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Abstract

This paper discusses General Random Utility
Models (GRUMs). These are a class of para-
metric models that generate partial ranks over
alternatives given attributes of agents and alter-
natives. We propose two preference elicitation
scheme for GRUMs developed from principles
in Bayesian experimental design, one for social
choice and the other for personalized choice.
We couple this with a general Monte-Carlo-
Expectation-Maximization (MC-EM) based al-
gorithm for MAP inference under GRUMs. We
also prove uni-modality of the likelihood func-
tions for a class of GRUMs. We examine the
performance of various criteria by experimental
studies, which show that the proposed elicitation
scheme increases the precision of estimation.

1 Introduction

In many situations, we need to know the preferences of
agents over a set of alternatives, in order to make deci-
sions. For example, in recommender systems, we can com-
pute recommendations of new products for a user based
on his reported preferences over some products. In social
choice, we need to know agent preferences over alterna-
tives, to make a joint decision. Predicting consumer behav-
ior based on reported preferences is an important topic in
econometrics [3, 4].

There are two closely related challenges in building a deci-
sion support system: preference acquisition and computer-
aided decision making [7].

Given preferences, the decision making problem can typi-
cally be solved through optimization techniques (e.g., com-
puting the choice that minimizes the maximum regret).
However, there is often a preference bottleneck, where it is
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too costly or even impossible for users to report full infor-
mation about their preferences. This happens, for example,
in airline recommendation systems, where the number of
possible itineraries is large [7]. Another instance is com-
binatorial voting, where agents vote on multiple related is-
sues [15].

To overcome the preference bottleneck, a well accepted ap-
proach is preference elicitation. This aims to elicit as little
as possible of the agents’ preferences, to make a good de-
cision. Previous work focused on achieving one of the fol-
lowing two goals:

1. Social choice. We want to make a joint decision for
all agents. Applications include combinatorial auc-
tions [21], voting [11, 17], and crowdsourcing [19].

2. Personalized choice. We want to “learn” an agent’s
preferences based on a part of her own preferences or
preferences of other similar agents. Applications in-
clude product configuration [7]. See [5, 13] for recent
developments.

In this paper, we focus on elicitation for ordinal preference,
which means that the agents’ preferences are represented
by rankings. We assume that preferences are generated by
general random utility models (GRUMs). In a GRUM, an
agent’s preferences are generated as follows: Each alterna-
tive is characterized by a utility distribution, and the agents
rank the alternatives according to the perceived utilities,
which are generated from the corresponding utility distri-
butions. Parameters for each utility distribution are com-
puted by a combination of attributes of the alternative and
attributes of the agent. Parameters of the GRUM model the
interrelationship between alternative attributes and agent
attributes. See Section 2.1 for more details.

GRUMs are a significant extension of random utility mod-
els (RUMs) [22], where the effect of attributes of alterna-
tives and agents are not considered. RUMs have been ex-
tensively studied and applied in prior work but generally
in ways that are specialized to particular parametric forms;



e.g., the Bradley-Terry model [8] and the Plackett-Luce
model [18, 20].

1.1 Contributions

We propose a general adaptive method (Algorithm 1) for
preference elicitation within the Bayesian experimental de-
sign framework (see, [10, e.g.]), guided by maximum ex-
pected information gain. In this paper, we focus on a spe-
cial case, where in each step a targeted agent reports her
preferences in full.

We target an agent for elicitation who, based on agent
attributes, will provide the greatest expected information
gain. In addition to using classical criteria in Bayesian ex-
perimental design, we also propose two new criteria that
are designed to best improve the quality of the inferred rank
preferences, one for predicting social choice, and the other
for predicting personalized choice.

Directly computing the optimal agent to target next can
be challenging due to the lack of efficient algorithms for
MAP inference and lack of efficient computation of ob-
served Fisher information. To overcome this, we extend
the MC-EM algorithm and conditions for convergence de-
veloped for RUMs by Azari et al. [1] to handle GRUMs.
We compute observed Fisher information within the E-step.

We test the prosed methods for MAP/MLE inference and
preference elicitation for GRUMs on both synthetic dataset
and the Sushi dataset [14].

We compare the performance under the new criteria and
performance under the standard criteria from Bayesian ex-
perimental design literature. Results show that our elic-
itation framework can significantly improve the precision
of estimation for a moderate number of samples in social
choice, relative to random and some of the classical elicita-
tion criteria.

