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Abstract

We propose a new framework for optimization under fairness constraints. The problems
we consider model procurement where the goal is to optimize a buyer’s utility while paying
sellers in a manner that reflects their contribution to the buyer’s utility. The payment rules
we consider are natural interpretations of fairness based on concepts such as Shapley values
and the nucleolus from cooperative game theory. The question in this setting is whether the
outcome (measured in terms of the buyer’s utility) produced by mechanisms that enforce fair
payments is competitive with the outcome of a mechanism that simply pays agents their costs
and is not committed to fair payments. Our main result shows that there exists a mechanism
which guarantees a solution whose value is at least one third of the optimal unfair solution for
any submodular utility function, and that this ratio is optimal. We discuss several special cases
for which this approximation ratio can be improved and natural extensions.

1 Introduction

In a typical procurement setting, a buyer aims to purchase goods or services from agents. The
agents associate some cost for their goods, and the buyer aims to optimize some objective function
in a cost-effective manner. In standard mechanism design settings, the costs are private information
and agents are strategic. In such scenarios a reasonable approach is to design truthful mechanisms
that have desirable guarantees [28, 19, 6, 7, 10, 4, 5, 1]. In this paper we consider settings in which
the agents’ costs are known to the mechanism designer, and truthfulness is therefore not the design
objective. Instead, we investigate cases in which the mechanism designer seeks to enforce payments
that are fair, or more precisely, payments that reflect the sellers’ contribution to the buyer’s overall
utility.

For concreteness, consider a set of agents, each selling a single good associated with some known
cost, and a buyer who has a utility function over goods she aims to optimize under some given
budget. As an extreme example consider two agents, one with some small cost ε > 0 and some
arbitrarily high utility to the buyer and another agent with cost B− ε and utility ε. A buyer which
has a budget B and an additive utility function can apply the following mechanism: select both
agents and pay each agent her cost. While it would be individually rational (every agent is paid
at least her cost), there is something fundamentally unfair about this mechanism since it allocates
the budget disproportionally to the agents’ contribution.
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Figure 1: Example to illustrate fairness. Each agent is represented as a set and each agent’s cost is one unit.

In a wide range of applications one seeks fair attribution mechanisms: mechanisms that attribute
the budget in a manner that reflects the agents’ contribution to the buyer’s utility. Scenarios where
this may arise include cases in which government agencies aim to procure goods or services and en-
force fairness criteria. Other interesting examples occur in online advertising when several agencies
advertise to a single user who makes a conversion after seeing multiple ads, and the reward from
the conversion is split amongst the different advertisers proportionally to their contribution to the
user’s conversion [33].

Fair attribution mechanism design. In this paper we employ natural models of fairness and
quantify the performance of mechanisms that use payments based on these concepts. For concrete-
ness, we present the results through a natural notion of fairness that relies on the Shapley value
from cooperative game theory. The results we describe in this paper however, extend to a far more
general class of solution concepts, as we will later discuss. At a high level, we are motivated by the
following question:

What is the price of fairness in procurement?

More concretely, we are interested in understanding whether the performance (in terms of
buyer’s utility) of a mechanism which pays agents “fairly” is comparable to that of a mechanism
that optimizes the buyer’s utility and simply pays each agent her cost.

1.1 Shapley-fair mechanisms

To illustrate the notion of fairness we intend to employ, consider the two caricature procurement
problems in Figure 1. In this example each agent is represented as a set of elements, illustrated
as black balls. The utility of the buyer from a set of agents is the total number of elements in the
union of their sets. In the example on the left, if we select the two sets at the bottom the total
value of the solution is 7 units, since one set contributes 4 units and the other contributes 3 and all
sets are disjoint. Thus, if we select the two agents associated with the bottom sets and pay them
in a 4 : 3 ratio that would encapsulate an intuitive notion of fairness. The example on the right
is slightly more involved as the sets are no longer disjoint. A natural extension when selecting the
two bottom sets would be to pay in a ratio of 3.5 : 2.5. This is derived from the following rationale:
the bottom left set covers three elements uniquely (this contributes 3) and another element that
is covered by another set in the solution (this contributes 0.5). Its contribution can therefore be
interpreted as 3.5. Similarly, the contribution of the bottom right set can be interpreted as 2.5.
This natural notion extends to a fundamental notion of fairness in cooperative game theory known
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as Shapley values.

Fairness through Shapley values. Given a utility function and some solution (a set of agents),
the Shapley value of an agent in the solution is defined as her expected marginal contribution to
the set of agents before her in a random permutation of the solution [27]. The Shapley values are
often used in the cost-sharing literature to prescribe the fair amount an agent should pay when it
shares a resource with a set of agents. In order to employ this concept for procurement, we define
a concept of Shapley-fair payments that uses the Shapley values. For a given budget, solution, and
utility function, the Shapley payment to an agent is her Shapley value normalized such that the
sum of the payments to the agents in the solution is equal to the budget. By the efficiency property
of Shapley values, which states that the sum of Shapley values is equal to the value of the solution,
this normalizing term for all agents is the budget divided by the value of the solution.

We say that a mechanism is Shapley-fair (or for short, fair) if it pays the agents in the solution
that it selects their Shapley payments. A solution is then feasible if these payments are individually
rational. That is, the payment to any agent in the solution is at least her cost. Naturally, we seek
Shapley-fair mechanisms that pick a feasible solution that maximizes the utility function of the
buyer.

Example: coverage functions. For a simple example consider again the instance illustrated in
Figure 1. We use the instance on the right where there is an intersection between the sets on the
bottom, and assume that every agent has a cost of one unit and that we have a budget of three
units. A Shapley-fair mechanism can select the bottom two agents and pay them their Shapley
payments. Since the budget is three and the value of the set consisting of these two agents is
six, the payment to the bottom left agent would be 3/6 · (3 + 1/2) = 1.75 and the payment to the
bottom right agent would be 3/6 ·(2+1/2) = 1.25. For both agents these payments are individually
rational (above one unit), and thus this solution is feasible. It is easy to check that this solution is
optimal: no other agent can be added since the remaining agents’ Shapley values are all one, but
since the budget divided by the value of this new solution is strictly less than one, the payment to
another agent would not be individually rational.

The optimal unfair solution is the solution that maximizes utility by selecting agents whose
total cost is under the budget and then pays them their cost. In this example, the two bottom
sets and one of the top sets is an optimal unfair solution. This solution respects the budget and
has total value of 7. This example illustrates a simple but important idea: regardless of compu-
tational constraints, the optimal fair solution can lead to qualitatively worse outcomes. Formally,
we say that a Shapley-fair mechanism is an α-approximation if it outputs a fair solution that is
an α-approximation to the optimal unfair solution. As we will now see, the performance largely
depends on the utility function.

In general, fairness is unobtainable. It is not hard to see that there are simple examples of
utility functions for which no fair solution with a finite approximation ratio exists. Suppose the
utility function f is such that f({a1}) = f({a2}) = 0, and f({a1, a2}) = 1, the budget is B = 1,
and the agents’ costs are c1 = 1 and c2 = 0. The optimal unfair solution is S∗ = {a1, a2}. However,
a fair solution cannot select both agents since it would need to pay both agents equally as they
have the same contribution. The approximation ratio in this case is therefore unbounded. This
example leads to the following question.
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Are there utility functions for which fair attribution mechanisms perform well?

