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Abstract

As distributed systems increase in popularity and experience resource contention, new

resource allocation methods are needed for scalability and manageability. In this thesis, I

investigate the use of auctions, a type of market-based methods, as a decentralized resource

allocation approach. Agents in auctions individually submit bids that provide critical infor-

mation, including agents’ private value for resources, for prioritizing resource allocation.

Three issues must be addressed for wider acceptance of using auctions. First, I present

empirical data of a deployed market-based resource allocator, called Mirage, for allocating

sensor network resources. The data provides observations of agent bidding patterns, which

varied across values, sizes, and allocation timing. Furthermore, agents exhibited strategic

behaviors that validate the need to mitigate such behaviors, which create complexity for

both agents and system administrators.

Second, I design Roller, an online mechanism that is strategyproof with respect to

agents’ submitted values and resource sizes. Roller is also configurable and able to provide

different tradeoffs in regard to mis-reports of allocation timing. As agents of distributed

systems often require responsive decisions, Roller uses a rolling window abstraction that

enables the allocation of future resources. When compared to other allocators, Roller pro-

vides a high value and high responsiveness environment that is suitable for agents with
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dynamic requests.

Third, I study monetary policies in regard to the control of virtual currency for dis-

tributed systems. By establishing a space for policy design, I analyze the effectiveness of

different monetary policies against specific workloads and agent strategies. A framework

for identifying symmetric mixed strategy Nash equilibrium is also presented, which allows

me to identify a policy that promotes active bidding as being effective in capturing high

allocative efficiency. In addition, I observe that agent strategies that rely on agent values

tend to dominate other strategies.

By focusing on the above three issues, I provide empirical data, a responsive and strat-

egyproof allocation method, and a framework to design and analyze virtual currency that

can be useful for systems designers considering scalable resource allocation for distributed

systems.
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Chapter 1

Resource Challenges in Distributed

Systems

1.1 Introduction

In this thesis, I explore market-based resource allocation methods for distributed sys-

tems [68] in the presence of selfish 1 agents 2. In recent years, distributed systems (e.g.,

grid computing, cloud computing, and peer-to-peer systems) have become popular in re-

search and commerce. A key feature of distributed systems (or simply “systems”) is the

ability to coordinate many complementary types of computational resources (e.g., servers,

sensors, storage, and network bandwidths) for ease of shared use by multiple agents over

space and time. This sharing is economical for single agents with occasional needs for these

resources.

1I use the terms selfish, self-interested, and strategic interchangeably.

2The term agent refers to either human users or software-based intelligent agents.

1



Chapter 1: Resource Challenges in Distributed Systems 2

To facilitate sharing among agents, a system must include a method for resource allo-

cation. There are a wide range of methods that can be used when the resources available

exceed the resources requested. However, available methods are more limited when the

situation is reversed, and resource allocation must be prioritized. A common method is to

authorize a centralized entity (e.g., a person, a committee, or a software program/scheduler)

to prioritize. This centralized method becomes less and less effective as the number of vari-

ables in determining priority increases (i.e., does not scale when there is a wide array of

agents, each with their individual needs, some perhaps more important than others). The

result of ineffectively allocating resources also carries a negative economic impact for the

distributed system owners. Therefore, this thesis focuses on market-based methods of pri-

oritizing resource allocation.

The market used for examples in this thesis is auctions. Through auctions [52], agents

try to obtain resource allocation by submitting a “bid.” Through some common language,

each agent submits a bid which describes the desired resource and the value it is willing

to pay. The objective of an auction is to allocate resources to bids with the highest values,

while also meeting resource constraint requirements of the distributed system. An auction

that captures a high amount of value is called “allocatively efficient.” By having agents

submit bids individually, an auction decentralizes the resource allocation process and this

eases centralized bottlenecks [33].

Because maximizing value is a key motivation for using an auction, it is important to

define what value is. Value is the “maximum willingness to pay” for some resource by an

agent [97, 36], measured in some currency.3 For example, an agent may be willing to pay a

3Walker [102] offered a parallel view of value: “The term ‘value’ always implies power in exchange, and
nothing else. Value is the exchange power which one commodity or service has in relation to another.”
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maximum of $100 for using a server. I distinguish two types of values for each agent in this

thesis. First, an agent attaches a true value to some resource as soon as its demand arises.

This value is privately known only to the agent and is fixed. Second, the agent decides

how close to the true value he wants to pay and submits this amount as a bid value to the

resource allocation auction. Thus, bid values an auction receives are not necessarily the

true values of the agents. Agents’ true values and bid values can each be based on either a

real (e.g., USD) or a virtual currency, depending on the system. In this thesis, value-based

metrics for experiments are based on true values, unless otherwise noted 4.

While the idea of using market-based methods for distributed systems is by no means a

new idea (dating back to the PDP-1 futures market [94]), many open issues still remain that

limit its adoption by systems designers. In this thesis, I make contributions to the following

open issues:

• Lack of empirical data: There is a serious lack of empirical data on how market-based

methods behave in distributed systems. One of the reasons is most of the market-

based methods do not collect usage data. This makes it hard for systems designers,

as well as agents, to evaluate market-based methods. To remedy this situation, I in-

troduce Mirage, a deployed market-based resource allocator for a sensor network

testbed that provides real usage data, particularly in regard to strategic behaviors ex-

hibited by agents.

• Allocating dynamic resources: Traditional market-based methods (e.g., auctioning

a vase on eBay) are not designed for resources that are available dynamically over

4These metrics are applicable because I generate agents’ true values in my experiments. In the real-world,
a system cannot generate these true value-based metrics.



Chapter 1: Resource Challenges in Distributed Systems 4

time (e.g., using a server now vs. 2 hours from now). Furthermore, the set of agents

varies at different times, creating different sets of bids that can be exploited strategi-

cally. To address this need I have designed Roller, an online mechanism that uses a

rolling window abstraction to auction resources across space and time, and can make

responsive, early decisions on allocations that occur in a future time.

• Elicit true information from selfish agents: A system should maximize the aggregate

true values of agents. This requires that agents have an incentive to report their pri-

vate true values as bid values. Similarly, agents should be encouraged to report truth-

ful resource needs in space and time. Furthermore, for mechanisms like Roller that

run continuously, the agents’ desire to strategize across a series of auctions should

be mitigated. I have designed Roller to address these three barriers to eliciting true

information.

• Unclear virtual currency characteristics: Not all systems can use real currency for

bids and payments. Examples include non-profit and internal corporate systems. In-

stead, they must create virtual currency for use with market-based methods. How-

ever, it remains unclear how much currency a system should create, as well as how

it should distribute currency to agents. I will present a framework for designing and

analyzing monetary policy for different agent workloads and strategies.

1.2 Rise of Distributed Systems

Distributed systems have emerged as an important computing paradigm in recent years.

One aspect that is important for many applications is the ability to scale and coordinate
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large amounts of computational resources for multiple agents to share over both space and

time.

Since the early days of the computer industry, agents have been sharing computational

resources. Things have changed dramatically since the days of logging into the shared

corporate-owned mainframes. The arrival of personal computers in the 1980s, and with

them new classes of applications for productivity, business, and entertainment, have al-

lowed agents to work privately at any given time. Nonetheless, there is never a shortage of

applications or usage needs that demand resources beyond that which any individual per-

sonal computer can provide, despite computing capabilities having constantly increased as

described by Moore’s Law [9].

In this thesis, I focus on systems that are administrated by a single trusted domain.

Each system is available over time and serves an array of agents (e.g., employees of a com-

pany, researchers of a university), each with different resource needs over time. If designed

properly, such a system can provide many benefits, such as:

• Statistical multiplexing: By having multiple agents sharing, a distributed system can

serve the agent demands over space and time.

• Economy of scale: A properly designed distributed system enables adding new re-

sources over time. Thus, a system can start small and grows as the needs of agents

arise.

• Resource heterogeneity: A system may include resources of different types (e.g.,

servers for computation and disks for storage).

• Fault tolerance: The failure of some resources will not render the whole system un-
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available.

Variations of distributed systems that have offered these benefits have evolved over the

years. Three of these variations are the motivation for this thesis and are described below.

1.2.1 Grid Computing

In many scientific disciplines, including astronomy, biology, and physics, scientists of-

ten need large amounts of computational capabilities to process and analyze data-intensive

experiments. These data are generated from equipment such as the Large Hadron Col-

lider [7], which can produce around ten TB (terabytes) of data every eight hours [17].

These data are then distributed to physicists as required. The amount of resources required

to process these enormous amounts of data are significant and unaffordable by virtually

all individual scientists and administrative domains (e.g., universities). In addition, because

most large-scale computational needs only arise periodically, sharing is more economical.

Because different scientists need this type of large resource at different times, the con-

cept of grid computing was created, to enable multiplexing distributed resources. A com-

putational grid is a “hardware and software infrastructure that provides dependable, consis-

tent, pervasive, and inexpensive access to high-end computational capabilities.” [38] Today,

these grids are being deployed in different large-scale centers around the globe, including

ATLAS [3] and Open Science Grid [10].

1.2.2 Network Testbeds

In computer science, testbeds are indispensable as they provide a platform to perform

experiments on the next generation of computational technologies. As computational sys-
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tems often span across the globe, the need to access heterogeneous resources both locally

and remotely is great. Nonetheless, deploying remote resources (e.g., in Asia) presents

huge barriers for most research projects, which do not have budgets or personnel to operate

remotely.

As a result, initiatives to form testbeds by pooling resources owned by different univer-

sities are being widely developed. PlanetLab [80] is a well-known project that includes over

1,000 nodes from hundreds of universities and institutions around the globe. Researchers

use PlanetLab to access “slices” of the whole network of nodes easily (e.g., use a slice

to access 5% of all nodes). Some experiments on PlanetLab include content distribution

networks [39] and global network traffic monitoring and management [65].

Another example is sensor network testbeds. Wireless sensor networks are important

as they apply to physical applications such as environmental monitoring [63] and health

care [64]. Since many sensors are location-specific and thus heterogeneous (e.g., collection

of real-time weather in Boston vs. Seattle), some research groups put together different

testbeds for sharing [69, 30, 66].

1.2.3 Cloud Computing

In recent years, cloud computing has become popular for organizations of all sizes to

access hosted computational resources on a “pay as you go” basis. Many web applications

today are hosted on public cloud services such as Amazon Web Services [1] and Google

App Engine [6]. There are a wide range of resources available, including data storage,

computational power, and databases. The ability for an organization to avoid acquiring,

installing, and maintaining such complex resources is a key reason why cloud computing
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has taken off.

Nonetheless, there are still barriers to using cloud computing, especially for large or-

ganizations that are concerned with reliability and security. Outages of cloud computing

services can occur, which can affect popular websites and applications and their millions

of users [2]. Reliability issues like this will further encourage large organizations to build

and deploy their own private clouds. A private cloud [8] is accessible only by authorized

agents and provides more fine-grained control.

Many of these private clouds involve virtual machines [15] that each serve one or more

agents at a time. Administrators manage these clouds by dynamically allocating agents’

requests of computational resources to different virtual machines, each with its own re-

source constraints. New tools and paradigms for managing private clouds have only begun

to emerge as their complexity grows.

1.3 Critical Resource Challenges

The power of multi-agent sharing resources such as grids and testbeds comes with a

price. As the amount of resources and the number of agents increase, the number of possible

ways for a system to allocate resources to agents with diverse needs increases exponentially.

Because there is no single, accepted rule as to how and when certain resources should be

allocated to different agents, an important task for systems designers is to define objectives

and design resource allocation methods that support such objectives. This task is complex

due to several critical, interrelated resource challenges, that are discussed below.
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1.3.1 Dynamic Resource Needs

Distributed systems are attractive because they provide resources that are available on

an on-demand basis. Thus, resource allocation methods must recognize agent requests (that

can arrive at any time) and provide the requested resources immediately or at the requested

time. Some agents may have infrequent requests, while others may make a request every

two hours. Thus, a good resource allocation method should be able to handle these dynamic

requests in real-time, and fill these requests as soon as possible without incurring signif-

icant delays for agents. Delays can be problematic in many cases. For example, in Grid

Computing scientists often spend hours or even days preparing the data and code before

running an experiment on a system. Systems often are different (e.g., different versions of

operating systems) meaning the preparation cannot start until the scientists know for sure

which resources will be available. Thus, allocators that inform them of reserved resources

in advance would help avoid the risk of not being ready to use the resources, because the

data is still being prepared.

In addition, resources are also designed to be available in different configurations in or-

der to satisfy different agents who desire diverse combinations of resources. In the context

of a sensor network, one agent may demand half of the sensors for one hour, and another

agent may demand all of the sensors for one day. Systems must be able to take different

requests and make allocation decisions based on the various constraints of the resources,

as well as individual agent goals, while meeting the objectives of the system. Resource al-

location methods that consider space and time from the perspectives of systems and agents

are critical to successfully address these dynamic resource needs.
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1.3.2 Resource Contention

A serious problem that all systems must tackle is resource contention, which arises

when agents collectively request resources that exceed total system resources. For example,

PlanetLab usage often increases significantly in the days leading up to conference deadlines

(see Figure 1.1 for an example). The key challenge is to decide which requests should be

granted and which denied. Systems must adapt resource allocation methods that can resolve

this challenge.
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Figure 1.1: PlanetLab load example. 5th, average, and 95th percentile load average on
220 nodes leading up to the OSDI 2004 submission deadline [31].

One contributing factor to such explosive demand is the lack of a method to encourage

individual agents with less-urgent needs to back off during periods of time when there

are insufficient computational resources. Traditional resource allocation methods often just
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drop certain requests randomly, as they don’t have additional agent information in regard

to values or preferences.

Consider the real-life example of an emergency waiting room in a hospital with a room

full of ill patients, where only half of the patients can be served. Assume that half of the

patients have serious conditions and will die if not served. If the method is to simply ran-

domly select which patients are to be served, then likely many patients will end up dying,

which is definitely not the goal of either the hospital or the patients.

1.3.3 Ignored Agent Values

The previous hospital example highlights this next challenge. Every agent has some

kind of value attached to the resources it seeks, and a system should respect and leverage

such value for resource allocation. Two agents who have otherwise identical requests (e.g.,

ten sensors immediately for one hour) may have different values (e.g., $100 for one and $5

for the other). If these values are somehow revealed to a system, it can use them to decide

which requests are more valuable and should be granted resources.

The challenge for systems is threefold: (i) to determine the currency with which all

reported values should be based on (e.g., real vs. virtual currency) and to create and manage

such currency if necessary, (ii) to enable a way for all agents to express their values in the

system, and (iii) to adapt allocation methods that take such represented values as first-order

factors.
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1.3.4 Presence of Selfish Agents

Last but not least, systems must embrace the fact that agents may be selfish. Selfish be-

haviors are common in society [57], and agents are usually primarily interested in their own

self-interests and want to maximize their individual gains. For public goods, economists

have long observed these behaviors [58]. Their effects are also well-documented in many

distribution systems [91]. In peer-to-peer systems, the ideal goal is to have agents that both

contribute and consume resources. However, tragedy of the commons [45] (or freeriding) is

a well-known problem in which agents often consume much more than they contribute. In

grid computing, scientists with urgent tasks often cannot obtain resources because they are

delayed by long-running jobs of lower priority that ideally should be suspended to make

room for the urgent jobs [29].

Yet, traditional resource allocation methods assume agents are either obedient (i.e., fol-

lowing the prescribed algorithm) or perhaps adversarial (i.e., intentionally behaving badly

mainly to hurt the outcomes of others) [37]. The concept of selfish agents has not been

fully embraced by systems designers, although it can easily disrupt allocations and goals.

Consider the hospital example again in which all patients look ill and it is impossible to

tell who is dying. Assume the hospital adopts a method that asks each patient to answer

the question of whether they are dying, and admits only those who say yes. In order to

get admitted, some non-dying patients who may be in serious pain might respond yes for

selfish reasons. Even those non-dying patients who planned to tell the truth might lie and

say yes if they realize the chance to be admitted is slim otherwise, since most others have

replied yes. Selfish behaviors in this case totally disrupt the system.
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1.4 Solving Challenges with Markets

The challenges from the previous section involve agents who are selfish, with individual

values and preferences regarding resources, and with resource needs that are combinatorial

and time-varying from each other. As systems grow in popularity, these challenges become

even more critical to address. Unfortunately, few traditional allocation methods address

these challenges, as the following examples demonstrate.

1. TeraGrid is shared by a large number of physicists [14]. Resources are divided into

“service units” of one CPU hour each. The allocation requests are submitted manu-

ally by agents and are then reviewed by different committees. The committees will

review the requests according to some qualitative schemes. This type of process is

not scalable, and has the potential to be manipulated.

2. The resource abstraction of PlanetLab [80] is a slice, which is a “horizontal cut” of

a number of machines to include a certain amount of CPU, memory, storage, etc.

Agents on PlanetLab obtain slices without physical limits. Thus, during resource

contention periods, few agents get their desired amount of resources, even though

everyone still has its slice. While scheduling tools such as Sirius [13] and Bella-

gio [19] allow agents to reserve a certain amount of slice resources in advance, the

main allocation method PlanetLab adopts does not capture or use agent values.

3. Heuristic schedulers such as First-Come First-Serve (FCFS), Proportional Sharing

(PropShare), Shortest-Job-First (SJF), and Earliest-Deadline-First (EDF) are fast in

determining allocations. However, they do not consider combinatorial resources or

agent values. In addition, agents can easily manipulate the scheduler, for example,
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by reporting an early deadline for an EDF scheduler.

The idea of using markets and using value maximization as an objective to allocate

computational resources, for either centralized or distributed systems, is not new. There

has been much work done on resource allocation in a broad range of systems, including

clusters [100, 29], computational grids [104, 54], parallel computers [92], and Internet

computing systems [60, 84]. Nonetheless, many obstacles remain.

In this thesis, I contribute by addressing three major obstacles that, once solved, could

increase the interest level of systems designers in considering market-based methods of

resource allocation. These three major obstacles are: lack of empirical data, lack of focus

to address self-serving strategic behavior, and lack of virtual currency understanding.

1.4.1 Lack of empirical data

Despite the benefits of markets that have been discussed by previous works as listed

above and in the real world (e.g., stock exchanges, FCC), markets for resource allocation

of distributed systems still have not become commonplace for real-world deployments. A

key reason is lack of empirical data to support their benefits.

In Chapter 2, I address this obstacle via Mirage, an auction-based market designed to

allocate resources for a sensor network testbed. Mirage uses a repeated combinatorial auc-

tion for resource allocation of 148 nodes over time. The usage data collected show agents

submitting diverse bids and exhibiting strategic behaviors. These include manipulating bid

values as well as the space and time attributes of resource requested. These data are valu-

able for motivating the design of market-based methods that mitigate such behaviors.
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1.4.2 Lack of focus to address strategic behavior

With the presence of strategic behaviors, resource allocation of a distributed system

becomes more complex. This applies to both agents who participate in it, as well as the

systems designers and administrators who need to maintain orderly transactions. Most cur-

rent market-based systems do not address these behaviors as a first-order priority. Further-

more, strategies can span across an array of market attributes, including bid values, resource

sizes, and timing, making it hard to bootstrap with some simple mechanism with the hope

of fixing strategic behaviors over time.

In Chapter 3, I address this obstacle by designing Roller, an online mechanism that uses

a rolling window abstraction for resource allocation and enables agents to submit bids with

values and resource requirements over space and time. It addresses the shortcomings of Mi-

rage with allocation and payment rules that mitigate strategic behavior while maintaining

the ability to make fast decisions. Specifically, Roller is a type of strategyproof mechanism

in which reporting truthfully is the best strategy for agents. I show that Roller captures a

high amount of total value within a responsive environment.

1.4.3 Lack of virtual currency understanding

Many systems discussed in this chapter do not and cannot use real currency. In fact,

many proposed market-based methods assume the use of virtual currency. However, the

characteristics of virtual currency are not yet fully understood. How much currency to

create and how to distribute it to agents are among the open questions that need to be

addressed. Without a properly designed virtual currency, market-based systems will be

negatively affected because all of their transactions depend on it.
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In Chapter 4, I explore designing a monetary policy for virtual currency. Specifically,

I introduce a design space of policy dimensions that includes: money supply; distribution

methods; and distribution intervals. I build a closed system model with agents receiving

and spending currency over time, subject to a set of agent bid value strategies. To study

the behavior of this model, I use equilibrium analysis in search of a steady state. Overall,

different types of policies have varying effects on systems and specific workloads. Some of

these policies are able to capture high total value for the systems.



Chapter 2

Market Deployment Lessons

2.1 Introduction

Despite the number of market-based methods currently proposed for distributed sys-

tems, few have been deployed and even fewer have provided data on agent characteristics,

resource allocation efficiency, or value efficiency. These data are critical for validating the

usefulness and design of market-based systems. One way to increase the amount of empir-

ical data is by deploying these systems in industrial or research settings.

In this chapter, I present the design of and empirical data collected from Mirage 1,

an auction-based market for allocating the resources of a wireless sensor network testbed.

The testbed is composed of 148 individual wireless sensor nodes and used by researchers

(agents) across the USA. Almost all agents require multiple nodes to conduct their sen-

sor network experiments. Some of their experiments have specific requirements such as

1Mirage was a joint project with collaborators from Harvard University, Intel Research Lab, and
UCSD [30].
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the type, locations, and communication frequencies of the nodes. Therefore, each agent

request includes a combination of nodes over space and time and sometimes requires a set

of complementary notes.

Each agent is allocated virtual currency to use in bidding for the testbed resources. Each

bid specifies the resource combinations of interest (e.g., “any 32 nodes for 8 hours anytime

in the next two days”) and a bid value in virtual currency, indicating the maximum the agent

is willing to pay. Mirage accepts bids on an ongoing basis and runs an auction periodically.

Winning bids in the auction are determined by maximizing the total bid value obtainable

for available resources. Because of the combinatorial nature of this resource supply and

demand, combinatorial auctions [35] are used in Mirage to fulfill the multiple resource

specifications of agents. Unlike a single-item auction, a combinatorial auction is able to

consider all resource requirements in a single agent request as well as resource constraints

when making resource allocation decisions. This mitigates the problem of “exposure.” For

example, an agent wants a pair of shoes but is forced to bid in two auctions, one for the

left shoe and one for the right shoe. The agent is likely to win only one shoe in a non-

combinatorial auction setting, resulting in zero value.

Empirical data presented in this chapter were collected from the operation of Mirage

during the initial four-month period, which had the most agents participating and the high-

est number of bidding activities of the testing period. Using these data, I answer the fol-

lowing two key research questions.

2.1.1 Research Questions

Do markets work?
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I want to validate whether or not a market-based resource allocation scheme is neces-

sary. Currently, there is not enough empirical data to decide whether market-based meth-

ods could work well for distributed systems. To determine necessity, there are two basic

questions to answer. Can agents adapt to interacting with markets, especially submitting

requests along with bid values? Do agents indeed bid different values for resources, espe-

cially when virtual currency is used? Positive answers to these questions provide valuable

evidence that markets can work as an environment for agents to request for resources.

Do agents game?

Traditional resource allocation methods generally do not pay any attention to strategic

behaviors motivated by the self-interest of agents. Even certain market-based methods do

not place strategic behaviors as a primary allocation factor (e.g., first-price auctions which

can be manipulated). To highlight this issue, real data showing real strategic behaviors and

their negative effects will be crucial for designers to justify spending the time and energy to

devise more appropriate resource allocation methods, for example, mechanism design [73].

2.1.2 Chapter Overview

In Section 2.2, I provide an overview of the Mirage system, including the repeated com-

binatorial auctions and virtual currency system. I discuss how the usage data obtained helps

address the question, “Do markets work?” in Section 2.3. Similarly, I address the question,

“Do agents game?” via empirical data in Section 2.4. The findings from the deployment

of Mirage bring to light further challenges and refinements that can be used to design a

more robust resource allocation model. I discuss these in Section 2.5. Finally, I present my

conclusions and summary in Sections 2.6 and 2.7.
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2.2 Mirage

An opportunity for resource allocation design arose during the construction of a 148-

node sensor network testbed at the Intel Research Laboratory in Berkeley, CA. This testbed

is comprised of two types of sensors: 97 Crossbow MICA2 and 51 Crossbow MICA2DOT

series sensor nodes, or “nodes,” mounted uniformly in the ceiling of the lab (see Figure 2.1).

