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Abstract

Deriving effective group decision-making procedures for complex environments is hard
but of fundamental importance, and the challenges grow significantly more daunting
when individuals are self-interested. There is an inherent tension in striving to achieve
social goals in decisions that will impact individuals who are only concerned with
selfish objectives. Innumerable scenarios fit this mold, from resource allocation to
coordinating behavior in the presence of global constraints. The field of mechanism
design addresses such problems via specific payment schemes that disarm agent self-
interest. This thesis attacks two fundamental issues in this area.

First: How can one implement a decision-making mechanism that maximizes the
net welfare of a group of self-interested agents? Classic solutions typically require
agents to make large payments to a central coordinator which, from the agents’ per-
spective, purely detracts from social welfare. This thesis provides a mechanism ap-
plicable to arbitrary group decision-making problems that yields drastically higher
group welfare in important settings, including resource allocation. The redistribution
mechanism uses structure inherent in the domain to give payments required in the
classic solution back to the agents in a way that does not yield a budget deficit or
distort their incentives to participate truthfully.

Second: How can social welfare maximizing outcomes be reached with selfish
agents in a setting that is dynamic and uncertain? In the real world, decisions do not
exist in isolation, but rather are situated in a temporal context with other decisions.
Individuals will act to maximize their utility over time, and decisions in the present
influence how the world will look in the future, but rarely in completely predictable
ways. This thesis addresses the problem of dynamic mechanism design for such set-
tings and provides key results including: a characterization of the social welfare max-
imizing dynamic mechanisms that can be implemented in an ex post equilibrium;
an extension to handle dynamically changing agent populations; an application to
coordinating research preceding allocation of a resource. Finally, a dynamic redistri-
bution mechanism unifies the two main focuses of the thesis, providing a solution with
near-optimal social welfare properties for an array of important dynamic problems.
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Chapter 1

Introduction

Among the most fundamental and important problems associated with social in-
teraction is that of coordinating the behavior of individuals in a group, each with
his or her own interests and concerns, towards maximization of social welfare. A
self-interested individual will act to maximize his own utility, which will often come
at the the expense of utility for the group. There is often an inherent tension between
the optimization goals of individuals and those of a coordinator concerned with social
welfare.

The field of mechanism design (MD) exists to address this tension, using payment
schemes to transform a solution of inherently conflicting goals to one in which all
interests are aligned with that of the coordinator. For instance, consider an allocation
problem in which individuals are competing for a resource. An auction protocol in
which the resource is allocated to the highest bidder for a price equal to the second
highest bid transforms the scenario from one in which each agent wants to receive the
item to one in which an individual wants the item only if his value for it is highest.

The mechanism design approach has seen great success in decision-making prob-
lems such as one-shot resource allocation, yet classic solutions still frequently fall
short in two very important respects:

First, from a social welfare perspective mechanisms such as the second-price auc-
tion are often only desirable if we explicitly consider the value the auctioneer obtains,
via the payment made by the highest bidder. If we are instead concerned only with
the utility obtained by the bidders, this auction is highly undesirable because a large
portion of the value will usually be transferred outside the group to the auctioneer.
Imagine, for instance, a group of friends who jointly own a car and must decide who
gets to use it on a particular evening. The friends could allocate the car to the one who
wants it most via a second-price auction, but they would likely find it unacceptable to
make large payments to an outside auctioneer. I will propose a redistribution mech-
anism that, in many environments, allows individuals to maintain the vast majority
of the value obtained from decisions that are made.

Second, mechanism design has largely disregarded the context in which decisions
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Chapter 1: Introduction 2

are made; in particular, it has not accounted for scenarios in which a sequence of
decisions is to be made over time with new information obtained incrementally. In
fact it is typical that decisions are made in the context of other decisions, and the
context of time and future situations is essential to determining both what is best for
the group and what is best for each individual. In such settings, as we will see, static
solutions that consider each decision in isolation will not work. I will present dynamic
mechanism design (DMD), which extends MD by explicitly reasoning about sequences
of decisions and how individuals value utility obtained now relative to utility obtained
in the future.

These two main contributions of the thesis—improving social welfare via redistri-
bution, and addressing dynamics in decision-making scenarios—bring the mechanism
design enterprise closer to the real world. In the case of redistribution, individuals will
frequently not be satisfied by “solutions” that do not principally benefit the group of
interested parties. In the case of moving from a static to a dynamic analysis, when
a context of future decisions bears on consideration of a current decision (as it often
will), static “solutions” will typically not be solutions at all.

The rest of this chapter gives an intuitive introduction to the challenge of group
decision making, the style of solution that mechanism design offers, the shortcomings
of previous approaches, and the main contribution areas of the thesis. Finally I’ll
preview the main results in more detail.

1.1 The setting: group decision-making

This thesis is concerned with scenarios in which a decision must be made that will
impact a group of individuals (or “agents”). Each decision will bear a certain amount
of value for each agent, and will be made by a coordinator or “center”. There is a set of
outcomes from which the center must choose; each agent holds some information that
is pertinent to the decision-making process and, in particular, determines the agent’s
value for every possible outcome. Agents are rational and self-interested, acting in
ways that maximize their own individual utilities. Though it is possible to consider
other goals, in this thesis I take the goal of the center to be maximization of social
welfare (the sum of agent values), i.e., to choose the outcome that is most preferred by
the group as a whole. The center’s pursuing this goal can be justified by considering
it an actor that intrinsically feels invested in the welfare of the group (imagine a
government, for instance), or one who is hired by the agents simply to organize the
decision process. In either case social welfare maximization as an objective follows
naturally.

Observe, trivially, that if there is no particular behavior on the part of the agents
required for determination and implementation of the socially optimal outcome, then
there is no problem posed by self-interest. If the center has the power and authority
to choose and enforce any outcome and also knows a priori the valuations of each
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agent for each outcome, he can simply choose and implement it. The challenge arises
when we assume agents must participate in the mechanism in some way for it to be
effective; we will almost always assume that this challenge arises due to privacy of the
agents’ information. If the value of an outcome to a group depends on information
that only they know, it will be impossible for the center to determine the social-welfare
maximizing outcome without their willing participation.

Consider the example of allocating a single indivisible item among a group of 3
agents. There are 3 possible outcomes, one for allocation to each member of the
group. Assuming an agent obtains no value when he does not receive the item,
relevant private information can be expressed in a single number: the value the
agent would obtain if he were to be allocated the item. A social-welfare maximizing
decision procedure simply chooses the outcome in which the agent who values the
item most receives it, but in order to determine which agent that is the coordinator
must somehow get the agents to reveal their true private information.

Figure 1.1: Illustration of a typical group decision-making problem: there is a single
indivisible resource to be allocated to one person in a group of 3. Each person has
his or her own value for the item, and these values are private—unknown to the rest
of the group. To determine the socially optimal outcome (allocation to person 1,
here) the participants must be persuaded to truthfully share their private valuation
information. But how?

In this simple single-item allocation problem determining the optimal solution
is easy once the agents have revealed their private information, but in many set-
tings this will not be the case. When the outcome space is very large (for instance
in combinatorial allocation scenarios) even merely doing a comparison of the social
value for each outcome according to agent reported information may be impossible.
In dynamic environments determining optimal decisions involves solving a complex
stochastic optimization problem, which is often intractable. Thus there is an im-
portant computational aspect to problems in this area. These considerations are
especially pertinent because, we will see, being able to form strong expectations that
agents will truthfully reveal private information often requires choosing decisions that
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are optimal given their reports. While there will always be environments where this
is computationally infeasible, an important direction (pursued in two chapters of
this thesis and elsewhere) is identification and exploitation of underlying structure in
decision environments that makes optimal policies tractable.

1.2 Mechanism design

Mechanism design is the enterprise of engineering socially desirable outcomes in
the context of self-interested agents with private information; the tool used to achieve
this is monetary transfer payments. Typically, agents are asked to report their pri-
vate information to the center, who then chooses an outcome and potentially makes
payments to (or demands payments from) the agents.

MD works in a context of multiple rational agents, and so it applies a game-
theoretic analysis and seeks to implement an efficient choice function in equilibrium.
We will get to formal equilibrium definitions in Chapter 2, but for now it is enough
to say that an equilibrium is a specification of a profile of behaviors or “strategies”,
one for each agent, such that each agent maximizes his or her own utility by playing
the specified strategy.

Consider a simple mechanism for single-item allocation problems in which agents
are asked to report their value for receiving the item, and then the item is allocated
to the agent who reports the highest value. There is only one equilibrium in this
mechanism, and it is for all agents to report the highest value they can. This is
a bad equilibrium because it does not reliably lead to a socially-welfare maximizing
outcome. If all agents report value ∞, how can the center determine whose value is
actually highest?

The idea of mechanism design is to use transfer payments to transform a scenario
in which agents act only in their own interests—and possibly at the expense of the
social interest—into one in which the interests of each individual and that of the
group are both best served by the same behavior (usually, truthful reporting of private
information). Consider now the mechanism, illustrated in Figure 1.2, that allocates
the item to the agent that announces the highest value, but then charges that agent
an amount equal to the second highest reported value. This is called a “second-price”
or “Vickrey” auction and, we will see, it has the following nice property: every agent
maximizes his utility by reporting his true value for the item, regardless of what the
other agents announce.

In Chapter 2 we will see a generalization of this mechanism—the Vickrey-Clarke-
Groves (VCG) mechanism—that elicits truthful reporting of information in arbitrary
decision-making scenarios. Note that once transfer payments are involved, in addition
to incentive properties we need to also consider the budgetary properties of mecha-
nisms. Crucially, the “no-deficit” property will typically be required: the mechanism
should not, in aggregate, pay out more money to the agents than it takes in from
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Figure 1.2: Illustration of a Vickrey auction. The item is allocated to the highest
bidder for a price equal to the second highest bid, paid to the center.

them. The VCG mechanism has strong incentive properties and at the same time
satisfies no-deficit; in fact, in many settings it yields net payments to the center that
amount to a very large percentage of the total value yielded from the chosen outcome.
In other words, it yields high revenue.

1.3 Contribution 1: Redistribution mechanisms

Whether revenue is a scourge or a blessing depends on the setting, and also some-
times on whom you ask. For instance, in an allocation problem in which the center is
the initial holder of the item to be auctioned (and thus also the “auctioneer”), from
the center’s perspective high revenue means he will personally derive a large portion
of the utility yielded from reallocating the resource. Of course the bidders would
prefer a mechanism with less or, ideally, no revenue.

In other settings there will be no perspective from which revenue is considered
desirable. Consider government allocation of a public good such as wireless spectrum,
city green space, or usage rights for an expensive technology like a space telescope or
supercomputer. The goal in allocating here is often solely to maximize the welfare of
the agents competing for the resource, and large payments made to the government
undermine that very goal. One can imagine even more extreme cases. Consider again
the example of a group of friends that jointly own a car and must decide who gets
to use it on a particular evening. Here there is no inherent center or auctioneer, and
the role of a center (if the friends should appoint one) would merely be to facilitate
the group’s discovery of how best to extract value from the resource they jointly own.
Any payments the group must make are clearly waste.

One of the two main contribution areas of this thesis is the study of “redistribution
mechanisms”, in which payments required under VCG are returned to the agents in
a careful way that retains both the incentive and the no-deficit properties of that
mechanism. I will demonstrate that in some settings no improvement over VCG
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is possible, but in others it is. I will propose a specific alternative to VCG that
is applicable to any setting and redistributes revenue when doing so does not lead
to a deficit or distort incentives. I will demonstrate empirically that in allocation
problems the mechanism maintains almost all value within the group of agents while
VCG maintains almost nothing.

Consider again the example portrayed in Figure 1.2: the VCG mechanism (the
Vickrey auction here, since this is a single-item allocation problem) achieves the
efficient outcome in equilibrium, but 80% of the value ($8) is transferred to the center;
only $2 remains in the hands of the agents (agent 1, here). In the redistribution
mechanism I propose, 87% of the value is maintained within the group of agents in
this scenario; the center ends up with a total payment of only 1.33 (see Figure 1.3).
Redistribution has not resulted in a deficit and the incentive properties are the same
as in the Vickrey case: no agent can every benefit from reporting anything other than
his true value for the item.

Figure 1.3: Illustration of the redistribution mechanism for the single-item allocation
problem depicted in Figures 1.1 and 1.2. As in the Vickrey auction, the item is
allocated to the highest bidder, but now the majority of the value yielded by the
allocation is retained by the agents (8.77, or 87%, here).

1.4 Contribution 2: Dynamic mechanism design

So far the examples of decision-making scenarios I’ve introduced have all been
static. A single decision is to be made, and analysis is limited to the isolated consid-
eration of that one decision. We considered the problem of allocating an item, but
we did not consider what related decision-problems might arise after that allocation
decision. Essentially, the static mechanism design approach works under the assump-
tion that nothing that will happen in the future is relevant to analysis of the decision
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being faced now. Obviously this does not accurately model many important scenarios
faced in the real world.

Consider the simple extension of single-item allocation to a case in which the
item will be allocated twice: one agent will get it, use it for a time, and return it to
the center, at which point it will be allocated again. This makes the problem more
complex in several ways. First, the outcome space is now of size 2 · n (where n is
the number of agents); each outcome is an ordered pair (i, j) indicating allocating
to agent i the first time and agent j the second time. Also, an agent’s value for
receiving the item in the second period may depend on what happens in the first
period—imagine the resource is a DVD movie; the agent that gets to watch it in the
first period will likely have very low (or 0) value for obtaining it to watch again in
the second period. It may even be that an agent’s value for the item in the second
period depends unpredictably on what happens in the first period. If the movie is
really great but the viewer was distracted and ended up confused about some of the
subtle plot points, he may indeed have high value for seeing it again; the expected
value of the second watching depends on what happens during the first watching.

Essentially, the hallmark of dynamic decision-making problems that makes them
more complex than static ones is that new private information arrives over time.
Thus a successful dynamic mechanism will specify an optimal decision policy that
chooses an outcome in every time period given the information reported by agents
in that period, and a transfer payment policy that incentivizes agents to report their
true private information in every period.

In the arena of dynamic mechanism design main contributions of this thesis in-
clude: elaboration of the dynamic mechanism design framework; specification of dy-
namic mechanisms with desirable equilibrium properties; a characterization of what
social-welfare maximizing mechanisms can be implemented in strong equilibrium; a
specification of a dynamic redistribution mechanism for an important subclass of
settings; dynamic mechanisms for settings where the population of agents is chang-
ing (agents “arrive and depart”); and an application of the theory to coordinating
research prior to allocation of a resource.

1.5 Outline of chapters and main results

The following is a chapter-by-chapter outline of the thesis. Chapters 2 and 4 are
background on static mechanism design and sequential decision making; the related
work is provided in the chapter containing results to which it is most relevant. Dis-
cussion of future work and detailed discussion of what’s left “undone” is, with a few
exceptions, left to the concluding chapter.
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Chapter 2

Chapter 2 is background on static mechanism design, which provides the foun-
dation for practically the entire thesis. I introduce game theory and game theoretic
equilibria, which provide the framework for analysis of mechanism designs solutions.
I define the mechanism design paradigm and formalize its goals; I present strong
negative results and the assumptions required to move beyond them. I present the
hallmark positive result of MD: the Groves class of mechanisms. I define the VCG
mechanism and demonstrate its many desirable properties. I finally turn to budget
balance: I motivate it as an important concern, and prove that among social-welfare
maximizing mechanisms VCG is revenue-maximizing. I present the AGV mecha-
nism, which sacrifices certain desirable properties of VCG in order to always achieve
a balanced budget.

Chapter 3

In Chapter 3 I present the redistribution mechanism for static settings, a main
contribution of the thesis. Significant results of this chapter have been published
in [Cavallo, 2006b; 2006a]. I motivate this work by discussing settings in which
payments made to the center by agents can be very undesirable. I demonstrate
that without any knowledge about the structure of the decision-making environment,
unfortunately, among mechanisms that don’t ever run a deficit yet have the strongest
incentive properties, the VCG mechanism is in fact unique and so these payments are
necessary. But I then move to observe that when we do take into account structure—
for instance, the fact that in a single-item allocation problem only one agent obtains
non-zero value—VCG is not unique and we can do much better in terms of minimizing
payments. I propose a general redistribution mechanism that is applicable to any
static domain (with or without structure), but that deviates from VCG only when
the structure of the domain allows it. I demonstrate numerically that in single-item
allocation problems the vast majority of value can consistently be retained within the
group of agents when the group size is greater than a few.

Chapter 4

Chapter 4 provides background on optimal decision making in dynamic environ-
ments. I introduce the dynamic decision-making setting and the Markov decision
process (MDP) formalism I will use to model it. I describe handling multi-agent deci-
sion problems as a basic extension of the framework. I present leading approaches for
computing optimal policies (“solving” MDPs), both exact and approximate. I give
significant attention to the case of multi-armed bandit (MAB) problems, a subclass
of MDPs in which optimal policies can always be computed in time linear in the
number of agents, a result due to Gittins. I present Gittins’s index policy results and
important algorithms for computing such policies.
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Chapter 5

Chapter 5 provides an introduction to dynamic mechanism design and presents
main results. I introduce the problem and the equilibrium concepts that will con-
stitute solutions. I provide an extension of the Groves class of mechanisms for the
static setting to the dynamic case, and prove that (with a reasonable restriction)
this “dynamic-Groves” mechanism class corresponds exactly to the mechanisms that
implement social-welfare maximizing policies in a strong truthtelling equilibrium. I
then present the dynamic-VCG mechanism of Bergemann & Välimäki [2006] and the
dynamic-balanced mechanism of Athey & Segal [2007], important developments in
the field. I provide new simple proofs of dynamic-VCG’s incentives properties, and
a novel result that it is revenue-maximizing among all mechanisms that implement
social-welfare maximizing decisions. This chapter includes results that have been
published in [Cavallo et al., 2006; 2007; Cavallo, 2008], and includes collaborative
work with David C. Parkes and Satinder Singh.

Chapter 6

Chapter 6 presents a dynamic redistribution mechanism for multi-armed bandit
problems, an important novel result that unifies the two main contribution areas
of the thesis (published in [Cavallo, 2008]). I demonstrate that for problems that
can be represented as a multi-armed bandit (e.g., repeated allocation of a single
item), dynamic-VCG typically yields very high revenue. As in the static setting, in
many important environments this revenue is actually waste. I propose a dynamic
redistribution mechanism that has a simple and elegant form. It is, conceptually,
a natural analogue of the static redistribution mechanism for single-item allocation
settings, though more complex. The mechanism redistributes large portions of the
revenue back to the agents. I demonstrate empirically that in a group of at least
several agents, the group typically retain almost all of the value yielded by decisions
(∼97%), while in dynamic-VCG the value retained is small (∼10%).

Chapter 7

Chapter 7 addresses settings in which either the population of agents is changing
over time or, more generally, agents periodically go out of communication with the
center. I extend positive results in dynamic mechanism design to these settings,
focusing on extensions of dynamic-VCG. In addition, I provide an analysis of dynamic
mechanism design for settings in which agent valuations are interdependent (e.g., when
one agent’s expected value for an outcome is high if and only if another agent’s is
high). Results from this chapter appear in [Cavallo et al., 2007], and are collaborative
with David C. Parkes and Satinder Singh.
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Chapter 8

In Chapter 8 I provide an application of the new theory of dynamic mechanism
design to scenarios in which a single resource is to be allocated just once, but where
agent valuations for the resource can potentially be changed via a deliberation process.
This models settings where, for instance, a new technology becomes available and
firms’ valuations for obtaining it are subject to improvement given future research.
Perhaps research will yield knowledge of a new way of using the resource for greater
profit, which would increase the firm’s willingness to pay for the item. Such settings
bear a certain resemblance to multi-armed bandits, though they don’t quite fit the
model. I provide a new proof that these problems can be reduced to multi-armed
bandits in a lossless way, and thus that they admit tractable optimal solutions. I also
derive a new dynamic mechanism (a variant on dynamic-VCG) to handle scenarios
in which one agent can reason about the value of the resource to another agent. The
results of this chapter are collaborative with David C. Parkes and have been published
in [Cavallo and Parkes, 2008].

Chapter 9

Chapter 9 concludes the thesis. I provide an informal summary of the results and
describe important directions for future research.

Throughout the thesis when I present results that are due to others, I cite the re-
sponsible parties in the name or beginning of the result.



Chapter 2

Static mechanism design

Synopsis

This chapter provides background on mechanism design (MD), the study of engineer-
ing desirable equilibrium outcomes in strategic environments via payment schemes. I
start with a discussion of what constitutes a solution in the MD framework, and then
present both negative and positive results providing indicators of what MD can and
cannot achieve. The marquee possibility results are the Groves class of mechanisms
in general, and the VCG mechanism in particular, which provide the right incentives
for truthful behavior of self-interested agents in dominant strategies.1

2.1 Game theory

The group decision making problem can be formalized as follows: an outcome will
be chosen from a set O, yielding various amounts of utility for each member of a group
of agents I = {1, . . . , n}. Each agent i ∈ I has a private type θi that encapsulates all
information private to i that is relevant to the decision-making process. The outcome
space O may depend on the set of agents that participates in the mechanism, but
it does not depend on any information that is private to the agents.2 The space of
possible private information that agent i could possible have—i.e., i’s type space—is
denoted Θi, and the joint type space is Θ = Θ1 × . . .×Θn. I assume that agents are
rational and self-interested, in that each will act to maximize his own utility.

1I call the chapter “static mechanism design” to distinguish it from the expanded theory of
dynamic mechanism design, the presentation of which is a primary topic of this thesis. Static
mechanism design is in fact a very important special case of dynamic mechanism design in which
there is a single decision to be made in a single time-period. For simplicity I will often just use
“mechanism design” to refer to the theory for static (or “one-shot”) settings.

2For instance, in an allocation decision problem an agent i may bring an item X to the mechanism
for allocation, so the outcome in which some agent j receives X is dependent on i’s presence; but I
assume that the set of items an agent brings if he participates is known exogenously.

11
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Game theory3 models scenarios of strategic interaction between self-interested
agents, and will provide the basis for defining what should be considered a “solution”
to a mechanism design problem. In the game theoretic approach, each agent i has
an action space Λi and chooses an action according to a “strategy” σi based on his
private information; that is, a strategy σi is a mapping Θi → Λi. Given strategies σ =
(σ1, . . . , σn) played by the agents, an outcome g(σ(θ)) results. Each agent i obtains a
utility ui(θi, g(σ(θ))) when his type is θi and actions σ(θ) = (σ1(θ1), . . . , σn(θn)) are
played. A particular instantiation of a complete type profile and action set for each
agent is sometimes called a “game”. Such scenarios can be represented concisely in
matrix or “normal” form when there are two players with an equal number of actions,
an example of which is given in Table 2.1.

a2 b2

a1 2,2 0,0

b1 0,0 2,3

Table 2.1: Normal-form representation of a two-agent decision making scenario in
which each agent has two actions: a and b. Each cell of the matrix contains the
utilities received by agents 1 and 2, respectively, when agent 1 plays the corresponding
row action and agent 2 plays the corresponding column action. For instance if both
agents play their b action, here, agent 1 obtains utility 2 and agent 2 obtains utility
3.

2.1.1 Game theoretic equilibria

Given that we are considering self-interested agents that can explicitly reason
about what other agents will do, it is useful to examine what outcomes will occur
in equilibrium in a given game. The first equilibrium concept we consider is Nash
equilibrium, in which each agent acts to maximize utility given the knowledge that
other agents are also acting to maximize their own utilities. Here and in many places
to come it will be useful to consider the profile of types excluding that of some agent
i, which I denote θ−i, i.e., θ−i = (θ1, . . . , θi−1, θi+1, . . . , θn). Likewise I write σ−i to
denote the profile of strategies excluding i’s strategy.

3Though there were a few earlier works broaching this area, game theory as we know it was
first developed by John von Neumann [von Neumann and Morgenstern, 1944], and was rocketed
further forward by the equilibrium analysis of Nash [1950]. See [Osborne and Rubinstein, 1994] or
[Mas-Colell et al., 1995] for good introductions to the field.
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Definition 2.1 (Nash equilibrium). Given a type profile θ, strategy profile σ con-
stitutes a Nash equilibrium if and only if:

∀i ∈ I, σ′
i 6= σi, ui(θi, g(σi(θi), σ−i(θ−i))) ≥ ui(θi, g(σ′

i(θi), σ−i(θ−i))) (2.1)

In a Nash equilibrium no agent can benefit from unilaterally deviating from the
specified strategy profile. So, for instance, the example in Table 2.1 has 2 Nash
equilibria: (a1, a2) and (b1, b2).

An even stronger equilibrium-like notion describes scenarios in which each agent
has some strategy that is guaranteed to yield him maximum utility, regardless of what
other agents do. Such a strategy is called a dominant strategy.

Definition 2.2 (dominant strategy). Given θi ∈ Θi, a strategy σi is a dominant
strategy for i if and only if:

∀θ−i ∈ Θ−i, σ−i, σ
′
i 6= σi, ui(θi, g(σi(θi), σ−i(θ−i))) ≥ ui(θi, g(σ′

i(θi), σ−i(θ−i))) (2.2)

This is technically a weakly dominant strategy; a strictly dominant strategy is
one in which the inequality is strict. An example in which an agent has a dominant
strategy is illustrated in Table 2.2. In fact in this example agent 1 has 2 weakly
dominant strategies. Clearly if there is a strictly dominant strategy it is unique.

a2 b2 c2

a1 2,2 4,0 0,3

b1 2,0 4,1 0,1

c1 1,0 3,3 0,4

Table 2.2: A two-player game in which player 1 has two dominant strategies, a1 and
b1, and agent 2 has dominant strategy c2. The Nash equilibria are thus (a1, c2) and
(b1, c2).

The dominant strategy concept is very strong in that when there is a strictly
dominant strategy it allows us to know with certainty what action a rational agent
would take. When all agents are rational and have such a strategy we know exactly
what payoffs will be realized.

The final equilibrium notion I describe here applies to settings in which agents
have beliefs about the types of other agents. In a Bayes-Nash equilibrium, no agent
can expect to gain from deviating from the equilibrium strategy, given that other
agents don’t. Let bi(θ−i) denote a distribution over the types of agents other than i,
representing i’s beliefs about them, and let θ̃−i be a random variable denoting (from
i’s perspective) the realization of θ−i.
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Definition 2.3 (Bayes-Nash equilibrium). Given a type profile θ and agent be-
liefs b1(θ−1), . . . , bn(θ−n) about other agents’ types (θ̃−i) that are common knowledge,4

strategy profile σ constitutes a Bayes-Nash equilibrium if and only if:

∀i ∈ I, σ′
i 6= σi, Ebi(θ−i)[ui(θi, g(σi(θi), σ−i(θ̃−i)))] ≥ Ebi(θ−i)[ui(θi, g(σ′

i(θi), σ−i(θ̃−i)))]
(2.3)

2.2 The mechanism design framework

Mechanism design5 addresses group interaction scenarios in which there is a goal in
the interaction, usually maximization of the total utility realized, i.e., social welfare.
It is typically assumed that there is an entity—“the center”—that has the ability to
set the choice function, i.e., specify the mapping from agent actions to outcomes.

Informally, a mechanism defines rules for interaction between the center and the
agents that lead to a decision. The “rules” come in the form of specifying ways
that agents can communicate with the center, ways in which the center will choose
an outcome given actions that agents take, and (usually) ways in which the center
will provide payments to the agents in order to incentivize the agents into behaving
and communicating with the center in ways that the center prefers. Formally, a
mechanism is defined as follows:6

Definition 2.4 (mechanism). A tuple (Λ, g, T ), where:

• Λ = Λ1 × . . . × Λn is a joint action space.

• g : Λ → O is an action-choice function.

• T = (T1, . . . , Tn), where for each i ∈ I,
Ti : Θ → ℜ is a transfer payment function (with payments made to agent i).

Note that in the context of a mechanism an “outcome” is actually bifaceted: there
is a choice selected, and also a set of transfer payments defined, one for each agent.
For clarity I express these two facets of the outcome separately, so each agent i’s
utility ui : Θi ×O×ℜ → ℜ. For instance, u(θi, o, 5) is the utility i obtains if his type
is θi, outcome o is selected, and he receives transfer payment 5. I will use notation
v(θi, o) to denote i’s value when no transfer is made (i.e, u(θi, o, 0)).

4I.e., each agent knows that each i’s beliefs are bi(θ−i), and each agent knows that each agent
knows this, etc.

5The field began with the work of Hurwicz [1960; 1972]. See [Parkes, 2001] (Chapter 2) or
[Jackson, 2000] for other introductory presentations.

6The definition I provide here is somewhat narrow, in that it restricts to a setting in which agents
simultaneously take a single action. One can imagine natural generalizations.
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Figure 2.1: Resource allocation is a typical game theoretic scenario that embodies
conflicting goals: each individual seeks to obtain the good, while at the same time
the allocator may seek to allocate the good to the individual who wants it most.

A reasonable way to think about the intuitive motivation for mechanism design is
this: the center may only be able to specify action-choice rules that induce games with
(perhaps only) bad equilibria; the payments allow the center to essentially transform
such a game to a new game with better equilibria. For instance consider again the
example in Figure 2.1, which portrays a scenario in which a decision must be made
regarding allocation of a single item. There are two agents, each with his or her own
(privately known) value for the item. Imagine a mechanism in which the actions an
agent can take are defined to be the announcing of a value for the item, either 0,
2, or 10.7 The action-choice rule is defined to allocate the item to the agent who
announces the highest value; if there is a tie in announced values it is allocated
arbitrarily amongst the agents that announce the highest value. In this mechanism
there is only one equilibrium, and that is for both agents to report the highest value
possible (10) regardless of their values.

But now consider a mechanism in which we add a transfer payment scheme to this
framework, where the winning agent must pay the center the value that the other
agent announces for the item. The utilities (or “payoffs”)8 under each mechanism
are portrayed in Table 2.3. This mechanism, known as a second-price or “Vickrey”
auction, has the property that agents always maximize their payoffs by announcing
their true values. This allows the center to determine and subsequently choose the
outcome that is social welfare maximizing (allocation to agent 1, here). We will see
later in this chapter that the Vickrey auction is a special case of a more general
mechanism that has the same property and can be applied not just to single-item
allocation scenarios, but to arbitrary decision-making problems.

7I restrict possible value reports to this set here only to simplify presentation; more often agents
will be able to announce any value.

8Assume just for this example that agents have quasilinear utility (described in detail later), with
each agent’s payoff equal to his value for the outcome plus/minus any payment he receives/makes.
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0 2 10

0 5,1 0,2 0,2

2 10,0 5,1 0,2

10 10,0 10,0 5,1

0 2 10

0 5,1 0,2 0,2

2 10,0 4,0 0,0

10 10,0 8,0 0,-4

Table 2.3: Normal-form representation of a two-agent single-item allocation scenario
under two different mechanisms. Agent actions are value announcements. In the
first mechanism the item is allocated to the agent who announces the highest value;
both agents have announcing 10 as a dominant strategy. In the second mechanism
payments are added: the agent allocated the item must pay the center the value
announced by the other agent; truthful reporting is a dominant strategy. Equilibrium
outcomes are in bold; quasilinear utility is assumed (see Definition 2.20).

2.2.1 Implementation

The goal in mechanism design is to achieve a particular outcome in equilibrium.
If we redescribe this goal without considering any particular type profile, mechanism
design seeks to implement9 a particular choice function f in equilibrium, where a
choice function defines a mapping from agent types to outcomes. A choice function is
distinct from the more general action-choice function that a mechanism can specify,
which is a mapping from actions the agents take to outcomes. Very frequently (and in
all cases in this thesis) the goal in mechanism design will be to achieve implementation
of a social-welfare maximizing or efficient choice function.

Definition 2.5 (efficient social choice function). A choice function f ∗ : Θ → O
is efficient if and only if 10

∀θ ∈ Θ, f ∗(θ) = arg max
o∈O

∑

i∈I

vi(θi, o) (2.4)

If the center seeks to maximize social welfare, the strongest “solution” we can
hope for is to design a mechanism in which the agents all have a dominant strategy,
and when they play it and action-choice function g is applied, the outcome selected
is equivalent to what an efficient choice function f ∗ would select.

9I use the term “implement” in a way distinct from its usual meaning in implementation theory

(see, e.g., [Jackson, 2001]), which requires achieving the function in every equilibrium.

10Note that there may be multiple efficient choice functions. I will use f∗ to arbitrarily refer to
any one of them, since the arbitrary way that ties are broken will not be important for my analysis.
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Definition 2.6 (dominant strategy implementation). A mechanism (Λ, g, T )
implements choice function f in dominant strategies if, ∀θ ∈ Θ, there exists a strategy
profile σ such that for each i ∈ I, σi is dominant strategy and g(σ(θ)) = f(θ).

Solutions based on the other equilibrium concepts we’ve seen, though somewhat
less desirable, are still satisfactory in some environments.

Definition 2.7 (Nash equilibrium implementation). A mechanism (Λ, g, T ) im-
plements choice function f in Nash equilibrium if, ∀θ ∈ Θ, there exists a strategy
profile σ that is a Nash equilibrium and g(σ(θ)) = f(θ).

Note that any mechanism that implements a given choice function in dominant
strategies also implements it in Nash equilibrium. Dominant strategy implementation
is also preferable to Bayes-Nash implementation, since agents must have certain beliefs
in order for the latter to occur:

Definition 2.8 (Bayes-Nash equilibrium implementation). Given agent beliefs
b1(θ−1), . . . , bn(θ−n) that are common knowledge, a mechanism (Λ, g, T ) implements
choice function f in Bayes-Nash equilibrium if, ∀θ ∈ Θ, there exists a strategy profile
σ that is a Bayes-Nash equilibrium and g(σ(θ)) = f(θ).

The implementation goal that I will focus on throughout this thesis is that of an
efficient social choice function. I use the term efficient to describe a mechanism that
achieves this.

Definition 2.9 (efficient). A mechanism is efficient if it implements a social-welfare
maximizing (efficient) choice function.

The definition may seem slightly underspecified, but we will make clear the in-
tended equilibrium concept whenever we use the term. For instance, stating that
a mechanism is “efficient in dominant strategies” is to say that it implements an
efficient choice function in dominant strategies.

2.2.2 Direct mechanisms and the revelation principle

The space of possible mechanisms is difficult to fully conceptualize as, technically,
there is a distinct mechanism for each distinct set of actions or behaviors that one
can imagine allowing the agents to perform. But a particularly appealing subset of
this huge space is that consisting of direct mechanisms, in which the only action each
agent is allowed to perform is communication of a claim about his private type (which
determines his preferences). A direct mechanism is a mechanism in which the action
space is implicitly defined this way, and so the function that selects outcomes is in fact
a choice function (a mapping of agent type profiles to outcomes), a more narrowly
defined version of the general action-choice function concept.
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Definition 2.10 (direct mechanism). A tuple (f, T ), where:

• f : Θ → O is a choice function.

• T = (T1, . . . , Tn), where for each i ∈ I,
Ti : Θ → ℜ is a transfer payment function (with payments made to agent i).

Recall that each agent i’s utility is a function of the outcome selected and the
transfer payments specified. In the context of a direct mechanism (f, T ) we can write
ui(θi, f(σ(θ)), T (σ(θ))) to denote the utility i obtains when the agents have type
profile θ and play strategy profile σ. Direct mechanisms are very appealing because
of their simplicity. Fortunately, it turns out that if we are solely concerned with
implementation of a particular choice function, it is without loss of generality to only
consider this narrow subspace of all mechanisms.11

Theorem 2.1 (the revelation principle). If there exists a mechanism that imple-
ments choice function f in dominant strategy, Nash, or Bayes-Nash equilibrium, then
there exists a direct mechanism that implements f in the same equilibrium concept,
where the equilibrium strategy for each agent is to report his type truthfully.

The veracity of the revelation principle can be seen intuitively by imagining, for
any indirect mechanism in which agents perform some arbitrary action leading up
to an outcome choice, a direct mechanism analogue in which all such actions are
“simulated” by the center after the agents communicate their types. The possibility
of this is implicit in the definition of the mechanism concept, as the center can choose
an arbitrary action-choice function g that maps agent actions to outcomes.

The revelation principle is an extremely important result in mechanism design, as
it allows a mechanism designer to restrict attention to direct mechanisms in seeking
to implement a particular choice function. As we will see throughout this chapter,
this principle has proved central to the discovery of key negative and positive results
in mechanism design.

In thinking about the ramifications of the revelation principle, though, we must
be careful not to conclude that direct mechanisms are the only mechanisms ever
worth implementing. While direct mechanisms have very compelling attributes, in
certain settings there may be indirect mechanisms that also implement a desired
choice function, but with preferable computational and/or privacy properties. Direct
mechanisms require agents to completely reveal private types (preferences). In some
cases it may be computationally very difficult for an agent to even figure out exactly
what his preferences are, or there may be issues of trust that would make agents
hesitant to completely share such preferences even when they can be ascertained.
Nonetheless in many or most scenarios we will discuss in this thesis, the context of
direct mechanisms is very useful for conceptual clarity, and the benefits often appear
to outweigh these potential costs.

11The revelation principle was first noted by [Gibbard, 1973].
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2.2.3 Mechanism desiderata

There are three primary criteria by which a mechanism designer will evaluate
potential mechanisms, which can be summarized as follows:

• Incentives: will agents behave in ways that predictably lead to desirable out-
comes (i.e., in a direct mechanism, will they be truthful)?

• Participation: will agents want to participate in the mechanism at all?

• Budget: will net transfer payments flow towards the center, towards the agents,
or completely cancel out?

Each of these areas of concern is very important, and we will discuss each in turn.

Incentive Properties

Given the revelation principle, it is natural to seek mechanisms which have simple
truth-revealing equilibria. Intuitively, if agents are best-off reporting types truthfully
(i.e., if an equilibrium strategy profile σ has σi(θi) = θi for every i ∈ I), the mechanism
designer can achieve the desired choice function by simply applying it to agent reports,
and also the burden of computing complex utility-maximizing strategies is lifted from
the agents.

Definition 2.11 (strategyproofness). A direct mechanism (f, T ) is strategyproof
if and only if truthfulness is a dominant strategy for every agent, i.e.,

∀θ ∈ Θ, i ∈ I, σi, σ−i, ui(θi, f(θi, σ−i(θ−i)), T (θi, σ−i(θ−i))) ≥

ui(θi, f(σi(θi), σ−i(θ−i)), T (σi(θi), σ−i(θ−i))) (2.5)

In a strategyproof mechanism no agent can ever benefit from deviating from the
simple truth-revealing strategy. The term used when truthfulness holds in Nash rather
than dominant strategy equilibrium, for any profile of true agent types θ, is ex post
incentive compatibility:

Definition 2.12 (ex post incentive compatibility). A direct mechanism (f, T )
is ex post incentive compatible if and only if truthfulness is a Nash equilibrium for
every possible agent type, i.e.,

∀θ ∈ Θ, i ∈ I, σi, ui(θi, f(θ), T (θ)) ≥ ui(θi, f(σi(θi), θ−i), T (σi(θi), θ−i)) (2.6)

Observe that ex post incentive compatibility is in fact equivalent to strategyproof-
ness in our formulation, which is characterized by “private values”: each agent’s utility
depends only on the outcome and his own type (not the other agents’). If truthfulness
is a utility-maximizing strategy when other agents are truthful no matter what their
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types, then it is utility-maximizing however they choose to report types (truthfully or
not).12

A clear weakening of the truth-revealing property occurs when we move from dom-
inant strategy or Nash equilibrium to Bayes-Nash equilibrium. In an incentive com-
patible mechanism no agent can expect to benefit from deviating from truthfulness—so
long as other agents don’t—given his beliefs about the types of other agents.

Definition 2.13 (incentive compatibility). A direct mechanism (f, T ) is incentive
compatible if and only if truthfulness is a Bayes-Nash equilibrium for every agent, i.e.,
if given common knowledge agent beliefs b1(θ−1), . . . , bn(θ−n),

∀θ ∈ Θ, i ∈ I, σi, Ebi(θ−i)[ui(θi, f(θi, θ̃−i), T (θi, θ̃−i)) ≥

Ebi(θ−i)[ui(θi, f(σi(θi), θ̃−i), T (σi(θi), θ̃−i))] (2.7)

I will frequently use the term truthful to describe a mechanism that is strate-
gyproof or incentive compatible, with the intended equilibrium concept clear from
context. For instance, to say that a mechanism is “truthful in dominant strategies”
is equivalent to saying it is strategyproof.

Participation properties

Perhaps as important as the incentives a mechanism provides to agents that have
decided to participate is providing the incentives that make the agents want to par-
ticipate in the first place. Of course in settings in which agents have no choice but
to participate this is not a concern, but often agents will have a choice, and it is
important to design mechanisms in which agents will generally be better off when
they make the choice to take part than they would be if they sat out. The term used
for this concept is individual rationality (IR).

In fact this property is often essential to obtaining implementation of an efficient
outcome. Consider a single-item allocation domain. The efficient choice function
allocates the item to the agent with highest value, but it is impossible to achieve this
if the agent with highest value has not even decided to participate in the mechanism.

For simplicity I will assume here that agents that don’t participate in a mecha-
nism obtain utility 0, and thus in order for a mechanism to meet the “participation
constraint” it must yield non-negative payoff to each agent.13 We will consider both

12In so-called “common values” environments where one agent’s value depends on the type (or
“signal”) of another agent, this will not be the case (see, e.g., [Milgrom and Weber, 1982]). Besides
in Chapter 7, Section 7.3, this thesis considers only private values environments.

13 Technically, if an agent would receive utility x from not participating, the individual rationality
constraint demands that the agent obtains utility at least x from participating. But my formulation
is without loss of generality, as ui can be considered utility normalized to each agent’s outside option,
i.e., the utility the mechanism yields for i minus the utility i would obtain if he did not participate.
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“guaranteed” and “in-expectation” versions of this property.

Definition 2.14 (ex post individual rationality). A direct mechanism (f, T ) is
ex post individual rational if and only if

∀θ ∈ Θ, i ∈ I, ui(θi, f(θ), T (θ)) ≥ 0 (2.8)

In an ex post individual rational mechanism each agent has a strategy (truth-
fulness) that is guaranteed to yield him non-negative utility, regardless of the other
agents’ types or strategies they play.