1.2 Main Results

In this paper we show that there are rich classes of utility functions for which fair attribution
mechanisms perform well. In particular, we prove the following theorem.

Theorem 1. For any submodular utility function there exists a fair mechanism which is a 3-approximation.
Furthermore, this bound is tight as no fair mechanism can obtain an approximation better than 3−ε,
for any fixed ε > 0.

We also show that when one allows for randomization, large market assumptions, or when the
agents have uniform costs, the approximation ratio can be improved to two, and in all cases we
show this is tight as well.

Beyond Shapley-fairness. Although Shapley payments capture the notion of fairness quite well,
there may be other notions of fairness one may be interested in considering. One example is that
of the nucleolus which is also standard in cooperative game theory. In Section 6 we extend our
results to very broad classes of fairness that need to respect a very simple and intuitive property.
We show that the nucleolus respects this criterion.

1.3 Paper organization.

We begin with a short preliminary section to formally introduce the model and our objectives. In
Section 3 we describe an axiomatic characterization that justifies the use of Shapley values. We give
our main result in Section 4 where we present and analyze a fair attribution mechanism that obtains
an approximation ratio of three to the problem. We then continue to discuss special cases in which
the approximation ratio can be improved. In Section 6 we extend the notion of fairness to broader
concepts than Shapley values. In Section 7 we discuss interesting extensions and applications of
our results to related scenarios. We conclude with a brief discussion and state some open questions
that follow from this line of work.

1.4 Related work

Procurement has been studied in algorithmic mechanism design for over a decade. There have been
two major directions of investigation: frugality and budget feasible mechanism design. Frugality
considers the task of designing truthful mechanisms that aim to minimize payments. This was first
studied by Archer and Tardos [3] and has been well developed in the past decade [34, 11, 17, 19, 6].
An alternative notion is that of budget feasible mechanism design initiated by Singer [28] where
the goal is to optimize a utility function under a hard budget constraint. This concept enables
surprisingly positive results and has been studied in algorithmic mechanism design [7, 10, 4, 5, 1]
and used in various application domains that include social network analysis [29], crowdsourcing [36,
30, 32] and privacy auctions [9, 31]. The setting that we study most resembles that of budget feasible
mechanism design. The crucial difference is that in our setting we do not seek truthfulness but
fairness.

The main notion of fairness we use is that of Shapley values from his seminal paper [27]. Shapley
gives an axiomatic characterization and shows that for convex games this value is in the core. The
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notion of core is a fundamental notion in cooperative games, first introduced by von Neumann
and Morenstern [35]. Shapley values are studied in algorithmic mechanism design primarily in the
context of cost-sharing [22, 13, 2, 15, 21]. For a survey of results in algorithmic mechanism design
see [16].

The concept of Fairness has been heavily studied in social choice theory. In particular, there
has been a great deal of interest in fair division problems [23, 18, 8, 25]. For a recent survey see [24].

The concept of attribution has been studied by Sun and Sundararajan [33]. Their main result
shows that the Shapley-Shubik method (the continuous analogue of the Shapley values) is the
only method which under reasonable conditions appropriately attributes change in the value of a
continuous multilinear function. Their motivation for studying the problem is that of “beyond-
the-last-click” in online marketing. Our work is in many ways a continuation to that of Sun and
Sundararajan. While their work deals with characterization, in our work we provide a mechanism
and guarantees that can be directly applied to the problems considered in their work.

2 Preliminaries

Setup. We consider a model in which there is a set of agents N = {a1, . . . , an} and a buyer. Each
agent ai has a cost ci ≥ 0 for the item she is selling, and this cost is known. The buyer has some
budget B ≥ 0 and a utility function f : 2N → R+ defined over sets of agents. Without loss of gener-
ality we assume that ∀i ∈ [n] : ci ≤ B. We will mainly consider submodular functions in this paper.

Submodularity. A function is submodular if for all S ⊆ T and a ∈ N \ T it has diminishing
marginal returns:

f(S ∪ a)− f(S) ≥ f(T ∪ a)− f(T )

Note that we abuse notation and write S ∪ a instead of S ∪ {a} when a ∈ N . Similarly,
we write S \ a instead of S \ {a}. An alternative definition is that for every S, T it holds that:
f(S ∪ T ) ≤ f(S) + f(T )− f(S ∩ T ). We use fT (S) to denote the marginal contribution of S ⊆ N
given some T ⊆ N :

fT (S) := f(S ∪ T )− f(T ).

Shapley Fairness. The Shapley value of agent ai with respect to a set of agents S ⊆ N such that
ai ∈ S is defined as:

φi(S) =
∑

T⊆S\ai

|T |!(|S| − |T | − 1)!

|S|!
fT (ai).

With value functions such as the Shapley value φ(·), we emphasize that the contribution of agent
ai to f(S), φi(S), is different than the marginal contribution of agent ai to f(S), fS(ai). We note
that from a computational perspective computing Shapley values exactly requires summing over
exponentially many sets though we discuss methods to approximate this value with high precision
in a computationally efficient manner in Section 4. For a given solution S ⊆ N , an agent ai ∈ S, a
budget B, and a utility function f(·), the Shapley payment to ai denoted as pi is:

pi =
B · φi(S)

f(S)
.

We say that a mechanism is Shapley-fair (or for short, fair) if it pays the agents in the solution
that it selects their Shapley payments. A solution is then feasible if these payments are individually
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rational. That is, the payment to any agent in the solution is at least her cost. Note that the budget
constraint is always satisfied since the payments are defined to be such that their sum is exactly
equal to the budget. Naturally we seek Shapley-fair mechanisms that pick a feasible solution that
maximizes the utility function of the buyer:

max
{
f(S) :

B · φi(S)

f(S)
≥ ci for all ai ∈ S, S ⊆ N

}
.

Approximation. We wish to obtain fair mechanisms which produce a solution that is comparable
with that of the standard solution in terms of the utility to the buyer. In particular, a mechanism
is an α-approximation if it outputs a solution S such that αf(S) ≥ f(S∗) where S∗ is an unfair
solution given to the mechanism. That is, S∗ is a solution to the following optimization problem:

max
{
f(S) :

∑
ai∈S

ci ≤ B,S ⊆ N
}
.

3 Axiomatic Attribution of the Budget

In this section, we describe natural axioms of fairness and show that mechanisms with Shapley
payments are the only ones that respect these axioms. For a given utility function f : 2N → R+

and solution S ⊆ N selected by the mechanism, then the payments to agents by a fair mechanism
must satisfy:

• Efficiency: The entire budget must be split among agents,
∑

i∈S pi = B.

• Dummy: An agent which does not contribute to f(S) should not be paid: if f(T ) = f(T ∪ ai)
for all T ⊆ S such that ai /∈ T , then pi = 0.