The testbed is intended to be a non-profit service provided for free to researchers of sensor

networks inside and outside of the lab. From a market standpoint, Intel can be viewed as

the “seller” and the researchers as the “buyers.”

Figure 2.1: Mirage map. 148 sensors deployed throughout the Intel Berkeley Research
Lab.

Mirage [30] is a microeconomic resource allocator designed specifically for this testbed.

Note that there are two important assumptions being made here. The first is that the pri-

mary goal of the system is to maximize aggregate value. This assumption is predicated on

the fact that the second assumption is true in that agents who use Mirage each have value

associated with the desired resources. To achieve the primary goal, the system employs

a repeated combinatorial auction [35, 72] to schedule allocations. In such an auction, an
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agent submits bids specifying resource combinations of interest and the amount of virtual

currency the agent is willing to pay. Periodically, the auction clears, a set of winning bids

is computed, and trades are settled through payments to a central bank. Next, I discuss the

design of the repeated combinatorial auctions and virtual currency.

2.2.1 Repeated Combinatorial Auctions

Mirage uses a first-price, repeated combinatorial auction to allocate resources to com-

peting agents over time. The auction uses a heuristic 2 algorithm in order to clear auctions

quickly and regularly. In this setting, an auction is run periodically. During each round,

there are multiple buyers (the competing agents) and a single seller (Intel) who sells re-

sources on the system’s behalf. All bids submitted prior to the start of a round are con-

sidered. The auction will then calculate winning bids based on per nodeslot value, collect

payments (which equal agents’ submitted bid values), and make associated resource allo-

cations. It is important to note that the version of Mirage used here is not strategyproof

due to the use of a first-price method. Thus, agents can gain by mis-reporting bid values in

Mirage 3. We chose this method because we did not have a suitable fast and strategyproof

algorithm available at the time of deployment. I present the details of the combinatorial

auction for this testbed below.

Each Mirage node is allocated for use in 1-hour slots. Agents may bid for 1, 2, 4, 8, 16,

or 32-hour slots (durations). To allow agents to plan ahead, the auction sells resources up to

2I discuss current challenges of using optimal combinatorial auctions in Section 2.5.

3For example, consider two agents seeking the same resource with true values of 10 and 5, respectively.
The first agent can gain (and still win) by submitting any bid value between 5 and 10, such as 6, and commit-
ting to a lower payment.
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three days in advance, which is a total of 72 slots. Thus, the resources being allocated at any

time can be viewed as a matrix of 148 nodes by 72 slots (the next 72 slots from the current

time). I refer to each cell in the matrix as a single “nodeslot.” When the system starts up,

all nodeslots are available. Over time and as auctions are run repeatedly, nodeslots become

occupied as bids are allocated and new nodeslots become available as the “window” of

nodeslots opens up. Note that each nodeslot can be used by only one agent.

Agents can submit bids to the auction whenever their needs arise. Each bid includes

resource combinations of interest in space (nodes) and time (slots), along with a maximum

value (bid value) the agent is willing to pay. Formally, a bid bi is specified as follows:

bi = (vi, si, ti, di, fmin, fmax, ni, oki). (2.1)

Bid bi indicates that the agent is willing to pay up to vi units of virtual currency for any

combination of ni nodes from the preferred subset of nodes oki, for a duration of di hours

(1,2,4,...,32), a start time between si and ti hours, and a frequency in the range [fmin, fmax].

si represents the delay of when an allocation can be first considered from the time of bid

submissions. The difference between si and ti represents the patience during which an

allocation can be assigned. oki is a subset of the 148 nodes that the agent prefers to choose

from. For example, an agent may only want nodes that are near one side of the Lab or nodes

that are at least 10 feet apart from each other 4. Each sensor supports different frequencies,

thus an agent may desire a dedicated frequency for its allocated sensors to communicate

wirelessly in order to avoid conflicts with sensors allocated to other agents. In practice,

distinct frequencies have not been a scarce resource and thus rarely present problems.

As an example, an agent might request “any 64 nodes, operating on an unused frequency

4Agents use a separate resource discovery service to identify desired nodes.
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in the range [423MHz, 433Hz], for 4 consecutive hours anytime between the next 6 hours

and the next 24 hours, for up to 99 units of virtual currency.” If the agent needs 100 unique

nodes out of the total 148 that meet such resource specifications, then the corresponding

bid would be:

bi = (99, 6, 24, 4, 423, 443, 64, [a list of 100 nodes]). (2.2)

2.2.2 Virtual Currency

Because the testbed is offered as a free public service to select researchers, charging real

currency in Mirage is impractical. Instead, Mirage relies on virtual currency and a central

bank to enforce currency policy. Because agents in Mirage have no way to earn currency,

the system must decide how to distribute virtual currency, both when a new agent joins and

over time as agents need additional currency to buy resources.

The virtual currency policy, shown in Figure 2.2, assigns two numbers to each agent’s

bank account: a baseline value and a number of shares. When created, each bank account is

initialized to its baseline value (i.e., a number of virtual currency is credited to the agent ac-

count). Once funded, an agent can then begin to bid and acquire testbed resources through

Mirage. In each round of the auction, accounts for winning bids are debited and the pro-

ceeds are redistributed through a profit-sharing policy based on the proportional shares of

each agent. The primary purpose of this policy is to reward agents who refrain from using

the system during times of peak demand and penalize those who do not. These rewards

result in transient bursts of credit.

Another mechanism, a savings tax, prevents idle agents from sitting on large amounts of

excess credit for extended periods of time (a “use it or lose it” policy). Periodically, agents
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baseline: 1000
shares:       80

Alice’s Account
baseline: 2000
shares:       20

Bob’s Account

Settlement Tax

80% 20%

Figure 2.2: Virtual currency policy.

whose balance is above their baseline values will be taxed by some tax rate: a portion will

be returned to the bank which then distributes the currency to all agents based on shares.

Unfortunately, empirical data to evaluate the effectiveness of different tax rates was not

collected properly for analysis.

In the deployment, an administrator sets the virtual currency policy. Bank accounts

for external agents were assigned a baseline value of 1,000, while bank accounts for the

two internal agents (i.e., employees of the Intel Lab) were assigned larger allocations with

baseline value of 2,000. For simplicity, the shares of these agents are set to 1,000 and

2,000, respectively. Savings tax is collected every 4 hours, at a rate of 5% of an agent’s

account savings. These parameters were chosen to ensure that an exhausted bank account

can recover half of its balance within a few days, and the full amount in a week.

2.3 Usage Experience

Mirage began operation in December, 2004 and ran well over a year. In this section, I

report on usage data collected over the initial four-month period since this was the period
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of highest activity. As of April 8, 2005, a total of 312,148 node hours were allocated across

11 agents (each representing a separate project).

2.3.1 Dynamic Resource Needs

Figure 2.3: Cumulative distribution of nodes requested by agents.

The results indicate that agents have dynamic and combinatorial resource needs in Mi-

rage over both space and time. Figure 2.3 shows a CDF of the number of nodes (ni) that

agents requested. The range of nodes is distributed evenly, from a single node to the full set.

Similarly, agents do seek different durations (di, number of slots) as well, as illustrated in

Figure 2.4. Last but not least, agents do have different delay (si) and patience (ti−si), high-

lighting that their needs do vary over time, and that they do take advantage of the ability to

submit requests in advance (Figure 2.5).
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Figure 2.4: Cumulative distribution of duration requested by agents.

In summary, these usage data are important in that they substantiate the need for alloca-

tion methods that address the challenge of dynamic resource needs in Chapter 1. Therefore,

the effort to design and adopt methods that handle these varying needs over value, space,

and time efficiently is worthwhile.

2.3.2 Resource Contention

During the initial four months, several periods of significant resource contention took

place including the SIGCOMM 2005 (due on 61st day) and SenSys 2005 (due on 120th

day) conference deadlines. Figure 2.6 shows the utilization of the MICA2 and MICA2DOT

nodes over the four months, plotted on the x-axis as number of days since Mirage was first

deployed. It depicts periods of significant utilization (y-axis, near 100%) extending over
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SenSys Deadline
SIGCOMM Deadline

Figure 2.6: Testbed utilization: daily usage for the 97 MICA2 and 51 MICA2DOT nodes.

multiple consecutive days, in particular days around those two deadlines. This confirms

that the challenge of resource contention in Chapter 1 must be addressed, because few
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requests could be allocated during such times.

2.3.3 Diverse Agent Values

Figure 2.7: Bid value distributions: submitted total values by all agents.

Next, I look at whether agents bid different values and, if so, how they are distributed.

Figure 2.7 plots the CDF of bid values (total value for a bid) submitted by all agents. It

shows that bid values for testbed resources vary substantially, spanning orders of magni-

tude. Figure 2.8 plots distributions of bid values per node hour (per unit value for a bid)

for the seven most active agents in the system. Bid values of each agent are distributed

relatively evenly, suggesting that these ranges are not due to a few anomalous bids over the

relatively lengthy four-month period.

Furthermore, Figure 2.9 plots the median per nodeslot clearing price for both MICA2
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Figure 2.8: Bid value distributions: submitted values per node hour for the seven most
active agents.

and MICA2DOT nodes over time. These prices are computed by dividing the bid value v

of a winning bid by the requested n nodes and s slots (in hours). Unallocated nodeslots

are assigned a price of zero. For a given hour, prices of all MICA2 nodes are examined

and the median nodeslot price for that hour is plotted. A similar procedure is performed for

MICA2DOT nodes.

Of particular interest in this graph are the two sequences of prices from days 45 to 60

and days 105 to 120 (i.e., periods leading up to conference deadlines). These sequences

show that the value of testbed resources, as measured by market prices for nodes, increased

exponentially (logarithmic y-axis) during times of peak contention. This further suggests

that allowing agents to express valuations for resources to drive the resource allocation

process is important for making effective use of the testbed (e.g., to distinguish important
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Figure 2.9: Median market prices (per nodeslot).

use from low-priority ones). However, it also suggests that agents become more and more

desperate to acquire resources as deadlines approach. As it turns out, it is precisely during

these times that agents will try their hardest to strategize and perhaps game the system (as

shown in Section 2.4).

Collectively, these graphs indicate that agents are willing to assign bid values that reflect

their own changing priorities. Therefore, the benefit of addressing the challenge ignored

agent values in Chapter 1 can be significant.
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2.4 Observed Strategic Behaviors

As mentioned before, the first-price repeated combinatorial auction is not strategyproof.

This design decision results in agents exhibiting strategic behaviors in the system. In this

section, I discuss these behaviors that emerged in Mirage and that validate the presence of

selfish agents challenge in Chapter 1.

During the first four months of operation, Mirage employed two versions of the auc-

tion mechanism, A1 and A2, and observed four primary types of strategic behaviors from

agents. The first auction mechanism, A1, was deployed from December 9, 2004 to March

28, 2005 (110th day). This auction is open-bid in which all outstanding bids submitted are

visible by all agents. For every auction, the resources available for sale are a 148-node ×

72-hour window. Agents can submit bids for resources that start and end between any of

the 72-hour slots.

In response to the strategic behaviors observed in the agents, a modified mechanism

A2, was deployed on March 29, 2005 (111th day). There are two changes in A2. First, it

is a sealed-bid auction (no agent can see bids of other agents), in response to the first two

strategies S1 and S2. Second, it extends the window to 148-node × 104-hour, but with a

laststart time at the 72nd hour, in response to strategy S3. This means that no bid could

start (but it could end) between the 73rd to 104th hour. Details of these changes and their

motivations will be made clear in the following discussion.

The data presented in previous sections come from both A1 and A2, for their respec-

tive time frames. The following are descriptions of the four primary strategic behaviors

observed during the A1 phase and the changes made to mitigate them, if any, in the A2

phase.
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2.4.1 S1: underbidding based on current demand

In A1, all outstanding bids were publicly visible. Sometimes, especially when resource

contention was not serious, some agents would bid dramatically lower amounts rather than

their recently submitted values. As an extreme example, one user would frequently bid

values of 1 or 2 when few other bids were present. Many bids were similarly lower than

typically submitted values.

While underbidding to try to pay the minimum, in the absence of competition, is not

unreasonable, it does raise two issues. First, most agents will end up doing it, increasing the

need for each agent to figure out how much to bid. This means instead of submitting a bid

value equal to the agent’s true value, an agent’s process becomes more complicated as they

must look at previous bids in order to submit a lowest winning value. Second, with agents

consistently bidding below their true value (except when contention is high), the system

outcome is not allocatively efficient (not maximizing aggregate value).

2.4.2 S2: Adaptive bidding

More sophisticated agents further enhanced their bidding strategy from S1. Instead of

just looking at previous prices, some agents adaptively refined their bid values in response

to how the other agents were refining theirs. In theory, this should have little effect: agents

with true high values should eventually outbid those with lower values, after sufficient

adjustments.

In reality, however, the problem is that not all agents behave this way. Most agents in

Mirage bid just once and then logged out (to do other things and wait for results), and some

stayed online longer but modified their bids only once. Only a small number of agents
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stayed online long enough to make last minute modifications to narrowly “beat out” the

other bids 5.

In summary, S1 and S2 both point out the issues of agents manipulating their bids [81],

with both the system and most of the agents suffering from sub-optimal outcomes. The

A2 mechanism was deployed specifically to minimize the ability of agents to base their

own bid values on those of other agents. This increase in complexity is unwarranted and

is a good reason to push towards a strategyproof auction mechanism. In a strategyproof

auction, an agent’s optimal strategy is to always submit its true value as the bid value.

2.4.3 S3: Rolling window manipulation

As resources in Mirage are partitioned by space and time, strategic behaviors are not

specific to values (as in S1 and S2). This next strategy, S3, was not anticipated when Mirage

was first designed. It occurred often whenever the entire window of resources was almost

fully allocated (e.g., before a conference deadline).

As an example, assume that the entire 148-node × 72-hour window is allocated at time

t. For each upcoming auction at t + 1, t + 2, ..., a total of 148-node × 1-hour slots are

freshly available. An agent bidding for 32 hours thus must wait 32 (or more) hours before

the system has enough resources to possibly fulfill his bid. Until then, any other bids with

fewer than 32 hours, regardless of values, will be prioritized over this agent’s bid.

The problem here is that agents can exploit this by simply bidding for durations shorter

than those of other bids in the system. Bidder i can break his desired duration of 32 hours

into 2 sequential 16-hour bids, thus winning and blocking j’s 32-hour bid. Of course, other

5An example can be found in Table 2.1. Agent U2 submitted at 3:58PM and left while strategic agent U1
submitted three separate bids in the next few hours.
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agents such as j can also follow the strategy and begin to break down their bids into 8-hour

increments.

However, this competition will quickly lead to durations getting shorter and shorter,

finally reaching 1-hour slots. This totally disrupts the system’s goal of offering agents the

ability to reserve enough resources in advance with sufficient duration. Instead, agents have

to bid every period, making participating in the system extremely labor intensive. Further-

more, there is no guarantee that an agent can win all the required slots. An agent can easily

win only some of the 32-hour slots it seeks, making the allocations useless.

To mitigate S3, auction design A2 was deployed with a larger 104-hour window and a

laststart time at the 72nd hour. No bid can be allocated after the 72nd hour. Again, assume

the window is fully allocated. Just as in A1, a bid for 32 hours will have to wait 32 hours

before it can be considered. However, bids of all other durations also have to wait 32 hours

as well, eliminating the effects of manipulating reported job durations altogether.

2.4.4 S4: Auction sandwich attack

The last strategy observed involves agents who exploit two pieces of information: (i)

historical information on previous winning bids to estimate the current workload, and (ii)

the heuristic nature of the auction clearing algorithm. Some agents employed a strategy of

spreading their needs across several bids for the same auction, all of which combined to

win all the nodes but only one of which had a high value per node hour. The high value

bid is set such that it will rank higher over all other agents’ single bids for all the nodes

(this behavior usually occurred before deadlines). Thus, no other agents’ bids can backfill

the remaining slots (after some nodes are claimed by the first agent). As a result, the first
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agent’s remaining low value bids win easily, filling those slots at extremely low prices. An

actual occurrence is shown in Table 2.1.

Time Bid Number Agent Value Nodes Hours

04-02-2005 03:58:04 #1 U2 1590 97 32

04-02-2005 05:05:45 #2 U1 5 24 4

04-02-2005 05:28:23 #3 U1 130 40 4

04-02-2005 06:12:12 #4 U1 1 33 4

Table 2.1: Example of strategy S4 (auction sandwich attack) on 97 MICA2 nodes.

Agent U1 submitted three bids, the key one being bid #3. Although the bid is only 130,

the per-node value is 0.813 (130/(4 · 40)). In contrast, U2’s bid of 1590 produces a node

value of only 0.512 (1590/(32 · 97)). Since the auction consider the per nodeslot value,

U1 wins. Once bid #3 won and was allocated 40 nodes, there was no way bid #1 could be

allocated at all, since not all 97 nodes were available. As a result, agent U1 backfilled the

remaining 57 nodes with bids #2 and #4, a 24-node bid and a 33-node bid, both at extremely

low values.

2.5 Challenges and Refinements

Designing an appropriate auction mechanism is key to addressing strategies such as

those in the previous section. Ideally, the goals for such a mechanism include: (i) strat-

egyproofness, (ii) computational tractability, and (iii) allocative efficiency. The General-

ized Vickrey Auction (GVA) [47, 96] is the only known combinatorial mechanism that

provides both strategyproofness and efficient allocations. However, it is also computation-
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ally intractable, as it is NP-hard to calculate the allocation and individual payments. Other

GVA-based mechanisms exist that replace the allocation algorithms in GVA with approxi-

mate ones to provide tractability. In this case, however, strategyproofness is no longer avail-

able [74]. The goals of tractability and strategyproofness are thus in conflict in general [55],

and one must make design tradeoffs to achieve them. Additionally, GVA is a static mecha-

nism and is therefore not suitable for dynamic systems such as Mirage. With these in mind,

below is a two-phase roadmap for improving Mirage. The first phase involves short-term

improvements to the current mechanism to mitigate the effects of existing agent strategies.

The second phase involves designing a new mechanism that approximately achieves the

above three goals simultaneously.

2.5.1 Short-term improvements

Reasonable short-term improvements would augment the auction with additional rules

and fees to further mitigate strategic behaviors. To further mitigate S1 and S2, transaction

fees can be applied to every bid submission as well as modification. These fees would

serve as a disincentive for an agent who understates a bid and intends to iteratively refine

it. To eliminate S4, a system may restrict each agent to having one outstanding bid at a

time and/or mandate that agents not have multiple overlapping allocations in time. Another

approach to eliminating S4 is to modify the heuristic algorithm such that if an agent does

have bids in which allocations could overlap in time, then those potential allocations are

considered differently; for example, such bids are sorted from lowest to highest value per

node hour, or simply sorted randomly. In effect, this allows bids for overlapping allocations

but creates a disincentive for agents to place such bids.
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2.5.2 Towards a strategyproof mechanism

Clearly, it is important to evaluate the goals and identify tradeoffs in designing a new

mechanism. Computational tractability is a fundamental requirement for operational rea-

sons - optimal combinatorial auctions can take too long (e.g., fail to clear within an hour

for Mirage), lowering the promise of providing a dynamic service.

Even with a tractable mechanism, there are likely to be better strategies that we can dis-

cover. The experience from Mirage shows that identifying new types of strategic behaviors

in the first place is hard. Therefore, it is important to design new mechanisms that are strate-

gyproof with respect to all attributes that an agent expresses in its bids, including value, size

(nodes and slots), and timing information. A strategyproof mechanism can lower complex-

ity for agents and system designers. To address this, in Chapter 3, I use online mechanism

design to introduce a mechanism that makes fast decisions and is strategyproof across the

bid attributes discussed in this chapter and across multiple auctions.

2.6 Answers to Research Questions

2.6.1 Do markets work?

The Mirage deployment provides data that indicates agents do participate. The data also

shows that there is enormous unpredictability of workload demands. Through an expressive

bidding language, agents fully used it to submit bids with different values, sizes, and tim-

ing. While Mirage does not solicit true information from agents (e.g., values), the varying

information provided by each agent shows that a system must provide flexibility in how it

allocates resources.
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2.6.2 Do people game?

Agents exhibited various strategic behaviors in Mirage. It is important to point out that

the agents were not total strangers—it was a relatively tight-knit environment where most

agents knew each other. Nevertheless, some agents started applying strategies and gained

an edge. What is important, however, is that as a result, many of the other agents also

started applying strategies. This is indicative of how selfish behavior can quickly spread as

everyone simply wants to obtain the desired amount of resources for the best price. The

result of this behavior is mostly negative for everyone involved, for example, strategy S3

(multiple bids for shorter time slots to ensure lowest price, and a higher chance of allocation

of contiguous slots) hurts total value and increases the complexity for every agent.

2.7 Summary

Despite using a repeated combinatorial auction known not to be strategyproof, Mirage

has provided empirical data on both usage patterns of market-based methods and strategic

behaviors.

The observations of significant resource contention and a wide range of bid values,

sizes, and timings suggest that auction-based schemes can deliver large improvements in

aggregate value when compared to traditional approaches such as proportional share allo-

cation or batch scheduling. Fully realizing these gains, however, requires designing strat-

egyproof mechanisms that can mitigate strategic behaviors and can handle the dynamic

nature of such systems. This will be addressed in the next chapter.
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Online Mechanism Design

3.1 Introduction

In Chapter 2, I described how using data generated from agents using Mirage provided

valuable insights into the use of markets for distributed systems. Specifically, Mirage pro-

vides real-world examples of how agents bid and behave in the repeated combinatorial

auctions. However, there are several shortcomings of Mirage. In particular, it is exploitable

since agents who deployed an array of strategies via manipulation of bid values, resource

sizes, and allocation timing in placing bids succeeded in gaining more resources than the

non-strategic agents. Thus, the ability and wherewithal of some agents to game the system

through the use of these strategies renders a system less productive for agents unwilling or

unable to be strategic.

To make matters worse, frustrated non-strategic agents may start behaving strategically.

Over time, an increase in the number of agents behaving strategically will increase the

number and variety of bids for the same finite set of resources and eventually clog the

39
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system. This, in turn, will lead to the need for administrators to monitor and intervene,

which defeats the goal of having a mechanism in the first place.

In this chapter, I describe the design and implementation of Roller, a mechanism that

mitigates strategic behaviors as a first-order requirement. If strategic behaviors are mit-

igated, the complexity of using the system will be dramatically lowered for agents and

administrators, making the system scalable and effective.

Note: From this point forward, I will use a general language to describe resources that

are to be allocated in order to emphasize the generalizability of Roller to systems offering

various types of resources (e.g., sensor network, cloud computing systems). I will use the

term node to denote the resource to be allocated and slot to indicate the length of time

an agent requires the resource. I will use size or nodeslot to indicate the combination of

nodes and slots an agent is requesting. The allocation timing defines the periods during

which an agent desires an allocation and consists of three parameters: arrival, departure,

and patience refer to the first time period, last time period, and the total number of time

periods over which the allocation can be made, respectively.

3.1.1 Research Questions

There are two main questions to address. First, is Roller strategyproof with respect to

value, size, and allocation timing submitted by agents? An agent can simply submit its

true value as its bid value with a strategyproof mechanism. Because the total number of

agents as well as their individual demands for size and allocation timing vary over time,

a mechanism that is strategyproof only with respect to value is not sufficient 1. Thus, the

1As illustrated by some of the strategies in Chapter 2.
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goal of a designer is to consider as many strategies as possible and create mechanisms to

minimize the potential agent gains (e.g., obtaining more size for lower value) for deploying

such strategies.

Second, can Roller achieve high value and responsiveness? Achieving high value re-

quires the system to consider different allocation combinations and determine the optimal

one. This, in turn, increases response time to agent requests, defeating a critical element

of distributed systems. Thus, any new mechanism must be designed to strike an acceptable

balance between these competing goals.

3.1.2 Chapter Overview

To answer the research questions, I explore different aspects of designing Roller. First,

I outline the requirements of the mechanism in Section 3.2. Next, I describe the Roller

mechanism, including the bidding language and the determination of winners and payments

in Section 3.3. Then, I present a justification of the decisions made in designing the Roller

mechanism in Section 3.4.

