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Abstract

In group decision-making problems that involve self-
interested agents with private information, reaching socially
optimal outcomes requires aligning the goals of individuals
with the welfare of the entire group. The well-known VCG
mechanism achieves this by requiring specific payments from
agents to a central coordinator. However, when the goal of
coordination is to allow the group to jointly realize the great-
est possible welfare, these payments amount to an unwanted
cost of implementation, or waste. While it has often been
stated that the payments VCG prescribes arenecessaryin
order to implement the socially optimal outcome in domi-
nant strategies without running a deficit, this is in fact not
generally true. (Cavallo 2006) specified the mechanism that
requires the minimal payments among all mechanisms that
are socially optimal, never run a deficit, and are ex post indi-
vidual rational with an anonymity property. The mechanism
achieves significant savings over VCG in a broad range of
practically relevant domains, including allocation problems,
by using information about the structure of valuations in the
domain. This paper gives a high-level overview of that result,
and discusses some potential applications to AI.

Introduction
Consider an environment in which a group of independent
agents have distinct values for realization of various events.
In such settings, organized coordination of the group behav-
ior can very often bring about outcomes that are significantly
more desirable—under various metrics—than would be pos-
sible otherwise. There are two problems that any prospective
coordinator must address: he must determine what coordina-
tion scheme is optimal, and must get the agents to participate
in that scheme. The latter challenge essentially amounts to
dealing with agentself-interest.

The field ofmechanism designis concerned with this very
problem: how can we bring about outcomes that meet de-
sirable system-level criteria, despite the fact that agents are
self-interested, driven only to maximize their own utility?
Solutions generally involve specifying particular payments
either to or from the agents, which can be a powerful tool
in incenting desired behaviors. Of course, when no external
budget is available net payments should flow only from the
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agents to the coordinator, yet to ensure that agents want to
participate, no agent should have to pay more than the value
he derives from the outcome the mechanism chooses.

(Cavallo 2006) described the mechanism that—among all
those that guarantee non-negative payoff, don’t ever require
an external budget, and always reach a system-welfare max-
imizing outcome in dominant strategy equilibrium1 while
maintaining a relevant anonymity property—minimizesthe
payments that must be made by the agents to the coordina-
tor. Since the point of coordinating the agents is often sim-
ply to yield greater utility for the group, from one point of
view this mechanism achieves the desired outcome with the
minimal “cost of implementation” or “waste”.

The goal of this paper is to give a high-level presenta-
tion of that mechanism, and to discuss some potential appli-
cations to AI. I first provide more motivation for trying to
achieve minimal agent-to-coordinator transfers, as well as
the necessary background.

Motivation and Background
Consider the following story: A group of independent farm-
ers in one particular county have struggled to obtain high
yield from their fields in recent years. By good fortune, the
group receives a gift from an area philanthropist—a special
fertilizer that will help them use their land more efficiently.
The gift is given with the following condition: the fertil-
izer should be applied in a way that maximizes the benefit it
produces, i.e., the social welfare derived from its use. How-
ever, there is only enough fertilizer for one farmer to cover
his land, so the group faces the problem of deciding which
farmer should get to use the fertilizer. Complicating mat-
ters, each farmer is self-interested, driven only to maximize
his own benefit from the gift, and individual values for the
fertilizer are private. The group seeks to apply a mechanism
for allocating the fertilizer that meets the benefactor’s condi-
tion, while keeping the maximum amount of wealth within
the group.

This is just one of a practically limitless number of ex-
amples one can conjure up where a group of self-interested
agents faces a decision problem, and either the group it-

1In a dominant strategy equilibrium, each player’s behavior
maximizes his payoff, for any possible behavior the other agents
may exhibit.



self or an overseeing authority seeks to implement a solu-
tion that maximizes total group welfare. Other instances in-
clude: a group of housemates deciding who gets to use a
jointly-owned automobile on a given night; a group of sib-
lings choosing who should get the last piece of an apple pie;
and perhaps more relevantly, allocation of time on a publicly
owned super-computer to researchers with distinct projects.