1.2 Related Work

GRUMs are a specific case of the generative model stud-
ied by Berry, Levinsohn and Pakes (therefore BLP) [3].
The BLP model explicitly considers unobserved attributes
of alternatives and agents, whereas GRUMs only consider
observed attributes.

However, most work on the BLP model has focused on
calculating aggregate properties (for example, the demand
curve) when a distribution of the values of unobserved at-
tributes are given. Moreover, the methodologies developed
in [3] and subsequent papers only work for the logit model.
That is: the utility distributions are the standard Gumbel
distribution, which is a special case. Even when there are
no unobserved variables, BLP was not known to be com-
putationally tractable, beyond the logit case.

An approximate method, that of maximum simulated like-

lihood has been proposed for GRUMs [23]. We fo-
cus on MAP/MLE inference and preference elicitation for
GRUMs. We developed an MC-EM algorithm for a large
class of GRUMs. To the best of our knowledge, this is the
first practical algorithm for MAP/MLE inference for gen-
eral GRUMs, beyond the logit case. We note that RUMs
are a special class of GRUMs. Therefore, the new algo-
rithm naturally extends the algorithm developed by Azari
et al. [1] for RUMs. 1

For social choice, the elicitation scheme designed by Lu
and Boutilier [17] aims at computing the outcomes of dif-
ferent commonly studied voting rules. In comparison, the
proposed elicitation scheme aims at computing the MAP of
GRUMs, which we believe to be different from any com-
monly studied voting rules.

Compared to the elicitation scheme designed by Pfeiffer et
al. [19], which adopted the Bradley-Terry model, this paper
focuses on GRUMs, which is much more general. Also, as
we will see later in the paper in Example 2, the elicitation
scheme by Pfeiffer et al. is closely related to a well studied
criterion under the Bayesian experimental design frame-
work called D-optimality. In contrast, the new elicitation
framework allows us to use many other classical criteria
in Bayesian experimental design, including D-optimality.
Moreover, surprisingly, experimental results on synthetic
data show that D-optimality might not be a good choice for
social choice for rankings.

The new elicitation framework considers the attributes of
agents and alternatives, allowing for more options for elic-
itation (e.g. we can target an agent with specific at-
tributes). The proposed method is related to the general
idea in [13, 9, 6]. However, the proposed method is more
general, in the sense that we can handle orders with any
length (e.g. Sushi dataset which includes full orders and
not only pairwise data). It can also handle any partial order
situation due to missing data or design of voting rule (e.g.
k first voting or ranks for some missing parties).

2 Preliminaries

In this section, we formally define GRUMs and their corre-
sponding MAP mechanism. Further, we recall basic ideas
in Bayesian experimental design.

2.1 General Random Utility Models

We consider a preference aggregation setting with a set of
alternatives C = {c1, .., cm}, and multiple agents indexed
by i ∈ {1, . . . , n}. In GRUMs, for every j ≤ m, alterna-
tive j is characterized by a vector of L ∈ M real numbers,
denoted by �zj . And for every i ≤ n, agent i is character-

1Inference and elicitation for GRUMs with unobserved at-
tributes are two interesting directions for future research.



ized by a vector of K ∈ N real numbers, denoted by �xi.2
Throughout the paper, j denotes an alternative, i denotes
an agent, l denotes the attribute of an alternative, and k de-
notes an agent attribute.

The agents’ preferences are generated through the follow-
ing process.3 Let uij be agent i’s perceived utility for alter-
native j, and let B be a K × L real matrix that models the
linear inter-relation between attributes of alternatives and
attributes of agents.

uij = δj + �xiB(�zj)
T + �ij , (1)

uij ∼ Pr(·|�xi, �zj , δj , B) (2)

In words, agent i’s utility for alternative j is composed of
the following three parts:

1. δj : The intrinsic utility of alternative j, which is the
same across all agents;

2. �xiB(�zj)T : The agent-specific utility, where B is the
same across all agents;

3. �ij : The random noise generated independently across
agents and alternatives.

Given this, an agent ranks the alternatives according to
her perceived utilities for the alternatives in the descend-
ing order. That is, for agent i, cj1 �i cj2 if and only if
uij1 > uij2 .4 The parameters for a GRUM are denoted
by Θ = (�δ, B). When K = L = 0, the GRUM model
degenerates to RUM.