In Section 3.5, I specify the workloads and metrics required for the various experi-

ments. These include tuning Roller when the resource supply is either fixed (Section 3.6)

or varying (Section 3.7), and comparing Roller with other algorithms (Section 3.8). I ex-

plore the ρ-late allocation rule that is essential for strategies related to allocation timing in

Section 3.9. Finally, I discuss future refinements and testing for Roller in Section 3.10.
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3.2 Requirements

In this section, I describe the key design requirements for the Roller mechanism. These

requirements are based primarily on the lessons learned from the Mirage experience and

are intended to address the shortcomings of Mirage.

3.2.1 Strategyproof

In order to make the mechanism strategyproof, the mechanism must mitigate an agent’s

incentive to manipulate the following parameters to gain an edge over other agents. First,

the bid value submitted by an agent should equal its true value. Second, the size informa-

tion submitted should be truthful. This includes nodes (number of nodes needed) and slots

(duration of time the nodes are needed). Third, the timing that the agent needs an allocation

to start should reflect true arrival (the first time period an allocation can be considered) and

departure (the last time period to be considered). I refer to the number of periods between

arrival and departure as the patience of the agent.

3.2.2 Maximize Value and Revenue

The mechanism should aim to achieve high “allocative efficiency” by selecting resource

allocation outcomes that maximize the total true value of agents in the system. For “for-

profit” systems, a secondary goal can be to extract reasonable revenue. In an ideal world,

the mechanism would compare the true values of different agent bids to make decisions.

However, this is not feasible because true values are private information to their respective

agents. Therefore, to maximize value the mechanism can only use submitted bid values.
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This highlights the importance of the previous requirement—a strategyproof mechanism

can treat bid values as true values.

3.2.3 Responsive and Computationally Tractable

To support agents with dynamic requests, mechanisms with long clearing times such

as combinatorial auctions may be unsuitable. A mechanism with long clearing times often

appears “busy” or “unavailable” to agents. In fact, if the mechanism can make decisions

quickly, the agents are notified sooner and thus do not have to monitor or join more auctions

than necessary. When there are other competing systems offering similar services to agents,

a non-responsive system can easily lose agents’ interests. Thus, a system should seek to be

responsive by using mechanisms that are computationally tractable.

3.2.4 Other Assumptions

In this chapter, I assume the use of real currency in the form of U.S. dollars (USD)

throughout for both agents’ true values and submitted bid values. Virtual currency can be

used by Roller as well, but will be discussed in Chapter 4. Here I apply standard mechanism

design assumptions [97], in that agents have a private true value model and have no budget

constraints, i.e., all agents can afford to pay their submitted bid values. Agents’ true values,

desired resource sizes, and allocation timing, are independent and identically distributed.

Furthermore, agents’ true values are non-negative and once determined, are not affected by

any external events (e.g., how much the other agents are bidding). Lastly, each agent has

single-minded preference (i.e., the agent desires at most a single set of resources at any one

time).
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3.3 The Roller Mechanism

I now introduce Roller, a mechanism designed specifically for distributed systems such

as Mirage. Roller is strategyproof with respect to value, size and is configurable in regard to

providing strategyproofness for different aspects of allocation timing. Roller is comprised

of the following key components that are fundamental to mechanism design [73]: a resource

space that defines an abstraction of time-based resources for allocation, a bidding language

that acts as the interface for agents to submit bids and describe resource needs to the system,

an allocation rule that determines winning bids for resources, and a payment rule that

calculates how much winning bids should pay the system.

Roller employs an ongoing sequence of auctions to support dynamic requests and ac-

cepts bids from agents at any time. In brief, several major steps are taken periodically.

Agents first submit bids to Roller as soon as their needs arise. An auction is run periodi-

cally, and nodes that are partitioned into time-based slots are for sale. During each auction,

all bids that qualify for the specific nodeslots available are compared—those with the high-

est unit values and a demand that fits the available nodeslots are the winners. Their prices

are calculated across multiple auctions to ensure strategyproofness with respect to alloca-

tion timing. I expand on the details of the above components and steps below, and provide

proofs of Roller’s strategyproofness in Appendix A.

3.3.1 Resource Space

In Roller, the set of resources available for allocation is represented by the rolling win-

dow abstraction. Consider a system with NR identical nodes available over time periods



Chapter 3: Online Mechanism Design 45

[0, T ]2. I denote the rolling window as:

R = (NR, SR, LR). (3.1)

Visually, as shown in Figure 3.1, the window is a grid of NR nodes by SR slots. Each

slot is of an arbitrary size (e.g., an hour) chosen by the system administrator. LR (≤ SR) is

the laststart time, i.e., all bids must be allocated on or before this time. LR is used so that

all bids can compete fairly. Specifically, LR is set such that bids with the largest acceptable

slot size si (call this size maxdur) can start at LR and end on SR. I will explain more about

the rationale in detail in Section 3.4.

Figure 3.1: Rolling window abstraction: with NR number of nodes and SR number of
slots, at time t1. All allocations must start on or before LR, or t3 in this example. maxdur is
3, thus all bids with slots ≤ 3 can start at LR.

At any time tn, the next SR slots (specifically, [tn, tn+1, ..., tn + SR − 1]) are available.

2I use T so that the experiments can have a finite scope. In real-world systems, T would be ∞ because
these system run continuously.
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These slots represent the resources of future periods of time, thus allowing Roller to allocate

resources to agents in advance, shortening response time. The window is “rolling” because

as it advances to another time period tn+1, it “rolls” to the right, and slots of tn are all

disabled (since those times have passed) and new slots of tn + SR are added at the far right

end. The following is an example.

Example: Consider R = (4, 5, 3). At t1, the slots are [t1, t2, t3, t4, t5] (Figure 3.1). Column

t3 is the laststart time, where all bids will be considered for slots starting on or before t3,

but not after. For instance, a bid for 1 × 2 nodeslots can be considered for (t1, t2), (t2, t3),

and (t3, t4), but not (t4, t5). As time passes, the window “rolls” to the right. At t2, column

t1 phases out and column t6 rolls in, making [t2, t3, t4, t5, t6] now available. LR also shifts

and is now column t4. See Figure 3.2 for an illustration.

Figure 3.2: Advancing rolling window: At t2. All columns “shift” to the right. Column t1
(in gray color) phases out while column t6 rolls in. LR also rolls right and is now t4.
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3.3.2 Bidding Language

The bidding language is the interface for agents to submit bids to the system. When a

resource need arises for agent i, it submits a bid bi to the system in the form of:

bi = (wi, ni, si, ai, di), (3.2)

where bid value wi > $0 is the maximum amount of USD that agent i is willing to pay in

order to get exactly ni nodes for a set of contiguous si slots (shorthanded as ni × si, or nsi

nodeslots; 0 < ni ≤ NR and 0 < si ≤ maxdur). The nodeslots must be available for use

starting no earlier than arrival time ai and no later than departure time di.

Example: Assume a testbed with N = 1 node that runs over T = 10 periods. A bid

bi = ($100, 1, 2, 3, 5) can be interpreted as follows. Agent i is willing to pay at most 100

USD for 1 × 2 nodeslots that start between t3 and t5. If i wins in t3, the actual nodeslots

assigned will be t3 and t4 (2 slots). Similarly, if i wins in t5, the nodeslots will be t5 and t6.

The Roller bidding language has some minor differences compared to Mirage. In Mi-

rage, agents could specify a particular subset of acceptable nodes for allocation consider-

ation, whereas Roller always considers all nodes for every bid. Agents in Mirage also can

limit consideration to nodes of certain frequency range; Roller ignores this feature to sim-

plify the discussion. Implementing these features in Roller in the future is feasible, as the

space of possible allocations in Mirage is a subset of that of Roller and thus more limited.

3.3.3 Allocation Rule

The allocation rule determines winning bids and their respective allocated resources.

For the basic allocation rule, at every time tn, an auction will allocate resources that are
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comprised of NR nodes over the next SR available slots. All bids that are submitted before

the auction begins and that have allocation timing that coincides with the rolling window

slots will be included in the auction.

A greedy algorithm is used to determine winners (based on the scheme in Lehmann

et. al. [59]). First, all bids are sorted by wi/nsi. This ranks bids by reported unit values.

Starting with the highest bid, the algorithm evaluates whether nodeslots that satisfy the bid

are available. If nodeslots are found, the bid will be declared a winner, the agent notified,

and the assigned nodeslots marked for the agent. It is also possible that agents may be

informed of winning decisions early, despite not being able to start using the allocated

resources until a future period.

Example: At time t1, agent i submits bi = ($100, 1, 1, 1, 3) to a system with window

R(1, 3, 3). Assume at t1 the window slots for t1 and t2 are already allocated to another

agent (e.g., that agent won before t1). Thus, the bid bi is allocated to a future slot t3, but the

agent is notified now in t1.

3.3.4 Payment Rule

The payment algorithm I use is the VirtualWorlds [71] scheme. The goal is to find the

best possible price for which a bid can win in the different auctions in which it qualifies

during its stated allocation timing (the periods between arrival ai and departure di). The

motivation is to mitigate time-based strategies related to the allocation timing.

1. At the end of each auction at time tn, each winner i’s price equals the unit bid price

vj of the first agent j who loses out because of i’s allocation. In other words, if i had

not participated in the auction, j would have won. Denote this price as pi.



Chapter 3: Online Mechanism Design 49

2. A VirtualWorld is created for each winner i. This is an abstract state of the system

without i. That is, if i had not yet shown up at current time tn, what bids would be

present in the system and which nodeslots would have been allocated?

3. For the remaining auctions that occur within i’s allocation timing, run VirtualWorld

for each i at the beginning of each auction at some time t. The goal is to answer the

question, “If i joined at time t instead, would it have won?” This is tested by adding

new bids that arrive at t, removing expired bids, and adding i to the VirtualWorld

bid list, thus essentially running an imaginary auction that does not affect the actual

allocations.

4. If i wins in the VirtualWorld, calculate its price pv (as in Step 1). If pi ≥ pv then

set pi = pv. In words, whenever a lower price is found in a VirtualWorld auction, i’s

obligated price is updated.

5. By the end of the agent’s departure time di, pi will be the lowest unit price i would

have paid across its stated allocation timing. The final payment for i is thus pinisi

(unit price times number of nodeslots).

With VirtualWorlds, agent i has no incentive to choose which auction to join. Intuitively,

this is because it does “join” all auctions within its allocation timing automatically via

VirtualWorlds and receives the best possible price.

3.3.5 Late Allocation

One last strategic issue remains. Since bidder i will be exposed to all auctions in its

specified allocation timing periods in [ai, di], it can potentially game by specifying a longer
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patience (i.e., the difference between departure and arrival, di−ai+1) by over-reporting di.

In this case, i gets to participate in more VirtualWorlds auctions and have a higher chance

of further lowering its payment while still being allocated early enough.

The idea introduced here is to establish a ρ-late allocation rule. With probability ρ (0

to 100%), a winning bidder i will have its resources allocated at the end of its submit-

ted departure. For example, bidder i submits allocation timing [1, 10]. Instead of finding

resources starting from period 1 and towards period 10, the algorithm tries to allocate as

close to period 10 as possible, given the constraints of the current allocations to other bids.

This change will not affect a truthful bidder because the allocation, if any, is still within

patience. For a strategic bidder that over-reports its departure (e.g., real patience is from

time periods 1 to 5 but is reported as 1 to 10), it risks getting resources that have no value

but still must be paid for. For example, if the agent’s true value is $100 for receiving the

resource between time [1,5], the resource is worthless if allocated in time [6,10]. If the

payment is $50, the agent ends up spending USD for nothing (zero true value realized).

Thus, the agent must decide whether the risk presented by the ρ-late allocation rule is

worthwhile.

In considering the use of a ρ-late allocation rule, there are also various tradeoffs: (a)

possibly lower allocative efficiency due to less effective utilization of resources; and (b)

new opportunity for manipulation by reporting an early arrival. For (b), agents can obtain

lower payments if their allocations are made “late” as it is compatible with their true depar-

tures. However, without the ρ-late allocation rule, agents have no incentive to report early

arrival because the allocations will yield no value.
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3.4 Design Justifications

There are several basic and implicit design decisions made for Roller that warrant dis-

cussion. In this section, I will describe and justify the decisions made to answer the follow-

ing questions. I also discuss some design differences between Roller and Mirage.

1. Why use some arbitrary window slot size instead of a size of one? Or infinity?

2. Why use a rolling window instead of simply a series of static and disjointed ones?

3. Why restrict bids with a laststart time?

3.4.1 Window Slot Size

The simplest way to partition the resources over time is probably by selling just the

current time slot at every time period t (see Figure 3.3). Computationally, it is easy because

every bidder will be looking for the same slot size. There is also no need to worry about

selling resources beyond the current time t. Nonetheless, setting a single slot size in this

way does not work for several reasons. For agents that want multiple time slots, they must

submit multiple bids, each winning a single slot. Due to competition, there is no guarantee

that an agent that wants s slots will indeed get them all. The outcome is worse if these slots

must be consecutive—winning all but one slot, for example, will still render no value to

the agent. This is the well-know problem of “exposure” [35] in non-combinatorial auction

for bidders seeking complementary resources. Therefore, I focus on selling multiple slots

at any time period instead (see Figure 3.4).

Another window slot size option would be to sell all possible future slots at any time

period, i.e., have essentially an infinite window. Intuitively the upside seems obvious, since
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Figure 3.3: Single slot windows.

Figure 3.4: Multiple slot windows.

agents can essentially bid for any number of slots for any future time periods.

However, there are several issues with this scheme. First, the seller may not be in a

position to offer all of its resources up front. For example, the seller cannot guarantee that

it will have the resources available far in the future 3. Second, an infinite window will

likely adversely affect value and revenue. By allocating to a bidder that wants slots far

in the future, say 1,000 periods from current time t, the system gives up opportunities to

allocate the same slots to agents with higher bid values in the future. Thus, a system that

tries to maximize value or revenue suffers with an infinite window. Overall, offering infinite

slots does not seem practical, but the actual preferred window slot size really depends on

the goals of individual systems.

3.4.2 Rolling vs. Static Window

Next, I want to justify why a rolling window is preferred over a static window that is

available every few periods. Figure 3.5 shows what a rolling window looks like. Compare

3Example: the seller leases the resources from another company that requires renewal on a yearly basis.
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it with a static window, such as the one in Figure 3.4. The static window sells resources in

distinct blocks of slots that never overlap. The key is that for a static window, a slot at time t

is offered at only one auction. For a rolling window, however, that same slot will be offered

during multiple time periods, essentially equal to window slot size SR. For example, slot t3

is offered in three auctions that begin in t1, t2, and t3.

Figure 3.5: Rolling window.

The other benefit of a rolling window is that it can handle dynamic requests more fre-

quently. By using a static window with a size of SR, bids essentially are considered only

every S time periods. For example, with a 10-slot window, auctions are only run in periods

t, or t + 10, or t + 20. When the window gets bigger, bids will have to wait even longer

for the system to make a decision. Instead, by moving to a rolling window that runs every

time period, allocation decisions are made frequently, making the system more responsive

to agent requests.
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3.4.3 Laststart Time

Third, I want to justify why the laststart time is critical. Because the system sells re-

sources on a rolling window basis, the window rolls every time period, as shown in Fig-

ure 3.5. Specifically, for a window with SR slots, as the system moves from time t to t + 1,

the following two steps occur:

1. The system removes the column of slots corresponding to t; this is the leftmost col-

umn visually. This is important because t is now past and no longer refers to valid

resources.

2. The system adds a new column corresponding to t+SR; this is the rightmost column

visually. This represents the new nodeslots that are now available because of the new

time t + 1. This step is essential to maintain a valid window size of SR.

The laststart time is critical for all bids to be considered equally. I start with an example

of why the system will not work properly when there is no laststart. Imagine at the end of

time t, all nodeslots of the rolling window are fully allocated. As soon as a new column

is rolled in (the rightmost column), the nodeslots of this new column become the solely

available resources for auctioning. How will Roller allocate at this time? It will scan the

bids and consider only the ones that request exactly one time slot. These bids, regardless

of bid values, will be allocated. All other bids will not be considered because the size does

not match up. If this goes on for several periods, then only single-slot bids will win. Any

bids requesting multiple slots will essentially be denied, as discussed in Chapter 2 (see “S3:

Rolling window manipulation”).
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Now imagine a window with a laststart time t′ (see Figure 3.6). No bids will be consid-

ered for starting after t′. Thus, all bids, including single-slot bids, will not be considered.

Again, for a window that is fully allocated, it will take several time periods before these

slots are available again. At that time, all bids will be considered equally.

Figure 3.6: Rolling window with laststart time.

I now use a simple experiment to illustrate the use of laststart time. I run Roller for just

15 time periods with a rolling window NR = 1 and SR = 3. Agents all bid for ni = 1 node.

They ask for either 1, 2, or 3 slots (si) with bid values 1, 10, and 30, respectively. Thus,

bids with si = 3 should theoretically always win. Bids arrive uniformly every time period.

Figure 3.7 shows how many nodeslots are already allocated for the rolling window at

the beginning of each time period. On the left, it shows the results for a rolling window with

no laststart. The window is almost always filled up and the smallest bids with si always

win. On the right, results for laststart show a different story. All bids can compete, thus the

larger bids si = 3 win often. The shape of the curve is up and down because si = 3 wins
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every several time periods.
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Figure 3.7: Laststart: How much the windows are filled at beginning of each time period.

3.4.4 Comparisons with Mirage

Both Roller and Mirage use the rolling window abstraction for allocating resources,

including details like laststart. However, Mirage uses a first-price method to calculate pay-

ment, which is not strategyproof and results in agents using the strategies discussed in

Chapter 2. Roller, on the other hand, is strategyproof across multiple bid attributes. How-

ever, agents in Roller do not know the actual payment until after its departure due to the

payment rule.

Roller is still subject to advanced strategies, such as the “auction sandwich attack” ob-

served in Mirage. Specifically, Roller cannot identify collusion [21] among multiple agents

or detect false-name bids [105] submitted by a single agent. With collusion, two or more

agents can coordinate submitting bids with value or timing that can alter allocation and

payments to their benefit. For example, instead of both agents submitting at time t and

competing against each other, they arrange to submit at different times to increase the odds

of a) both bids getting allocated and b) lowering their payments due to less competition.



Chapter 3: Online Mechanism Design 57

With false-name bids, an agent can perform similar tactics by submitting multiple bids

under different identities.

A simple example for false-name bids is as follows. Given a 1x4 rolling window, agent

i seeks 1x4 nodeslots for a total of $40 (or $10 per nodeslot) and agent j also seeks 1x4

nodeslots for a total of $20 (or $5 per nodeslot). Assume both agents have zero patience

and need a decision immediately. To win, agent j submits 2 bids under different identities

(e.g., “j” and “k”). The first bid from “j” is $11 for 1x1 nodeslot and the second “k” is $9

for 1x3 nodeslots (or $3 per nodeslot). The result is “j” wins with the highest unit bid value.

Agent i will not be allocated as it seeks more resources than are available (1x3 left after

“j”), and thus “k” also wins. Thus agent j locks out agent i.

3.5 Workloads and Metrics

3.5.1 Workload

The workloads for experiments in this chapter are artificially generated. A workload

defines the set of agents’ jobs that arrive over time to request resources from the system.

In order to evaluate experimentally whether Roller is capable of serving systems such as

Mirage from several perspectives, I specify parameterized workloads for use by different

experiments.

Specification

A workload L is generated from a collection of parameters,

L = (T,P , λ, [nlow : nhigh], [slow : shigh], [∆low : ∆high], w(m, [xlow : xhigh])), (3.3)
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where:

• T is the number of periods the workload covers (e.g., 500). In my experiments, I

run Roller for a set number of time periods T , although in real life, the mechanism

should run “forever.”

• P is the probability distribution for new job arrivals. By default, I use Poisson distri-

butions in this chapter unless otherwise noted. λ is the average new job arrival rate

for the Poisson distribution.

• [nlow : nhigh] and [slow : shigh] specify the ranges of nodes and slots. For example,

[nlow : nhigh]=[1:3], [slow : shigh]=[2:4] means nodes ni are drawn uniformly from

[1,2,3] and slots si from [2,3,4]. Thus the space of possible nodeslot pairs are [(1,2),

(1,3), (1,4), ..., (3,2), (3,3), (3,4)].

• [∆low : ∆high] defines the range of bid patience. For example, [1:5] means bid pa-

tience is uniformly drawn between 1 and 5. The arrival of each bid is set to the time

period the bid is created. The departure is calculated by adding patience to the arrival.

• w(m, [xlow : xhigh]) is a function to generate a range for bid values wi. Note that true

value equals bid value in this case, as Roller is strategyproof with respect to value.

m is the method to generate values while [xlow : xhigh] is the base range of unit bid

value. The goal is to produce monotonically increasing values, which I will explain

in the next section.

Parameters T , P , and λ define the high-level aspects of a workload, i.e., how many bids

arrive over time. The other parameters define the bid-level aspects, such as what nodeslots
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each bid seeks. To generate a workload, I take function L with a set of parameter inputs

to programmatically generate a list of bids that can then be used as the input feed for any

experiments.

Essentially, the program runs for T time periods. For each time period t ∈ T , a number

of new bids will be created based on P and λ. For each bid, numbers are then drawn from

[nlow : nhigh] [slow : shigh] to generate nodes ni and slots si, and [∆low : ∆high] to generate

∆i and in turn ai and di (see equation 3.2 on page 47, in which arrival time ai is simply

the current time period t and departure time di is ai + ∆i). Finally, w(m, [xlow : xhigh]) is

called to generate the bid value wi for the bid as a last step. Each bid is then appended to a

text file for use as input to be used in experiments.

Value Generations

Note that I assume true value equals bid value for bids in Roller, because of its strate-

gyproof nature with respect to value. The w(·) method produces distributions that result in

expected total values that are generally monotonically increasing. Monotonically increas-

ing means nsk > nsi ⇒ w̄k > w̄j , i.e., agents have a higher expected value for larger

nodeslots than smaller ones. The difference between the two m methods is whether the

values marginally increase or marginally decrease, as nsi increases. In other words, how

does the rate of change of value wi change as nodeslot nsi changes? Figure 3.8 illustrates

the difference.

The w(m, [xlow : xhigh]) function generates a range [wlow : whigh] on value wi. It takes

two parameters: (1) m, which specifies one of two possible methods used to generate wi,

that is, marginally increasing (“⇑”) or marginally decreasing (“⇓”); and (2) [xlow : xhigh],
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Figure 3.8: Two monotonically increasing total value curves. Curve A exhibits
marginally increasing values as the nodeslot increases, and curve B exhibits marginally
decreasing values.

which specifies a range of unit values. Given the bid nodeslots nsi as well as the maximum

and minimum nodeslots (nsmin and nsmax), both methods m generate a range of valuations

as:

[wlow : whigh] = nsi · [y : y + z]. (3.4)

The value of y depends on whether the method is marginally increasing or decreasing:

y =


nsi−nsmin

nsmax−nsmin
· (xhigh − xlow) + xlow if m =⇑,

nsmax−nsi

nsmax−nsmin
· (xhigh − xlow) + xlow if m =⇓ .

(3.5)

Finally, the value of z is determined as:

z = 0.3 · (xhigh − xlow). (3.6)

The role of y and z is to map and transform the given unit value distribution [xlow :

xhigh] into wi. This is illustrated in Figure 3.9. The resulting values are intentionally de-

signed to be only generally (and not absolutely) monotonically increasing, because as the
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figure shows, the distributions do overlap among similar nodeslot sizes to provide some

randomness.
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Figure 3.9: Unit value distributions [y : y + z] for different nodeslots.

Next, I explain the distinction between supply and demand. Then, I will define metrics

to measure value and responsiveness.

3.5.2 Supply and Demand

In this section, I define a model of supply and demand, which provides a useful ref-

erence for the experiments. The Demand is the total number of nodeslots requested over

[0, T ] for workload L. Demand is entirely driven by workloads and has no dependency on

any components of Roller. Demand is estimated as

demand = λ · n̄s̄ · T, (3.7)

where λ is the number of new bids arriving in each time period, n̄s̄ is the average
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nodeslot size requested by these bids, and T is the total number of time periods.

