
Efficiency and Redistribution
in Dynamic Mechanism Design

Ruggiero Cavallo
SEAS, Harvard University

33 Oxford St.
Cambridge, MA 02138

cavallo@eecs.harvard.edu

ABSTRACT
The emerging area of dynamic mechanism design seeks to
achieve desirable equilibrium outcomes in multi-agent se-
quential decision-making problems with self-interest. Here
we take the goal of maximizing social welfare. We start
by extending the characterization result of Green & Laffont
[1977] to a dynamic setting, defining the dynamic-Groves
class of dynamic mechanisms and showing that it exactly
corresponds to the set of mechanisms that are efficient (so-
cial welfare maximizing) and incentive compatible in an ex
post equilibrium. The dynamic-VCG mechanism of Berge-
mann & Välimäki [2006] is a dynamic analogue of the static
VCG mechanism and is efficient, incentive compatible, and
individual rational in an ex post equilibrium; we use our
characterization result to show here that it is also revenue
maximizing among all dynamic mechanisms with these prop-
erties. In other words, dynamic-VCG maximizes the pay-
ments required of the agents and thus, while perhaps desir-
able for an auctioneer seeking high revenue, is in fact worst
when maximizing agent utility is the goal. We then build on
recent work on static redistribution mechanisms (see [Cav-
allo, 2006]) to design a dynamic redistribution mechanism
for multi-armed bandit settings (e.g., the repeated alloca-
tion of a single good) that returns much of the revenue un-
der dynamic-VCG back to the agents, while maintaining the
same efficiency, incentive compatibility, individual rational-
ity, and no-deficit properties. We conclude with a numerical
analysis, demonstrating empirically that this redistribution
mechanism typically comes close to perfect budget balance.
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[Artificial Intelligence]: Distributed Artificial Intelligence—
Multiagent systems
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1. INTRODUCTION
In this paper we consider settings in which a group of

self-interested parties faces a series of decisions to be made
sequentially over time, with new private information poten-
tially obtained after each decision. We seek to maximize the
social welfare generated by the sequence of decisions.

Imagine a city that has invested in an expensive mobile
health clinic to serve the medical needs of the poor and unin-
sured. There are five separate neighborhoods in the city that
would like to use the clinic, and so the city government de-
cides to allocate it repeatedly to a single neighborhood for
one week periods, reevaluating every week. The government
wants the clinic to go to the neighborhood that needs it most
and can use it most effectively each week. For the govern-
ment to determine which choice is best, neighborhood lead-
ers must make weekly claims about their estimated value
for the clinic. When the clinic is allocated to a particular
neighborhood in one week, in the next week that neighbor-
hood’s value for it is likely to change—perhaps a significant
portion of the needs have been filled, or perhaps the local
population has learned about its presence and is thus better
able to exploit it. In a scenario like this, the government
probably does not want to extract large payments from the
communities that use the clinic—it is a public good—but,
as we will see, certain payment mechanisms are desirable in
that they can elicit honest evaluation and reporting of needs.

The emerging area of dynamic mechanism design (DMD)
exists to address such problems. The core ideas of DMD
extend the relatively mature theory of static mechanism de-
sign (MD) for one-shot settings. In the static case, a mech-
anism consists of a choice function that maps agent reports
of private information to outcomes, and a monetary transfer
function, i.e., payments imposed on the agents that serve
the purpose of aligning incentives towards the mechanism
designer’s goal. A dynamic mechanism is different in that it
chooses an outcome every time-period, incorporating reports
of new private information, and can also specify transfer pay-
ments each period (see [Parkes, 2007] for a recent survey).

In this paper we address some core issues in dynamic
mechanism design, motivated by the goal of maximizing
social welfare; we find that important static-setting results
have natural (though more complex) extensions to dynamic
settings. We start by defining a class of “dynamic-Groves”
mechanisms that generalizes the Groves class for static set-
tings; every dynamic-Groves mechanism specifies a transfer
function such that future payments to each agent—in expec-
tation given that other agents participate truthfully—equal



the value the other agents will obtain going forward, minus
some constant. We prove that this class fully characterizes
the set of mechanisms that implement the efficient decision
policy in a truthtelling ex post Nash equilibrium.

We then analyze the dynamic-VCG mechanism, which
was recently derived by Bergemann & Välimäki [2006] and
is the natural analogue of the VCG mechanism for static
settings. Under dynamic-VCG each agent’s equilibrium ex-
pected payoff equals the amount it contributes to social wel-
fare. Dynamic-VCG has several very nice properties: it is
efficient, incentive compatible (IC), and individual rational
(IR) in an ex post Nash equilibrium and never runs a deficit.
In fact, we show in this paper that among all efficient, IC
and IR mechanisms it maximizes revenue, i.e., requires the
largest possible payments from the agents for every possible
instance. In some settings this may be considered a good
thing, for instance when an auctioneer seeks to implement
efficient decisions and at the same time extract as much of
the value as possible.

That said, here we take seriously the fact that in many
cases the payments required of agents under dynamic-VCG
are not desirable, but are rather a “cost of implementation”
for a mechanism that is both efficient and no-deficit. When
a group of agents simply wants to make welfare maximizing
decisions, the mechanism payments are just a tool for elic-
iting truthful reporting of private information, and in fact
detract from social welfare. In other words, they’re waste.
Bailey [1997], Cavallo [2006], and others have specified so-
called “redistribution mechanisms” for the static setting, in
which large portions of the payments required under VCG
are redistributed back to agents without diminishing the in-
centive properties. Here we apply the same idea to dynamic
settings that can be modeled as multi-armed bandits, e.g.,
the repeated allocation of a single good, and find that the
vast majority of revenue under dynamic-VCG can be re-
turned to the agents. An array of important sequential de-
cision problems fit the multi-armed bandits model, including
the mobile health clinic scenario we described above.

2. SETUP AND BACKGROUND
We consider settings in which there is a group I of agents

{1, 2, . . . , n}, and a sequence of K decisions or “actions” to
be taken, one per time-step (where K is potentially infinite).
At each time-step, each agent has some private information
that determines the value it would obtain for every possible
action that could be taken in the current time-step, and
also determines a probability distribution over future private
information, given any future sequence of decisions.

To formalize these notions we use the Markov decision
process (MDP) framework. There is an exogenously defined
space of actions A and space of types Θi for each agent i.
Each i’s type at time t, θt

i ∈ Θi, induces a tuple (sθt

i

, rθt

i

, τθt

i

)

that represents i’s private information at t. There is a local
state space Si defined by Θi, and for type θt

i , sθt

i

∈ Si is

the “current” local state. rθt

i

: Si × A → ℜ is the value (or

“reward”) function, with rθt

i

(si, a) denoting the immediate

value that i obtains if action a is taken when i is in local
state si. τθt

i

: Si × A × Si → ℜ is a probability function,

with τθt

i

(si, a, s′i) denoting the probability that taking action

a while i is in local state si will yield new local state s′i for
i in the next period. Given any θt

i ∈ Θi, in this way A, Si,
rθt

i

, and τθt

i

define an MDP for agent i.