Example 1 Figure 1 illustrates a GRUM for three alterna-
tives (different kinds of sushi) and n agents. Each alterna-
tive is characterized by its attributes including heaviness,
price, and custom loyalty. Each agent is characterized by
attributes including gender and age. Agent attributes have
different relationships with alternative attributes. For in-
stance, a person’s salary can be related to a preference in
regard to the sushi’s price rather than heaviness. The out-
come of this relationship is a vector of nondeterministic
utilities, assigned to the alternatives by each agent.

2.2 MAP Inference

Given a GRUM, the preference profile is viewed as data,
D = {π1

, . . . ,π
n}, where each π

i is a permutation
(πi(1), . . . ,πi(m)) of {1, . . . ,m} that represents the full
ranking [cπi(1) �i cπi(2) �i · · · �i cπi(m)]. We take the

2In this paper we focus on the case where all �xi and �zj are
numerical attributes rather than categorical attributes.

3For better presentation, throughout the paper we assume that
the preferences are full rankings. The results and algorithms can
be extended to the case where the preferences are partial rankings.

4For all reasonable GRUMs the situations with tied perceived
utilities have zero probability measure.

Figure 1: The generative process for GRUMs.

standard maximum a posteriori (MAP) approach to esti-
mate the parameters.

Recall that each agent’s preferences are generated condi-
tionally independently given the parameters Θ. Therefore,
in GRUMs, the probability (likelihood) of the data given
the ground truth Θ is: Pr(D | Θ) =

�
n

i=1 Pr(π
i | Θ),

where:

Pr(πi|Θ) =
�

uiπi(1)>···>uiπi(n)

�

j

Pr(uiπi(j)|�xi, �zj ,Θ) duiπi(j)

Suppose we have a prior over the parameters, for MAP in-
ference we aim at computing Θ to maximize the posterior
function:

Pr(Θ|D) =
n�

i=1

Pr(πi | Θ) Pr(Θ)

After computing Θ∗ that maximizes posterior, we can make
joint decisions for the agents based on Θ∗.5 For example,
we can choose the winner to be the alternative whose util-
ity distribution has the highest mean, or choose a winning
ranking over alternatives by ranking the means of the utility
distributions.

5In the context of social choice, the prior is often uniform, and
MAP becomes MLE.



2.3 One-Step Bayesian Experimental Design

Suppose we have a parametric probabilistic model. Let
Pr(Θ∗) denote the prior distribution over the parameters.
A one-step Bayesian experimental design problem is com-
posed of two parts: a set of designs H and a quality func-
tion G(·) defined on any distribution over the parametric
space.

A design h ∈ H is mathematically characterized by
Pr(·|Θ∗

, h) that controls the way the data D are gener-
ated for any ground truth parameter vector Θ∗. Therefore,
for any given design h, we can compute the probability
for data D as Pr(D|h). Given any data D and design h,
we can compute the posterior distribution of parameters
Pr(·|D,h). The objective of Bayesian experimental de-
sign is to choose the design h that maximizes the expected
quality of the posterior of MAP parameters, where the ran-
domness comes from the data that are generated given h.
Formally, we aim at computing h

∗ as follows.

h
∗ = argmax

h

�
G(Pr(·|D,h))× Pr(D|h) dD (3)

Often, directly computing (3) is hard. Even G(Pr(·|D,h))
is difficult to compute given D and h. Researchers have
taken various approximations to (3). A common ap-
proach is to approximate Pr(·|D,h) by a normal distribu-
tion N (Θ̂, [R(Θ̂) + Ih(Θ̂)]−1), where:

• Θ̂ is the MAP of D,

• R(Θ) is the precision matrix of the prior over Θ, that
is, R = ∇2

Θ log Pr(Θ), and

• Ih(Θ̂) is the Fisher information matrix defined as fol-
lows. Let Xπ = ∇Θ log Pr(π|�Θ, h), we have

Ih(Θ̂) = Eπ(Xπ(Xπ)
T |Θ=Θ̂).

Equivalently, if log Pr(π|Θ, h) is twice differentiable
w.r.t. Θ for each ranking π, then

Ih(Θ̂) = −Eπ(∇2
Θ log Pr(π|Θ, h)|Θ=Θ̂).

