6= x2, then

φ(1)(x1)

φ(1)(x2)
= eλ(x2−x1) 6= 1. Namely, φ(1)(x1) 6= φ(1)(x2). Therefore, φ(x) is a nice pdf of type 2.

Gamma Distributions

Let φ(x) = βα

Γ(α)x
α−1e−βx where α, β > 0, α 6= 1, and x > 0. Write φ(i)(x) = fi(x) ·

βα

Γ(α)x
α−i−1e−βx. For example, f0(x) = 1, f1(x) = α− 1− βx, and so on.

We have the recursion relation

fi(x) = (α− i− βx)fi−1(x) + xf ′i−1(x).

In particular, we know that fi(x) is a polynomial in R[x] of degree i.

Lemma 14 We have the following recursive relations:

(a) fi(x) = (α− i− βx)fi−1(x)− (i− 1)βxfi−2(x).
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(b) f ′i(x) = −nβfi−1(x).

Proof: Assume the result holds for stage i. For stage i+ 1, we have

fi+1(x) = (α− i− 1− βx)fi(x) + xf ′i(x)

= (α− i− 1− βx)fi(x)− x(iβxfi−1(x))

and

f ′i+1(x) = ((α− i− 1− βx)fi(x)− iβxfi−1(x))′

= −βfi(x) + (α− i− 1− βx)f ′i(x)− iβfi−1(x)− nβxf ′i−1(x)

= −βfi(x)− (α− i− 1− βx)iβfi−1(x)− iβfi−1(x)− iβxf ′i−1(x)

= −βfi(x)− iβ((α− i− βx)fi−1(x) + xf ′i−1(x))

= −βfi(x)− iβfi(x)

= −(i+ 1)βfi(x)

�

Notice that gi(x) = φ(i+1)(x)

φ(i)(x)
= 1

x ·
fi+1(x)
fi(x) . Replacing i by i+ 1, the recursion in Lemma 14

gives

fi+1(x) = (α− i− 1− βx)fi(x)− x(iβxfi−1(x)).

Diving by xfi(x) on both sides, we obtain

gi(x) =
α− 1− i− βx

x
− iβ

xgi−1(x)
.

Lemma 15 For any given x > 0, we have gi(x) ∼ − i
x + o(i) for i su�ciently large.

Consequently, for any x1, x2, we must have
gi(x1)
gi(x2) →

x2
x1

as i→∞.

5.7 Conclusions

In this chapter, we have proposed an extension of GRUMs in which we allow agents to adopt

heterogeneous types. We develop a theory establishing the identi�ability of the mixture
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Figure 5.3: Left Panel: 10000 samples for S in Synthetic data, where the true S is 5. Right
Panel: Histogram of the samples for S with max at 5 and mean at 4.56.

Synthetic True types Sushi

Type One two Three Four sushi

one type -2069 -2631 -2780 -2907 -2880

two types -2755 -2522 -2545 -2692 -2849

three types -2796 -2642 -2582 -2790 -2819

four types -2778 -2807 -2803 -2593 -2850

Table 5.1: Performance of the method for di�erent number of true types and number of types in
algorithm in terms of log posterior. All the standard deviations are between 15 and 20. Bold numbers
indicate the best performance in their column with statistical signi�cance of 95%.
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model when we observe ranking data. Our theoretical results for identi�ability show that the

number of types and the parameters associated with them can be identi�ed. Moreover, we

prove uni-modality of the likelihood (or posterior) function when types are observable.

We propose a scalable algorithm for inference, which can be parallelized for use on very

large data sets. Our experimental results show that models with multiple types provide

a signi�cantly better �t in real-world data. By clustering agents into multiple types, our

estimation algorithm allows choices to be correlated across agents of the same type, without

making any a priori assumptions on how types of agents are to be partitioned.

This use of machine learning techniques complements various approaches in economics [21,

17, 18] by allowing the researcher to have additional �exibility in dealing with missing data

or unobserved agent characteristics. We expect the development of these techniques to grow

in importance as large, individual-level data-sets become increasingly available. In future

research we intend to pursue applications of this method to problems of economic interest e.g.

demand estimation and econometrics.
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Chapter 6

Conclusions

There are two important components that drive research presented in this thesis. The �rst

component is provided by the explosion in data on human choice behavior. Every day there

are billions of clicks on Google search results, millions of purchases on Amazon, and billions

of likes on Facebook. This data can bene�t from richer models, better able to capture the

underlying complexity and heterogeneity of choice behavior.

The second component is the increase in computation power that allows us to compute

more e�ciently. This provides the capability for estimation and inference with models that

would not be tractable with just twentieth century computational powers.

This parallel advance in measurement and computation is leading to a new era in the

digital revolution. However, the research in understanding choice has considerable inertia,

prompting the need for new approaches to model building and inference.

This thesis provides a step forward in extending choice models and the algorithms that are

available for estimation and inference. There remains a lot more to explore from the direction

of econometrics, social choice and recommender systems. Next steps should be to apply these

new models to large data sets and look for a deeper understanding of human choice. This will

require a better appreciation and synthesis across the existing literatures in psychophysics,

sociology, economics, computer science and statistics.
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I wish to �nish with the words of R.A.Fisher:

More attention to the History of Science is needed, as much by scientists as by histori-

ans, and especially by biologists, and this should mean a deliberate attempt to understand the

thoughts of the great masters of the past, to see in what circumstances or intellectual milieu

their ideas were formed, where they took the wrong turning or stopped short on the right track.
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