Note that this set-up places us in a private values setting,
excluding scenarios where an agent’s value for an action de-
pends on the private information of some other agent. But
we still allow for serial correlation of types, where, e.g., the
fact that an agent i has transitioned from some type θi to
θ′

i allows us to know with certainty that if j’s type at t were
θj his current state would be some θ′′

j .1

We will apply dynamic mechanism design to such set-
tings, in which a coordinator or center elicits reports from
agents regarding private types in every period, and then
takes an action. We let θt

c ∈ Θc denote the center’s “type”
at time t, i.e., a representation of any information known
to the center at t. We then denote the joint type-space
Θ = Θc ×Θ1 × . . . × Θn. As a notational simplification, we
will write τ (θ, a) for the random variable representing the
joint type in Θ that results when action a is taken in joint
type θ. We use −i to denote I \ {i} (e.g., θt

−i for the profile
of types for agents other than i at time t), and r(θ, a) to
denote the immediate value of taking action a in joint state
sθ. We write ri(θi, a) = rθi

(sθi
, a), r(θ, a) =

P

i∈I ri(θi, a),
and r−i(θ−i, a) =

P

j∈I\{i} rj(θj , a). We assume agents ex-

ponentially discount future reward at rate γ ∈ [0, 1), so a
reward of x received t steps in the future is valued at γtx.

Formally, a dynamic mechanism is a tuple (π, T ), where
decision policy π : Θ → A maps a joint reported type to
an action,2 and T = (T1, . . . , Tn), where each Ti : Θ → ℜ
maps a joint reported type to a monetary payment delivered
from the center to agent i. As we will see, certain payment
schemes will succeed in aligning interests towards execution
of certain decision policies, such that each agent will be best
off participating truthfully given the center’s policy. We will
focus on the socially optimal or “efficient”decision policy π∗

(defined formally below). Agents report types according to
strategies. We let σi : Θi → Θi denote a reporting strategy
for agent i.3 We let σ = (σ1, . . . , σn), and for any θ ∈ Θ,
σ(θ) = (θc, σ1(θ1), . . . , σn(θn)).

Note that in a dynamic mechanism the report history
is not relevant to determining the optimal decision policy
(when agents are truthful). For simplicity, here we also as-
sume a context of history-independent transfers—which can
be modeled by simply assuming θt

c does not track types re-
ported in periods previous to t—and leave a more thorough
analysis considering history-dependent transfers to a future
extended version of the paper.

1This can be modeled explicitly by considering a stochastic
process ϕ representing the (random) events of nature; then
for each i, θi, and a, we have τ (θi, a, ϕ) representing i’s next
type—this allows a coupling (only through the realization of
random events) of agent type transitions. But for simplicity
of exposition we omit ϕ from the notation going forward.
2We will consider mechanisms in which truthtelling is an
equilibrium, and thus it will only be necessary for agents to
report local state st

i at each time t (as r and τ are constant),
but formally a dynamic mechanism will allow each agent
to report its entire type in every period (allowing for the
possibility of an agent i being truthful in the future from a
time in which he has misreported ri or τi).
3Though an agent may be aware of its entire history of types
(not just the current type), this formulation is without loss
of generality, as whenever histories (or reported histories)
may play a role in an agent’s strategy we can consider that
typespaces are defined with each local state θt

i containing a
representation of i’s entire state history through time t.



We use the following notational shorthand:

• Vi(θ
t
i , θ

t
−i, π, σi, σ−i) (or Vi(θ

t, π, σ), more concisely) is
the expected discounted sum of values to be obtained by
agent i in the future given true joint type θt, decision
policy π, and reporting strategy profile σ. Algebraically,

Vi(θ
t, π, σ) = Eh

K
X

k=t

γk−tri(θ
k
i , π(σ(θk)))

˛

˛

˛
θt, π, σ

i

(1)

Here and in all other places in this paper, the expecta-
tion is taken over future true types of the agents (θk for
k > t) given the decision policy and strategies, and is
based on current true type θt (not the reported type).
When we omit σi or σ−i, we intend that the truthful
strategy is followed. When we omit π, we intend that
the expectation is based on execution of π∗. So, for ex-
ample, Vi(θ

t) is the expected utility to i given joint type
θt, truthful reporting by all agents, and execution of π∗.
Letting Π be the set of all possible decision policies,

∀θt ∈ Θ, π∗ = arg max
π∈Π

X

i∈I

Vi(θ
t, π) (2)

• V−i is defined analogous to Vi, but is the expected value
to agents other than i (i.e., V−i( · ) =

P

j∈I\{i} Vj( · )).
We will at times consider the value to agents other than
i of a policy π∗

−i that is optimal for them, given state θt

(i.e., arg maxπ∈Π

P

j∈I\{i} Vj(θ
t, π)). We use V−i(θ

t
−i)

to denote this value when agents other than i are truth-
ful, as it is completely independent of i’s state or strat-
egy. For any σi,

V−i(θ
t
−i) = V−i(θ

t
i , θ

t
−i, π

∗
−i, σi) (3)

= Eh

K
X

k=t

γk−tr−i(θ
k
−i, π

∗
−i(θ

k
−i))

˛

˛

˛
θt, π∗

−i

i

• V is defined analogous to Vi and V−i, but is the expected
value to all agents (i.e., V ( · ) =

P

i∈I
Vi( · )).

• Ti(θ
t
i , θ

t
−i, π, σi, σ−i) (more concisely, Ti(θ

t, π, σ)) is the
expected discounted sum of transfer payments received
by agent i under a dynamic mechanism (π, T ):

Ti(θ
t,π, σ) = Eh

K
X

k=t

γk−tTi(σ(θk))
˛

˛

˛
θt, π, σ

i

(4)

Variants for expected transfers received by agents other
than i and under truthful reporting are defined analo-
gous to the V notation.

We assume quasilinear utility throughout the paper,
which, given this notation, can be expressed as an assump-
tion that each agent i’s total expected discounted utility
given mechanism (π, T ) executed forward from a joint state
θt, given that agents play strategy profile σ, is:

Vi(θ
t, π, σ) + Ti(θ

t, π, σ) (5)

The goal in dynamic mechanism design is to achieve im-
plementation of desirable decision policies—typically, the ef-
ficient policy π∗—in a game theoretic equilibrium. We take
as our solution concept the strong within-period ex post Nash
equilibrium, where there is a strategy profile in which each
agent maximizes its payoff (expected discounted utility) by
playing the equilibrium strategy, given that the other agents
do, for every possible joint type.

Definition 1. (within-period ex post nash equilib-
rium) Given dynamic mechanism (π, T ), a strategy profile
σ constitutes a within-period ex post Nash equilibrium if and
only if at all times t, for all agents i ∈ I, for all possible
true types θt ∈ Θ, and for all σ′

i,

Vi(θ
t, π, σi, σ−i) + Ti(θ

t, π, σi, σ−i) (6)

≥ Vi(θ
t, π, σ′

i, σ−i) + Ti(θ
t, π, σ′

i, σ−i) (7)

A mechanism is incentive compatible (IC) in this equilib-
rium if each agent maximizes its payoff by reporting truth-
fully when others do, for every possible joint type. A mech-
anism is individual rational (IR) in this equilibrium if each
agent’s payoff is non-negative in expectation from any possi-
ble joint type, given that agents play equilibrium strategies.
For clarity, we provide the full formal descriptions of these
two concepts:

Definition 2. (within-period ex post incentive
compatible) A dynamic mechanism (π, T ) is within-period
ex post incentive compatible if and only if at all times t, for
all agents i ∈ I, for all possible true types θt, and for all σi,

Vi(θ
t, π) + Ti(θ

t, π) ≥ Vi(θ
t, π, σi) + Ti(θ

t, π, σi) (8)

Definition 3. (within-period ex post individual
rational) A dynamic mechanism (π, T ) is within-period ex
post individual rational if and only if there exists a within-
period ex post Nash equilibrium strategy profile σ such that
at all times t, for all agents i ∈ I, for all possible true types
θt ∈ Θ,

Vi(θ
t, π, σ) + Ti(θ

t, π, σ) ≥ 0 (9)

It may initially surprise some that we are in a private val-
ues setting, yet ex post Nash equilibrium is distinct from
dominant strategy. To see why, consider a dynamic setting
in which an agent i will misreport type information in the
current period, leading to an action that restricts the possi-
bility for high social value in future periods. Assume pay-
ments have aligned all agents’ incentives towards maximiz-
ing social welfare. An agent j 6= i may benefit from reporting
a false type to mitigate or counterbalance i’s misreport—the
two misreports combined may restore the efficient decision.
Thus within-period ex post incentive compatibility is really
a gold standard for dynamic settings. Intuitively, it says if
an agent i knew “everything that is knowable”4 (i.e., other
agents’ true current types, whatever they are, but not future
state transitions), i would want to report honestly as long
as other agents do.