If we approximate Pr(·|D,h) by N (Θ̂, [R(Θ̂) +
Ih(Θ̂)]−1), then the most commonly studied quality
functions are functions of Θ̂ and h. More precisely, they
are functions of Θ̂ and R(Θ̂) + Ih(Θ̂). In such cases,
we can rewrite G(N (Θ̂, Ih(Θ̂))) = G

∗
R
(Θ̂, h). Then, (3)

becomes:

h
∗ = argmax

h

�
G

∗
R
(Θ̂, h) · Pr(Θ̂|h)dΘ̂ (4)

Still the integration in (4) is often hard to compute, and
is approximated by G

∗
R
(Θ∗

, h), where Θ∗ is the mode of
Pr(Θ). Some popular quality functions and corresponding
approximations are summarized in Table 1.

Example 2 The adaptive elicitation approach by Pfeiffer
et al. [19] is a special case of Bayesian D-optimality de-
sign, where H is the set of all pairwise questions be-
tween alternatives. Pfeiffer et al. derived formulas for
Pr(·|Θ∗

, h) for each h ∈ H , and chose h
∗ according to

(3). The quality function they use is the negative Shannon
entropy, which is exactly D-optimality as shown in Table 1.

3 Our Preference Elicitation Scheme

In the new elicitation framework, we adapt the one-step
Bayesian experimental design to multiple iterations. For
any iteration t, let Dt denote the preferences elicited in all
previous iterations. The prior distribution Prt over param-
eters is the posterior of observing D

t, that is: for any Θ,
Prt(Θ) = Pr(Θ|Dt). Then we solve a standard one-step
Bayesian experimental design problem w.r.t. the prior Prt

to elicit a new agents’ preferences, and then form D
t+1 for

the next iteration.

Our general elicitation framework for GRUMs is presented
as Algorithm 1. To allow flexibility of using various crite-
ria of Bayesian experimental design, we let the input con-
sist of the heuristic G

∗
R
(Θ̂, h), which is usually a function

of Θ̂ and R(Θ̂) + Ih(Θ̂). To present the main idea, in this
paper the set of designs H is the multi-set of all agents
attributes. That is, in each iteration (Steps 1∼3) we will
compute an h ∈ H and query the preferences of a ran-
dom agent whose attributes are h.6 Steps 1∼3 are hard to

Algorithm 1 Preference Elicitation for GRUMs

Heuristic: G∗
R
(Θ̂, h).

Randomly choose an initial set of data D
1.

for t = 1 to T do
1: Compute Θt = MAP(Dt).
2: Compute the precision matrix R

t of Pr(Θ|Dt) at
Θt.
3: Compute h

t ∈ H that maximizes G∗
Rt(Θt

, h
t).

4: Query an agent whose attributes are h
t. Let πt

denote her preferences. D
t+1 ← D

t ∪ {πt}, H ←
H \ {ht}.

end for

compute. In this paper, we will use a multivariate normal
distribution N (Θ̂, JDt(Θ̂)−1) to approximate Pr(Θ|Dt) in
Step 2, where JDt(Θ̂) is the observed Fisher information
matrix, and we immediately have R

t = JDt(Θ̂).7 Given
any data D, JD(Θ̂, h) is defined as follows. Again, let
Θ̂ = MAP(D).

JD,h(Θ̂) =
�

π∈D

(Xπ × (Xπ)
T |Θ=Θ̂).

6The elicitation scheme can be extended to other types of elic-
itation questions, for instance, pairwise comparisons and “top-k”.

7See e.g. page 224 [2] for justification of this approximation.



Name Quality function Heuristics G∗
R
(Θ̂, h)

D-optimality Gain in Shannon information det(R+ Ih(Θ̂))
E-optimality Minimum eigenvalue of the information matrix λmin{R+ Ih(Θ̂)}

Proposed criterion for social choice Minimum inverse of pairwise coefficient of variation Equation (5)
Proposed criterion for personalized choice Minimum inverse of pairwise coefficient of variation Equation (6)

Table 1: Different criteria for experimental design.

Equivalently, if log Pr(π|Θ, h) is twice differentiable
w.r.t. Θ for each ranking π, then we have:

JD,h(Θ̂) = −
�

π∈D

(∇2
Θ log Pr(π|Θ, h)|Θ=Θ̂).

In Section 4 we propose an MC-EM algorithm to com-
pute MAP(Dt) in Step 1. In Section 4.3 we study how
to compute the observed Fisher information matrix R

t =
JDt(Θt), and use it for elicitation as well as accelerating
MC-EC algorithm. Computation of the Fisher information
matrix Ih(Θ̂) used in Step 3 will also be discussed in Sec-
tion 4.3.