• Anonymity: If two agents ai and aj are equivalent in their contribution to f(S), then they
should receive the same payment: if f(T ∪ai) = f(T ∪aj) for all T ⊆ S which do not contain
ai and aj , then pi = pj .

• Proportionality: The function (f + g)(T ) = f(T ) + g(T ) should attribute a payment to
an agent which is proportional to the payment she would receive with the functions f and g
separately with coefficients f(S) and g(S) respectively, pi(f + g) = α(f(S)pi(f) + g(S)pi(g))
for some α which only depends on f and g and not on ai.

In the cost sharing literature, the Shapley value is the classical attribution method of a function
f where the total gain f(S) is divided among the agents. The Shapley value is considered to be
the fair attribution method in such a situation since it is the only attribution method to satisfy
the Shapley axioms: Efficiency, Dummy, Anonymity and Additivity, where efficiency divides f(S)
rather than B. In our model, the payments still need to satisfy Efficiency, Dummy and Anonymity
but the Additivity axiom has been replaced by Proportionality: to divide the budget fairly in terms
of contribution, the budget is split proportionally between f(S) and g(S).

The following theorem shows that our attribution method is the unique attribution method
which satisfy the four axioms listed above. The proof is deferred to the full version of the paper.

Theorem 2. The Shapley payments are the only payments that satisfy the Efficiency, Dummy,
Anonymity, and Proportionality axioms.
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4 Fair optimization

In this section we prove our main result: for any submodular function, there is a set of agents
who can be paid by Shapley payments and the value of the solution induced by these agents is
no less than a third of the value of the optimal unfair solution. Furthermore, we show that this
bound is tight in the sense that no mechanism that respects Shapley-fairness can obtain a better
approximation ratio.

It is important to note that these results do not take computational restrictions into consider-
ation. As we later discuss, when computation is involved, a computationally efficient mechanism
can be implemented at the expense of losing an approximation ratio of e/(e− 1) and the Shapley
payments inevitably need to be approximated to arbitrarily fine precision. Since we are interested
in making the distinction between limitations due to fairness and those due to computation, we
consider efficient computation as another restriction on the mechanism.

We will begin by introducing a natural greedy mechanism and show its approximation ratio
cannot be better than Ω(

√
n) (interestingly, this mechanism is a O(

√
m)-approximation for coverage

utility functions with universe size m, though we defer the analysis to the full version of the paper).
The idiosyncrasies of the greedy mechanism lead to the Sieve mechanism which is the working-
horse in this paper. We then describe and analyze this mechanism and prove our main result.

4.1 The greedy mechanism is an Ω(
√
n)-approximation

In standard optimization of a monotone submodular function under a budget constraint, one often
applies variants of a simple greedy algorithm to obtain constant factor approximation guarantees.
The greedy algorithm simply adds the element which maximizes the bang-per-buck (i.e. the element
whose marginal contribution-per-cost is greatest), until it runs out of budget. Variations like taking
the maximum between the element with the largest utility and the solution returned by the greedy
algorithm are used to protect from cases in which there is an element whose marginal-contribution-
per-cost is always smaller than those of the rest of the elements though has substantially larger
utility then the rest of the elements (e.g. an element with arbitrarily large utility M >> B and cost
B and elements with arbitrarily small cost and utility ε > 0). The analogue of the greedy algorithm
to the fair-design problem would be to sequentially add the agent whose marginal-contribution-per-
cost is greatest until the cost of some participating agent exceeds its fair payment.

Lower bound on the greedy mechanism. Consider the instance in which every agent ai has
cost of 1 − εi where εi > εi+1, and all {εi}ni=1 are arbitrarily small. The budget is B = n. The
function f is the coverage function where a1 covers two elements e and e′. Agents ai for i > 1 where
i is even cover two elements as well, e and a unique element to each agent ei, while agents ai for
i > 1 where i is odd cover e′ and a unique element ei. The greedy mechanism begins by selecting
agent a1, and then a2, a3, . . . sequentially. It is easy to check that after 2

√
n− 1 steps, for the set

of selected agents S we have that f(S) = 2
√
n, and φ1(S) = 2/

√
n. Thus:

p1 = φ1(S) ·B/f(S) = 2/
√
n ·B/2

√
n = 1.

If the mechanism tries to add another agent into S after 2
√
n − 1 steps this will break individual

rationality since that would decrease φ1(S) strictly below 1, and since ε1 is arbitrarily small, this
would make the payment to fall below a1’s cost. Since the optimal unfair solution that picks all the
agents has value 2(n − 1), the greedy mechanism is an Ω(

√
n)-approximation, even in the case of
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coverage functions. Let m be the size of the universe (the number of elements), then this instance
also gives us that the greedy mechanism is an Ω(

√
m)-approximation.

Upper bound on the greedy mechanism. Interestingly, the greedy mechanism is an O(
√
m)-

approximation for coverage functions with universe size m. We defer the analysis to the full version
of the paper. In conclusion, we have:

Theorem 3. The greedy mechanism is a fair Ω(
√
n)-approximation for submodular functions and

a fair Θ(
√
m)-approximation for coverage functions where m is the size of the universe.

4.2 The main result: fairness is a 3-approximation

Intuitively, the greedy mechanism fails because it may select an agent whose Shapley payment
quickly decrease. This is due to the fact that the Shapley payments monotonically decrease as
the size of the set grows. We can therefore consider an opposite approach to that of the greedy
mechanism: start from a feasible solution and greedily remove agents until all agents can be paid
fairly. Surprisingly, this simple mechanism which we call Sieve essentially leads to the main result
in this paper.

Sieve. The Sieve mechanism receives as input a set S∗ ∈ argmaxT :c(T )≤Bf(T ) where c(T ) is the
cost of set T : c(T ) :=

∑
ai∈T ci. At every step, the mechanism removes the agent whose marginal

contribution-per-cost is lowest, and does so until the budget can be attributed fairly amongst the
agents in the remaining set. Finally, the mechanism chooses between the remaining set and the
element with the largest utility from the original set of agents, S∗. We describe the mechanism
formally below.

ALGORITHM 1: Sieve
Input: S∗ ∈ argmaxT :c(T )≤Bf(T )
1: S ← S∗

2: while S not feasible do
3: S ← S \ argminaj∈SfS\aj

(aj)/cj
4: end while
5: if f(ai) ≥ f(S) for some ai ∈ S∗ then
6: return {ai}
7: end if
8: return S

Note that this mechanism is similar to Moulin’s group-strategyproof mechanism [22] in the sense
that it iteratively removes agents from the solution. However, two main differences are that the
condition on which agents are removed are very different (Moulin’s mechanism may even remove
multiple agents at a single iteration) and that our algorithm does not start with the entire set of
agents.