2.1 Related work
There is a wealth of related work in static mechanism de-

sign that we build on in this paper, and also several relevant
recent developments in dynamic mechanism design. Cavallo,
Parkes, and Singh [2006] give one of the first treatments of
the DMD problem, and provide a mechanism that is efficient
and IC in within-period ex post Nash equilibrium. The un-
derlying idea is an extension of the core intuition of the basic
Groves mechanism for static settings [Groves, 1973]. Cavallo
et al. also provide a mechanism that is no-deficit ex ante, but
with the individual rationality property also weakened to ex
ante (i.e., in expectation from the beginning of execution).

In a key development, Bergemann & Välimäki [2006] pro-
vide a dynamic analogue of the celebrated VCG mechanism

4Thanks to Susan Athey and David Miller for this nicely
descriptive phrasing; see also [Athey and Segal, 2007].



for static settings. Their dynamic-VCG mechanism (which
we present and analyze in detail in Section 4) is efficient,
IC, and IR in within-period ex post Nash equilibrium, and
never runs a deficit, thus improving on the result of Cav-
allo et al. by significantly strengthening the IR property.
Cavallo, Parkes, and Singh [2007] extend dynamic-VCG to
settings where the population of agents changes over time,
or where agents periodically go out of communication and
cannot make or receive transfers. Ieong et al. [2007] also
study welfare maximization in a multi-stage model.

Athey & Segal [2007], recognizing that revenue is unde-
sirable in many circumstances, provide a mechanism that
is strongly budget-balanced. Their mechanism is a suc-
cessful extension of the AGV mechanism for static settings
[D’Aspermont and Gerard-Varet, 1979; Arrow, 1979], but
the weaknesses of AGV also carry over or become more acute
in the dynamic setting. Specifically, the mechanism achieves
a weaker equilibrium (Bayes-Nash) and the IR property is
significantly diminished, effectively back to that of [Cavallo
et al., 2006] in which agents will “sign up” at the beginning
of the mechanism, but may wish to drop out depending on
the types that are realized during execution.

In this paper we provide a dynamic setting analogue to
the characterization result of Green & Laffont [1977], who
showed that for unrestricted type spaces the Groves class of
mechanisms for static settings completely characterizes the
set of strategyproof and efficient mechanisms. This helps
guide the way in searching for mechanisms that have de-
sirable budget properties while achieving efficiency in the
strong within period ex post Nash equilibrium. In Section
5 we present a mechanism for multi-armed bandit settings
that does not sacrifice the efficiency, IC, IR, or no-deficit
properties of dynamic-VCG, yet yields significantly greater
payoff to the agents. Our approach borrows directly from
the analysis of [Cavallo, 2006], where much of the VCG rev-
enue is “redistributed” back to the agents in important set-
tings. While that redistribution mechanism can be applied
to arbitrary static problems, it has a particularly simple and
elegant form in the case of single-item allocation problems,
and in that specific setting it coincides with mechanisms
specified earlier by Bailey [1997] and Porter et al. [2004].

For arbitrary decision problems, the mechanism of [Cav-
allo, 2006] is optimal (i.e., redistributes the most revenue to
the agents, for any set of agent types) when a rather strong
fairness constraint is imposed. Guo & Conitzer [2007] relax
that constraint and find mechanisms that yield even more
payoff to the agents in some cases, though their mechanisms
are only applicable to multi-unit auctions settings; they do
a worst-case analysis and find a“worst-case optimal”mecha-
nism for such environments. In a related vein, Moulin [2007]
also optimizes for worst-case performance in multi-unit auc-
tions, but uses a different performance metric. In more re-
cent work for the same setting, Guo & Conitzer [2008] con-
sider redistribution that leverages a prior distribution over
agent valuations. Hartline & Roughgarden [2008] consider
a setting in which transfers are not possible.

3. EFFICIENT INCENTIVE COMPATIBLE

MECHANISMS
We start by pursuing a characterization of dynamic mech-

anisms that are efficient and incentive-compatible in within-
period ex post Nash equilibrium. This will define the terrain,
allowing us to focus our analysis in pinpointing particular

mechanisms with other desirable qualities. Our methods in
this section build on and follow closely the analysis of Groves
[1973] in defining the class, and Green & Laffont [1977] in
proving the characterization. Consider the following class
of “dynamic-Groves” mechanisms, which we name thus be-
cause they are the natural extension of the static Groves
class, in which each agent’s transfer payment equals the re-
ported value of the other agents for the chosen outcome,
minus some quantity beyond its influence.

Definition 4. (Dynamic-Groves mechanism class)
A dynamic-Groves mechanism executes efficient decision
policy π∗ and a transfer function T such that at ev-
ery time t, ∀θt ∈ Θ, ∀i ∈ I, ∀σi, there is a func-
tion Ci : Θ → R such that, letting Ci(θ

t, σi) =E[
PK

k=t γk−tCi(σi(θ
k
i ), θk

−i)) | θ
t, π∗, σi]:

Ti(θ
t, σi) = V−i(θ

t, σi) − Ci(θ
t, σi), (10)

and for any two strategies σ′
i and σ′′

i for agent i,

Ci(θ
t, σ′

i) = Ci(θ
t, σ′′

i ) (11)

The defining attribute of a dynamic-Groves mechanism is
that the difference in expected total discounted transfer pay-
ments for two different reporting strategies, given any true
type, is the expected difference in value the other agents ob-
tain (when truthful) from decisions based on those reports:

Lemma 1. A dynamic mechanism (π∗, T ) is a dynamic-
Groves mechanism if and only if ∀i ∈ I, θt ∈ Θ, σ′

i, σ
′′
i :

Ti(θ
t, σ′

i) − Ti(θ
t, σ′′

i ) = V−i(θ
t, σ′

i) − V−i(θ
t, σ′′

i ) (12)

Proof. First, it is obvious that any dynamic-Groves
mechanism satisfies (12). Now, for any mechanism (π∗, T )
there is some Ci : Θ → ℜ such that Ti(θ

t, σi) = V−i(θ
t, σi)−

C(θt, σi), for every σi; in particular, we can let Ci(θ
t) =

r−i(θ
t, π∗(θt)) − Ti(θ

t),∀θt. Assume (π∗, T ) satisfies (12).
Then, substituting for T with V−i and such a C in (12),

(V−i(θ
t, σ′

i) − C(θt, σ′
i)) − (V−i(θ

t, σ′′
i ) − C(θt, σ′′

i ))

= V−i(θ
t, σ′

i) − V−i(θ
t, σ′′

i ) (13)

This implies C(θt, σ′
i) = C(θt, σ′′

i ), and thus (π∗, T ) is a
dynamic-Groves mechanism.

We now show that this fact implies that all dynamic-
Groves mechanisms are efficient and incentive compatible
in within-period ex post Nash equilibrium.