Supply is the number of total nodeslots made available by the rolling window over T

periods. This is calculated by multiplying the number of nodes with the total number of

time slots over which each node is available: 4

supply = NR · T. (3.8)

Lastly, Demand/Supply, or D/S, refers to the ratio between demand and supply and is

denoted with the times (“×”) notation, e.g., 1×, 1.5×, 2×. The ratio of D/S indicates how

heavily loaded the system is. When D/S = 1×, the number of nodeslots demanded equal

the number of slots supplied. When D/S > 1×, there are more jobs than can possibly be

scheduled. When D/S < 1×, some resources will go idle. Formally it is simplified as:

demand = λ · n̄s̄/NR. (3.9)

Example: Given a system with NR = 8 nodes and a workload with λ = 2 and n̄ = s̄ = 2,

D/S = 1×. For a workload with λ = 4 and n̄ = s̄ = 2, D/S = 2×.

3.5.3 Metrics

As stated in the requirements, achieving high values and high responsiveness are im-

portant goals for Roller. In this section, I define two metrics that will be used for most

experiments: system value α and responsiveness β. In theory, the two metrics have recip-

rocal effects because getting a high value requires batching of bids and more computation,

4The supply is an estimate, as I exclude the few remaining slots offered during the last time period at T ,
when the rolling window also comprises slots T + 1, T + 2, ..., T + SR − 1. I choose to exclude these as T
is quite large compared to SR.
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hence responsiveness to agents suffers. Thus, I aim to evaluate them together to find a

balance in different situations.

System Value (α)

System Value α is defined as the average true value captured per unit supply of the

system:

α =

∑
wwin

supply
=

∑
wwin

NR · T
, (3.10)

where
∑

wwin is the sum of the total true value of all winning bids, and supply is based

on equation 3.8. The unit of α is USD, the same as true values. System value α allows the

comparison of systems of different nodeslot sizes. The metric is not affected by varying

demand/supply ratios. 5

Responsiveness (β)

The second key metric concerns how quickly allocation decisions are made for winning

bids. For example, an optimal allocation algorithm may maximize total value by batching

and thus become unresponsive. By informing winners as soon as possible, systems can

further lower the overhead for participating in the mechanism. I define the responsiveness

metric as

β =

∑
1

ttwi

|K|
(3.11)

5An alternative metric to consider is to divide
∑

wwin by the total true value of all bids received. When
demand/supply is high (e.g., 10×), the metric will be extremely low, as there are many bids but few winners.
The system may look like it is not performing in high demand, when in fact it may have captured a similar
amount of winning values compared to a low demand/supply (e.g., 1×).
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Bids’ Time-to-Win β

1xx 1/1 = 1

11x (1+1)/2 = 1

111 (1+1+1)/3 = 1

12x (1+1/2)/2 = 0.75

13x (1+1/3)/2 = 0.67

22x (1/2+1/2)/2 = 0.5

1xxxx 1/1 = 1

2xxxx (1/2)/1 = 0.5

11xxx (1+1)/2 = 1

12xxx (1+1/2)/2 = 0.75

13xxx (1+1/3)/2 = 0.67

22xxx (1/2+1/2)/2 = 0.5

111xx (1+1+1)/3 = 1

Table 3.1: Responsiveness of different bid instances. On the left column, each number
represents time-to-win for a winning bid and x represents a losing bid. For example, 22x
means there are three bids, with one of the bids being a losing bid.

where ttwi is the time-to-win (the number of time periods it take for i to win; or the

number of time periods it takes Roller to make such a decision), 1 ≤ ttwi ≤ ∆i. Thus, β

is a number in the range (0, 1]. A small ttwi is good; ttwi = 1 means bid i wins in the first

possible time period. 1
ttwi

normalizes the number so that its range is from 0 to 1. A decision

is most responsive for a bid if this value is 1 and least responsive as it approaches 0 (e.g.,

a bid with extremely long patience, such as 100 time periods, that gets allocated late). The
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sum of 1
ttwi

divided by the number of winning bids |K| gives us β, which measures the

average responsiveness achieved by the system.

Table 3.1 shows a list of bid scenarios with different β values. Each row specifies an

example bid scenario and the corresponding β. The bid scenario represents all the bids in

a complete mechanism run: a number represents the TTW of a winning bid, whereas an

X represents a losing bid (thus has no TTW). For example, 1xx means there are a total of

three bids, with two losing bids and one winning bid with TTW=1. Responsiveness β is not

affected by demand/supply because losing bids are not a factor in the expression.

3.6 Tuning Roller

Establishing parameters for the size of the rolling window is necessary in order to ad-

dress the remaining requirements from Section 3.2: “to extract value and revenue” and to

be “responsive and computationally tractable.” As the configuration of the rolling window

dictates what resources are available at each time period, it directly affects the allocation

and payment processes.

I approach this question of how to determine rolling window size by studying each of

the window parameters separately. In this section, I fix supply NR and study the effects of

different rolling window sizes SR. In Section 3.7, I will evaluate varying supply NR.

3.6.1 Fixing Supply

I first present experiments to answer the question “given fixed supply NR and specific

workloads, what window size SR gives us the most balanced α and β performance?” I
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evaluate SR by comparing it against different individual workloads that are differentiated

by one parameter of interest at a time. I specifically avoid varying multiple parameters

simultaneously in order to get clear individual effects on metrics. For each of the following

tests, I always work with NR = 8, thus, supply = 8 ·T . Workloads vary for each test but are

all derived from this base workload L′, given by:

L′ = (T,P , λ, [nlow : nhigh], [slow : shigh], [∆low : ∆high], w(m, [xlow : xhigh]))

= (500, Poisson, 3, [1 : 3], [1 : 3], [10 : 10], w(⇑ / ⇓, [1 : 10])).

(3.12)

In descriptive terms, I run each experimental workload for T = 500 time periods. A

Poisson distribution is used for bid arrivals where λ is 3. The bid parameters of NR and

SR are drawn uniformly between 1 and 3, while patience is 10. Bid value wi (which equals

true value) is generated using both the marginally increasing and decreasing methods, with

unit bid values xi drawn uniformly between 1 and 10.

3.6.2 Arrival Rate λ

The first experiments involve testing different workloads against rolling window size

SR by varying only λ. λ is a significant parameter because it directly affects demand/supply.

Starting with base workload L′, I vary λ with the following set to generate six different

workloads:

λ ∈ [1, 2, 3, 4, 5, 10].

Each workload is tested against a set of different window sizes SR, from 3 to 20. The

smallest SR size has to be 3 because maxdur = shigh = 3. I collect values of α and β
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for each workload and SR combination. Note the corresponding demand/supply for λ ∼=

0.5×, 1×, ..., 5×.

Figure 3.10 shows the results for marginally increasing values. Each line represents a

workload with a specific λ and the points on each line are for a specific SR size. First, for a

given SR (e.g., SR = 6), observe that increasing λ from 1 to 10 leads to higher α and lower

β.
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Figure 3.10: Effects of SR on different λ ranges: with marginally increasing (⇑) values.

For a given λ (e.g., any one of the lines such as λ = 4), observe the following:

• For λ ≥ 3, α decreases gradually as SR increases. For example, with λ = 4, α

decreases from around 9.7 when SR = 3 to around 9 when SR = 10. After that, α

drops off more rapidly when 10 ≤ SR ≤ 13. For SR = 13+, α exhibits minimal

decrease and remains virtually constant. On the other hand, for λ = 1, 2, α remains
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virtually constant for all SR sizes.

• For β, the effects are inverse, i.e., β increases as SR increases, for λ ≥ 3. For exam-

ple, with λ = 4, β starts at about 0.55 when SR = 3. It increases to about 0.7 when

SR = 10. After that, it further increases and finally reaches 1.0 when SR = 13+.

For λ = 2, however, it starts with a much higher β at around 0.7 and quickly reaches

0.9+ between 5 ≤ SR ≤ 12. For λ = 1, it reaches β= 1.0 as soon as SR= 5.

 0

 2

 4

 6

 8

 10

 12

 0  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23

α

Window Slot Size SR

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23

β

Window Slot Size SR

λ=1
λ=2
λ=3
λ=4
λ=5

λ=10

Figure 3.11: Effects of SR on different λ ranges: with marginally negative (⇓) values.

It turns out a larger rolling window does not result in value increase for the tested

workloads. In fact, it does not even affect the actual amount of resources sold. This is

because bids are simply allocated future resources with a larger rolling window. This feature

hurts value as higher value bids that arrive later will not be considered. For results with
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marginally decreasing (⇓) values, the patterns are similar (Figure 3.11). α is lower overall

for all points, whereas β is higher overall for all points (every β is near or above 0.8).

3.6.3 Nodes, Slots, and Patience

I next explore varying ranges for nodes, slots, and patience. The workloads are again

based on L′ (equation 3.12), with arrival rate λ = 3, and marginally increasing values6.

Window size SR again will vary from 3 to 20.

First, I use the following ranges for nodes requested by agents:

[nlow : nhigh] ∈ ([1 : 1], [1 : 2], [1 : 3], [1 : 4], [1 : 5], [1 : 6], [1 : 7], [1 : 8]).

Figure 3.12 shows the results. For any given λ curve, the patterns largely resemble those

for arrival rate λ, that is, decreasing α and increasing β as SR increases. While λ in this

case remains constant, higher [nlow : nhigh] ranges represent an increase in demand as well.

Thus, higher node ranges achieve higher system value α, given SR.

Next, I use the following ranges for slots requested by agents:

[slow : shigh] ∈ ([1 : 1], [1 : 2], [1 : 3], [1 : 4], [1 : 5], [1 : 6], [1 : 7], [1 : 8]).

I vary bidder SR from shigh to 20 (instead of the usual 3 to 20). For example, for [1 : 5],

SR will be tested from 5 : 20. The reason is that by using a smaller SR, the larger bids will

be excluded. The results are shown in Figure 3.13. Overall, the patterns are similar to both

λ and node results. However, the results fluctuate more. This is due to the fact that with slot

size potentially higher than node size (fixed at 8 nodes), there are more combinations of

6Similar to results in the previous section, results for marginally decreasing values are similar for this
section as well and are not shown.
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Figure 3.12: Effects of SR on different n ranges.

allocations possible on a slot basis. When the number of bids in the system is high, some

“gap” slots may arise. These are smaller slots that are created in between winning bids but

not large enough for the remaining bids.

Finally, Figure 3.14 shows results for the following ranges for patience expressed by

agents:

[∆low : ∆high] ∈ ([1 : 5], [1 : 10], [1 : 15], [1 : 20], [1 : 25]).

Overall, patience ∆ has minimal effect on value α. Higher patience does not lead to

higher α. The reason for this is that all the ∆ ranges still share the same level of de-

mand/supply, unlike nodes or slots. β follows similar but tighter patterns as those in the

previous λ section.
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Figure 3.13: Effects of SR on different s ranges.

3.6.4 Analysis

I present my analysis of the results for the previous experiments in this section. First, all

four parameters exhibit very similar patterns for both system value α and responsiveness β.

Table 3.2 provides a summary for marginally increasing values and for a fixed window slot

size SR. When the workload changes and results in increasing agent demand (e.g., increase

in arrival rate, nodes, or slots), α should increase because there are more valuable bids for

the allocation rule to choose from. However, responsiveness suffers because there are more

competitions for every bid.

Most of the results presented considered the effect of window size SR while varying

aspects of the workload. Intuitively, a larger rolling window with high SR should result

in higher α—after all, more bids should be captured resulting in higher value. But this
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Figure 3.14: Effects of SR on different ∆ ranges.

intuition is incorrect for the tested workloads, and instead:

Higher SR results in a lower system value α.

The rationale is that SR does not affect the real amount of resources available. Instead, the

window simply enables the sale of more future resources at every time period. Because my

results are workload specific, I discuss whether alternative workloads may yield a poten-

tially different conclusion in Section 3.6.5.

This decrease in system value can be further explained. Bids of lower values are able

to win allocations in earlier auctions, before bids of higher values arrive in a later period.

This happens more frequently as SR increases, since more lower value bids can be assigned

early, as long as their patience is long enough (i.e., to be assigned to the “far right” of the

window). This results in those slots being unavailable as time passes, blocking future (high
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Parameter α β

Arrival Rate λ ⇑ ⇑ ⇓

Nodes [nlow : nhigh] ⇑ ⇑ ⇓

Slots [slow : shigh] ⇑ ⇑ ⇓

Patience [∆low : ∆high] ⇑ ↔ ⇓

Table 3.2: Summary of workload parameter effects. Window size SR is fixed. ⇑,⇓,↔
means increase, decrease, and no change, respectively.

value) bids from winning.

When demand is greater than supply (e.g., λ ≥ 3), the desirable range for window slot

sizes seems to be between 10 ≤ SR ≤ 12. These sizes achieve the most balanced α and β

combinations. Based on this, a good range to use for the rolling window slot size SR is

SR = ∆̄ + ¯[s], (3.13)

which equals mean patience (e.g., 10) plus mean bid slot sizes (e.g., 2 for [1:3]). When

demand is less than or close to supply, the system is able to capture most of the submitted

values for various window sizes SR. While it seems logical to use a smaller SR to keep

things simple, I recommend preparing for high demand rather than choosing a small win-

dow size that will suffer when demand does rise.

For responsiveness, the general results is:

Higher SR results in better responsiveness β.

When demand is low, most bids can be allocated immediately, resulting in a very high

β. However, as demand increases, there are more and more bids competing, which leads
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to many bids experiencing a delay in getting a decision from Roller. By using a higher

rolling window size SR, more bids can be accepted for allocation if demand is fixed. In

other words, if nothing else changes, then a larger rolling window implies offering more

future resources for sale now. This means that more bids can be accepted, thus improving

responsiveness. However, as soon as SR is beyond the reach of any bid’s patience, then the

extra slots will remain unallocated and unpaid for.

Finally, the main difference between marginally increasing and decreasing values lies

in responsiveness. For the latter, the winning bids are those with smaller nodeslots. They

do not take up large blocks of slots and do not create unusable “gaps” as much as bids with

larger nodeslots, hence responsiveness is better because more bids can be allocated more

often.

3.6.5 Alternative Workloads

The workloads used have consistently shown that increasing window slot size SR results

in a lower system value α. This does not, however, always apply to all possible workloads.

I provide in this section a special workload case that potentially can yield higher α with a

higher SR.

Consider a single node NR for sale and a very simple workload with the following bids:

1. (“777”,1,1)

2. (“555”,1,4)

3. (“66”,4,4)

4. (“777”,7,7)
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5. (“555”,7,10)

6. (“66”,10,10).

For visual illustration purposes, the bids are represented in a different format. Here, the

first field represents the unit true value and number of slots sought for the single node. For

example, “777” means the bid is seeking 3 slots for $7 each (and hence has a total true

value of wi = 21). The second and third fields refer to arrival ai and departure di times.

Figure 3.15: Workload example that yields higher α with a larger window size. For the
left window, bids can start only in the first slot. For the right window, bids can start in the
first four slots. ‘-’ indicates a sold slot and ‘x’ an un-allocatable slot.

Figure 3.15 shows how the allocation plays out for a window with slot size SR = 3

and another with SR = 6. laststart is period 1 and period 4, respectively. For the smaller

window, the “777” bids always win over the “555” bids. Then, the “66” bids arriving in

between different “777” bids are also allocated. The system value can be calculated by

simply adding the numbers in the figure. For fair comparison, I only calculate α with the

first ten slots and consider unallocated slots to have a zero value. Thus, for the smaller

window, α = (7× 3 + 6× 2 + 0 + 7× 3 + 6)/10 = 6.

In the larger window, “555” bids are able to win before the “66” bids arrive. Here, α

equals (7 × 3 + 5 × 3 + 7 × 3 + 5)/10 = 6.2. Thus, in this example, α increases with a
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larger SR.

In the smaller window, lower unit value bids “555” lose out to higher unit value bids

“66”, despite having a long patience. While this result is consistent with how Roller is

designed, “66” bids actually contribute less to α because the smaller slot size of two leaves

an extra “gap” slot that cannot be allocated (the “x” slot for time period six). Taking all

three slots into consideration, the bid “66” contributes not a unit value of 6 but 6× 2/3 = 4

to system value α.

On the contrary, “555” bids are not affected by “66” bids in the larger window because

they arrive earlier. Thus, the unit value of 5 for all three slots contributes to a higher α.

Putting together these and earlier observations, the effect of changing rolling window

size are dependent on workloads. While a larger window leads to high responsiveness β in

both cases, system value α can be higher or lower. A useful extension of this work would

be to enable adaptive window sizing that can adjust to workload on the fly. The key is to

monitor the metrics and change the window size to capture more value, while maintaining

good responsiveness.

3.7 Varying Supply

The results in the previous section all assume a fixed supply NR. This assumption may

not be realistic, as number of agents and their demand can grow over time, and thus the

system may need to expand its supply. In this section, I study the effects of varying NR.

Specifically, I will look at effects on metrics α and β. Can more value be captured and can

responses be faster by investing in more nodes? Furthermore, I will introduce and look at

revenue, a metric that is relevant for for-profit systems. The key goal is to find out how
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many nodes are appropriate, and whether at some point additional nodes would not yield

more benefits.

3.7.1 Effects on α and β

I first analyze the effects of varying NR on system value and responsiveness. The base

workload L′ is used. For window slot size, I use SR = 12 per Equation 3.13, and vary NR

between 5 and 50 to collect α and β.

Figure 3.16 shows results validating the effects. First, note that by increasing NR, α

worsens. The reason is that with more nodes, there are now more resources for the same

number of bids, effectively lowering demand/supply ratios. Thus, there will be more win-

ners and fewer losers. α suffers as a result, as it now includes not just the highest value

bids but more and more low value bids in calculating per unit value. Thus, investing in ad-

ditional nodes is worthwhile only if the specific workload enables capturing new winning

bids that have high values. 7

Responsiveness β, on the other hand, increases quickly. In fact, for L′, β reaches 1.0

as soon as NR is about 15. Per these metrics, the motivation to increase NR would be to

improve responsiveness, when demand exceeds supply. Table 3.3 summarizes the general

NR effects.

7An example is a type of workload in which half the agents have very high values and the other half very
low values. The ideal node size is one that allocates precisely to all the high value bids only.
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Figure 3.16: α and β with varying node size NR.

Variable Demand/Supply α β

NR ⇑ ⇓ ⇓ ⇑

Table 3.3: Effects of demand on metrics: given fixed SR.

3.7.2 Revenue Analysis

Next, I will explore another important metric: revenue. Revenue equals the total pay-

ments by the winners to the system. For a “social” or “non-profit” system such as Mirage,

revenue is not relevant since the system uses virtual currency and agents pay nothing to

receive such currency. Nonetheless, in “for-profit” cases systems must charge agents USD

in order to keep the services running, as well as make a profit. This is true for systems such
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as Amazon Web Services [1], as well as some enterprise systems that need to charge back

operating expenses to different companies, departments, and projects.

To address this, I run Roller and study how revenue is affected in different settings. I

use the same standard workload L′ (Equation 3.12) but vary arrival rate λ and use only

marginally increasing values.

Results for λ = 3 are shown in Figures 3.17. First, note that these are not the same α/β

graphs as before. Instead, at the top, I show α and compare it with “Price Per Nodeslot.” At

the bottom, I show “Total Value” and “Total Revenue,” both aggregate measures of winning

bids. Total value equals the sum of all winning bid values wi, total revenue equals the sum

of total payments made by winning bids, and price per nodeslot is the average per unit

nodeslot price as calculated by the payment rule.
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Figure 3.17: Comparing value and revenue with λ = 3.
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First, observe that total value > total revenue. Total value increases quickly from 5

nodes to 15 nodes. After 15 nodes, total value remains at around 8, 500, rendering additional

new nodes worthless. The reason is that at 15+ nodes, there is much more supply than

demand, thus the same set of bids are allocated and the extra new slots un-allocated. As a

result, total values appear unchanged.

Total revenue tells a different story. As nodes increase, there is less competition and thus

the payment for each winning bid will decrease. Prices actually go to zero at NR = 15+.

Recall the Roller payment rule: a winning bid pays the bid value of the first bid that it

replaces. When there is no bid that a winning bid replaces, the price is zero. Thus, with a

larger NR, the price and thus revenue are both zero, since all winning bids are not replacing

any bids at all.

Next, I will show results when λ increases. Figure 3.18 (λ = 5) appears similar overall

to 3.17, except it achieves higher total value at higher NR size (20). However, there is one

new pattern observed. Note that total revenue rises from NR = 5 to NR = 10. After that, it

drops as NR increases.

Figure 3.19, with λ = 10, shows an even clearer trend. Total revenue increases steadily

and tops off at around 20 ≤ NR ≤ 25, and then gradually drops off until it reaches 0 when

NR = 40. Thus, revenue is maximized when NR is about 20 to 25—further increasing

nodes results in negative marginal returns.

The rise in revenue towards the peak occurred because supply was too low (NR was

low), making many bids with good values lose. The values of these same bids determine

what the winning bids’ payments should be. Thus, the revenue increases due to the sum of

these losing bids. However, as NR reaches a certain level, these bids do win, making other
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Figure 3.18: Comparing value and revenue with λ = 5.

low value bids lose. These losing bids result in low or even zero payments for a lot of the

winners, hence leading revenue lower.

In summary, increasing NR can generate additional revenue but the effect depends on

demand. The goal of a system administrator is to monitor the demand trends before invest-

ing in additional nodes.

3.7.3 Reserve Price

As shown in previous graphs, revenue drops off and approaches 0 when the supply is

high enough to ease competition. Zero revenue is likely unacceptable for most systems. To

resolve this issue, I introduce a simple technique to control prices and thus revenue.

The concept is reserve price, denoted by rR. The reserve price is the minimum unit price



Chapter 3: Online Mechanism Design 82

 0

 2

 4

 6

 8

 10

 0  10  20  30  40  50

α 
or

 P
ric

e
α

Price Per Nodeslot

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0  10  20  30  40  50

V
al

ue
 o

r 
R

ev
en

ue

Window Nodes NR

Total Value
Total Revenue

Figure 3.19: Comparing value and revenue with λ = 10.

set for each nodeslot in the rolling window. A bid with unit price less than the minimum

price will not be considered for allocation. In addition, a bid that wins will pay at least the

reserve price. Essentially, I replaced step 1 of the payment rule (Section 3.3.4) with:

pi = max(rR, vj), (3.14)

where vj is the previously stated “unit bid price of the first bid that lost because of i’s

allocation.”

Example: consider a simple unit size rolling window with (NR, SR) = (1, 1) and bids for

unit nodeslots (ni = si = 1). Assuming two bids i and j with unit bid price vi = 10 and

vj = 5, the following two cases can be considered.

1. Reserve price rR = 0. i wins (since vi > vj) and must pay unit price pi = max(0, vj =
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5). Thus, i pays pi = 5. Note this has the same outcome as before when there was no

reserve price.

2. Reserve price rR = 7. i wins and pays unit price pi = max(7, 5) = 7. Thus, i is

charged more than vj in this case, given the reserve price.

I now re-run the experiment of Figure 3.19 to show that reserve price can help us avoid

drop-offs in revenue. I use the same workload distribution, with λ = 10. I again vary

different NR sizes. This time, I create a reserve price rR = 5. I decide on this price by

looking at the price per nodeslot for NR = 20 in Figure 3.19.
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Figure 3.20: Reserve price effects.

Figure 3.20 shows the result. Note immediately that the total revenue curve now flattens

for NR = 30+, instead of dropping off. Thus, reserve price does indeed help us maintain
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desirable revenue levels. Overall values are higher as well due to the reserve price (com-

pared to Figure 3.19). Similarly, price per nodeslot flattens at NR = 30+ and equals about

5. This confirms the correctness of the reserve price calculation.

3.8 Comparisons with Other Allocators

In this section, I compare Roller with other allocators. Specifically, I separate other al-

locators into two classes: value-based and non-value-based. Value-based allocators, such as

Roller, aim to obtain value information from agents to make allocation decisions, whether

such information is truthful or not. There are a wide range of non-value-based allocators,

including traditional systems allocators such as First-Come First-Serve (FCFS) and Earli-

est Deadline First (EDF) algorithms. Instead, these allocators use information other than

value, such as job sizes and timing, to make allocation decisions.