The choice of G∗
R

is crucial for the performance of the elic-
itation algorithm. The two first criteria summarized in Ta-
ble 1 are generic criteria for making the posterior as certain
as possible, which may not work well for eliciting the ag-
gregated ranking or individual rankings. In Section 6 we
report experimental results comparing performance of dif-
ferent G∗

R
in Table 1 and the new criteria we propose for

both social choice and individual ranking.

3.1 A New Elicitation Criterion for Social Choice

The social choice ranking is the ranking over the compo-
nents of �δ. Therefore, if the objective is to elicit prefer-
ences for the aggregated ranking, it makes sense to make
each pairwise comparison as certain as possible. Follow-

ing the idea in t-test, we propose to use
|mean(δj1 − δj2)|

std(δj1 − δj2)
(which is the inverse of coefficient of variation) to evaluate
the certainty in pairwise comparison between cj1 and cj2 .
The larger the value is, the more certain we are about the
comparison between cj1 and cj2 . Therefore, we propose to
use the following quality function G distributions over Θ.
We recall that Θ = (�δ, B).

G(Pr) = min
j1 �=j2

|mean(δj1 − δj2)|
std(δj1 − δj2)

.

In words, G is the minimum inverse of the coefficient of
variation across all pairwise comparisons. The correspond-
ing G

∗
R

is thus the following.

G
∗
R
(Θ, h) = min

j1 �=j2

|mean(δj1 − δj2)|�
Var(δj1) + Var(δj2) + 2cov(δj1 , δj2)

,

(5)

Where |mean(δj1 − δj2)| can be computed from Θ and�
Var(δj1) + Var(δj2) + 2cov(δj1 , δj2) can be computed

from R+ Ih(Θ).

3.2 Generalization to Personalized Choice

Following the idea in the new criterion proposed in the last
subsection for social choice, for any agent with attributes
�x, we can define a similar quality function G�x(Pr). This
makes the ranking of the alternatives w.r.t. the deterministic
parts of the perceived utilities8 as certain as possible, as
follows. For any j ≤ m, let µj = δj + �xB(�zj)T . We note
that µj is a linear combination of the parameters in Θ.

G�x(Pr) = min
j1 �=j2

|mean(µj1 − µj2)|
std(µj1 − µj2)

(6)

G
∗
�x
(Θ, h) can be defined in a similar way. However, usu-

ally we want to predict the rankings for a population of
agents, for which only a distribution over agent attributes
is known. Mathematically, let ∆ denote a probability dis-
tribution over RL. We can extend the criterion for person-
alized choice w.r.t. ∆ as follows.

G∆(Pr) =

�

�x∈RT

G�x(Pr) ·∆(�x) d�x.

G∆ is usually hard to compute since it involves integrating
G�x over all �x in support of ∆, which is often not analyti-
cally or computationally tractable. In the experiments, we
will use the criterion defined in (5) for personalized ranking
and surprisingly it works well.

4 An MC-EM Inference Algorithm

In this section, we extend MC-EM algorithm for
RUMs proposed by Azari et al. [1] to GRUMs. We
focus on GRUMs where the conditional probability
Pr(·|�xi, �zj , δj , B) belongs to the exponential family, which
takes the following form: Pr(U = u|�xi, �zj , δj , B) =
e
ηij ·T (u)−A(ηij)+H(u), where ηij is the vector of natural

parameters, which is a function of �xi, �zj ,Θ. A is a func-
tion of ηij and T and H are functions of u.

Let U = ( �u1, . . . , �un) denote the latent space, where
�ui = (ui1, . . . , uim) represent agent i’s perceived utilities
for the alternatives. The general framework of the proposed

8That is, the intrinsic utility plus personalized utility.



EM algorithm is illustrated in Algorithm 2. The algorithm
has multiple iterations, and in each iteration there is an E-
step and a general M-step. Therefore, the algorithm is a
general EM (GEM) algorithm. We recall that Θ = (�δ, B)
represents the parameters.

Algorithm 2 Framework of the EM algorithm
In each iteration.
E-Step : Q(Θ,Θt)

= E�U

�
log

n�

i=1

Pr(�ui,π
i|Θ) + log(Pr(Θ))|D,Θt

�
(7)

M-step : compute Θt+1 s.t. Q(Θt+1
,Θt) > Q(Θt

,Θt)

The algorithm is performed for a fixed number of iterations
or until no Θt+1 in the M-step can be found. However, the
E-step cannot be done analytically in general, and we will
use a Monte Carlo approximation for the E-step.