An alternative formulation. The main idea behind the analysis of the mechanism’s approxima-
tion ratio is to consider its performance against an alternative optimization problem. In the original
formulation, the payments are uniquely defined such that the budget constraint holds exactly. A
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solution is then feasible if all the payments are greater than the agents’ costs:

max
{
f(S) : pi > ci,∀ai ∈ S, S ⊆ N

}
(1)

Alternatively, the payments can be defined to be the minimum payments such that the agents
are still paid proportionally to their contribution measured by their Shapley value and such that
the agents’ cost constraints are satisfied. The cost constraint of at least one agent will then be
met exactly. With this definition, a solution is feasible when the budget constraint is satisfied.
In this formulation, we therefore define the payment to an agent ai to be γS · φi(S) where γS :=
maxai∈S ci/φi(S) and consider the following optimization problem:

max
{
f(S) :

∑
ai∈S

γS · φi(S) ≤ B, S ⊆ N
}

(2)

The benefit of this new formulation is that there is one condition, instead of n, that needs
to hold for a solution to be feasible. The following lemma suggests that for the purposes of our
analysis, the problems are equivalent.

Lemma 1. Let S be as defined as in Sieve, the following always holds: S is feasible according to
problem 1 if and only if it is feasible according to problem 2.

Proof. The proof proceeds in two steps. The first is to show that if S1 and S2 are the collections
of feasible solutions to problems 1 and 2 respectively, then S1 = S2 if φi(S) ≥ 0 for all S ∈ S2 and
for all ai ∈ S. Then, what remains to show is that φi(S) ≥ 0 holds for any S in Sieve and for all
ai ∈ S.

We start by showing that S1 ⊆ S2. Let S ∈ S1 be a feasible solution to problem 1. According
to problem 1, the payments to the selected agents are above the costs of these agents, so pi =
Bφi(S)/f(S) ≥ ci for all ai ∈ S. According to problem 2, the sum of the payments is therefore:∑

ai∈S
φi(S) max

aj∈S

cj
φj(S)

≤ B

f(S)

∑
ai∈S

φi(S) = B

where the last equality follows from the efficiency property of Shapley values. Therefore S is also
a feasible solution to problem 2.

We next show that S2 ⊆ S1 when φi(S) ≥ 0 for all S ∈ S2 and for all ai ∈ S. Let S
be a feasible solution to problem 2 and assume that φi(S) ≥ 0 for all ai ∈ S. According to
problem 2, the sum of the payments to the agents which are served is at most the budget, so∑

ai∈S φi(S) maxaj∈S
cj

φj(S) ≤ B. By contradiction, assume there exists some agent k that has

payment, according to problem 1, under its cost, so Bφk(S)
f(S) < ck. Then,∑

ai∈S
φi(S) max

aj∈S

cj
φj(S)

≥
∑
ai∈S

φi(S)
ck

φk(S)
>

B

f(S)

∑
ai∈S

φi(S) = B

where the second inequality follows from Bφk(S)
f(S) < ck and from φk(S) ≥ 0. This is a contradiction

with S being a feasible solution to problem 2.
Finally, consider some input S∗ to Sieve. The marginal contribution of any agent ai ∈ S∗

satisfies fS∗\ai(ai) ≥ 0 otherwise S∗ would not be optimal. By submodularity, we then get that
fS\ai(ai) ≥ 0 for any S ⊆ S∗. From the definition of Shapley values, we then obtain that φi(S) ≥ 0
holds for any S in Sieve and for all ai ∈ S.
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Useful property. Using the formulation of problem 2, the analysis of this mechanism is now
based on quantifying the relationship between the marginal contribution and the Shapley value of
an agent in the solution. We show that for a given set of agents, the marginal contribution of any
agent to that set is at most its Shapley value.

Lemma 2. Let S ⊂ N and ai /∈ S, then φi(S ∪ ai) ≥ fS(ai) for any submodular f : 2N → R .

Proof. First, observe that for any S ⊆ N

∑
T⊆S

|T |!(|S| − |T |)!
(|S|+ 1)!

=
1

|S|+ 1

|S|∑
k=0

(
|S|
k

)
k!(|S| − k)!

|S|!
=

1

|S|+ 1

|S|∑
k=0

1 = 1.

Therefore,

φi(S ∪ ai) =
∑
T⊆S

|T |!(|S| − |T |)!
(|S|+ 1)!

fT (ai) ≥
∑
T⊆S

|T |!(|S| − |T |)!
(|S|+ 1)!

fS(ai) = fS(ai)

where the inequality is due to submodularity.

The approximation ratio. We now have the necessary tools to prove the approximation ratio.
We begin with the following lemma.

Lemma 3. For any submodular function f : 2N → R, let S∗ be the input to Sieve, S be the feasible
set obtained by Sieve after removing agents from S∗, and ai be the last agent removed from S by
Sieve, then:

f(S∗)− f(S) ≤ fS(ai)

ci

∑
ak∈S∗\S

ck.

Proof. Let Sk be the set S at the end of the iteration of Sieve where ak was removed.

f(S∗)− f(S) =
∑

ak∈S∗\S

fSk
(ak)

ck
ck ≤

∑
ak∈S∗\S

fSk∪ak\ai(ai)

ci
ck ≤

fS(ai)

ci

∑
ak∈S∗\S

ck

The first inequality is due to the fact that ai was removed from S after ak. The second inequality
follows from submodularity.

The inequality from the above lemma nicely quantifies the difference in the objective function in
terms of costs. We can now use the fact that according to our alternative formulation of problem 2,
when ai is the last agent to be sieved, this implies that the cost for S ∪ ai exceeds the budget. We
then apply the relation between marginal contributions and Shapley values from Lemma 2 to get
the desired result.

Theorem 4. For any submodular f : 2N → R, Sieve is a 3-approximation.

Proof. Let ai be the last agent removed from S by Sieve and let a` ∈ arg maxaj∈S∪ai cj/φj(S ∪ ai).
Since S ∪ ai is not feasible, the cost of S ∪ ai exceeds the budget according to problem 2. This
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implies:

B <
∑

ak∈S∪ai

φk

(
S ∪ ai

)
max

aj∈S∪ai

cj
φj(S ∪ ai)

= f(S ∪ ai)
c`

φ`(S ∪ ai)

≤ f(S ∪ ai)
c`

fS\{a`}∪ai(a`)

≤
(
f(S) + fS(ai)

) ci
fS(ai)

where the second inequality follows from lemma 2 and the third from the fact that ai ∈
arg maxaj∈S∪{i} cj/fS∪ai\aj (aj) since ai was removed by the algorithm. Combining with lemma
3 we get:

f(S∗)− f(S) ≤ fS(ai)

ci
B < f(S) + fS(ai).

Recall that S∗ is the optimal solution to the unfair problem. If fS(ai) ≥ 1
3f(S∗), then 3f(ai) ≥

f(S∗) by submodularity. Otherwise, f(S∗)− f(S) < f(S) + 1
3f(S∗), so 3f(S) ≥ f(S∗). Therefore,

if 3f(S) < f(S∗), then Sieve returns {aj} for some j such that 3f(aj) ≥ f(S∗)

The lower bound. The natural question now is whether there exists a mechanism that can
somehow do better than Sieve, or alternatively if Sieve can be better analyzed. We show that
the approximation ratio obtained by analyzing Sieve is optimal: no Shapley-fair mechanism can
do better than a factor of 3 − ε, independently of any computational assumptions. We show this
holds even for the restricted case of additive functions. Recall that a function is additive if f(S) =∑

a∈S f(a), ∀S ⊆ N .