Theorem 1. All dynamic-Groves mechanisms are effi-
cient and incentive compatible in within-period ex post Nash
equilibrium.5

Proof. By Lemma 1, for any dynamic-Groves mecha-
nism (π∗, T ), for any θt and σi:

(Vi(θ
t) + Ti(θ

t)) − (Vi(θ
t, σi) + Ti(θ

t, σi)) (14)

= (Vi(θ
t) + V−i(θ

t)) − (Vi(θ
t, σi) + V−i(θ

t, σi)) (15)

= V (θt) − V (θt, σi) (16)

≥ 0 (17)

5This theorem is essentially a recasting of Lemma 1 of [Cav-
allo et al., 2007].



The final inequality follows from the definition (optimal-
ity) of π∗. If it did not hold, then one could construct
a socially superior policy π such that ∀θ ∈ Θ, π(θ) =
π∗(σi(θi), θ−i).

It is more involved to establish that every mechanism that
is efficient and incentive compatible in within-period ex post
Nash equilibrium is a dynamic-Groves mechanism; the proof
follows the broad strokes of the Green & Laffont [1977] proof,
though things become more complex in the dynamic setting.
We will see that if the difference in expected transfers from
two reporting strategies does not equal the expected differ-
ence in value obtained by the other agents, then one can
construct a hypothetical true type for an agent such that he
would gain by executing the reporting strategy that yields
greater transfers.

We will use notation A(θt, σ) to reason about the future
sequence of actions that will occur given true type θt, re-
porting strategy profile σ, and decision policy π∗. The dis-
tribution over actions that might be taken at time k > t
is partially determined by the realization of random events
through time k − 1, and so we let A(θt, σ) be an “action se-
quence mapping” from the space of possible (given θt and σ)
random event realizations to a sequence of actions. Given
θ̇t, θ̂t ∈ Θ, σ′, and σ′′, then, A(θ̇t, σ′) = A(θ̂t, σ′′) means

that π∗(σ′(θ̇t)) = π∗(σ′′(θ̂t)), and moreover (given the deci-
sion at t) for every possible realization of random events at
t the decision taken at time t + 1 will be the same whether
the joint type and strategy at t was (θ̇t, σ) or (θ̂t, σ′), and
so on for times t + 2, . . . , K.

The proof of our characterization result for dynamic-
Groves is simplified by the following lemma, which says that
in any within period ex post efficient and IC mechanism,
given the reported types at time t of agents other than some
i, if two reports by i would cause the center to take the same
action at t, i’s transfer at t is the same regardless of which
of the two types he reports.

Lemma 2. If a dynamic mechanism (π∗, T ) is efficient
and incentive compatible in within-period ex post Nash equi-
librium, then ∀i ∈ I, θt

−i ∈ Θ−i, and θ̇t
i , θ̂

t
i ∈ Θi,

π∗(θ̇t
i , θ

t
−i) = π∗(θ̂t

i , θ
t
−i) ⇒ Ti(θ̇

t
i , θ

t
−i) = Ti(θ̂

t
i , θ

t
−i) (18)

Proof. Consider an arbitrary mechanism (π∗, T ) for

which there exists an agent i and types θ̇t
i , θ̂t

i , and θt
−i such

that π∗(θ̇t
i , θ

t
−i) = π∗(θ̂t

i , θ
t
−i) and Ti(θ̂

t
i , θ

t
−i) > Ti(θ̇

t
i , θ

t
−i).

Consider an agent whose true type at t is θ̇t
i . If i reports

truthfully in all time periods following t, the value and trans-
fers he obtains after t will be the same regardless of whether
he reports θ̇t

i or θ̂t
i at t since the same action will be taken at

t (we use history independence of transfers here). We have:Eh

Vi(τ(θ̇t
i , θ

t
−i, π

∗(θ̇t
i , θ

t
−i))) + Ti(τ(θ̇t

i , θ
t
−i, π

∗(θ̇t
i , θ

t
−i)))

i

(19)

= Eh

Vi(τ(θ̇t
i , θ

t
−i, π

∗(θ̂t
i , θ

t
−i))) + Ti(τ(θ̇t

i , θ
t
−i, π

∗(θ̂t
i , θ

t
−i)))

i

(20)

Given this equality, and since ri(θ̇
t
i , π

∗(θ̇t
i , θ

t
−i)) =

ri(θ̇
t
i , π

∗(θ̂t
i , θ

t
−i)) and Ti(θ̂

t
i , θ

t
−i) > Ti(θ̇

t
i , θ

t
−i), i is better

off reporting θ̂t
i rather than true type θ̇t

i at t, and thus the
mechanism is not within-period ex post IC.

Theorem 2. For unrestricted types, if a dynamic mech-
anism is efficient and incentive compatible in within-period
ex post Nash equilibrium then it is a dynamic-Groves mech-
anism.

Proof. Assume for contradiction existence of a mecha-
nism (π∗, T ) that is not a member of the dynamic-Groves
class yet is efficient and IC in within-period ex post Nash
equilibrium. By Lemma 1, there is an i ∈ I , joint type
(θ̂t

i , θ
t
−i), strategies σ′

i and σ′′
i for agent i, and ǫ > 0 such

that:

Ti(θ̂
t
i , θ

t
−i, σ

′
i) − Ti(θ̂

t
i , θ

t
−i, σ

′′
i ) =

V−i(θ̂
t
i , θ

t
−i, σ

′
i) − V−i(θ̂

t
i , θ

t
−i, σ

′′
i ) + ǫ (21)

Consider a type θ̇t
i correlated with θ̂t

i such that any path
of state transitions forward from initial state θ̇t

i would in-
dicate exactly what state transitions would have occurred
if the initial state were instead θ̂t

i . Then, there are strate-
gies σ′

θ̂t

i

and σ′′
θ̂t

i

such that A(θ̇t
i , θ

t
−i, σ

′
θ̂t

i

) = A(θ̂t
i , θ

t
−i, σ

′
i)

and A(θ̇t
i , θ

t
−i, σ

′′
θ̂t

i

) = A(θ̂t
i , θ

t
−i, σ

′′
i ). Let c be some constant

greater than V−i(θ
t
−i), and consider that θ̇t

i is also such that

A(θ̇t
i , θ

t
−i) = A(θ̇t

i , θ
t
−i, σ

′′
θ̂t

i

) and, for some 0 < δ < ǫ,

Vi(θ̇
t
i , θ

t
−i) = −V−i(θ̇

t
i , θ

t
−i) + c + δ (22)

= Vi(θ̇
t
i , θ

t
−i, σ

′′
θ̂t

i

) = −V−i(θ̇
t
i , θ

t
−i, σ

′′
θ̂t

i

) + c + δ, (23)

Vi(θ̇
t
i , θ

t
−i, σ

′
θ̂t

i

) = −V−i(θ̇
t
i , θ

t
−i, σ

′
θ̂t

i

) + c, (24)

and i’s expected value Vi(θ̇
t
i , θ

t
−i, σi) for any strategy σi that

yields any action sequence mapping that is not equal to
A(θ̂t

i , θ
t
−i, σ

′′
i ) or A(θ̂t

i , θ
t
−i, σ

′
i) is −1 times the other agents’

combined expected value (V−i) for that mapping, plus c.

The valuation implied by type θ̇t
i is valid, as the expected

social value of π∗ executed on truthful reports is δ better
than the expected social value of any policy that yields any
alternate action sequence mapping.