Efficient mechanisms: the Groves family
Reaching a socially optimal (also calledefficient) outcome
despite agent self-interest can be achieved by establishing
specific monetary payment rules between agents and a coor-
dinator. LetI be the set of agents, andO be the set of pos-
sible outcomes or decisions that are available. The Groves
family of mechanisms (Groves 1973) achieves efficiency by:
1) querying each agenti ∈ I for the valuêvi(o) he places on
each outcomeo ∈ O; 2) implementing the socially highest
valued outcome according to what the agents report, which I
denoteo∗; and 3) making the following transfer paymentTi

to each agenti, whereC−i is any quantity that is completely
independent of whati reports:

Ti =
∑

j∈I\{i}

v̂j(o
∗) − C−i , (1)

Each agent thus receives a payment equal to the total util-
ity derived by all other agents combined, minus some charge
that is out of his control. Since he can’t affect the charge, he
will act to maximize the first term plus his own value for
the chosen outcome, which aligns his interest completely
with that of the entire group and makes truth-telling a dom-
inant strategy. In fact it is known (Green & Laffont 1977;
Holmstrom 1979) that when agent valuation spaces are
smoothly connected,anymechanism that achieves the effi-
cient outcome in dominant strategy equilibrium is a Groves
mechanism.2 If this strong form of efficiency is what we’re
after, then, our flexibility is limited to how we define the
agent-independent charge term,C−i.

WhenC−i is defined such thatTi is negative, agents are
required to make payments, rather than receive them. While
there are many examples of decision-problems where maxi-
mizing “revenue”—the sum of the payments from the agents
to a decision-maker—is desired, in those mentioned above
and many others, it would clearly be preferable to minimize
such payments.

If we wish to guarantee that no agent will be worse off for
having participated, i.e., achieveex post individual rational-
ity (IR), we must specifyC−i such that it is never greater
than

∑

j∈I\{i} v̂j(o
∗) (the “Groves payment”) plusvi(o

∗)

(the rewardi naturally receives fromo∗’s implementation).
If we wish to maintain an ex postno deficitproperty, that
places other constraints on eachC−i.

Improving on VCG
The result reviewed in this paper specifies the mechanism
that minimizes the payments required of the agents while

2A smoothly connected domainis one in which any two val-
uations an agent could report have the property that one can be
differentiably deformed into the other. This holds quite broadly (as
Holmstrom (1979) notes, for “all practical purposes”).

satisfying these constraints and maintaining an anonymity
property, which I describe in the next section. I present the
solution as a “redistribution mechanism” because of the re-
lationship it bears to the well-known Vickrey-Clarke-Groves
(VCG) mechanism. VCG specifies eachC−i above to be the
net welfare that agents other thani would have achievedif i
were not present. Under VCG:

Ti =
∑

j∈I\{i}

v̂j(o
∗) −

∑

j∈I\{i}

v̂j(o
∗
−i) (2)

whereo∗−i is the outcome that maximizes welfare (according
to reports) among agents other thani. It has been shown
(Krishna & Perry 1998) that VCGmaximizesrevenue among
mechanisms with the properties we desire. Thus, one can
conveniently frame the goal ofminimizingrevenue as that of
redistributingback among the agents the net payments made
in VCG, which I will refer to as the “VCG surplus”.

It has often been stated that no such redistribution is pos-
sible in dominant strategy equilibrium (see, e.g., Ephrati&
Rosenschein 1991), but this is actually not true when there
is certain known information about agent valuations prior
to agent reports. In reality, it is quite rare (if ever) that
nothing at all is known about agent valuations. To mention
one broad and important domain where this doesn’t hold,
consider standard single-item allocation problems. Here we
know that each agent values only the outcome in which he
is allocated the good (in our farming example, each farmer
only obtains value when he gets to use the fertilizer). In
this domain and many others, significant redistribution of
the VCG surplus is, in fact, possible.

Previous approaches
There have been several previous approaches seeking to
achieve improved budget-balance over VCG, all of which
give up one or more of the following criteria: efficiency,
ex post IR, ex post no deficit. The d’AGVA mechanism
(d’Aspremont & Gerard-Varet 2002) is perfectly budget-
balanced but not ex post IR; (Faltings 2004) also achieves
perfect budget-balanced, but in a mechanism that is efficient
for only a subgroup of agents; the threshold rule of (Parkes,
Kalagnanam, & Eso 2001) achieves perfect budget-balance
in an exchange setting at the expense of truthfulness (and
thus efficiency). Finally, the mechanism of (Bailey 1997)
also redistributes VCG surplus, but there are instances for
which it runs a deficit.