4.1 Monte Carlo E-Step: Gibbs Sampling

Our E-step is similar to the E-step in [1] with a modification
that considers the prior. We recall that Pr(·|�xi, �zj , δj , B)
belongs to the exponential family. We have the following
calculation for iteration t, where µij = δij + �xiB(�zj)T for
any given Θ = (�δ, B), and µ

t

ij
= δ

t

ij
+ �xjB

t(�zi)T .

Q(Θ,Θt) = E�U
{log

n�

i=1

Pr(�Ui,π
i | Θ) + log Pr(Θ) | D,Θt}

=
n�

i=1

m�

j=1

Euij{log Pr(uij |Θ) | πi
,Θt}

=
n�

i=1

m�

j=1

ηijS
t

ij
−A(ηij) +W,

where S
t

ij
= Euij∼Pr(uij |ηt

ij)
{uij |πi}. (8)

We use a Monte Carlo approximation similar to that used
in [1], which involves sampling U from the distribution
Pr(U | D,Θt) using a Gibbs sampler, and then approxi-
mate S

t+1
ij

by 1
N

�
N

k=1 u
k

ij
. Each step of the Gibbs sam-

pler is sampling from a truncated exponential distribution,
illustrated in Figure 2 in [1].

4.2 General M-Step

After we compute S
t+1
ij

’s, the M-step aims at improving
Q(Θ,Θt):

Q(Θ,Θt) =
m�

j=1

n�

i=1

log Prj(uij = S
t+1
ij

| Θ) + log(Pr(Θ))

We use steps of Newton’s method to improve Q(Θ,Θt) in
the M-step (we can use as many steps at each iteration to
ensure the convergence for each M-step).

Θt+1 = Θt − (∇2
ΘQ(Θ,Θt)|Θt)−1∇ΘQ(Θ,Θt)|Θt (9)

∇2
ΘQ(Θ,Θt) and ∇ΘQ(Θ,Θt) can be computed immedi-

ately from S
t

ij
as follows.

∇2
ΘQ(Θ,Θt) =

n�

i=1

m�

j=1

∇2
ΘηijS

t

ij
−∇2

ΘA(ηij)

∇ΘQ(Θ,Θt) =
n�

i=1

m�

j=1

∇ΘηijS
t

ij
−∇ΘA(ηij)

4.3 Computing Observed Fisher information

Computation of the observed Fisher information will not
only be used in Step 2 of the new elicitation scheme Algo-
rithm 1, but also will accelerate the GEM algorithm [16].
Fisher information can be computed by the following
method proposed by Louis [16]. From the independence
of agents we have: JD(Θ̂) =

�
i
Jπi(Θ̂), where,

Jπi(Θ) = EUi{−∇2
Θ logP (πi

, Ui|Θ)|Θ,π
i}

− EUi{∇Θ logP (πi
, Ui|Θ)∇Θ logP (πi

, Ui|Θ)T |Θ,π
i}

Jπi(Θ̂) is computed using the samples (uij’s) generated in
MC step in every iteration of EM algorithm as follows.

∇2
Θ logP (πi

, Ui|Θ) =
n�

i=1

m�

j=1

∇2
ΘηijUij −∇2

ΘA(ηij)

∇Θ logP (πi
, Ui|Θ) =

n�

i=1

m�

j=1

∇ΘηijUij −∇ΘA(ηij)

The Fisher information matrix Ih(Θ̂) used in Step 3 of Al-
gorithm 1 can be approximated by limn→∞

JDn (Θ̂)
n

, where
Dn is the dataset of n rankings randomly generated ac-
cording to Pr(π|Θ̂). Therefore, we can use the techniques
developed in this subsection to approximately compute
Ih(Θ̂).

4.4 MC-EM Algorithm in Detail

The details of the proposed EM algorithm (with fixed num-
ber of iterations) are illustrated in Algorithm 3.