While comparing Roller with another value-based allocator is logical, comparing fairly

with the non-value-based allocators is hard, because these, by default, will perform poorly

with metrics such as system value α. However, they probably can do better than Roller

regarding responsiveness β. I compared both for a more in depth understanding. Moreover,

I ran additional experiments to find out how many nodes are required for different allocators

to achieve the same level of value.

3.8.1 Value-Based Allocator

The goal of a value-based allocator is to maximize aggregate values. In this section, I

compare Roller with a straightforward value-based method (referred to here as the “Greedy”
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method) to see whether or not Roller outperforms.

The Greedy method works as follows:

1. Only nodeslots starting with the current period are available.

2. At every t, all bids are sorted by bid value wi regardless of nodeslot size nsi and

patience ∆i.

3. Starting from the top of the bid list, a bid is allocated if there are enough nodeslots

available, starting at current time t.

4. Winning agents pay their own reported bid value wi.

The Greedy method focuses on bid value alone. While it is not an optimal allocator,

which can potentially extract even more value by considering nodeslot constraints, the

Greedy method is a reasonable benchmark as it likely extracts a competitive amount of

value compared to an optimal allocator and far more value than a non-value allocator. While

the above resembles the Roller mechanism, there are several key differences. First, total

value rather than unit value is used. Second, it uses first-price (wi) and hence the method

is not strategyproof. Third, the rolling window concept is not used and thus no selling of

future resources is allowed.

Workload L′ is again used with λ = [1, 2, 3, 4, 5, 10]. The number of nodes NR is 8.

For Roller, window size SR is 12, per the results of Section 3.6. For each λ, I ran Greedy

and Roller to collect metrics α and β. Figures 3.21 and 3.22 show results for marginally

increasing and decreasing values, respectively.

System Value α Comparison. Roller and Greedy achieve virtually identical α with

marginally increasing values. This is because both methods prioritize bids with both high
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total value and high unit value for allocations, due to marginally increasing values. For

marginally decreasing values, Roller outperforms Greedy because the high unit value bids

win in the former, but lose in the latter. These high unit values derive high α for Roller, but

not for Greedy.

Responsiveness β Comparison. Roller beats Greedy by about 0.2 throughout for either

marginally increasing or decreasing values. This is mainly due to the use of the rolling

window, whereas bids for Greedy simply have to wait multiple periods for decisions to be

made.
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Figure 3.21: Roller vs. Greedy. Marginally increasing value distribution.

In summary, Roller captures good total value while enabling a responsive experience.

For distributed systems, this good response time is an important consideration for those

choosing between a fast and strategyproof allocator like Roller and an allocator with per-
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Figure 3.22: Roller vs. Greedy. Marginally decreasing value distribution.

haps higher value but low responsiveness.

3.8.2 Non-Value-Based Allocators

The next comparison is with traditional, non-value-based allocators. I compare Roller

to two popular and simple allocators: First Come, First Serve (FCFS) and Shortest Job First

(SJF). For FCFS, bids that have the earliest arrival time ai will be ranked first in every time

period. For SJF, bids will be ranked by nodeslot size nisi, in which bids that request the

smaller nodeslots have higher priority. In addition, FCFS and SJF will only consider bids

to start at t and do not use an allocation window for future slots.

The workloads used are based on L′ (Equation 3.12) with λ = (1, 2, 3, 4, 5, 10). The

number of nodes NR is fixed at 8. For the rolling window, I use a fixed window slot size
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SR = ∆̄ + s̄ = 12 for all tests. Results for marginally increasing and decreasing values are

shown in Figure 3.23 and Figure 3.24, respectively.
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Figure 3.23: Roller vs. FCFS vs. SJF. Marginally increasing value distribution.

System Value α Comparison. First, I will discuss α for marginally increasing values.

For Roller, system value α increases gradually as arrival rate λ increases. This is consistent

with our results per Table 3.2. For FCFS and SJF, α increases for 1 ≤ λ ≤ 3 but decreases

slightly as demand increases per rising λ. System value α for Roller is almost twice as good

as that of SJF for λ ≥ 3, while FCFS results are in the middle.

The results are not surprising because FCFS and SJF do not consider values at all. For

FCFS, its α is close to the average of all bid values, since it only considers arrival time. For

SJF, it is worse because it selects the smallest jobs which are also the lowest value jobs for

marginally increasing value distributions.
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Figure 3.24: Roller vs. FCFS vs. SJF. Marginally decreasing value distribution.

For marginally decreasing values, α for Roller and FCFS are similar as before, but

with lower values in general. SJF, on the other hand, has virtually identical α as Roller.

The reason is that the highest value jobs now are the smallest ones, which SJF prioritizes

exclusively.

Responsiveness β Comparison. Figures 3.23 and 3.24 both show that Roller is very

responsive. SJF is second, but competitive. By selecting the smallest jobs, SJF allows more

slots to be available to various requests and thus increases responsiveness. However, FCFS

performs poorly as soon as λ > 1. This can be explained as follows. Because of the lack of

a rolling window, time-to-win in general suffers. With FCFS, every time bids with longer

slots (si) are allocated, the slots are “blocked” for several time periods, further delaying

time-to-win for other bids. This effect is similar to the effect of not using a laststart bar, as
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discussed in Section 3.4.

Nodes and Values Comparison. Finally, I want to see how many nodes NR are re-

quired for these three systems to achieve a certain level of values. I use λ = (5, 10) for

workload L′. This time, I run the allocators against different numbers of nodes: NR =

(1, 2, 3, 4, 5, 10). Graphs of total value as well as α and β are plotted in Figure 3.25 for

λ = 5 and Figure 3.26 for λ = 10.

Total values for all allocators increase gradually as supply NR increases. They all, at

some point, reach a ceiling (e.g., 30, 000 for λ = 10) because every bid is accepted given

the large amount of nodes supplied. Adding more nodes does not help the system generate

more value and thus will not make good use of resources.

To achieve a certain level of value, Roller uses fewer nodes than FCFS or SJF. For

example, if total value of 20, 000 is desired for a λ = 10 workload, then 20 nodes are

needed for Roller, while approximately 27 and 32 nodes are needed for FCFS and SJF,

respectively.

The α and β graphs again confirm the general behaviors of Roller. α for FCFS and

SJF is more interesting: it rises and then drops off. The rise is due to increased winners

in general, thus boosting α. However, it drops off precisely at the ceiling level. Because

there are excessive nodes, α will decrease because it takes the total number of nodes into

account.

To summarize:

• Roller is more responsive, generates higher value than FCFS and higher or similar

value as SJF.

• Roller uses fewer nodes to achieve the same level of value as FCFS and SJF.



Chapter 3: Online Mechanism Design 91

 2
 3
 4
 5
 6
 7
 8
 9

 10

 0  10  20  30  40  50

α

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  10  20  30  40  50

β

 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000

 0  10  20  30  40  50

T
ot

al
 V

al
ue

Window Nodes NR

Roller
FCFS

SJF

Figure 3.25: Roller vs. FCFS vs. SJF: number of nodes and total values. λ = 5.
Marginally increasing values.

3.9 Late Allocation

In this section, I describe experiments to test the ρ-allocation rule. Again, the purpose

of ρ is to probabilistically allocate late to limit agents that submit over-reported departure

time d′, in order to receive lower payments through getting extra VirtualWorlds periods.

When a bid is created from the workload, it has a ρ probability (ρ ∈ [0, 100]%) of being

assigned as a “late” bid by Roller. When an agent mis-reports his true patience, I call that

over-reporting, I denote the amount of over-reporting in terms of the multiple between

over-report departure (d′) and actual departure (d)—denoted by 1.5x, 2x, and so forth. For

example, if d′ = 10 and d = 5, then it is a “2x over-report.”

For the experiments, I use the average payoff metric to quantify the outcomes to agents

that over-report. A payoff to an agent i equals its captured total true value minus its total
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Figure 3.26: Roller vs. FCFS vs. SJF: number of nodes and total values. λ = 10.
Marginally increasing values.

payment. For example, if true value is $10 and total payment is $4, then payoff equals $6

(positive) for a truthful agent but -$4 (negative) for a late allocation. An average payoff is

computed from both kinds of bids. Note that identifying over-report bids is hard or even

impossible by a system—but is feasible in an experimental setting as it decides which

agents over-report and by how much.

Late allocations have no effect on agents reporting true departures. On the other hand,

an agent with a “late” winning bid with over-reported departure captures none of its true

value wi, as such value is valid only for receiving the resource on or before its true departure

di. Moreover, it is obligated to making payments for winning the resources, essentially

resulting in the agent paying for something that it no longer desires. Its payoff, as a result,

is negative payment.
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I raise the following questions for experiments. Given an over-report multiple, what are

the effects on average agent payoffs under varying ρ set by Roller? Similarly, what are the

effects on system value α? For a given ρ, what is the over-report multiple that returns the

highest average agent payoff? What is the corresponding optimal system value?

For the rolling window, the number of nodes NR is 8 and window slot size SR is 12.

The percentage of over-reported bids in a run is fixed at 20% of all bids. Both over-report

multiple and ρ vary for different experiments. I use base workload L′ = (T,P , λ, [nlow :

nhigh], [slow : shigh], [∆low : ∆high], w(m, [xlow : xhigh])) = (500, poisson, 3, [1 : 3], [1 :

3], [5 : 5], w(⇑, [1 : 10])) for all of the experiments.

The first experiments address the questions regarding average payoffs. I generate a

workload with a 20% population of over-reporting bids, each with d′ based on a chosen

multiple (1x to 2x, with 1x representing all agents are “truthful” and acting as a reference).

Then I submit the workload to Roller using one of six different ρ ([0,20,40,60,80,100]) per-

centages. The payoff of each over-reporting bid is tracked, in order to generate an average

payoff at the end of a run. Each run is performed 100 times.

Figure 3.27 shows the results. Each line represents a specific over-report multiple. The

points of a line indicates a specific ρ and the average payoff achieved. The 2x over-report

line, which represents the most aggressive over-reporting, has the most dramatic pattern. It

starts off with very high average payoff when ρ = 0. Basically, when no bid is penalized

for over-reporting, agents have strong incentives to over-report. Also, the average payoff is

significantly higher than that of the 1x line because every 2x bid enjoys twice the number of

VirtualWorlds periods to lower their payments, resulting in more chances to get low prices.

As ρ increases towards 100%, the average payoff drops for all over-reporting levels.
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Figure 3.27: Effects of ρ late % on average payoffs: across different multiples of over-
report departures.

However, the average payoff declines most steeply for those with the most dramatic over-

reporting (i.e., 2x). This is because some of the bids will be assigned for late allocation.

For example, for ρ = 20%, every bid (whether over-report or not) has a 1 in 5 chance to

be assigned late. Clearly, not all over-represented bids will be selected. Only those selected

contribute possible negative payoffs, and thus lower average payoffs.

When ρ = 100%, any over-reporting results in negative average payoffs and thus the

incentive is removed. The payoffs for different multiples overlap in different places due to

varying effects of ρ and other workload conditions, such as the payments available given

other normal bids. Finally, for certain ρ such as 80%, agents with greater over-reporting

(e.g., 2x) get hurt more than lower ones (e.g., 1.2x). With higher number of over-reporting

periods, those agents with the greatest over-reporting, are penalized the most.
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From the perspective of an agent thinking about over-reporting, it can reference the

vertical points across a fixed ρ. For example, when ρ = 0%, it is best to over-report with

a high multiple (2x). When ρ is over 50%, it is best not to over-report (1x) and receive

negative payoffs. I denote the highest point of each ρ as the “optimal multiple.”

In Figure 3.28, I plot a similar graph but with system value α as the y-axis. System val-

ues for ρ > 0% are lower than that of ρ = 0%, because for α only the true value is counted

(i.e., no payment involved). When ρ = 0%, any over-report bids still risk the chance that

they may be allocated in an over-report departure, hence the lower overall system value.

As ρ increases, the number of over-report bids that are allocated in over-report departure

increases, further lowering system value. Another reason is that with demand greater than

supply (i.e., λ = 3), it becomes more and more difficult to allocate for a bid, over-report

or not, through late allocation. As a result, many bids in high ρ lose, resulting in lower

value captured. Lastly, for the 1x multiple, system value decreases as ρ increases. First,

when ρ = 100%, many of the slots at startup time are wasted. Second, with more late bid

allocations, the set of allocatable slots in the window shifts dramatically and the number of

available slots decreases due to such shifts. For 1x multiple, my experiments show that the

number of slots allocated when ρ = 100% is 9% less than that of ρ = 0%. This implies that

some slots and bids were left un-allocated, resulting in lost value.

With results from the first two figures, I address the optimal amount of system value

α for each ρ percentage. First, the “optimal multiple” points are identified previously in

Figure 3.27. These indicate what agents would do for a given ρ. Now, with the multiple

identified, I look up the system value α captured by this multiple for the same ρ in Fig-

ure 3.28. For example, as ρ = 0% the optimal multiple is 2x, the system value for the 2x
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Figure 3.28: Effects of ρ late % on system value α: across different multiples of over-
report departures.

line under ρ = 0 is used. I plotted these system values for each ρ to generate Figure 3.29.

The graph suggests that the system should set ρ = 40%. This is because when it is too

low (e.g., ρ = 0%), over-reported bids will be submitted and these agents have an edge. In

addition, if set too high (e.g., ρ = 100%), every bid suffers.

In Figure 3.30, I plot total revenue collected with each ρ percentage, across different

over-report multiples. In general, for a given multiple, revenue increases as ρ increases.

When more bids are considered “late,” it becomes more competitive to win. This results in

an increase in prices for the “late” bids while the rest of the bids face less competition. The

revenue for 1x multiple is highest throughout because it captures higher system value (see

Figure 3.28) and thus has more value to capture as revenue. In Figure 3.31, I plot a total

revenue graph based on the optimal multiples points that deliver the highest agent payoffs
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Figure 3.29: System value α captured by each ρ late %: driven by multiples that deliver
highest agent payoffs.

(see Figure 3.27). Similar to Figure 3.29, the first two points with ρ equals 0% and 20%

are driven by 2x multiples, and the rest by 1x multiple. In general, total revenue increases

as ρ increases. This presents a tradeoff to systems designers as using ρ to maximize total

revenue (ρ = 100% in Figure 3.31) will not lead to a maximum system value (ρ = 40% in

Figure 3.29).

One last thing of interest to note is the mis-report of “early arrival” by agents. Assume

these agents always report true departures. Agents have no incentive to mis-report early

arrival. For example, an agent with true needs for resources starting in time 4 mis-reports

an arrival time of 1. This is because resources won in these periods yield zero true value

to the agents. However, if selected as “late” with ρ > 0, such agents will not be allocated

in these mis-reported early periods and still achieve value for their allocations. In this case,
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Figure 3.30: Total revenue captured by each ρ late %: among all over-report multiples.

agents have incentives to under-report arrival, in order to obtain more VirtualWorlds periods

for lowering payment. Thus, with late allocation Roller is not strategyproof for these cases

(a tradeoff). Nonetheless, early arrivals are debatable as a realistic model, as agents usually

do not know of their needs until such needs do arise.

3.10 Summary

In this chapter, I introduced Roller and made a number of discoveries that address the

two research questions. First, Roller is strategyproof with respect to value and size, and

is configurable in regard to providing strategyproofness for different aspects of allocation

timing. Its allocation and payment rules mitigate strategic behaviors for these dimensions.
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Figure 3.31: Total revenue captured by each ρ late %: driven by multiples that deliver
highest agent payoffs.

For example, agents have no incentive to determine which auction may yield the highest

utilities, as the payment rule provides the optimal situations across an agent’s allocation

timing.

Second, Roller captures a competitive amount of value and is highly responsiveness in

the tested workloads. The key is to select a rolling window size that best balances value

and responsiveness. Compared to a value-based allocator, Roller is more responsive and

competitive in terms of value captured. Compared to non-value-based allocators, Roller

commands respectable responsiveness, while generating higher value.

There is much future work to do, the most important being to optimize Roller alloca-

tions while at the same time not sacrificing its strategyproof properties. Exploring Roller’s

performance with new classes of workloads is also crucial, especially for opportunities to
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identify classes of workloads that can achieve high α and β simultaneously with the use of

a larger rolling window. Other work includes exploring alternative resource abstractions.

For example, some systems may only want to offer a partial amount of future slots (e.g.,

50%) at any given time.



Chapter 4

Virtual Currency Design

4.1 Introduction

In this chapter, I describe virtual currency 1, artificially created objects that mirror the

role of real currency such as the US Dollar (USD) and Japanese Yen, as a medium of

exchange for resources of a system. I also denote virtual currency as “tokens” and the

symbol “@” interchangeably. In recent years, many systems have adopted virtual currency,

including different market-based systems, as well as online services such as games and

social networks (e.g., World of Warcraft [16], Second Life [12], Facebook [5]).

Why use virtual currency? In real-life, agents already use real currency to pay for goods

and services, including buying cloud computing resources [1]. Unfortunately, some systems

cannot adopt real currency. Examples include non-profit systems such as PlanetLab [80]

and internal corporate systems. Asking agents to pay USD for free resources provided by

an organization or entity is often infeasible and may even have complex financial and tax

1Also referred to as virtual money, virtual cash, artificial money, scrip, credit, share, token, among others.

101
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implications. However, in order to use auction-based solutions such as Roller, some form of

exchange medium is required. Virtual currency offers these systems an alternative medium

of exchange for agents to use in bidding and the system to consider when determining and

executing allocations and payments.

However, adopting virtual currency comes with a price. The system must specify and

implement, from scratch, the infrastructure and monetary policies that enable a virtual cur-

rency environment. The infrastructure addresses necessary elements including the form

(e.g., digital secure tickets [41] or database-driven as in Mirage [30]), creation process,

storage, transactions, as well as security of virtual currency. The monetary policies specify

operational rules including how much currency to create, and how much each agent should

receive. Essentially, these are analogous to real-world examples such as the USD (form),

US Mint (creation process), the banking system (storage and transactions) and the Fed

(monetary policies). Thus, it takes serious efforts to create a virtual currency environment.

In this chapter, I focus solely on the effects of monetary policies. This topic has not

been widely studied in market-based computer systems. Understanding the effects of mon-

etary policies is important for designers of market-based systems to mitigate undesirable

outcomes such as currency crises that have been seen in online worlds 2. In fact, some for-

profit adopters of virtual currency have hired traditional economists to manage policies,

suggesting a demand for a systematic study of this topic. The main research questions of

the chapter are as follows:

Given a set of reusable resources and agents with specific workloads and strategies,

how do different monetary policies affect aggregate value and resource allocation?

2SecondLife [18] suffered inflation by printing too much currency.



Chapter 4: Virtual Currency Design 103

And how do they influence the effects of different agent strategies?

To address these questions, I devise a framework with the following three components:

• Monetary Policy Design Space (Section 4.2): A monetary policy 3 should inform

the amount of currency to create and the way to distribute it both initially and then

on a continuing basis. I will parameterize different policies through a set of policy

dimensions.

• Agent Models (Section 4.3): Agents have a demand for resources over time. How

agents value their jobs, and the strategies used by agents to submit bids, impacts the

effectiveness of the monetary policy.

• Equilibrium Analysis (Section 4.4): For a given monetary policy, I compute the

symmetric mixed strategy Nash equilibrium for a fixed set of agent strategies and

workload, as well as the associated value captured by the system at equilibrium.

Using the framework, I run a series of experimental studies in Sections 4.5 through 4.8.

These experiments use Roller as the underlying method for resource allocation 4. I finish

the chapter with a summary in Section 4.9.

4.2 Monetary Policy Design

In this section, I establish a design space for monetary policies. My approach is to cre-

ate different policies through a set of policy dimensions: P = (D, M, F ) (see Figure 4.1),

3Also referred to as simply “policy” in this chapter.

4Roller is only for resources and is not involved with any virtual currency components.
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Figure 4.1: Monetary policy dimensions.

where D is the distribution method (how to distribute currency), M is the money supply

(how much currency to create), and F is the distribution interval (when to distribute cur-

rency), respectively. D is a set of four methods, all of which are non-parameterized. A

single policy is created by parameterizing M and F and selecting one of the four methods.

A sound monetary policy must address all three components in the framework to ensure

the virtual currency system functions as desired.

I first provide a model of a virtual currency system to provide some context for policies

and dimensions. Then, I describe each of the three policy dimensions in detail.

4.2.1 System Model of Virtual Currency

For this chapter, I am making the following assumptions. The virtual currency system is

supported by a simple centralized infrastructure. It is entirely software-based, with tokens

in the form of digital records stored in a database. A bank uses the database to create and
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manage a system account as well as accounts for each agent. The bank also handles all

transactions between the system and agents. Thus, every agent relies on the bank for all

currency-related activities.

By design, the system I am modeling is a closed economy. It supports only one currency

and agents cannot use any other currency to bid for resources. Because the resources are

system-owned, transfers among agents are not necessary.

At initialization, the system chooses a policy by setting each of the policy dimensions.

The bank accordingly creates a number of “tokens” based on the money supply M and

credits them to the system account (with a bank balance of Bt at any time t). Based on

the chosen distribution method D and the distribution interval F , the bank deducts tokens

from the system account and distributes them to different agent accounts (with balance

bt
i for agent i at time t). Every time an auction clears, the bank debits tokens from agent

accounts for payments and credits them back to the system account.

Different workloads describe the jobs that seek resource allocation by the system over

time. Clear workload definitions are important for the design of monetary policy, as many

of the policy dimensions take workload information as inputs. For example, a policy may

distribute currency to agents based on how many jobs they have submitted to the system.

In this discussion, jobs originate from a fixed set of agents A, each of which has a re-

peated job demand for system resources over time. I simulate all activities of every agent,

in order to study its behaviors over time. Every few periods, each agent learns about a num-

ber of new jobs. Each job has node size (ni), slot size (si), arrival time (ai), and departure

time (di). In this simulation, upon learning of a new job, an agent immediately attaches a

true value wi (in USD and is private to the agent) to the job. The job is then appended to the
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agent’s job queue, which holds jobs that are active (not yet allocated and not expired). The

number of jobs in agent i’s queue at time t is denoted by kt
i . Jobs in the queue are sorted

in order of arrival time and are labeled {1,2,...,k}. No two jobs of an agent overlap in time

including their arrival and departure times.

The above model shares the same attributes as Roller. Neither support more detailed

node descriptions such as frequencies. The new job arrival process above differs from both

Roller and Mirage, with the former using a Poisson process. Roller also uses a more so-

phisticated value distribution.

The system accepts bids from agents on an ongoing basis and runs a Roller auction

every time period t (e.g., an hour) as described in Chapter 3. Every period, each agent

checks whether its first job in the queue is valid for the current time period. If it is, the

agent submits a bid value ŵ1
i

5. If the bid is successful, the bank deducts payment from the

agent’s account and credits the system account. Winning or expiring jobs are removed from

the agent’s job queue.

4.2.2 Money Supply (M )

The money supply (M ) addresses the question: “how much currency to create?” This

includes the balance of the system account as well as the individual balances of each agent.

In the real-world, money supply affects many things such as inflation. In this chapter, I

study fixed money supply, where the total number of tokens in the system is created once at

initialization and fixed over time. These tokens cycle through the system as agent payments

and bank distributions.

5I denote ŵ1
i as bid value (in tokens) and w1

i as the true value (in USD). The superscript 1 denotes the first
job in agent is queue.



Chapter 4: Virtual Currency Design 107

4.2.3 Distribution Interval (F )

The distribution interval (F ) answers the question,“when to distribute currency?” Be-

cause agents spend tokens to acquire resources in Roller, but have no way to earn tokens,

they have a net outflow of currency. Therefore, the system must redistribute currency from

its own account back to the agents.

The time periods for distributions are determined by the distribution interval F . Starting

at time period 0, distributions occurs every F time periods (i.e., 0, F , 2F , 3F , ..., etc.). The

auction runs every time period t, irrespective of what F is. If F = 1, then every time

period the auction runs and the bank distributes currency. If F > 1, then there are multiple

auctions between each distribution.

Specific values of F can have major effects on the system, given fixed money supply.