The Result
The key insight of the mechanism proposed in (Cavallo
2006) is this: if it can be determined that a certain amount
of VCG surplus will definitely exist, independent of what a
particular agent reports to the coordinator, then we can re-
distribute surplus back to that agent without creating an in-
centive to misreport valuation information. It will be useful
to explicitly define this agent-independent guarantee on sur-
plus. First, observe that the total VCG surplus is simply the
sum of the payments made from agents to the coordinator:

VCG surplus=
∑

i∈I

∑

j∈I\{i}

[

v̂j(o
∗
−i) − v̂j(o

∗)
]

(3)



Definition 1. (Surplus-guarantee Sl) The minimum
amount of VCG surplus that could be realized, taken over
all possible instantiations of agentl’s valuation functionvl:

Sl = min
v̂l

{

∑

i∈I

∑

j∈I\{i}

[

v̂j(o
′
−i) − v̂j(o

′)
]}

(4)

whereo′ ando′−i are analogs ofo∗ ando∗−i computed with
the hypothetical̂vl in place of the actually reported value.

The proposed redistribution mechanism pays out a portion
of the VCG surplus to each agent that is directly proportional
to the agent’s surplus-guarantee level.

Definition 2. (Redistribution MechanismRMg)

1. Each agenti communicates to the coordinator his val-
uation function̂vi.

2. The coordinator implements the outcome that maxi-
mizes social welfare according to reports.

3. Each agent is assigned the following transfer payment,
wheren is the number of agents:

Ti =
∑

j∈I\{i}

[

v̂j(o
∗) − v̂j(o

∗
−i)

]

+
Si

n
(5)

RMg is strategyproof: reportingv̂i equal to the true val-
uation vi is always a dominant strategy, for every agent
i. Then Ti above will always be non-positive, between
−vi(o

∗) and 0, so the mechanism isex post IRyet never
runs a deficit.RMg is alsosurplus-anonymous: any two
agentsi and j with Si = Sj receive the same amount of
“redistribution” of the VCG surplus. Note that any surplus-
anonymous mechanism iscompletely-anonymous(i.e., does
not discriminateat all based on agent identity) in domains
in which the agent valuation spaces are symmetric.

The mechanism has a very simple and intuitive form when
agent valuations are completely exclusive, as in single-item
allocation problems, where only one agent has non-zero
value for any given outcome. In such settings, values are
“bids” for the item, andRMg reduces to the following:

Definition 3. (RMg in single-item allocation settings)

1. Each agents reports its value (bid) for the item.
2. The coordinator allocates the item to the agent with the

highest bid.
3. The winning agent pays the coordinator an amount

equal to the second highest bid.
4. The coordinator pays the winner and the second high-

est bidder an amount equal to the third highest bid di-
vided by the number of agents,n, and pays all other
agents the second highest bid divided byn.

Each agent’s redistribution payment is1
n

times the sec-
ond highest bid among the(n − 1) other agents. In single-
item allocation settings,RMg is perfectly budget-balanced
in the limit. That is, as the number of agents approaches
infinity the payments go to 0, regardless of the agent valua-
tions. In VCG waste is always equal to the second highest

bid, regardless of the number of agents. To more clearly see
the relationship between the basic Groves mechanism (BG)
with C−i defined to be 0, VCG, andRMg, consider the
outcomes they yield in the following 4-agent, single-item
allocation example. Letπ(M) be the payoff (value of the
outcome, plus transfer) received under mechanismM , and
let C denote the coordinator.

agent bid π(BG) π(VCG) π(RMg)
1 15 15 3 5
2 12 15 0 2
3 8 15 0 3
4 4 15 0 3
C - −45 12 2

Table 1: Comparison of mechanisms in an allocation problem.

The basic Groves mechanism runs an enormous deficit,
while VCG eliminates the deficit and in fact yields a large
revenue.RMg keeps significantly more wealth among the
agents, while still avoiding a deficit. It turns out that no
mechanism that always maintains the budgetary, incentive,
and anonymity properties we seek keeps more wealth among
the agents thanRMg in any problem instance (where an
instance is defined by a specific set of agent valuations).

Theorem 1. (Cavallo 2006)For smoothly connected valu-
ation spaces, among all efficient, ex post IR, no deficit, and
surplus-anonymous mechanisms that can be implemented in
dominant strategy equilibrium,RMg maintains the most
wealth within the group of agents in every problem instance.

Potential Applications to AI
The result described here is obviously not one that pertains
specifically to artificial intelligence; it is rather a general ob-
servation about how one can achieve a system of decision-
making that reaches socially-optimal outcomes while incur-
ring minimal cost. But there are many problems within AI
to which the proposed mechanism may be fruitfully applied.