5 Global Optimality for Posterior
Distribution

In this section, we generalize theorems on global optimal-
ity of likelihood for RUMs proved in [1] to GRUMs. All



Algorithm 3 MAP for GRUM
Input: D = (π1

, . . . ,π
n), Θstart, T ∈ N

Let Θ0 = Θstart

for t = 1 to T do
for every π

i ∈ D do
Compute St+1

ij
and J(Θt+1) according to (8) for all

j ≤ m.
end for
Compute Θt+1 according to (9).

end for

proofs are omitted due to the space constraint. The EM
algorithm tends to find local optimal of the posterior distri-
bution, hence, proving global optimality of MAP helps to
avoid issues due to EM. First, we present concavity of the
posterior distribution in GRUMs.

Theorem 1 For the location family, if for every j ≤ m the
joint probability density function for ��i and the prior Pr(Θ)
are log-concave, then Pr(Θ|D) is concave up to a known
transformation.

For P-L, Ford, Jr. [12] proposed the following neces-
sary and sufficient condition for the set of global max-
ima solutions to be bounded (more precisely, unique) when�

m

j=1 e
Θj = 1. The conditions are generalized to the case

of RUMs in [1]. We prove that this condition is also neces-
sary and sufficient for global maxima solutions of the like-
lihood function of GRUMS to be bounded.

Condition 1 Given the data D, in every partition of the al-
ternatives C into two nonempty subsets C1∪C2, there exists
c1 ∈ C1 and c2 ∈ C2 such that there is at least one ranking
in D where c1 � c2.

Theorem 2 Suppose we fix µ11 = 0. Then, the set SD of
global maxima solutions to Pr(Θ|D) is bounded in Θ if
and only if the data D satisfies Condition 1 and the linear
model describing µ in terms of Θ is identifiable.

6 Experimental Results

In this section, we report experimental results on synthetic
data and a Sushi dataset from Kamishima [14] for three
types of tests described below.

6.1 Social Choice and Synthetic Data

We first show the consistency of the model for so-
cial choice. We generate random data sets with
δj ∼ Normal(1, 1), Bij ∼ Normal(0, 1), Xi ∼
Normal(0, 1), Zi ∼ Normal(0, 1), and then generate ran-
dom utilities with the random noise �ij generated with
mean zero and variance of 1. The results in Figure 2 are
generated by varying the number of agents for which we

have preference information. For each number of agents,
we estimate the parameter set Θ, and evaluate the Kendall
correlation between estimated and true ranks with respect
to δj’s. These results illustrate the improvement in esti-
mated social choice order as the number of agents in the
population increases.
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Figure 2: Asymptotic behavior for synthetic data and so-
cial choice. The y-axis is the average Kendal correlation
between the estimated social choice and the ground truth
order.

In studying elicitation for social choice, we test the perfor-
mance of the elicitation schemes shown in Table 1, i.e. D-
optimality, E-optimality, and the proposed criterion in (5),
and compare the results to random elicitation. We adopt
the following two synthetic datasets:

Dataset 1: (Bij ∼ N(0, 1), Xi ∼ N(0, 1), Zi ∼
N(0, 1)), δj ∼ 0.1 ∗ N(1, 1) and the error term �ij ∼
N(0, 1).

Dataset 2: The same as Dataset 1, except that the δj ∼
N(1, 1) and the error term �ij ∼ N(0, 1/4).

Compared to the GRUM in Dataset 1, the model adopted
in Dataset 2 has a heavier social component and less noise.
For each dataset we generate 100 agents’ preferences, and
use the three criteria shown in Table 1 to elicit n ∈ [1, 100]
rankings. For each n, we apply Algorithm 3 and compare
the ranking over the learned δj’s with the ground truth so-
cial choice ranking.

The results are shown in Figure 3 (graphs are smoothed
with a moving window with length 25), where the x-axis
is the number of agents whose preferences are elicited, and
the y-axis is the Kendall correlation between the learned
ranking and the ground truth ranking. We make the follow-
ing observations.

• In Dataset 1 where the social component is small, it is not
clear which criteria is better, as shown in Figure 3(a), and
there are no statistically significant results.



Random
E−opt
D−Opt
Proposed

Random
E−opt
D−Opt
Proposed

Number of Agents

25 30 35 40 45 50 55 60 65 70 75

0

0.02

0.04

0.06

0.08

0.1

Number of Agents

25 30 35 40 45 50 55 60 65 70 75

0.3

0.35

0.4

0.45

Ke
nd

al
l−

Co
rr

el
at

io
n

Ke
nd

al
l−

Co
rr

el
at

io
n

(a) Social choice: Dataset 1. (b) Social choice: Dataset 2.