A weaker notion is interim individual rationality, in which an agent does not expect
to be worse off from having participated, given knowledge of his own type and beliefs
about others’ types. A still weaker notion is ex ante individual rationality, in which
each agent i—prior to realization of all agent types, including his own—expects that
his utility will be non-negative from participating truthfully; in actuality his utility
may still end up being negative.

Definition 2.15 (interim individual rationality). A direct mechanism (f, T )
is interim individual rational if and only if, given common knowledge agent beliefs
b1(θ−1), . . . , bn(θ−n) about other agents’ types (θ̃−i),

∀i ∈ I, θi ∈ Θi, Ebi(θ−i)[ui(θi, f(θi, θ̃−i), T (θi, θ̃−i))] ≥ 0 (2.9)

Definition 2.16 (ex ante individual rationality). A direct mechanism (f, T ) is
ex ante individual rational if and only if, prior to realization of agent types and given
common knowledge agent beliefs b1(θ), . . . , bn(θ) about the complete type profile that
will be realized (θ̃),

∀i ∈ I, Ebi(θ)[ui(θ̃i, f(θ̃), T (θ̃))] ≥ 0 (2.10)

Budget properties

As we will soon see, successful mechanisms achieve equilibrium implementation
of desirable social choice functions by aligning the interests of each agent with im-
plementation of the choice function specified by the mechanism; this alignment is
achieved via the mechanism’s transfer payment scheme. But in searching for an ef-
fective transfer function, we will often have to consider the budgetary properties it
yields in addition to the incentive properties. Most importantly, it will frequently
be the case that a mechanism designer does not have access to an external source of
funds that can be used to bankroll the mechanism, and thus net payments made to
the agents must be non-positive. In other words the payment scheme cannot run a
deficit:
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Definition 2.17 (no-deficit). A direct mechanism (f, T ) has the no-deficit property
if and only if

∀θ ∈ Θ,
∑

i∈I

Ti(θ) ≤ 0 (2.11)

The no-deficit property is sometimes called weak budget-balance. If both individual
rationality and no-deficit constraints are satisfied, then all agents and the center will
want to participate in the mechanism; no one will be hurt from participating and
there is the chance of a utility gain. Then the remaining question is what portion of
the value (or “surplus”) yielded from a selected outcome is kept by the agents, and
what portion is transferred to the center. The value transferred to the center is called
the revenue:

Definition 2.18 (revenue). In a mechanism with transfer function T , when the
reported agent type profile is θ̂ the revenue is −

∑

i∈I Ti(θ̂).

In some scenarios it will be desirable that revenue equals 0, i.e., that the mecha-
nism is strongly budget-balanced:

Definition 2.19 (strong budget-balance). A mechanism with transfer function T
has the strong budget-balance property if and only if

∀θ ∈ Θ,
∑

i∈I

Ti(θ) = 0 (2.12)

A mechanism with this property is no-deficit, and at the same time leaves the
entire utility from the outcome in the hands of the agents. Transfer payments effec-
tively move money around between the agents, but do not involve any net transfer
from or to the center.

2.2.4 The Gibbard-Satterthwaite theorem and quasilinear
utility

Given this framework for analyzing mechanisms, natural first questions to ask are:
what kind of choice functions can be implemented in the strong dominant strategy
equilibrium? Can we implement social-welfare maximizing choice functions? Or
choice functions that maximize the welfare of an arbitrarily selected subset of agents?

Surprisingly, the answers are quite negative. When agent utility functions are
unrestricted (i.e., each ui can be an arbitrary mapping from a type, outcome, and
transfer payment to a real-valued utility), without further assumptions there are es-
sentially no interesting choice functions that can be implemented in dominant strate-
gies. Specifically, the only implementable choice functions are dictatorial: there is an
agent i such that the outcomes chosen are always those most preferred by i.
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Theorem 2.2 ([Gibbard, 1973; Satterthwaite, 1975]). Consider an arbitrary
social choice function f and assume that: 1) agent utilities are unrestricted, 2) there
are at least 3 outcomes (|O| ≥ 3), and 3) for each o ∈ O there is a θ ∈ Θ such that
f(θ) = o. If f is implementable in dominant strategies then f is dictatorial.

But this is not the end of the story for mechanism design. In the face of this
very negative result there are a few ways we can imagine proceeding. First, one
could imagine looking to implementation concepts (e.g., Nash or Bayes-Nash) that
are weaker than dominant strategy; I will not give that direction much attention
here because I want to focus on the strongest implementation concept. The other
alternative is to weaken the conditions of the theorem. Condition (2) is difficult to
weaken because that would allow us to consider only very simple domains where an
either/or decision between two choices is to be made; (3) is also difficult to attack,
as it essentially says that no outcome is excluded from consideration independent
of agent preferences. That leaves (1), and weakening this condition will provide a
reasonable escape hatch from the Gibbard-Satterthwaite theorem.

We will consider a restricted set of utility functions, those in which each agent’s
utility can be represented as the sum of a value for the outcome selected by the
mechanism and the transfer payment the mechanism makes to that agent. Such a
utility function is called quasilinear.

Definition 2.20 (quasilinear utility function). A utility function ui : Θi × O ×
ℜ → ℜ is quasilinear if and only if there exists a function vi : Θi ×O → ℜ such that:

∀θi ∈ Θ, o ∈ O, x ∈ ℜ, ui(θi, o, x) = vi(θi, o) + x (2.13)

This type of utility function is quite natural: each agent obtains a particular
amount of utility depending on what outcome is realized—which I will refer to
throughout as his value vi—and his utility will increase by however much money
you give him (or will decrease by however much you charge him if his payment is neg-
ative).14 Note that the utility obtained by an agent with a quasilinear utility function
does not depend on the transfer payments that other agents receive. Thus we can
write ui(θi, f(θ̂), Ti(θ̂)) to denote the utility agent i obtains when his true type is θi

and type profile θ̂ is reported.
Primarily motivated by the Gibbard-Satterthwaite theorem, and because it is

judged to be a reasonable model of agent utilities in many settings, the quasilinear
assumption is practically omnipresent in mechanism design work. For this entire
thesis I will assume agents have quasilinear utility; I will refrain from restating this
assumption when presenting results, but it’s always there.

14 The value vi(θi, o) of an agent i with type θi for an outcome o can be considered his “net
gain” (independent of transfers) relative to the value he would obtain from not participating in the
mechanism when there are outside options (see footnote 13).
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2.3 The Groves class of mechanisms

We are now ready to look at specific mechanisms that achieve some of the de-
sirable properties defined in the previous section. I will use the following notational
shorthands (some of which will not come into play until later in the section):

• v−i(θ−i, o): the value obtained by agents other than i for outcome o ∈ O given
type profile θ−i, i.e.,

∑

j∈I\{i} vj(θj , o).

• v(θ, o): the social value obtained by the agents for outcome o ∈ O given type
profile θ, i.e.,

∑

i∈I vi(θi, o).

• f∗(θ−i) = arg maxo∈O v−i(θ−i, o): the outcome in O chosen by a social
choice function that maximizes the welfare of the group of agents excluding i. i
is still presumed to be “in the system” (so the outcome space does not change),
but his valuation function is disregarded.

The Groves class of mechanisms—proposed by Vickrey [1961], Clarke [1971], and
Groves [1973]—constitutes the foundation on which practically all of dominant strat-
egy implementation mechanism design rests.

Definition 2.21 (Groves class of mechanisms). A direct mechanism (f, T ) is
a Groves mechanism if and only if:15

• ∀θ ∈ Θ, f(θ) ∈ arg max
o∈O

v(θ, o) (i.e., it executes f ∗)

• ∀i ∈ I, there is a function hi : Θ−i → ℜ such that ∀θ ∈ Θ,

Ti(θ) = v−i(θ−i, f
∗(θ)) − hi(θ−i) (2.14)

A Groves mechanism chooses a social-welfare maximizing outcome (according to
agent reported types), and pays each agent i the value that other agents report ob-
taining for the selected outcome (which we will call the “Groves payment”), minus
some quantity that is completely independent of i’s report (the “charge”). Note that
this definition characterizes a class of mechanisms rather than just one, as there are
many (in fact an infinite number of) ways of defining the charge function hi for each
agent i.

Every mechanism in the Groves class is strategyproof. When this is considered
in light of the fact that Groves mechanisms choose an efficient outcome according

15I give the definition for the restricted context of efficient mechanism design. In fact there are
variants in which the choice function maximizes a weighted sum of agent valuations, with transfer
functions modified accordingly.
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to agent reports, one can see that every Groves mechanism implements an efficient
social choice function in dominant strategies.

Theorem 2.3. Every Groves mechanism is truthful and efficient in dominant strate-
gies.

Proof. Assume for contradiction the existence of a Groves mechanism (f ∗, T ) that is
not truthful in dominant strategies. Since (f ∗, T ) is a Groves mechanism, for each
i ∈ I, Ti(θ) = v−i(θ−i, f

∗(θ)) − hi(θ−i) for some hi : Θ−i → ℜ (hi is the only part
of the mechanism left unspecified). If (f ∗, T ) is not truthful in dominant strategies,
then there exists an i ∈ I, θ−i ∈ Θ−i, and θi, θ

′
i ∈ Θi such that if i’s true type is θi he

is better off reporting θ′i when other agents report θ−i, i.e.:

vi(θi, f
∗(θi, θ−i)) + v−i(θ−i, f

∗(θi, θ−i)) − hi(θ−i) (2.15)

< vi(θi, f
∗(θ′i, θ−i)) + v−i(θ−i, f

∗(θ′i, θ−i)) − hi(θ−i), (2.16)

which implies that:

v(θ, f ∗(θ)) < v(θ, f ∗(θ′i, θ−i)) (2.17)

But then consider a choice function f ′ such that f ′(θi, θ−i) = f ∗(θ′i, θ−i) and,
∀θ ∈ Θ \ {θ′i}, f ′(θ) = f ∗(θ). By equation (2.17),

v(θ, f ∗(θ)) < v(θ, f ′(θ)), (2.18)

which contradicts the fact that f ∗ is an efficient choice function. Thus each such
(f ∗, T ) is truthful in dominant strategies. Then, since f ∗ is the efficient choice func-
tion, each is also efficient in dominant strategies.

In a Groves mechanism each agent obtains some value intrinsically for realization
of the chosen outcome, and also is payed the total value the other agents claim to
obtain; the sum of these two quantities is exactly what the center is optimizing (when
the agent is truthful) via an efficient choice function. The center then also charges
each agent some quantity (via the hi function), but this is completely beyond the
agent’s control and thus does not influence his incentives. The payments effectively
align each agent’s interests with the center’s interest, i.e., maximization of social
welfare.

Consider a single-item allocation setting in which there are 4 agents—1, 2, 3,
and 4—with values 10, 8, 6, and 4, respectively, for the good. The agent valuation
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functions16 can conveniently be represented in matrix format,17 where each row cor-
responds to an outcome (allocation of the item to one particular agent) and each
column corresponds to a different agent’s valuation. Let oi denote the outcome in
which agent i is allocated the resource.

v1 v2 v3 v4

o1 10 0 0 0

o2 0 8 0 0

o3 0 0 6 0

o4 0 0 0 4

Table 2.4: Tabular representation of 4 agent’s valuation functions for a single-item
allocation problem with 4 outcomes. Agents have 0 value for outcomes in which they
are not allocated the good.

Consider the “basic-Groves mechanism” in which the hi(θ−i) charge term is
defined to be 0 for every i and for every θ. This mechanism pays each agent the value
other agents report obtaining, but charges them nothing. Applying basic-Groves to
the example in Table 2.4, the item will be allocated to agent 1, and then agents 2,
3, and 4 will each receive a payment of 10. Each agent’s total utility—in dominant
strategy equilibrium—equals the total value to the group from allocation of the item,
i.e., 10. Note also that the basic-Groves mechanism is trivially ex post individual
rational whenever the social value of each outcome is non-negative. When agent i
truthfully reports his type θi,

ui(θi, f
∗(θ), Ti(θ)) = vi(θi, f

∗(θ)) + v−i(θ−i, f
∗(θ)) = v(θ, f ∗(θ)) (2.19)

While the basic-Groves mechanism is successful from an incentives and individual
rationality perspective, note that it fails severely in its budgetary properties. In the
example above, the center must pay out a total of 30, which is 3 times the total
value obtained from realization of the outcome. Most often a mechanism that runs
this kind of deficit will be completely infeasible. Ideally a mechanism should provide
the incentive and IR properties of basic-Groves and also have the no-deficit property;
that way it can be implemented without requiring some external source of funding to
bankroll its execution. Later in this section we will see the difficulty in accomplishing

16Note the important distinction between a “valuation function” and a “utility function”. For an
agent i, the former corresponds to vi, while the latter is ui (and equals vi plus the transfer payment).

17Note that this matrix format is completely distinct from the “normal form” matrix representation
I used to represent 2-player games.
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this. First, and in order to guide our search, we note an extraordinary fact discovered
by Green & Laffont in 1977.

2.3.1 Uniqueness of the Groves class

We’ve seen that Groves mechanisms are all truthful and efficient in dominant
strategies. One might wonder whether there are other payments schemes that lead
to this same property. The answer is no; the Groves mechanisms are in fact unique
among strategyproof mechanisms that choose outcomes to maximize social welfare.

Theorem 2.4 (Groves uniqueness [Green and Laffont, 1977]). For an unre-
stricted type space,18 a direct mechanism (f, T ) is truthful and efficient in dominant
strategies if and only if it is a Groves mechanism.

A couple years after publication of this result, Holmström followed with a signif-
icant strengthening of the theorem. He discovered the result still holds even if we
consider significant restrictions on agent valuation functions. One may have thought
that the uniqueness of the Groves class rested on the possibility of some bizarre utility
function that would never be encountered in the real world. Holmström showed this
is not the case.

Definition 2.22 (smoothly connected type space). A type space Θi is smoothly
connected if and only if, for any two valuation functions vi and v′

i admitted by Θi,
one can be differentiably deformed into the other.

Theorem 2.5 ([Holmstrom, 1979]). For any smoothly connected type space, a
direct mechanism (f, T ) is truthful and efficient in dominant strategies if and only if
it is a Groves mechanism.

These remarkable results are especially important because—like the revelation
principle—they allow us to significantly narrow our focus in searching for mechanisms
that meet certain criteria, e.g., individual rationality and budget properties. Taking
dominant strategy implementation of efficient outcomes as a hard constraint, our
freedom is thus limited to defining the agent-independent charge function hi for each
agent i.

It seems that essentially every type space encountered in practice is smoothly
connected. Smoothly connected spaces include, for instance, those found in typical
allocation problems where agents can have any real-number valuation for any bun-
dle of goods. As Holmström [1979] notes, this result shows that “for all practical
purposes” one must be content with the Groves class.

We will now see that there is a difficulty in simultaneously achieving the efficiency,
individual rationality, and budget properties we want. But it will be a temporary

18I.e., where each agent’s value function is an arbitrary mapping from outcomes to real numbers.
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roadblock, as in this case there will be another reasonable assumption under which
positive results become possible.

2.3.2 Tension between efficiency, IR, and budget-balance

Myerson & Satterthwaite [1983] showed that even if we weaken our solution con-
cept to Bayes-Nash equilibrium, it is impossible to specify a mechanism that meets
the typically desired efficiency, participation, and budget properties.19

Theorem 2.6 (Myerson-Satterthwaite). For an unrestricted type space, there
exists no mechanism that is truthful and efficient in Bayes-Nash equilibrium, interim
individual rational, and no-deficit.

As in the case of the Gibbard-Satterthwaite theorem, just when things seem to
be getting off the ground we are faced with a very negative result. But, again, we
will find that the theorem’s sweep can be evaded by specifying (or “observing”) a
restriction on agent valuation functions that applies in many important domains.
The following condition states that each agent’s value for the outcome that would be
optimal if his interests were deemed irrelevant is non-negative. For any θ ∈ Θ and
i ∈ I, recall that f ∗(θ−i) = arg maxo∈O v−i(θ−i, o), i.e., f ∗(θ−i) denotes the outcome
(from complete outcome set O) selected by a choice function that is efficient when i
is ignored.

Definition 2.23 (no negative externalities). The no negative externalities prop-
erty holds when, ∀i ∈ I, θ ∈ Θ, vi(θi, f

∗(θ−i)) ≥ 0.

A sufficient (but not necessary) condition for this property to hold is that each
agent’s value for every outcome is non-negative (no outcomes “hurt”). Note that this
condition does not necessarily hold in, e.g., exchange settings in which an agent i
brings goods that he owns to the mechanism; it may (and in fact probably will) be
the case that allocating i’s goods to other agents is optimal for those other agents,
though it certainly leaves i worse off.

2.3.3 The VCG mechanism

The VCG mechanism (named for Vickrey [1961], Clarke [1971], and Groves [1973])
is the most famous mechanism in the Groves class, and for good reason. We will see
that with only the above assumption it achieves strategyproofness, efficiency, ex post
individual rationality, and no-deficit simultaneously, and that there is a sense in which
it is unique in this achievement. VCG selects an efficient outcome according to agent

19Hurwicz [1975] earlier showed the same thing for dominant strategy implementation; the
Myerson-Satterthwaite theorem thus strengthens Hurwicz’ theorem.
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reports, pays each agent the Groves payment, and charges each agent i the value the
other agents could have achieved if i’s interests were disregarded.20

Definition 2.24 (VCG mechanism). The VCG mechanism is a direct mecha-
nism (f ∗, T ) where, ∀i ∈ I and θ ∈ Θ:

Ti(θ) = v−i(θ−i, f
∗(θ)) − v−i(θ−i, f

∗(θ−i)) (2.20)

Theorem 2.7. The VCG mechanism is truthful and efficient in dominant strategies.

Proof. The theorem follows immediately from the fact that Groves mechanisms are
truthful and efficient in dominant strategies, combined with the observation that VCG
is a Groves mechanism. VCG is in the Groves class since each agent i’s charge term,
v−i(θ−i, f

∗(θ−i)), is independent of his reported type.

Agent utilities under VCG have an intuitively appealing property: each agent
obtains (in equilibrium) utility equal to his marginal contribution to social welfare.
So, for instance, in a problem in which the center seeks to allocate a single item
efficiently, if agent i has the highest value, 10, and the second-highest value is 8,
agent i will have contributed value 2 to social welfare and this will be his net utility
under VCG.

Theorem 2.8. The VCG mechanism is ex post individual rational when the no neg-
ative externalities property holds.

Proof. Consider any agent i that reports his true type θi, and let θ−i denote any
reported type profile for agents other than i. Under VCG i’s utility will equal:

vi(θi, f
∗(θ)) + v−i(θ−i, f

∗(θ)) − v−i(θ−i, f
∗(θ−i)) (2.21)

By the no negative externalities property vi(θi, f
∗(θ−i)) ≥ 0, so we have that the

above is

≥ vi(θi, f
∗(θi)) + v−i(θ−i, f

∗(θ)) − v−i(θ−i, f
∗(θ−i)) − vi(θi, f

∗(θ−i)) (2.22)

= v(θ, f ∗(θ)) − v(θ, f ∗(θ−i)) (2.23)

≥ 0 (2.24)

20The reader should note that this definition is somewhat non-standard. The typical definition
would charge i the value other agents could have achieved if i were not present in the system. The
distinction is that certain outcomes in O are not available without i (for instance, if i has brought
goods to sell to other agents). Defining the mechanism this way will allow us to make a minimal
number of assumptions (just 1) in order to obtain the budget and participation properties we seek.
When the space of possible outcomes is independent of the agent population, the two definitions
coincide.
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The final inequality holds because f ∗ is efficient. This shows that i’s expected
utility is non-negative, which is exactly the condition for individual rationality. Since
we selected θ arbitrarily, the property holds ex post.

Theorem 2.9. The VCG mechanism is no-deficit.

Proof. Consider arbitrary reported type profile θ. By definition of f ∗(θ−i):

∀i ∈ I, v−i(θ−i, f
∗(θ−i)) ≥ v−i(θ−i, f

∗(θ)) (2.25)

From this it follows that:

∑

i∈I

(

v−i(θ−i, f
∗(θ−i)) − v−i(θ−i, f

∗(θ))
)

≥ 0 (2.26)

This expression is exactly the revenue under VCG.

So VCG is truthful, efficient, and ex post IR, and also meets the basic criterion
of no-deficit, which is absolutely essential to feasibility of a mechanism when there is
no external budget. But in fact we can say more about its budgetary properties: I
will now provide a proof that the VCG mechanism is revenue maximizing:21

Definition 2.25 (revenue maximizing). Given a specified type space Θ, a mecha-
nism (f, T ) is revenue maximizing in mechanism space M if and only if (f, T ) ∈ M
and, ∀θ ∈ Θ, there is no mechanism (f ′, T ′) ∈ M such that T ′(θ) < T (θ).

I will use the term “0-value admitting” to refer to a type space in which ∀i ∈
I, ∃θi ∈ Θi s.t. vi(θi, o) = 0, ∀o ∈ O. For instance, a single-item allocation domain
is 0-value admitting if it is not known a priori that all agents have strictly positive
value for the item.

Theorem 2.10. For any smoothly connected 0-value admitting type space, the VCG
mechanism is revenue maximizing among all mechanisms that are truthful and effi-
cient in dominant strategies and ex post individual rational.

Proof. By Theorem 2.4, we know the revenue maximizing mechanism with these
properties is a Groves mechanism. Consider any Groves mechanism (f ∗, T ) such
that, for some θ ∈ Θ, revenue is greater than under VCG. Then for some i ∈ I:

Ti(θ) = v−i(θ−i, f
∗(θ)) − hi(θ−i) (2.27)

< v−i(θ−i, f
∗(θ)) − v−i(θ−i, f

∗(θ−i)) (2.28)

21Krishna & Perry [1998] demonstrate that VCG maximizes expected revenue in an incomplete
information context among all efficient, IC, and IR mechanisms; the result bears some relationship
to the “optimal auction” results of [Myerson, 1981], though Krishna & Perry’s restriction to efficient
mechanisms allows them to achieve results for multi-dimensional types. I show here that VCG
maximizes revenue for any type profile when dominant strategy truthfulness, efficiency, and ex post
IR are required.
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This implies that:

hi(θ−i) > v−i(θ−i, f
∗(θ−i)) (2.29)

But consider a θi such that f ∗(θi, θ−i) = f ∗(θ−i) and vi(θi, f
∗(θi, θ−i)) = 0 (for

instance, if vi(θi, o) = 0 for all o ∈ O this will hold). Then when the true type profile
is (θi, θ−i),

ui(θi, f
∗(θi, θ−i), Ti(θi, θ−i)) (2.30)

= vi(θi, f
∗(θi, θ−i)) + v−i(θ−i, f

∗(θi, θ−i)) − hi(θi, θ−i) (2.31)

= v−i(θ−i, f
∗(θi, θ−i)) − hi(θi, θ−i) (2.32)

= v−i(θ−i, f
∗(θ−i)) − hi(θi, θ−i) (2.33)

< v−i(θ−i, f
∗(θ−i)) − v−i(θ−i, f

∗(θ−i)) = 0 (2.34)

Thus the mechanism is not ex post individual rational, and the theorem follows.

Note that since VCG is revenue maximizing for any smoothly connected valuations
domain (as long as it admits a valuation of 0 by each agent for each outcome), it is
revenue maximizing regardless of whether the domain has the no negative externalities
property or some other property that yields ex post IR. So when revenue is the goal,
within the context of an efficient and IR mechanism VCG is the best one can do.
But revenue is not always a good thing; in particular, from the perspective of the
agents payments made to the center simply detract from their welfare. Trying to
minimize revenue rather than maximize it is the topic of the next chapter. But here
in this section on VCG I’ll just give mention of one of the results we’ll see there:
if we don’t make further assumptions about agent valuation functions, VCG is also
revenue minimizing among dominant strategy truthful, efficient, ex post individual
rational, and no-deficit mechanisms.

2.4 Strong budget balance

2.4.1 Tension between efficiency and budget-balance

Recall that the primary role of payments in mechanism design is often not to
shuffle money to or from the center; rather it is to align incentives. In fact in certain
cases any net transfer of money from the center to the agents will be considered
unacceptable (no-deficit is required), as will transfers from agents to the center. That
is, strong budget balance is required. Unfortunately if we want dominant strategy
implementation of an efficient choice function, then strong budget balance is not
possible in general.
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Theorem 2.11 ([Green and Laffont, 1979]). For an unrestricted type space, there
exists no strongly budget balanced mechanism that implements an efficient choice func-
tion in dominant strategies.

2.4.2 The AGV mechanism

In light of Theorem 2.11, in a scenario in which strong budget balance is required
we must weaken the implementation solution concept. If we consider Bayes-Nash
implementation there is a strongly budget balanced mechanism, though it is only
ex ante individual rational and requires the existence of a common prior over agent
types. The AGV mechanism of Arrow [1979] and d’Aspremont & Gerard-Varet [1979]

chooses an efficient outcome according to agent reports, and pays each agent the
“expected externality” he imposes on other agents, minus a constant. To describe
the mechanism we will use notation “ESW−i(θi)” for the expected welfare that results
for the other agents when agent i reports type θi, given the common prior beliefs about
other agents’ types b(θ−i).

Definition 2.26 (AGV mechanism). The AGV mechanism is a direct mecha-
nism (f ∗, T ) where, ∀i ∈ I and θ ∈ Θ, given common prior beliefs b(θ−i) about the
types of agents other than i:

Ti(θ) = ESW−i(θi) −
1

n − 1

∑

j∈I\{i}

ESW−j(θj), where (2.35)

∀i ∈ I, θi ∈ Θi, ESW−i(θi) = Eb(θ−i)[v−i(θ̃−i, f
∗(θi, θ̃−i))] (2.36)

The “payment” term in each agent’s transfer plays the same role as the Groves
payment in a Groves mechanism; the difference is that here it is the expected welfare
the other agents will obtain, given a type report for a particular agent. Then the
“charge” term is defined in a way that exactly balances the budget.

Theorem 2.12. The AGV mechanism is truthful and efficient in Bayes-Nash equi-
librium, ex ante individual rational, and strongly budget balanced.

I will now go through the workings of AGV on a simple example. Imagine a
single-item allocation scenario in which there are 3 agents: 1, 2, and 3, and there are
three possible values that each agent may have for the item: 0, 10, and 20. The prior
distribution over values for each agent is represented in Table 2.5.

Now assume that types are ultimately realized in the following fashion: agent 1’s
value for the item is 10, agent 2’s is also 10, and agent 3’s is 20. The AGV mechanism
will allocate the item to agent 3, and then make payments. In order to construct those
payments we must compute ESW−i(θi) for each i. For simplicity here, assume that
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0 10 20

P (v1 = ·) 0 .2 .8

P (v2 = ·) 0 .8 .2

P (v3 = ·) .8 .1 .1

Table 2.5: Tabular representation of the distribution over possible values for the item,
for each agent. Agent 1’s value for the item is 10 with probability .2 and 20 with
probability .8, etc.

the choice function breaks ties in favor of agent 1 over agents 2 and 3, and agent 2
over agent 3. In the truthful equilibrium we have:

ESW−1(θ1) = (0.2 · 1 · 20) + (0.1 · 0.8 · 20) = 5.6 (2.37)

ESW−2(θ2) = (0.2 · 0.9 · 10 + 0.8 · 1 · 20) + (0.1 · 0.2 · 20) = 18.2 (2.38)

ESW−3(θ3) = (0.8 · 1 · 20) + (0.2 · 0.2 · 20) = 16.8 (2.39)

We can then compute payments. Each agent’s value for the outcome, transfer pay-
ment, and ultimate utility (the sum of these two things) is presented in Table 2.6.
Note that the transfers sum exactly to 0 (and would regardless of what types the
agents reported).

vi Ti ui

Agent 1 0 5.6 − 1
2
· (18.2 + 16.8) = −11.9 −11.9

Agent 2 0 18.2 − 1
2
· (5.6 + 16.8) = 7 7

Agent 3 20 16.8 − 1
2
· (5.6 + 18.2) = 4.9 24.9

Table 2.6: Tabular representation of each agent’s value for the outcome, transfer
payment received, and total utility in the truthtelling Bayes-Nash equilibrium.

This example illustrates how things can go wrong in the AGV mechanism. The
payment scheme is set up such that, in expectation, each agent will be better (or
at least as well) off playing than not playing. But in practice agents can end up
quite worse off, as is the case with agent 1 in the example (so the mechanism is not
ex post IR). Agent 1 is charged a large quantity because, in expectation, he will
receive the item and derive significant value from it. This charge must be the same
regardless of the ultimate realization of his true type (for incentive compatibility) and
thus can’t be adjusted when things vary from what was expected. Note also that if
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agent 1 had prior beliefs that did not correspond to the “common prior” he could
potentially gain. For instance if he was confident that agent 3’s value would be 20,
he could have reported value 0 and received a larger payment (so the mechanism is
not strategyproof).



Chapter 3

Redistribution mechanisms

Synopsis∗

This thesis is motivated by the goal of implementing decision-making procedures that
have good social welfare properties. The starting point of this chapter is the obser-
vation that in many scenarios payments agents are required to make in a mechanism
detract from social welfare by transferring value out of the agents’ hands. I propose
a new mechanism that, in allocation environments and others, allows the agents to
retain the vast majority of value obtained from the chosen outcome. This is in stark
contrast to the ubiquitous VCG mechanism, which in the same environments often
requires that the majority of value is payed to the center.

3.1 Motivation and background

In the previous chapter we saw that mechanism design obtains social-welfare max-
imizing equilibrium outcomes via the execution of specific transfer payments. The
right transfer payments align the interests of agents towards social welfare maximiza-
tion, so they participate truthfully in order to enable the center to choose the efficient
outcome. We saw that the Groves class of mechanisms fully characterizes the set of
mechanisms that yield efficient outcomes in dominant strategies (the strongest of our
solution concepts).

The VCG mechanism—an instance of the Groves class—has particularly nice prop-
erties in addition to efficiency; in many domains it is both ex post individual rational
(IR) (guaranteeing agents won’t be worse off from participating) and no-deficit (never
requiring an external budget for implementation). On top of that it yields the most
revenue possible for a mechanism that is ex post IR and efficient in dominant strate-

∗Many of the results in this chapter first appeared in a paper titled “Optimal Decision-making
with Minimal Waste: Strategyproof Redistribution of VCG Payments”, which appeared in the
proceedings of the AAMAS 2006 conference [Cavallo, 2006b].

35
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gies. For these reasons VCG is by far the most famous and well-regarded mechanism
there is.

The impetus for the work in this chapter is that the revenue properties of VCG,
though in some cases sought after, are in many other circumstances a very bad thing.
How can this be? Well, first we must think about exactly what it means for a
mechanism to have high revenue. Sometimes it’s clear: if I own a house and decide to
auction it off via the VCG mechanism (a Vickrey auction in this simple setting), the
payments that agents (bidders for the house) must make will come to me in exchange
for the house. Revenue, for me, would be quite a good thing—the more the merrier.

But consider a somewhat different scenario: what if it there are 3 brothers whose
parents have moved south to Florida from New York City and decided to leave the
family home to their sons? Each son is given an equal “share” by the parents, but the
house is only big enough for one son and his immediate family. How are the brothers
to decide who should get to live in the house? Well, there are many factors that could
come in to play, but for our purposes let’s just assume they decide (or their parents
decide) that the son who would derive the most value from the house should get it.
We know that the VCG mechanism would accomplish this goal, but it would require
the son with the highest value for the house to pay the second-highest value for it.
And to whom? Not to one of the brothers, but to a “center” that is external to the
group. If the top two values are close to each other, practically none of the value from
obtaining the house will be kept within the group of brothers. VCG doesn’t look so
good here.

One can easily think of other examples: government allocation of usage time
on a publicly owned and high-priced piece of technology like a space telescope or
supercomputer—the mandate is to “increase the public welfare”, not to extract that
welfare out of the hands of citizens; a municipality’s choice of which neighborhood
to build a public park in; a group of housemates or friends that jointly own an
automobile and must decide who gets to use it on a given Friday night. This last
example is portrayed in Figure 3.1, with the 4 friends’ values for the car equal to
10, 8, 6, and 4. Scenarios like this are common—the center is present merely for
organizational purposes, or is not present at all. The revenue that VCG generates is
not desirable from anyone’s perspective; it is merely a “cost of implementation” or,
put another way, waste.

The ideal mechanism for this kind of scenario would have the desirable properties
of VCG (truthfulness and efficiency in dominant strategies, ex post IR), and at the
same time run neither a budget surplus nor deficit. As we will see, this exact budget-
balance is not attainable. However, while it has previously been claimed that no
improvement over VCG is possible (see, e.g., [Ephrati and Rosenschein, 1991]), I
demonstrate here that this is not the case in a broad class of domains (e.g., allocation
problems) where valuations have some basic structure. Short of strong budget balance
we will take as our goal finding a mechanism that minimizes the payments that agents
must make to the center. I cast this task as “redistribution” of revenue under VCG,
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Figure 3.1: Which friend gets to use the jointly-owned car on Friday night?

which is a testament to the central place that VCG enjoys in the mechanism design
pantheon.

To preview the results: I will show that in the case of unrestricted type spaces
(i.e., when an agent’s valuation vi is an arbitrary mapping from outcomes to real
values) none of the VCG revenue can be redistributed, i.e., VCG is simultaneously
revenue maximizing and minimizing among efficient mechanisms. But that’s just
the beginning of the story. In fact it is quite rare in the real world that agent
valuations have no structure. For instance consider the example in which researchers
are competing for a time-slot to make observations with a government-owned space
telescope—it is reasonable to assume that the researcher that is allocated usage of
the telescope may obtain some value, but that the losers obtain 0 value. It turns
out that this assumption alone will allows us to implement a mechanism that does
vastly better than VCG in terms of net utility to the agents; in fact, as the number
of agents participating in the mechanism grows, we will be able to come arbitrarily
close to perfect budget balance regardless of the agents’ valuations.

I will provide an exact characterization of when it is possible to improve on VCG
(i.e., I will specify the property that agent type spaces must have), and will propose
redistribution mechanism RM, which is applicable to arbitrary decision problems.
Intuitively, the mechanism implements VCG and then returns a “redistribution pay-
ment” that is proportional to the guarantee on revenue that would result under VCG
independent of the agent’s type report. This mechanism maintains all of VCG’s good
properties and increases social welfare (decreases payments agents must make). More-
over, we will see that there is a sense in which the mechanism is optimal. When a
strong fairness constraint is imposed, it redistributes the most revenue back to the
agents that is possible—for every set of agent valuations—without violating the strong
efficiency, IR, and no-deficit properties.

After showing that no improvement over VCG is possible in the unrestricted values
setting, I will start by presenting the redistribution mechanism in the special setting of
“all-or-nothing” (AON) domains, those in which each outcome yields non-zero reward
for just a single agent (every agent gets either all the reward or none). This class of
domains is a generalization of the single-item allocation domain, and all the examples
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I’ve mentioned so far are AON examples. Here the redistribution mechanism has a
particularly simple and elegant form, and the most redistribution is possible. I will
then specify the mechanism for the general case (i.e., in a form applicable to arbitrary
type spaces). I’ll present the results of some numerical simulations demonstrating the
success of the mechanism, and will discuss implementation of the mechanism when
there is no center present who can coordinate decisions and payments.

3.1.1 Related work

Work in the area of designing budget-balanced mechanisms is relatively scarce;
one contributing explanation for that fact is the negative result I’ll present in the next
section: it is impossible to get closer to budget balance than VCG in unrestricted
values settings. The positive results in this chapter are due to observations about
domains in which valuations naturally have some structure; the fact that structure
makes redistribution possible is by no means an obvious insight.

Bailey [1997] is one who partially pursued this path, and should be credited (as far
as I know) as the first to propose a dominant strategy efficient revenue redistributing
mechanism. His approach is, essentially, to consider the revenue that would result
if each agent were not present in the mechanism. This yields success in single-item
allocation settings—where his mechanism and the one I propose in fact coincide—but
is not generally applicable when no-deficit is taken as a hard constraint. Different
from my approach is that Bailey focuses his analysis on achieving zero expected rev-
enue, forfeiting the no-deficit guarantee. Porter et al. [2004] later also provide this
mechanism for the basic single-unit allocation case, but cast it from a cost minimiza-
tion rather than value maximization perspective, imagining the “imposition” of an
undesirable task on subordinate agents (e.g., employees) that have private knowledge
of their costs for completing the task.

Other work in striving for budget balance without exploiting structure in type
spaces has—necessarily—sacrificed at least one of the following: dominant strategy
implementation, ex post individual rationality, or no-deficit. In the previous chapter
we saw one proposal for achieving strong budget-balance: the AGV mechanism [Ar-
row, 1979; D’Aspermont and Gerard-Varet, 1979]. AGV selects the efficient outcome
according to reported types, but determines transfer payments based on a model of
agent valuations that the center maintains. This mechanism is interesting in that it al-
ways leads to strong budget-balance; however, it is implementable only in Bayes-Nash
(rather than dominant strategy) equilibrium, and if the center’s model is produced
via iterative execution, serious problems regarding incentive compatibility could arise.
Moreover, AGV is only ex ante IR—instances in which an agent is worse off for par-
ticipating are possible.

Parkes et al. [2001] describe a payment rule that approximates VCG and achieves
strong budget-balance in exchange settings where VCG runs a deficit, though truth-
fulness (and thus efficiency) is sacrificed; the mechanism seeks to minimize the in-
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centive to deviate subject to strong budget balance. Faltings [2004] formulates the
problem more closely to the way I do here, though his approach also attains strong
budget-balance at the expense of efficiency. His mechanism chooses the outcome that
is social-welfare maximizing among a subset of agents, and distributes the VCG rev-
enue among agents that are not part of that subset. In a similar vein, Feigenbaum
et al. [2001] analyze the Shapley-value mechanism for sharing multicast transmis-
sion costs, which comes closest to the efficient outcome among all budget-balanced
mechanisms for that domain, though their results suggest its implementation is com-
putationally intractable.

My approach is significantly different than these—I characterize the extent to
which budget-balance can be approximated in dominant strategies, without sacrific-
ing ex post individual rationality, efficiency, or no-deficit guarantees at all. Since
publication of the main results of this chapter ([Cavallo, 2006b]), Guo & Conitzer
have extended the theory for the specific setting of multi-unit auction settings in
a series of papers [2007; 2008a; 2008b; 2008c]. Notably, [Guo and Conitzer, 2007]

is a worst-case analysis (without imposing the fairness constraint introduced in this
chapter); the mechanism derived is essentially identical to one independently derived
by Moulin [2007]. [Guo and Conitzer, 2008a] (related to [Faltings, 2004]) looks to
make gains for agent welfare by considering inefficient outcomes. [Guo and Conitzer,
2008b] considers redistribution that leverages a prior distribution over agent valu-
ations. [Guo and Conitzer, 2008c] provides a technique for taking a redistribution
mechanism such as the one I propose here, and through an iterative process squeez-
ing out more redistribution from the residual revenue left by the original mechanism.
Finally, Hartline & Roughgarden [2008] do mechanism design for settings in which
payments are impossible, but where money can be burned; there too the goal is to
minimize value not retained within the group of agents.

3.2 Uniqueness of VCG

In the last chapter we saw that the VCG mechanism is truthful and efficient in
dominant strategies, is ex post individual rational when the no negative externali-
ties condition holds, and is no-deficit. Moreover, it is revenue maximizing among
all mechanisms with these properties. Thus from the perspective of social-welfare
maximization that I take in this chapter and more generally in this thesis, the VCG
mechanism is the worst among all mechanisms with these good properties. It is natu-
ral to ask if we can do better, and the first answer is negative. Consider the following
property a type space might satisfy:

Definition 3.1 (potential for universal relevance nullification (PURN)). A
type space Θ has the PURN property if and only if, ∀i ∈ I and θ−i ∈ Θ−i, there exists
a θi ∈ Θi such that ∀j ∈ I (including i), f ∗(θ) = f ∗(θ−j).
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This is a “broadness” condition on a type space, the opposite of a restriction. In
a domain that satisfies the PURN property, for any agent i and any profile of reports
for the other agents, i could always potentially report a value that renders null the
influence on the outcome of any single agent’s report alone, even his own. This is a
property that often will not hold, and as we will see, it is exactly in those settings
where redistribution is possible. But in this section I present a strong negative result
for type spaces in which there is not enough structure to preclude the PURN property.

Definition 3.2 (revenue minimizing). Given a specified type space Θ, a mecha-
nism (f, T ) is revenue minimizing in mechanism space M if and only if (f, T ) ∈ M
and, ∀θ ∈ Θ, there is no mechanism (f ′, T ′) ∈ M such that T ′(θ) > T (θ).

Theorem 3.1. For any smoothly connected 0-value admitting type space that satisfies
no negative externalities and PURN, the VCG mechanism is revenue minimizing
among all mechanisms that are truthful and efficient in dominant strategies, ex post
individual rational, and no-deficit.