For example, a system that has F = ∞ will likely drive all agents to “bankruptcy,” regard-

less of M and B. I will explore the ramifications of different ranges of F on the system.

4.2.4 Distribution Method (D)

The distribution method (D) addresses the question “how to distribute currency?” A

distribution method determines how much virtual currency each agent will receive. There

are a total of four, non-parameterized, methods D1-D4, summarized in Table 4.1 that are

discussed below.

D1:Uniform

For this method, the bank simply distributes its total current balance uniformly to all

agents. I use A to denote the set of agents, |A| as number of agents, and bt−1 and bt to
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Method Details

D1:Uniform Divide bank balance equally for every agent.

D2:Stable The lower the standard deviation of an agent’s bid val-

ues, the more tokens it receives.

D3:Active Agents with a higher cumulative number of jobs sub-

mitted to-date receive more tokens.

D4:Urgent Agents with low average patience receive 2x the to-

kens.

Table 4.1: Distribution methods: overview.

denote the account balance of an agent i before and after a distribution. The bank distributes

an equal portion of its balance to every agent at every distribution period. Similarly, Bt−1

is the balance of the system account, all of which is available for distribution, right before

a distribution occurs (after which it goes to zero).

bt
i = bt−1

i + Bt−1/|A|, ∀i ∈ A (4.1)

D2:Stable

For systems with agents that bid randomly or aggressively, this method rewards agents

with more predictable bidding behaviors. Specifically, the bank distributes more currency

to agents with more stable bid price patterns. I use σt−1
i to denote the standard deviation

of bid values by agent i between time 0 and t − 1. This time range captures the complete
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bidding history of each agent 6. Each agent will receive tokens based on the inverse of the

natural log of the standard deviation. At every distribution period, D2:Stable distributes

currency as follows:

bt
i = bt−1

i +
log(σt−1

i + 2)−1∑|A|
j=1 log(σt−1

j + 2)−1
·Bt−1 (4.2)

Thus agents with lower standard deviations receive more tokens. Mathematically, adding

2 to the standard deviation is to ensure the denominator is positive (e.g., to avoid calculat-

ing inverses of log(0) and log(1)). At time 0, the method uses D1:Uniform as default as no

agent has submitted any bid.
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Figure 4.2: D2:Stable agent weight calculation.

6It is conceivable to use a shorter time range, for example, the past several periods.
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D3:Active

For this method, agents with a higher long-term demand for jobs receive proportionally

more tokens. These are agents that submit more bids over time (whether those bids win or

not are irrelevant). This is applicable to systems such as PlanetLab, which prefers active

users (e.g., researchers that often have lots of experiments). Therefore, agents receive to-

kens in proportion to the cumulative numbers of unique bids submitted from time 0 to t−1

, denoted as ht−1
i . Formally, D3:Active distributes currency to agents as follows at every

distribution period:

bt
i = bt−1

i +
ht−1

i∑|A|
j=1 ht−1

j

·Bt−1 (4.3)

As before, at time 0, the method defaults to D1:Uniform.

D4:Urgent

For this method, agents with shorter average patience (di − ai) receive proportionally

more tokens. These agents essentially have more jobs with earlier deadlines. I denote the

maximum patience allowed in a system as ∆max. D4:Urgent assigns a score of 2 to a job

with patience less than ∆max/2 and a score of 1 otherwise. An average score for each agent

is calculated from the score of the previous 5 jobs. I denote this score as gh−1
i . D4:Urgent

distributes currency to agents at every distribution period as follows:

bt
i = bt−1

i +
gt−1

i∑|A|
j=1 gt−1

j

·Bt−1 (4.4)

Thus, an agent with short patience for all of its previous 5 jobs will receive twice as

many tokens as another agent with long patience. As before, at time 0, the method defaults
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to D1:Uniform.

4.2.5 Mirage

The monetary policy design discussed above differs from that of Mirage. In Mirage,

each agent is assigned a fixed number of shares and a baseline value. The bank in Mirage

distributes currency proportionally using these shares. Thus, there is only one distribution

method. Mirage assigns different baseline values to different agents, with internal staff

receiving twice the amount of external researchers. In addition, Mirage uses a “use it or

lose it” policy that taxes agents with account balances over their baseline value. In this

chapter, I do not explore tax effects because the agent models used here do not including

hoarding agents.

4.3 Agent Models

In this section, I build agent models based on three aspects: 1) Currency basis refers to

whether the agents use virtual or real currency to reason about the intrinsic value of a job

and for making transactions in a system; 2) Workloads define the set of jobs submitted by

agents to the system over time; and 3) Agent strategies determine how agent represent jobs

with USD values as token-based bids into the system.

4.3.1 Currency Basis

The currency basis, in terms of real currency ($) and virtual currency (@), that every

agent uses to value resources and to make bids and payments is critical to model a system.
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In most real-world systems, agents hold a true value for resources in real currency (e.g.,

USD), and bid and pay for resources in USD. This “all real currency basis” is simple for

both system and agents.

However, a system that uses virtual currency involves agents that bid and pay in tokens,

while still holding a true value for those resources in USD. In this scenario of “mixed

currency basis,” each agent makes implicit and individual decisions privately in terms of

how much virtual currency to submit as a bid value for a job that has a certain true value in

USD. This is the currency basis for this chapter.

Lastly, there is also an “all virtual currency basis” in which agents also value in the

virtual currency. However, like any country in the early days of using its own fiat currency,

it will take a long time for a system to create trust and stability for many agents to endorse

virtual currency.

4.3.2 Workloads

In this chapter, I use the following four types of workloads.

• W1:Common. For this workload, all jobs from every agent are drawn from the same

set of ranges for all job variables.

• W2:Jobs. The workload consists of jobs drawn from two different job arrival ranges.

Some agents receive new jobs from the high jobs range, while the remaining agents

receive jobs from the low jobs range.

• W3:Combo. This workload extends W2:Jobs. Some agents receive new jobs from the

high values range. In addition, these new jobs draw from a high value range. Thus,
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the more jobs an agent has, the more valuable these jobs are.

• W4:Patience. The workload consists of jobs drawn from two different patience ranges.

Some agents receive new jobs form the low patience range. These low patience jobs

also draw from a high value range. Thus, low patience agents have high value jobs.

The full details of the ranges of different job variables for each of the workload are

described in Table 4.2. “# New Jobs” is the number of new jobs each agent learns of every

five time periods. “True value” is for the whole job and is in USD. The true value (in USD)

of each job is private to an agent and unknown to everyone else including the system. The

true value is fixed permanently when an agent first learns of a job and is not affected by

any future events, including any virtual currency allocated to the agent. For nodes and slots,

jobs for all workloads draw from the range [1:3] and are not listed.

On the supply side, the Roller mechanism is used for resource allocation (Chapter 3).

For the rolling window settings, R = (NR, SR, LR) = (8, 8, 5). In other words, the rolling

window is 8 nodes by 8 slots, with a laststart time of 5. The experiments all run for a total

of T = 500 periods. Every experiment is repeated 50 times.

These workloads differ from those used in evaluating Roller. First, in the Roller ex-

perience of Chapter 3, we did not use differently typed workloads. Second, we are now

generating true values with a less sophisticated method. Third, we do not parameterize

workloads here as we did in the Roller experiments. Overall, my goal is to have a set of

simpler and more predictable workloads to use to study the policy dimensions.
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WORKLOAD
AGENT TYPE RANGE

Type # of Agents # New Jobs Patience True Value

W1:Common N/A 10 [1:3] [0:5] $[1:100]

W2:Jobs
High Jobs 5 [3:4] [0:5] $[1:100]

Low Jobs 5 [1:2] [0:5] $[1:100]

W3:Combo
High Values 5 [3:4] [0:5] $[100:200]

Low Values 5 [1:2] [0:5] $[1:100]

W4:Patience
Low Patience 5 [1:3] [0:2] $[100:200]

High Patience 5 [1:3] [3:5] $[1:100]

Table 4.2: Workloads for virtual currency experiments: Grey boxes highlight differ-
ences between two types of agents in a workload.

4.3.3 Agent Strategies

With a mixed currency basis, agents have to choose strategies for bidding some number

of tokens on jobs that have true values in USD. The type of strategies that can be used is

unbounded, as an agent can strategize using any number of factors it chooses. An agent is

free to choose a strategy, such as the ones discussed below, that depend on some standard

variables, or ones that depend on some ad-hoc variables (e.g., roll of dice, day of the month,

etc.). I focus on a small set of strategies for testing the policies.

The motivation to analyze monetary policy with agent strategies in experimental studies

originates from empirical game theory [48]. For my experiments, there are a total of four

strategies, as listed in Table 4.3. A strategy set S includes one or more of these strategies

and is denoted by S = {S1, S2, S3, S4}. These strategies differ in the factors they adopt
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to make bid value decisions. Some are more aggressive while others consider future job

demand. Again, none of the strategies are parameterized for the experiments. Bid values

submitted by an agent must be positive real numbers and not exceed the available balance

of an agent at the time of submission.

Strategy Bid Value Calculation

S1:Greedy Current balance.

S2:Jobs Current balance divided by number of jobs in the queue.

S3:Values Current balance multiplied by weighted USD job value.

S4:Prices 110% of moving average of past 5 winning prices.

Table 4.3: Agent strategies: overview.

S1:Greedy

The first strategy, S1:Greedy, is simple, yet aggressive. An agent simply bids all of

its current balance bt
i for the first job, without concern for future needs. Formally, agent i

submits the following bid value ŵ1
i for the first job in its queue that is valid at time t:

ŵ1
i = bt

i (4.5)

S2:Jobs

The second strategy, S2:Jobs, is more conservative than S1:Greedy as the agent is more

forward-looking. By spending only a portion of its balance on the first job, an agent hopes

to reserve tokens for future jobs in the queue.



Chapter 4: Virtual Currency Design 116

For the first job at time t, an agent submits a bid value equal to its balance divided by

number of jobs in its queue kt
i . Formally:

ŵ1
i = bt

i/k
t
i (4.6)

S3:Values

This strategy is similar to S2:Jobs in that both strategies consider the state of the job

queues. For S3:Values, an agent submits a bid value ŵt
i for the first jobs in the queue based

on the weighted average of true values (in USD) of all jobs in the queue. Denote the true

value of job j as wj
i .

ŵ1
i = bt

i · w1
i /

kt
i∑

j=1

wj
i (4.7)

Example: Agent i has two jobs {1, 2} in the queue with values {$50, $100}, thus the

first job has a weight of 1/3. Current balance is @90. Thus, i submits ŵt
i = @30.

S4:Prices

Agents that play this strategy submit bids that are 10% above the moving average of the

recent five average per-unit prices 7. While simple, agents leverage public price information

and employ a statistical model. Because the prices are influenced by all agents, this strategy

explicitly takes into consideration the actions of everyone. This is in contrast from the other

three strategies, in which each agent only considers its own bank balance and job needs.

7For a winning job with a price of 20 for 4 nodeslots, the per unit price is 20/4=5. The average per-unit
price of time t is the average of all such per unit prices. For example, per unit prices of {2,4,6} equals 4
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Denote pt as the average per-unit price for time t, the moving average per-unit price p̄ of

the past 5 periods, {t− 1, t− 2, ..., t− 5}, is:

p̄ =

∑5
j=1 pt−j

5
(4.8)

With p̄, the agent calculates its bid value for the first job in the queue as follows:

ŵ1
i = max(nisi · p̄ · 110%, bt

i) (4.9)

Multiplying nisi is necessary since p̄ is only per-unit. I choose 110% arbitrarily for

agents to bid slightly above the moving average. Finally, if the calculated bid value exceeds

the agent’s available balance, then the agent will submit its balance as bid value instead.

As an example, if the past five per unit prices were @{1,2,3,4,5}, then p̄ = 3. If agent

i has nisi = 4, then it submits a bid value @13.2 if it is less than the agent balance.

4.3.4 Mirage

As noted in the previous section, I do not study hoarding agents in this chapter. Nonethe-

less, the use of a savings tax in Mirage was intended to prevent agents from hoarding. To

model such agents, a basic strategy would be for an agent to submit the minimum amount

of bid value (e.g., @1) for jobs. A more sophisticated strategy would be for the agent to

play S1:Greedy for jobs with the highest values, but to bid the minimum for all others.

There are distribution methods that can be considered for hoarding strategies. For ex-

ample, a method that distributes more currency to agents with low running balance, as these

are likely non-hoarding agents. Another possibility is to distribute based on cumulative bid

values, since these would be very low for bidding agents. The S2:Stable strategy can po-
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tentially have some effects as well if hoarding agents do occasionally bid very high values

(i.e., resulting in high standard deviations).

4.4 Equilibrium Analysis

I model the virtual currency system with empirical game theory [48]. The game consists

of a finite set of strategies and is symmetric. A game is symmetric if all agents have the

same strategy set, and the payoff to playing a given strategy depends only on the strategies

being played, not on who plays them [28] 8. Furthermore, agents’ actions on choosing

strategies are non-deterministic.

A game in which agents’ actions are non-deterministic is the mixed extension of the

strategic game [76]. An agent is said to use a mixed strategy whenever he or she chooses to

randomize over the set of available actions (of choosing which strategy to play). Formally,

a mixed strategy game is a probability distribution that assigns to each available action a

likelihood of being selected [87]. Essentially, before the game begins, each agent “rolls

a dice,” based on these probabilities, to decide which action to play. Contrast this with

a deterministic agent, who has pre-determined a specific action to play before the game

begins.

A symmetric mixed strategy Nash equilibrium (NE) is a strategy profile with the prop-

erty that no single agent can, by deviating unilaterally to another strategy, produce an out-

come that it finds strictly preferable. Every finite strategic game has a mixed strategy Nash

equilibrium [88]. There are several ways to view NE. One of which is that of a steady state

of a population of agents [76].

8An example of a symmetric game is the Prisoners’ Dilemma.
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My goal is to find NE for each monetary policy and workload combination. The tool

I use for finding NE is replicator dynamics, which originates in evolutionary biology [75,

86, 95]. The particular set of procedures I use is based on work by Cheng et. al. [28], which

iteratively adjust strategy populations by comparing expected agent payoffs with respect to

the current mixture of strategies in the population.

I now describe the steps required for each experimental run, which involves a workload

and a monetary policy instance. In Appendix B, I provide additional details.

1. Build Payoff Matrix: Given a set of agents each playing a specific strategy, what is

the expected payoff for each agent? The goal is to explore the different combinations

of agents and strategies and populate a payoff matrix for each combination (known

as a pure strategy profile).

2. Search for Equilibrium: With the payoff matrix, the goal is to find a symmetric

mixed strategy Nash Equilibrium can be found.

3. Calculate Metrics: Once an equilibrium is found, what are the metrics for this steady

state? The goal is to collect different metrics for each experimental run, and then be

able to use the metrics to compare different policies.

4.4.1 Build Payoff Matrix

Suppose there are n agents, each playing a strategy from the set S = {x, y, z} 9. A

pure strategy profile, denoted by p ∈ P , captures the exact strategy chosen by each agent:

p = (nx, ny, nz), where each element represents the number of agents that play a respective

9I use {x,y,z} for illustration purposes. In my experiments the strategy set includes {S1,S2,S3,S4} as
discussed before
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strategy. For example, if exactly 5 agents play x, 1 plays y and 4 play z, then p = (5, 1, 4).

Thus, the number of unique pure strategy profiles in P is based on the number of strategies

and agents and is finite.

The payoff of a particular strategy profile p equals the percentage of true value captured

by the agents (the USD-based true value of winning jobs divided by USD-based true value

of all jobs for each agent, multiplied by 100%) and is denoted as u(p). Thus, the highest

payoff an agent can receive is 100%. I represent the payoff as u(p) = (ux, uy, uz). us

represents the average payoffs for all the agents that play strategy s. For example, for

strategy profile p = (3, 2, 1) with 6 agents, ux is the average payoff for the 3 agents that

play the first strategy x. The payoff definition does not involve virtual currency, such as the

balance of tokens an agent has. This is because the virtual currency is assumed to be closed

and have no intrinsic value outside of the system.

To calculate the payoffs, I run the system 50 times for each of the strategy profiles to

obtain average payoffs. Once all the payoffs are collected, the payoff matrix is populated

with one entry for each pure strategy profile. Table 4.4 is an example for a payoff matrix

for a 3-strategy set and 3 agents.

There are 3 rows and 3 columns in the table. Each row represents the number of agents

that play the x strategy (between 0 and 3). Similarly, each column represents the number

of agents that play the y strategy. Because we have a total of 3 agents, we can deduce the

number of agents that play the z strategy as |z| = 3− |x| − |y|. For example, for the entry

|x| = 2, |y| = 1, the strategy profile is s = (2, 1, 0) (i.e., no agent plays strategy z). The

payoff in the table is u(s) = (45, 15,−). This means that the average payoff is 45% and

15% for agents playing strategy x and y, respectively.
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|y|=0 |y|=1 |y|=2 |y|=3

|x|=0 (-,-,30) (-,30,40) (-,20,10) (-,25,-)

|x|=1 (30,-,15) (15,15,20) (10,10,-) (-,-,-)

|x|=2 (5,-,15) (40,15,-) (-,-,-) (-,-,-)

|x|=3 (10,-,-) (-,-,-) (-,-,-) (-,-,-)

Table 4.4: Payoff matrix example: for a 3-strategy game with a total of 3 agents. |x| and
|y| represents the number of agents playing the 1st and 2nd strategies, respectively. The
number of agents playing the 3rd strategy can be inferred from 3 − |x| − |y|. Each entry
represents the average payoffs (%) of a specific pure strategy profile. ‘-’ indicates no agent
plays the strategy for the particular profile .

4.4.2 Search for Equilibrium

With the payoff matrix created for a specific monetary policy and workload, the next

step is to search for a symmetric mixed strategy Nash Equilibrium (NE). The NE is a mixed

strategy profile s′ that represents the probabilities that each agent will use to select which

pure strategy to play.

To find NE with replicator dynamics, I start with equal proportions of agents playing

each strategy, e.g., 0.33, 0.33, 0.33, and estimate how these proportions change based on

expected payoffs of playing each strategy. This process is iterated over time, until the pro-

cess stops at a specific strategy profile where there is no “better move.” Table 4.3 shows

a sample graph where the populations of the mixed strategy profile shift over time in the

equilibrium search process.

The calculation of each update in replicator dynamics involves finding out expected

payoffs for each strategy and the probabilities that agents will play a certain pure strategy

profile. Also, it is important to note that upon convergence the calculated equilibrium is
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Figure 4.3: Replicator dynamics to finding symmetric mixed strategy Nash equilibrium.

verified as a true equilibrium. Specifically, the expected payoffs for those strategies with

a non-zero proportion in the mixed strategy profile must all be the highest (compared to

those with a zero proportion) and be identical. Finally, note that the above procedures as

well as the varying populations during replicator dynamics reflect purely the steps it takes

to compute the NE.

4.4.3 Calculate Metrics

Once a mixed strategy Nash equilibrium is computed, the resulting mixed strategy pro-

file can be used to derive metrics. For measuring value, I use the value efficiency metric.

It is the total true value captured by the system at equilibrium as a percentage of the of-

fline optimal total true value. The latter quantity is obtained by running the same workload

through an offline allocator. This allocator receives all the bids at the onset of the simulation

and uses linear programming to find the optimal solution. It is expected that the system will

not match the value captured by the offline allocator, since all decisions are made online.
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To calculate the equilibrium value efficiency, I use the probabilities in the mixed strat-

egy profile and the value efficiency of each pure strategy profile. Specifically, I use the

former to derive new profile probabilities, which may exclude some of the pure strategy

profiles. I then multiply the profile probabilities with the respective value efficiency for

each included pure strategy to obtain a weighted average value efficiency for equilibrium.

The difference between value efficiency and system value (α) in Chapter 3 is as follows:

α is the average true value in USD captured per unit of resource (a nodeslot), whereas value

efficiency in this chapter focuses on the total true value captured for the whole system and

is represented as a percentage by comparing the online allocator value to the value captured

by the offline allocator. If the latter is fixed, then an increase in value efficiency should lead

to an increase in α.

In the next four sections, I explore the effects of policies against different workloads

and agent strategies. My approach is four-fold. First, I study some basic strategic inter-

actions in this section. Second, I explore the effects of the distribution method dimension

against different workloads in Section 4.6. Third, I look at the dimensions that affect money

supply, the distribution interval and money supply dimensions, in Section 4.7. Fourth, in

Section 4.8, I compare the value efficiency achieved by the each policy against every work-

load at equilibrium.

4.5 Basic Strategic Interactions

For strategic interactions, I begin with a simple strategy set: {S1:Greedy, S2:Jobs}. This

set includes a total of 11 strategy profiles: {(10,0), (9,1), (8,2), ..., (0,10)}. For the first step

of equilibrium analysis, I generate a payoff matrix in Figure 4.4. Each row represents a pure
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strategy profile and its payoff. For example, the second row is the (9,1) pure strategy profile

in which 9 agents play S1 strategy and 1 agent plays S2. “S1 V%” and “S2 V%” are the

“payoffs,” which are the average value captured as a percentage of all value demanded by

an agent, for agents that play strategy S1 and S2 in such pure strategy profile, respectively.

In other words, 47% is the average payoffs obtained from the payoffs of the 9 agents that

play S1.

Figure 4.4: Two-strategy payoff matrix for D1:Uniform.

The payoff matrix reveals the varying payoffs of different pure strategy profiles. When

all agents play the same strategy, as in (10,0), no agent can receive a clear advantage as

they bid the same and receive the same amount of tokens via D1:Uniform. Thus, all agents

capture similar values, which are about half of the total value.

The situation changes as agents switch strategies for adjacent profiles. For (9,1), the

lone agent that now plays S2:Jobs captures a significant amount of payoff at 78%. Simulta-

neously, the remaining 9 agents see their payoffs drop. This trend continues through profile

(6,4), with payoffs by S1:Greedy agents dropping to 30%. From (5,5) to (0,10), the situa-

tion reverses with S1:Greedy agents capturing higher payoffs and reaching a high of 65%.
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S2:Jobs agents payoffs drop but but are still over 40%.

S1:Greedy suffers more than S2:Jobs in the majority profile situations (e.g., (8,2) vs.

(2,8)). When there are more S1:Greedy than S2:Jobs, the displaced bids in Roller are prob-

ably from an S1:Greedy agent. Thus, S1:Greedy agents may be paying prices set by other

losing S1:Greedy bids. This rapidly lowers their bank balance and thus their ability to

compete for more jobs, resulting in lower payoffs. This also leads to the minority agents,

S2:Jobs capturing relatively higher payoffs.

To further understand the strategy dynamics, I plot time-series patterns for one of the

profiles: (4,6) in Figure 4.5. This gives a picture of agents’ bid values and the flow of

tokens over time. The top section of the graph consists of two lines plotting average bid

values submitted by agents playing S1:Greedy and S2:Jobs. A third line traces average

prices paid by all agents as a reference. The middle and bottom sections of the graph show

the average ending balances of all agents and the system, respectively. The three graphs are

inter-related as bid values, prices, and token distributions affect ending balances and vice

versa.

The bid value patterns for the two strategies are opposite. For S1:Greedy, agents submit

high values at time 0. Bid values gradually decrease over the next few periods, as S1:Greedy

agents receive and pay for their allocations. S2:Jobs agents, on the other hand, submit lower

bid values that increase gradually, as their jobs are consumed and the average price per job

rises. This cycle restarts during every distribution interval, when new tokens are distributed

to all agents.

For S1:Greedy, agents win early because of the aggressive style of submitting their full

balance as bid values (e.g., the bid value in time 1 equals the ending balance at time 0).
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Figure 4.5: Time-based patterns for profile (4,6) with D1:Uniform. The top graph shows
average bid values submitted by agents playing each strategy. An average market price
line is added as reference. S1:Greedy agents submit decreasing bid values because they
constantly spends high amount of currency. The middle and bottom graphs show the ending
balance of agents and the system, respectively. Balance of S2:Jobs agents are high due to
their more conservative bidding nature.

The prices they pay are set by the bid values of S2:Jobs agents. This only applies to a

scheme such as Roller but not a first-price auction (where S1:Greedy will run out of tokens

immediately). As a result, agents have decreasing balances, which lead to decreasing bid

values.