A(θ̇t
i , θ

t
−i) = A(θ̂t

i , θ
t
−i, σ

′′
i ) combined with Lemma 2 en-

tails that the expected transfers to i are the same if i’s type
at t is θ̇t

i and i is truthful, or if it is θ̂t
i and i follows reporting

strategy σ′′
i . We have:

Ti(θ̂
t
i , θ

t
−i, σ

′
i) − Ti(θ̂

t
i , θ

t
−i, σ

′′
i ) (25)

= Ti(θ̇
t
i , θ

t
−i, σ

′
θ̂t

i

) − Ti(θ̇
t
i , θ

t
−i) (26)

= V−i(θ̂
t
−i, θ

t
−i, σ

′
i) − V−i(θ̂

t
i , θ

t
−i, σ

′′
i ) + ǫ (27)

= V−i(θ̇
t
i , θ

t
−i, σ

′
θ̂t

i

) − V−i(θ̇
t
i , θ

t
−i, σ

′′
θ̂t

i

) + ǫ (28)

= Vi(θ̇
t
i , θ

t
−i) − δ − Vi(θ̇

t
i , θ

t
−i, σ

′
θ̂t

i

) + ǫ, (29)

from which we can see that:

Ti(θ̇
t
i , θ

t
−i, σ

′
θ̂t

i

) + Vi(θ̇
t
i , θ

t
−i, σ

′
θ̂t

i

)

> Ti(θ̇
t
i , θ

t
−i) + Vi(θ̇

t
i , θ

t
−i) (30)

When i’s type is θ̇t
i he is better off reporting according

to σ′
θ̂t

i

rather than truthfully, and so the mechanism is not

within-period ex post IC.

Theorem 3. For unrestricted types, a dynamic mecha-
nism is efficient and incentive compatible in within-period ex
post Nash equilibrium if and only if it is a dynamic-Groves
mechanism.

Proof. Follows immediately from Lemma 1 and Theo-
rems 1 and 2.



4. DYNAMIC-VCG AND

REVENUE MAXIMIZATION
The results of the previous section provide a complete

mapping of the space of possible mechanisms we can con-
sider if we require efficiency and incentive compatibility in a
within period ex post Nash equilibrium. But there are ad-
ditional criteria that will typically be applied to design of a
mechanism. Individual rationality is central; one could legit-
imately argue that a mechanism that is not IR has no hope of
being truly efficient, because reaching efficient outcomes re-
quires the participation of agents, and self-interested agents
who may be worse off from participating may not do so.
It is typically also important that a mechanism have the
no-deficit property, i.e., net payments made by the center
should be less than or equal to 0. This is important for
the feasibility of the mechanism; when the no-deficit prop-
erty does not hold, the mechanism designer may require an
external budget.

Bergemann & Välimäki’s dynamic-VCG mechanism, we
will see, is efficient, IC, and IR in within-period ex post
Nash equilibrium, and is also no-deficit. We will demon-
strate efficiency and IC by showing that dynamic-VCG is a
dynamic-Groves mechanism and then referring to Theorem
3. The nature of the proof will at the same time demonstrate
the IR and no-deficit properties of the mechanism.

Finally, the revenue a mechanism generates—or, how
much of the value from a sequence of decisions is acquired
by the center rather than kept by the agents—is also an
important evaluation metric. Of course in some settings a
mechanism designer may seek to implement a mechanism in
which revenue is high, extracting as much value as possible;
we will show that dynamic-VCG is optimal here (if efficiency
is required). However, we also note that in many decision
problems “revenue” is really just waste—in Section 5 we im-
prove on dynamic-VCG in this regard, seeking to minimize
rather than maximize revenue.

Definition 5 (Dynamic-VCG). [Bergemann and
Valimaki, 2006] Decision policy π∗ is executed and,
∀i ∈ I, θt ∈ Θ:

Ti(θ
t) = r−i(θ

t
−i, π

∗(θt)) + (31)

γE[V−i(τ (θt
−i, π

∗(θt)))] − V−i(θ
t
−i)

Recall that V−i(θ
k
−i) denotes V−i(θ

k
i , θk

−i, π
∗
−i, σi), and

thus E[V−i(τ (θt
−i, π

∗(θk)))] denotes the expected value that
agents other than i would obtain from a policy that is op-
timized for them from the joint type that results when the
socially optimal policy is followed for one time-step. Intu-
itively, at each time-step each agent must pay the center a
quantity equal to the extent to which its current type report
inhibits other agents from obtaining value in the present and
in the future.6

Besides Theorem 6 regarding revenue maximization,
which is wholly original to this paper, the properties we
observe regarding dynamic-VCG were previously known or
follow easily from the analysis of [Bergemann and Valimaki,
2006] or [Cavallo et al., 2007]. Bergemann & Välimäki [2006]
provide a direct proof that dynamic-VCG is efficient and

6Bergemann & Välimäki have alternately referred to the
mechanism as the “dynamic marginal contribution mecha-
nism”.

IC in equilibrium, and Cavallo et al. [2007] follow with a
different, simple proof. We essentially present the core of
the [Cavallo et al., 2007] proof here with some minor mod-
ifications, but note that our analysis of dynamic-Groves
mechanisms allows us to cast the question of whether or
not dynamic-VCG is efficient in a truthtelling ex post Nash
equilibrium as a question of whether or not it is a dynamic-
Groves mechanism. We will show that it is, by observing
that when other agents are truthful the expected sum, over
time, of the first term in (31) equals V−i(θ

t, σi), and then the
expected sum of the rest of the payment can be represented
as a function independent of anything i reports.

Theorem 4. The dynamic-VCG mechanism is a
dynamic-Groves mechanism.

Proof. (derived from [Cavallo et al., 2007]) Pick any
agent i and joint type θt, assume all other agents report
truthfully, and consider any strategy σi for i. Let θk denote
the true joint type at time k ≥ t given other agents are
truthful, i follows σi, and π∗ is executed from θt. We have:

Ti(θ
t,σi) = Eh

K
X

k=t

γk−t(r−i(θ−i, π
∗(σi(θ

k
i ), θk

−i)) +

γ V−i(θ
k+1

−i ) − V−i(θ
k
−i))

i

(32)

Extracting out the sum over the first term and reversing the
second and third terms, we see this:

= V−i(θ
t, σi) − Eh

K
X

k=t

γk−t(V−i(θ
k
−i) − γV−i(θ

k+1

−i ))
i

(33)

Expanding out the summation, then extracting V−i(θ
t
−i) out

from the first summation and canceling out (noting that
V−i(θ

K+1

−i ) necessarily equals 0), we see this:

= V−i(θ
t, σi) − Eh

K
X

k=t

γk−tV−i(θ
k
−i) − γ

K
X

k=t

γk−tV−i(θ
k+1

−i )
i

(34)

= V−i(θ
t, σi) − V−i(θ

t
−i)−Eh

γ

K−1
X

k=t

γk−tV−i(θ
k+1

−i
) − γ

K
X

k=t

γk−tV−i(θ
k+1

−i
)
i

(35)

= V−i(θ
t, σi) − V−i(θ

t
−i) (36)

Thus dynamic-VCG is a dynamic-Groves mechanism,
as we have shown that, letting Ci(θ

t) = V−i(θ
t
−i) −

γE[V−i(τ (θt
−i, π

∗(θt)))], Ci(θ
t, σi) = V−i(θ

t
−i) for any σi.

Theorems 3 and 4 together yield:

Corollary 1. The dynamic-VCG mechanism is within-
period ex post incentive compatible.

The following statements about expected equilibrium util-
ities follow immediately from the proof of Theorem 4:

Corollary 2. Utility to any agent i in the truthful equi-
librium under dynamic-VCG, in expectation forward from
any θt, is V (θt) − V−i(θ

t
−i).

By optimality of π∗, V (θt) ≥ V−i(θ
t
−i) for all θt and i, so

we have:

Corollary 3. The dynamic-VCG mechanism is within-
period ex post individual rational.



Corollary 4. Social utility in the truthful equilibrium
under the dynamic-VCG mechanism, in expectation forward
from any θt, is n · V (θt) −

P

i∈I
V−i(θ

t
−i).