Proof. By Theorem 2.4, we know that the revenue minimizing mechanism with these
properties is a Groves mechanism. Assume for contradiction that there is a no-deficit
Groves mechanism (f ∗, T ) such that, for some θ ∈ Θ, revenue is less than under VCG,
i.e., ∃h1, . . . , hn s.t.:

0 ≥
∑

i∈I

Ti(θ) =
∑

i∈I

(

v−i(θ−i, f
∗(θ)) − hi(θ−i)

)

(3.1)

>
∑

i∈I

(

v−i(θ−i, f
∗(θ)) − v−i(θ−i, f

∗(θ−i))
)

(3.2)

Then for some i ∈ I,

Ti(θ) = v−i(θ−i, f
∗(θ)) − hi(θ−i) (3.3)

> v−i(θ−i, f
∗(θ)) − v−i(θ−i, f

∗(θ−i)), (3.4)

which implies that:

hi(θ−i) < v−i(θ−i, f
∗(θ−i)) (3.5)

But consider a θi such that f ∗(θi, θ−i) = f ∗(θ−i) and, ∀j ∈ I \ {i}, f ∗(θi, θ−i) =
f ∗(θi, θ−i,j). Since Θ satisfies PURN we know such a θi exists. This would hold, for
instance, letting j ∈ arg maxk∈I\{i} vk(θk, f

∗(θ−i)), if vi(θi, f
∗(θ−j)) = vj(θj , f

∗(θ−i))

and vi(θi, o) = 0 for all o 6= f ∗(θ−j). We know (by Theorem 2.10) that an upper
bound on the revenue generated by f ∗, T ) is the revenue generated by VCG. For type
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profile (θi, θ−i) this revenue equals:

v−i(θ−i, f
∗(θi, θ−i)) − v−i(θ−i, f

∗(θ−i)) + (3.6)
∑

j∈I\{i}

(

v−j(θ−j, f
∗(θi, θ−i)) − v−j(θ−j , f

∗(θi, θ−i,j))
)

= 0 (3.7)

Thus if hi(θ−i) were < v−i(θ−i, f
∗(θ−i)) a deficit would result when i’s type is θi.

Then since we picked i and θ arbitrarily, hi can never be defined as less than the
charge that VCG prescribes, for any reported type profile.

Theorems 2.10 and 3.1 together yield the following:

Corollary 3.1. For any smoothly connected, 0-value admitting type space that meets
the no negative externalities and PURN conditions, VCG is the only mechanism that
is truthful and efficient in dominant strategies, ex post individual rational, and no-
deficit.

Note again that saying a type space satisfies PURN and is 0-value admitting is a
statement about the broadness of the type space. Corollary 3.1 is essentially a nega-
tive result about what is possible in mechanism design, and stating the result in a way
that applies to domains that are not completely unrestricted makes it stronger. In the
next section we will see that by restricting valuation spaces by adding assumptions,
we can sometimes design mechanisms with stronger properties than would hold for
the unrestricted case. Of course an unrestricted type space (the extreme in broad-
ness) satisfies PURN and is 0-value admitting, so we automatically get the weaker
result:

Corollary 3.2. For a type space that meets the no negative externalities condition
but is otherwise unrestricted, VCG is the only mechanism that is truthful and efficient
in dominant strategies, ex post individual rational, and no-deficit.

3.3 Restricted type spaces

The VCG mechanism has great IR and no-deficit properties and always chooses an
efficient outcome, but often requires agents to transfer much of the utility they gain
to the center. In the face of Corollary 3.1, how do we proceed? Is there anything we
can do? The answer turns out to be yes; in many real-world settings of great import
and interest, agent valuations have structure that precludes the PURN property and
can be exploited to design better mechanisms.

In general when we restrict the type space that we consider—i.e., assume agents
have fewer possible types they could report—we can get more positive results. Intu-
itively, a restriction on type spaces amounts to restrictions on the ways that agents
could potentially manipulate the system, and at the same time may exclude certain
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Θ

Θ′

MΘ′(Θ′)

MΘ(Θ′)

Figure 3.2: On the left, the solid circle represents one type space and the dashed
circle represents a restriction on that space. Intuitively, the circles on the right
can be considered the corresponding spaces of dominant strategy efficient no-deficit
mechanisms. Crucially, there may be mechanisms that become dominant strategy
efficient and no-deficit once a restriction is placed on the type space.

undesirable outcomes that could otherwise occur. Considering no-deficit and putting
things more formally, for any two type spaces Θ and Θ′ with Θ′ ⊆ Θ, let MΘ(Θ′) be
the space of all dominant strategy efficient “mechanisms on Θ′” that satisfy no-deficit,
i.e., all mappings from Θ′ to outcomes and transfers that (combined with some map-
ping for Θ \Θ′) are efficient in dominant strategies and never run a deficit given that
the true type space is Θ. MΘ′(Θ′) is weakly bigger than MΘ(Θ′).

Theorem 3.2. For all Θ, for all Θ′ ⊆ Θ, MΘ′(Θ′) ⊇ MΘ(Θ′).

Proof. Assume for contradiction existence of Θ′ ⊆ Θ with MΘ′(Θ′) ⊂ MΘ(Θ′). Con-
sider arbitrary m ∈ MΘ(Θ′) with m /∈ MΘ′(Θ′). m ∈ MΘ(Θ′) entails that ∀θ ∈ Θ,
given m, all agents i ∈ I will truthfully report θi when that is their type and a deficit
will not result. Then since Θ′ ⊆ Θ, ∀θ′ ∈ Θ′, given m, each agent i ∈ I will truth-
fully report θ′i when that is his type and no deficit will result. Thus m ∈ MΘ′(Θ′), a
contradiction.

Figure 3.2 gives a graphical portrayal of the theorem. Importantly, the mechanism
space set inclusion is strict in some cases—i.e., for some choices of Θ and Θ′, there will
be ways of computing transfers on types in Θ′ that would not be strategyproof if the
type space were Θ ⊃ Θ′. One such type of domain1 we will see in this chapter is that

1I use the term “domain” throughout to refer to a specification of a type space. E.g., a smoothly
connected valuations domain is one in which the type space is defined such that agent valuation
spaces are smoothly connected.
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v1 v2 v3 v4

o1 10 0 0 0

o2 0 8 0 0

o3 0 0 6 0

o4 0 0 0 4

Table 3.1: Example of valuations in an AON domain. All values off the main diagonal
are a priori known to be 0. Each agent may have a non-zero value only for the outcome
associated with him (e.g., in which he is allocated the item in a single-item allocation
problem).

of single-item allocation, where the decision to be made is in who gets to acquire what
goods. In these domains (and in fact in a generalization of them) there are no-deficit
mechanisms with better social-welfare properties than VCG, and these mechanisms
only become strategyproof when the type space is restricted.

3.4 Redistribution in AON Domains

We will first look at the special case of all-or-nothing (AON) domains, in which
the redistribution mechanism has a simple and elegant form.

Definition 3.3 (AON domain). A type space Θ constitutes an AON domain if and
only if, for every θ ∈ Θ and o ∈ O, a maximum of one agent i has a value vi(θi, o)
for o that is non-zero.

AON domains generalize single-item allocation problems in which an agent obtains
non-zero value only if he is allocated the item. Consider the example portrayed
in Figure 3.1, where 4 friends are deciding who gets to use the car. The friends’
valuations can be represented in tabular form as in Table 3.1.

I identify oi with the unique outcome that may yield positive value to agent i, and
use the following short-hand notation:

• Let ai denote the agent with the ith highest reported value. (So in a social
welfare-maximizing mechanism a1 is the “winning” agent—the one that receives
positive value from the selected outcome.)

• Let Vai
denote the true value of ai for the outcome he favors (i.e., vai

(θai
, oai

)).

• Let V̂ai
denote the reported value of ai for the outcome he favors.
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Using this terminology, in an AON domain VCG chooses the outcome favored by
agent a1, and a1 pays the center V̂a2

. It is a dominant strategy for each agent ai to
report Vai

= V̂ai
. The final distribution of value obtained from the outcome is as

follows:

• ua1
= Va1

− V̂a2
.

• uai
= 0, ∀i 6= 1.

• The center obtains V̂a2
.

For instance, in the car allocating example of Figure 3.1 and Table 3.1, the person
with highest value for the car obtains utility 2, the center obtains 8, and all other
agents obtain 0. This is a highly undesirable situation for the housemates who own
the car—why should they want to pay someone 80% of the value they derive from
using it?

The redistribution mechanism takes the second-highest value payment, made by
the winning agent to the center, and redistributes a large portion of it back to the
agents. This process is done in a careful way such that each agent’s “redistribution
payment” is independent of his type report. The mechanism has the following very
simple form in AON domains:2

Definition 3.4 (Redistribution mechanism RM for AON domains). The
efficient outcome (i.e., the outcome preferred by agent a1) is chosen, and the fol-
lowing transfers are executed:

1. The winning agent a1 pays the center an amount equal to the second highest
bid (V̂a2

).

2. The center pays the winner and the second highest bidder an amount equal
to the third highest bid divided by the number of agents (V̂a3

/n), and pays all
other agents the second highest bid divided by the number of agents (V̂a2

/n).

I will use notation Zi to denote the redistribution payment made to agent i under
RM.

Theorem 3.3. RM for AON domains is truthful and efficient in dominant strategies.

2Again, this mechanism coincides with Bailey’s [1997] in this domain; in other domains it does
not, but I present the AON case first to build intuition since it is simplest.
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Proof. By Theorem 2.3, to prove the theorem it is sufficient to demonstrate that
RM is a Groves mechanism. RM is identical to VCG (which is a Groves mechanism)
modified by the addition of redistribution payments (step 2, above); so to show that
RM is a Groves mechanism it is sufficient to show that each agent’s redistribution
payment is independent of his type report.

But observe that each agent i’s redistribution payment Zi can be described as the
second highest reported value amongst the other agents, divided by n. In the case of
the first and second highest bidders this will equal the third highest bid divided by
n, and for all other bidders this will equal the second highest divided by n.

No agent can influence his redistribution payment because it is defined as a func-
tion of only the other agents’ reported values. To possibly reach more clarity on this,
we can consider each agent’s scenario in turn. Letting ak below refer to the agent
with the kth highest bid under truthful reporting, we have:

Agent a1 receives redistribution payment V̂a3
/n. Over-reporting V̂a1

changes noth-
ing. Under-reporting could put a1 in the second or third position (beyond the third
it’s obvious that nothing could change). In the second position, he would still receive
V̂a3

/n. In the third he would receive V̂a3
/n as well, since the second position would

then be held by the actual a3.
Agent a2 receives redistribution payment V̂a3

/n. Over-reporting could move him
to the first position, in which case his payment would be the same. Under-reporting
could put him in the third position or beyond, but then the second position would
be held by the actual a3, so a2’s payoff would be the same.

Agent a3 receives redistribution payment V̂a2
/n. Under-reporting changes noth-

ing. Over-reporting could put him in the first or second position. In both cases he
receives the same Z payment, since the third position would then be held by the
actual a2. The same holds for all aj>3.

Theorem 3.4. RM for AON domains is ex post individual rational and no-deficit.

Proof. Ex post individual rationality follows trivially from the fact that VCG has that
property (in an AON domain the no negative externalities condition is satisfied), since
RM modifies VCG only by paying the agents an additional sum. No-deficit is also
almost immediate: total revenue obtained by the center equals:

V̂a2
−

∑

i∈I

Zi (3.8)

= V̂a2
−

(n − 2

n
· V̂a2

+
2

n
· V̂a3

)

(3.9)

≥ V̂a2
− V̂a2

= 0 (3.10)
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Theorem 3.5. Assuming a finite bound on the value of each agent for each outcome,
as the number of participating agents n goes to ∞ the amount of extracted wealth
that cannot be redistributed among the agents under RM goes to 0. That is, RM is
asymptotically strongly budget-balanced for AON domains.

Proof. Again we can look at the total revenue in a scenario with n agents:

V̂a2
−

∑

i∈I

Zi

= V̂a2
−

n − 2

n
· V̂a2

−
2

n
· V̂a3

=
2

n
· (V̂a2

− V̂a3
)

As n goes to ∞ this quantity is arbitrarily close to 0, regardless of the value of Va2
.

As n increases, we may expect the payments to the center to be pushed down
by a convergence of Va2

and Va3
, but regardless of this RM achieves perfect budget

balance in the limit. VCG will always lose V̂a2
, no matter the number of agents.

Consider once more the example illustrated in Table 1. The following payoffs are
obtained under RM:

u1 = 10 − 8 +
5

4
=

13

4
, u2 =

5

4
, u3 =

8

4
, u4 =

8

4

payments to center = 8 −
(5

4
+

5

4
+

8

4
+

8

4

)

=
3

2

Even in this example with just 4 agents, the vast majority (81%) of the VCG revenue
has been redistributed. If Va3

were 8 rather than 5, 100% would be redistributed.

3.5 Redistribution in the general case

In this section I will present the redistribution mechanism in its general form. It
is applicable to any domain and is, in a sense, “parameterized” by the type space that
defines the domain. It redistributes a portion of the VCG revenue for any instance
in which doing so is possible without distorting the incentives of the agents. The
intuition is as follows: for each agent we can compute a guarantee—independent of
that agent’s report—on the revenue that would result under VCG. This quantity
represents an upper bound on the amount that can be redistributed to that agent
without violating no-deficit or strategyproofness, and, as we will see, also an indication
that we can definitely redistribute some revenue (again without violating no-deficit
or strategyproofness). In other words: our ability to redistribute VCG revenue to an
agent is directly tied to the extent to which we can know revenue will exist independent
of that agent’s reported type.
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Definition 3.5 (revenue-guarantee Gi(Θi, θ−i)). The lower-bound on VCG revenue
that would result, computed over all possible reported types θi ∈ Θi for agent i, given
the type profile θ−i reported by the other agents, i.e.,

Gi(Θi, θ−i) = min
θi∈Θi

∑

j∈I

[

v−j(θ−j , f
∗(θ−j)) − v−j(θ−j, f

∗(θ))
]

(3.11)

Breaking down equation (3.11), within brackets is an expression representing agent
j’s payment to the center under VCG, given reported type profile θ. Computing this
quantity for each j (including i) and summing them all together, we get the complete
revenue under VCG. In the equation θi is chosen to minimize this quantity; thus Gi

represents the minimum level of revenue we can guarantee will occur independent of
what type agent i ultimately reports.

It will also be useful in what follows to consider the revenue-minimizing report
that an agent i could make, given the reports of other agents, i.e.,

θi = arg min
θi∈Θi

∑

j∈I

[

v−j(θ−j , f
∗(θ−j)) − v−j(θ−j , f

∗(θ))
]

(3.12)

θi is determined by the context of reported type profile θ−i and type space Θi, but
those will be clear whenever I refer to θi.

I will use the term “redistribution mechanism” to refer to any mechanism that
executes the payments of VCG modified by some redistribution term. Let ZT

i : Θ → ℜ
denote a redistribution payment function for i (which is a part of the overall transfer
function Ti). I now show that in any redistribution mechanism (f ∗, T ) an agent’s
revenue-guarantee is an upper bound on his redistribution payment ZT

i .

Lemma 3.1. For any smoothly connected type space Θ, in any redistribution mecha-
nism (f ∗, T ) that is truthful and efficient in dominant strategies and no-deficit: ∀i ∈ I
and θ ∈ Θ, ZT

i (θ) ≤ Gi(Θi, θ−i).

Proof. Assume otherwise, i.e., define Ti for some i ∈ I such that:

Ti(θ) > v−i(θ−i, f
∗(θ)) − v−i(θ−i, f

∗(θ−i)) + Gi(Θi, θ−i), (3.13)

Then if i reports θi and other agents report θ−i a deficit will result, by definition of
Gi.

But Gi provides both a constraint on the amount we can redistribute and a pointer
towards creating a mechanism that does redistribute significant portions of revenue.

Lemma 3.2. There exists a mechanism (f ∗, T ) that is truthful and efficient in domi-
nant strategies, ex post individual rational when the no negative externalities property
holds, no-deficit, and—for any type space Θ and reported type profile θ ∈ Θ—yields
social-welfare at least as great as VCG plus mini∈I Gi(Θi, θ−i).
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Proof. Consider a mechanism (f ∗, T ) that picks an agent i arbitrarily (but indepen-
dent of reported types) and defines:

Ti(θ) = v−i(θ−i, f
∗(θ)) − v−i(θ−i, f

∗(θ−i)) + Gi(Θi, θ−i), and (3.14)

Tj(θ) = v−i(θ−i, f
∗(θ)) − v−i(θ−i, f

∗(θ−i)), ∀j ∈ I \ {i} (3.15)

This mechanism is a Groves mechanism: it is equivalent to VCG for all agents but
i, and for i it is VCG plus an extra redistribution payment that is independent of his
report; thus it is truthful and efficient in dominant strategies. It is ex post individual
rational since VCG is (every agent is weakly better off under this mechanism, for every
type profile), and it is no-deficit since Gi(Θi, θ−i) is by definition less than the revenue
that VCG generates on θ. Finally it yields social welfare at least mini∈I Gi(Θi, θ−i)
better than VCG since, no matter what agent i is selected randomly, Gi(Θi, θ−i) ≥
minj∈I Gj(Θj , θ−j).

The mechanism specified in the proof of Lemma 3.2 succeeds in redistributing
some revenue, but note that it fails to meet an anonymity property: agents that have
the same type space and report the same value may obtain different utilities, since
only one will be randomly chosen to receive the redistribution payment. Anonymity
properties are motivated by fairness concerns—the idea is that agents may not be
satisfied if they are treated “unequally” without compelling reasons.

Here I introduce an anonymity notion that derives relevance from the context of
redistribution mechanisms and the fact that they are possible based on computations
of revenue-guarantee quantities for each agent. It is formulated to exclude situations
in which agents have the same revenue-guarantee but receive different redistribution
payments.

Definition 3.6 (redistribution-anonymity). A redistribution mechanism (f, T ) is
redistribution-anonymous if and only if it maps agent-specific revenue-guarantees (Gi)
to redistribution payments (ZT

i ) according to a single deterministic function that is
invariant to domain information that does not apply identically to every agent, i.e.,
if for any i, j ∈ I, for any Θi and Θj, ∀θi ∈ Θi and θj ∈ Θj:

Gi(Θi, θ−i) = Gj(Θj, θ−j) ⇒ ZT
i (θ) = ZT

j (θ) (3.16)

In a redistribution-anonymous mechanism, whenever two agents have the same
revenue-guarantee they receive the same redistribution payment. In fact, two agents
participating in two different instances of the mechanism run with different agent
type spaces must receive the same redistribution payment if their revenue guarantees
are the same. It turns out we can do better than the bound of the mechanism in
Lemma 3.2 and satisfy redistribution-anonymity. I now present the main results of
the chapter: I define the full version of the redistribution mechanism; I show that
it has all the good properties of VCG, yields significantly greater social-welfare in
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many domains, and is redistribution-anonymous; I show that among all redistribution-
anonymous mechanisms it is optimal in the strongest sense.

Definition 3.7 (Redistribution mechanism RM). RM is a direct mechanism
(f ∗, T ) where, ∀i ∈ I and θ ∈ Θ:

Ti(θ) = v−i(θ−i, f
∗(θ)) − v−i(θ−i, f

∗(θ−i)) +
Gi(Θi, θ−i)

n
(3.17)

Theorem 3.6. RM is truthful and efficient in dominant strategies, ex post individual
rational if the no negative externalities condition holds, no-deficit, and redistribution-
anonymous.

Proof. Truthfulness and efficiency in dominant strategies follows immediately from
dominant strategy truthfulness and efficiency of VCG plus the fact that Gi is inde-
pendent of i’s reported type (i.e., since RM is a Groves mechanism). Likewise ex
post individual rationality for no negative externalities domains is immediate since
VCG has the property and RM only increases agent utilities over VCG.

VCG is no-deficit (see Theorem 2.9), so to prove RM is no-deficit it is sufficient
to show that the sum of the redistribution payments is always less than the VCG
revenue. Abstracting away from notation a bit, we have that, for any reported type
profile θ, for every i,

Gi(Θi, θ−i) = min
θ′i∈Θi

VCG-revenue(θ′i, θ−i) (3.18)

≤ VCG-revenue(θ) (3.19)

Thus
∑

i∈I Gi(Θi, θ−i)/n ≤ VCG-revenue(θ), and so RM is no-deficit.
Finally, redistribution-anonymity of RM holds since the mechanism does, in fact,

map all Gi to a redistribution payment according to a single deterministic function:
division by n.

Lemma 3.1 and Theorem 3.6 taken together provide an exact characterization of
when redistribution is possible: when there is an agent i with a positive revenue-
guarantee Gi.

Theorem 3.7. For any smoothly connected type space Θ in which the no negative
externalities property holds, there exists a redistribution mechanism that is truthful
and efficient in dominant strategies, ex post individual rational, no-deficit, and redis-
tributes a positive amount of VCG revenue on some type profile if and only if ∃θ ∈ Θ
and i ∈ I such that Gi(Θi, θ−i) > 0.

Proof. First, that ∃θ ∈ Θ and i ∈ I with Gi(Θi, θ−i) > 0 is sufficient follows immedi-
ately from Theorem 3.6. On the other hand when ∀θ ∈ Θ, i ∈ I, Gi(Θi, θ−i) = 0, by
Lemma 3.1 any redistribution sacrifices no-deficit.
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3.5.1 A sense in which RM is optimal

We will now see that if redistribution-anonymity is taken as a hard constraint,
then there is no mechanism that ever redistributes more than RM while retaining
the good (and essential) properties of VCG.

Definition 3.8 (optimal redistribution mechanism). Given a specified type space
Θ, (f ∗, T ) is an optimal redistribution mechanism in redistribution mechanism space
M if and only if (f ∗, T ) ∈ M and, ∀θ ∈ Θ, no mechanism in M redistributes more
VCG revenue on θ.

This is a very strong optimality condition, requiring that no other mechanism in
the space ever redistribute more revenue ever.

Theorem 3.8. For any smoothly connected domain, RM is an optimal redistribution
mechanism among all redistribution mechanisms that are truthful and efficient in
dominant strategies, no-deficit, and redistribution-anonymous.

Proof. Let G∗(θ) denote the VCG revenue that results given a reported type profile
θ. Each agent i’s revenue-guarantee Gi(Θi, θi) = minθi∈Θi

G∗(θi, θ−i), and ∀i ∈ I,

θi ∈ arg min
θi∈Θi

G∗(θi, θ−i) (3.20)

For any profile of true agent types θ, note that there is a set of type spaces such
that θi = θi, for all i ∈ I (for instance, consider the case where each agent i’s type
space consists of just a single type, θi). For such a type space Θ′,

G(Θ′
1, θ−1) = G(Θ′

2, θ−2) = . . . = G(Θ′
n, θ−n) = G(θ)∗ (3.21)

In a redistribution-anonymous mechanism, a single deterministic function z : ℜ ⇒
ℜ maps each agent i’s revenue-guarantee Gi to a redistribution payment. So by
redistribution-anonymity of RM,

z(G(Θ′
1, θ−1)) = z(G(Θ′

2, θ−2)) = . . . = z(G(Θ′
n, θ−n)) = z(G∗(θ)) (3.22)

But then in order to satisfy the no-deficit property,

z(G∗(θ)) ≤
G∗(θ)

n
(3.23)

Since this holds for any type profile θ (and thus any possible VCG revenue
G∗(θ)), mechanism RM is an optimal redistribution mechanism given constraints
of truthfulness and efficiency in dominant strategies, ex post individual rationality,
and redistribution-anonymity.
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A few words about anonymity

Note that RM is not optimally balanced when the anonymity constraint is sig-
nificantly reduced, for instance by allowing redistributions to vary with both the
revenue-guarantee and the type space explicitly. Imagine a redistribution function
that is derived from both the revenue-guarantee and a type space. Redistribution-
anonymity requires that:

∀Gi, Θ, Θ′, z(Gi, Θ) = z(Gi, Θ
′) (3.24)

If this requirement is dropped, greater redistribution is possible. For example,
consider an AON allocation problem with type space such that:

V1 ∈ [0, 1], V2 ∈ [1, 2], V3 ∈ [1, 2]

A mechanism that redistributes the entire VCG revenue to agent 1 would not vi-
olate strategyproofness, no-deficit, or ex post IR. However, redistribution-anonymity
would be violated since, for instance, if every agent i’s type space were such that
Vi ∈ [0, 1], the mechanism could not be implemented in dominant strategy equilib-
rium.

It is also worth describing the relationship of redistribution-anonymity to a dis-
tinct fairness/anonymity constraint that is sometimes imposed in mechanism design,
which I will refer to as valuation-anonymity. Informally, valuation-anonymity holds
when the outcome and transfer functions are completely invariant to agent identity,
including individual type spaces.3 One of the things valuation-anonymity implies is
that if two agents have the same type and report truthfully they will obtain the same
expected utility. The VCG mechanism is valuation-anonymous: two agents with the
same type make the same “marginal contribution” to social welfare, regardless of iden-
tity. In a redistribution-anonymous mechanism in the case of symmetric domains4

this holds true, but the agents must also obtain the same expected utility in some
cases in which they report different types—i.e., when they contribute equally to so-
cial welfare and the computed redistribution-guarantees are the same. In asymmetric
domains redistribution-anonymous mechanisms permit different utilities for identical
types (but different type spaces), unlike valuation-anonymous mechanisms.

The relationship between the two anonymity concepts is illustrated in Figure
3.3. There are mechanisms that are redistribution-anonymous but not valuation-
anonymous, others that are valuation-anonymous but not redistribution-anonymous,

3Technically, to handle tie-breaking while achieving valuation-anonymity we would need to allow
the choice function to select an outcome randomly from a subset of outcomes that are social welfare
maximizing (should ties occur), and then let the transfer function depend on the selected outcome.
The notion of redistribution-anonymity extends naturally in the same way.

4A symmetric domain is one in which the type space is identical for each agent.
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Figure 3.3: In many type spaces the set of all redistribution-anonymous mechanisms
and the set of all valuation-anonymous mechanisms are overlapping subsets of the set
of all mechanisms; this is represented in the left box. In symmetric type spaces, the
set of all redistribution-anonymous mechanisms is a subset of the set of all valuation-
anonymous mechanisms; this is represented in the box on the right.

and still others that have both properties. In symmetric domains redistribution-
anonymity implies valuation-anonymity; thus RM is redistribution-anonymous and
valuation-anonymous when applied to symmetric domains.

There is no optimal redistribution mechanism (among those that are truthful and
efficient in dominant strategies and no-deficit) when anonymity considerations are
completely dropped. I don’t provide a proof here, but note, for instance, that a
mechanism that redistributes Gi to a randomly selected agent i and none to other
agents will in some cases redistribute more revenue than RM; however, such a mech-
anism is clearly not optimal since it may pick i with Gi < maxj Gj .

3.5.2 Redistribution in combinatorial allocation problems

We’ve been discussing redistribution in the context of general social choice or
decision-making problems. An important subclass of decision problems consists of
those in which a decision must be made about how to allocate goods amongst a
group of competing agents. The most basic allocation problem is that in which a
single item is available; this limited case (usually) falls within the AON class.5 More
generally, an allocation problem consists of a number of agents with preferences over
goods that are potentially combinatorial in nature.

5The exception is when there are externalities, e.g., when agent i is happy if his friend agent j is
allocated the item.
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Sometimes in such domains allocation mechanisms are selected to maximize rev-
enue to the seller (the center), but there are many significant cases in which it is
preferable to keep as much wealth as possible in the hands of the agents. For exam-
ple, consider the allocation of job time on a publicly owned super-computer among a
community of researchers. Resources like this are often established with the mandate
of maximizing benefit to the public good (social-welfare); if a VCG-based allocation
were implemented a revenue would result, redistribution of which would go further
toward satisfying this mandate.

In the vast majority of allocation problems, the following are generally accepted to
hold: agents that aren’t allocated anything receive no value (normalization); agents’
values monotonically increase as they receive more goods (free disposal); and agents
have no preferences over allocations to other agents (no externalities). These intrinsic
elements of the allocation domain map directly to constraints on the type space that
can allow for significant strategyproof redistribution of VCG revenue. Formally, let G
be the set of goods to be allocated, and for any bundle of goods B ⊆ G let vi(B) be
agent i’s value for obtaining B. Each agent i’s valuation conforms to the following:

vi(∅) = 0

vi(B) ≤ vi(B ∪ {g}), ∀B⊆G, g∈G

Consider the following valuations of three agents in an allocation problem with
two goods, c and d, where {X1, X2, X3} represents the outcome in which bundles X1,
X2, and X3 are allocated to agents 1, 2, and 3 respectively.

v1 v2 v3

{cd, ∅, ∅} 12 0 0
{∅, cd, ∅} 0 10 0
{∅, ∅, cd} 0 0 11
{c, d, ∅} 4 6 0
{c, ∅, d} 4 0 5
{d, c, ∅} 5 7 0
{d, ∅, c} 5 0 7
{∅, c, d} 0 7 5
{∅, d, c} 0 6 7

Table 2: 2-good, 3-agent allocation problem.

The efficient outcome is to allocate c to agent 3 and d to agent 2. Applying RM,
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agent utilities are as follows:

ui = vi(θi, f
∗(θ)) + v−i(θ−i, f

∗(θ)) − v−i(θ−i, f
∗(θ−i)) +

Gi(Θi, θ−i)

n

u1 = 0 + 13 − 13 +
8

3
=

8

3

u2 = 6 + 7 − 12 +
9

3
= 4

u3 = 7 + 6 − 12 +
9

3
= 4

Using VCG with no redistribution, total social utility is 2 and payment to the center
is 11. 8.67 of this (79% of revenue) can be redistributed to the agents under RM,
yielding a social utility of 10.67, a nearly 5-fold improvement.

3.6 Simulations

3.6.1 Computing redistribution payments

Determining redistribution payments under RM amounts to computing revenue-
guarantee Gi for each agent i, and then merely dividing by n. In some domains,
a simple algorithm for computing Gi exists. For example, in AON and some other
allocation settings, Gi can be computed by determining the revenue that would result
if i were just not present. Unfortunately this simple algorithm does not hold in
general (i.e., not for all possible sets of value constraints); notably, it does not hold
for combinatorial allocation domains. However, we can always compute Gi through
a mixed-integer programming (MIP) specification of the revenue-guarantee equation
(3.11). I outline the formulation here.

Equation (3.11) can be rewritten in an expanded form as follows:

Gi(Θi, θ−i) = min
θi

[

∑

j∈I

(

max
o′∈O

∑

k∈I\{j}

vk(θk, o
′) −

∑

k∈I\{j}

vk(θk, o
†)

)]

= min
θi

[

∑

j∈I

(

max
o′∈O

∑

k∈I\{j}

vk(θk, o
′)
)

− (n − 1)
∑

j∈I

vj(θj , o
†)

]

(3.25)

subject to the constraint that the o† and θi in the above minimization must satisfy
the following:

o† = arg max
o∈O

∑

j∈I

vj(θj , o) (3.26)

The objective in the MIP for agent i’s payment is to minimize VCG revenue,
and the primary variables are vi(θi, o) for each o ∈ O. Representing the program
constraints is relatively straightforward, but some care must be taken in handling
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equation (3.26) and the inner maximization in (3.25). In both cases there are non-
linearities. In (3.26), for instance, we must specify co ·vi(o) for each outcome o, where
co is a boolean variable representing whether or not o is chosen as the outcome that
maximizes social welfare. We can get around this issue by representing co · vi(θi, o)
with a new variable v′

i(θi, o), and including the following constraints:

v′
i(θi, o) ≤ vi(θi, o)

v′
i(θi, o) ≤ co · M,

where M is a value larger than the maximum possible value an agent could have for
any outcome. v′

i(θi, o) will then be vi(θi, o) if o = f ∗(θ) and 0 otherwise, as desired.
While solving a mixed-integer program has exponential worst-case running time,

in practice I was able to quickly find solutions to very large problems. Determining
redistribution payments in a 100 agent, 100 outcome problem took 24 seconds for
each agent.6 Note that the MIPs for calculating agent payments (one for each agent)
are independent of each other, and thus all can be solved in parallel.

3.6.2 Empirical results

In order to understand how much redistribution can be achieved for valuations
under different levels of mutual constraint, I performed an empirical analysis on large
sets of randomly generated problem instances (sets of valuations), each with the
same number of outcomes as agents. I generated valuations according to the following
process, where e is an “exclusivity” (between agent valuations) parameter representing
the extent to which a domain has “all-or-nothing properties.” I chose a maximum
value maxvali for each agent i’s valuation function uniformly at random between 0
and 100. I then chose each vi(θi, oi) uniformly at random between 0 and maxvali,
and vi(θi, oj 6=i) uniformly at random between 0 and (1− e) ·maxvali. So when e = 1,
we have a completely AON domain; when e = 0 it is an unrestricted type space.

The graph in Figure 3.4 plots the percentage of VCG revenue redistributed by
RM as a function of the parameter e, for problems with various numbers of agents.
For each number of agents, 100 samples were computed for each value of e between 0
and 1 in increments of 0.05, and I took the average. Notably, redistribution remains
nearly constant for values of e between 0 and 0.5, and then increases roughly linearly
with e from 0.5 to 1. As expected, the possibility for redistribution grows with the
number of agents.

It is also instructive to compare directly the percentage of total value retained by
the agents under RM compared to that under VCG. Figure 3.5 plots exactly this
for population sizes of 4, 8, and 20. The left column of graphs have agent valuations
drawn uniformly at random between 0 and 100 for one outcome and from between 0

6Solutions were obtained using the commercial solver CPLEX, run on a 1.6 GHz Pentium 4 PC.
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Figure 3.4: Percent of revenue redistributed as a function of mutual “exclusivity”
between agent valuations.

and (1 − e) · 100 for the rest. The right column does the same except with a normal
distribution with mean 50 (or (1−e)·50) and standard deviation 12.5 (or (1−e)·12.5).
The simulations demonstrate that RM maintains a more or less constant amount of
value within the population of agents for different values of e, except as e goes to 1
(i.e., as we trend towards AON domains), where value maintained increases somewhat
sharply. On the other hand VCG falls off quite sharply as RM starts to rise. Again,
on the left side of the axis are represented domains in which no redistribution is
possible (the type spaces are unrestricted), and there RM coincides with and thus
yields the same value as VCG. On the right hand side are more purely “competitive”
environments, where an outcome that is good for one agent is necessarily not good
for others—this is where the differences between VCG and RM become stark.

3.7 A center-less implementation

Consider the problem of building a decision-making mechanism that doesn’t re-
quire a center. This is intuitively desirable, as it’s easy to imagine scenarios in which
a group of agents must determine an allocation or decide on an action to take without
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the benefit of a trusted central authority.7

Theorem 3.9. RM can be implemented in Nash equilibrium without the facilitation
of a center when the following conditions hold:

i) no agent acting alone has the power to obstruct realization of a specified outcome
or transfer payments, while n − 1 agents acting together do.

ii) agents can simultaneously “broadcast” valuations to all other agents, and can
compute and perform transfers.

iii) agents have the capacity to publicly destroy money.

Proof sketch. The first condition brings abiding by the mechanism into Nash
equilibrium—unilaterally deviating cannot be beneficial. The second and third condi-
tions ensure that agents will be able to execute what the mechanism prescribes. With
(ii), all agents can recognize the efficient outcome and deliver the appropriate redis-
tribution payment to each “receiving” agent. (iii) allows the “paying” agents (just a1

in AON domains) to demonstrably receive the appropriate payoff. The quantity that
cannot stay within the group of agents would normally be transfered to a center, but
its destruction is a satisfactory substitute.

In AON domains, at least, where communicating a valuation amounts merely to a
public announcement of a single (value, outcome) pair, satisfaction of these conditions
is plausible. Then using RM, it is possible in equilibrium for a large group of self-
interested agents to independently reach the socially optimal outcome, and jointly
reap nearly all fruits of the chosen action via redistribution.

3.8 Discussion

In this chapter I argued for the desirability of redistributing VCG payments back
among participants in a mechanism, and showed it is feasible in a broad range of set-
tings, including allocation problems. I presented RM: a mechanism that is truthful
and efficient in dominant strategies, ex post individual rational, no-deficit, and satis-
fies a fairness constraint pertinent to the setting (redistribution-anonymity). RM im-
proves the social welfare properties of VCG drastically in, e.g., allocation settings,
and is optimal in a strong sense when all the properties just mentioned are required
as hard constraints. In “all-or-nothing” domains, a class which encompasses typical
single-item allocation problems, the mechanism is strongly budget-balanced in the
limit. So for decision problems in which the large transfers VCG requires from the
agents are considered waste, the mechanism specified in this chapter is a superior
solution in terms of social welfare.

7See [Shneidman and Parkes, 2004] or [Petcu et al., 2006] for further discussion of distributed
implementations that seek to minimize the role of a center.
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In a single-item allocation domain it so happens that an agent’s revenue-
minimizing report is 0, which is equivalent to the agent simply not being present
in the system at all. Bailey [1997] recognized this fact. But the approach of sim-
ply giving each agent a share of the revenue that would result if he were absent
does not extend. In the case of combinatorial allocations, for instance, an agent’s
revenue-minimizing report may not be simply a 0-valuation report; if we computed
redistribution payments based on that hypothetical, deficits would result. RM, on
the other hand, will never run a deficit regardless of the domain.

Returning to the question of optimality, there are a few points worth making.
First, the redistribution-anonymity fairness constraint may not, in fact, be important
in practice. If (or when) that is the case, in the absence of an optimality result for
RM what effort, if any, should be expended on trying to improve on it? One of
the remarkable attributes of RM is that it is applicable to any and every domain
(type space). When no redistribution is possible, it coincides with VCG. Whenever
redistribution is possible, RM will achieve some redistribution. In some cases it
will be possible to design mechanisms that are restricted to only a specific setting,
e.g., single-item allocation problems, and these mechanisms may make some gains.
But, to use that domain as an example, the empirical evidence shows that the room
for improvement over RM is in fact quite limited when there are more than a few
agents. Considering the graphs in Figure 3.5 for 8 agents, ∼ 96–98% of the value is
retained within the group in AON domains (the far right side of the axis). 100% is
the theoretical limit. Perhaps there are other domains in which RM will not be as
successful where another mechanism could be.

But also deserving of consideration is the fact that RM can be described intu-
itively and concisely: run VCG, compute an agent-independent “guarantee on rev-
enue” for each agent, and give each agent this quantity divided by the number of
agents. In the real world this may matter; in considering possible alternatives that
achieve an extra percentage or two of value over RM, this benefit must be weighed
against factors like simplicity and understandability.
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Figure 3.5: Comparison of the percentage of value from the socially optimal decision
retained by the agents (i.e., social value minus payments to the center, divided by
social value) under RM and VCG. Average over 200 samples for agent population
sizes of 4, 8, and 20. Plots for valuations drawn from both uniform (left) and normal
(right) distributions.



Chapter 4

Optimal decision-making in
dynamic settings

Synopsis

In this chapter I introduce the problem of multi-agent sequential decision-making,
where the goal is to maximize total social welfare accumulated over time. I introduce
Markov decision processes (MDPs) as a representation for such problems and present
leading exact and approximate solution techniques. I then give special focus to the
subset of decision problems that can be modeled as multi-armed bandits, since this
class is exceptional in that it admits computationally tractable optimal solutions and
at the same time, to a reasonable approximation, effectively models many important
real-world problems.

4.1 Introduction

Thus far we have considered decision-making problems that are static or one-shot,
without a context of time and other decisions that could possibly be of relevance. The
results for this setting, as we have seen, are vast, and they have found fairly successful
application in a number of real-world scenarios. But a static model can only go so
far.

Consider, for instance, the simple problem we discussed in the previous chapter
(illustrated in Figure 3.1) in which 4 housemates must decide who gets to use their
jointly owned car on a Friday night. They agree to implement a mechanism that
achieves the efficient allocation (the one who wants or needs the car most will get to
use it). We saw that both the VCG mechanism (the Vickrey auction in this case)
and redistribution mechanism RM achieve the efficient outcome in dominant strategy
equilibrium even when each agent acts only to maximize his own welfare. But what
if the decision of who gets to use the car is not an isolated, one-time event? What
if the same scenario arises every day? Well, one can see the added complexity that

60
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arises even from looking at the relatively simpler case in which the decision-making
problem arises only twice, once on Friday and then again on Saturday.

Figure 4.1: Illustration of a 4-agent 2-period decision problem. A decision about
whom to allocate the car to is made on Friday and again on Saturday.

Each agent would obtain some value on Friday night should he get to use the car.
One might plan to go buy groceries, and would obtain value 6; another might drive
to the movies with a date, obtaining value 10; still another would use it to help his
brother move into a new apartment, etc. Each agent can calculate this value and
report it (e.g., to a center) so that it can be determined who has the highest value for
the car on Friday. But this information is not sufficient to determine what decision is
optimal, even just on Friday; the reason is that the decision on Friday will influence
the values that agents could obtain on Saturday.

For instance, consider the agent (call him agent 3) who would use the car to help
his brother move. What if he can’t complete the job in a single day, but if he had
the car for both Friday and Saturday he could? His value for the car on Saturday
will depend on whether or not he is allocated the car on Friday. Perhaps his value
for using the car for either (but not both) Friday or Saturday is 4, but if he gets the
car both days he will obtain value 20 once the job is finished.

To determine efficient decisions, the center needs to know each agent’s value for
every set of decisions. Let o(i,j) denote the outcome-pair in which the car is allocated
to agent i on Friday and agent j on Saturday. With 4 agents there are 16 different
outcome-pairs. Agent 3’s total value for o3,1, o3,2, o3,4, o1,3, o2,3, or o4,3 is 4; his value
for o3,3 is 20, and his value for all other outcomes is 0. Notice that a problem like
this can actually be treated as a static problem, in which each outcome is an outcome
pair from the 2-step version; there is nothing to keep the center from computing
the efficient choice-pair in the first time-step. And as far as incentives, the payments
prescribed by a Groves mechanism will yield truthful revelation of values for outcome-
pairs as a dominant strategy for each agent at the beginning of the mechanism.
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But this is not the end of the story. In many dynamic scenarios agents’ expecta-
tions of the value they will receive in the future change as decisions are made. That is,
there is uncertainty in agent valuations, either due to ignorance on the part of agents
or true randomness in the realization of outcomes. For instance, consider agent 3
in the car example again. What if there is some chance that he can’t complete the
moving job even if he is granted the car for both days, and what if he will find out
whether or not he’ll be able to finish after using the car for the first day. Before
Friday agent 3 will have an expectation about what will happen during the first day,
but after Friday he will know for sure what has happened, and thus will know exactly
what his value is for getting the car for another day.

Crucially, the center cannot implement optimal decisions at a given time t unless
agents have shared all relevant information they have accumulated through t. In a
setting like this where agents are obtaining new private information, one can con-
sider agent types as “evolving” or gradually revealed by nature over time. An agent
can’t possibly report all private information that will be relevant in the beginning,
since he hasn’t yet obtained all that information himself. The incentive issues get
significantly more complicated when we need agents to be truthful every time-period;
dealing with this problem is one of the two main focuses of this dissertation, and
aspects of the problem will be addressed in Chapters 5, 6, 7, and 8. But first in this
chapter I will provide an overview of computing efficient decision policies for dynamic
settings assuming all information held by the agents is known to the center (i.e., ig-
noring incentive issues). As we will see, this problem is very hard in its own right,
and represents a significant challenge to implementation of efficient mechanisms for
dynamic settings.