Lemma 4. No fair mechanism can obtain an approximation ratio better than 3−ε for any ε ∈ (0, 1),
even for additive functions.

Proof. Let ε ∈ (0, 1). Suppose f(S) is additive, f(a1) = f(a2) = 1, f(a3) = 1 − ε, B = 1 while
agents’ costs are c1 = 0, c2 = 1/2 + ε/5 and c3 = 1/2− ε/5.

In the unfair case, the optimal solution can be obtained by selecting the three agents. Any
Shapley-fair mechanism must pay agents a1 and a2 the same since their contribution is identical.
But since a2 needs to be paid at least 1

2 + ε
5 for the solution to be individually rational and budget

feasible, agents a1 and a2 cannot be both selected. Now consider selecting a3 and either a1 and
a2. The payments are then p3 = (1/(2− ε)) · (1− ε) and pi = (1/(2− ε)) · 1 where i = 1 or i = 2.
Observe that (1/2− ε/5)(2− ε) > 1− ε/2− 2ε/5 > 1− ε, which implies that c3 > p3 and that this
solution is not feasible. It is therefore impossible to serve more than one agent.

Theorem 5. For any submodular function f : 2N → R+ there exists a fair mechanism that obtains
an approximation ratio of 3. Furthermore, for any ε > 0 no mechanism can obtain an approximation
better than 3− ε.
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4.3 Computation

The above result teaches us about the price of fairness . If we consider computational limitations,
there are two aspects to consider, as described below.

Seeding Sieve. Note that Sieve takes as input the optimal solution to the unfair problem. In
the case of submodular function, this optimal solution cannot be found in polynomial time unless
P=NP [12]. However, the input to Sieve can be approximated by the e

e−1 -approximation algo-
rithm for the optimization of monotone functions under a budget constraint [20]. In the case of
non-monotone submodular functions, an e-approximation algorithm is known [14]. Note that for
the proof of lemma 1, we need the input S∗ to Sieve to be such that φi(S) ≥ 0 for all S ⊆ S∗ and
for all ai ∈ S. It is easy to see that this condition holds for monotone submodular functions. In the
full version of the paper, we show how this condition can be satisfied for non-monotone submodular
functions by a preprocessing step that modifies S∗ into some set S∗p that is given as an input to
Sieve. The advantage of S∗p is that f is monotone over any of its subsets.

Computing Shapley values. For some utility functions like cover functions (as in the examples
used throughout this paper), computing Shapley values is easy. In general, however, Shapley values
cannot be computed in polynomial time. At each iteration of Sieve and for each agent that has
not yet been removed by the algorithm, its Shapley value has to be computed to decide if the
remaining agents are a feasible solution. Thankfully, however, Shapley values of a submodular and
monotone function can be approximated arbitrarily well. Note that the monotone condition is not
an issue since even for non-monotone f , the input set to Sieve is such that f behaves monotonically
over that input thanks to the preprocessing step explained in the full version of the paper. We also
describe a Fully Polynomial-Time Randomized Approximation Scheme (FPRAS) in the full version
of the paper, which provides an oracle that computes an (1+ε)-approximation to the Shapley value
by generating 4n(n−1)/ε2 random permutations of the agents. This is shown by extending a recent
result by Liben-Nowell et al. [21].

Lemma 5. There exists a polynomial time oracle that computes an (1 + ε)-approximation of the
Shapley value with high probability for monotone submodular functions.

5 Special cases

In this section, we explore interesting cases for which the approximation ratio can be improved. In
particular, we consider large markets, randomization, and uniform costs. For these three distinct
settings, we show that the approximation ratio can be improved from three to be arbitrarily close
to two, and that in all settings this is tight.

5.1 Large markets

The notion of large markets in budget feasible mechanism design was recently introduced by Anari
et al. [1]. We formally defined large markets as follow.

Definition 1. A market is θ-large if the instance respects B ≥
(

1 + 1
θ

)
maxi∈[n] ci.

So for large markets where B >> ci, we get that θ → 0.

12



Lemma 6. For any submodular function Sieve is a (2 + θ)-approximation when the market is
θ-large.

Proof. Let ai be the last agent removed from S by Sieve. Using the same argument as in the first
part of the proof of Theorem 4,

B <
cif(S)

fS(ai)
+ ci.

By the assumption on the budget,

B ≥ 1 + θ

θ
max
i∈[n]

ci

(−1 + (1 + θ))B

1 + θ
≥ ci

B ≥ B

1 + θ
+ ci.

Combining our upper and lower bounds on B, we get

B

1 + θ
<
cif(S)

fS(i)
≤
f(S)

∑
ak∈S∗\S ck

f(S∗)− f(S)
<

f(S)B

f(S∗)− f(S)

where the second inequality follows from lemma 3. Since B
1+θ < f(S)B

f(S∗)−f(S) , we conclude that

f(S∗) < (2 + θ)f(S)

Lemma 7. No fair mechanism can obtain an approximation ratio better than two when the market
is θ-large, for any θ > 0, even for additive functions.

Proof. Pick n sufficiently large such that n ≥ 2 + 1
θ . Suppose f(S) is additive, f(ai) = 1

n−1 for

i < n, f(an) = 1, B = 1 while agents’ costs are ci = 1
n−1 for i < n and cn = 0. The market

is θ-large since 1 ≥ (1 + 1
θ ) 1
n−1 by our assumption on n. In the unfair case, the optimal solution

can be obtained by selecting all the agents, and the value of this solution is 2. Note however, that
for any fair mechanism, agent an must be paid n − 1 times more than any other agents since its
contribution is n − 1 times greater. Picking agent an and at least one other agent would infer a
cost that is therefore at least 1

n−1 + 1 > 1. So a fair mechanism cannot pick another agent if it
picks an.

Theorem 6. For any submodular function and θ-large market, Sieve is a (2 + θ)-approximation
and no fair mechanism can obtain a strictly better approximation ratio.

5.2 Randomization

The mechanisms and concepts we considered until now were deterministic, and it seems natural
to explore the power of randomization in the context of fairness. To do so, we begin by extending
our definitions so that we can select agents with probabilities. For each agent, define an allocation
variable xi ∈ [0, 1] indicating the probability with which an agent is selected. A natural extension
for a submodular function is the multilinear extension:

F (x) =
∑
S⊆N

∏
aj∈S

xj
∏
aj 6∈S

(1− xj)f(S).

13



This extension is the expected performance of a set where each agent is picked independently
with probability xi. Similarly, fairness is extended to be fairness in expectation: the Shapley
payment to ai being defined as

pi = Φi(x) · B

F (x)

where:
Φi(x) =

∑
S⊆N

∏
aj∈S

xj
∏
aj 6∈S

(1− xj)φi(S).

Individual rationality in this case is defined as having payments pi ≥ xici. The main ques-
tion is whether randomization allows an improvement on previous results. We first show that
randomization cannot do better than in the case of large markets.

Lemma 8. No fair mechanism can obtain an approximation ratio better than two using random-
ization, even for additive functions.