Corollary 5. Revenue in the truthful equilibrium under
the dynamic-VCG mechanism, in expectation forward from
any θt, is

P

i∈I
V−i(θ

t
−i) − (n − 1)V (θt).

Theorem 5. The dynamic-VCG mechanism never runs
a deficit, even when agents play off-equilibrium strategies.

Proof. By optimality (for agents other than i) of π∗
−i,

for any type θt and any reporting strategies σi and σ−i,
r−i(σ−i(θ

t
−i), π

∗(σ(θt)))+γE[V−i(τ (σ−i(θ
t
−i), π

∗(σ(θt))))] ≤
V−i(σ−i(θ

t
−i)). Thus the net payment to each agent in every

time period is at most 0 and a deficit can never result.

We now show that if individual rationality is required in
addition to efficiency and incentive compatibility, no mecha-
nism yields more revenue in expectation than dynamic-VCG
in a truthful ex post equilibrium, for any joint type.

Theorem 6. For unrestricted types, among all mecha-
nisms that are efficient, incentive compatible, and individual
rational in within-period ex post Nash equilibrium, dynamic-
VCG yields the most expected revenue in the truthful equi-
librium going forward from every θt.

Proof. The expected equilibrium revenue un-
der dynamic-VCG given any joint type θt is:
P

i∈I
[V−i(θ

t
−i) − V−i(θ

t)]. Consider any dynamic-Groves
mechanism (π∗, T ) that yields more revenue (this is without
loss of generality by Theorem 3). This mechanism must
define C1, . . . , Cn such that

P

i∈I
Ci(θ

t) >
P

i∈I
V−i(θ

t
−i),

since revenue under a dynamic-Groves mechanism is
P

i∈I
[C(θt)−V−i(θ

t)]. This in turn implies there is an i ∈ I
such that:

Ci(θ
t) > V−i(θ

t
−i) (37)

Recall that Ci(θ
t) must be independent of i’s type reports,

and thus independent of i’s actual sequence of realized types.
So consider the case in which V (θt) = V−i(θ

t
−i) (for in-

stance, this holds when i’s value is always 0). Then agent
i’s expected payoff is:

V (θt) − Ci(θ
t) = V−i(θ

t
−i) − Ci(θ

t) (38)

< V−i(θ
t
−i) − V−i(θ

t
−i) = 0, (39)

and thus the mechanism is not within-period ex post indi-
vidual rational. The theorem follows.

Given that dynamic-VCG is revenue maximizing, it is nat-
ural to ask whether there are other dynamic-Groves mech-
anisms with the same desirable efficiency, IC, IR, and no-
deficit properties that yield less revenue. In the static setting
for unrestricted valuations the answer is no—VCG is simul-
taneously revenue maximizing and revenue minimizing, i.e.,
it is the only mechanism with these desirable properties (see
[Cavallo, 2006], Proposition 1). Redistribution is possible in
the static setting only by using domain information about
agent type spaces. For instance, in single-item allocation
problems it is typically known, independent of any agent’s
report, that all agents that don’t receive the item obtain
value 0. We will follow the same approach here, looking, for
instance, at dynamic settings in which a single item is to
be allocated repeatedly. This domain and others fall in the
category of multi-armed bandit settings.

5. REDISTRIBUTING REVENUE IN

MULTI-ARMED BANDIT SETTINGS
Multi-armed bandit (MAB) problems, so-called due to an

analogy that can be drawn to the problem of playing a set
of slot-machines with distinct payout rates, are sequential
decision-making problems with a strong factorization of the
state space. Specifically, there are n Markov processes, one
of which may be activated at any given time-step. When a
process is activated, a reward is obtained that depends only
on the local state of that process, and the process’s state
changes (all other processes’ states remain unchanged).

Among the many good reasons to consider multi-armed
bandit problems are: the interesting real-world problems
that more or less fit the restrictions of the model; the el-
egance of the solutions we can achieve; and perhaps most
importantly, the computational tractability of actually com-
puting efficient decision policies. In a seminal result, Gittins
showed that the optimal decision policy in a MAB setting
can be computed in time linear in the number of processes:

Theorem 7. [Gittins and Jones, 1974; Gittins, 1989]
Given Markov processes {1, . . . , n}, joint state space S =
S1 × . . . × Sn, discount factor 0 ≤ γ < 1, and an infinite
time-horizon, there exists a function ν : S1 ∪ . . . ∪ Sn → ℜ
such that the optimal policy π∗(s) = arg maxi ν(si), ∀s ∈ S.

An array of real-world decision problems can be mod-
eled as multi-armed bandit scenarios, and there is a natural
multi-agent interpretation: a Markov process is associated
with each agent, and the state of that process is the local
state (type) of the agent. Note that the MAB setting is sim-
ply a specialization of the general (unrestricted types) MDP
model we’ve used for the entire paper, in which MDPs are
restricted to be Markov chains and only one can be activated
per time-step. The most natural class of real-world multi-
agent MAB problems is probably that of repeated single-
item allocation, e.g., of an expensive public good such as
a supercomputer, space telescope, wireless bandwidth, etc.
We described one such setting (allocation of a mobile health
clinic) in the introduction. Gittins’s result is remarkable in
that it implies that all problems of this nature have a com-
putationally scalable solution, as the complexity grows only
linearly in the number of agents. This is in stark contrast to
the general MDP case, in which the computation required
to determine efficient policies effectively grows exponentially
with the number of agents in the worst case.

In multi-agent MAB domains, the dynamic-VCG payment
structure reduces to a very simple form. Because agents
that are not “activated” (e.g., allocated the resource) at any
given time do not undergo a state change, their marginal
contributions (and thus their payments) are 0. For the agent
i that is activated, the externality he imposes on the other
agents is simply the cost of them having to wait one period.

Definition 6 (Dynamic-VCG in MAB worlds).
[Bergemann and Valimaki, 2006] Decision policy π∗ is
executed and, ∀i ∈ I, θt ∈ Θ:

Ti(θ
t) =



−(1 − γ)V−i(θ
t
−i) if π∗(θt) = i

0 otherwise

Observe that the expected revenue generated by dynamic-
VCG in a MAB setting is quite large. At the end of this sec-
tion we present results of an empirical analysis that demon-
strates, among other things, that on average over a uniform



distribution of agent valuations, only about 10–20% of the
value of a decision policy is enjoyed by the agents (the rest is
payed to the center). We now address that issue by propos-
ing a dynamic redistribution mechanism.7

For all time-periods t and possible reported types θt, let
w(θt, π∗) denote the revenue that would result in period t
under dynamic-VCG (i.e., (1 − γ)V−j(θ

t
−j) for π∗(θt) = j).

Similarly, for any i ∈ I , let w(θt
−i, π

∗
−i) be the revenue that

would result at t if dynamic-VCG were executed and agent
i was not present in the system (i.e., (1 − γ)V−i,j(θ

t
−i,j) for

j = π∗
−i(θ

t)).
Now let W (θt, π∗) denote the total expected dis-

counted future revenue that results under dynamic-VCG,
given that agents report truthfully; i.e., W (θt, π∗) =E[

PK

k=t
γk−tw(θk, π∗) | θt, π∗], where θk for k > t is a ran-

dom variable representing the joint type at time k. Like-
wise, let W (θt

−i, π
∗
−i) = E[

PK

k=t
γk−tw(θk

−i, π
∗
−i) | θ−i, π

∗
−i].