4.2 Markov decision processes as a representation

of type in dynamic settings

In order to make decisions at every point in time that maximize expected value,
we must have a clear and effective way of representing information—about both the
immediate value a decision will bring and the impact it will have on the results of
future decisions. A convenient formalism for this task is a Markov Decision Process
(MDP).1

In an MDP, the notion of a state encompasses or “contains” all information rel-
evant to: 1) the immediate value that will be obtained from decisions, and 2) the
(expected) bearing decisions will have on future decisions (or actions in MDP par-
lance). A transition function describes how, upon taking a given action in a given
state, a new state is reached. Finally a reward function describes the value that taking

1See, e.g., [Bellman, 1957] for an early appearance, and [Sutton and Barto, 1998] for a very good
reference.
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a given action in a given state will yield. Formally, an MDP M = {S, A, τ, r}, where
S is a state space and A is an action space; τ : S×A×S → ℜ is a transition function,
with τ(s, a, s′) denoting the probability that taking action a in state s will yield new
state s′; finally, r : S × A × S → ℜ is a reward function, with r(s, a, s′) denoting the
value obtained when a is taken in s and successor state s′ results. It will be convenient
at times to refer to the random variable representing the state reached after executing
an action a in a state s; I use notation τ(s, a) for this purpose. I will use r(s, a) to
denote the expected reward when a is taken in s, i.e.,

∑

s′∈S τ(s, a, s′) r(s, a, s′). Note
that implicit in this framework is the Markov assumption: that the effect of taking
any given action in any given state depends only on that state and, in particular, not
on the previous history of states that have been realized.2

sc

sb

sd

a1: .5

2

a1: .5

2

a2: 1

1

2
a1, a2:1

3
a1, a2:1

Figure 4.2: Simple 3-state, 2-action MDP example. Actions and their respective
transition probabilities from one state to another are labeled in italics on the arc
between the two states. Rewards are labeled in bold.

For instance, consider the simple example in Figure 4.2. There are two actions:
A = {a1, a2}, and three states: S = {sb, sc, sd}. Taking action a1 in state sb will yield
new state sc or sd with equal probability (i.e., τ(sb, a1, sc) = τ(sb, a1, sd) = 0.5) and
yields value 2 (i.e., r(sb, a1) = 2); taking action a2 will definitely lead to state sd and
yield value 1. From states sc or sd, taking either action leads to the same state; value
2 is yielded from sc and 3 from sd. Thus the connections between states in an MDP
represent the ways in which decisions (actions) taken now influence decision-making
scenarios in the future—deterministically (e.g., taking action a2 in state sb above)
or non-deterministically (e.g., taking a1 in sb). The timing of events in a sequential
decision-making procedure is illustrated in Figure 4.3. An action being taken leads
to the start of each period, then a state transition occurs and value is obtained.

2But this does not constrain the representational power of MDPs, since the state space can always
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0 1

a0

taken
transition
s0 → s1

r(s0, a0, s1)
obtained

a1

taken

...

Figure 4.3: A graphical representation of the timing in a sequential decision-making
procedure. The time-step “ticks forward” when an action is taken. Value is obtained,
a state transition occurs, and finally the next action is taken leading into the next
time-step tick.

In dynamic decision problems we must also consider the possibility that agents
are impatient, i.e., that they value reward received sooner more than they do the
same reward received later. This is typically modeled via an exponential discount
factor γ, where a reward of x received t time-steps in the future is evaluated to yield
utility γtx. Of course whether or not this is the right model of how agents perceive
value relative to time is a domain-specific question; the exponential discounting model
seems to be a relatively satisfying approximation for many settings (see, e.g., [Keller
and Strazzera, 2002]). But perhaps more relevant to its ubiquity is that for problems
with an infinite time-horizon (i.e., no limit to the number of decisions to be taken), the
analysis becomes clean and tractable with an exponential discount factor. Observe
that in the infinite horizon case in which reward in all time-steps is evaluated equally,
all sequences of decisions yield utility ∞ over time.

Decision policies and MDP values

In a dynamic setting with sequences of decisions made over time, we must specify
decision policies, i.e., ways of mapping information to decisions. A decision policy
π : S → A specifies an action π(s) to be taken in every state s.

Given any decision policy π, we can compute the expected total discounted utility
V π(s) that will be achieved from any state s; i.e., letting st be a random variable
denoting the state reached at a time t > 0:

∀s ∈ S, V π(s) = E

[

∑

t=0

γtr(st, π(st))
∣

∣

∣
s0 = s

]

(4.1)

I will use notation π∗ for an optimal policy, i.e., one which maximizes expected dis-
counted value going forward from any state. Letting Π denote the space of all decision

be “blown up” such there is a unique state for each history, when history matters.



Chapter 4: Optimal decision-making in dynamic settings 65

policies,

π∗ ∈ arg max
π∈Π

V π(s), ∀s ∈ S (4.2)

I will use V ∗ as shorthand for V π∗

, the expected value that is obtained under the
optimal policy. V ∗ is also sometimes called the “MDP value”.

4.2.1 Multi-agent MDPs

In multi-agent decision making scenarios it is conceptually convenient to consider
the problem distinctly from each agent’s perspective, with a different MDP associated
with each agent. For instance, consider the following extremely simple problem:
imagine that there is a decision to be made repeatedly with two possible outcomes
and two agents; the scenario is the same at each time-step, no matter how many
decisions have already occurred. Each outcome yields value 1 for one agent and 0
for the other agent. This scenario can be represented graphically via two local agent
MDPs as in the first frame of Figure 4.4.

s1

1
a1:1

0

a2:1

s2

0
a1:1

1

a2:1

(a) Two agent MDPs.

s

1
a1:1

1

a2:1

(b) The joint MDP.

Figure 4.4: A simple two-agent decision-making scenario represented via two agent
MDPs (left) and the joint MDP representing the social problem they induce.

The center’s problem can be represented as a joint MDP formed by combining
the various agent local MDPs. Let Mi = {Si, A, ri, τi} denote any agent i’s (local)
MDP model of the problem. The joint MDP is M = {S, A, r, τ}, where: S = ×i∈ISi

is a joint state space, with s ∈ S specifying a local state si for every i ∈ I; A is the
decision space; ∀s ∈ S, a ∈ A, r(s, a) =

∑

i∈I ri(si, a), and τ(s, a, s′) is the probability
that joint state s′ will result if action a is taken in joint state s (with τ(s, a) the
random variable notation as before).

Assuming a common discount factor γ across all agents, given a set of local MDPs
{M1, . . . , Mn}, “solving” the corresponding joint MDP M will yield a socially optimal
policy π∗. However, in the worst case there is an exponential blow-up in the number
of states, so solving the joint MDP may not be easy. Consider again the example in
which a car is to be allocated two days in a row. Assume now that there are just
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two agents, whose valuations for the two decisions are represented in Figure 4.5. ai

represents allocating the car to agent i.

s1b .

s1a s1c .

s1d .

a1: .5

15

a1: .5

25

a2: 1

0

a1: 1

10

a2: 1

0

a1: 1

25

a2: 1

0

a1, a2: 1

0

(a) Agent 1

s2b .

s2a s2c .

s2d .

a2: .5

0

a2: .5

0

a1: 1

0

a1: 1

0

a2: 1

20
a1: 1

0

a2: 1

30

a1, a2: 1

0

(b) Agent 2

Figure 4.5: Two local agent MDPs: each represents a different agent’s value structure
(with uncertainty) for allocation of a car over a two-day period, once on Friday and
once on Saturday.

Agent 1 will get total value 25 if allocated the car for both days or just the second
day, and if allocated for just Friday will get either value 15 or the full 25 (depending
on chance). Agent 2 will get value either 25 or 30 if he obtains the car both days; oth-
erwise he gets no value. While each local MDP in this example has only 4 states, the
joint MDP will have 11: S = {(s1a, s2a), (s1b, s2b), (s1b, s2c), (s1b, s2d), (s1c, s2b), . . .}.
The action space A = {a1, a2} and both actions are available from every state. For
γ close to 1, the optimal policy specifies action a2 on Friday (i.e., in state (s1a, s2a)),
a2 on Saturday if state (s1a, s2c) results, and a1 on Saturday otherwise (i.e., if state
(s1a, s2b) results). If γ is low enough it will instead be optimal to allocate only to
agent 1 since he will obtain reward on Friday while the payoff for agent 2 comes only
after Saturday and thus requires some “patience”.

Though I will restrict attention in this thesis to scenarios in which actions are only
taken by the center, in some scenarios “decisions” will in fact specify local actions for
each agent to take (see, e.g., [Boutilier, 1996]). Reaching efficient outcomes will
require two things: 1) agents to truthfully report private information so that the
center can compute an optimal policy, and 2) agents to take local actions according
to the computed optimal policy and as communicated by the center. Note that in such
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cases each agent i will have a distinct action space, and joint action space A = A1 ×
. . . × An. This generalizes the type of centralized setting we’ve seen in cases like the
car allocation example, which can be modeled under this framework by assuming each
local action space is identical; but the agents—rather than autonomously executing
actions—are simply subject to the effects of actions executed by the center.

4.3 Computing optimal policies

Given a joint MDP for a multi-agent decision making problem, determining an
efficient decision policy amounts to “solving” the MDP. Though this task can be
computationally difficult (depending on the size of the MDP), in theory a solution
can always be achieved via dynamic programming based methods. There are a few
notable algorithms, all of which leverage the fact that the value function V ∗ associated
with any optimal policy π∗ satisfies the so-called “Bellman equations”:

V ∗(s) = max
a∈A

[

r(s, a) + γ
∑

s′∈S

τ(s, a, s′) · V ∗(s′)
]

, ∀s ∈ S (4.3)

This fact implies that in order to find an optimal policy π∗ it is sufficient to compute
V ∗. See [Sutton and Barto, 1998] for a very nice introduction and detailed discussion
of the theory and algorithms touched upon in this section.

Policy iteration

Policy iteration is one algorithm for finding an optimal policy. The idea is to start
with an arbitrary policy π, compute the expected value it will yield, and then check
if there is any state s for which switching π(s) with some other action yields higher
expected value. If so, then make that switch, go back to the evaluation step, and loop.
These greedy improvements ultimately lead to an optimal policy—once the looping
stops, by definition the action specified for each state is the best.

Value iteration

In value iteration the evaluation and improvement steps of policy iteration are
combined into one sweep through the set of states. Progressively more accurate
“estimates” of V ∗ are computed by using the Bellman equation as an update rule.
Specifically, value iteration proceeds in a number of “rounds”, where in each round
k an estimate V k(s) of V ∗(s) is formed for each s ∈ S. Starting with an arbitrary
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value function estimate V 0, we let:

V k(s) = max
a∈A

[

r(s, a) + γ
∑

s′∈S

τ(s, a, s′) · V k−1(s′)
]

, ∀k > 0, s ∈ S (4.4)

When V k(s) = V k−1(s), ∀s ∈ S, then V k must equal V ∗ and determining π∗ is a
simple matter of reading off the optimal action according to the Bellman equation for
each state.3

4.3.1 Approximate and online algorithms

The mechanisms we will see in the chapters that follow provide incentives for
agents to participate truthfully in a dynamic decision-making environment, given
that the center is executing an optimal decision policy. But due to the exponential
blow-up in the size of the state space that occurs in multi-agent problems, often it will
not be computationally tractable to compute such policies. In such cases approximate
algorithms are often employed. Also, sometimes online algorithms are used, wherein
actions are taken in the world and policies are improved step-by-step, in some cases
ultimately converging to (but not starting with) an optimal policy. Here, I briefly
mention some the most notable of these techniques.

Linear programming

There is a natural exact linear programming (LP) formulation of the problem of
computing an optimal policy in sequential environments (see, e.g., [Puterman, 1994]).
Specifically, one can formulate an objective function of minimizing the sum of V ∗(s)
over all s ∈ S, and add a constraint for each s ∈ S that essentially specifies that the
right hand side of the Bellman equation for s is greater than or equal to V ∗(s). An
LP formulation can then leverage high-powered commercial solvers such as CPLEX
(see www.ilog.com).

But in non-trivial practical cases (especially involving multiple agents) the state-
space will be massive, leading to a prohibitive number of state variables and con-
straints in the LP. De Farias & Roy [2003] have recently made progress in linear pro-
gramming for approximate dynamic programming problems like this (see [Schweitzer
and Seidmann, 1985] for an initial proposal in this space). Their approach fits a linear
combination of pre-selected basis functions to the objective function, and they obtain
analytical bounds on the error of the approximate solution given the choice of basis
functions.

3In practice the process would be stopped when V k(s)−V k−1(s) is less than some tolerance level
ε.
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Sparse sampling

Kearns, Mansour, & Ng [1999] provide a “near-optimal” algorithm for sequential
decision making that works with a “generative model” of an MDP—i.e., a black box
that, given any state-action pair, returns a successor state in accordance with the
transition function of the MDP. Given any “current state”, their algorithm uses such
a generative model to produce a relatively small number of potential paths forward
(sparse sampling), and then uses these samples as the basis for determining an action
to take. This process results in a near-optimal policy. Though the run-time of the
algorithm is exponential in the time-horizon, it is completely independent of the size
of the state space and thus evades the “curse of dimensionality” inherent in most
multi-agent problems.

Q-learning

Q-learning, though still subject to critical challenges if the state space is very large,
is an online method of simultaneously taking actions and learning that eventually
converges to an optimal policy. The algorithm maintains a table of values, one for
every state-action pair (s, a), representing an estimate of the total discounted value
that will be obtained (starting from state s) if action a is taken in state s and an
optimal policy is followed in all future time-steps. Let Q(s, a) denote the entry in the
table for pair (s, a). Q-learning specifies that at every time-step, from any current
state s, an action a∗ = arg maxa∈A Q(s, a) is taken; when new state s′ is observed,
the (s, a∗) entry in the table is updated as follows:

Q(s, a∗) = Q(s, a∗) + α[r(s, a∗) + γ max
a∈A

Q(s′, a) − Q(s, a∗)] (4.5)

α is a “learning rate” determining how new information is weighted against old
estimates. As α approaches 1, the “old” estimate is completely updated with the
new estimate every time-period. As α approaches 0, values are never updated at all.
Typically α is gradually decreased over time. Notably, letting αt denote the choice
of α at time t, if

∑∞
t=1 αt = ∞ and

∑∞
t=1 α2

t = ∞ then Q-learning is guaranteed to
converge to the true optimal values V ∗ so long as all state-action pairs are visited
infinitely often [Watkins, 1989]. For instance if αt is set to 1/t these conditions are
satisfied from any t forward.

Interestingly, Q-learning will converge to the optimal values V ∗ even if one does
not choose actions according to arg maxa∈A Q(s, a). In fact actions can be chosen arbi-
trarily and convergence will still occur. Note that this also implies that Q-learning is
“model-free”, i.e., it will converge to an optimal policy even when the decision-maker
has no knowledge of the reward or transition functions that define the underlying
MDP—these are implicitly learned and encoded over time in the table of Q values
that is constructed.
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E3

The “Explicit Explore or Exploit” (E3) algorithm of Kearns & Singh [1998] pro-
vides a mechanism for reinforcement learning (or “solving” an MDP) that is guar-
anteed to reach a near-optimal policy in a finite amount of time. The algorithm
is designed to perform a mix of targeted exploration of the state space and offline
optimization. The algorithm thus explicitly addresses the exploration-exploitation
tradeoff; there is a polynomial bound (in the time-horizon K and number of states
S) on the number of actions taken and computation performed in order to achieve
near-optimal performance.

4.4 Multi-armed bandits: an important special

case

In general multi-agent decision-making gets computationally hard very quickly.
Even for relatively basic problems in which each agent’s local MDP model has only
10 states, if there are 10 agents then there are 1010 joint states. But there is an
important subclass of decision-making problems that does not suffer from this blow-
up in state space, consisting of those that can be modeled as multi-armed bandits.

In a multi-armed bandit (MAB) problem4 one must choose to activate, at every
time-period, one among a set of independent Markov chains. A Markov chain (MC)
is an MDP in which there is only one “action” available from each state. So in a
single Markov chain MDP there is thus no problem of which action to take; but in a
MAB there is a choice: since only one MC can be activated at a time, which should
be chosen when in order to maximize total discounted expected social reward over
time?

In a MAB the Markov chains are independent in that when one is activated,
the states of the others remain unchanged. So, letting st = (st

1, . . . , s
t
n) denote the

joint state of n Markov chains at time t and letting τ(si) be the random variable
representing the local state of process i after being activated once from state si, if we
execute a policy π with π(st) = i then the resultant joint state at time t + 1 will be
st+1 with:

st+1
i = τ(st+1

i )

st+1
j = st

j , ∀j 6= i

4See [Bellman, 1956] for an early study, and [Berry and Fristedt, 1985] for an in-depth analysis
of various bandit-style problems.
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Optimal Bayesian-learning

Among the many classes of problems that can be modeled as MABs, one stands
out as particularly intriguing: that of optimally learning how to choose among a set
of reward generating processes to obtain highest reward. Given some prior beliefs
about the reward each process will generate, the goal is to optimize in a Bayesian
sense: to activate processes in a way that is optimal at every time-step given current
beliefs.

For instance, consider a scenario in which an oil company is deciding in which
among a set of regions to drill for oil. Say the oil company only has resources to
drill in one region at a time. There is uncertainty as to the amount of oil that each
region contains. Every time drilling is performed in a given region, there is feedback
regarding the oil in that region (i.e., in the Markov chain representing beliefs about
how rich in oil that region is, there is a state change); beliefs about regions that were
not drilled in do not change. In such a setting an optimal policy will trade off the
benefits of learning about the potential yield from regions that are not well-known
(exploration) with capitalizing on the information already obtained about regions
that are known to have high yield (exploitation).

It is from analogy to another setting of this kind that multi-armed bandit problems
get their name. Imagine a gambler choosing among a set of slot machines (“one-
armed bandits”) to play at each point in time, where each slot machine has a distinct
payout rate. The gambler will want to make the series of selections that maximizes his
expected discounted reward over time, which will involve both using information he
already has and obtaining more information about relatively unknown slot machines
(arms) in order to avoid missing a potential goldmine.

Figure 4.6 depicts two “Bernoulli bandit” process, where each process yields re-
ward either 1 or 0 (i.e., it either “succeeds” or “fails”) every time it is activated and
has some unknown rate of success p. A state in a Bernoulli bandit can be repre-
sented as a beta distribution (α, β) with parameter α corresponding to the number
of successes observed plus 1, and β corresponding to the number of failures observed
plus 1. So process 1 in state 10 (state “one zero”, not “ten”) represents the uniform
beta distribution prior of (α, β) = (1, 1). Process 2 in state 100 denotes that a single
failure (0) has been observed, and so (α, β) = (1, 2). The expected success rate given
a beta distribution with parameters (α, β) is α

α+β
, so the estimated success rate of

process 2 in state 100 is 1/3. Thus with probability 2/3 the successor state will be
1000 and with probability 1/3 it will be 1001.

A multi-agent interpretation

It is natural to consider a multi-agent interpretation of the multi-armed bandit
problem, in which each process is associated with an agent, and when an agent’s
process is activated it generates some private reward for that agent. This is exactly
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Figure 4.6: A two-armed Bernoulli bandit problem. Each process yields reward either
0 or 1 upon every activation, where the probability of reward 1 is stationary over time
but unknown. A state representation (roughly) corresponds to the number of 0 and
1 rewards the process has yielded so far.

the multi-agent MDP model we discussed in Section 4.2.1, but with specific limitations
placed on the types of MDPs that agent world models correspond to. We can model
these limitation specifically as follows: for each agent i, for each local state si, there
is exactly one action ai (taken by either the center or the agent) that yields a state
transition and non-zero reward; all other actions self-loop back to the current state
and yield no reward. Moreover, the only joint actions that can be taken specify ai

for exactly one i ∈ I.
A very natural problem domain that fits this model is repeated allocation of a

single item in an infinite horizon environment. An item is allocated to one agent for
one time-step, and in the next time-step it is reallocated, and so on. The agent that
receives the item in any given time-step may obtain non-zero reward and possible also
learn something about his value, but all other agents receive zero reward and their
states do not change.

The infinite-horizon version of the problem is better modeled as a MAB than the
finite-horizon version since in the finite case every time an agent is not allocated the
item something does change—the amount of possible future times it could receive the
item. For instance in Figure 4.5 agent 2 obtains value only if he gets to use the car
for 2 days; so in a 2-day setting if he is not allocated the car on the first day there is
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no way he can obtain value—his state changes.

4.4.1 Gittins’s solution

In the late 1970s John C. Gittins achieved one of the seminal results in the area
of sequential decision-making: he proved that solving multi-armed bandits problems
is computationally tractable. Specifically, he demonstrated that in any MAB, an
optimal policy can be constructed by: 1) computing an index (henceforth called the
“Gittins index”) for each process that depends only on the current state of that
process (and not on any other processes), and 2) activating the process with the
highest index.

Theorem 4.1. [Gittins and Jones, 1974; Gittins, 1989] Given Markov processes
{1, . . . , n}, joint state space S = S1 × . . . × Sn, discount factor 0 ≤ γ < 1, and
an infinite time-horizon, there exists a function ν : S1 ∪ . . . ∪ Sn → ℜ such that the
optimal policy π∗(s) specifies activation of arg maxi ν(si), ∀s ∈ S.

Since the index for each process does not depend on the other processes, as the
number of processes increases there is only a linear increase in computation required—
one extra process requires only computing and comparing one extra Gittins index.
So in the multi-agent interpretation we have:

Corollary 4.1. In an infinite-horizon dynamic multi-agent decision-making scenario
in which each agent’s local world model is a Markov chain and only one can be acti-
vated per time-step, the computation required to compute an efficient decision policy
grows only linearly in the number of agents.

Gittins defined what is now known as the Gittins index (which he originally called
the “dynamic allocation index”) as follows.

Definition 4.1 (Gittins index). The Gittins index of a process i in state si is:

ν(si) = sup
ρ>0

E

[

∑ρ−1
t=0 γtr(st

i, ai) | s
0
i = si

]

E

[

∑ρ−1
t=0 γt | s0

i = si

] (4.6)

where ρ is a stopping time, st
i is a random variable denoting the state of process i

after being activated t times starting from state si, and r(st
i, ai) is the reward yielded

when process i is activated in state st
i.

Intuitively, a stopping time ρ specifies “stop” or “go” for every possible state
that could be reached. So the Gittins index is the expected total reward divided by
discounted time that goes by when a stopping policy is selected to maximize that
ratio.
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Gittins first proved Theorem 4.1 via a so-called “interchange argument”, explicitly
comparing the expected value from any alternative sequence of activations against the
sequence that results from always choosing the highest Gittins-indexed process. In
the time that has passed since his proof other proofs have been found that do not
rely on the analytical form of the Gittins index in Equation 4.6, notably [Weber,
1992], [Whittle, 1980], and [Bertsimas and Nino-Mora, 1996]. Frostig & Weiss [1999]

provide an excellent presentation of all 4 of these proofs.

Conceptualizing the Gittins index as an indifference point

Whittle’s [1980] proof of Gittins’s theorem provides an important insight into the
essence of what the Gittins index captures. Imagine a scenario in which there is a
single process i, and that at every point in time the decision-maker has the option to
permanently “retire” from playing i and receive one-time lump sum µ (constant over
time). The decision-maker must trade-off the possibility that continuing activation
of i will yield high reward in the future with the chance to get a big reward µ now.
The expected value obtained from playing optimally in such a scenario given state si

can be expressed as follows:

V (si, µ) = max
[

r(si, i) + γ
∑

s′i∈Si

τ(si, a, s′i) · V (s′i, µ), µ
]

(4.7)

When µ is less than the lowest reward i could possibly generate it is obviously
optimal to always keep playing; when µ is very large it is optimal to stop. There is
some point in between at which both stopping and continuing are optimal choices. It
is at this value that µ equals the Gittins index (scaled by a function of the discount
factor). Let µ∗(si) be the value of µ at which r(si, i)+γ

∑

s′i∈Si
τ(si, a, s′i)·V (s′i, µ) = µ.

Then:

ν(si) = (1 − γ)µ∗(si) (4.8)

So the Gittins index can alternatively be described as ((1 − γ) times) the point at
which one would be indifferent between playing and retiring, given that the option
for retirement is always available in the future. For instance in the extremely simple
example of Figure 4.7, if γ = 0.75, the indifference point is µ such that µ = 1 + 0.5 ·
0.75µ+0.5· 0.75

1−0.75
. Solving for µ yields 4, so the Gittins index equals (1−0.75)·4 = 1.5

Computing Gittins indices

Though Gittins’s result demonstrates that the required computation in determin-
ing optimal MAB policies scales well with the number of agents, there is still the

5See also chapter 3 of Michael Duff’s dissertation [Duff, 2002] for a nice presentation of the
“indifference point” interpretation of the Gittins index and related issues.
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Figure 4.7: A very simple Markov chain process; after the first non-deterministic
transition all future rewards will either be 0 or 1. The lump-sum reward µ that makes
a decision-maker indifferent between playing this process or retiring for µ (where the
option to retire for µ persists in the future) is 4.

matter of actually computing the Gittins index for a given process in a given state.
In some domains there is structure that makes the computation easier. For instance,
in a Bernoulli bandit scenario where beliefs are represented via a beta distribution
one can feasibly compute a very close approximation of the index numerically via
explicitly expanding out Equation 4.7 for a “guessed” µ value, where the error in the
approximation caused by expanding out only a finite number of levels is bounded via
the discount factor (any reward received after t time steps will yield value ≤ γt

1−γ
).

One can then use binary search to ultimately find the µ value that leads to indiffer-
ence, thus obtaining the Gittins index. Gittins [1989] discusses several methods for
estimating Gittins indices in other structured environments.

Katehakis & Veinott [1987] provide a method for computing Gittins indices for
arbitrary finite-state Markov chains (i.e., making no assumptions about structure)
which allows appeal to well studied algorithms for solving MDPs to compute the
Gittins index for a process in a given state. Consider a set of “restart-in-i” MDPs,
defined for each process at each time-step as follows: There is a state in the restart-in-
si MDP for process i at time t corresponding to each possible sequence of states that
could be visited from si forward. From any state, two actions are possible: restart and
continue. If restart is selected, the process transitions instantaneously (no delay) to
state si with probability 1 and then also makes a transition and receives a reward as
though activated in si. If continue is selected, the MDP proceeds (makes a transition
and receives a reward) as though activated in the associated state. Figure 1 depicts
the restart-in-si MDP for a 6-state bandit process currently in state B.

Katehakis and Veinott showed that the value of state si in the restart-in-si MDP
gives the Gittins index of a process in si. Thus, at every time-step, given joint state
s, the optimal process to activate can be determined by solving n MDPs: the restart-
in-si process for each i.
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Figure 4.8: A Markov chain and the corresponding Katehakis & Veinott “restart-
in-B” MDP, the optimal value of which gives the Gittins index. The instantaneous
restart transitions are represented by dashed lines. Continue transitions and the
transition that occurs from B immediately after a restart action are represented by
solid lines.

4.5 Summary

In this chapter I presented the computational aspects of reaching efficient deci-
sions in dynamic, multi-agent environments; I put the mechanism design (incentive
& budget) issues to one side—they’ll be addressed in the following chapters. We
saw that Markov decision processes (MDPs) provide an appropriate representational
formalism for dynamic decision problems, and that it is natural to model the decision
problem from each agent’s perspective as a distinct “local” MDP. We saw how local
MDPs can be combined into a joint MDP, and that solving this MDP leads to a
decision policy that maximizes social welfare. We saw various algorithms for solving
MDPs: some that lead to optimal decisions at every point in time (policy-iteration,
value-iteration), and some approximate or online algorithms (e.g., sparse-sampling,
Q-learning) that either provide bounds on the suboptimality they achieve, or reach an
optimal policy in infinite-horizon settings after executing for long enough. Finally, I
presented the very important subclass of dynamic decision problems that can be rep-
resented as multi-armed bandits—a class that includes repeated allocation of a single
good. In these settings determining an optimal policy is computationally tractable
(via “Gittins indices”); as the number of agents in the system grows the necessary
compute time likewise grows only linearly.



Chapter 5

Dynamic mechanism design

Synopsis∗

In the last chapter we saw how preferences can be represented and efficient decision
policies can be computed in dynamic decision problems. We now turn to incentive
issues: for the center to implement an efficient policy the participation of the agents
is typically required. In Chapter 2 we saw foundational results in eliciting truthful
participation of agents in one-shot settings (static mechanism design); in this chapter
I present dynamic mechanism design, an extension of the mechanism design paradigm
to scenarios in which a sequence of decisions is to be made over time, with new private
information potentially arriving at every time-step.

We will see that many of the foundational results of static mechanism design have
rather direct, though significantly more complex, analogues in the dynamic setting.
Perhaps most centrally:

• The Groves class of mechanisms has a natural analogue in dynamic settings,
and this class completely characterizes the set of efficient mechanisms that can
be implemented in a strong dynamic truthtelling equilibrium (with a reasonable
restriction).

We will also see important extensions of results regarding particular static mech-
anisms to the dynamic case:

• The VCG mechanism has a natural analogue in dynamic settings—dynamic-
VCG, due to Bergemann & Välimäki [2006]—and this mechanism yields equi-
librium utility for each agent equal to his marginal contribution to social welfare.

• The dynamic-VCG mechanism is revenue-maximizing among all mechanisms
that are efficient in a strong truthtelling dynamic equilibrium.

∗Many results from this chapter have appeared in the following papers: [Cavallo, 2008], [Cavallo
et al., 2006], and [Cavallo et al., 2007], the latter two of which are collaborative with David C. Parkes
and Satinder Singh.
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• The AGV mechanism has a natural analogue in dynamic settings—the dynamic-
balanced mechanism, due to Athey & Segal [2007]—and this mechanism is
strongly budget balanced but achieves weaker incentive and participation prop-
erties.

In Chapter 6 (as in Chapter 3) I will observe that revenue is waste in many
environments, and propose a dynamic redistribution mechanism that goes a long way
towards minimizing this waste in some important settings. Before getting to these
results I will properly introduce dynamic mechanism design, including the notion of
a dynamic type and equilibrium concepts.

5.1 Dynamic mechanism design defined

Dynamic mechanism design addresses settings in which there is a group of agents
and a sequence of decisions or “actions” to be taken, one per time-step, that bear
utility for the agents. At each time-step, each agent has some private information that
determines the expected value he would obtain for every possible action that could
be taken in the current time-step, and also determines a probability distribution over
future private information, given any future sequence of decisions. When an action
is taken, new private information potentially arrives for each agent.

To formalize these notions I use the Markov decision process (MDP) framework.
Each agent’s type in a dynamic setting corresponds to an MDP along with an indi-
cation of the current state, and only the current state changes over time—the MDP
model stays the same. Formally, there is a set of agents I = {1, . . . , n}, an exoge-
nously defined action space1 A, with actions to be chosen from A for K successive
time periods (where K is potentially infinite), and a space of agent types Θ1×. . .×Θn.
Each agent i’s type at time t, θt

i ∈ Θi, induces a tuple (sθt
i
, rθt

i
, τθt

i
) that represents

i’s private information at t. There is a local state space Si defined by Θi, and for
type θt

i, sθt
i

is the “current” local state. rθt
i

: Si × A × Si → ℜ is a value (reward)
function, with rθt

i
(si, a, s′i) denoting the immediate value that i obtains if action a is

taken when i is in local state si and new state s′i results. τθt
i

: Si × A × Si → ℜ is a
probability function, with τθt

i
(si, a, s′i) denoting the probability that taking action a

while i is in local state si will yield new local state s′i for i in the next period.
Given any θt

i ∈ Θi, in this way A, Si, rθt
i
, and τθt

i
define a local MDP for agent

i. In dynamic mechanism design the center elicits reports from each agent regarding
private types in every period, and then takes an action. I let θt

c ∈ Θc denote the
“type” of the center at time t. This represents any information known to the center,
and can for instance include the history of reported types, the index of the current
time-period, etc. I then denote the joint type space Θ = Θc × Θ1 × . . .Θn. As

1This is analogous to there being a fixed outcome space O in a static setting, independent of the
behavior of the participants.
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a notational simplification, for any θ ∈ Θ I write τ(θ, a) for the random variable
representing the joint type in Θ that results when action a is taken in sθ ∈ S. I write
ri(θi, a) for the expected immediate value to i when a is taken and i’s type is θi, i.e.,
∑

s′i∈S τ(sθi
, a, s′i) rθi

(sθi
, a, s′i). I then write r(θ, a) for

∑

i∈I ri(θi, a) (the immediate

expected social value of taking action a in the joint state sθ), and r−i(θ−i, a) for
∑

j∈I\{i} rj(θj , a) (the immediate value to agents other than i). I assume agents

exponentially discount future reward at rate γ ∈ [0, 1), so a reward of x received t
steps in the future is valued at γtx.

Note that this set-up technically places us in a private values setting, excluding
scenarios where an agent’s value for an action depends on the private information
of other agents.2 But I still allow for serial correlation of types, where, e.g., the
fact that an agent i has transitioned from some type θi to θ′i allows us to know with
certainty that if j’s type in the last period were θj his current state would be some θ′′j .
This can be modeled by explicitly considering a stochastic process ϕ representing the
(random) events of nature; then for each i, θi, and a, we have τ(θi, a, ϕ) representing
the transition—this allows a coupling (only through the realization of random events)
of agent type transitions. For simplicity of exposition I will omit ϕ from the notation
going forward.

There is a dynamic version of the revelation principle due to Myerson [1986]3, so
I restrict attention to direct dynamic mechanisms:

Definition 5.1 (direct dynamic mechanism). A tuple (π, T ), where:

• π : Θ → A is a decision policy.

• T = (T1, . . . , Tn), where for each i ∈ I,
Ti : Θ → ℜ is a transfer payment function.

In a direct dynamic mechanism, in every time-step each agent makes a claim about
his current type, an action is taken, and transfer payments are executed. Decision
policy π maps a reported joint type to an action,4 and Ti, for each i ∈ I, maps a
reported joint type to a monetary payment delivered from the center to agent i. We
will see that, as in static mechanism design, certain transfer payment schemes will
succeed in aligning the interests of all agents towards execution of certain decision
policies, such that each agent will be best off participating truthfully given that the

2At the end of chapter 7 I will consider relaxing this assumption, allowing one agent’s expected
type transitions to depend on other agents’ current states.

3See also [Segal and Toikka, 2007] for a description.

4I will consider mechanisms in which truthtelling is an equilibrium, and thus it will only be
necessary for agents to report local state st

i
at each time t (as ri and τi are constant), but formally

a dynamic mechanism will allow agents to report their entire type at every period (allowing for the
possibility of an agent i being truthful in the future from a time in which i has misreported ri or τi).



Chapter 5: Dynamic mechanism design 80

center chooses actions according to the policy. I will focus on the socially optimal
or efficient decision policy π∗, which maximizes expected discounted social value
(reward) according to agent reported types.

Agents report types according to strategies. Let σi : Θi → Θi denote a reporting
strategy for agent i, where σi(θi) ∈ Θi is the type that i reports when his true type
is θi. Although an agent is potentially aware of his entire history of types (not just
the current type), this formulation is without loss of generality as whenever histories
may play a role in an agent’s strategy we can consider that type spaces are defined
with each type θt

i containing a representation of i’s entire type history through time
t.5 I let σ = (σ1, . . . , σn), and for any θ ∈ Θ, σ(θ) = (θc, σ(s1), . . . , σ(θn)).

An illustration of the timing of events in a dynamic mechanism is given in Figure
5.1.6 Importantly, value (ri) and transfers (Ti) obtained in the same period are
discounted at the same rate. Time “ticks forward” when an action is taken.

0 1

θ0

reported
π(θ0)
taken

r(θ0, π(θ0), θ1)
obtained

transition
θ0 → θ1

T (θ0)
executed

θ1

reported
π(θ1)
taken

...

r(θ1, π(θ1), θ2)
obtained

Figure 5.1: An illustration of the timing of a dynamic mechanism (π, T ). The pre-
time-step 0 “period” is unique in that there is no value obtained and no transfers
are executed. All subsequent time-steps follow the outline of period 0 as portrayed,
except at the end of time-step K (for finite-horizon problems) no action is taken.

Note that in a direct dynamic mechanism the report history (potentially tracked
in θc) is not relevant to determining the optimal decision policy (when agents are
truthful). Moreover, we will pursue an equilibrium solution concept in which agents
are best off playing according to the equilibrium no matter their previous history
of reports, so it is natural to focus on dynamic mechanisms in which the transfer
functions also do not depend on histories:

Definition 5.2 (history-independent dynamic mechanism). A history inde-
pendent dynamic mechanism is a (π, T ) such that, ∀θ, θ′ ∈ Θ with θ and θ′ identical

5For instance, in a tree-structured MDP there is a unique history for every possible state.

6At the end of this chapter and in Chapter 7 we will see a variant in which transfers are made just
after type reports; this will allow for stronger mechanisms when an assumption is imposed about
experienced values being discernible from individual types.
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except for the history of reports tracked in θc and θ′c, respectively,

π(θ) = π(θ′) and T (θ) = T (θ′) (5.1)

So if the only difference between two type profiles is the history of reports, a history-
independent dynamic mechanism makes the same decisions on each type profile. Im-
portant mechanisms such as dynamic-VCG and the dynamic redistribution mecha-
nism I present in the next chapter fit this model.

Note that a one-shot setting is a special case of the dynamic framework (the
number of decisions K to be made equals 1), and thus any negative results from
static mechanism design will immediately apply to dynamic mechanism design if we
seek mechanisms that achieve certain properties for any K. So as in the static setting
in order to get traction we will assume quasilinear utility functions throughout.

Notation

I use the following notational shorthand:

• Vi(θ
t
i , θ

t
−i, π, σi, σ−i) (or Vi(θ

t, π, σ), more concisely) is the expected discounted
sum of value to be obtained by agent i in the future given that his true type is
θt

i , the other agents’ true joint type is θt
−i, the center executes decision policy

π, i follows reporting strategy σi, and other agents follow reporting strategy
profile σ−i. Algebraically,

Vi(θ
t, π, σ) = E

[

K
∑

k=t

γk−tri(θ
k
i , π(σ(θk)))

∣

∣

∣
θt, π, σ

]

(5.2)

Here and in all other places going forward, the expectation is taken over future
true types of the agents given the decision policy, and is based on current true
type θ (not the reported type).

When I omit σi or σ−i, I intend that the truthful strategy is followed. When
I omit π, I intend that the expectation is based on execution of π∗. So, for
example,

Vi(θ) = Vi(θi, θ−i, π
∗, σi, σ−i), (5.3)

where σ is the truthful strategy profile. Vi(θ) is the expected utility to agent
i given joint type θ, truthful reporting by other agents, and execution of the
socially optimal policy π∗. Letting Π be the set of all possible decision policies,

∀θt ∈ Θ, π∗ ∈ arg max
π∈Π

∑

i∈I

Vi(θ
t, π) (5.4)
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• V−i is defined analogous to Vi, but is the expected value to agents other than
i (i.e., V−i( · ) =

∑

j∈I\{i} Vj( · )). We will at times consider the value to agents

other than i of a policy π∗
−i that is optimal for them, given state θt (i.e., π∗

−i ∈
arg maxπ

∑

j∈I\{i} Vj(θ
t, π)). I use V−i(θ

t
−i) to denote this value when agents

other than i are truthful, as it is completely independent of i’s state or strategy.
For any σi,

V−i(θ
t
−i) = V−i(θ

t
i, θ

t
−i, π

∗
−i, σi) = E

[

K
∑

k=t

γk−tr−i(θ
k
−i, π

∗
−i(θ

k
−i))

∣

∣

∣
θt, π∗

−i

]

(5.5)

• V is defined analogous to Vi and V−i, but is the expected value to all agents
(i.e., V ( · ) =

∑

i∈I Vi( · )).

• Ti(θ
t
i , θ

t
−i, π, σi, σ−i) (more concisely, Ti(θ

t, π, σ)) is the expected discounted sum
of transfer payments received by agent i under a dynamic mechanism (π, T ).

Ti(θ
t,π, σ) = E

[

K
∑

k=t

γk−tTi(σ(θk))
∣

∣

∣
θt, π, σ

]

(5.6)

Variants for expected transfers received by agents other than i, under truthful
reporting, and under policy π∗ are defined analogous to the V notation.

Given this notation, the restriction to quasilinear utility functions can be expressed
as an assumption that each agent i’s total expected discounted utility given mech-
anism (π, T ) executed forward from a joint state θt given that agents play strategy
profile σ is:

Vi(θ
t, π, σ) + Ti(θ

t, π, σ) (5.7)

5.1.1 Dynamic equilibrium concepts and properties

The goal in dynamic mechanism design is to achieve implementation of desirable
decision policies—typically, the efficient policy π∗—in a game theoretic equilibrium.
In the static setting we saw that the Groves class of mechanisms achieves truthfulness
and efficiency in dominant strategies, i.e., truthtelling is utility-maximizing for each
agent “no matter what”. The strongest notion one could imagine in a dynamic setting
would be for truthfulness to always maximize the utility an agent receives, no matter
what other agents do, now or in the future. But there cannot be an equilibrium
notion that is quite “no matter what” in dynamic environments with uncertainty.
One can maximize expected utility given expectations about how future types will be
realized, but without knowing every random realization that would occur for every
hypothetical action, one cannot act in a way that would never lead to hindsight regret.
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So we take as our goal to achieve an equilibrium in which each agent is best off
playing the equilibrium strategy when others do, in expectation “knowing everything
that is knowable”7 (i.e., knowing the private types of other agents, whatever they
are, but not future state transitions). This is exactly what the within-period ex post
Nash equilibrium concept describes, where there is a strategy profile in which each
agent maximizes his payoff (expected discounted utility) by playing the equilibrium
strategy, given that the other agents do, for every possible joint type.