Designing mechanisms to effectively deal with self-
interest in multi-agent systems has been a compelling and
growing topic of study in recent AI literature (see Dash, Jen-
nings, & Parkes 2003); moreover, often these mechanisms
are designed primarily to yield payoff to the participating
agents. The application ofRMg would seemingly be a
more appropriate solution than VCG or other mechanisms
in these environments. Perhaps the most natural applications
for the mechanism are problems in which scarce resources
must be allocated. Here I will go through one such example
in detail, then touch briefly on a second application area.

Application: Job scheduling
Consider the problem of allocating processor time on a
server to computational tasks, each of which is “owned” by a
selfish human client who has private knowledge of his own
value for having the task completed. Say there are3 jobs
requesting processor time in a single day, each of which re-
quires half a day to complete; so there are3 clients, each
owning 1 job, competing for 2 time-slots. Moreover, assume
clients obtain different value depending on whether the jobis
completed in the first or second time-slot, and that no value



is obtained if the job is not completed (the day is a “hard
deadline”). Consider valuations of the following form:

Agent v(time1) v(time2)
1 10 5
2 7 4
3 6 2

Table 2: Valuations of 3 agents over 2 time-slots.

It is helpful to consider expansion of the above represen-
tation into a table of values over every possible outcome. I
denote the outcome in which agenti’s job is processed in the
first slot andj’s in the second as(i, j).

outcome v1 v2 v3

(1,2) 10 4 0

(1, 3) 10 0 2
(2, 1) 5 7 0
(2, 3) 0 7 2
(3, 1) 5 0 6
(3, 2) 0 4 6

Table 3: Enumeration of agent values, with outcomeo
∗ in bold.

If the server is a public resource established with the man-
date of increasing benefit to the social good, it will be desir-
able to maintain as much wealth as possible among the job-
owners. We can compare the results that VCG andRMg

yield when applied to this example. The outcomeo∗ that
maximizes social welfare is(1, 2), which yields total value
14. To compute the transfer payments, we need also to rec-
ognize the outcomes thatwould have been implemented in
the absence of each of the agents. We have the following:
o∗−1 = (3, 2); o∗−2 = (1, 3); o∗−3 = (1, 2).

To executeRMg we additionally need to determine the
agent-independent surplus-guaranteeSi for each agenti. In
this domain the VCG surplus is minimized when an agent
reports value 0 for each time-slot, so it is simple to com-
puteS1 = 3, S2 = 4, andS3 = 3. We can now deter-
mine the payoffπi for each agenti under VCG andRMg

(both mechanisms will reach the efficient outcomeo∗). Un-
der VCGπi = vi(o

∗) +
∑

j 6=i vj(o
∗)−

∑

j 6=i vj(o
∗
−i). Un-

derRMg, πi = vi(o
∗)+

∑

j 6=i vj(o
∗)−

∑

j 6=i vj(o
∗
−i)+

Si

n
.

We have the following:

VCG RMg

π1 10 + 4 − 10 = 4 10 + 4 − 10 + 3

3
= 5

π2 4 + 10 − 12 = 2 4 + 10 − 12 + 4

3
= 3.33

π3 0 + 14 − 14 = 0 0 + 14 − 14 + 3

3
= 1

πC 8 4.67

Table 4: Payoffs in the job scheduling example.

A significantly greater portion of the wealth derived from
the server use is maintained among the agents underRMg.

Application: Distributed constraint optimization
Distributed constraint optimization (Modiet al. 2005) rep-
resents another potential application area forRMg. Con-
sider a setting in which there is a set of agents that seeks to
maximize reward by achieving an optimal joint state, where

each agent has control over some subset of the problem vari-
ables, which are constrained by the values of other agents’
variables. Here agents’ costs/rewards may be private, and
achieving the optimal solution could require their commu-
nication amongst the group. There have been VCG-based
proposals for handling incentive issues in this environment
(see, e.g., Faltings & Macho-Gonzalez 2003); the “waste”
incurred by VCG would be minimized byRMg, which
would be significant in settings where valuations have some
degree of mutual exclusivity.

Conclusion
Coordinating decision-making in groups of independent
agents requires disarming self-interest, by creating an en-
vironment in which each individual is best off when the
group is best off. It is desirable that the mechanism used to
achieve this solution not run a deficit, and at the same time
guarantee that individuals won’t be worse off from partici-
pating; it may also be desirable that the mechanism main-
tain surplus-anonymity. The mechanismRMg specified in
(Cavallo 2006) minimizes implementation cost among all
solutions that reach system-welfare maximizing outcomes
with these properties.RMg can be considered a superior
solution to VCG for domains in which the objective is to
maximize payoff to the agents.
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