So W (θt
−i, π

∗
−i) is the expected revenue that would result go-

ing forward given θt if agent i were not present in the system.
We now use these concepts to define dynamic redistribution
mechanism dynamic-RM:

Definition 7 (Dynamic-RM). Decision policy π∗

is executed and, ∀i ∈ I, θt ∈ Θ:

Ti(θ
t) =



−(1 − γ)V−i(θ
t
−i) + Zi(θ

t) if π∗(θt) = i
Zi(θ

t) otherwise,

where:

Zi(θ
t) =

8

<

:

1

n
(1 − γ)W (θt

−i, π
∗
−i) if π∗(θt) = i

1

n
w(θt

−i, π
∗
−i) otherwise

The mechanism is dynamic-VCG plus a revenue “redis-
tribution payment”. As we will see in Theorem 8, this pay-
ment is defined such that the expected sum of redistribution
over time to each agent i—no matter what i’s strategy—is
a constant fraction of the expected revenue that would have
resulted if i were not present in the system.

Theorem 8. Dynamic-RM is efficient and incentive
compatible in within-period ex post Nash equilibrium.

Proof. Since dynamic-VCG is a dynamic-Groves mech-
anism, by Theorem 1 it is sufficient to show that for every
agent i, at all times t, for all θt ∈ Θ and all σ′

i, σ
′′
i , letting

Z(θt, σi) = E[
PK

k=t
γk−tZi(σi(θ

k
i ), θk

−i) | θ
t, π∗, σi]:

Z(θt, σ′
i) = Z(θt, σ′′

i ) (40)

This would imply that dynamic-RM is a dynamic-Groves
mechanism. Consider an arbitrary indicator function h :N→ {0, 1}, and define Yh : Θ−i × N→ ℜ as follows:

Yh(θ−i, t) =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

0 if t > K, else

(1 − γ)W (θ−i, π
∗
−i) + γYh(θ−i, t + 1) if h(t) = 0

w(θ−i, π
∗
−i)+ if h(t) = 1

γ
X

θ′

−i

τ(θ−i, π
∗
−i, θ

′
−i)Yh(θ′−i, t + 1),

where τ (θ−i, π
∗
−i, θ

′
−i) is the probability that θ′

−i ∈ Θ−i will
result when π∗

−i(θ−i) is taken with current type θ−i ∈ Θ−i.

7This is the first time, to our knowledge, that the idea of
redistribution has been applied to a dynamic setting.

Observe that 1

n
Yh(θt

−i, t) corresponds exactly to the ex-
pected discounted value of total future redistribution pay-
ments to i given θt and truthful reporting by all j 6= i under
a policy that chooses i exactly when h(k) = 1, for all times
k ≥ t. This is because, crucially, in MAB settings ∀θ ∈ Θ
s.t. π∗(θ) 6= i, π∗(θ) = π∗

−i(θ−i). Let h1 denote the indica-
tor function with h1(k) = 1, ∀k ≥ 0. By definition, for all t,

θt, and i, Yh1(θt
−i, t) = E[

PK

k=t
γk−tw(θk

−i, π
∗
−i) | θ

t
−i, π

∗
−i] =

W (θt
−i, π

∗
−i). We will now show that for all t, θt, and i, for

any indicator function h,

Yh(θt
−i, t) = Yh1(θt

−i, t) = W (θt
−i, π

∗
−i) (41)

Take arbitrary t, θt, i, and h, and assume for contradiction
that ∃ǫ > 0 s.t. |Yh(θt

−i, t) − Yh1(θt
−i, t)| ≥ ǫ. Now consider

the greatest k such that h(k) = 0; call this kh. Assume
first that kh exists (it may not if K = ∞). Define h′ to be
identical to h except with h′(kh) = 1. Consider any type

θ̇
kh

−i associated with a (kh − t)th expansion of Yh, given θt
−i

and h. We have that Yh(θ̇kh

−i , kh) − Yh′(θ̇kh

−i , kh)

= (1 − γ)W (θ̇
kh

−i , π
∗
−i) + γEh

K
X

k=0

γkw(θ̇
kh+k
−i , π∗

−i)
i

(42)

− Eh

K
X

k=0

γkw(θ̇
kh+k

−i
, π∗

−i)
i

= (1 − γ)W (θ̇
kh

−i , π
∗
−i) + γW (θ̇

kh

−i , π
∗
−i) − W (θ̇

kh

−i , π
∗
−i) (43)

= 0 (44)

Note that for an indicator h1
′

that has h1
′

(k) = 1 for all

k ≥ kh, Y
h1′ (θ̇

kh

−i , kh) = E[γk
PK

k=0
w(θ

kh+k

−i , π∗
−i) | θ̇

kh

−i , π−i].
This allows the move to (42). The move from (42) to (43)
is just by definition of W (θ−i, π

∗
−i) for any θ−i.

Since Yh(θt
−i, t) and Yh′(θt

−i, t) differ only from the (kh −

t)th expansion onwards, and since we showed Yh(θ̇kh

−i , kh) −

Yh′(θ̇kh

−i , kh) = 0 for arbitrary type θ̇kh

−i , this proves that

Yh(θt
−i, t) − Yh′(θt

−i, t) = 0. So for an arbitrary h, switch-
ing the last “0-bit” to a “1-bit” does not change Yh(θt

−i, t).
We can imagine repeating this process, applying it to the
resulting function h′ yielding h′′, and then to h′′ yielding
h′′′, and so on. This chain can be continued until we reach
h1, establishing that Yh(θt

−i, t) − Yh1(θt
−i, t) = 0.

Now for the case in which there is no finite kh, con-
sider the indicator function ĥ identical to h except with
ĥ(k) = 1 for all k ≥ some kh. We can choose kh arbitrarily

high enough such that γkh |Yĥ(θkh

−i , kh) − Yh(θkh

−i , t)| < ǫ for

any θkh

−i (since we assume the maximum immediate value
any action can yield for any agent is finite). Then since

Yĥ(θkh

−i , kh) = Yh1(θt
−i, t) (by the first part of the proof), we

have that |Yh(θt
−i, t)−Yh1(θt

−i, t)| < ǫ. This contradicts our
assumption that |Yh(θt

−i, t) − Yh1(θt
−i, t)| ≥ ǫ. Since ǫ was

chosen arbitrarily, this proves the validity of (41).
Note again that any agent i’s only influence on its redis-

tribution payments is via the policy that is implemented.
Then, if we imagine h(t), h(t + 1), . . . as the sequence cor-
responding to execution of one sequence of actions, and
h′(t), h′(t + 1), . . . as that corresponding to any other, we
can see that the total expected discounted redistribution
payments for i are the same. This combined with equation
(41) implies that for any reporting strategies σ′

i and σ′′
i ,

Z(θt, σ′
i) = Z(θt, σ′′

i ) =
1

n
W (θt

−i, π
∗
−i) (45)



Theorem 9. Dynamic-RM is within-period ex post indi-
vidual rational.

Proof. Since dynamic-VCG is within-period ex post IR,
it is sufficient to show that for every agent i, for all θt, for
any σi, Zi(θ

k, σi) ≥ 0.
This holds trivially from the definition of Zi,∀i ∈ I , as

the hypothetical revenue that would result for any subset of
agents in I is always greater than or equal to 0. This can
be seen directly from the dynamic-VCG payment rule, from
which revenue expectations are derived.

Theorem 10. Dynamic-RM is no-deficit.