Definition 5.3 (within-period ex post Nash equilibrium). Given dynamic
mechanism (π, T ), a strategy profile σ constitutes a within-period ex post Nash equi-
librium if and only if, at all times t, for all agents i ∈ I, for all possible true types
θt ∈ Θ, and for all σ′

i,

Vi(θ
t, π, σi, σ−i) + Ti(θ

t, π, σi, σ−i) ≥ (5.8)

Vi(θ
t, π, σ′

i, σ−i) + Ti(θ
t, π, σ′

i, σ−i) (5.9)

A mechanism is incentive compatible (IC) in this equilibrium if each agent maxi-
mizes his payoff by reporting truthfully when others do, for every possible joint type.
A mechanism is individual rational (IR) in this equilibrium if each agent’s payoff
is non-negative in expectation from any possible joint type, given that agents play
equilibrium strategies.

Definition 5.4 (within-period ex post incentive compatible). A dynamic
mechanism (π, T ) is within-period ex post incentive compatible if and only if, at all
times t, for all agents i ∈ I, for all possible true types θt ∈ Θ, and for all σi,

Vi(θ
t, π) + Ti(θ

t, π) ≥ Vi(θ
t, π, σi) + Ti(θ

t, π, σi) (5.10)

One can (and I will) alternatively refer to a within-period ex post incentive compatible
mechanism as “truthful in within-period ex post Nash equilibrium”.

Note that in a within-period ex post incentive compatible mechanism agents will
have the incentive to be truthful going forward (when others are) from any state no
matter what has happened in the past, and in particular even if they have previously
deviated from truth. It may initially surprise some that we are in a private values
setting, yet ex post incentive compatibility does not generally yield truthtelling as
a best-response to non-truthful strategies on the part of other agents. To see why,
consider a dynamic setting in which an agent i will misreport type information in the
current period (and will be truthful subsequently), leading to an action that restricts
the possibility for high social value in future periods. Assume payments have aligned
all agents’ incentives towards maximizing social welfare. An agent j 6= i may benefit

7Thanks to Susan Athey and David Miller for this nicely descriptive phrasing; see also [Athey
and Segal, 2007].
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from reporting a false type to mitigate or counterbalance i’s misreport—the two
misreports combined may restore the efficient decision. Thus within-period ex post
incentive compatibility is really a gold standard for dynamic settings.8

Definition 5.5 (within-period ex post individual rational). A dynamic mech-
anism (π, T ) is within-period ex post individual rational if and only if there exists a
within-period ex post Nash equilibrium strategy profile σ such that at all times t, for
all agents i ∈ I, for all possible true types θt ∈ Θ,

Vi(θ
t, π, σ) + Ti(θ

t, π, σ) ≥ 0 (5.11)

As in the static case, it will often be important that the mechanism is not required
to make payments to the agents in aggregate, as this would mean implementing the
mechanism requires some external source of funding.

Definition 5.6 (no-deficit). A dynamic mechanism (π, T ) has the no-deficit prop-
erty if and only if ∀θt ∈ Θ,

∑

i∈I

Ti(θ
t) ≤ 0 (5.12)

Also as in the static case, the strong ex post equilibrium concept can be
weakened—there may be mechanisms that fail to achieve truthfulness, efficiency,
etc. in the within-period ex post Nash equilibrium solution concept yet meet weaker
criteria. The following definitions extend naturally from the static setting, so I main-
tain the same terminology. In a dynamic setting a Bayes-Nash equilibrium will entail
that agents playing according to the equilibrium maximize expected payoff given be-
liefs about other agents’ types, and given that they play according to the equilibrium.
Let bt

i(θ
t
−i) denote a distribution over the types of agents other than i at t, represent-

ing i’s beliefs about them at t, and let θ̃t
−i be a random variable denoting (from i’s

perspective) the realization of θt
−i.

Definition 5.7 (Bayes-Nash equilibrium). Given dynamic mechanism (π, T ) a
strategy profile σ constitutes a Bayes-Nash equilibrium if and only if, for all agents
i ∈ I, for all possible true types θt ∈ Θ, for common-knowledge beliefs bt

i for each
i regarding the type profile θt

−i for the other agents at every time t that are formed
consistent with Bayesian-updating, and for all σ′

i,

Ebt
i(θ

t
−i)

[Vi(θ
t
i, θ̃

t
−i, π, σi, σ−i)] + Ebt

i(θ
t
−i)

[Ti(θ
t
i , θ̃

t
−i, π, σi, σ−i)] (5.13)

≥ Ebt
i(θ

t
−i)

[Vi(θ
t, θ̃t

−i, π, σ′
i, σ−i)] + Ebt

i(θ
t
−i)

[Ti(θ
t
i , θ̃

t
−i, π, σ′

i, σ−i)] (5.14)

8It is interesting to note that an ex post Nash (rather than dominant strategy) equilibrium
concept is adopted in analysis of iterative combinatorial auctions for similar reasons (see [Parkes,
2006]).



Chapter 5: Dynamic mechanism design 85

We can consider a weakening of the individual rationality property in which each
agent can expect, a priori, to gain from participating in the mechanism (whatever his
type and the types of other agents), yet may in future time-steps expect to lose from
participating further. In an ex ante individual rational mechanism agents will “sign
up” for the mechanism in the beginning (and could potentially even be contractually
bound) but may end up wanting to opt-out depending on how things evolve. Since
the property holds for any true type profile θ0, it does not depend whatsoever on
agent beliefs about other agents’ types; the uncertainty is regarding the realization
of random type transitions in the future.

Definition 5.8 (ex ante individual rational). A dynamic mechanism (π, T ) is ex
ante individual rational if and only if there exists a strategy profile σ such that, for all
agents i ∈ I, for all possible initial true types θ0 ∈ Θ, σ is a Bayes-Nash equilibrium
strategy profile and

Vi(θ
0, π, σ) + Ti(θ

0, π, σ) ≥ 0 (5.15)

There is an analogous weakening of the no-deficit property to “in expectation from
the beginning of the mechanism”:

Definition 5.9 (ex ante no-deficit). A dynamic mechanism (π, T ) ex ante no-
deficit if and only if there exists a within-period ex post Nash equilibrium strategy
profile σ such that, for all possible initial true types θ0 ∈ Θ,

∑

i∈I

Ti(θ
0, σ) ≤ 0 (5.16)

5.2 A simple efficient mechanism

Given this framework for evaluating mechanisms via dynamic equilibrium proper-
ties, we are ready to begin looking for satisfactory instantiations. Given the results of
static mechanism design, a natural place to start is the Groves class of mechanisms,
in which each agent’s utility equals total social utility minus a constant.

Extending this basic idea to the dynamic setting is straightforward. Consider the
following dynamic-basic-Groves mechanism,9 which takes efficient decisions and pays
each agent the reported expected value other agents receive that period:

9This mechanism first appeared in [Cavallo et al., 2006], where we termed it the “sequential-
Groves” mechanism.



Chapter 5: Dynamic mechanism design 86

s1b .

s1a s1c .

s1d .

a1: .5

15

a1: .5

25

a2: 1

0

a1: 1

10

a2: 1

0

a1: 1

25

a2: 1

0

a1, a2: 1

0

(a) Agent 1
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Figure 5.2: Two local agent MDPs: each represents a different agent’s value structure
(with uncertainty) for allocation of a car over a two-day period, once on Friday and
once on Saturday.

Definition 5.10 (dynamic-basic-Groves). The dynamic-basic-Groves mecha-
nism executes decision policy π∗ and, ∀i ∈ I and θt ∈ Θ, transfers:

Ti(θ
t) = r−i(θ

t
−i, π

∗(θt)) (5.17)

The two time-step car allocation example portrayed in Figure 4.5, which I re-
present here in Figure 5.2, provides a convenient setting for illustrating the mecha-
nism. Take γ = 0.9. Here the efficient policy specifies action π∗(s1a, s2a) = a2 (i.e.,
allocate to agent 2 on Friday), π∗(s1a, s2c) = a2 (i.e., allocate to agent 2 on Saturday
if his state is s2c), and π∗(s1a, s2b) = a1 (allocate to agent 1 on Saturday otherwise).
No other joint states occur in equilibrium. So under the dynamic-basic-Groves mech-
anism, if agents report truthfully: in the first time-step the car will be allocated to
agent 2 (action a2), agent 1 will be payed r2(s2a, a2) = 0, and agent 2 will be payed
r1(s1a, a2) = 0. Assume that random state transition (s1a, s2a) → (s1d, s2b) is realized.
Then in the second time-step the car will be allocated to agent 1 (action a1), agent 1
will be payed r2(s2b, a1) = 0, and agent 2 will be payed r1(s1d, a2) = 25.

This mechanism is truthful and efficient in within-period ex post Nash equilibrium.
I won’t provide a full proof here because this fact is entailed by a broader result proved
in the following section, but the intuition is simply that each agent’s (expected)



Chapter 5: Dynamic mechanism design 87

utility from truthful participation equals the expected social utility; then since the
center is acting to maximize this quantity (by implementing policy π∗) deviating
from truthfulness can never be beneficial. In the last step agent 2 wants agent 1 to
receive the car, since agent 1’s value of 25 is higher than agent 1’s value of 20. But,
like the basic-Groves static mechanism, this mechanism’s budget properties severely
undermine its applicability. Typically we will require that mechanisms meet the no-
deficit property, i.e., that total payments made by the center are non-positive so that
no external budget is required for the mechanism’s implementation.

Fortunately, we will see in the next section that, as was the case with the static-
setting basic-Groves mechanism, dynamic-basic-Groves is just the simplest special
case of a broad class of mechanisms that are truthful and efficient in a within-period
ex post Nash equilibrium: the dynamic-Groves mechanisms. We will see, again anal-
ogously to the static setting, that this class completely characterizes the mechanisms
with these properties.

5.3 A characterization of efficient incentive com-

patible mechanisms

The results of this section build on and follow closely the analysis of Groves [1973]

and Green & Laffont [1977]—in fact the result we will see is a rather direct analogue
of Green & Laffont’s characterization of the Groves mechanism as the set of efficient
and strategyproof static mechanisms (see Theorem 2.4). Consider the following class
of “dynamic-Groves” mechanisms, which I name thus because they are the natural
extension of the static Groves class, in which each agent’s transfer payment equals
the reported value of the other agents for the chosen outcomes, minus some constant.

Definition 5.11 (dynamic-Groves mechanism class). A dynamic-Groves
mechanism executes efficient decision policy π∗ and a transfer function T such
that at every time t, ∀θt ∈ Θ, ∀i ∈ I, ∀σi, there is a function Ci : Θ → ℜ such
that, letting Ci(θ

t, σi) = E[
∑K

k=t γ
k−tCi(σi(θ

k
i ), θ

k
−i)) | θ

t, π∗, σi]:

Ti(θ
t, σi) = V−i(θ

t, σi) − Ci(θ
t, σi), (5.18)

and for any two strategies σ′
i and σ′′

i for agent i,

Ci(θ
t, σ′

i) = Ci(θ
t, σ′′

i ) (5.19)

So in any given period the payment to an agent i in a dynamic-Groves mechanism
does not need to equal the reward received by other agents minus a constant, but
summed over time the expected total payments must. Observing that this class of
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mechanisms can be described as follows will be useful for my analysis. Lemma 5.1
specifies that the difference in expected total discounted transfer payments for two
different reporting strategies, given any true type, is the expected difference in value
the other agents obtain (given that they’re truthful) from decisions based on those
reports. This is the essential attribute of a dynamic-Groves mechanism.

Lemma 5.1. A dynamic mechanism (π∗, T ) is a dynamic-Groves mechanism if and
only if:

∀i ∈ I, θt ∈ Θ, σ′
i, σ

′′
i , Ti(θ

t, σ′
i) − Ti(θ

t, σ′′
i ) = V−i(θ

t, σ′
i) − V−i(θ

t, σ′′
i ) (5.20)

Proof. First, it is obvious that any dynamic-Groves mechanism satisfies (5.20). Now,
for any mechanism (π∗, T ) there is some Ci : Θ → ℜ such that Ti(θ

t, σi) = V−i(θ
t, σi)−

C(θt, σi), for every σi; in particular, we can let Ci(θ
t) = r−i(θ

t, π∗(θt)) − Ti(θ
t), ∀θt.

Assume (π∗, T ) satisfies (5.20). Then, substituting in (5.20) for T with V−i and C
corresponding to the expected discounted sum of such a C, we have:

(V−i(θ
t, σ′

i) − C(θt, σ′
i)) − (V−i(θ

t, σ′′
i ) − C(θt, σ′′

i ))

= V−i(θ
t, σ′

i) − V−i(θ
t, σ′′

i ) (5.21)

This implies C(θt, σ′
i) = C(θt, σ′′

i ), and thus (π∗, T ) is a dynamic-Groves mechanism.

This fact allows us to establish the sufficiency direction of the characterization:

Theorem 5.1. All dynamic-Groves mechanisms are truthful and efficient in within-
period ex post Nash equilibrium.

Proof. By Lemma 5.1, for any dynamic-Groves mechanism (π∗, T ), for any θt, i, and
σi, if agents other than i report truthfully:

(Vi(θ
t) + Ti(θ

t)) − (Vi(θ
t, σi) + Ti(θ

t, σi)) (5.22)

= (Vi(θ
t) + V−i(θ

t)) − (Vi(θ
t, σi) + V−i(θ

t, σi)) (5.23)

= V (θt) − V (θt, σi) (5.24)

≥ 0 (5.25)

The final inequality follows from the definition (optimality) of π∗. If it did not hold,
then one could construct a socially superior policy π such that ∀θ ∈ Θ, π(θ) =
π∗(σi(θi), θ−i).

I will now demonstrate that every history-independent dynamic mechanism that
is truthful and efficient in within-period ex post Nash equilibrium is a dynamic-
Groves mechanism. This direction is significantly more involved, and the proof follows
the broad strokes of the Green & Laffont [1977] proof, though things become more
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complex in the dynamic setting. We will see that if the difference in expected transfers
from two reporting strategies does not equal the expected difference in value obtained
by the other agents, then one can construct a hypothetical true type for an agent such
that he would gain by executing the reporting strategy that yields greater transfers.

I will use notation A(θt, σ) to reason about the future sequence of actions that
will occur given true type θt, reporting strategy profile σ, and decision policy π∗.
The distribution over actions that might be taken at time k > t is determined by
the realization of random events through time k − 1, and so I let A(θt, σ) be an
“action sequence mapping” from the space of possible (given θt, σ, and π∗) random

event realizations to a sequence of actions. Given θ̇t, θ
t
∈ Θ, σ′, and σ′′, then,

A(θ̇t, σ′) = A(θ
t
, σ′′) means that π∗(σ′(θ̇t)) = π∗(σ′′(θ

t
)), and moreover (given the

decision at t) for every possible realization of random events at t the decision taken
at time t + 1 will be the same whether the joint type and strategy at t was (θ̇t, σ) or

(θ
t
, σ′), and so on for times t + 2, . . . , K.
The proof of the characterization result for dynamic-Groves is simplified by the

following lemma, which says that in any within-period ex post efficient and IC history-
independent mechanism, given the reported types at time t of agents other than some
i, if two reports by i would cause the center to take the same action at t, i’s transfer
at t is the same regardless of which of the two types he reports.

Lemma 5.2. For an unrestricted type space, if a history-independent dynamic mech-
anism (π∗, T ) is truthful and efficient in within-period ex post Nash equilibrium, then

∀i ∈ I, θt
−i ∈ Θ−i, and θ̇t

i , θ
t

i ∈ Θi,

π∗(θ̇t
i , θ

t
−i) = π∗(θ

t

i, θ
t
−i) ⇒ Ti(θ̇

t
i , θ

t
−i) = Ti(θ

t

i, θ
t
−i) (5.26)

Proof. Consider an arbitrary history-independent dynamic mechanism (π∗, T ) for

which there exists an agent i and types θ̇t
i, θ

t

i, and θt
−i such that π∗(θ̇t

i, θ
t
−i) = π∗(θ

t

i, θ
t
−i)

and Ti(θ
t

i, θ
t
−i) > Ti(θ̇

t
i , θ

t
−i). Consider an agent whose true type at t is θ̇t

i . If i reports
truthfully in all time periods following t, the value and transfers he obtains after t

will be the same regardless of whether he reports θ̇t
i or θ

t

i at t since the same action
will be taken at t. We have:

E

[

Vi(τ(θ̇t
i , θ

t
−i, π

∗(θ̇t
i , θ

t
−i))) + Ti(τ(θ̇t

i , θ
t
−i, π

∗(θ̇t
i , θ

t
−i)))

]

(5.27)

= E

[

Vi(τ(θ̇t
i , θ

t
−i, π

∗(θ
t

i, θ
t
−i))) + Ti(τ(θ̇t

i , θ
t
−i, π

∗(θ
t

i, θ
t
−i)))

]

(5.28)

Given this equality, and since ri(θ̇
t
i , π

∗(θ̇t
i , θ

t
−i)) = ri(θ̇

t
i, π

∗(θ
t

i, θ
t
−i)) and Ti(θ

t

i, θ
t
−i) >

Ti(θ̇
t
i , θ

t
−i), i is better off reporting θ

t

i rather than true type θ̇t
i at t, and thus the

mechanism is not truthful in within-period ex post Nash equilibrium.
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Theorem 5.2. For an unrestricted type space, if a history-independent dynamic
mechanism (π∗, T ) is truthful and efficient in within-period ex post Nash equilibrium,
it is a dynamic-Groves mechanism.

Proof. Assume for contradiction existence of a history-independent dynamic mech-
anism (π∗, T ) that is not a member of the dynamic-Groves class yet is truthful and
efficient in within-period ex post Nash equilibrium. There is an i ∈ I, joint type

(θ
t

i, θ
t
−i), strategies σ′

i and σ′′
i for agent i, and ǫ > 0 such that:

Ti(θ
t

i, θ
t
−i, σ

′
i) − Ti(θ

t

i, θ
t
−i, σ

′′
i ) = V−i(θ

t

i, θ
t
−i, σ

′
i) − V−i(θ

t

i, θ
t
−i, σ

′′
i ) + ǫ (5.29)

Consider a type θ̇t
i correlated with θ

t

i such that any path of state transitions forward
from initial state θ̇t

i would indicate exactly what state transitions would have occurred

if the initial state were instead θ
t

i. Then, there are strategies σ′

θ
t

i

and σ′′

θ
t

i

such that

A(θ̇t
i, θ

t
−i, σ

′

θ
t

i

) = A(θ
t

i, θ
t
−i, σ

′
i) and A(θ̇t

i, θ
t
−i, σ

′′

θ
t

i

) = A(θ
t

i, θ
t
−i, σ

′′
i ). Consider that θ̇t

i is

also such that A(θ̇t
i, θ

t
−i) = A(θ̇t

i, θ
t
−i, σ

′′

θ
t

i

) and, for some 0 < δ < ǫ,

Vi(θ̇
t
i , θ

t
−i) = −V−i(θ̇

t
i , θ

t
−i) + δ (5.30)

= Vi(θ̇
t
i , θ

t
−i, σ

′′

θ
t

i

) = −V−i(θ̇
t
i , θ

t
−i, σ

′′

θ
t

i

) + δ, (5.31)

Vi(θ̇
t
i , θ

t
−i, σ

′

θ
t

i

) = −V−i(θ̇
t
i , θ

t
−i, σ

′

θ
t

i

), (5.32)

and i’s expected value Vi(θ̇
t
i , θ

t
−i, σi) for any strategy σi that yields any action sequence

mapping that is not equal to A(θ
t

i, θ
t
−i, σ

′′
i ) or A(θ

t

i, θ
t
−i, σ

′
i) is −1 times the other

agents’ combined expected value (V−i) for that mapping.10 The valuation implied by
type θ̇t

i is valid, as the expected social value of π∗ executed on truthful reports is δ
better than the expected social value of any policy that yields any alternate action
sequence mapping.

A(θ̇t
i , θ

t
−i) = A(θ

t

i, θ
t
−i, σ

′′
i ) combined with Lemma 5.2 entails that the expected

transfers to i are the same if i’s type at t is θ̇t
i and i is truthful, or if it is θ

t

i and i

10The proof can still go through if we require that values are always non-negative; one can just
take c to be some constant greater than V−i(θ

t

−i
), and specify Vi as above but with c added to the

value for each action-sequence mapping.
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follows reporting strategy σ′′
i . We have:

Ti(θ
t

i, θ
t
−i, σ

′
i) − Ti(θ

t

i, θ
t
−i, σ

′′
i ) (5.33)

= Ti(θ̇
t
i, θ

t
−i, σ

′

θ
t

i

) − Ti(θ̇
t
i , θ

t
−i) (5.34)

= V−i(θ
t

−i, θ
t
−i, σ

′
i) − V−i(θ

t

i, θ
t
−i, σ

′′
i ) + ǫ (5.35)

= V−i(θ̇
t
i , θ

t
−i, σ

′

θ
t

i

) − V−i(θ̇
t
i , θ

t
−i, σ

′′

θ
t

i

) + ǫ (5.36)

= Vi(θ̇
t
i , θ

t
−i) − δ − Vi(θ̇

t
i, θ

t
−i, σ

′

θ
t

i

) + ǫ, (5.37)

from which we can see that:

Ti(θ̇
t
i , θ

t
−i, σ

′

θ
t

i

) + Vi(θ̇
t
i , θ

t
−i, σ

′

θ
t

i

) > Ti(θ̇
t
i , θ

t
−i) + Vi(θ̇

t
i , θ

t
−i) (5.38)

When i’s type is θ̇t
i he is better off reporting according to σ′

θ
t

i

rather than truthfully,

and so the mechanism is not truthful in within-period ex post Nash equilibrium.

Theorem 5.3. For an unrestricted type space, a history-independent dynamic mech-
anism is efficient and within-period ex post incentive compatible if and only if it is a
dynamic-Groves mechanism.

Proof. Follows immediately from Theorems 5.1 and 5.2.

5.4 Ex ante charge dynamic mechanisms

The results of the previous section provide a complete mapping of the space of
possible (history-independent) mechanisms we can consider if we require efficiency and
incentive compatibility in within-period ex post Nash equilibrium. But, as discussed
earlier, there are additional criteria that will typically be applied to the design of
a mechanism. Individual rationality is central; one could legitimately argue that
a mechanism that is not IR has no hope of being truly efficient, because reaching
efficient outcomes requires the participation of agents, and self-interested agents who
may be worse off from participating may not do so. No-deficit is often essential for
feasibility of the mechanism.

The dynamic-basic-Groves mechanism satisfies the within-period ex post IC and
IR properties (IR requires an assumption that expected social value is positive, which
is natural) but is not no-deficit. But since we know that any dynamic-Groves mecha-
nism is within-period ex post IC, we can try to define the “charge” term Ci for agent
i in a dynamic-Groves mechanism such that it recovers just enough of the transfer
payments to (weakly) balance the budget, but not so much that it makes participating
in the mechanism undesirable (i.e., breaks the IR property).
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The dynamic-basic-Groves mechanism pays each agent the (reported) value ob-
tained by other agents, and it is thus a dynamic-Groves mechanism where the con-
stant C charge functions are null. But we can see that any mechanism that modifies
dynamic-basic-Groves by imposing a charge on each agent at each time period that is
independent of anything that agent has ever reported will also be a dynamic-Groves
mechanism. We can specify the charge for each agent in a way such that, in expecta-
tion from the beginning of the mechanism, a deficit will not result and at the same
time agent payoffs will be non-negative. I will refer to this as the dynamic-EAC (ex
ante charge) mechanism:

Definition 5.12 (dynamic-EAC). The dynamic-EAC mechanism executes de-
cision policy π∗ and, ∀i ∈ I and θt ∈ Θ, transfers:

Ti(θ
t) = r−i(θ

t
−i, π

∗(θt)) − (1 − γ)V−i(θ
0
−i) (5.39)

Theorem 5.4. The dynamic-EAC mechanism is truthful and efficient in within-
period ex post Nash equilibrium, ex ante individual rational, and ex ante no-deficit.

Proof. First observe that for any i ∈ I, θ0 ∈ Θ, and any two strategies σ′
i and

σ′′
i , (1 − γ)V−i(θ

0
−i, π

∗
−i, σ

′
i) = (1 − γ)V−i(θ

0
−i, π

∗
−i, σ

′′
i ), since V−i(θ

0
−i) depends only

on the states of other agents at the beginning of the mechanism, which i cannot
possibly impact. Thus dynamic-EAC is a dynamic-Groves mechanism with Ci(θ

t) =
(1−γ)V−i(θ

0
−i), ∀θt. Therefore, by Theorem 5.3, dynamic-EAC is truthful and efficient

in within-period ex post Nash equilibrium.
The mechanism is also ex ante IR. Consider the truthful reporting strategy profile.

In expectation from the beginning of the mechanism the reward obtained intrinsically
by any agent plus the payment he receives is greater than the charge he must pay:

E

[

K
∑

k=0

γk
(

ri(θ
k
i , π

∗(θk)) + r−i(θ
k
−i, π

∗(θk)) − (1 − γ)V−i(θ
0
−i)

)
∣

∣

∣
θ0, π∗

]

(5.40)

= Vi(θ
0) + V−i(θ

0) − V−i(θ
0
−i) (5.41)

= V (θ0) − V−i(θ
0
−i) (5.42)

≥ 0, (5.43)

where the final inequality holds by optimality of π∗.
Finally, note that in expectation from the beginning of the mechanism, in the

truthful equilibrium the payments made by the mechanism to any agent i equal
V−i(θ

0) − V−i(θ
0
−i). V−i(θ

0
−i) ≥ V−i(θ

0) by optimality (for agents other than i) of π∗
−i,

and thus the mechanism is ex ante no-deficit
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There are a couple additional interesting things to note about this mechanism.
First, the properties (incentives and budget) do not depend at all on when the charge
terms imposed on the agents are executed, as long as they are scaled appropriately
according to the discount factor. For instance, the mechanism could just as well have
been defined to have each agent i pay V−i(θ

0
−i) at time 0 with no further charges in

the periods to follow.
Also, if the initial state θ0 is common knowledge (and only the realized state

transitions are private), each i can be charged (1−γ)V−i(θ
0) rather than (1−γ)V−i(θ

0
−i)

each period; Theorem 5.4 continues to hold, and in fact the expected revenue from the
beginning of the mechanism equals 0, since the expected aggregate value of payments
made to any agent are 0.

5.5 The dynamic-VCG mechanism

The results of the previous section are positive, but leave room for improvement.
In many scenarios the distinction between ex ante individual rationality or no-deficit
and within-period ex post individual rationality or guaranteed no-deficit will be sig-
nificant. The mechanism I present in this chapter strengthens the dynamic-EAC
mechanism in just these ways. Bergemann & Välimäki’s [2006] dynamic-VCG mech-
anism, we will see, is efficient, IC, and IR in within-period ex post Nash equilibrium,
and is also no-deficit. I will demonstrate efficiency and IC, again, by showing that
dynamic-VCG is a dynamic-Groves mechanism and then referring to Theorem 5.3.
The nature of the proof will at the same time demonstrate the IR and no-deficit
properties of the mechanism.

Finally, the revenue a mechanism generates—or, how much of the value from a
sequence of decisions is acquired by the center rather than kept by the agents—is also
an important evaluation metric. Of course in many business settings a mechanism
designer would seek to implement a mechanism in which revenue is high, extracting as
much value as possible; I will show that dynamic-VCG is optimal here (if efficiency is
required). In the next chapter I follow the approach of Chapter 3 and try to minimize
rather than maximize revenue.

Definition 5.13 (dynamic-VCG). [Bergemann and Valimaki, 2006] The
dynamic-VCG mechanism executes policy π∗ and, ∀i ∈ I and θt ∈ Θ, transfers:

Ti(θ
t) = r−i(θ

t
−i, π

∗(θt)) + γE[V−i(τ(θt
−i, π

∗(θt)))] − V−i(θ
t
−i) (5.44)

Recall that V−i(θ
t
−i) denotes V−i(θ

t
i, θ

t
−i, π

∗
−i, σi), and thus E[V−i(τ(θt

−i, π
∗(θt)))]

is the expected value that agents other than i would obtain from a policy that is
optimized for them forward from the joint type that results when the socially optimal
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policy π∗ is followed for one time-step. Intuitively, at each time-step each agent must
pay the center a quantity equal to the extent to which his current type report inhibits
other agents from obtaining value in the present and in the future.11
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(a) Agent i’s MDP.
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(b) Agent j’s MDP.

Figure 5.3: A simple 2-agent, 2 time-step environment. Action a2 is omitted in the
second time-step, which indicates that it yields 0 value to both agents (the state-
transition it yields in the final period is irrelevant).

Consider the example illustrated in Figure 5.3. The optimal policy is to take
action a1 in initial joint state B, H . Dynamic-VCG specifies that agent 1’s payment
T1(B, H) in this first period equal −4, since this is the long-term cost to the other
agent from taking a1 rather than a2 in the first time-step; T2(B, H) = 0 since there
is no “cost” to agent 1. In the second period both T1(C, J) and T2(C, J) are 0, since
the system-optimal decision a1 is also optimal for both agents individually (trivially
here, as it is the only choice yielding non-zero value).

I now present a new, simple proof of the incentive compatibility of dynamic-
VCG (originally proved by Bergemann & Välimäki [2006]), which becomes possible
because my analysis of dynamic-Groves mechanisms allows me to cast the question of
whether or not dynamic-VCG is efficient in a truthtelling ex post Nash equilibrium
as a question of whether or not it is a dynamic-Groves mechanism. I will show that
it is, by observing that when other agents are truthful the expected sum, over time,
of the first term in (5.44) equals V−i(θ

t, σi), and then the expected sum of the rest of
the payment can be represented as a function independent of anything i reports.

Theorem 5.5. The dynamic-VCG mechanism is a dynamic-Groves mechanism.

11Bergemann & Välimäki [2007] have more recently referred to their mechanism as the “dynamic
marginal contribution mechanism”.
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Proof. Pick any agent i and joint type θt, assume all other agents report truthfully,
and consider any strategy σi for i. Let θk be the random variable denoting the true
joint type at time k > t given that other agents are truthful, i follows σi, and π∗ is
executed from θt. We have:

Ti(θ
t, σi) = E

[

K
∑

k=t

γk−t(r−i(θ−i, π
∗(σi(θ

k
i ), θ

k
−i)) + γ V−i(θ

k+1
−i ) − V−i(θ

k
−i))

∣

∣

∣
θt, π∗, σi

]

(5.45)

Extracting out the sum over the first term and reversing the second and third terms,
we see this:

= V−i(θ
t, σi) − E

[

K
∑

k=t

γk−t(V−i(θ
k
−i) − γV−i(θ

k+1
−i ))

∣

∣

∣
θt, π∗, σi

]

(5.46)

Expanding out the summation, then extracting V−i(θ
t
−i) out from the first summation

and canceling out, we see this:

= V−i(θ
t, σi) − E

[

K
∑

k=t

γk−tV−i(θ
k
−i) − γ

K
∑

k=t

γk−tV−i(θ
k+1
−i )

∣

∣

∣
θt, π∗, σi

]

(5.47)

= V−i(θ
t, σi) − V−i(θ

t
−i) − E

[

γ

K−1
∑

k=t

γk−tV−i(θ
k+1
−i ) − γ

K
∑

k=t

γk−tV−i(θ
k+1
−i )

∣

∣

∣
θt, π∗, σi

]

(5.48)

= V−i(θ
t, σi) − V−i(θ

t
−i) (5.49)

The move from (5.48) to (5.49) is valid because for any θK+1
−i , V−i(θ

K+1
−i ) = 0

(there are no more decisions to be made after time K). Thus dynamic-VCG is a
dynamic-Groves mechanism, since I have shown that, letting Ci(θ

t) = V−i(θ
t
−i) −

γE[V−i(τ(θt
−i, π

∗(θt)))], Ci(θ
t, σi) = V−i(θ

t
−i) for any σi.

Theorems 5.3 and 5.5 together yield the following:

Corollary 5.1. [Bergemann and Valimaki, 2006] The dynamic-VCG mechanism is
truthful and efficient in within-period ex post Nash equilibrium.

The following statements about the expected equilibrium payoffs follow immedi-
ately from the proof of Theorem 5.5:

Corollary 5.2. Utility to any agent i in the truthful equilibrium under dynamic-VCG,
in expectation forward from any any type θt, is:

V (θt) − V−i(θ
t
−i) (5.50)
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By optimality of π∗, we have:

Corollary 5.3. The dynamic-VCG mechanism is within-period ex post individual
rational.

Corollary 5.4. Social utility in the truthful equilibrium under dynamic-VCG, in ex-
pectation forward from any θt, is:

n · V (θt) −
∑

i∈I

V−i(θ
t
−i) (5.51)

Corollary 5.5. Expected revenue in the truthful equilibrium under dynamic-VCG, in
expectation forward from any θt, is:

∑

i∈I

V−i(θ
t
−i) − (n − 1)V (θt) (5.52)

Dynamic-VCG never runs a deficit in any period, regardless of what types agents
report; thus the no-deficit property is robust to “off-equilibrium” play:

Theorem 5.6. The dynamic-VCG mechanism is no-deficit.

Proof. By optimality (for agents other than i) of π∗
−i, for any type θt and any strategy

profile σ, r−i(σ−i(θ
t
−i), π

∗(σ(θt))) + γE[V−i(τ(σ−i(θ
t
−i), π

∗(σ(θt)))] ≤ V−i(σ−i(θ
t
−i)).

Thus the net payment to each agent in every time period is at most 0 and no deficit
can ever result.

It is worth noting that agents can potentially end up worse off from participating
in dynamic-VCG (so the mechanism is not ex post IR in as strong a sense as it is
no-deficit), though in expectation from any state they will not. Consider again the
example in Figure 5.3 with truthful reporting. The optimal policy is to take action a1

in the first period. In this time-step agent 1 will obtain no value and receives payment
−4 (he pays 4 to the center). However, there is only a 0.5 probability that he will
transition from state C to E in the second time-step, obtaining value 10. If instead
he transitions to state F he will obtain no value and his total payoff will be −4. Thus
non-negative payoff is only achieved in expectation forward from every state.

5.5.1 Revenue maximization

I now show that if individual rationality is required in addition to efficiency and
incentive compatibility, no history-independent dynamic mechanism yields more ex-
pected revenue than dynamic-VCG in within-period ex post Nash equilibrium, for-
ward from any joint type θt.
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Theorem 5.7. For an unrestricted type space, among all history-independent mecha-
nisms that are efficient, incentive compatible, and individual rational in within-period
ex post Nash equilibrium, dynamic-VCG yields the most expected revenue in the truth-
ful equilibrium going forward from every θt.

Proof. The expected equilibrium revenue under dynamic-VCG given any joint type
θt is:

∑

i∈I

[V−i(θ
t
−i) − V−i(θ

t)] (5.53)

Consider any history-independent dynamic-Groves mechanism (π∗, T ) that yields
more revenue (this is without loss of generality by Theorem 5.3). This mechanism
must define C1, . . . , Cn such that

∑

i∈I

Ci(θ
t) >

∑

i∈I

V−i(θ
t
−i), (5.54)

since revenue under a dynamic-Groves mechanism is
∑

i∈I [C(θt) − V−i(θ
t)]. This in

turn implies there is an i ∈ I such that:

Ci(θ
t) > V−i(θ

t
−i) (5.55)

Recall that Ci(θ
t) must be independent of i’s type reports, and thus independent

of his actual realized types. So consider the case in which V (θt) = V−i(θ
t
−i) (for

instance, this holds when i’s value is always 0). Then agent i’s expected payoff is:

V (θt) − Ci(θ
t) = V−i(θ

t
−i) − Ci(θ

t) (5.56)

< V−i(θ
t
−i) − V−i(θ

t
−i) (5.57)

= 0, (5.58)

and thus the mechanism is not within-period ex post individual rational.

Given that dynamic-VCG is revenue maximizing, it is natural to ask whether
there are other dynamic-Groves mechanisms with the same desirable efficiency, IC,
IR, and no-deficit properties that yield less revenue. I will pursue that question in the
following chapter. But first I briefly review a positive result in which the budget is
perfectly balanced (revenue is always 0) at the expense of weaker equilibrium incentive
and individual rationality properties.

5.6 The dynamic-balanced mechanism

The dynamic-balanced mechanism of Athey & Segal [2007] provides an analogue of
the AGV mechanism for dynamic settings. It is a strongly budget-balanced mechanism
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that implements the efficient decision policy, but in a weaker equilibrium concept than
the dynamic-Groves mechanisms, and with a weaker individual rationality property
than dynamic-VCG. Intuitively, in every time period each agent receives a payment
equal to the extent to which his most recent type report changes the expected value
that the other agents will receive in the future; each agent is then also charged a
“rebalancing” quantity.

Definition 5.14 (dynamic-balanced mechanism). [Athey and Segal, 2007]

Letting θt−1 denote the type reported in time t−1 (tracked in the center’s type θt
c),

and letting θ̃t
i be a random variable representing i’s type at t, the dynamic-balanced

mechanism executes decision policy π∗ and, ∀i ∈ I and θt ∈ Θ, transfers:

Ti(θ
t) = ∆i(θ

t
i , θ

t−1) −
1

n − 1

∑

j∈I\{i}

∆j(θ
t
j , θ

t−1), where (5.59)

∆i(θ
t
i , θ

t−1) = E[V−i(θ
t
i , θ̃

t
−i) | θ

t−1
−i ] − E[V−i(θ̃

t
i , θ̃

t
−i) | θ

t−1] (5.60)

It is important to note that the payments at time t are actually based on reported
type profile θt+1 (i.e., Ti(θ

t) actually occurs in time-step t−1). This timing is distinct
from that employed in the other mechanisms presented in this chapter, and goes as
follows: time-step t starts when the center takes an action; during t each agent will
experience some value as he undergoes a type transition; still in the same period he
can report his next type to the center and then receive a transfer payment; when
the center takes the next action the next period begins. But the very beginning of
execution is special, with initial types reported and transfers executed prior to the
first action and thus the commencing of what I am calling time-step 0. So there is a
transfer payment immediately preceding 0 based on reported initial types and prior
beliefs about agent types (which could be considered θ−1), and then there is a transfer
made in time-period 0 based on type θ1, which is reported in time 0 after the first
action has occurred.12

Theorem 5.8. [Athey and Segal, 2007]13 The dynamic-balanced mechanism is truth-
ful and efficient in Bayes-Nash equilibrium, strongly budget-balanced, and ex ante
individual rational.

12In Chapter 7 I describe timing issues in detail; the curious reader can look ahead to Figure 7.3
for an illustration of how this timing works.

13These incentive and budget properties are entailed by Proposition 2 in [Athey and Segal, 2007],
which is a somewhat broader result indicating that any mechanism that is truthful and efficient in
Bayes-Nash equilibrium can be transformed into a strongly budget-balanced mechanism with the
same equilibrium incentives.
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Consider, for a moment, only the first term in each agent’s transfer payment
at some period in which type θt has been reported; the second term is a rebalanc-
ing term and for now we will imagine it was not there. It can be shown that the
expected discounted sum of transfers going forward for each agent i would equal
E[V−i(θ

t
i , θ̃

t
−i, σi) | θ

t−1
−i ]; everything else cancels out in the expectation. This aligns

agent i’s interests with truthtelling since the center is following an efficient policy
π∗. The equilibrium is Bayes-Nash and not within-period ex post, though, because
if i knew θt

−i, this could change his expected payoff (and his incentives) from the
expectation of his payoff based on θt−1

−i . Now considering the rebalancing term, it
can be shown that this does not distort incentives (in the context of a Bayes-Nash
equilibrium).

The mechanism, or a simple variant of it, is ex ante IR. We can assume that the
total expected social value from running the mechanism is non-negative—otherwise
why even run it? Then since all value is maintained within the group of agents, only
the question of who gets how much remains. One can then make ex ante payments
prior to any types being reported that distribute the expected social value in a way
such that each agent’s expected utility is non-negative.14

5.7 Summary

In this chapter I addressed the problem area of dynamic mechanism design, which
is intuitively the study of how good outcomes can be reached among a group of
self-interested agents in sequential decision problems.

I specified the dynamic-Groves class of mechanisms, and proved that it completely
characterizes the set of dynamic mechanisms that are efficient and incentive compati-
ble in within-period ex post Nash equilibrium given a context of history-independent
transfers. I presented an instance of the Groves class (dynamic-EAC) that imposes a
charge on each agent that depends only on the initial types reported by other agents;
this allows the mechanism to achieve ex ante IR and ex ante no-deficit without distort-
ing incentives. I presented Bergemann & Välimäki’s dynamic-VCG mechanism, which
has stronger IR and no-deficit properties, and I used the dynamic-Groves character-
ization result to produce a simple proof that the mechanism is truthful and efficient
in within-period ex post Nash equilibrium. I proved that dynamic-VCG is revenue
maximizing (payoff minimizing for the agents) among all within-period ex post IR
and no-deficit mechanisms in the dynamic-Groves class. Finally, I presented Athey
& Segal’s [2007] dynamic-balanced mechanism, which is strongly budget-balanced, but
is truthful and efficient in only Bayes-Nash equilibrium and satisfies only ex ante

14I am grateful to Susan Athey for a personal explication of this point and others regarding
the mechanism; ex ante IR is not discussed in [Athey and Segal, 2007], but special conditions are
identified under which a stronger interim individual rationality property will hold.
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individual rationality. There are many important open problems and directions for
future research; I defer a discussion of these until Chapter 9.