Proof. Suppose f(S) is additive, f(a1) = f(a2) = 1, B = 1 while agents’ costs are c1 = 1 and
c2 = 0. In the unfair case, the optimal solution can be obtained by selecting both agents. Consider
picking the agents fractionally according to x1 and x2. Since the function is additive, each agent’s
contribution in expectation is xi and F (x) = x1 + x2. The Shapley payment to p1 is then p1 = x1 ·

1
x1+x2

. To satisfy individual rationality, this payment must be at least x1, implying x1 +x2 ≤ 1.

Randomization helps. Even though randomization does not allow improvement on the result
for large markets, we show that in the general case, the approximation ratio can be improved to
two, making the results for this section tight. For this positive result, we compare ourselves to the
optimal unfair integral solution. Note that since we are interested in the question of how much can
randomization help, the benchmark remains the optimal integral unfair solution (and in particular,
not the optimal unfair fractional solution). The intuition is similar as to why fractional knapsack
performs better than integer knapsack: the relaxation allows us to pick an additional agent with
some probability in addition to the integral agents.

R-Sieve. Consider the following modification to Sieve. Once S is feasible, before termina-
tion, construct the vector x as follow and return x. Let ai be the last agent removed from S
by Sieve, then xj = 1 for all aj ∈ S, xj = 0 for all aj ∈ N \ {S ∪ ai}, and xi be such that
B =

∑
ak∈S∪ai Φk(x) maxaj∈S∪{i}

xjcj
Φk(x) . It is easy to see that problem 2 also extends according

to Φ and F . With x, the budget is tight according to both problem 1 and problem 2. To avoid
ambiguity, we refer to this new algorithm as R-Sieve.

Lemma 9. For any submodular function and input S∗, R-Sieve returns a solution x such that
2 · F (x) ≥ f(S∗).

Proof. Let x be the output of R-Sieve. Let S be the set of integral agents and ai be the fractional
agent according to x. First, observe that F (x) = f(S) + xifS(ai) and that Φj(x) = xiφ(S ∪ ai) +
(1− xi)φ(S) and Φi(x) = xiφ(S ∪ ai).

Since we picked xi such that the budget constraint is tight according to problem 2 and similarly
as in the proof of Theorem 4,

B =
∑

ak∈S∪{i}

Φk(x) max
aj∈S∪{i}

xjcj
Φk(x)

≤
(
f(S) + xifS(ai)

) ci
fS(ai)

.
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Combining with lemma 3, we get that

f(S∗)− f(S) ≤ fS(ai)

ci

( ∑
ak∈S∗\S

ck

)
≤ fS(ai)

ci
B = F (x).

Observing that F (x) ≥ f(S) then concludes our proof.

Theorem 7. For any submodular function there is a randomized fair mechanism that achieves an
approximation ratio of two, and no randomized fair mechanism can obtain an approximation ratio
that is strictly better.

5.3 Uniform costs

Finally, we consider the case in which all agents have uniform costs, i.e. without loss of generality
∀i ∈ [n] we have that ci = 1. The upper bound can be improved here too.

Lemma 10. Let f be as submodular function and assume all agents’ costs are uniform, then Sieve
achieves a 2-approximation.

Proof. Let c be the cost for any agent. Let t be the number of agents in S∗, so B ≥ tc. By lemma
3:

f(S∗)− f(S) ≤ fS(ai)

c

∑
ak∈S∗\S

c ≤ fS(ai) · (t− 1) ≤ fS(ai)(B/c− 1)

The second inequality follows from the observation that at least one agent can always be selected.
Then, as in the proof for Theorem 4, B < cf(S)

fS(i) + c. Combining this bound on the budget with the

previous inequality, f(S∗)− f(S) ≤ f(S).

Lemma 11. No fair mechanism can obtain an approximation ratio better than 2− ε in the case of
uniform costs for any ε > 0, even when the function is additive.

Proof. Let ε ∈ (0, 2) and pick δ > 0 such that 2− ε < 2
δ+1 . Suppose f(S) is additive, f(a1) = 1 + δ,

f(a2) = 1− δ, B = 2, while agents’ costs are c1 = c2 = 1. In the unfair case, the optimal solution
is to pick both agents. In the fair case, picking both agents would imply paying a1 more than
a2, which is not possible while staying feasible. Therefore the optimal fair solution is to pick a1.
Observe that (2− ε)f(a1) < 2

δ+1f(a1) = f({a1, a2}).

Theorem 8. For any submodular function, when agents have uniform costs, Sieve is a 2-approximation,
and no randomized fair mechanism can obtain an approximation ratio that is strictly better.

6 Beyond Shapley Payments

Throughout the paper we restricted ourselves to fairness defined through Shapley values. A closer
inspection into the mechanics of the proofs shows that any value function that satisfies Lemma 2
can be used instead of Shapley values and the same approximation guarantees hold. That is, in
order for one to implement Sieve with a value function ϕ : 2N → R|N | and the analysis of the
approximation ratio to go through, it is enough to show that for a desired function f : 2N → R+

we wish optimize, we have that for any ai ∈ N and S ⊆ N :
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ϕi(S) ≥ fS\ai(ai).

This relation is intuitively a natural notion of fairness for submodular functions since the
marginal contribution of an agent ai to S′ for any S′ ⊆ S \ ai is at least the marginal contri-
bution of ai to S \ ai. Therefore fS\ai(ai) should be a lower bound on the contribution of ai to
f(S).
Fairness via nucleolus values. The nucleolus is an interesting value function also heavily used in
cooperative game theory. We now show that this value function can also be used to define a notion
of fairness, and that the approximation ratio holds for this concept as well. Let σ : 2N → R|N | and
θ(σ(S)) be the vector of excesses of σ(S) where

θSj (σ(S)) = f(Sj)−
∑
ai∈Sj

σi(S)

in non-increasing order over all non trivial subsets of S: θS1 ≥ θS2 ≥ · · · ≥ θS2|S|−2
.

The excess of a subset Sj is the difference between the utility of Sj according to f and the
sum of the values of the agents in Sj according to σ(S). An intuitive notion of fairness is that
this difference should not be too large, otherwise there is some subset Sj that has a contribution
according to σ(S) that is not representative of its true utility f(Sj). The definition of the nucleolus
σ(S) of f is based on this intuition: σ(S) is the efficient, meaning that the nucleolus values sum to
f(S) over agents, function that lexicographically minimizes the ordering θS1 ≥ θS2 ≥ · · · ≥ θS2|S|−2

.

This value function was first introduced by Schmeidler [26].

Lemma 12. Let S ⊆ N and ai ∈ S, then σi(S) ≥ fS\ai(ai) for all submodular f : 2N → R+.

Proof. Assume by contradiction that there exists S and ai ∈ S such that σi(S) < fS\ai(ai). Define
k ≥ 1 to be the number of subsets that have excess equal to θS1 , so that θSj = θS1 for all j ≤ k.
Let Sj be such that ai 6∈ Sj , then the excess of σ(S) for coalition Sj ∪ ai is greater than the excess
for Sj :

f(Sj ∪ ai)−
∑

al∈Sj∪ai

σl(S) ≥ f(Sj) + fS\ai(ai)− σi(S)−
∑
al∈Sj

σl(S) > f(Sj)−
∑
al∈Sj

σl(S)

where the first inequality is by submodularity and the second is by our initial assumption. It follows
that ai ∈ Sj for all j ≤ k.