Proof. Since dynamic-VCG is no-deficit, it is sufficient
to show that for every θt:

X

i∈I

Zi(θ
t) ≤ w(θt, π∗) = (1 − γ) V−i(θ

t
−i) (46)

This, in turn, follows if, for all i ∈ I and θt ∈ Θ, n ·Zi(θ
t) ≤

w(θt, π∗). First note that ∀i 6= π∗(θt):

n · Zi(θ
t) = w(θt

−i, π
∗
−i) ≤ w(θt, π∗), (47)

where the inequality holds simply by observation that
V−i(θ

t
−i) ≤ V (θt), ∀θt ∈ Θ. To finish the proof we must

show that for i = π∗(θt), n · Zi(θ
t) ≤ w(θt, π∗), i.e., that

(1 − γ)W (θt
−i, π

∗
−i) ≤ (1 − γ)V−i(θ

t
−i), or,

W (θt
−i, π

∗
−i) ≤ V−i(θ

t
−i) (48)

But this holds immediately by within period ex post in-
dividual rationality of dynamic-VCG (Theorem 5)—if, in a
world without some agent i, the expected discounted pay-
ments made to the center were more than the expected value
obtained by the agents, some agent would necessarily expect
to pay more than the value he obtained from the decision
policy. The theorem follows.

Theorem 11. Utility to any agent i in the truthful equi-
librium under dynamic-RM, in expectation from any θt, is:

V (θt) − V−i(θ
t
−i) +

1

n

X

j∈I\{i}

h

V−i,j(θ
t
−i,j) − V−i,j(θ

t
−i)

i

(49)

Proof. From equation (45), in dynamic-RM the ex-
pected utility to agent i is increased by 1

n
times W (θt

−i, π
∗
−i),

the expected revenue that would result under dynamic-VCG
from θt forward if i were not in the system.

From Corollary 5, under dynamic-VCG given any θt ex-
pected revenue going forward in the truthful equilibrium
equals

P

j∈I
V−j(θ

t
−j)− (n−1)V (θt), i.e.,

P

j∈I
[V−j(θ

t
−j)−

V−j(θ
t)]. So W (θt

−i, π
∗
−i) can be written:

X

j∈I\{i}

h

V−i,j(θ
t
−i,j) − V−i,j(θ

t
−i)

i

(50)

Adding the payoff under dynamic-VCG (see Corollary 2)
and 1

n
times (50) yields (49).

Corollary 6. Social utility in the truthful equilibrium
under dynamic-RM, in expectation forward from any θt, is:

n · V (θt) −
1

n

X

i∈I

h

(2n − 2)V−i(θ
t
−i) +

X

j∈I\{i}

V−i,j(θ
t
−i,j)

i

(51)

Corollary 7. The social utility gain from redistribution
in the truthful equilibrium, in expectation from any θt, is:

1

n

X

i∈I

X

j∈I\{i}

h

V−i,j(θ
t
−i,j) − V−i,j(θ

t
−i)

i

(52)

5.1 Empirical analysis
We ran a numerical analysis to determine what the an-

alytical results for social welfare improvement brought by
dynamic-RM map to on plausible problem instances. The
punchline is that our simulations demonstrate that the vast
majority of value yielded from decisions is retained by the
agents under dynamic-RM, while very little of it is retained
under dynamic-VCG.

We examined settings in which activation of a bandit (al-
location of the item in an allocation problem) yields either
value 1 (“success”) or 0 (“failure”), and represented agent
types as beta distributions. Each agent’s private information
can thus be fully represented by two parameters, α and β,
and the probability of success for the next activation equals
α/(α + β). When an agent is activated, if it observes a suc-
cess its α parameter is updated to α + 1, and if it observes
a failure its β is updated to β + 1.

We generated agent types by selecting a number x between
2 and 20 uniformly at random for the number of“prior obser-
vations” (α + β), and then selecting α uniformly at random
from 1 to x−1, with β = x−α. Essentially, this generates a
uniform distribution over prior knowledge in the agent pop-
ulation, and a uniform distribution over valuation levels.8

We examined different size populations (n). A complete
“sample instance” (i.e., a joint type θ) consists of n types
drawn randomly as above. For each instance we computed9

the expected social value of the optimal policy (V (θ)), the
expected percentage of that value that is retained by the
agents under dynamic-VCG (see Corollary 4), and the ex-
pected percentage retained under dynamic-RM (see Corol-
lary 6). We computed results for several different discount
factors (γ), but there were not major differences. Figure 1
plots the results under each mechanism for a range of differ-
ent population sizes, with γ = 0.8. For each population size
we computed 100 samples and took the average.
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Figure 1: Comparison of the percentage of value from

the socially optimal sequence of decisions retained by the

agents under dynamic-VCG and dynamic-RM. γ = 0.8;

average over 100 samples for each agent population size.

8We would expect dynamic-RM to perform even better on
other distributions over agent types, as “similarity” of agent
valuations allows greater redistribution in general. We ver-
ified this experimentally for a normal distribution, finding
∼ 95% value retained even with just 4 agents.
9Estimated to within 2–3% accuracy by using the exponen-
tial decay of the discount factor.



6. CONCLUSION
In this paper we sought to make progress towards un-

derstanding how social welfare can be maximized among a
group of self-interested agents in sequential decision-making
problems. We made three main contributions:

1) we specified the dynamic-Groves class of mechanisms,
and proved that it characterizes the set of dynamic mech-
anisms that are efficient and incentive compatible in
within-period ex post Nash equilibrium;

2) we used this characterization to analyze Bergemann &
Välimäki’s dynamic-VCG mechanism, and proved that it
is revenue maximizing (payoff minimizing for the agents)
among all IR and no-deficit mechanisms in this class;

3) we proposed the dynamic-RM mechanism for settings
that can be modeled as multi-armed bandits (e.g., re-
peated single-item allocation problems), which redis-
tributes revenue under dynamic-VCG such that the vast
majority of value yielded by a sequence of decisions is
typically maintained within the set of agents.

Our motivation for dynamic-RM is that in some impor-
tant settings dynamic-VCG can be considered “wasteful”, as
the value of decisions is largely not kept within the popula-
tion of agents. Athey & Segal’s [2007] mechanism keeps all
value within the group but sacrifices on the equilibrium and,
as importantly, on the IR property. A mechanism that is not
generally IR in every time-period (theirs is not) raises signif-
icant questions about implementability. For repeated single-
item allocation settings, dynamic-RM maintains the strong
efficiency, IC, IR, and no-deficit properties of dynamic-VCG,
while typically obtaining near-perfect budget-balance.

Bergemann & Välimäki observe that dynamic-VCG is
unique among mechanisms that satisfy the “efficient exit”
condition: agents that will definitely no longer have influ-
ence on the chosen actions no longer receive or make pay-
ments. Clearly dynamic-RM does not satisfy this condition,
yet it does not lead to the difficulty that led Bergemann &
Välimäki to consider this condition, namely that agents no
longer influencing decisions may leave the mechanism and
not make payments owed. In a redistribution mechanism
after an agent’s exit period he will only receive payments.

There are many important directions for further research.
For instance, our characterization of the space of efficient
and IC dynamic mechanisms was for unrestricted valua-
tions; presumably this result can be strengthened to more
restricted classes (as [Holmstrom, 1979] did for the static
Groves class). Considering a model in which per-period pay-
ments are allowed to depend on entire report histories will
also be a worthy extension. There are also many additional
interesting questions about redistribution mechanisms. Is
there a natural generalization of dynamic-RM to domains
beyond those that can be modeled as multi-armed bandits?
Is dynamic-RM “optimal” in the strong sense that [Cavallo,
2006] showed of the static version when the analogous fair-
ness constraint is imposed? We suspect the answer to the
latter question is yes, but it may not be extremely conse-
quential in practice since, a) the fairness constraint is prob-
ably too strong, and b) dynamic-RM demonstrably performs
so well. If it’s not optimal and there’s a significantly more
complex and less scrutable alternative, the ceiling for im-
provement is low, as we already can maintain almost all
value among the agents in bandits settings with more than
a few agents. That said, a worst-case analysis could provide
some security against any “bad” outcomes, however rare.
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