Chapter 6

A dynamic redistribution
mechanism

Synopsis∗

Imagine a city that has invested in an expensive mobile health clinic to serve the
medical needs of the poor and uninsured. There are five separate neighborhoods in
the city that would like to use the clinic, and so the city government decides to allocate
it repeatedly to a single neighborhood for one week periods, reevaluating every week.
The government wants the clinic to go to the neighborhood that needs it most and
can use it most effectively each week. For the government to determine which choice
is best, neighborhood leaders must make weekly claims about their estimated value
for the clinic. When the clinic is allocated to a particular neighborhood in one week,
in the next week that neighborhood’s value for it is likely to change—perhaps a
significant portion of the needs have been filled, or perhaps the local population has
learned about its presence and is thus better able to exploit it. The government does
not want to extract large payments from the communities that use the clinic—it is a
public resource. The goal is simply to maximize the aggregate welfare of the city’s
communities. With settings like this in mind, in this chapter I provide a mechanism
for multi-armed bandit problems that seeks to minimize the payments made by agents
to the center in a dynamic context.

In the previous chapter we saw that the dynamic-VCG mechanism provides the
proper incentives to achieve efficient decisions in sequential problems, and is also
within-period ex post individual rational and never runs a deficit. Moreover we saw
that it is revenue maximizing among all mechanisms with these properties. In the
static setting for unrestricted valuations we found that it is impossible to provide
greater payoff to the agents while maintaining the essential properties of VCG; VCG

∗Many of the results in this chapter appear in a paper titled “Efficiency and Redistribution in
Dynamic Mechanism Design”, which will be published in the proceedings of the ACM-EC 2008
conference [Cavallo, 2008].
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is simultaneously revenue maximizing and revenue minimizing, i.e., it is the only
mechanism with these desirable properties (see Corollary 3.1).

Redistribution is possible in the static setting only by using domain information
about agent type spaces. For instance, in single-item allocation problems it is typically
known, independent of any agent’s report, that all agents that don’t receive the item
obtain value 0. I follow the same approach here, considering a class of problems
that includes scenarios in which a single item is to be allocated repeatedly. This
domain and others fall in the category of multi-armed bandit settings, the inherent
structure of which will allow for significant redistribution of VCG revenue. The
dynamic redistribution mechanism I propose generalizes the core ideas underlying its
static counterpart, but the extension is not straightforward because of dependencies
between future types and current type reports.

6.1 Multi-armed bandits and dynamic-VCG

Recall from Chapter 4 (Section 4.4) that multi-armed bandit problems are se-
quential decision-making problems with a strong factorization of the state space.
Specifically, in a MAB there are n Markov chains and exactly one can be activated
per time-step. When a process is activated at time t, a reward is obtained that
depends only on the local state of that process, at which point the process’s state
changes (and all other processes’ states remain unchanged).

Among the many good reasons to consider multi-armed bandit problems are: the
range of real-world problems that, to a reasonable approximation, fit the restrictions
of the model (including the health clinic scenario described at the beginning of this
chapter); the elegance of the solutions we can achieve; and perhaps most importantly,
the computational tractability of actually determining efficient decision policies. In a
seminal result, Gittins showed that the optimal decision policy in a MAB setting can
be computed in time linear in the number of processes (see Theorem 4.1).

There is a natural multi-agent interpretation of multi-armed bandits: a Markov
process is associated with each agent, and the state of that process is the local state
(type) of the agent. Note that the MAB setting is simply a specialization of the
general MDP model I used in Chapter 5, in which MDPs are restricted to be Markov
chains and only one can be activated per time-step. The most natural class of real-
world multi-agent MAB problems is probably that of repeated single-item allocation,
e.g., of an expensive public good such as a supercomputer, space telescope, wireless
bandwidth, etc. Gittins’s result is remarkable in that it implies that all problems of
this nature have a computationally scalable solution, as the complexity grows only
linearly in the number of agents. This is in stark contrast to the general MDP case,
in which the computation required to determine efficient policies effectively grows
exponentially with the number of agents in the worst case.
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6.1.1 Dynamic-VCG in MAB settings

In multi-agent MAB domains, the dynamic-VCG payment structure reduces to
a very simple form. Because the policy that would be optimal if we disregarded an
agent that is not “activated” (e.g., allocated the resource) is optimal if we do consider
him, the immediate externality any such agent imposes is 0, and thus his payment is
0. For the agent i that is activated, the externality he imposes on the other agents is
simply the cost of them having to wait one period since their types do not change. I
will write π(θ) = i to indicate that i is selected by π when type θ is reported.

Definition 6.1 (Dynamic-VCG in MAB worlds). [Bergemann and Valimaki,
2006] Executes decision policy π∗ and, ∀i ∈ I and θt ∈ Θ, transfers:

Ti(θ
t) =

{

−(1 − γ)V−i(θ
t
−i) if π∗(θt) = i

0 otherwise

To understand that this is in fact the form dynamic-VCG takes in MAB settings,
consider that if π∗(θt) = i, then:

r−i(θ
t
−i, π

∗(θt)) + γE[V−i(τ(θt
−i, π

∗(θt))] − V−i(θ
t
−i) (6.1)

= 0 + γV−i(θ
t
−i) − V−i(θ

t
−i) (6.2)

= − (1 − γ)V−i(θ
t
−i), (6.3)

since τ(θt
−i, π

∗(θt)) = θt
−i when π∗(θt) = i in a MAB. Then for all j ∈ I \ {i}, note

that the immediate value obtained by agents other than j is the immediate value
obtained by i, and π∗(θt) = π∗(θt

−j) = i, so:

r−j(θ
t
−j, π

∗(θt)) + γE[V−j(τ(θt
−j , π

∗(θt))] − V−j(θ
t
−j) (6.4)

= ri(θ
t
i , π

∗(θt)) + γE[V−j(τ(θt
−j , π

∗(θt))] − ri(θ
t
i , π

∗(θt)) − γE[V−j(τ(θt
−j , π

∗(θt))] (6.5)

= 0 (6.6)

The expected revenue generated by dynamic-VCG in a MAB setting is quite large.
At the end of this chapter I present results of an empirical analysis that demonstrates,
among other things, that on average over a uniform distribution of agent valuations,
only about 10–20% of the value of a decision policy is enjoyed by the agents (the rest
is payed to the center). This motivates the substance of this chapter, the introduction
of a dynamic redistribution mechanism.1

1This is the first time, to my knowledge, that the idea of redistribution has been applied to a
dynamic setting.
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6.2 Dynamic-RM

The dynamic redistribution I define extends the intuition underlying the static
mechanism RM: if we can compute a quantity each period such that the expected
sum of these values over time in the future is both independent of i’s reporting strategy
and guaranteed to be lower than the revenue that will result, we can give back a share
to i without distorting his incentives or running a deficit.

For all time-periods t and all possible reported types θt, let w(θt, π∗) denote the
revenue that would result in period t under dynamic-VCG (i.e., (1 − γ)V−j(θ

t
−j) for

π∗(θt) = j). Similarly, for any i ∈ I, let w(θt
−i, π

∗
−i) be the revenue that would result

at t if dynamic-VCG were executed and agent i was not present in the system (i.e.,
(1 − γ)V−i,j(θ

t
−i,j) for π∗

−i(θ
t) = j).

Now let W (θt, π∗) denote the total expected discounted future revenue
that results under dynamic-VCG, given that agents report truthfully; i.e.,
W (θt, π∗) = E[

∑K
k=t γ

k−tw(θk, π∗) | θt, π∗]. Likewise, let W (θt
−i, π

∗
−i) =

E[
∑K

k=t γ
k−tw(θk

−i, π
∗
−i) | θ−i, π

∗
−i]. So W (θt

−i, π
∗
−i) is the expected revenue that would

result going forward from θt if agent i were not present in the system. I now use these
concepts to define dynamic-RM:

Definition 6.2 (Dynamic-RM). Executes decision policy π∗ and, ∀i ∈ I and
θt ∈ Θ, transfers:

Ti(θ
t) =







−(1 − γ)V−i(θ
t
−i) + 1

n
(1 − γ)W (θt

−i, π
∗
−i) if π∗(θt) = i

1
n

w(θt
−i, π

∗
−i) otherwise

The mechanism is dynamic-VCG plus a revenue “redistribution payment”. Let
Zi : Θ → ℜ denote this redistribution payment function. We have, ∀i ∈ I and θt ∈ Θ,

Zi(θ
t) =







1
n

(1 − γ)W (θt
−i, π

∗
−i) if π∗(θt) = i

1
n

w(θt
−i, π

∗
−i) otherwise

As we are about to see, this payment is defined such that the expected sum of
redistribution over time to each agent i is a constant fraction of the expected revenue
that would have resulted if i were not present in the system.

Theorem 6.1. Dynamic-RM is truthful and efficient in within-period ex post Nash
equilibrium.

Proof. Since dynamic-VCG is a dynamic-Groves mechanism, by Theorem 5.1 it is
sufficient to show that for every agent i, at all times t, for all θt ∈ Θ and all σ′

i, σ
′′
i ,
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letting Z(θt, σi) = E[
∑K

k=t γ
k−tZi(σi(θ

k
i ), θ

k
−i) | θ

t, π∗, σi],

Z(θt, σ′
i) = Z(θt, σ′′

i ) (6.7)

This would imply that dynamic-RM is a dynamic-Groves mechanism. Consider an
arbitrary indicator function h : N → {0, 1}, and define Yh : Θ−i ×N → ℜ as follows:

Yh(θ−i, t) =



























0 if t > K, else

(1 − γ)W (θ−i, π
∗
−i) + γYh(θ−i, t + 1) if h(t) = 0

w(θ−i, π
∗
−i) + γ

∑

θ′
−i∈Θ−i

τ(θ−i, π
∗
−i, θ

′
−i)Yh(θ

′
−i, t + 1) if h(t) = 1,

where τ(θ−i, π
∗
−i, θ

′
−i) denotes the probability that θ′−i ∈ Θ−i will result when π∗

−i(θ−i)
is taken with current type θ−i ∈ Θ−i.

Observe that 1
n

Yh(θ
t
−i, t) corresponds exactly to the expected discounted value of

total future redistribution payments to i given θt and truthful reporting by all j 6= i
under a policy that chooses i exactly when h(k) = 1, for all times k ≥ t. This is
because, crucially, in MAB settings ∀θ ∈ Θ s.t. π∗(θ) 6= i, π∗(θ) = π∗

−i(θ−i). Let h1

denote the indicator function with h1(k) = 1, ∀k ≥ 0. By definition, for all t, θt, and
i, Yh1(θt

−i, t) = E[
∑K

k=t γ
k−tw(θk

−i, π
∗
−i) | θ

t
−i, π

∗
−i] = W (θt

−i, π
∗
−i). I will now show that

for all t, θt, and i, for any indicator function h,

Yh(θ
t
−i, t) = Yh1(θt

−i, t) = W (θt
−i, π

∗
−i) (6.8)

Take arbitrary t, θt, i, and h 6= h1, and assume for contradiction that ∃ε > 0
s.t. |Yh(θ

t
−i, t)−Yh1(θt

−i, t)| ≥ ε. Now consider the greatest k ≤ K such that h(k) = 0;
call this kh. Assume first that kh exists (it may not if K = ∞). Define h′ to be
identical to h except with h′(kh) = 1. Consider any type θ̇kh

−i associated with a
(kh − t)th expansion of Yh, given θt

−i and h. We have that:

Yh(θ̇
kh

−i, kh) − Yh′(θ̇kh

−i, kh) (6.9)

= (1 − γ)W (θ̇kh

−i, π
∗
−i) + γE

[

K
∑

k=0

γkw(θ̇kh+k
−i , π∗

−i)
]

− E

[

K
∑

k=0

γkw(θ̇kh+k
−i , π∗

−i)
]

(6.10)

= (1 − γ)W (θ̇kh

−i, π
∗
−i) + γW (θ̇kh

−i, π
∗
−i) − W (θ̇kh

−i, π
∗
−i) (6.11)

= 0 (6.12)

Note that for an indicator h1′ that has h1′(k) = 1 for all k ≥ kh, Yh1′ (θ̇
kh

−i, kh) =

E[γk
∑K

k=0 w(θkh+k
−i , π∗

−i) | θ̇
kh

−i, π−i]. This allows the move to (6.10). The move from
(6.10) to (6.11) is just by definition of W (θ−i, π

∗
−i) for any θ−i.
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Since Yh(θ
t
−i, t) and Yh′(θt

−i, t) differ only from the (kh − t)th expansion onwards,

and since I showed Yh(θ̇
kh

−i, kh)−Yh′(θ̇kh

−i, kh) = 0 for arbitrary type θ̇kh

−i, this proves that
Yh(θ

t
−i, t)− Yh′(θt

−i, t) = 0. So for an arbitrary h, switching the last “0-bit” (≤ K) to
a “1-bit” does not change Yh(θ

t
−i, t). We can imagine repeating this process, applying

it to the resulting function h′ yielding h′′, and then to h′′ yielding h′′′, and so on. This
chain can be continued until we reach h1, establishing that Yh(θ

t
−i, t)−Yh1(θt

−i, t) = 0.

Now for the case in which there is no finite kh, consider the indicator function ĥ
identical to h except with ĥ(k) = 1 for all k ≥ some kh. We can choose kh arbitrarily
high enough such that γkh |Yĥ(θ

kh

−i, kh)−Yh(θ
kh

−i, t)| < ε for any θkh

−i (since we assume the
maximum immediate value any action can yield for any agent is finite). Then since
Yĥ(θ

kh

−i, kh) = Yh1(θt
−i, t) (by the first part of the proof), we have that |Yh(θ

t
−i, t) −

Yh1(θt
−i, t)| < ε. This contradicts our assumption that |Yh(θ

t
−i, t) − Yh1(θt

−i, t)| ≥ ε.
Since ε was chosen arbitrarily, this proves the validity of (6.8).

Note again that any agent i’s only influence on his redistribution payments is
via the policy that is implemented. Then, if we imagine h(t), h(t + 1), . . . as the
sequence corresponding to execution of one sequence of actions, and h′(t), h′(t+1), . . .
as that corresponding to any other, we can see that the total expected discounted
redistribution payments for i are the same. This combined with equation (6.8) implies
that for any reporting strategies σ′

i and σ′′
i ,

Z(θt, σ′
i) = Z(θt, σ′′

i ) =
1

n
W (θt

−i, π
∗
−i) (6.13)

So dynamic-RM is a dynamic-Groves mechanism, and the theorem follows by appeal
to Theorem 5.1.

Theorem 6.2. Dynamic-RM is within-period ex post individual rational.

Proof. Since dynamic-VCG is within-period ex post IR, it is sufficient to show that
∀i ∈ I and θt ∈ Θ, Zi(θ

t) ≥ 0. This holds trivially from the definition of Zi, ∀i ∈ I,
as the hypothetical revenue that would result for any subset of agents in I is always
greater than or equal to 0. This can be seen directly from the dynamic-VCG payment
rule, from which revenue expectations are derived.

Theorem 6.3. Dynamic-RM is no-deficit.

Proof. Since dynamic-VCG is no-deficit and yields revenue w(θ, π∗) in any period in
which joint state θ was reported, it is sufficient to show that, for every θt ∈ Θ, letting
i∗ = π∗(θt):

∑

i∈I

Zi(θ
t) ≤ w(θt, π∗) = (1 − γ) V−i∗(θ

t
−i∗) (6.14)
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This, in turn, follows if for all i ∈ I and θt ∈ Θ, n ·Zi(θ
t) ≤ w(θt, π∗). First note that

∀i 6= i∗:

n · Zi(θ
t) = w(θt

−i, π
∗
−i) ≤ w(θt, π∗), (6.15)

where the inequality holds simply by observation that V−i,j(θ−i,j) ≤ V−i(θ−i), ∀θ ∈
Θ, i, j ∈ I (by optimality of a policy π∗

−i,j for the group of agents excluding i and
j). To finish the proof we must show that n · Zi∗(θ

t) ≤ w(θt, π∗), i.e., that (1 −
γ)W (θt

−i∗ , π
∗
−i∗) ≤ (1 − γ)V−i∗(θ

t
−i∗), or,

W (θt
−i∗ , π

∗
−i∗) ≤ V−i∗(θ

t
−i∗) (6.16)

But this holds immediately by within period ex post individual rationality of
dynamic-VCG (Corollary 5.3)—if in a world without some agent i∗ the expected
discounted payments made to the center were more than the expected discounted
value obtained by the agents, some agent would necessarily expect to pay more than
the value he obtains from the decision policy. The theorem follows.

Theorem 6.4. Utility to each agent i in the truthful equilibrium under dynamic-RM,
in expectation forward from any θt, is:

V (θt) − V−i(θ
t
−i) +

1

n

∑

j∈I\{i}

[

V−i,j(θ
t
−i,j) − V−i,j(θ

t
−i)

]

(6.17)

Proof. From Corollary 5.5, under dynamic-VCG given any θt expected revenue in the
truthful equilibrium equals:

∑

j∈I

V−j(θ
t
−j) − (n − 1)V (θt) =

∑

j∈I

[

V−j(θ
t
−j) − V−j(θ

t)
]

(6.18)

From equation (6.13), in dynamic-RM the expected payoff to i is increased by 1
n

times W (θt
−i, π

∗
−i), the expected revenue that would result under dynamic-VCG from

θt forward if agent i were not in the system. W (θt
−i, π

∗
−i) can be written:

∑

j∈I\{i}

[

V−i,j(θ
t
−i,j) − V−i,j(θ

t
−i)

]

(6.19)

Adding the payoff under dynamic-VCG and 1
n

times (6.19) yields (6.17).

Corollary 6.1. Social utility in the truthful equilibrium under dynamic-RM, in ex-
pectation forward from any θt, is:

n · V (θt) −
1

n

∑

i∈I

[

(2n − 2)V−i(θ
t
−i) +

∑

j∈I\{i}

V−i,j(θ
t
−i,j)

]

(6.20)
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Corollary 6.2. The social utility gain from redistribution in the truthful equilibrium,
in expectation forward from any θt, is:

1

n

∑

i∈I

∑

j∈I\{i}

[

V−i,j(θ
t
−i,j) − V−i,j(θ

t
−i)

]

(6.21)

6.2.1 Empirical analysis

I now present results of an empirical analysis I ran to determine what the analytical
results for social welfare improvement brought by dynamic-RM map to on problem
instances. The punchline is that the vast majority of value yielded from decisions is
retained by the agents under dynamic-RM, while very little of it is retained under
dynamic-VCG.

I examined settings in which activation of a bandit (allocation of the item in an
allocation problem) yields either value 1 (“success”) or 0 (“failure”), and I represented
agent types as beta distributions. Each agent’s private information can thus be fully
represented by two parameters, α and β, and the probability of success for the next
activation equals α/(α+β). When an agent is activated if he observes a success his α
parameter is updated to α + 1, and if he observes a failure his β is updated to β + 1.

I generated agent types by selecting a number x between 2 and 20 at random
for the number of “prior observations” (α + β), and then selecting α at random
from 1 to x − 1, with β = x − α. I examined both a uniform distribution and a
normal distribution. Essentially this process generates either a uniform or normal
distribution over prior knowledge in the agent population, and a uniform or normal
distribution over valuation levels. We would expect that dynamic-RM would perform
better on distributions with less variance, as “similarity” of agent valuations allows
greater redistribution in general. This is borne out in the gain in utility achieved with
valuations drawn from a normal distribution compared to from a uniform distribution.

I examined different size populations (n). A complete “sample instance” (i.e.,
a joint type θ) consists of n types drawn randomly as above. For each instance
I computed2 the expected social value of the optimal policy (V (θ)), the expected
percentage of that value that is retained by the agents under dynamic-VCG (see
Corollary 5.4), and the expected percentage retained by the agents under dynamic-
RM (see Corollary 6.1). I computed results for a few different discount factors (γ),
but there were not significant differences. Figure 6.1 plots the expected percentage of
value retained under each mechanism for a range of different population sizes, with
γ = 0.8. For each population size I computed 100 samples and plotted the average.

2Estimated to within 2–3% accuracy by using the exponential decay of the discount factor.
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6.3 Discussion

The motivation for dynamic-RM is that, while dynamic-VCG achieves the very
important properties of efficiency, IC, IR, and no-deficit in within-period ex post
Nash equilibrium, in many settings the value of decisions is wasted because it is
largely not kept within the population of agents. Athey & Segal’s [2007] mechanism
keeps all value within the group of agents but sacrifices on the equilibrium and, more
importantly, on the IR property. A mechanism that is not IR in every time-period
(theirs is not) raises significant questions about implementability. For the context of
repeated single-item auctions, dynamic-RM does not sacrifice any of these properties
while achieving near-perfect budget-balance even with a relatively small number of
agents.

Bergemann & Välimäki [2007] observe that dynamic-VCG is unique among mech-
anisms that satisfy the “efficient exit” condition: agents that will definitely no longer
have influence on the chosen actions no longer receive or make payments. Clearly
dynamic-RM does not satisfy this condition, yet it does not lead to the difficulty that
led Bergemann & Välimäki to consider it, namely that agents no longer influencing
decisions may leave the mechanism and not make payments owed. In a redistribution
mechanism after an agent’s exit period he will only receive payments.

As in the static setting with mechanism RM, the question of optimality naturally
arises. Is dynamic-RM “optimal” in the strong sense that I showed of the static version
when the analogous fairness constraint is imposed? I suspect the answer is yes, but
it may not be extremely consequential in practice since: a) the fairness constraint is
probably too strong, and b) dynamic-RM demonstrably performs so well. If it’s not
optimal and there’s a significantly more complex and less scrutable alternative, the
ceiling for improvement is low, as we already can maintain almost all value among
the agents in bandits settings with more than a few agents. That said, a worst-case
analysis could provide some security against any “bad” outcomes, however rare.
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(a) Uniform distribution.
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Figure 6.1: Comparison of the percentage of value from the socially optimal sequence
of decisions retained by the agents (i.e., social value minus payments to the center,
divided by social value) under dynamic-VCG and dynamic-RM. γ = 0.8; average over
100 samples for each population size.



Chapter 7

Periodic inaccessibility and
dynamically changing populations

Synopsis∗

Thus far in the thesis I have considered dynamics in the form of new information arriv-
ing for a fixed population of agents; this is the hallmark of dynamic mechanism design
(DMD). But prior to the DMD model a sequential setting with different dynamics
was proposed and studied: in online mechanism design (OMD) [Lavi and Nisan, 2000;
Parkes and Singh, 2003] the agent population changes, though each agent’s type does
not. The first contribution of this chapter is to extend the online model to one in
which agents can be “accessible” or “inaccessible”; an inaccessible agent is defined
as one that cannot communicate with the center or make or receive payments. This
generalizes arrival/departure dynamics, since in that case agents can be considered
inaccessible (prior to arrival), then accessible for some period, then inaccessible again
forever (after departure).

So the challenge of DMD is in dealing with new private information held by a
static population, while the challenge of OMD is in dealing with a changing popula-
tion or agent inaccessibility more generally, where each agent has only static private
information. This chapter’s main contribution is in providing a unification of these
two models, introducing and addressing one that allows for periodically-inaccessible
agents with dynamic types. I present generalizations of the dynamic-VCG mechanism
that are effective in the context of periods of inaccessibility together with stochastic
local dynamics, which significantly expands the domains to which dynamic mecha-
nisms can be applied.

I first consider a setting in which all agents are persistent (always known to the
center, or “identified”), yet each agent has the possibility of becoming inaccessible

∗David C. Parkes and Satinder Singh are collaborators on the work presented in this chapter, a
version of which appears in a paper titled “Efficient Online Mechanisms for Persistent, Periodically
Inaccessible Self-Interested Agents” [Cavallo et al., 2007].
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for some period of time (I assume all agents eventually “come back”). The variant
on dynamic-VCG I propose here works with a belief type about inaccessible agents
since their true types can’t be communicated, and “logs” the payments that would be
executed if they were accessible; when the agents return these payments are executed
in a lump sum. I then provide a dynamic-VCG variant for a setting in which agents are
not persistent, but rather “arrive” (become accessible and known to the mechanism)
and then “depart” (become inaccessible) permanently. Interestingly, the mechanism
for this setting is equivalent to the earlier online-VCG mechanism of Parkes and Singh
[2003] in the special case in which agents do not receive any new private information
after arrival (i.e., if we go back to a pure OMD setting). Finally, motivated by
an interdependence that results from considering general agent arrival dynamics, I
provide an analysis of dynamic mechanism design in settings where the private values
assumption does not hold, discussing how the approach of [Mezzetti, 2004] for static
environments has a natural application with even stronger results in dynamic settings.

7.1 Persistent agents with periodic inaccessibility

As in Chapters 5 and 6, in this section I consider a fixed set I of persistent agents,
but now each agent i ∈ I may periodically become inaccessible to the center.

Definition 7.1 (agent inaccessibility). When an agent is inaccessible, he cannot
send messages to the center or receive or make payments. For any agent i, for any in-
accessible state θi, for any strategy σi, σi(θi) = φ (the null message). An agent cannot
claim to be accessible (by making a non-null report) when he is actually inaccessible,
but he can pretend to be inaccessible when he is in fact accessible.

A model accounting for inaccessibility applies, e.g., to environments in which an
agent might periodically lose contact with the center due to faulty communication
links or choose to temporarily leave the mechanism to do something else for a while.
Let H(θt) ⊆ I denote the set of accessible (“here”) agents given any true joint state
θt. For simplicity, I make the following assumption:

Assumption 7.1. Every agent is accessible and thus able to report a type at time
t = 0; i.e., for any possible θ0, ∀i ∈ I, i ∈ H(θ0).

The results I will describe allow agents to undergo transitions (obtain new types)
and receive value while inaccessible in a way that depends on actions taken by the
center. Whether an agent transitions to an inaccessible state can also depend on the
action taken and the agent’s current type. The goal is the following: To design an
efficient mechanism in which an agent will truthfully report his type whenever he can,
i.e., whenever he is accessible.

To see the difficulty that inaccessibility poses, consider the simple dynamic-basic-
Groves payment scheme with a naive policy that ignores the existence of any inacces-
sible agents, following a policy that would be optimal if the set of agents were fixed
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to those accessible in any given period. Each accessible agent is payed the value the
other agents obtain in each period (according to the types they report).

→ 1 → 1

A B C → 2

t1 t2 t3

8 2

0

(a) Agent 1’s MDP.

→ 1 → 1

E G → 2

D → 1 → 1

F H → 2

t1 t2 t3

.2

0 0

4

.8
0 0

20

(b) Agent 2’s MDP.

Figure 7.1: Two-agent, 3 time-step single-item allocation problem. Actions ({allocate
to 1, allocate to 2, don’t allocate}) are implicit in the state transitions. Agent 1 is
accessible in each period with probability 1−ε (for negligible ε). Agent 2 is inaccessible
at t1 with probability 1, and with probability 1 − ε becomes accessible at t2.

Example 1. Consider Figure 7.1 with the following accessibility dynamics: with very
high probability agent 1 is accessible in all periods; agent 2 is definitely inaccessible1

in period 0, but will become accessible in period 1 or 2 or, with negligible probability
ε > 0, not at all. Under a simple scheme that ignores inaccessible agents and makes
Groves payments, if agent 2 is not accessible in period 1, then agent 1 should pretend
to be inaccessible to avoid receiving the item. It is likely that agent 2 will become
accessible in period 2, be allocated the item, and obtain a higher (expected) value
then agent 1 would have. Agent 1 will then be payed that value.

What’s happening here? The Groves payments have aligned agent incentives
towards maximization of social welfare, but the policy is suboptimal. We see in the
example that agent 1 deviates from truth in order to achieve a (socially) superior
outcome to the one that would be achieved by the center’s naive policy applied to
truthful reports.

In an environment with agent inaccessibility, to implement an optimal policy
the center must reason about the distribution of possible states for an agent that

1Although this appears to violate the assumption that agents are all initially present, one can
simply imagine a prior time-step not illustrated in which both agents are accessible and can report
their types.
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is currently inaccessible. To model this we will consider that the center’s type θt
c

keeps the necessary information to form the proper (Bayesian) beliefs, derived from
agent reports. At each period t, from θt

c a “belief type” θ̃t = (θt
c, θ̃

t
1, . . . , θ̃

t
n) ∈ Θ̃ =

Θc× Θ̃1× . . . Θ̃n can be formed, where θ̃t
i defines a probability distribution over agent

i’s current type at t. For an agent i that is accessible at t (i ∈ H(θt) for true joint
type θt) and reports type θ̂t

i, θ̃t
i assigns probability 1 to θ̂t

i. If i is inaccessible at t,
the distribution θ̃t

i over i’s current type is derived from i’s last reported type.2 For
instance, considering agent 2 from Example 1 (Figure 7.1), if he does not make a
report at t1, θ̃1

2 assigns probabilities 0.2 and 0.8 to states E and F , respectively.3

Given belief type θ̃t, the expected immediate social value of taking action a is
r(θ̃t, a) = E[r(θt, a) | θ̃t]. Let V (θ̃t) = E[

∑K
k=t γ

k−tr(θk, π(θk)) | θ̃t, π], with analo-
gous variants for Vi and V−i. The optimal policy π∗ : Θ̃ → A maximizes the ex-
pected discounted value in every belief type; i.e., letting Π now denote the space
of all mappings from joint belief types to actions, for any belief type θ̃t ∈ Θ̃,
π∗ ∈ arg maxπ∈Π V (θ̃t, π), ∀θ̃t ∈ Θ̃. The dynamic-VCG mechanism is now defined
on belief types:

Definition 7.2 (dynamic-VCG for belief types). Executes decision policy π∗

and, for any i ∈ I that makes a report at t, for any θ̃t ∈ Θ̃, transfers:

Ti(θ̃
t) = r−i(θ̃

t
−i, π

∗(θ̃t)) + γE[V−i(τ(θ̃t
−i, π

∗(θ̃t)))] − V−i(θ̃
t
−i) (7.1)

θ̃t is the belief type derived from θt
c, updated every period based on reported types.

In π∗ we have moved from a suboptimal policy to an optimal one given the commu-
nication constraints posed by inaccessibility, but this mechanism also fails. This time
the payments do not succeed in aligning incentives towards social welfare maximiza-
tion. Dynamic-VCG is designed to make each agent’s payoff equal to his contribution
to social welfare, but here agents can “evade” paying for the externality they impose
on others by faking inaccessibility.

Example 2. Consider again the example in Figure 7.1. If agent 2 is truthful and
accessible in period t1, and in state E, he is better off pretending to be inaccessible.
If he were truthful, agent 1 would be allocated the item at t1 and agent 2’s payoff
would be zero. By lying, the policy will delay making an allocation until period 2

2Recall the assumption that agents are all accessible at time 0, and that an agent’s type describes
both its current state and a probability distribution over future state transitions contingent on
actions. This allows the center to form beliefs on an agent’s current type when inaccessible.

3The appropriate computational model for this environment is the Partially Observable MDP
(POMDP) model. The social problem can then be formulated as a belief-state MDP (see [Kaelbling
et al., 1996]).
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because 8 < (0.2)4 + (0.8)20 = 16.8 (ignoring ε). Both agents’ payments in period 1
will be zero (agent 2’s because he is inaccessible). Agent 2 can then report state G in
period 2, receive the item, and make a payment of −2 for net payoff 4− 2 = 2. Note
the efficiency loss: the center should have allocated to agent 1 in period 1.

The problem is that this formulation of dynamic-VCG is not a dynamic-Groves
mechanism. To understand this, define a true belief type at time t as the belief type
the center would have, given the decision policy, if every agent reports his true state
whenever he is accessible. A dynamic mechanism (π∗, T ) is IC in this environment if
in any true belief type, for every agent i, when other agents are truthful i maximizes
his payoff by following the truthful strategy. This was not satisfied in dynamic-VCG
for belief types; however, a slightly smarter payment scheme will work.

It will be useful to formally state the analogue of Theorem 5.1 for this belief-type
environment, implicitly extending the dynamic-Groves class to deal with belief types.
Here I let σ̃i : Θi → Θ̃i be derived from σi to form a belief type in the context of
possible null reporting (either by choice when i is accessible or necessity when he is
inaccessible). σ̃i(θi) assigns probability 1 to σi(θ

t
i) when σi(θi) 6= φ, and is otherwise

defined by Bayesian updating from the last report. I also extend notation V (θt) in
the following natural way (with the analogous extensions of V−i, V , and Ti); it is
i’s expected value going forward given his true state θt

i , true belief state θ̃t
−i for and

truthful reporting by the other agents, and given that i follows strategy σi:

Vi(θ
t
i , θ̃

t
−i, σ̃i) = E

[

K
∑

k=t

γk−tri(θ
k
i , π

∗(σ̃i(θ
k
i ), θ̃

k
−i))

∣

∣

∣
θt

i , θ̃
t
−i, π

∗, σ̃i

]

(7.2)

Lemma 7.1. A dynamic mechanism (π∗, T ) is truthful and efficient in within-period
ex post4 Nash equilibrium with persistent, periodically-inaccessible agents if, for all
i ∈ I, any true belief type θ̃t

−i ∈ Θ̃−i regarding the types of agents other than i, any

θt
i ∈ Θi, and any σi, there is a function Ci : Θ̃ → ℜ such that, letting Ci(θ

t
i , θ̃

t, σ̃i) =
E[

∑K
k=t γ

k−tCi(σ̃i(θ
k
i ), θ̃

k
−i)) | θ

t
i, θ̃

t, π∗, σ̃i]:

Ti(θ
t
i , θ̃

t
−i, σ̃i) = V−i(θ

t
i , θ̃

t
−i, σ̃i) − Ci(θ

t
i , θ̃

t
−i, σ̃i), (7.3)

and for any two strategies σ′
i and σ′′

i for agent i, Ci(θ
t
i , θ̃

t
−i, σ̃

′
i) = Ci(θ

t
i , θ̃

t
−i, σ̃

′′
i ).

Proof. Fix arbitrary agent i and assume all other agents are truthful. Assume the
mechanism is not within-period ex post IC. Then there must be some θt

i , σi, and θ̃t
−i for

which V (θt
i , θ̃

t, σ̃i)−Ci(θ
t
i , θ̃

t, σ̃i) > V (θt
i, θ̃

t
−i)−Ci(θ

t
i, θ̃

t
−i), i.e., V (θt

i, θ̃
t, σ̃i) > V (θt

i , θ̃
t
−i).

4There is a nuance here: the equilibrium property is “ex post” with respect to belief types, which
incorporate all information attainable given the communication constraints of the environment,
although it is still possible that—if an agent knew an inaccessible agent’s state (which I presume is
impossible)—a deviation could be beneficial.
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But we can then construct a policy π where, for every θk
i and θ̃k

−i yielding true full

belief type θ̃k, π(θ̃k) = π∗(σ̃i(θ
k
i ), θ̃

k
−i). Now V (θ̃k, π) > V (θ̃k), which contradicts

optimality of π∗.

Looking again at the formulation of dynamic-VCG I specified, incentive compat-
ibility is not achieved because payments are not made to an agent in periods during
which he is inaccessible, and thus that agent’s incentives are not correctly aligned. In
Example 2, agent 2 is able to mimic the effect of reporting state F by hiding because
he is likely to be in state F anyway (according to the belief type), and by hiding he
can avoid making the payment of 6 he would otherwise be forced to make. To isolate
the problem, imagine for a moment that payments are always possible and modify
dynamic-VCG for belief types so that the payment form specified for accessible agents
is also applied to inaccessible agents.

Lemma 7.2. When payments can be made in every period, dynamic-VCG for belief
types is truthful and efficient in within-period ex post Nash equilibrium with persistent,
periodically-inaccessible agents.

Proof. Fix arbitrary agent i and assume all other agents are truthful. Consider any
θt

i , θ̃t
−i, and strategy σi for i. The total expected discounted payment to agent i

forward is:

V−i(θ
t
i , θ̃

t, σ̃i) + E

[

K
∑

k=t

γV−i(θ̃
k+1
−i ) −

K
∑

k=t

V−i(θ̃
k
−i))

∣

∣

∣
θ̃t, π∗, σ̃i

]

(7.4)

From this point the rest of the proof goes through completely analogously to
the proof of Theorem 5.5. The mechanism yields expected payoff for i equal to
V (θt

i, θ̃
t, σi) − V−i(θ̃

t
−i), which implies truthfulness and efficiency in within-period ex

post Nash equilibrium by Lemma 7.1.

But in fact agents cannot receive payments in every period, and their incentives
are not correctly aligned. The mechanism I now propose addresses this problem
by “logging” the payments that an inaccessible agent should be making, and then
executing them (appropriately scaled for the discount factor) once the agent becomes
accessible.
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Definition 7.3 (dynamic-VCG#). A dynamic mechanism (π∗, T̂ ), where, for
any i ∈ I that makes a report at t, for any θ̃t ∈ Θ̃:

T̂i(θ̃
t) =

t
∑

k=t−δ(t)

Ti(θ̃
k)

γt−k
, and (7.5)

Ti(θ̃
t) = r−i(θ̃

t
−i,π

∗(θ̃t)) + γE[V−i(τ(θ̃t
−i, π

∗(θ̃t)))] − V−i(θ̃
t
−i) (7.6)

where θ̃k for every k ≥ 0 is the belief type derived from θk
c (all can be tracked in

θt
c), and δ(t) ≥ 0 is the number of successive periods prior to t that i reported

inaccessibility.

The payments here (as before) are defined with respect to the belief type, which
incorporates uncertainty about inaccessible agents’ types—the only difference in this
mechanism is that transfers are now made cumulatively for windows of inaccessibility
when an agent returns, defined to be (discounting-adjusted) equivalent to those he
would have received if payments could have been executed while he was inaccessible.

I now introduce a new assumption that ensures agents cannot permanently evade
paying their dues. Informally, an agent can run but cannot hide forever (or, “you
must pay the piper”). Given this, the expected discounted stream of payments under
dynamic-VCG# is the same as in the first dynamic-VCG variant when payments can
be made in every period.

Assumption 7.2. Each agent must eventually make any payments he owes.

Lemma 7.3. Given Assumption 7.2, the expected payoff to each agent i forward
from any true θt

i and true belief type θ̃t
−i under dynamic-VCG#, for any strategy σi,

is equal to that in dynamic-VCG for belief types when payments in that mechanism
can be made in every period.

Proof. The policy is the same and the values intrinsically obtained by each agent for
actions taken are the same. Left to show is that the expected discounted stream of
payments is the same. We need that for every agent i, time t, θt

i , θ̃t
−i, and σi,

E

[

K
∑

k=t

γk−t Ti(σ̃i(θ
k
i ), θ̃

k
−i)

∣

∣

∣
θt

i , θ̃
t
−i, σ̃i, π

∗
]

(7.7)

= E

[

K
∑

k=t

H

γk−t T̂i(σ̃i(θ
k
i ), θ̃

k
−i)

∣

∣

∣
θt

i , θ̃
t
−i, σ̃i, π

∗
]

, (7.8)

where the second summation restricts to time-periods in which agent i reports he is
“here” (i.e., σi(θ

k
i ) 6= φ). To see that this holds, consider any realization of i’s types
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θt
i, . . . , θ

K
i and belief types for other agents θ̃

t

−i, . . . , θ̃
K

−i. We have:

K
∑

k=t

γk−t Ti(σ̃i(θ
k
i ), θ̃

k

−i) (7.9)

=

K
∑

k=t

H∧NF

γk−t Ti(σ̃i(θ
k
i ), θ̃

k

−i) +

K
∑

k′=t

H∧F

γk′−t

k′

∑

k=k′−δ(k)

Ti(σ̃i(θ
k
i ), θ̃

k

−i)

γk′−k
, (7.10)

where the first summation restricts to states in which agent i reports his accessibility
and this is not the first time (H∧NF ) after being inaccessible (I also put time-period
t here, if accessible), and the second summation is over time-periods that are “first
times back” for i after being inaccessible for δ(k) > 0 periods (H∧F ). Simple algebra
completes the proof when combined with Assumption 7.2, which ensures that the final
state is not inaccessible.

Given this, we obtain the desired theorem:

Theorem 7.1. Dynamic-VCG# is truthful and efficient in within-period ex post Nash
equilibrium with persistent agents that are periodically inaccessible when each agent
must eventually make payments owed to the center (Assumption 7.2).

Proof. Follows right away from Lemmas 7.2 and 7.3.

By introducing the constraint that payments must eventually be made we avoid a
manipulation in which an agent does not “re-enter” because he faces a large payment.
Returning again to Example 2, the earlier manipulation goes away. Agent 2 can no
longer benefit from pretending to be inaccessible when he is in fact accessible and
in state E, because he will face a payment of −6 − 2 if he makes himself accessible
in period 2. But if he could avoid payments altogether, a deviation could still be
useful—Assumption 7.2 is key.

7.2 Dynamic agent population with arrival process

I now depart from the standard model in which all agents remain “present” in the
system, even though they may undergo periods of inaccessibility. I now consider a
dynamically changing population, with each agent initially inaccessible, then accessible
at an arrival period, and then becoming inaccessible again at a departure period
forever.5 The key difference is that now agents are not “identified” when they are not
present in the system—they are unknown to the center, and thus cannot individually

5This captures the arrival/departure semantics of Parkes and Singh [2003], generalizing it here
to allow for agents with dynamic types.
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exert influence on the system or have payments accrue. I will conceptualize the first
and last periods in which an agent is accessible as his arrival and departure periods.
One can imagine that becoming accessible corresponds to an agent learning his model,
or learning of the existence of the mechanism. I assume that an agent obtains no value
and undergoes no type transitions while inaccessible (i.e., before arriving or after
departing). I continue to allow local dynamics to depend on actions after arrival, with
new periodic information arriving as in the DMD model I’ve considered throughout.
Once an agent departs he can participate in no further payments at any time.

Formally, I allow for the set of agents I = {1, . . . ,∞} to be unbounded. The joint
type space is now characterized by θ = (θc, {θi}

i∈H(θc)) ∈ Θ, where θc keeps sufficient
history to model the dynamics of agent arrivals, and H(θ) ⊆ I is the set of present
agents given θ. Type transition probabilities τ : Θ × A × Θ → ℜ are induced by 1)
an arrival model τc : Θ × A → Θc that is known to the center (in θc) and defines the
process by which agents become accessible, and 2) the dynamics τi : Θi×A×Θi → ℜ
for each accessible agent, as before. The type space of an agent includes an absorbing,
inaccessible departure type; once an agent has arrived his own type determines when
he will become inaccessible (i.e., depart).