Both bid values and balances decrease until S1:Greedy agents start losing to S2:Jobs.

This happens at time 3. S2:Jobs agents have barely spent any of their balance up to this

point because they have been losing to S1:Greedy. Their bid values are still higher than

the nearly depleted balances of S1:Greedy. In addition, the number of jobs in the queue

decreases as some jobs either have expired or have already won. As a result, S2:Jobs bid

values become higher as time passes. Note that the price curve is below S2:Job bid values
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as well, indicating that S2:Jobs are indeed winning.
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Figure 4.6: Two-Strategy equilibrium for D1:Uniform. Starting with equal percentage of
agents playing each strategy, replicator dynamics quickly converge to a symmetric mixed
strategy Nash equilibrium of (0.4, 0.6), in which each agent will play S1:Greedy with a
40% chance.

Finally, I use replicator dynamics to calculate equilibrium as shown in Figure 4.6. The

mixed strategy Nash equilibrium is (0.4, 0.6), in which every agent will play S1:Greedy

and S2:Jobs with a 40% and 60% chance, respectively.

4.5.1 Four Strategies

With some understanding of S1:Greedy and S2:Jobs strategies, I next add the remaining

two strategies to the mix. Adding S3:Values and S4:Prices to the strategy set for 10 agents,

the number of strategy profiles increases exponentially from 11 to 286.

I study the full strategy set with the D2:Stable distribution method. First, I select one

of the profiles, (2,3,2,3), to observe general strategy behaviors. In Figure 4.7, I show time-
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based patterns for the D2:Stable strategy. The ending balance of S4:Prices is significantly

higher than the other agents balances. This is because D2:Stable rewards bid values with

a low standard deviation and S4:Prices has the lowest standard deviation among the four

strategies. For S1:Greedy, the story is the opposite. These agents’ balances quickly depleted

over time and the agents were penalized for aggressive bidding.
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Figure 4.7: Time-based patterns for profile (2,3,2,3) with D2:Stable. The top graph
shows average bid values submitted by agents playing each strategy. An average market
price line is added as reference. S1:Greedy agents submit decreasing bid values because
they constantly spends high amount of currency. The middle and bottom graphs show the
ending balance of agents and the system, respectively. Balance of S2:Jobs agents are high
due to their more conservative bidding nature.

Although S4:Prices agents have the most tokens, S3:Values do bid relatively more ag-

gressively to win a good number of jobs. Also note that S3:Values and S2:Jobs receive a

decent number of tokens.

Next, I run replicator dynamics to identify the equilibrium, as shown in Figure 4.8. The

equilibrium mixed strategy profile is (0,0,0.3,0,7), suggesting that agents play S3:Values
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and S4:Prices with a 30% and 70% chance, respectively, and do not play S1:Greedy and

S2:Jobs at all. Essentially, the latter two strategies simply do not yield good payoffs for

agents under the D2:Stable method. S1:Greedy is too aggressive to receive enough tokens,

while S2:Jobs is too conservative to win over S3:Values and S4:Prices.
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Figure 4.8: Four-strategy equilibrium for D2:Stable. Starting with equal percentage of
agents playing each strategy, replicator dynamics quickly converge to a symmetric mixed
strategy Nash equilibrium of (0, 0, 0.3, 0.7), in which agents will play S3:Values with a
30% chance and S4:Prices with a 70% chance.

In Figure 4.9, I plot the time-based patterns for (0,0,3,7) as an example. S4:Prices tend

to win early (bid values match closely to average prices) while S3:Values win late. This

occurs because the bid values of early bids by S3:Values are too low—there are more

jobs to consider earlier than later. Both strategies are rather stable in terms of bid values,

resulting in a similar number of tokens received.

The results in this section show that a strategy that works in one situation may not per-

form at all in others. While S1:Greedy and S2:Jobs seem to co-exist when they are the only

available strategies, they are completely driven out when S3:Values and S4:Prices strate-
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Figure 4.9: Time-based patterns for profile (0,0,3,7) with D2:Stable.

gies are added to the mix. It is thus very important to compare strategies across different

workload settings when testing monetary policies.

4.6 Understanding the Effects of Distribution Methods

In this section, I evaluate the effects of distribution methods on individual agents. For

each method, how much currency does each agent receive? How much resource and value

are captured with different amounts of currency received?

My experiment is as follows. I run each distribution method against one pure strategy

profile (2,3,2,3) 10 for every workload. This is done 50 times to collect averages. As there

are 10 agents, the averages of the following are tracked for each agent in each workload: i)

10Using one specific profile is important to track individual agents properly. The profile (2,3,2,3) was
chosen for its balanced representations.
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the number of tokens received; ii) the amount of resource in terms of nodeslots won by the

agent, as a percentage of all nodeslots won; iii) the amount of value captured by the agent,

as a percentage of total value captured by all agents. F and M are fixed at 5 and @1,000,

respectively. For each distribution method, I plot two graphs that show how the amounts of

tokens received by agents affect (ii) and (iii) for all four workloads.
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Figure 4.10: D1:Uniform and pure strategy profile (2,3,2,3). Resource and value cap-
tured by the policy for each of the 10 agents, under each of the four workloads.

Figure 4.10 shows the results for the D1:Uniform method in the form of two graphs.

For the top graph, the x-axis represents the percentage of tokens an agent receives and

the y-axis represents the proportion of nodeslots won by the agent, as a percentage of all
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nodes won by all agents. For the bottom graph, the y-axis represents the proportion of value

captured by the agent. Results for all 4 workloads and a data point for each of the 10 agents

are plotted on the graphs.

Every agent receives the same amount of tokens (at 10% each) per the D1:Uniform

method, for all four workloads. The amount of nodeslots received by agents in all work-

loads varies between 7 to 15%, due to different strategies played.
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Figure 4.11: D2:Stable and pure strategy profile (2,3,2,3). Resource and value captured
by the policy for each of the 10 agents, under each of the four workloads.

Next, Figure 4.11 shows the results for the D2:Stable distribution method. Here, the

10 agents receive a wide range of tokens. However, there is no clear correlation between
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the number of tokens received vs. the amount of resource and value captured. This is be-

cause D2:Stable is strategy-oriented—it distributes currency in a way that depends on agent

strategies. For example, an S2:Jobs agent receives a good amount of tokens from using

D2:Stable, but always bids only a fraction of the received tokens.

Figure 4.12 shows the results for the D3:Active distribution method. First, note that

agents receive a wide range of tokens. This is due to the way that D3:Active distributes

tokens. For W2:Jobs and W3:Combo, half of the agents have more jobs and thus receive

a high number of tokens. Because jobs in W1:Common and W4:Patience share the same

distribution, the agents receive a similar amount of tokens at about 10%. D3:Active shows

that by giving agents more tokens in this particular way, they can receive proportionally

more nodeslots and value.

Finally, the results for D4:Urgent (Figure 4.13) are similar to those of D3:Active, except

the main workload of interest is W4:Patience. The other workloads have the same patience

distribution for all jobs, thus agents receive a similar amount of tokens. W4:Patience agents,

however, receive either a high or low number of tokens, depending on their type.

In summary, distribution methods that are workload dependent (i.e., D3:Active and

D4:Urgent) distributes more tokens to agents that are either more active or less patient.

These agents are able to leverage the extra tokens to capture more value and resources. A

distribution method that is strategy-oriented (i.e., S2:Stable), on the other hand, does not

necessarily give agents with extra tokens an edge to obtain more value or resource than

agents with fewer tokens.
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Figure 4.12: D3:Active and pure strategy profile (2,3,2,3). Resource and value captured
by the policy for each of the 10 agents, under each of the four workloads.

4.7 Understanding the Effects of Money Supply

In this section, I explore the two dimensions that affect money flow and money supply:

Distribution Interval F and Money Supply M .

4.7.1 Distribution Interval

To see the effects of the distribution interval policy dimension on the mixed strat-

egy Nash equilibrium and value efficiency, I start with the W1:Common workload and



Chapter 4: Virtual Currency Design 135

 0

 5

 10

 15

 20

 0  2  4  6  8  10  12  14

%
 A

m
on

g 
A

ll 
N

od
es

lo
ts

 W
on

% Tokens Received

D4:Urgent

W1:Common

W2:Jobs

W3:Combo

W4:Patience

 0

 5

 10

 15

 20

 0  2  4  6  8  10  12  14

%
 A

m
on

g 
A

ll 
V

al
ue

s 
W

on

% Tokens Received

W1:Common

W2:Jobs

W3:Combo

W4:Patience

Figure 4.13: D4:Urgent and pure strategy profile (2,3,2,3). Resource and value captured
by the policy for each of the 10 agents, under each of the four workloads.

D1:Uniform distribution method. Money supply is fixed at @1,000. By varying distribu-

tion interval F from 1 to 25, I calculate the mixed strategy Nash equilibria as shown in

Figure 4.14.

When F is at 1, agents receive tokens every time period. This favors S1:Greedy the

most because it bids the highest, and the policy keeps providing it with more tokens every

time period. This results in over 40% of S1:Greedy agent population in the mixed strategy

Nash equilibrium. S2:Values and S3:Prices agents round out the populations.

However, as F increases, the proportion of S1:Greedy agents decreases rapidly. This
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Figure 4.14: W1:Common and D1:Uniform. Distribution intervals and symmetric mixed
strategy Nash equilibrium.

is because these agents no longer have the advantage when the interval increases, because

they spend most of their tokens very quickly and in some cases go bankrupt. This zero-

sum effect leads to a gradual increase in the proportions of S2 and S3 agents in the mixed

strategy Nash equilibrium. For F > 15, the S1:Greedy strategy is completely driven out in

the equilibria.

For value efficiency (Figure 4.15), it increases gradually as F increases from 1 to 5.

As more S3:Values agents are represented at the mixed strategy Nash equilibrium, more

high value jobs will be counted towards value efficiency. The maximum value efficiency is

at 5, which matches the arrival rate of new jobs. For F > 5, the value efficiency starts to

drop. This is because more and more agents will be out of tokens and can no longer submit

bids, while a few have hardly any tokens left to compete meaningfully against agents that

play other more conservative strategies. Thus, as the distribution interval increases, there

are an increasing number of bids not submitted or lost, resulting in value not captured by
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the system 11.
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Figure 4.15: W1:Common and D1:Uniform. Distribution intervals and value efficiency.

Next, I repeat the experiment for W3:Combo and D3:Active workloads. Figures 4.16

and 4.17 show the results. For mixed strategy Nash equilibrium, notice that the only strate-

gies represented are S3:Values and S4:Prices. When F is low, there are more agents that

play S4:Prices. This is because when there are lots of tokens being distributed, S4:Prices

agents submit high bid values since all agent submits high bid values, making prices stay

high. However, as F increases, prices decrease as agents run out of tokens, making S4:Prices

less competitive than S3:Values, which is a relatively more conservative bidding strategy. In

terms of value efficiency, the high-level trends are similar to W1:Common/D1:Uniform—

efficiency increases and peaks at F = 5. Of course, the level of value efficiencies of all F

points are higher in this case, because D3:Active is able to capture many high value jobs

11There are however still agents, aside from those that play S1:Greedy strategy, that are able to win re-
sources with their extremely low bank balances.
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from the W3:Combo workload.
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Figure 4.16: W3:Common and D3:Active. Distribution intervals and symmetric mixed
strategy Nash equilibrium.
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Figure 4.17: W3:Combo and D3:Active. Distribution intervals and value efficiency.
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4.7.2 Money Supply

The level of money supply M has zero effect on the symmetric mixed strategy Nash

equilibrium and metrics that depend on true values in USD. The main reason is because

the “mixed currency basis” (see Section 4.3), in which the agents use USD for true values

and tokens for bid values. Specifically, all strategies discussed produce bid values based on

whatever amount of tokens each agent has. For example, if money supply is doubled, then

all bid values generated by every strategy will be simply doubled. This results in the same

outcomes for the system including equilibrium as well as metrics such as value efficiency.

The results would have been different for the “all virtual currency basis.” Consider an

agent with a job true value of @100. If the system distributes @50 to it, it can only bid

up to @50 and likely will lose to other agents with lower true values. This results in lower

total value captured (in tokens) by the system.

4.8 Understanding the Effects of Monetary Policy

In this last experimental section, I study how different monetary policies affect overall

value captured in equilibrium. I approach it by comparing results at equilibrium for each

workload against each of the four different monetary policies. Following the preceding

analysis, each policy is set with money supply M = @1, 000, distribution interval F = 5.

As there are four workloads and four distribution methods, the comparison includes a total

of sixteen sets of results. I first present the results specific to value efficiency, followed by

results for strategies. These are captured in the mixed strategy Nash equilibrium.
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WORKLOAD EFFICIENCY
POLICY

D1:Uniform D2:Stable D3:Active D4:Urgent

W1:Common

Maximum 86.71% 84.91% 86.4% 86.63%

Equilibrium 75.1% 70.7% 74.14% 74.87%

Minimum 57.2% 58.55% 57.88% 57.5%

W2:Jobs

Maximum 79.09% 78.82% 81.77% 78.58%

Equilibrium 77.78% 68.99% 81.77% 76.35%

Minimum 57.76% 58.08% 57.18% 57.76%

W3:Combo

Maximum 87.46% 87.04% 93.78% 87.96%

Equilibrium 82.63% 80.63% 90.44% 82.48%

Minimum 70.01% 68.02% 66.49% 64.75%

W4:Patience

Maximum 89.96% 91.06% 91.09% 95.91%

Equilibrium 81.55% 79.91% 82.72% 91.38%

Minimum 59.17% 67.33% 58.83% 65.00%

Table 4.5: Workload efficiency at equilibrium for different policies. Maximum and min-
imum pure strategy profile efficiencies are included for comparison. Highest equilibrium
efficiencies are in bold.

4.8.1 Effects on Value Efficiencies

To understand how policies affect overall value captured for a specific workload, I com-

pare the value efficiency achieved at equilibrium for each monetary policy. I follow the

equilibrium analysis steps to calculate the number. Additionally, I present the maximum

and minimum efficiencies captured by pure strategy profiles in the payoff matrix. Because



Chapter 4: Virtual Currency Design 141

the value efficiency at equilibrium is derived from the payoff matrix, these two efficien-

cies define the possible range for the value efficiency at equilibrium. A good policy for a

workload should produce value efficiency towards the maximum.

Table 4.5 summarizes the results. Each row represents one workload and each col-

umn represents one policy’s chosen distribution method. For example, the first cell is for

W1:Common and D1:Uniform. Each cell has the three efficiencies, maximum, equilibrium,

and minimum, arranged in descending order for comparison. For each workload (row), the

highest value efficiency is marked in bold. In the following, I review the results from the

perspectives of the workloads and policies.

Workload Perspective

First, there is no clear winning policy for the W1:Common workload. The value effi-

ciency at equilibrium is basically a tie for D1:Uniform, D2:Active, and D4:Urgent at nearly

75%. The reason that no policy stands out, or captures efficiency closer to the maximum, is

that every job shares the same value distribution of $[1:100]. A policy may distribute more

currency to an agent, but the values of its jobs are similar to those of the other agents. In ad-

dition, jobs are not differentiated in terms of job arrival rate or patience, and so D3:Active

and D4:Urgent distribute uniformly since the weight in both formulae is similar for all

agents. Thus, the two policies behave quite similarly to D1:Uniform for W1:Common

workload. This is indicated by the range of possible efficiencies, as the maximum and

minimum entries are virtually identical for all three policies.

Second, for W2:Jobs workloads, the best value efficiency improves slightly to over

80% by D3:Active. For agents of “high jobs” type, they receive more tokens to support



Chapter 4: Virtual Currency Design 142

bidding for resources. If they play strategies such as S3:Values, then those jobs with higher

values can have a higher chance of winning. Even though the value distribution is identical

across all agents, the extra currency provides a higher chance for some high value jobs to

contribute to the captured value.

Third, a clear winning policy can finally be found in workload W3:Combo. This is the

first workload with distinct value distributions among different agents. D3:Active captures

the highest value because it seeks out the agents with the most number of jobs, which

turn out to be the highest value jobs. Thus, even though values are private to the agent,

D3:Active is an example showing that a policy can capture high value if it targets the

workload variables that are correlated to value. This is further supported by the results of

the W4:Patience workload. Job values in this workload correlate to patience, which is the

deciding variable for the D4:Urgent policy.

Policy Perspective

From a policy perspective, the results show that D1:Uniform and D2:Stable are not

the most effective for any of the workloads. They fail because they do not affect how the

high value jobs are being allocated. Specifically, these policies fail to acknowledge the dif-

ferences among agents and are not good policies for the workloads, especially W3:Combo

and W4:Patience. Nonetheless, the results do not preclude the existence of some workload

that can benefit from either of these policies.

D2:Stable is special because it is designed to support certain types of agent strategies

more than the others. Specifically, its use of bid value standard deviation is targeted to

counter bids with wild ranges, such as those from S1:Greedy agents. However, it turns
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out that this creates limitations on the currency system. Those agents that receive the most

currency, such as S2:Jobs, also tend to bid very low. This indirectly creates a hoarding effect

as these agents continue to accumulate more currency than they can spend. This results in

having a Money supply that can run low at times, resulting in lost value not captured from

some jobs. Therefore, D2:Stable is an example that policies that target agent strategies may

not necessarily increase value.

D3:Active and D4:Urgent are the only policies that are clear-cut winners for at least

one workload. They capture 90.44% (standard error of 2.1%) and 91.38% (standard error of

1.97%) value efficiency, respectively, and beat the next best policy for the respective work-

load by 7 to 9%. The reason for their success is the ability to recognize and thus allocate

more currency to agents with high value jobs, through some value-correlated variable (e.g.,

job rate and patience). Thus, the success of any policy hinges on whether such a correlation

exists and whether or not the policy distributes with respect to the correlation. Of course,

these policies still do not always succeed in delivering the highest value, as the results are

workload driven. For example, D3:Active does not work well on D4:Urgent (shorter pa-

tience jobs have higher values), since the policy targets a variable (number of jobs) that in

this case does not correlate in value.

Finally, the value efficiencies achieved by some of the above policies are approaching

maximum efficiency. This indicates that the policies are highly effective for the types of

workloads and agent strategies involved.
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WORKLOAD
POLICY

D1:Uniform D2:Stable D3:Active D4:Urgent

W1:Common (0.18,0,0.45,0.37) (0,0,0.29,0.71) (0.2,0,0.43,0.37) (0.17,0,0.43,0.4)

W2:Jobs (0.06,0,0.94,0) (0,0,0.31,0.69) (0,0,1,0) (0.11,0,0.89,0)

W3:Combo (0.27,0,0.4,0.33) (0,0,0.28,0.72) (0,0,0.63,0.37) (0,0,0.59,0.41)

W4:Patience (0.28,0,0.44,0.28) (0,0,0.3,0.70) (0,0,0.58,0.42) (0,0,0.53,0.47)

Table 4.6: Symmetric mixed strategy Nash equilibrium profiles that correspond to the
“equilibrium” entries in Table 4.5. Profiles with highest value efficiencies for each workload
are in bold.

4.8.2 Effects on Strategies

Lastly, I look at the symmetric mixed strategy profiles in Nash equilibrium for each of

the workload and policy combinations from the same data set as before. Table 4.6 shows the

16 different profiles, each represented by a cell that corresponds to the same combination

in Table 4.5.

If a symmetric mixed strategy profile consists of non-zero proportions for all pure strate-

gies, then agents play all of these strategies at equilibrium based on the proportions. How-

ever, if a proportion is zero, then the respective pure strategy s will not be played by any

agent at equilibrium. This further implies that any pure strategy profile that includes s in

the payoff matrix will be driven out because of the selected policy.

For example, the S2:Jobs strategy is zero for every equilibrium. This means that pure

strategy profiles with non-zero number of S2 agents, such as (0,10,0,0), (1,2,3,4), and

(3,5,1,1), are driven out by all four policies for every workload. This is due to the fact

that S2 is too conservative for any agent to successfully compete for jobs against the other
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strategies.

In comparison, S1:Greedy strategy performs slightly better than S2:Jobs. Its aggressive

bidding strategy enables an agent to win some jobs, especially during distribution intervals.

Nonetheless, its presence is limited among the different mixed strategy equilibria, in which

the proportions of S1:Greedy agents are typically either 0% or around 20%.

The most well-represented strategies are S3:Values and S4:Prices. S3:Values in par-

ticular is included in all 16 profiles, as it is the only strategy that takes agent values into

account. As a result, the expected payoffs for this strategy are generally higher than those

of the other strategies. Higher expected payoffs attract more agents to adapt the strategy as

the system iterates over time towards a steady state.

4.8.3 Value Effects

In Table 4.7, I plot the corresponding pure strategy profile for the “maximum” value

efficiency entries in Table 4.5. For example, (0,0,10,0) pure strategy profile is the best for

W1:Common and D1:Uniform, in terms of capturing the most value. This profile is one

in which every agent plays S3:Values only. In fact, most of these maximum profiles are

weighted heavily or exclusively with S3:Values. The reason is that this is the only strategy

that correlates to an agent’s true value. Thus, high value jobs are represented by high value

bids, contributing to the value efficiency. Therefore, one can see the goal of monetary policy

as one of promoting the “value” strategy in equilibrium.
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WORKLOAD
POLICY

D1:Uniform D2:Stable D3:Active D4:Urgent

W1:Common (0,0,10,0) (0,0,10,0) (0,0,10,0) (0,0,10,0)

W2:Jobs (0,0,9,1) (0,0,10,0) (0,0,10,0) (0,0,10,0)

W3:Combo (0,0,8,2) (0,0,9,1) (0,1,8,1) (0,0,9,1)

W4:Patience (0,0,10,0) (1,0,8,1) (0,0,9,1) (0,0,10,0)

Table 4.7: Corresponding pure strategy profiles that generate the “maximum” entries in
Table 4.5. Profiles with highest value efficiencies for each workload are in bold.

4.9 Summary

In this chapter, I explored monetary policies. First, I provided a design space for creating

monetary policies by varying a set of policy dimensions. Second, I provided a model for

agents in terms of workloads and bidding strategies. Third, using the replicator dynamics

technique, I showed how to calculate a symmetric mixed strategy Nash equilibrium profile,

and value efficiency at equilibrium for different policy and workload settings.

The experiments showed that agents, in general, receive resources and capture value

proportional to how much currency they receive. For workloads with jobs that have gen-

erally higher true values, policies that distribute currency based on variables that correlate

to these true values can improve total value captured in the system. These policies also

achieve high value efficiencies, with some approaching the value captured by an offline al-

locator as well as by the maximum pure strategy profile efficiency. In general, policies that

award more currency to more active agents tend to do well. On the other hand, no policy

showed the ability to improve total value for workloads with common value distributions.
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In addition, absolute money supply level has no effect when agents value in USD but bid

in the virtual currency. However, the periods during which currency is distributed matter

significantly.

With the mixed currency basis, each agent has some set amount of virtual currency at

their disposal at any point in time. As a result, agents have budget constraints. This breaks

the no budget constraints assumption in Roller. However, Roller still contributes as the un-

derlying mechanism with its strategyproof properties. First of all, mitigating incentives to

mis-report nodeslots and departure are good for the system irrespective of virtual currency

and budget constraints. In terms of valuation, once an agent has decided that its true value

for some resources is some number of virtual currency (e.g., @5), then with strategyproof-

ness of Roller the agent can simply bid @5 and not other values. This provides stability to

the system.

The work in this chapter only covers the surface of understanding monetary policies.

The future challenge hinges on designing new types of policies that can capture value for

a wide variety of agent workloads and strategies. This requires more deployments of real

market-based systems in order to learn about different classes of workloads and strategies.

Further, it would be more realistic to use policies that are less static but more adaptive to

agent workloads during a run. Finally, studying the ability of agents to value resources in

virtual currency is critical and should be an ongoing activity.



Chapter 5

Related Work

5.1 Market-based Systems

For years, there has been a wide range of research on using market-based methods for

resource allocation in systems. A wide variety of market-based methods are discussed in

surveys [89, 33, 23]. Others have advocated use of markets compared with traditional re-

source allocation [90, 53]. The earliest work known is perhaps Harvard’s PDP-1 [94], a

futures market for CPU time. Subsequent work has been applied to a broad range of dis-

tributed systems including clusters [100, 29], data centers [27], computational Grids [104,

54], parallel computers [92], and Internet computing systems [60]. Many of these, such as

Mirage, use auctions to allocate resources. However, none addressed nor provided data on

strategic behaviors. A few classic systems are discussed further as follows.