Figure 3: Comparison of elicitation criteria described in Table 1 for synthetic data and social choice.
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(a) Personalized choice: Dataset 1. (b) Personalized choice: Dataset 2.

Figure 4: Comparison of elicitation criteria described in Table 1 for synthetic data for personalized choice.
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(a) Social choice: Sushi dataset. (b) Personalized choice: Sushi dataset.

Figure 5: Comparison of elicitation criteria described in Table 1 for the Sushi dataset [14].

• In Dataset 2 where the social component is large,
E-optimality generally works better than the proposed
method, while both work better than random, which works
surprisingly better than D-optimality, as shown in Fig-

ure 3(b). However, only a few of these observations are
statistically significant with 90% confidence, for example,
considering the interval of [34, 44] agents, E-optimality and
the proposed method outperforms Random but the compar-



ison between the other methods is not significant at 90%.

6.2 Personalized Choice and Synthetic Data

For personalized choice we first show the consistency re-
sults in Figure 6, where the bottom box-plot shows the
Kendall correlation between noisy data (i.e., an individual
agent’s random utility and thus preference order) and the
true preference order for each agent, and the top box-plot
shows Kendall correlation between estimated agent prefer-
ence orders and true preference orders, as obtained through
the model.

Turning to preference elicitation, we compare the schemes
in Table 1 with the random method for the same two
datasets as were adopted for social choice. The results
are shown in Figure 4(graphs are smoothed with a mov-
ing window with length 20). For each group of 100 agents,
and for any n ∈ [1, 100] and each elicitation scheme, we
compute the MAP of Θ, and use it to compute the Kendall
correlation between the true preferences and the predicted
preference for all 100 agents in this group. We make the
following observations:
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Figure 6: Asymptotic behavior for synthetic data and per-
sonalized choice. The y-axis is the average Kendall cor-
relation between an estimated preference order and ground
truth preference order for an agent. The top box-plot shows
the result of inference, the bottom box-plot the correlation
from raw data.

• In Dataset 1, where the social component is small, when
the number of agents used in elicitation is not too large (<
50), the proposed method works better than E-optimality,
which is itself comparable to random. Both methods are
better than D-optimality. See Figure 4(a). Some of these
observations are statistically significant, for example, when
n = [24, 25], E-optimality works better than D-optimality
with 90% significance, E-optimality works better than ran-
dom with 75% significance, the proposed method works
better than E-optimality with 75% significance, and the

proposed method works better than D-optimality with 75%
significance.

• In Dataset 2, where the social component is large,
E-optimality generally works better than the proposed
method, both work better than random, and random is
more effective than D-optimality, as shown in Figure 4(b).
However, only a few of these observations are statistically
significant with 90% confidence interval, for example E-
optimality outperforms D-optimality when the number of
agents is in the interval [29, 42].

6.3 Sushi Data

In synthetic experiments, we have access to the ground
truth. However, in the real world data (Sushi data) there are
no data available as ground truth. In this experiment, we es-
timated parameters Θ using preferences from 1000 agents,
randomly chosen from the 5000 agents in the dataset. And
adopt those parameters as the ground truth for the experi-
mental study. The categorical features are discarded from
the data set.9

The results are shown in Figure 5(graphs are smoothed
with a moving window with length 10), where (a) shows
comparisons for social choice (where we rank δ’s), and (b)
shows comparisons for personalized choice. We make the
following observations:

• For social choice (a), none of the criteria work well (and
note that the Kendall correlations are low for all criteria).
We feel that this is reasonable since preferences over sushi
is likely high personalized with a small social component
to preferences.

• For personalized choice (b), we observe that the proposed
method is generally the most effective, while the perfor-
mance of E-optimality and D-optimality is very close to
random. None of these results are statistically significant
with 90% confidence.

7 Conclusion and Future Work

We have proposed a method for preference elicitation based
on ordinal rank data, adopting the framework of Bayesian
experimental design. This includes two new criteria for so-
cial and personalized case. The proposed criterion for so-
cial choice can significantly improve the precision of esti-
mation, relative to random and some of the classical elicita-
tion criteria. This work can also be seen as preference elic-
itation for learning to rank. In the future, we can adopt the
methodology in other preference elicitation applications;
for example recommendation systems, product prediction
and so forth.

9We focus on non categorical features in this work. The
method can be extended to categorical features.
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