Pick some agent ai′ such that ai′ 6∈ Sj for some j ≤ k. Note that such an agent must exist since
S1 ⊂ S. Consider the alternate payoff vector x to σi(S) such that

xl =


σl(S) + ε if l = i

σl(S)− ε if l = i′

σl(S) if l 6= i, l 6= i′

where ε < θSk
(σ(S))−θSk+1

(σ(S)). Observe that θSj (x) ≤ θSj (σ(S)) for all j ≤ k since ai ∈ Sj and
that θSj (x) < θSj (σ(S)) for some j ≤ k since i′ 6∈ Sj for some Sj . Since ε < θSk

(σ(S))−θSk+1
(σ(S)),

θSj (x) < θSk
(σ(S)) for all j > k. Therefore the vector of excesses of x in non increasing order has

a lower lexicographical order than θ(σ(S)), contradiction with σ(S) being the nucleolus.
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Other solution concepts in cooperative game theory have been studied such as the stable set,
the core, and the kernel. However these solution concepts do not admit a unique value function
over the agents. In order to have well-defined payments, we have therefore focused our attention
on the nucleolus and the Shapley value, which admit a unique value function over agents for any
function f over subsets of agents.

7 Extensions

We conclude with several natural extensions where one can use fair mechanisms to obtain related
objectives.

7.1 Frugality

The problem of frugality is the dual of the budget feasible problem: rather than placing a hard
budget constraint and aim to maximize the utility function, frugality places some threshold con-
straint τ on the value of the utility function and the goal is to minimize payments. The goal can
be formulated as:

min
{∑
ai∈S

pi : f(S) ≥ τ S ⊆ N
}

(3)

Here as well pi are the fair Shapley payments. We first show that in general, even for additive
functions when considering the concept of frugality no bounded approximation ratio is obtainable
through a fair mechanism.

Lemma 13. Let B∗ and B′ be the optimal budgets in the unfair and fair cases. There is no α such
that αB′ ≥ B∗, even for additive functions.

Proof. Consider the case of two agents a1 and a2 where for some positive δ < 1 we have that
f(a1) = 1 − δ, f(a2) = δ, and f({a1, a2}) = 1. The costs are uniform, c1 = c2 = 1 and the
threshold is τ = 1. Then B∗ = 2 and B′ = 1/δ.

Conditions for frugality. Although there are no approximation ratio that can be obtained in the
case of frugality in general, approximation ratios can be obtained by adding some assumption. Let
f : 2N → R+ be a submodular function, τ be the desired threshold, and B∗ be the optimal budget
to achieve τ in the unfair case. Assume that in the unfair case, threshold ατ can be reached with
budget B where α ≥ min(2 + θ, 3) in the case of a θ-large market. In such cases, there exists a
B
B∗ -approximation to the frugality problem with threshold τ . To see this, we can consider running
the fair budget feasible mechanism with budget B. We know that the fair solution that is obtained
has value that is at least τ . We therefore get a B

B∗ -approximation to the frugality problem since
B∗ is the optimal budget to achieve τ .

7.2 Multidimensional Constraints

Another possible extension is to have not one budget constraint on all the agents, but multiple
budget constraints over different groups of agents. With multiple groups of agents, each with a
budget constraint, one can consider two reasonable notions of fairness. One notion is that of local
fairness which requires that within each group, all the agents are paid fairly, and the payments to
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two agents that belong to different groups do not need to be fair. The other notion we can consider
is that of global fairness which would require fairness over all agents – the mechanism must treat
any two agents fairly, regardless of which groups they are in.

Local Fairness. Consider the following scenario: There are m groups of agents, and each group
of agent has a budget constraint for the payments to the agents in that group. Assume that
the fairness constraint is local in that two agents must be paid proportionally according to their
contribution only if they are in a same group.

The objective function f is said to be composable if f can be decomposed into f1, . . . , fm such
that f =

∑
i fi and that fi is the objective function over group i ∈ [m]. If the groups of agents are

distinct, it is easy to see that the problem can be decomposed into m fair problems and we obtain
the same results as for the problem above. If the group of agents are not distinct or if the objective
function is not composable, then the problem gets harder. We conjecture that there exist solutions
that achieve the same guarantees as for the regular problem, however finding these solutions is hard.

Global Fairness. When all agents are required to be treated fairly and there are multiple budget
constraints, a negative result can be easily obtained.

Lemma 14. Let S∗ and S be the optimal unfair and fair solutions respectively. In the case of
multiple budget constraints with global fairness, there is no α such that αf(S) ≥ S∗, even for
additive functions.

Proof. Consider n agents such that ci = i, f(ai) = 1 with f being additive. There are n budget
constraints, Bi = i is over the set consisting of the single agent {ai}. Then S∗ contain all the agents
and S can contain at most one agent because of the fairness constraints and because of the budgets
being tight with the cost of each agent.

8 Discussion and Open Questions

In this paper we introduced the notion of fair attribution mechanisms. We used the notion of
Shapley values to define fairness, and showed that other natural concepts can be used as well such
as the nucleolus. In general, saw that for submodular functions, there is a simple mechanism that
obtains a 3-approximation, and that no mechanism can do better.

The results we showed are tight for submodular functions. One interesting open question
that remains is whether positive results are obtainable for more general classes of functions. In
the introduction we saw that even for some very simple super-additive functions, fairness is not
obtainable. For general subadditive functions we currently do not know how to obtain anything
better than the trivial n- approximation which simply selects the single agent with the highest
utility and surrenders all the budget to her.
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APPENDIX

Missing discussion and proof from Section 3

Discussion of axioms. To motivate why the Additive axiom is not listed, consider the following
situation where agents j, k are fixed: f(T ) = 1 for all T ⊆ S such that j ∈ T and f(T ) = 0
otherwise, g(T ) = 100 for all T ⊆ S such that k ∈ T and g(T ) = 0 otherwise. By our three
other axioms, pj(f) = pk(g) = B and pj(g) = pk(f) = 0. First, observe that we cannot have
pi(f + g) = pi(f) +pi(g) otherwise we would not satisfy Efficiency. We need an α normalizing term
for pi(f + g) to stay in the budget, however the issue with pi(f + g) = α(pi(f) + pi(g)) is that in
our situation these payments would be pj(f + g) = pk(f + g) = αB. Since (f + g)(T ) = 101 if j
and k in T , (f + g)(T ) = 1 if j in T and not k, and (f + g)(T ) = 100 if k in T and not j, it is clear
that in this situation k contributes more than j to f+g but both j and k get paid the same amount.

Proof of Theorem 2. For convenience we restate the theorem.

Theorem 1. The Shapley payments are the only payments that satisfy the Efficiency, Dummy,
Anonymity, and Proportionality axioms.