The goal is as before: to define an efficient mechanism in which each agent will
report his true type information in every period in which he is accessible. Consider
a slight modification (or just a reinterpretation) of the dynamic-VCG mechanism to
handle agent inaccessibility:

Definition 7.4 (online-dynamic-VCG). The online-dynamic-VCG mechanism
executes decision policy π∗ and, given any reported type θt, ∀i ∈ H(θt), transfers:

Ti(θ
t) = r−i(θ

t
−i, π

∗(θt)) + γE[V−i(τ(θt
−i, π

∗(θt)))] − V−i(θ
t
−i), (7.11)

where π∗ explicitly incorporates the arrival model and maximizes the expected social
utility going forward, including to agents that haven’t yet arrived, and V−i(θ

t
−i) is

now the expected value going forward including agents that haven’t yet arrived but
excluding agent i, for the policy that is optimal excluding i.

Without an additional assumption the online-dynamic-VCG mechanism fails for
a subtle reason.

Example 3. Consider an adaptation of Example 2 depicted in Figure 7.2. There
are 4 arrival types. Define an arrival process so that a single agent of type 1 always
arrives at t0 while at most one agent among types 2, 3, or 4 can arrive (ever), and
it is very likely that a type 4 agent will arrive at t2. If an agent of type 2 arrives
at t1, then he will hide and claim to be inaccessible. The optimal policy will wait
to allocate the resource because it likely that a type 4 agent will arrive in the next
period. At t2, the type 2 agent can truthfully report state G (posing as a type 3 agent
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that just arrived), and will be allocated the item and have to make a payment of 2.
This causes an efficiency loss because the item should have been allocated to agent 1
at t1.

→ 1 → 1

A B C 9 1

t1 t2 t3

8 2

0

(a) Type 1.

9 2 9 2

E G → 2

t1 t2 t3

0 0

4

(b) Type 2.

9 3

G → 3

t1 t2 t3

0

4

(c) Type 3.

9 4

H → 4

t1 t2 t3

0

20

(d) Type 4.

Figure 7.2: Illustration of Example 3. One type 1 agent arrives at t1, and at most
one agent of types 2, 3, or 4 will arrive (at t2 or t3, depending on the type). In the
absence of Assumption 7.3, even under the online-dynamic-VCG mechanism a type
2 agent arriving at t1 is better off “posing” as a type 3 agent.

The incentive compatibility of dynamic-Groves mechanisms (Theorem 5.1, but
with the optimal policy π∗ incorporating the arrival process dynamics) continues to
hold in this environment, and the proof that dynamic-VCG is a dynamic-Groves
mechanism (Theorem 5.5) also remains valid—except for the last step. The payoff
to agent i in any accessible state is, as before, V−i(θ

t, π∗
−i). But now this can not

necessarily be represented as V−i(θ
t
−i, π

∗
−i), since now it may be the case that π∗

−i(θ
t) 6=

π∗
−i(θ

t
−i). That is, π∗

−i need not be independent of i’s type, and thus, of his strategy
σi. Although we maintain the private values assumption for the set of accessible
agents (with individual values and transitions independent of other agents’ types),
the probability of future agent arrivals can depend on the arrival of agent i: the
type reported by i upon his arrival (i.e., his arrival type), or his failure to arrive can
influence the center’s beliefs about subsequent arrivals.

Fully general arrival dynamics introduce this new interdependence between agents.
In Section 7.3 I go into detail regarding conditions under which dynamic mechanisms
will work in settings with interdependence more broadly, but for now let’s just observe
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that the following intuitive condition is sufficient to avoid this interdependence:

Assumption 7.3 (conditionally independent arrivals). The center’s arrival
model which specifies the distribution over new agent arrival types in period t + 1
is independent of arrivals in times 0, . . . , t when conditioned on the sequence of ac-
tions taken in times 0, . . . , t.

Theorem 7.2. The online-dynamic-VCG mechanism is truthful and efficient in
within-period ex post Nash equilibrium in this dynamic population, become-accessible-
once environment given Assumption 7.3.

Proof sketch. The proof follows exactly the same lines as the proof for dynamic-VCG
in settings without inaccessibility. Each agent’s expected payoff is the expected social
value (including to agents that haven’t yet arrived) minus some constant; then since
the center is following an optimal policy (incorporating expectations about arrivals)
there can be no gain from deviation.

7.2.1 A previous mechanism as a special case

The conditionally independent arrivals assumption was implicitly made in the
work of Parkes and Singh [2003] (PS) in their online mechanism design framework; I
will now unify that earlier framework with the current framework, obtaining the PS
setting as a special case with a restrictive assumption. The online-VCG mechanism
of PS is payoff-equivalent to the online-dynamic-VCG mechanism when coupled with
the following assumption:

Assumption 7.4. Each agent’s type is deterministic—i.e., for any i ∈ I, θi ∈ Θi

and a ∈ A, τ(θi, a, θ′i) assigns probability 1 to some θ′i ∈ Θi.

In other words, an agent obtains no new private information after it arrives in
the mechanism—the local MDP induced by his type is deterministic. Since the only
uncertainty is due to the arrival model, agents can report information with a single
message (upon arrival). An agent’s local problem is now defined by a deterministic
finite-state automaton, which plays the role of type in the model of PS. But we
can give a dynamic-VCG style interpretation of online-VCG in an environment with
discounting (which [Parkes and Singh, 2003] did not account for):
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Definition 7.5 (online-VCG-γ). Each agent can report to the center a single
claim θt

i about his (deterministic) type. The online-VCG-γ mechanism executes
decision policy π∗ which is optimal given the arrival model and reported types,
and, ∀θt ∈ Θ, for any i ∈ I that is accessible at t, transfers:

Ti(θ
t) =

{

−ri(θ
t
i , π

∗(θt)) + V (θt) − V−i(θ
t
−i) if REPORTi

−ri(θ
t
i , π

∗(θt)) otherwise,
(7.12)

where the expected values V and V−i are taken with respect to the arrival model of
the center and the agent reports, and REPORTi indicates that this is the period in
which i reports his arrival and type.

The cumulative effect of the payments is that agent i pays to the center the total
(reported) value he obtains for the sequence of decisions, and receives a payment of
V (θt)−V−i(θ

t
−i) in the period in which he announces his type. This payment is equal

to the expected marginal contribution to social utility by i given the arrival model of
the center and the reported types of agents.

Theorem 7.3. Online-VCG-γ is truthful and efficient in within-period ex post Nash
equilibrium6 in this dynamic population, become-accessible-once setting given Assump-
tions 7.3 and 7.4.

Proof. An application of the dynamic-Groves result holds here: assume an agent
i, arriving at time t in which the joint reported type for other agents is θt

−i and
other agents reporting in future periods will do so truthfully, has expected discounted
transfers going forward equal to V−i(θ

t, σi)−C(θt, σi) when he plays strategy σi, where
C(θt, σ′

i) = C(θt, σ′′
i ) for any σ′

i and σ′′
i . Then truthfulness is a payoff maximizing

strategy for i.
Fix some agent i, type θt

i , strategy σi, and joint reported type θt
−i for other agents

at time t in which agent i has arrived, and assume all other agents reporting in the
future will be truthful. Let t′ ≥ t be the time that i reports his arrival given θt and

6The nuance here is that the mechanism is efficient modulo the 1-report restriction. That is, it
may be inefficient (though it is still truthful) if an agent has falsely reported his type (which we will
see never happens in equilibrium), since the mechanism does not allow agents to report “corrections”
to previous lies.
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σi. The expected discounted sum of transfers to i forward from θt is:

E

[

γt′−t
(

− Vi(θ
t′ , σi) + V (θt′ , σi) − V−i(θ

t′

−i)
)

∣

∣

∣
θt, π∗, σi

]

(7.13)

= E

[

γt′−t
(

V−i(θ
t′ , σi) − V−i(θ

t′

−i)
)

∣

∣

∣
θt, π∗, σi

]

(7.14)

= V−i(θ
t, σi) − E

[

t′
∑

k=t

γk−tr−i(θ
k
−i, π

∗(θk
−i)) + γt′−tV−i(θ

t′

−i)
∣

∣

∣
θt, π∗, σi

]

(7.15)

= V−i(θ
t, σi) − V−i(θ

t
−i) (7.16)

Assumption 7.3 is exhibited in my expression of V−i(θ
t, π∗

−i) as V−i(θ
t
−i) (in the

description of the mechanism and in the above equations). Converting equation
(7.13) to (7.14) follows by simple addition of the first two terms. The move from

(7.14) to (7.15) is by adding E[
∑t′

k=t γ
k−tr−i(θ

k
−i, π

∗(θk
−i)) | θ

t, π∗, σi] to the first term
of (7.14) and then subtracting it again. Finally, combining the terms within the
expectation in (7.15) yields (7.16). Since the agent’s total expected payment (7.16)
has the dynamic-Groves form specified in the first part of the proof, the mechanism
is truthful in within-period ex post Nash equilibrium.

One reason to adopt online-VCG-γ rather than online-dynamic-VCG in the spe-
cial environment in which Assumption 7.4 holds is that the payments require solving
V−i(θ

t
−i) only once for each agent arrival, whereas in online-dynamic-VCG this prob-

lem is solved in every period in which the agent remains accessible according to his
report. But this same savings in computation could be achieved with the online-
dynamic-VCG transfer scheme if redundant recomputation is avoided by explicitly
considering the implications of Assumption 7.4. That assumption is very restrictive,
and the extension from online-VCG to dynamic-VCG# brings a vast expansion of the
domains to which a mechanism accounting for population dynamics can be applied.

7.3 Dynamic mechanisms for interdependent set-

tings

Throughout the thesis I have assumed a private values environment, where an
agent’s expected value for a given outcome (or sequence of outcomes) is a function of
his own type, but not of the other agents’ types. This is fairly typical in mechanism
design, but there are in fact important domains that don’t fit the mold. For instance,
if an oil company is evaluating a field that’s up for bid, the values that other firms have
for the same field may be relevant, in that these values could indicate information
about the oil contents of the field that only these other firms know. One firm’s
expected value for an outcome depends on another’s. In static mechanism design
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there is a rather strong negative result about what can be achieved when agent
valuations may be interdependent in this way:

Theorem 7.4 (entailed by [Jehiel and Moldovanu, 2001]). In static environ-
ments where agent valuations may be arbitrarily interdependent,7 there exists no mech-
anism that is truthful and efficient in an ex post Nash equilibrium.

But when it is only agents’ expected (rather than actual) values that are interde-
pendent, this negative result only holds if we construe mechanism design as confined
to making payments ex ante of realization of a selected outcome. The intuition for the
problem is that if the payment I receive depends on your expected value for an out-
come, and your expected value for an outcome depends on what I report my expected
value to be, I can potentially gain from reporting a false expected value. This kind
of reasoning breaks down, though, if we imagine executing payments ex post of the
outcome realization: if your expected value for an outcome is influenced by my report
but your actual value is not, then basing payments on actual values (as reported after
they are realized) nullifies the effect my reported value has on my payment.

This is exactly the idea formalized by Mezzetti [2004], who formulates a two-
stage mechanism for one-shot settings: in the first stage agents are asked to report
their private types and an outcome is selected and implemented; in the second stage
agents are asked to report the value they experienced from the outcome, and these
reports form the basis for payments made by the mechanism. Mezzetti argues that
such mechanisms always (i.e., regardless of any interdependencies in values) allow
for implementation of efficient outcomes in equilibrium. It is worth noting, though,
that the equilibrium is fragile in that agents are indifferent about reporting their true
experienced values in the second stage, since the outcome has already been selected
and there are no further implications of an agent’s report for his own utility.

Dynamic environments in which sequences of decisions are to be made provide
natural settings for a Mezzetti-like approach to interdependence,8 and the fragility
of the equilibrium in the static problem goes away in dynamic settings (except in
the last period for finite-horizon problems). Interdependence would take the form
of agent transition functions now being mappings from a complete joint type to a
successor-type. Imagine a repeated allocation scenario in which some agent i was
just allocated the resource; in the next period some agent j’s expected value for the
resource may change if he finds out that i obtained very little value from it—perhaps
the resource is faulty in some way that is only observable by an agent to whom it has
been allocated.

7Where “arbitrarily independent” precludes the kind of structure provided by the single-crossing
condition of [Dasgupta and Maskin, 2000]; see also [Krishna, 2002].

8This fact is noted by Athey & Segal [2007]. The analysis in this section should be viewed as
working out details of this observation and adding further analysis.
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We will need to make a basic but important assumption: that agents can accu-
rately quantify and report the immediate value they have experience after execution
of a decision.9 This assumption is also present in [Mezzetti, 2004]. For convenience, I
will assume that such a report can be encapsulated in an agent’s broader (i.e., more
informative) type report:

Assumption 7.5 (privately realized types). For any agent i with current true
type θi, the last immediate value r̂i(θi) actually obtained by i can be discerned from
θi.

I will say that a mechanism (π, T ) is implemented in the interdependent-dynamic
framework if it is characterized by the following timing:

Definition 7.6 (interdependent-dynamic mechanism framework). .

• Each agent i reports to the center a claim θ0
i about his initial type.

• The center executes action π(θ0).

• At every time step t = 0, . . . , K:

1. Each agent i obtains value r(θt
i , π(θt), θt+1

i ) as transition θt
i → θt+1

i is realized.
2. Each agent i reports to the center a claim θt+1

i about his type.
3. The center makes a payment Ti(θ

t+1) to each agent i.
4. The center executes action π(θt+1).

Note that time “ticks forward” each time an action is taken. In each period an
agent obtains value from the action just taken, undergoes a type transition, makes
a report, and receives a transfer payment. See Figure 7.3 for an illustration of
this timing. A transfer Ti(θ

t+1) is actually executed in time-period t, but in the
interdependent-dynamic framework it is based on the joint type the agents report
transitioning to in t rather than the type they started t with. With the exception
of the dynamic-balanced mechanism, previous to now I’ve defined mechanisms such
that an agent’s transfer at t is a function of θt (the type at the beginning of t) and is
thus based on an expectation regarding the type transition that will occur at t.10

A version of any of the dynamic mechanisms described in this thesis can be im-
plemented in a way that fits the interdependent-dynamic framework; the definition

9It should be noted that this assumption holds in many, but not all, of the domains that are
typically thought of as interdependent. It will not hold when an agent’s actual value depends on
the type of another agent, for instance in a case where owning a particular item like a car brings
“prestige” value when other people admire it.

10For instance, I described the dynamic-basic-Groves mechanism in a way such that Ti(θ
t) =

ri(θ
t
−i

, π∗(θt)); the payment to i equals the expected value agents other than i will receive in time-
step t.
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simply specifies a variation on the order in which actions, reports, and payments oc-
cur. This reordering allows for reports of actual “just experienced” values rather than
expected values for the period, and it turns out that this can yield new possibilities
when type transitions are interdependent and types are privately realized.

0 1

θ0

reported
π(θ0)
taken

r(θ0, π(θ0), θ1)
obtained

transition
θ0 → θ1

θ1

reported

T (θ1)
executed

π(θ1)
taken

...

r(θ1, π(θ1), θ2)
obtained

Figure 7.3: An illustration of the timing of a mechanism implemented in the
interdependent-dynamic framework. Note that value and transfers received in the
same period are discounted in the same way. Compare to the previous dynamic
mechanism timing illustrated in Figure 5.1.

In private values settings, we can express (and I have) the expected
actual value that agents other than some i will obtain, V−i(θ

t, σi), as
E[

∑K
k=t γ

k−tri(θ
k
i , π(σ(θk))) | θt, π∗, σ]. This is because private values entails that:

E

[

K
∑

k=t

γk−tri(θ
k
i , π(σ(θk)))

∣

∣

∣
θt, π, σi

]

= E

[

K
∑

k=t

γk+1−tr̂i(θ
k
i )

∣

∣

∣
θt, π, σi

]

(7.17)

A version of Theorem 5.1 continues to hold in dynamic environments with in-

terdependent values if we define V−i(θ
t, σi) = E[

∑K

k=t γ
k+1−tr̂−i(θ

k
−i)

∣

∣

∣
θt, π∗, σi]. The

intuition is similar to before: now if payments are defined such that, in equilibrium,
each agent’s actual utility going forward equals exactly the actual social welfare (mi-
nus a constant), no agent can possibly gain from deviating, by optimality of π∗.

Lemma 7.4. Even with interdependent type transitions, if Assumption 7.5 is satisfied
then any mechanism (π∗, T ) implemented in the interdependent-dynamic framework
is truthful and efficient in within-period ex post Nash equilibrium if, ∀i ∈ I, there
exists some Ci : Θ → ℜ such that ∀θt ∈ Θ,

Ti(θ
t) = E

[

K
∑

k=t

γk+1−tr̂−i(θ
k
−i)

∣

∣

∣
θt, π∗, σi

]

− Ci(θ
t), (7.18)

where Ci(θ
t, σi) = E[

∑K
k=t γ

k−tCi(σi(θ
k
i ), θ

k
−i) | θ

t, π∗, σi] and, for any σ′
i and σ′′

i ,
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Ci(θ
t, σ′

i) = Ci(θ
t, σ′′

i ).

Proof. Fix any agent i ∈ I, and assume all other agents are truthful. For any θt ∈ Θ,
in such a mechanism the difference in i’s expected utility going forward from being
truthful or playing strategy σi equals:

E

[

K
∑

k=t

γk−tr̂(θk) −
K

∑

k=t

γk−tCi(θ
k)

∣

∣

∣
θt, π∗

]

− (7.19)

E

[

K
∑

k=t

γk−tr̂(θk) −
K

∑

k=t

γk−tCi(σi(θ
k
i ), θ

k
−i)

∣

∣

∣
θt, π∗, σi

]

(7.20)

= E

[

K
∑

k=t

γk−tr̂(θk)
∣

∣

∣
θt, π∗

]

− Ci(θ
t) − E

[

K
∑

k=t

γk−tr̂(θk)
∣

∣

∣
θt, π∗, σi

]

+ Ci(θ
t, σi) (7.21)

= E

[

K
∑

k=t

γk−tr̂(θk)
∣

∣

∣
θt, π∗

]

− E

[

K
∑

k=t

γk−tr̂(θk)
∣

∣

∣
θt, π∗, σi

]

(7.22)

By optimality of π∗ this quantity is greater than or equal to 0, so truthfulness
maximizes expected utility going forward.

Incentive compatibility of an interdependent-dynamic implementation of the
dynamic-basic-Groves mechanism follows as an immediate corollary.

Theorem 7.5. When Assumption 7.5 holds, an interdependent-dynamic version of
the dynamic-basic-Groves mechanism that, at every time t, makes payment r̂−i(θ

t+1
−i )

to each each agent i given joint reported type θt+1, is truthful and efficient in within-
period ex post Nash equilibrium even when type transitions are interdependent.

Recall that the basic-dynamic-Groves mechanism has serious budgetary problems.
Of course an ex ante charge of the type dynamic-EAC imposes will yield a mechanism
that is ex ante no-deficit, but the cost of that approach is a weakening from ex post
to ex ante IR. I will now turn to dynamic-VCG, with an eye towards the strong
no-deficit and IR properties it simultaneously achieves.

7.3.1 The independence requirements of dynamic-VCG

In the truthful equilibrium under dynamic-VCG, the payoff to any agent i playing
strategy σi is V (θt, σi) − V−i(θ

t, π∗
−i). In fact the argument for incentive compatibil-

ity in the private values setting was based on this very observation: since i cannot
influence V−i(θ

t, π∗
−i), he will choose σi to maximize V (θt, σi); this strategy is truth,

by optimality of π∗.
Note that this reasoning requires that i cannot influence V−i(θ

t, π∗
−i); if he could,

it would distort his incentives away from maximization of social welfare. In Section
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7.2 we saw scenarios in which the policy that would be optimal for the set of agents
other than i depends on the current state of i, due to an interdependence in the
probabilities of arrival for different agents.

With the proper interpretation, the private values assumption is strong enough to
exclude such scenarios. Considering “inaccessible” as a state for an agent, if whether
or not every other agent arrives (i.e., transitions to an “accessible” state) is inde-
pendent of whether every other agent is in an accessible or inaccessible state, then
conditionally independent arrivals (Assumption 7.3) is satisfied, and agents cannot
benefit from deviating from truth. But in fact the private values assumption may be
viewed as (just slightly) stronger than what is required for incentive compatibility of
an interdependent-dynamic implementation of dynamic-VCG to hold. A somewhat
weaker sufficient condition when agent strategies are inherently limited (e.g., when
an inaccessible agent cannot report accessibility), is the following.

Assumption 7.6. ∀i ∈ I, θt ∈ Θ, σ′
i, σ

′′
i , V−i(θ

t, π∗
−i, σ

′
i) = V−i(θ

t, π∗
−i, σ

′′
i ).

Recall that for any θt, V−i(θ
t, π∗

−i, σi) denotes the expected value to agents other
than i when the policy that is optimal for them is executed from joint type θt, i plays
strategy σi, and other agents are truthful.

Theorem 7.6. The interdependent-dynamic implementation of dynamic-VCG is
within-period ex post incentive compatible and efficient when Assumptions 7.5 and
7.6 hold.

Proof. In an interdependent-dynamic implementation (with Assumption 7.5 in force),
the dynamic-VCG payment function for each i ∈ I can be defined as:

∀θt+1 ∈ Θ, Ti(θ
t+1) = r̂−i(θ

t+1
−i ) + γV−i(θ

t+1
−i ) − V−i(θ

t
−i) (7.23)

Then by Lemma 7.4 it is sufficient to show that, given Assumption 7.6 and truthful
reporting by all other agents going forward, for any two strategies σ′

i and σ′′
i , for any

time t > 0 and θt,

E

[

K
∑

k=t

γk−t
(

γV−i(θ
k+1, π∗

−i, σ
′
i) − V−i(θ

k, π∗
−i, σ

′
i)
)

∣

∣

∣
σ′

i

]

(7.24)

= E

[

K
∑

k=t

γk−t
(

γV−i(θ
k+1, π∗

−i, σ
′′
i ) − V−i(θ

k, π∗
−i, σ

′′
i )

)
∣

∣

∣
σ′′

i

]

(7.25)

Skipping some of the algebra (since it follows exactly the proof of Theorem 5.5),
for any σi,

E

[

K
∑

k=t

γk−t
(

γV−i(θ
k+1, π∗

−i, σi) − V−i(θ
k, π∗

−i, σi)
)

∣

∣

∣
σi

]

= −V−i(θ
t, π∗

−i, σi) (7.26)
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Then, by Assumption 7.6 we have that for any σ′
i and σ′′

i ,

E

[

K
∑

k=t

γk−t
(

γV−i(θ
k+1, π∗

−i, σ
′
i) − V−i(θ

k, π∗
−i, σ

′
i)
)

∣

∣

∣
σ′

i

]

(7.27)

= − V−i(θ
t, π∗

−i, σ
′
i) = −V−i(θ

t, π∗
−i, σ

′′
i ) (7.28)

= E

[

K
∑

k=t

γk−t
(

γV−i(θ
k+1, π∗

−i, σ
′′
i ) − V−i(θ

k, π∗
−i, σ

′′
i )

)
∣

∣

∣
σ′′

i

]

, (7.29)

and the theorem follows.

While I’ve relaxed the private values condition slightly, the takeaway point from
this analysis is primarily negative: Assumption 7.6 was required for the last step of
the proof to go through, and so it seems that the natural interdependent-dynamic im-
plementations of dynamic-VCG and its inaccessibility-handling variants will probably
not work without making some private-values style assumptions. Though types may
be privately realized, Assumption 7.6 is not generally satisfied when type transitions
can be interdependent, since one agent’s expectation of the types he will realize in
the future may be contingent on another agent’s reported type, which is a function
of the strategy he chooses. Of course this analysis does not in and of itself preclude
the possibility for other dynamic-VCG-like mechanisms that could be effective even
in interdependent settings.

7.4 Summary

In this chapter we saw dynamic mechanisms for two different environments in
which agents may be inaccessible: those in which agents are persistent and cannot
remain inaccessible forever; and those in which agents are initially “unidentified”,
arrive at a certain time-step, stay for a while, and then depart permanently. I provided
mechanisms for each of these environments that generalize dynamic-VCG, which is
defined for the persistent, always-accessible agents case.

Finally, I addressed the issue of dynamic mechanism design for interdependent
values settings, where the type transitions of one agent may depend on the local
information held by other agents. I found that the intuitions of [Mezzetti, 2004]

for static environments have a very natural application in dynamic settings. More-
over, the fragility of the equilibrium achieved in the static setting becomes more
robust in the dynamic case, since the reports of agents continually form the basis of
both payment and policy decisions. I specified an extension of the dynamic-Groves
mechanism class for interdependent dynamic settings. In lieu of a successful direct
interdependent-dynamic implementation of dynamic-VCG, future research should ex-
plore the possibility of other approaches towards achieving no-deficit without sacri-
ficing IR.



Chapter 8

Efficient metadeliberation auctions

Synopsis∗

In this chapter I consider a resource allocation scenario in which the interested par-
ties can, at a cost, individually research ways of using the resource to be allocated,
potentially increasing the value they would achieve from obtaining it. Each agent
has a private model of his research process and obtains a private realization of his
improvement in value, if any. From a social perspective it is optimal to coordinate
research in a way that strikes the right tradeoff between value and cost, ultimately
allocating the resource to one party– thus this is a problem of multi-agent metadelib-
eration. I provide a reduction of computing the optimal deliberation-allocation policy
to computing Gittins indices in multi-armed bandit worlds, and apply a modification
of the dynamic-VCG mechanism to yield truthful participation in a within-period ex
post Nash equilibrium. The mechanism achieves equilibrium implementation of the
optimal policy even when agents have the capacity to deliberate about other agents’
valuations, and thus addresses the problem of strategic deliberation.

8.1 Motivation and background

Imagine a group of firms competing for the allocation of a new technology. Each
firm initially has some estimate of how valuable the technology is to its business, and
is able to learn new ways of using the technology for greater profit through research.
If such research were costless and instantaneous, the socially optimal plan would
have all firms research the technology in all ways possible, at which point it would be
allocated to the firm with highest value. But in reality performing such research will
come at a cost. To maximize expected social welfare an optimal tradeoff should be

∗David C. Parkes is a collaborator on the work presented in this chapter, a version of which
appears in a paper with the same name published in the proceedings of the AAAI 2008 conference
[Cavallo and Parkes, 2008].
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struck between value and cost, with firms following a coordinated research policy. In
addition to gathering information from the outside world, agents may improve their
values for the resource by performing some costly computation, for instance finding
better business plans involving the resource. I adopt the general term deliberation for
any such value-improving process, and I consider the social planner’s metadeliberation
problem—deciding when and how to perform deliberation, including when to stop and
allocate the resource.

The main contributions of this chapter lie, first, in describing a method of reduc-
ing such deliberation-allocation problems to the multi-armed bandit problem, thus
providing a computationally efficient way of determining optimal policies. This is
non-trivial because the local problem of each agent (or firm) includes two actions in
each state—deliberation and allocation—and is thus not modeled as a simple Markov
chain. The second contribution is in applying dynamic mechanism design to achieve
equilibrium implementation in the face of selfish, strategic parties. My solution pro-
vides a metadeliberation auction, in which agents will choose to reveal private infor-
mation about their deliberation processes and also to voluntarily perform deliberation
as and when specified by the optimal solution.

In an extension, I allow that agents may have deliberation processes for the value
of other agents for the resource. This borrows from the earlier model of Larson and
Sandholm [2005], in which agents have costly deliberation processes and can perform
“strategic deliberation” about the value of other agents. But whereas they exclude
solutions in which the mechanism is actively involved in coordinating the deliberation
of agents, I allow for this and obtain positive results where they have impossibility
results. In particular, when the optimal policy calls for one agent to perform research
on behalf of another, we can achieve this. In the proposed mechanism an agent is paid
for increasing (via his deliberation process) the value of the item to another agent,
and thus enjoys the beneficial results of the deliberation it performs.

Related work

On the policy computation side, the most important result for our purposes is that
of Gittins [1974], who showed that the multi-armed bandit problem has a solution
with complexity that grows linearly in the number of agents (see Chapter 4, Section
4.4.1). Glazebrook [1979] extended this result to “stoppable” bandits, where execution
of the system can be halted for a final reward. The multi-agent deliberation-allocation
problem I consider falls within his framework and my reduction to the bandits problem
is a special case of his reduction. This noted, I provide a new proof that elucidates
the reduction and leverages the special structure in this environment.

Of previous studies that address related problems, perhaps closest is that of Weitz-
man [1979], whose foundational result demonstrated that an index policy can be used
to optimally search among a set of alternatives, where the exact value of an alterna-
tive is revealed for a cost. Weitzman’s result, intuitively, has much in common with
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that of Gittins, as both observe that a “reservation price” can be computed for each
alternative independent of the others, with the optimal policy defined by choosing the
option with highest reservation price. Weitzman’s setting is different from Gittins’s
(and closer to this chapter’s and Glazebrook’s), though, since one accumulates op-
tions as search proceeds and ultimately stops the procedure. However, it is limited to
addressing settings where “searching” an option is a one-step affair. This chapter can
be viewed as an extension of Weitzman’s work, where the options are more complex
and exploring them can be multi- time-stepped with incremental results.1

Bergemann and Välimäki [2006] look at the problem of information acquisition
by bidders in a single-item auction, and show that when such acquisition is one-shot
and simultaneous among the group, the Vickrey auction provides the right ex ante
incentives. Larson [2006] and Cremer et al. [2007] use Weitzman’s result to form
an optimal-search auction model with sequential information acquisition, but also
assume that a buyer’s acquisition process is instantaneous (not multi time-stepped,
with incremental information). Parkes [2005] addresses the role of auction design
given participants that have costly or limited value refinement capabilities, especially
the tradeoff between sealed bid and iterative designs, but does not provide an optimal
method. Results presented in previous chapters on dynamic mechanism design—in
particular Bergemann and Välimäki’s dynamic-VCG mechanism—will find applica-
tion in the solution I propose here.

8.2 The setting

Members of a set I of n agents ({1, 2, . . . , n}) compete for allocation of a resource.
Each agent i ∈ I has an initial value for the resource, and can refine his value
repeatedly via costly “deliberation”. To keep things simple, until Section 8.5 I will
assume that each agent has only one such deliberation process, and moreover that no
agent has a deliberation process about the value of any other agent.

Each agent i’s type θi ∈ Θi induces an MDP model Mi = (Si, Ai, τi, ri) of his
value for the resource and how it will change subject to deliberation. In this chapter
I will give significant focus to computational issues and provide results that are of
interest in a general MDP context independent of incentive issues, and so I will use
the MDP representation notation and language (rather than the type abstraction)
explicitly for most of the exposition. Si is i’s local state space. The action space Ai =
{αi, βi}, where αi allocates the resource to i and βi is deliberation by i. States evolve
according to a (possibly nondeterministic) transition function. I use τi(si, ai) ∈ Si for

1But note that Weitzman’s result can be applied to undiscounted settings, unlike ours or those of
Gittins and Glazebrook. Castañon et al. [1999] analyze a simpler model in which one can “sample”
from options without limit in a potentially undiscounted setting, but with each sample drawn inde-
pendently from the identical distribution, which does not model the economic settings of [Weitzman,
1979] or the current chapter.



Chapter 8: Efficient metadeliberation auctions 133

the random variable representing the state that results when ai is taken in state si,
defined so that τi(si, αi) = φi, where φi ∈ Si is a special absorbing state entered after
allocation from which no additional actions are available. Reward function ri can be
described in terms of the value vi(si) i obtains if allocated the resource (performing
no further deliberation) while in given state si ∈ Si, and the cost ci that i incurs from
performing deliberation (for simplicity I assume ci is constant, though my results
hold as long as ci is a bounded function of i’s state). If the resource hasn’t yet been
allocated: if deliberation is performed reward −ci is obtained, and if allocation is
performed value v(si) is obtained.

A set of further assumptions placed on this framework defines a domain. In
the setting as I described it, researching new uses may yield a greater value for the
resource, but agents won’t forget previously known uses, so the following is natural:

Assumption 8.1 (uncertainly improvable values). Agent valuations never de-
crease, i.e., ∀si, s

′
i ∈ Si such that Pr(τ(si, βi) = s′i) > 0, vi(si) ≤ vi(s

′
i).

Consider the agent MDP represented in Figure 8.1. If the agent deliberates once,
with probability 0.33 his valuation for the resource (i.e., the value it would obtain if
allocated) will increase from 0 to 3, and with probability 0.67 it will increase only
to 1. If a second deliberation action is taken and the current value is 1, with equal
probability the valuation will stay the same or increase to 4; if the current value is 3,
it will increase to 4 with certainty.

allocated allocated

allocated 3 4

0

allocated allocated

1 1

0
0.33

-1.1

3

0.67

-1.1

1

0.5

-1.1

0.5

-1.1

1

1

-1.1

4

Figure 8.1: Example of an agent’s MDP model of how his valuation for the resource
would change upon deliberation, labeled with transition probabilities and instanta-
neous rewards (in bold). The agent’s cost of deliberation is 1.1.

I make the following additional assumptions:

Assumption 8.2. Agent deliberation processes are independent of each other.
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Assumption 8.3. Agents cannot deliberate prior to the beginning of the mechanism.

Assumption 8.4. Only one action can be taken per time-step (i.e., multiple agents
cannot deliberate concurrently).

Assumption 8.2 is already implicit in the setup, with agent transitions and re-
wards functions of only local states, and deliberation actions for one agent causing
transitions only in his own MDP. Assumption 8.3 can be motivated by considering
that the resource is “revealed” only at the beginning of the mechanism. Finally,
though restrictive in some cases, Assumption 8.4 is without loss of generality when
the discount factor is high enough because it would be socially optimal to deliberate
sequentially in that case anyway.

Combining the agent problems, we have a multi-agent MDP (see Chapter 4, Sec-
tion 4.2.1) M = (S, A, τ, r) in which S = S1 × . . . × Sn and A = A1 ∪ . . . ∪ An, with,
∀s ∈ S and i ∈ I, τ(s, βi) = (s1, . . . , τi(si, βi), . . . , sn) and τ(s, αi) = (φ1, . . . , φn),
i.e., in this joint action space transitions now occur for an agent if his own deliber-
ation action is taken or if an allocation action is taken for any agent, in which case
he enters his absorbing state. I assume that each agent has a correct model for his
local deliberation process; from this the multi-agent MDP is also correct. Notation v
and c denote a valuation profile (v1, . . . , vn) and cost profile (c1, . . . , cn) respectively.
Given this, the joint reward function r(s, a) for the multi-agent MDP is defined as
∑

i∈I ri(si, a), with, ∀i ∈ I, s ∈ S, a ∈ A:

ri(si, a) =







0 if si = φi or a /∈ {αi, βi}
vi(si) if si 6= φ and a = αi

−ci if si 6= φ and a = βi,

This captures the essential aspect of the problem: the process “stops” once the re-
source has been allocated, and upon allocation the agent that receives the item obtains
the value associated with his current state. I will write v(s) for maxi∈I vi(s) in what
follows.

This formulation is quite general and allows, for example, for the local states to
represent “information states” in the sense of models of optimal Bayesian learning
[Bellman and Kalaba, 1959], as well as performance profile trees of the form proposed
by Larson and Sandholm [2001] for normative metadeliberation (with the added re-
striction that values cannot decrease).

Consider decision policy π, where π(s) ∈ A is the action prescribed in state
s. Like in previous chapters but now using MDP state notation rather than the
type abstraction, I write Vi(s

t, π) = E[
∑∞

k=t γ
k−tri(s

k, π(sk)) | st, π], ∀st ∈ S, where
sk = τ(sk−1, π(sk−1)) for k > t. I write V (s, π) =

∑

i∈I Vi(s, π), ∀s ∈ S. π∗ is a
socially optimal policy, i.e., π∗ ∈ arg maxπ∈Π V (s, π), ∀s ∈ S, where Π is the space
of all policies. We will at times consider a policy π∗

i that is optimal for agent i, i.e.,
π∗

i ∈ arg maxπ∈Π Vi(s, π), ∀s ∈ S. I use V (s) as shorthand for V (s, π∗), and Vi(si) for
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Vi(s, π
∗
i ). Letting Π−i denote the policies that never choose deliberation or allocation

for i (as though i were not present in the system), I write π∗
−i ∈ arg maxπ∈Π−i

V−i(s, π),
and V−i(s−i) as shorthand for V−i(s, π

∗
−i). I also define, ∀s ∈ S, a ∈ A:

Q(s, a) =
∑

i∈I

ri(si, a) + γE[V (τ(s, a), π∗)],

Qi(si, a) = ri(si, a) + γE[Vi(τ(si, a), π∗
i )], and

Q−i(s−i, a) =
∑

j∈I\{i}

rj(sj , a) + γE[V−i(τ(s−i, a), π∗
−i)]

As in previous chapters, I will consider procedures in which agents report private
information to a center such as an auctioneer. Now in this setting the center executes a
deliberation-allocation (“metadeliberation”) policy, in each period either suggesting
to some agent that he take a deliberation action or allocating the resource (and
ending the process). Self-interested agents may subvert the process by misreporting
information or by not following a deliberation action suggested by the center.

8.3 Efficient computation

I first present results regarding efficient computation of an optimal metadelibera-
tion policy. As discussed earlier, Gittins [1974] provides a scalable optimal solution
to any problem that can be modeled as a multi-armed bandit (MAB). To review: in
MAB problems there is a set of n reward-generating Markov processes, {1, . . . , n},
and exactly one process can be activated every time-step. The reward that a process
i generates if activated at time t is a function only of its state st

i at t (and not of any
other process’s state). If i is chosen at t, a reward ri(s

t
i) is obtained and successor

state st+1
i is reached (perhaps non-deterministically) according to st

i; for all j 6= i,
st+1

j = st
j and no reward is generated at t. Gittins proved that the complexity of

computing an optimal policy is linear in the number of processes.
But the metadeliberation problem is not quite a bandits problem. If our agents

are considered the arms of the MAB problem, each arm has two local actions—
allocate and deliberate—and is not a Markov chain. There is also special structure
to the problem: if an allocation action αi is taken then the whole system stops.
Glazebrook [1979] considered a similar setting, in which the local MDP for each
arm could be reduced to a Markov chain by pre-solving for the optimal local policy,
supposing that the arm was activated in every time-step. This approach also applies
here: his “condition (b)” is our uncertainly improvable values (UIV) condition, which
will allow us to prune away one action from every state of an agent’s local MDP,
yielding Markov chains. I thus reduce the problem to a multi-armed bandit, which
is then solvable via Gittins indices. I offer an independent proof of Glazebrook’s
result, exposing additional structure of the problem when this UIV property holds;
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Glazebrook’s proof is for a more general condition shown to be implied by his condition
(b).

Recalling the MDP model for a single agent depicted in Figure 8.1; Figure 8.2
portrays the same MDP after the pruning away of actions that would not be optimal
in a world in which the agent existed alone.

allocated allocated

3 4

0

allocated

1 1

0.33

-1.1

3 4

0.67

-1.1

0.5

-1.1

0.5

-1.1

1

Figure 8.2: MDP world model from Figure 8.1 for a single agent i, after pruning of
actions that would not be optimal in a world with no other agents. γ = 0.95, ci = 1.1.

Definition 8.1 (Efficiently MC-prunable). A domain is efficiently MC-prunable
if and only if, for any agent i, for any agent MDP models, any action that would
not be optimal in a world with no agents other than i is not socially-optimal in the
multi-agent MDP problem, i.e.,

∀i ∈ I, ∀a ∈ {αi, βi}, ∀s ∈ S, a /∈ π∗
i (si) ⇒ a /∈ π∗(s) (8.1)

I will establish this property for our setting, which will lead to the validity of the
following procedure:

• Convert each agent’s MDP model into a Markov chain by determining the policy
that would be optimal if no other agents were present.

• Execute the following deliberation-allocation policy: compute an index for each
agent MC at every time-period and always activate an MC with highest index.

The following lemma shows that to test for efficient MC-prunability in our domain,
we can restrict analysis to the pruning of deliberation actions.

Lemma 8.1. A domain is efficiently MC-prunable if and only if

∀i ∈ I, ∀s ∈ S, βi ∈ π∗(s) ⇒ βi ∈ π∗
i (si) (8.2)
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Proof. Considering the contrapositive of (8.1), efficient MC-prunability requires that
(8.2) and the following hold:

∀i ∈ I, ∀s ∈ S, αi ∈ π∗(s) ⇒ αi ∈ π∗
i (si) (8.3)

It turns out that (8.3) holds for any domain. Observe that Q(s, a) ≥ Qi(si, a), ∀a ∈
A, as π∗ is optimized over policy space Π, and π∗

i ∈ Π. Assume that αi ∈ π∗(s)
and, for contradiction, that αi /∈ π∗

i (s), i.e., that Q(s, αi) ≥ Q(s, a), ∀a ∈ A, and
Qi(s, βi) > Qi(s, αi). We have:

Q(s, αi) ≥ Q(s, βi) ≥ Qi(si, βi) > Qi(si, αi) = Q(s, αi),

a contradiction.

I will now show that any domain with uncertainly improvable values satisfies
equation (8.2) and is thus efficiently MC-prunable. This will allow us to disregard—
without loss in terms of computing a socially optimal policy—those parts of each
agent’s allocate-deliberate MDP that would not be optimal if that agent were alone
in the world.2

The proof is rather long and detailed, and works by analyzing the “per-period
gain”, denoted g(s, a), achieved when a deliberation action a is taken in state s; this
is the difference between the value of allocating in s and the expected (discounted)
value of allocating in the successor state minus the cost of the action. I use the
following notational definitions:

• g(s, a) = E[γv(τ(s, a))] − v(st) − ca, for any state s and deliberation action a,
where ca is shorthand for cj when a = βj .

• ρ is a random variable representing the the stopping time for policy π∗ given an
initial state s0 (the identity of which will be clear from context); E[ρ | s0, π∗] is
the expected number of deliberation steps that will be taken prior to allocation.

• G(s0, π∗) = E[
∑ρ−1

t=0 γtg(st, π∗(st)) | s0].

• hi(s) is a boolean variable equal to 1 if π∗(s) = βi, and 0 otherwise. Likewise,
h−i(s) is a variable that is 1 if π∗(s) = βj for some j ∈ I \ {i}, and 0 otherwise.