Spawn [100] is a system for allocating dedicated CPU time for reservations. Workloads

are assumed to be tree-based, concurrent applications. These applications have funding

rates associated with different nodes of the tree which are used to purchase CPU resources
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for tasks associated with leaves beneath those nodes. CPU resources are purchased by par-

ticipating in Vickrey auctions for dedicated slices of CPU time which are held indepen-

dently by each node. There was no payment scheme that tied the auctions together. An-

other CPU time work is Stoica [92]. It uses a first price auction to allocate dedicated CPU

time for parallel jobs. Jobs are assigned saving accounts for purchasing CPU resources. A

centralized auction allocates CPU time on all processors.

In POPCORN [84], applications are decomposed into small Java programs that can

then be run on servers in a distributed system. Buyers submit requests along with their val-

ues to be matched with sellers via a centralized market. Three mechanisms in POPCORN

were tested, including a repeated Vickrey auction and two Double Auction variations. The

bidding language in POPCORN was not as expressive as that in Mirage. Mariposa [93]

is another system for distributed computing. It specifically enables a bidding platform for

self-interested servers to provide query optimizations.

Nimrod/G [25] is a system that allows agents to specify the types of resources needed

for a particular price. The diversity of resources is much richer than Mirage and the pro-

cess of acquiring resources was very complex, involving a chain of resource discovery

and negotiations. The complex nature of Grid resources is well-documented, as other work

such as MACE [23] begins exploring combinatorial exchange frameworks but did not have

empirical data. More traditional grid resource problems are covered in systems such as

Condor[61, 82] and G-Commerce [104].

Bellagio [19] is related to Mirage and targeted the PlanetLab [80] allocations. It in-

volves more extensive resource discovery services and focuses more on the servers, which

are contributed by the community as opposed to one organization in Mirage. SHARP [41]
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and Tycoon [54] are among other systems motivated by the dynamic PlanetLab problem.

Finally, there is work that focuses on other emerging aspects of distributed systems. For

example, Muse [27] is designed for Internet hosting centers and focuses on energy being

the main resources.

5.2 Online Mechanism Design

Mechanism design originates from traditional economics. Seminal work informs the

foundations of GVA auctions [98, 32, 42, 96]. It was later proposed for solving systems

problems [97]. Nisan and Ronan [73] proposed the study of algorithmic mechanism de-

sign, the search of computationally tractable mechanisms that have desirable properties

such as strategyproofness, within the computer science community. Feigenbaum et. al. [37]

extended the research agenda with a distributed direction, in which the mechanisms are im-

plemented across a network. There were economists that identified issues in traditional

mechanism design that are relevant for computer science [85].

In fact, there is a wide range of work on computational tractability that addresses some

of these issues [74, 106, 78]. This is especially important for multi-unit and combinato-

rial settings [51, 35, 67, 20, 83], with the most computational-intensive problems evolve

around combinatorial exchanges [62]. Aside from computation, there are other properties

of mechanism design that are restrictive in the real-world, such as the budget constraint

condition [22, 36].

Online mechanism design [77] extends mechanism design with dynamically arriving

and departing agents and resources, applicable to systems such as web access [40] and

advertising [34]. The earliest work was proposed by Lavi and Nisan [56]. Starting with a
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very simple, single-unit model, the work has gradually grown to include characterization

of truthful online mechanisms with expiring items [43, 44]. Another approach to online

mechanisms is the model-based framework [79, 26].

5.3 Virtual Currency

While many market-based systems have researched different resource allocation meth-

ods, many of these systems have mainly assumed the use of real currency (USD). For the

others that assume use of virtual currency, few have discussed in depth the supporting in-

frastructure or policies. Interestingly, the use of virtual currency is not a novel concept.

It was adopted by market-based systems as early as PDP-1 [94]. Other researchers have

created currencies for distributed systems such as network testbeds [41], peer-to-peer sys-

tems [99], and sensor networks [30]. There are also a few currency-like works that are

relevant. One prime example is Lottery Scheduling [101].

Virtual currency has been more popular in fields outside of market-based systems. Sec-

ond Life [12], an online virtual world where agents can create avatars, generates significant

revenue for its Linden Dollars. Users pay Second Life US dollars to exchange for Linden

Dollars in order to buy virtual land and to accessorize avatars. Online games such as World

of Warcraft [16] and social networks such as Facebook [5] also sell virtual currency for

real USD. Because it is very easy for a company such as Second Life to raise prices on

virtual goods and to increase money supply (in order to sell for more USD), these systems

often suffer hyperinflation and other economic issues [18]. Agents typically are prohibited

from exchanging virtual currencies among themselves, though there have been 3rd party

companies that enable such exchanges.
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In lottery scheduling [101], agents are issued tickets, an alternative form of virtual cur-

rency abstraction. The scheduler holds lotteries periodically and selects a winning agent

for the current resources. The more tickets an agent owns, the more chances he can win.

Tickets are thus similar to the shares in Mirage, as both yield proportional sharing effects.

However, agents have few options to acquire more resources. The only influence they can

have is to attempt to acquire more tickets, the process of which is not specified in the paper.

In addition, agents cannot express when they need resources more than other times. Specif-

ically, agent values are not expressed or captured in a lottery scheduler. Thus, low-value

jobs could easily win lotteries even during resource contention, hurting those who have

more important needs.

SHARP [41] is a distributed infrastructure supporting the “tickets” abstraction. It sup-

ports a wide variety of security and claims protocols. However, SHARP does not address

policies specifically. Others have built on top of SHARP to take advantage of its infras-

tructure. For example, Irwin et. al. [46] introduces a self-recharging virtual currency in

their Cereus system. Specifically, spent credits recharge back to an agent after a fixed in-

terval, known as the recharge time, from the time the agent submits a bid. The common

currency, called credits, enables agents to bid for resources. Agents do not earn credits,

but are assigned budgets of credits that can be spent. Periodically, the credits are automat-

ically replenished, returning an agent to its original budget. This differs from my design

as Cereus does not recycle credits among agents. Cereus is inspired by the “yen” currency

used in PDP-1 [94], which has a different recharging rule.

KARMA [99] is designed for peer-to-peer resource exchanges (e.g., file sharing). The

system includes a set of dynamic nodes, each of which was contributed by an agent and
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contains files of interest to others. Agents themselves are also the consumers. The unit of

virtual currency is the karma, a number that captures the amount of resources an agent

has contributed and consumed. A set of nodes called the bank-sets keep track of the vari-

ous karma numbers. When an agent contributes resources, his karma increases. Similarly,

his karma decreases when he consumes resources of others agents. No agent is allowed

to consume resources with negative karma, thus forcing everyone to contribute regularly.

Because agents and nodes come and go, the total number of karma in the system fluctuates

and requires constant rebalancing.

Kash et. al. [50] explored a heterogeneous population of agents in a closed currency

setting. To receive service from others, agents must earn scrips by providing services to

others. Each agent plays a threshold strategy in equilibrium: below the threshold, an agent

is motivated to volunteer to earn more scrips; above the threshold, the agent will not volun-

teer. The paper characterizes the distribution of money in equilibrium, as a function of the

fraction of agents of diverse types. The analysis demonstrates the possibility of a monetary

crash, in which too much monetary supply leads to no agent wanting to work.



Chapter 6

Conclusion

6.1 Summary

In this thesis, I addressed three critical areas for resource allocation in distributed sys-

tems. First, I presented the design and deployment of Mirage, a market-based resource

allocator for use by real agents. The resulting empirical data support using agent value as

a first-order decision variable, especially for resource contention. With expressive bids, the

system could offload decision making by having agents request resources across space and

time. In addition, agents exhibited several types of strategic behaviors, all of which justified

the need for designing auctions that mitigate such behaviors.

Second, I introduced online mechanism design for systems such as Mirage. Roller is

designed specifically to embrace selfish agents and has an emphasis on a responsive, on-

demand experience via the use of computationally tractable algorithms. It allocates com-

binatorial resources and is strategyproof with respect to value, space, and different aspects

of allocation timing depending on its configuration. This is accomplished through the use
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of carefully designed allocation and payment rules. I examined experimentally different

parameterizations to identify ways to balance system value with responsiveness as well as

to manage supply level. Empirical results demonstrate good value capture when compared

with an offline optimal allocator.

Lastly, I analyzed monetary policy of virtual currency through a three-component frame-

work: a design space for policies that consists of a set of dimensions; a model for agents

in terms of workloads and bidding strategies; and a way to identify equilibria for different

policy and workload settings using replicator dynamics. This framework enables compar-

isons among different policies and provides a first step for designing policies to address

agent behaviors. For example, distribution methods that prefer stability mitigate aggres-

sive bidding, while those that award active usage promote value-based bidding, and higher

allocative efficiency, in equilibrium.

My work in this thesis provides a small step towards the full realization of market-based

systems in the real-world. To design systems that provide a strategyproof experience and

configurable tools for managing policies is no simple task. There are many future tasks

ahead that require serious attention. I shall conclude this thesis with a few of these tasks.

6.2 Future Work

Open Empirical Data: The data collected from Mirage is valuable for further under-

standing the benefits and mechanics of market-based systems. However, this represents a

very small sample. The community must strive for creating a rich set of data and a rich

knowledge base for systems designers. A database that is open, updatable, and accessible

by any researchers, can help scale analysis and enable new designs. One approach is to
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gather sets of empirical data for major types of distributed systems. For example, how do

agents behave in a global file backup system where identities are anonymous compared

to a corporate computation system in which there is a hierarchy? With enough data and

knowledge in the long-run, the market-based systems community can look to create design

patterns to benefit future systems.

Online Mechanism Extensions: As Roller focuses on strategyproofness in a responsive

environment with agents arriving and departing, it sacrifices high system value. Further

exploration of how to capture more value by fine tuning the allocation rule is important.

Other approaches that are interesting to explore include alternative ways to sell resources.

For example, could “buy-it-now” pricing as seen on eBay [4] possibly benefit both agents

of low patience and the system? In addition, it will be important to relax the single-minded

assumption; e.g., to allow an agent to represent a group of collaborating researchers. De-

signing new online mechanisms that address advanced scenarios such as these are important

for real-world deployments.

Adaptive Policies: As new types of workloads and strategies are explored and stud-

ied, new types of policies must be designed. Ultimately, it is important for systems to

consistently identify different workload patterns. This helps administrators to select poli-

cies effectively. In the long-run, the goal should be to automate policy management with

learning-based services. These services can analyze workload changes dynamically and

adjust policies on the fly. Without such smart services, policy management can be too man-

ual and non-scalable as workloads become more complex. Market-based systems can be

enhanced with good automatic policy management to go with the simple, strategyproof

experience provided by online mechanisms.
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Open Mechanisms: In this thesis, each system is administrated by a single domain.

The systems are thus “closed” in the sense that each has its own set of agents, allocation

mechanism, and virtual currency. Agents of one system cannot access resources of another

system and vice versa. While this remains practical today, more and more systems are

looking to join forces for common benefits (e.g., cope with load spikes, cache data in Asia

from the East Coast). Some of these include PlanetLab [11] and ATLAS [3]. In such open

environments, however, strategyproofness cannot be maintained without new types of in-

frastructure support. Specifically, every domain must publish its own language, preference,

and statistics to allow agents of all domains to observe whether it is strategyproof [70].

This verifiable infrastructure will be key to scale the simple experience provided by strate-

gyproof mechanism to a global scale [49].

Exchangeable Virtual Currencies: Virtual currencies must be extended from address-

ing policies of one local domain to those of federated systems. How can agents acquire

resources with local virtual currencies across domains? One solution is to replace all with

a super-currency that every domain and agent will adopt. It is unclear, however, how local

domain policies can be maintained. Furthermore, having a central body to replace the ad-

ministrative bodies of every local domain seems unrealistic. An alternative is to consider

keeping one virtual currency per system and then find a way for them to be exchanged.

An agent in domain A can use resources in domain B if the two domains are federated

and agree on how exchange rates are established. Defining a method for establishing these

agreements and managing exchanges remains an important challenge [24].



Appendix A

Roller Proofs

A.1 Introduction

In this section, I provide proofs and discussions for several strategyproof properties

claimed in the Roller mechanism. A mechanism is strategyproof if truth telling by an

agent is a dominant strategy and maximizes its expected payoff, regardless of what the

other agents do. Because the bidding language of Roller includes several attributes, strate-

gyproofness must be shown for all attributes. The goal of Roller is to elicit truthful reports

of these attributes from agents, including value, resource size, and allocation timing.

The rest of the section is as follows:

• In Section A.2, I provide a short review of the allocation and payment rules.

• In Section A.3, I establish the conditions required for any mechanism to be consid-

ered strategyproof.

• In Section A.4, I prove that Roller is strategyproof using the standard allocation rule,
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with the assumption that agents do not mis-report departures.

• In Section A.5, I discuss the late allocation rule that address tradeoffs in regard to

mis-reports of allocation timing.

A.2 Allocation and Payment Rule

An agent submits bid bi to Roller, with bi = (wi, ni, si, ai, di). wi is the bid value for

getting nisi nodeslots (size), and the allocation of nodeslots must start between arrival ai

and departure di.

The basic allocation rule works as follows: In period t, of all the bids not yet allocated,

sort the bids in decreasing order of wi/nisi (breaking ties in favor of earlier arrivals). Work-

ing from the top of the list of bids and reviewing rolling window nodeslots starting from the

“leftmost” slots, if the nodeslots requested by a bid can be fulfilled by the current rolling

window then make an allocation.

The payment rule works as follows: compute the unit price to bidder i as the minimal

value v′i that the bidder could have stated and still received an allocation in some period of

the auction (with nothing else about its bid changed).

A ρ-late allocation rule is also defined, which extends the basic allocation rule to some-

times favor late allocations for a bidder, with late allocations preferred for a bid with uni-

form probability ρ ∈ (0, 1). Any agent that over-report its departure risks getting a late

allocation that results in zero value capture.

The basic allocation rule tries to allocate a bid as close to the “left” side (earlier times)

of the rolling window as possible. The ρ-late allocation rule does the opposite and, with
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probability ρ, tries to allocate a bid as close to the “right” side of the rolling window as

possible.

A.3 Establishing Strategyproofness

The proof method I use is the monotonicity method [77].

Definition 1 (Type Domination). We say type θi = (wi, ni, si, ai, di) dominates type θj =

(wj, nj, sj, aj, dj), denoted by θi � θj , if wi > wj , ni ≤ nj , si ≤ sj , ai ≤ aj , and di ≥ dj .

We say θi is of stronger type whereas θj is of weaker type.

In words, a strong type θi has higher value (wi), fewer or equal nodeslots (ni, si), and

higher or equal patience (early arrival ai and/or later departure di) than a weaker type θj .

Holding everything else the same (e.g., ni = nj, ..., di = dj), a bid with higher value is of

stronger type than one with lower value (i.e., willing to pay more for the same resources).

Similarly, a bid with the same value and patience but seeking fewer nodeslots is of stronger

type (i.e., paying the same for fewer resources). Finally, a bid with the same value and

nodeslot size but higher patience is of stronger type (more patient/flexible in terms of allo-

cation timing and hence the allocation decision than the weaker type).

Let f(θi, θ−i) ∈ {0, 1} denotes whether or not agent i is allocated by allocation rule f ,

where θ−i = (θ1, ..., θi−1, θi+1, ..., θm) and m is the number of agents.

Definition 2 (Monotonicity). An allocation rule f is monotonic if for every agent i, every

θi � θ′i, and every θ−i, f(θi, θ−i) ≥ f(θ′i, θ−i).

In words, if a weaker type is allocated, a stronger type will also get allocated (e.g.,

f(θj) = 1 ⇒ f(θi) = 1 if θi � θj). If a weaker type is not allocated, a stronger type may
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or may not be allocated.

Assume that agents do not mis-report early arrival or late departure, the strategyproof

condition is established as follows:

Theorem 1. [Strategyproof Condition] Let f be an allocation rule of a mechanism. There

is a payment rule p such that the mechanism (f , p) is strategyproof if and only if allocation

rule f is monotonic.

This theorem is provided by Hajiaghayi et. al. (Theorem 6 in [43]). Note that the pay-

ment rule specified in that paper is equivalent to the following representation of the Roller

payment rule:

pi(θ) = min{ŵi : fi((ŵi, ni, si, ai, di), θ−i) = 1}, if fi(θ) = 1, and pi(θ) = 0 otherwise.

(A.1)

The reason Roller uses such a payment rule is to mitigate strategic behaviors that span

across auctions. For example, if the first auction has a single bid of @10 and the following

auction also has a single bid of @5, then an agent with a bid value of @20 would win in

either auction. However, under a simple second-price rule it would be better off joining

only the second auction, and hiding from the first. By guaranteeing that the agent will pay

the lowest possible price of @5, as is achieved with the Roller payment rule, the agent can

instead submit its bid during the first auction.

Because Roller always calculate the lowest possible payment for a winning agent, to

show that Roller is strategyproof, all we need to do is to show that the allocation rule is

monotonic per Theorem 1. I will show this for both basic and ρ-late allocation rules in the

following sections.
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A.4 Roller With No Late Departure

In this section, I prove that the basic allocation rule is strategyproof by showing that

it is monotonic. Here, I preclude the ρ-late allocation rule, which will be discussed in the

next section.

Theorem 2. The basic allocation rule is monotonic.

Proof. Let θi = (wi, ni, si, ai, di) and θ′i = (w′
i, n

′
i, s

′
i, a

′
i, d

′
i) be two types and θi � θ′i.

If the basic allocation rule is monotonic, then whenever θ′i is allocated, θi must be allo-

cated as well. I will show this by reviewing each of the type elements individually (while

keeping other elements equal between the two types in each case). Note that the proof also

generalizes to changing multiple type elements simultaneously.

• wi > w′
i: the allocation rule sorts based on vi = wi/(nisi) and v′i = w′

i/(n
′
is
′
i). Thus,

θi will be ranked higher than θ′i, which means if θ′i is allocated in period t, then θi

must also be allocated at least in period t, since if still unallocated in t then competing

bids are unchanged from θ′i and so θi will now be allocated.

• ni < n′
i: since ni is smaller, θi will be ranked higher than θ′i. Thus, if space is available

for n′
i (i.e., θ′i is allocated) in period t, then θi will be allocated at least in period t,

since if still unallocated in t then competing bids are unchanged from θ′i and so θi

will now be allocated.

• si < s′i: because smaller si has the same effect as ni in terms of higher ranking of θi,

this too will lead to θi being allocated at least in period t in which θ′i is allocated.
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• ai < a′i: θi will be allocated at least in period t in which θ′i is allocated, or earlier. This

is because ai and a′i have no effect on the decision in any given period. In particular,

if bid θi is still unallocated by period t, then competing bids are unchanged from θ′i

and so θi will now be allocated.

• di > d′i: θi will be allocated in exactly the same period t as θ′i, because neither di nor

d′i are used in the allocation decision.

A.5 Roller With Possible Late Departures

With the ρ-late allocation rule, there are two cases to evaluate the strategyproof property

with respect to departure d. The first case, denoted as “case ρ” is if the bid of an agent is

selected to be allocated late. The second case, denoted as “case 1− ρ” is if the bid is not to

be allocated late, and proceeds exactly as above.

For “case ρ,” when a bid is allocated “late,” need to prove the following condition to

show monotonicity:

f(θi = (wi, ni, si, ai, di) = 1⇒ f(θ′i = (w′
i, n

′
i, s

′
i, a

′
i, d

′
i)) = 1 for θ′i � θi

Proof. Consider d′i > di and all other elements are the same (i.e., ai = a′i, etc.). If there is

capacity available between t and di, in the period t when Roller decides to allocate θi, then

there must be capacity available between t and d′i, and note that Roller will still decide to

allocate θ′i in the same period, t, because the reported departure does not affect the decision

to make an allocation since it does not affect the ranking of a bid.
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The proof also generalizes to changing multiple type elements simultaneously. For

“case 1 − ρ,” Theorem 1 holds when agents cannot over-report departure. More gener-

ally, strategyproofness also holds for mis-reports of early arrival under the basic allocation

rule, because an allocation before true arrival yields zero value for agents despite lower

payments.

By switching to ρ-late allocation, strategyproofness with regard to early arrival is traded

with robustness in regard to late departure mis-reports. In the extreme case of ρ = 1, it is

the case that Roller becomes fully strategyproof with regard to late departure mis-reports

by the analysis in Hajiaghayi et. al. [43].
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Replicator Dynamics

In this appendix, I will show the steps involved with Replicator Dynamics in order to

find a symmetric mixed strategy Nash equilibrium (NE). This discussion is based on the

Wellman et. al. [103] paper.

B.1 Basics

Denote the number of players by N and the strategy set consisting of M pure strategies

by:

S = {a, b, c, ..., z}

.

A pure strategy profile r = {na, nb, nc, ..., nz} captures the number of agents playing

each pure strategy. For example r = (1, 2, 1) or r = (4, 0, 0) for N = 4, M = 3, and

S = {a, b, c}.
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B.2 Computing Payoff Matrix

The payoff matrix u shows the average payoffs for each strategy of every pure strategy

profiles. An average payoff is the percentage of value captured among all jobs by agents.

Table B.1 shows an example partial payoff matrix (listed with only 3 pure strategy profiles):

na nb nc Payoffs

1 2 1 (50, 70, 40)

0 2 2 (-, 30, 60)

4 0 0 (80, -, -)

Table B.1: Example of a payoff matrix.

The first row represents the strategy profile r = {1, 2, 1}, where 1, 2, 1 agents play

strategy a, b, c and on average receive payoffs of 50, 70, 40, respectively. When no agent

plays a certain strategy, the payoff will be indicated by “-.”

B.3 Strategy Populations

Denote the proportion of population that pure strategy a is played in time t by pt(a).

The sum of these proportions among all strategies is 1. To start calculating equilibrium,

these proportions for every pure strategy at time 0 are initialized to be of equal amounts:

p0(a) = 1/|S|,∀a ∈ S

With the above example, |S| = 3 and so p0(a) = 1/3,∀a ∈ S.



Appendix B: Replicator Dynamics 167

B.4 Iterations

Once initialized, these proportions will be iterated over time t for calculating each pt(a):

pt(a) =
qt(a)∑

a∈S qt(a)

Note that
∑

pt(a),∀a ∈ S will equal to 1. Next, qt(a) is defined as follows:

qt(a) = pt−1(a) · (EP t−1
a −W )

where W is the minimal payoff value in the payoff matrix and EP t−1
a is the expected

payoff for strategy a ∈ S:

EP t−1
a =

∑
(r,∀na(r)>0) Prt−1(r) · u(a|r)∑

(r,∀na(r)>0) Prt−1(r)

u(a|r) is the payoff to a player with pure strategy a given pure strategy profile r.

Finally, Prt−1(r) is the probability of pure strategy profile r in iteration t− 1:

Prt−1(r) =
N !

na · nb! · ... · nc

! · [pt−1(s1)]
na(r)

B.5 Finding and Verifying Equilibrium

If t is iterated long enough, the probabilities pt(a) should all become stable, i.e., their

individual values do not change for further iterations. This fixed point is a possible equilib-

rium. Next, we must check the the equilibrium is indeed a true equilibrium. To do this, we

check two conditions. Denote the equilibrium iteration by t∗ and the equilibrium strategy

profile by p∗:
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1. EP t∗
a = EP t∗

b = ... = EP t∗
z ,∀a ∈ p∗

2. EP t∗
a > EP t∗

α ,∀a ∈ p∗,∀b /∈ p∗

Condition 1 states that all pure strategies that are represented in the support of the

equilibrium mixed strategy profile p∗ must have the same expected payoff value. Condition

2 states that the expected payoff value must be strictly greater than the expected values of

all other pure strategies not played in the equilibrium strategy profile. For example, if the

mixed strategy profile p∗ = (0, 0.5, 0.5), then it must be true that EP t∗

b = EP t∗
c > EP t∗

a .
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