Proof. This proof is similar to the uniqueness proof of uniqueness of Shapley values. Define:

wS,c(T ) =

{
c if S ⊆ T
0 otherwise

.

By Dummy, pi(wS,c) = 0 if i 6∈ S. By Anonymity, pi(wS,c) = pj(wS,c) if ai, aj ∈ S. By Efficiency,∑
i pi(wS,c) = B. It follows that pi(wS,c) = B/|S| for all ai ∈ S.
We therefore weigh pi(f) and pi(g) by f(S) and g(S) so that an agent which receives a high

payment for a function which contributes mostly to (f + g)(S) is rewarded with a payment which
depends mostly on his payment for this function. We then need to multiply by α to get pi(f + g)
so payments sum to the budget.

From the proof of the uniqueness of Shapley values, we know that f can be decomposed
uniquely as f =

∑
S⊆M cSwS where M are all the agents selected. By proportionality, pi(f) =

α
∑

S⊆M pi(cS , wS)cSwS(M). Since pi(cSwS) = B/|S| if ai ∈ S and 0 otherwise, and since
cSwS(M) = cS ,

pi(f) = αB
∑

S⊆N,ai∈S

cS
|S|

where α is the unique constant such that the sum of payments equal the budget.
The previous paragraph shows that there is at most one vector of payments which satisfies these

four axioms. To conclude the proof, we show that pi = Bφi(S)/f(S) satisfies these four axioms.
Dummy and Anonymity follow directly from the Dummy and Anonymity properties of Shapley
values. By the Efficiency property of Shapley values,

∑
i∈S φi(S) = f(S), therefore

∑
i∈S pi = B.

Finally we show that Proportionality holds:

pi(f + g) =
Bφf+g,S(i)

(f + g)(S)
=
Bφf,S(i) +Bφg,S(i)

f(S) + g(S)
=
pi(f)f(S) + pi(g)g(S)

f(S) + g(S)
.

The first and third equality follow from our definition of pi and the second follows from the
Additivity property of Shapley values.
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Missing discussions and proofs from Section 4

The greedy Shapley mechanism. The greedy algorithm continues to include agents as long as
it can pay the fair payments. We showed that no such mechanism can obtain an approximation
better than Ω(

√
m) for coverage functions, where m is the size of the universe. We will now show

that this lower bound is tight for a modest variation of this mechanism. In the statement below we
use S to denote the solution returned by the greedy Shapley mechanism and S∗ denote the optimal
unfair solution.

Theorem 8.1. O(
√
m) ·max{f(arg maxi∈[n] ai), f(S)} ≥ f(S∗).

Proof. Let a1, . . . , a` be the agents returned by the standard greedy algorithm, i.e. the algorithm
which at every step takes the agent whose ratio between its marginal contribution to the existing
solution and cost is the largest, until exhausting the budget. Since the greedy Shapley mecha-
nism considers agents by their marginal contribution per cost ordering, the solution retuned this
procedure is a subset of the agents in the standard greedy algorithm.

Let k be the index for which the stopping condition of the mechanism was invoked, i.e. k
is the smallest index according to the marginal-contribution-per cost sorting for which adding ak
would have violated the individual rationality condition if all agents a1, . . . , ak were paid by the
fair Shapley payment. Thus, {a1, . . . , ak−1} is the set of agents returned by the Shapley greedy
mechanism. For convenience, for every i ∈ [k] let vi denote the marginal contribution of agent ai
at the stage in which it was added to the solution, and let Sk = {a1, . . . , ak}.

Using an analogous reasoning as in the proof of Lemma 3, we can show that for any j ∈ [k] we
have that:

f(S∗)− f(Sk−1) ≤ vjB

cj
. (4)

If f(Sk−1) ≥ f(S∗)/2, then we are done. Otherwise, f(S∗) − f(Sk−1) ≥ f(S∗)/2 and from
conditions (4)

cj ≤
2vjB

f(S∗)
. (5)

Let ai be the agent in [k] for which individual rationality is violated at stage k. In the worst
case, every element in the universe it covers is also covered by k other agents, and thus her Shapley
value is at least vi/k. From the fact that the fair payment violates individual rationality we get:

B

f(Sk)
· vi
k
≤ ci (6)

By conditions (5) and (6) we get that:

k · f(Sk) ≥
f(S∗)

2

In the case where k > f(Sk), an agent with no marginal contribution was added to the solution
by the greedy algorithm since f(·) is a coverage function. This only happens in the case where all
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of the universe is already covered by the solution. So in that case, we obtain the optimal solution
and we are done. Otherwise, k ≤ f(Sk) and the above bound implies that:

f(Sk)
2 ≥ f(S∗)

2
⇐⇒ f(Sk) ≥

√
f(S∗)/2 ⇐⇒ f(Sk)

f(S∗)
≥ 1√

2f(S∗)
≥ 1√

2m

where the last inequality uses the fact that in a universe with m elements f(S∗) is upper bounded
by m. We therefore have that f(Sk) is a O(

√
m)-approximation. Recall that S = Sk \ {ak}. Let

a∗ ∈ arg maxi∈[n] f(ai). Since f(ak) ≤ f(a∗), taking arg max{f(a∗), f(S)} is a 2-approximation to
f(Sk), and this concludes our proof.

Preprocessing step for non-monotone submodular functions. Note that for the proof of
lemma 1, we need the input S∗ to Sieve to be such that φi(S) ≥ 0 for all S ⊆ S∗ and for all
ai ∈ S. It is easy to see that this condition holds for monotone submodular functions. To obtain
this property in the non-monotone case, consider the following greedy preprocessing step: remove
agents with negative marginal contribution until all marginal contributions are non-negative. Let
S∗p be the set obtained after the preprocessing, then by submodularity, fS(ai) ≥ 0 for all S ⊆ S∗p
and all ai ∈ S∗p . By the definition of Shapley values, it then follows that φi(S) ≥ 0 for all S ⊆ S∗p
and all ai ∈ S∗p . This preprocessing step can only improve the performance of the input, so the
performance of Sieve compared to S∗ is at least as good as compared to S∗p .

Proof of lemma 5. For convenience we restate the lemma.

Lemma 15. There exists a polynomial time oracle that computes an (1 + ε)-approximation of the
Shapley value with high probability for submodular monotone functions.

Proof. Consider the following oracle based fully polynomial-time randomized approximation scheme
(FPRAS) that generates 4n(n− 1)/ε2 random permutations of the players. For each permutation,
the marginal contribution of an agent ai is the marginal contribution of ai to the set of agents
before ai in the permutation. The (1 + ε)-approximation of the Shapley value of agent ai is then
its average marginal contribution over all permutations. Liben-Nowell et al. [21] showed this result
for supermodular and monotone games. The only property of supermodular functions used for this
result is that the maximum marginal contribution of a player in a random permutation occurs at
least in a 1/n fraction of permutations, which is at least when the agent is the last player in the
permutation. In the case of submodular functions, this maximum marginal contribution occurs
when the agent is the first player in a permutation, so it also happens in at least a 1/n fraction of
the permutations. Therefore, the result also holds for submodular and monotone functions.
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