• Gi(s
0, π∗) = E[

∑ρ−1
t=0 hi(s

t) · γtg(st, π∗(st)) | s0]

• G−i(s
0, π∗) = E[

∑ρ−1
t=0 h−i(s

t) · γtg(st, π∗(st)) | s0]

2Actually doing the pruning requires “solving” each agent’s local MDP, which can be achieved
via value iteration or one of the other methods described in Chapter 4, Section 4.3.
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Note that the sum of the per-period gains of deliberation under π∗ from any state
s0 ∈ S equals the total difference between the value achieved by π∗ and a policy that
does no deliberation:3

G(s0, π∗) = E

[

ρ−1
∑

t=0

γt
(

γv(st+1) − v(st) − cπ∗(st)

)
∣

∣

∣
s0, π∗

]

(8.4)

= E

[

ρ
∑

t=1

γtv(st) −

ρ−1
∑

t=0

γtv(st) −

ρ−1
∑

t=0

γtcπ∗(st)

∣

∣

∣
s0, π∗

]

(8.5)

= E

[

γρv(sρ) − v(s0) −

ρ−1
∑

t=0

γtcπ∗(st)

∣

∣

∣
s0, π∗

]

(8.6)

= V (s0, π∗) − v(s0) (8.7)

On the way to proving that uncertainly improvable values domains are all effi-
ciently MC-prunable, I establish in Lemma 8.3 that under the optimal policy π∗,
from any state going forward, for every agent i, the total expected discounted per-
period gains for the deliberation actions taken by i are non-negative. I will make use
of this tiny helper lemma:

Lemma 8.2. For any a, b, c, and x such that b ≥ c and x > 0:

max(a, b) − max(a, c) ≤ max(a − x, b) − max(a − x, c) (8.8)

Proof. By case analysis:
Case 1: b ≥ c ≥ a. In this case max(a, b) = b, max(a, c) = c, max(a − x, b) = b,

and max(a − x, c) = c. So the lemma requires b − c ≤ b − c, which is obviously true.
Case 2: b ≥ a ≥ c. In this case max(a, b) = b, max(a, c) = a, max(a − x, b) = b,

and max(a − x, c) = c. So the lemma requires that b − c ≤ b − max(a − x, c), which
is true since max(a − x, c) ≥ c.

Case 3: a ≥ b ≥ c. In this case max(a, b) = a and max(a, c) = a. So the lemma
requires that a − a ≤ max(a − x, b) − max(a − x, c). This is true since b ≥ c implies
max(a − x, b) − max(a − x, c).

Lemma 8.3. ∀s ∈ S, i ∈ I, Gi(s, π
∗) ≥ 0.

3Doing the analysis in terms of t = 0 will make the notation less clumsy and there is no loss of
generality.
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Proof. For contradiction, say Gi(s
0, π∗) < 0 for some i ∈ I and s0 ∈ S. We have:

G(s0, π∗) = E

[

ρ−1
∑

t=0

γtg(st, π∗(st))
∣

∣

∣
s0, π∗

]

(8.9)

= E

[

ρ−1
∑

t=0

hi(s
t)γtg(st, π∗(st)) +

ρ−1
∑

t=0

h−i(s
t)γtg(st, π∗(st))

∣

∣

∣
s0, π∗

]

(8.10)

= Gi(s
0, π∗) + G−i(s

0, π∗) (8.11)

< G−i(s
0, π∗) = E

[

ρ−1
∑

t=0

h−i(s
t)γtg(st, π∗(st))

∣

∣

∣
s0, π∗

]

(8.12)

Now let ρ′ be a stopping time that follows ρ (i.e., is derived from policy π∗) except
that it potentially “stops earlier”, specifically as soon as a state is reached with non-

positive G value: ρ′ = inf
{

0 < ρ̂ ≤ ρ
∣

∣

∣
G−i(s

ρ̂, π∗) ≤ 0
}

. Such a ρ′ must exist, as

G−i(s
ρ, π∗) can’t be positive by optimality of π∗. We have:

G−i(s
0, π∗) = E

[

ρ′−1
∑

t=0

h−i(s
t) · γtg(st, π∗) + γρ′G−i(s

ρ′ , π∗)
∣

∣

∣
s0, π∗

]

(8.13)

≤ E

[

ρ′−1
∑

t=0

h−i(s
t) · γtg(st, π∗)

∣

∣

∣
s0, π∗

]

(8.14)

Define G′(st, π∗) = E[
∑ρ′−1

k=t h−i(s
k) ·γkg(sk, π∗) | st, π∗] for any st that has positive

probability of being the state at t given s0 and π∗. Then G′(s0, π∗) = (8.14). We will
now consider the times t0, . . . , tm−1 at which a deliberation action other than βi is
taken; m is a random variable representing the number of times this happens, and tk
(for 0 ≤ k < m) is a random variable representing the time at which a deliberation
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action other than βi is taken for the kth time, under π∗ from s0. We have that (8.14)

= E

[

h−i(s
0) · g(s0, π∗) + h−i(s

0) · γg(s1, π∗) + . . . (8.15)

+ h−i(s
ρ′−1) · γρ′−1g(sρ′−1, π∗)

∣

∣

∣
s0, π∗

]

(8.16)

= E

[

γt0g(st0, π∗) + γt1g(st1, π∗) + . . . + γtm−1g(stm−1, π∗)
∣

∣

∣
s0, π∗

]

(8.17)

= E

[

γt0

(

γv(st0+1) − v(st0) − cπ∗(st0)

)

+ (8.18)

γt1

(

γv(st1+1) − v(st1) − cπ∗(st0)

)

+ . . .+

γtm−1

(

γv(stm−1+1) − v(stm−1) − cπ∗(stm−1 )

)
∣

∣

∣
s0, π∗

]

(8.19)

= E

[

γt0

(

γ max{vi(s
t0
i ), v−i(s

t0+1
−i )} − max{vi(s

t0
i ), v−i(s

t0
−i)} − cπ∗(st0)

)

+

γt1

(

γ max{vi(s
t1
i ), v−i(s

t1+1
−i )} − max{vi(s

t1
i ), v−i(s

t1
−i)} − cπ∗(st0)

)

+ . . .+

γtm−1

(

γ max{vi(s
tm−1

i ), v−i(s
tm−1+1
−i ) − max{vi(s

tm−1

i ), v(stm−1)} − cπ∗(stm−1 )

)
∣

∣

∣
s0, π∗

]

(8.20)

By Assumption 8.1, for all i ∈ I, a ∈ {β1, . . . , βn}, st and st+1 such that st+1 could
succeed state st, vi(τ(st

i, a)) ≥ vi(s
t
i). Using this fact and Lemma 8.2, we have that

(8.20)

≤ E

[

γt0

(

γ max{vi(s
0
i ), v−i(s

t0+1
−i )} − max{vi(s

0
i ), v−i(s

t0
−i)} − cπ∗(st0 )

)

+

γt1

(

γ max{vi(s
0
i ), v−i(s

t1+1
−i )} − max{vi(s

0
i ), v−i(s

t1
−i)} − cπ∗(st0 )

)

+ . . .+

γtm−1

(

γ max{vi(s
0
i ), v−i(s

tm−1+1
−i ) − max{vi(s

0
i ), v(stm−1)} − cπ∗(stm−1 )

)
∣

∣

∣
s0, π∗

]

(8.21)

By the definition of G′ (in particular, the fact that G′(s0, π∗), . . . , G′(sρ−1, π∗) are
all non-negative), we can see that removing the discounting “gaps” in (8.21) can only
increase the value. We have that (8.21)

≤ E

[(

γ max{vi(s
0
i ), v−i(s

t1
−i)} − max{vi(s

0
i ), v−i(s

t0
−i)} − cπ∗(st0)

)

+

γ
(

γ max{vi(s
0
i ), v−i(s

t2
−i)} − max{vi(s

0
i ), v−i(s

t1
−i)} − cπ∗(st0)

)

+ . . .+

γm−1
(

γ max{vi(s
0
i ), v−i(s

tm−1+1
−i )} − max{vi(s

0
i ), v(stm−1)} − cπ∗(stm−1 )

)
∣

∣

∣
s0, π∗

]

(8.22)
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Noting that st0
−i = s0

−i and canceling out intermediate terms we have that this

= E

[

γm max{vi(s
0
i ), v−i(s

tm−1+1
−i )} −

m−1
∑

k=0

γkcπ∗(stk )

∣

∣

∣
s0, π∗

]

− max{vi(s
0
i ), v−i(s

0
−i)}

(8.23)

= E

[

γm max{vi(s
0
i ), v−i(s

ρ
−i)} −

m−1
∑

k=0

γkcπ∗(stk )

∣

∣

∣
s0, π∗

]

− v(s0) (8.24)

≤ V (s0, π) − v(s0), (8.25)

where policy π is optimal among all policies that never select deliberation action
βi. We have that G(s0, π∗) = V (s0, π∗) − v(s0) < G−i(s

0, π∗) = V (s0, π) − v(s0),
and thus that V (s0, π∗) < V (s0, π), a contradiction by optimality of π∗. The lemma
follows.

Lemma 8.4. All uncertainly improvable values domains are efficiently MC-prunable.

Proof. Consider any uncertainly improvable values domain and any i ∈ I and s0 ∈ S
such that βi ∈ π∗(s0). Consider the sequence of times t0, . . . , tm−1, where m is a
random variable representing the number of times βi is taken, and tk (for 0 ≤ k < m)
is a random variable representing the time at which βi is taken for the kth time, under
π∗ from s0. Since βi ∈ π∗(s0), Pr(m ≥ 1) = 1. Using Lemmas 8.3 and 8.2, we have
that:

0 ≤ Gi(s
0, π∗) = E

[

m−1
∑

k=0

γtk

(

γ max{vi(s
tk+1

i ), v−i(s
0
−i)} (8.26)

− max{vi(s
tk
i ), v−i(s

0
−i)} − cπ∗(stk )

)
∣

∣

∣
s0, π∗

]

From Lemma 8.3 we know that for any sk reached with positive probability from s0

given π∗, if π∗(sk) specifies deliberation then Gi(s
k, π∗) ≥ 0. Then as in the previous

lemma, we can remove the discounting gaps between the terms, so the above:

≤ E

[

m−1
∑

k=0

γk
(

γ max{vi(s
tk+1

i ), v−i(s
0
−i)} (8.27)

− max{vi(s
tk
i ), v−i(s

0
−i)} − cπ∗(stk )

)
∣

∣

∣
s0, π∗

]
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Noting that st0
i = s0

i and canceling out intermediate terms we have that this

= E

[

γm max{vi(s
tm−1+1
i ), v−i(s

0
−i)} −

m−1
∑

k=0

γkcπ∗(stk )

∣

∣

∣
s0, π∗

]

− max{vi(s
0
i ), v−i(s

0
−i)}

(8.28)

≤ E

[

γmvi(s
tm−1+1
i ) −

m−1
∑

k=0

γkcπ∗(stk )

∣

∣

∣
s0, π∗

]

− vi(s
0
i ) (8.29)

≤ Q∗
i (s

0
i , βi) − vi(s

0
i ) (8.30)

I have shown that 0 ≤ Gi(s
0, π∗) ≤ Q∗

i (s
0
i , βi)− vi(s

0
i ). Q∗

i (s
0
i , βi) ≥ vi(s

0
i ) implies

βi ∈ π∗
i (s

0
i ), and the theorem follows by appeal to Lemma 8.1.

This enables a “without loss” reduction from local MDPs to local MCs. The
remaining challenge is that the Gittins index policy is only optimal for problems with
an infinite time-horizon. This issue can be handled when γ < 1 by replacing the
one-time reward of vi(si) in a state si in which agent i is allocated the item with a
reward of (1−γ)vi(si) received per period in perpetuity. It is then a simple matter to
show that the optimal MAB policy will always continue to activate agent i’s MC after
it first does so when i is in an “allocation state”. Thus the resulting policy is valid
for the original problem with absorbing states. Returning to our example, Figure 8.3
displays the infinite horizon, pruned MC for the problem earlier depicted in Figure
8.2.
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Figure 8.3: Agent-optimal Markov chain from Figure 8.2 after expansion to an infinite-
horizon.
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Theorem 8.1. Given Assumptions 8.1–8.4, the deliberation-allocation policy defined
by activating, at every time-step t, the pruned, locally-optimal Markov chain of an
agent with the highest Gittins index is optimal.

Proof. The theorem follows immediately from Lemma 8.4 and Theorem 4.1 (Gittins’s
theorem).

8.4 Handling selfish agents

Having specified a computationally efficient, socially-optimal decision procedure
for uncertainly improvable values domains, the challenge of implementing it in a
context of selfish, strategic agents remains. What’s best for the system as a whole (the
socially optimal policy) will often not be best for every individual. In the absence of
an incentive-aligning mechanism, selfish agents will game the system by misreporting
private information or disobeying the center’s deliberation prescriptions.

I combine the index-policy solution to the multi-agent metadeliberation problem
with the dynamic-VCG mechanism to obtain a metadeliberation auction, in which
the center chooses actions based on private valuation information that agents report.
Note that, in the case of a deliberation action, “chooses” means “suggests to the
agents”; for an allocation action, the center simply executes it.

Definition 8.2 (metadeliberation auction). .

• Each agent i computes his locally optimal, infinite-horizon Markov chain, and
reports a claim about it to the center along with a claim s0

i about his initial
local state.

• At every time-step t, while the resource has not yet been allocated:

1. The agent i activated in the previous time-step reports a claim st
i about his

current state (except in t = 1 before any action has been taken).4

2. The center chooses the action specified by activation of an agent i∗ with
highest Gittins index.

3. Agent i∗ pays the center:

(1 − γ) V−i∗(s
t
−i∗) if deliberation was performed

V−i∗(s
t
−i∗) if the item was allocated

4Technically (and as in the mechanisms of Chapters 5, 6, and 7), at every time-step t each agent
i must have a chance to report his entire “type” θt

i
, i.e., a new claim about his entire Markov chain

model plus his current state, but this simpler presentation is consistent with the equilibrium behavior
(the same applies to the mechanism specified in Definition 8.3).
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Observe that agents are doing more than just reporting types here; in the initial
time period the mechanism has them solve their local MDP model and report the
optimal pruned MC. We could alternatively have agents simply report their entire
types to the center who could then do the pruning, but the payment scheme provides
the incentives for distributing computational work among the agents in this way.

Theorem 8.2. Given Assumptions 8.1–8.4, the metadeliberation auction is truthful,
efficient, and individual rational in within-period ex post Nash equilibrium, and never
runs a deficit.

Proof. The result follows from within-period ex post efficiency, IC, and IR of the
dynamic-VCG mechanism, the efficiency of the Gittins index policy for MABs, and
the lossless reduction result (Corollary 5.1 and Theorems 4.1 and 8.1). Recall that
dynamic-VCG requires that each agent i pay the center an amount equal to the
negative externality his presence imposes on the other agents at t. In our setting, for
the agent who deliberates at t this is equal to the cost to the other agents of having
to wait one time-step to implement the policy that would be optimal for them, i.e.,
(1− γ) V−i∗(ŝ

t
−i∗); for all other agents it is 0. When the item is allocated to an agent,

that agent imposes an externality equal to the total value agents could get from the
current state forward if he were not present.

This provides the result we want: each agent will first prune away his suboptimal
local actions, and then truthfully report his (pruned) MC to the center. From that
point forward, the center will suggest deliberation actions according to the optimal
deliberation-allocation policy, collecting a payment from the agent that deliberates.
Agents will choose to follow these suggestions and truthfully report new local states,
and the center will eventually allocate the resource. At that point the agent will
consume the resource with no further deliberation, by optimality of the deliberation-
allocation policy. I will now demonstrate the workings of the mechanism on an
example that illustrates the way the payment scheme causes agents to internalize the
social costs and benefits of both performing deliberation and being allocated the item.

Example 1

Consider execution of the metadeliberation auction on the example in Figure
8.4 (for simplicity I’ve switched to a more concise MDP representation, omitting
allocation nodes). The optimal policy has agent 1 deliberate first; if his value increases
to 1010 he is then allocated the item. Otherwise the optimal policy has agent 2
deliberate for 10 time-steps and then allocates to him. The discount factor γ = 0.9.
Under the metadeliberation auction, in the first time-step agent 1 must pay the
“immediate externality” imposed on agent 2 assuming the policy optimal for agent
2 would be executed in all following periods, i.e., his cost of waiting one period, or
(1 − 0.9) · 0.910 · 210. If agent 1’s deliberation yields the high value (1010) he will be
allocated the item and must then pay 0.910 · 210.
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Figure 8.4: Agent 1 has initial value 10. With small probability his value will increase
to 1010 if he deliberates once. Agent 2’s value is min(2x, 210), where x is the number
of times he has deliberated. c1 = c2 = 0 and γ = 0.9.

If agent 1’s deliberation does not yield the improvement, then in every period that
follows prior to allocation (with agent 2 deliberating) agent 2 must pay (1−0.9) ·10 =
1. In the final allocation step agent 2 pays 10. Would agent 2 rather avoid making
these payments by lying? Bear in mind that he discounts value (rewards and costs)
in the future by a factor of 0.9. We can compute agent 2’s expected utility (from the
first time he is asked to deliberate) for being truthful, and compare it to his expected
utility if he misreports his MC such that he is asked to instead deliberate for only
k < 10 time-steps, and then finishes his deliberation once he receives the resource. If
he deliberates k times (for any k ≥ 0), the total discounted payments he makes will
equal:

(1 − γ)10 + γ(1 − γ)10 + . . . + γk−1(1 − γ)10 + γk10

= 10 − γ10 + γ10 − . . . − γk−110 + γk−110 − γk10 + γk10

= 10

So his discounted payments are the same regardless of how many times he deliber-
ates. Then since it is optimal for agent 2 to deliberate 10 times, whether he does so
inside or outside the context of the mechanism, his total discounted utility will always
equal γ10210 − 10, and so truthful participation is a utility maximizing strategy.

8.5 Multiple deliberation processes

So far, in order to simplify analysis I’ve assumed that each agent has only one way
of deliberating. However, the results we’ve seen also apply when agents have multiple
independent deliberation methods. For instance, imagine an agent that has three
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different research programs it could pursue (potentially with distinct associated costs
per time-step)—the agent merely has to report all three models to the center, who
will consider all three in determining the optimal policy. It is important, though,
that all deliberation processes are independent (deliberation in one process cannot
change the state of another process); otherwise, there will be no reduction to the
multi-armed bandit problem. Given this independence, a generalization of Theorem
8.2 immediately follows.5

8.5.1 Strategic deliberation

Consider now a setting in which an agent may have one or more deliberation
processes that pertain to the value of other agents for the resource. This models the
setting of strategic deliberation introduced by Larson and Sandholm [2001].6 Note
that the optimal policy might specify “cross-agent” deliberation, with the results of i’s
research being shared with j (in particular, when i has a better deliberation process
than j). One can imagine a “consulting” scenario, where one firm has expertise in
optimizing the integration of new technologies into an overarching business plan—
expertise that may be of more value applied to another company’s situation than to
its own.

The dynamic-VCG scheme will not work here. A subtle condition usually required
for the good incentive and IR properties of dynamic-VCG is that the optimal policy
for agents other than i does not take any actions that involve agent i. Formally, where
Π−i is the set of policies that never specify an action for i, the necessary condition is
that maxπ∈Π V−i(s, π) = maxπ∈Π−i

V−i(s, π) (this is strongly related to the analysis, in
Chapter 7, Section 7.3, of dynamic-VCG in an interdependent values setting). This
condition is not met when the optimal policy has one agent deliberate about another’s
value. The intuition behind the extension of dynamic-VCG that I present in this sec-
tion is that the payments make the expected equilibrium payoff to agent i forward
from any state equal to the payoff i would receive in the dynamic-VCG mechanism
if his deliberation processes about other agents were actually about himself. The equi-
librium properties then follow immediately from the analysis of the metadeliberation
auction in the context of agents with multiple independent deliberation processes only
about their own values.

Let pij denote a deliberation process possessed by agent i pertaining to the value
that agent j could obtain from the resource; let cpij

denote the cost (to i) of deliber-
ating on process pij . For any process pij, any state spij

consists of two things: some

5Without this independence the dynamic-VCG mechanism will still provide the right incentives,
but we will no longer be in a multi-armed bandit world, so the payment scheme will look different
and we will not have the reduction that allows for a computationally tractable solution.

6But note that our independence assumption precludes results of one agent’s deliberation im-
pacting the expected results of another’s, though they may concern the same agent’s value.
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information η(spij
) (e.g., the observations of the world acquired from research, or

the plan resulting from some computation), and a valuation v(spij
) for j receiving the

item given the information content. Let vj(η(spij
)) denote the actual value received by

j for the information associated with the same state. Allowing for misreports, v(ŝpij
)

denotes the value that should be achieved by j according to i’s state report, η(ŝpij
)

denotes the information content associated with that state report, and v̂j(η(ŝpij
)) is a

claim made by j about the actual value he achieved. In the mechanism I propose the
center computes payments by reasoning about the social value that could be achieved
under a policy that is optimal with all agents present, but in which an agent i cannot
take any actions. I denote this quantity, which is independent of i’s state, as V −i(s−i),
for all s ∈ S.

Definition 8.3 (metadeliberation auction with cross-agent deliberation)..
• Each agent i computes the locally optimal, infinite-horizon Markov chain for

every deliberation process it possesses, and reports claims about each MC and
its initial local state to the center.

• At every time-step t, while the resource has not yet been allocated:

1. For process pī,j̄ activated in the previous time-step, agent i reports a claim
ŝt

pī,j̄
about pī,j̄’s current state.

2. The center chooses the action specified by activation of a process pij with
highest Gittins index.

3. If deliberation was performed, agent i pays the center (1 − γ) V −i(ŝt
−i).

If the item was allocated and i = j, j pays the center V −j(ŝt
−j). If i 6= j,

the center communicates η(ŝt
pij

) to agent j, j communicates v̂j(η(ŝt
pij

)) to

the center, i pays the center V −i(ŝt
−i) − v̂j(η(ŝt

pij
)), and j pays the center

v(ŝt
pij

).

Theorem 8.3. Given Assumptions 8.1–8.4, the metadeliberation auction with cross-
agent deliberation is truthful, efficient, and IR in within-period ex post Nash equilib-
rium, and does not run a deficit when agents are truthful.

Proof sketch. The incentive and IR properties of the mechanism follow from those of
the original metadeliberation auction, combined with the following observation: for
any process pij with i 6= j, the payment scheme yields a scenario which is, payoff-wise,
identical to one in which pij is a deliberation process pertaining to i’s value. If pij is
selected for deliberation then i already pays the cost. If pij is selected for allocation
then i will be paid an amount equal to the actual value yielded from the process
(assuming agent j is honest), and j will obtain value 0 (assuming i is honest), since
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v(st
pij

) = vj(η(st
pij

)) by the assumption that beliefs are correct.7 The mechanism
never runs a deficit in equilibrium. Prior to the final allocation step there are no
payments that flow to the agents. Then in that final allocation step payments made
to the center are v(st

pij
) + V −i(ŝt

−i)− vj(η(st
pij

)). Given truthful reporting (which, as

shown above, is achieved in an ex post equilibrium), this quantity equals V −i(ŝt
−i),

which is ≥ 0.

Note that if we conceptualize the value associated with a state in an MDP not
as a definite, actual value, but as an expectation of the value that will be achieved
for allocating in that state, we get very similar results. An analogue of Theorem 8.3
holds in which, given truthful reporting, there is no-deficit (and IR) in expectation
from every state, at all time-steps, rather than ex post. This is because in the last
step we would have that v(spij

) = E[vj(s
t
pij

) | st
pij

], for any spij
.

Example 2

Consider the 2-agent scenario depicted in Figure 8.5, in which one agent has a
deliberation process about the other. Agent 1 will obtain value 10 if allocated the
resource (there is no deliberation he can do that would change his value), and both
agent 1 and agent 2 have a model about agent 2’s value with one deliberation step,
which yields value 100 with probability 0.2 and otherwise yields value 0. Take γ = 0.9.
We will consider two variants.

(a) Consider that agent 2’s cost of running his deliberation process is 50 and
agent 1’s cost is 1. Agent 1 does not have an incentive to deviate from truthfulness
(for instance, by simply claiming agent 2 has the high 100 value without deliberating
for him). Agent 1 will be payed the value that agent 2 reports experiencing, given
the information obtained from agent 1’s deliberation. So agent 1’s payment is only
based on agent 2’s actual utility (assuming agent 2 is truthful). If agent 1 reported
agent 2 had the high value and didn’t communicate corresponding information (e.g.,
a plan for using the resource), the value agent 2 experiences—and the value agent 1
is payed—would be 0.8

(b) Now consider a variant in which agent 2’s cost of deliberating is 5 rather
than 50. Agent 2 may know that if he reports truthfully agent 1 will be selected
first (since agent 1’s deliberation process about agent 2 has a lower cost), and if
agent 1’s deliberation yields a plan worth value 100 agent 2 will obtain none of the

7Note that if an agent i is allocated the item via an agent j’s process, both agents are indifferent
about their reports during the final allocation stage (this is similar to the fragility of the equilibrium
in [Mezzetti, 2004]). Ex post IC and IR are technically maintained as there is only one “possible”
true state for j, and it is known to i. There is an alternate payment scheme that avoids this
indifference, but in some cases it will lead to a deficit in equilibrium.

8Note that this is not an issue of “punishment.” Rather, in equilibrium it will never be useful to
deviate.
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.

(1) Agent 1’s process
about agent 1

100

0

0

0.2

-1

0.8

-1

(2) Agent 1’s pro-
cess about agent 2

100

0

0

0.2

-50 (-5)

0.8

-50 (-5)

(3) Agent 2’s pro-
cess about agent 2

Figure 8.5: Agent 1 has one trivial process pertaining to his own valuation. Both
agents have processes pertaining to agent 2’s valuation: initially the value from allo-
cation is 0; after one deliberation step, with probability 0.2 it increases to 100 and
otherwise stays at 0. No further deliberation yields any change. Agent 1’s cost is 1,
agent 2’s cost is -50 (in variant (a)) and -5 (in variant (b)).

surplus. So would he prefer to report cost 0 in order to be asked to perform the
deliberation himself first? No. The mechanism specifies that he would be charged
as though both of agent 1’s deliberation processes were about agent 1. So in the first
period agent 2 would be charged (1 − γ)[γ(0.2 · 100 + 0.8 · 10) − 1] = 2.42 and
endure deliberation cost 5. If agent 2’s deliberation yields the high value (which it
will with probability 0.2) he will obtain the resource (value 100) and make payment
γ(0.2 ·100+0.8 ·10)−1 = 24.2. If it yields low value he gets 0 value and pays 0. Thus
agent 2’s expected utility from this strategy is −2.42−5+0.2·0.9·(100−24.2) = 6.224.
But if agent 2 is truthful, he still has a chance for high payoff; recall that the two
deliberation processes are independent, so the result of one does not bear on what
the result of the other will be. In particular, if agent 1 deliberates first agent 2 has
expected value γ0.8(−(1 − γ)10 + 0.2(γ(100 − 10)) + 0.8 · 0 − 5) = 7.344. (With
probability 0.8 agent 1 will find value 0 for agent 2, and then agent 2 is asked to
deliberate and with probability 0.2 will achieve value 100, making a payment of 10.)
Thus truthfulness is a superior strategy for agent 2.

So this modification of dynamic-VCG specifies cross-agent deliberation exactly
when it is socially-optimal. The payments align agents’ interests with those of the
system as a whole, so each agent’s utility maximizing strategy is exactly the strategy
that maximizes utility for the system, i.e., truth and obedience.
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8.6 Summary

This chapter makes two distinct contributions. First, I provided a proof that
the multi-armed bandits problem is suitable for solving multi-agent metadeliberation
problems, in this case by careful reduction of the original multi-agent MDP model
into a multi-agent Markov chain model. Second, I provided a novel application of
the theory of dynamic mechanism design to coordinate deliberative processes of self-
interested agents, improving social welfare. This has parallels in work on preference
elicitation in settings with costly or bounded elicitation, but is, to my knowledge, the
first normative solution in a setting in which information acquisition by participants
is incremental rather than instantaneous. I extended the underlying ideas of the
dynamic-VCG mechanism to an environment in which it cannot be directly applied
because of positive externalities. Remarkably, this does not lead to a budget deficit.

There are many directions for future work in this area, most of which can be
considered relaxations of assumptions I made here. Perhaps most exciting would be
an extension to the undiscounted setting where agents are completely patient; no
index policy is currently known for such settings. Additionally, though we can handle
agents with multiple independent ways of deliberating, there may be cases in which
agents know of many research methods, where the intermediate results of any one
method may effect the expected value another method would yield. Again, there is
no know computationally tractable solution for such settings, though dynamic-VCG
would continue to provide the proper incentives for truthful participation given an
optimal policy.

Finally, there is also another class of compelling deliberation scenarios in which
deliberation yields better estimates of a true valuation; i.e., agents learn their val-
uations through research, rather than increase them by figuring out new uses for a
resource. Deriving an efficient way of computing optimal deliberation-allocation poli-
cies in such settings would be of great interest; the reduction technique employed in
this chapter does not apply.
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Conclusion

This thesis is about trying to make decisions in ways that lead to the realization
of as much social welfare as possible. Mechanism design provides a framework for
providing incentives for agents to behave in ways that are socially optimal, even if
they are motivated only by selfish concerns. But the theory falls short in important
regards; addressing these, the thesis offers two major contributions:

• I provided redistribution mechanisms (for both the static and dynamic cases)
that achieve drastically improved social welfare properties over previous solu-
tions in important domains.

• I elaborated the theory of dynamic mechanism design, an extension of mecha-
nism design from one-shot environments to ones in which a sequence of decisions
is to be made over time. I provided fundamental results as well as extensions
to settings with a population of agents that changes over time, and an applica-
tion to resource allocation settings in which agents can improve their values via
costly deliberation.

To conclude the thesis I will give a short summary of the discoveries, describe
some possible challenges for implementation, and discuss promising avenues for future
research.1

9.1 An informal summary

Mechanism design, even in typical static settings, has suffered from a significant
shortcoming: the solutions proposed often involve large payments from agents to the
center. That is, the individuals whose utility the mechanism is employed to serve

1The summary here is informal; see either Chapter 1, Section 1.5 or the synopses that begin each
chapter for a slightly more structured and complete overview of the results of the thesis.
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must transfer away much of the utility they achieve. This fact has often been de-
emphasized by positing that the center is “just another agent”, so utility he obtains
through transfers is still utility enjoyed by “the agents”. There are certainly cases
where this reasoning is valid—sometimes the goal in decision-making is just to squeeze
out all the utility we can from the environment; which person ends up with what
portion of it doesn’t matter, as long as someone is getting the value. Still, in practice
this story often just doesn’t fit. A group of individuals may agree that maximizing
their joint welfare should be given utmost priority, yet they may not be willing to
transfer arbitrary amounts of that welfare to a third party for whom they have no
concern.

This is where redistribution mechanisms come in, taking the goal of squeezing the
most value possible out of the decision-making process and maintaining as much of
it as possible within the group whose welfare is being maximized via the decision. I
found far superior solutions to those that have been proposed prior in terms of social
welfare. How? By leveraging structure inherent in the decision-making domain.

In more detail: The VCG mechanism is the classic mechanism design solution. It
achieves efficient outcomes in dominant strategies, guarantees (often) that each agent
will be no worse off for having participated, and never runs a deficit. I showed that
among mechanisms with these properties it maximizes the transfers required of the
agents and, additionally, in domains without known structure to agent valuations,
it also minimizes the transfers; so it is unique. But often times valuations do have
structure that is known, for instance in allocation problems where agents that don’t
receive items don’t obtain any value. I proposed RM which, for each agent, computes
a “guarantee” on the revenue that will result independent of what valuation that agent
reports. The mechanism then runs VCG and gives back (or “redistributes”) a portion
of the revenue to each agent proportional to the revenue guarantee computed for that
agent. The mechanism never sacrifices the incentive or no-deficit properties of VCG,
and often yields much better utility for the agents. I showed empirically that for
single-item allocation problems with more than a few agents, practically all value is
maintained with the group (i.e., payments are close to 0).

v

Perhaps an even greater weakness of classic mechanism design solutions is the fact
that they are designed for static settings, where just a single decision is considered at
a time. In reality there is practically always a context of future decisions that bears
on determining what decision would be optimal now. Should I go on vacation to Italy
this month or wait until later? I’ll have to decide next summer whether or not to
attend my friend’s wedding over there... etc. When self-interest and competition are
present in such sequential decision-making settings, a static analysis can break down
quickly. Should I get to use the car on Friday or should my housemate? What about
on Saturday? If we simply hold a Vickrey auction on each day, I might, for instance,
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gain by reporting a low value on Friday letting my housemate get the car rather than
paying the high price for it. Then on Saturday if he no longer needs it I can get it
for nothing.

One can imagine a more sophisticated mechanism executed up-front that plans for
all time periods, but this will still not work. Why? Because if agents are obtaining
new information each period (will I finish my task with the car on Friday or need
it again Saturday?) then the center must provide incentives for them each period to
share such information as it becomes known.

I presented dynamic mechanism design as a solution framework for such sequential
decision making problems with dynamically arriving private information. We saw
that many of the results from the static setting carry over, in spirit, to the dynamic
case, in that they have rather direct (though more complex) analogues: the dynamic-
Groves class of mechanisms extends the Groves class and characterizes the set of
mechanisms that are efficient in an ex post equilibrium in dynamic settings; the VCG
mechanism has an analogue in Bergemann & Välimäki’s dynamic-VCG mechanism,
and it is revenue maximizing among efficient mechanisms; the AGV mechanism has
an analogue in Athey & Segal’s dynamic-balanced mechanism. We even saw that
RM has an analogue in the dynamic redistribution mechanism (dynamic-RM) for
multi-armed bandit settings.

In dynamic settings an additional new challenge arises that isn’t present in the
static case: what if agents go in and out of contact with the center over time, or what
if the make-up of the group itself changes? I provided variants of dynamic-VCG that
handle these possibilities given certain assumptions. To handle inaccessible agents,
if we assume that all agents must eventually regain contact with the center, then
there is a solution that “logs” the payments of dynamic-VCG when an agent is gone
and executes them (appropriately scaled for time-discounting) in a lump sum when
the agent returns. For the case of changing agent populations, the solution needs
to incorporate beliefs about future arrivals and departures of agents in computing
payments; when arrivals are independent, the proposed dynamic-VCG variant works.

Finally, in the last chapter I demonstrated how the theory of dynamic mechanism
design could be applied to a resource allocation setting. We looked at a one-time,
single-item allocation problem with a twist: agents could perform research, at a cost,
to potentially increase the value they would obtain from receiving the item. This is a
“value discovery” setting where values are constrained to only go up, the idea being
that an agent might learn “new uses” for the item without forgetting old ones. How
can we implement the sequence of research actions that is optimal before ultimately
allocating the resource? It is interesting that this is a one-time allocation problem,
but it requires a dynamic solution. This is also a prime example of how dynamic
mechanism design can be used to provide incentives for agents to do important things
(research, here) other than simply reporting their types.
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9.2 Something to keep in mind: tractability

If the theory of mechanism design is to be useful in practice, one must be able to
determine the nature of the prescriptions it makes in a feasible amount of time. The
computational tractability of mechanisms—decision policies and transfer payments—
is a huge concern. The issue becomes much more acute when we move to a dynamic
setting, where computing optimal policies for multi-agent MDPs gets intractable very
quickly in the worst case (say, when there are more than a few agents with more than
a few states in a setting with more than a few decisions to be made sequentially).
The equilibrium properties of the mechanisms I presented depend crucially on the
center following an efficient policy: the payment structure aligns agent interests with
social welfare, but if social welfare isn’t being maximized then it’s not guaranteed
that being truthful will maximize each agent’s utility.

One of the things we can do in the face of this conundrum is identify special cases
in which optimal policies are tractable. This was one of the main motivations for the
emphasis I placed on multi-armed bandit settings in the thesis; Gittins showed that
in those environments the complexity of computing optimal policies is linear in the
number of agents. Fortunately, there are indeed interesting dynamic problems that
more or less fit the multi-armed bandits model, and the results for that setting could
potentially be put into practice.

But what about domains that do not have structure that allows for tractable
computation of optimal policies? Is there still a place for mechanism design? First,
we can make statements like “if the mechanism’s policy is within ε of optimal, then
each agent can gain at most ε from a non-truthful strategy”, where one could say
the incentive properties are weakened by an amount proportional to the distance
of the mechanism’s policy from optimality. But I like to think we can do better,
and the intuition is as follows: Implementing a Groves payment scheme is always
computationally tractable when agents can quantify the value they experience (simply
ask the agents what value they just experienced, and make payments), which means
that interests can always be aligned towards maximization of social welfare. Then
given this, agents will want to deviate from truth only if they believe doing so will
improve social welfare. If all agents agree that the center’s chosen decision “heuristic”
policy is “best” among any that are known among the group, they will choose to be
truthful. A mechanism design approach that explicitly reasons about agent beliefs
in this way, and perhaps allows agents to share information about newly discovered
decision heuristics with the center, intuitively seems promising.

9.3 Other directions for future work

Redistribution mechanisms

RM is a mechanism applicable to arbitrary domains, but in order to be imple-
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mented a revenue-guarantee for each agent must be computed. We saw that in the
case of single-item allocation problems (or AON domains, more broadly), a simple
algorithm exists—just imagine the agent’s value were 0 and see what revenue would
result. But this simple solution doesn’t generalize. In combinatorial allocation do-
mains a revenue-minimizing report may not specify value 0 for every outcome. I pre-
sented a mixed-integer programming formulation for computing revenue-guarantees,
but simple solutions, when they exist, are preferable. Since combinatorial allocation
problems are so important, it would be worthwhile to try to determine a simple way
of computing revenue-guarantees in that space, and also to do an empirical analysis
of the performance of RM there.

It is also true that designing mechanisms customized to specific settings may allow
us to achieve things we can’t in a general-purpose mechanism. Guo & Conitzer [2007;
2008c] and Moulin [2007] have achieved positive results in allocation settings with
multiple identical items. A custom mechanism for general combinatorial auctions
may also yield gains over RM.

Another interesting observation is that redistribution mechanisms are somewhat
relevant to consideration of fairness. In some settings equitability and no-envy con-
cerns are important—it is often desirable that agents receive a share of the social
welfare that is somehow deemed “just”, or that no agent would prefer to be in any
other agent’s shoes. RM’s satisfaction of redistribution-anonymity is relevant, but
otherwise the mechanism does not explicitly pursue such goals. Still, it is worth
pointing out that RM improves on VCG in terms of decreasing the discrepancy in
the utilities that agents realize. For instance in single-item allocation, agents not allo-
cated the resource obtain positive utility under RM. Except for the case of the second
highest bidder, all “losing” agents receive a redistribution payment that is weakly big-
ger than the winner’s redistribution payment; this evens things out, to some extent.
In the 3-agent example of Figure 1.3, for instance, the utilities under RM are 4, 2,
and 2.67; under VCG they are 2, 0, and 0. I don’t know if achieving less discrepancy
in utilities is possible in an efficient mechanism, but it’s an interesting question. Even
if it means achieving less overall utility for the agents (lower redistribution), in some
cases fairness considerations might make it a worthwhile tradeoff.

Dynamic mechanisms

Dynamic mechanism design is a new area, but it’s really an extension of the theory
built up over the last decades for the static case and thus will probably “mature”
relatively quickly. I presented analogues of several fundamental results from the
static setting, but important questions remain. The extension of the Green & Laffont
[1977] characterization was done within a context of history-independent transfer
functions. In a dynamic setting transfers could, in principle, be computed based on
entire report histories. The important within-period ex post efficient mechanisms we
saw (dynamic-VCG and dynamic-RM) both compute history-independent transfers,
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but might there be other interesting mechanisms that do not? It seems likely that in
moving to a characterization for a history-dependent transfer context the dynamic-
Groves intuition will persist, but this should be verified and it will be worthwhile to
work out the details.

There are important open questions about dynamic redistribution mechanisms. I
specified dynamic-RM for multi-armed bandit settings, which are the dynamic ana-
logue of AON domains, but can RM be generalized to apply to arbitrary dynamic
settings? Interestingly, it may not be the case that dynamic-VCG is unique among
all within-period ex post efficient, ex post IR, and no-deficit dynamic mechanisms,
contrary to the analogous result I provided for VCG and the static setting. Can we
specify a mechanism that redistributes dynamic-VCG revenue in any case where doing
so is possible without distorting incentives? Can we specify a dynamic redistribution
mechanism that is optimal under some plausible conditions? Is dynamic-RM optimal
for multi-armed bandit worlds when a dynamic analogue of redistribution-anonymity
is imposed?

Finally, in Chapter 7 we discussed the implementation of dynamic mechanisms
in settings with interdependent types (e.g., where my expected type in the next
period given an action may depend on your current type as well as my own). We
saw that the dynamic-basic-Groves mechanism provides the right incentives even
in these environments, but dynamic-VCG generally does not. An ex ante charge
dynamic mechanism could yield ex ante budget balance and IR, but is there a dynamic
mechanism that is efficient and IR in within-period ex post Nash equilibrium and is
guaranteed to not run a deficit?

9.4 A closing thought

It is typical in the development of new theories that certain assumptions are
made in order to make analysis tractable. Of course work in mechanism design is
no exception. We assumed rational agents that act infallibly to maximize there own
utilities; we assumed those utilities have a quasilinear form (which implies no agent
cares what transfer payments other agents receive); we assumed agents will participate
in a mechanism if their expected utility for doing so is not negative (what if it’s
vanishingly close to 0?), etc. The spirit of these assumptions is grounded in actuality,
but they certainly will not always hold true. This is the way we make progress, but I
would offer that the problems we wish to solve in this field demand extra diligence in
making sure our assumptions actually match the real world. Mechanism design, after
all, is a theory about how to organize human behavior, so we should make sure we’re
considering actual human behavior and not just the behavior that is most convenient
for our theories.
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