
Essays on Mobile Advertising
and Commerce

A dissertation presented

by

David Yu-Chung Chen

to

The Committee for the Ph.D. in Science, Technology and Management

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

in the subject of

Science, Technology and Management

Harvard University

Cambridge, Massachusetts

May 2009



c© 2009 – David Yu-Chung Chen

All rights reserved.



Professor David C. Parkes David Yu-Chung Chen

Professor Peter A. Coles Ph.D. candidate

Dissertation advisors

Professor Benjamin G. Edelman

Committee member

Essays on Mobile Advertising

and Commerce

Abstract

The mobile industry holds the promise of increasing connectivity, productivity, and

entertainment as mobile devices become ever more ubiquitous and powerful. Many of

the market structures that enable mobile commerce are still under rapid development

and afford us opportunities to ask new questions about market design. This thesis

examines three such markets and mechanisms that drive advertising platforms and

application stores for mobile commerce.

In the first essay, I analyze a mobile web advertising auction that employs a propor-

tional allocation rule in which advertisements are shown with frequencies proportional

to the bids. Proportional allocation is used to address the space constraints of the

mobile environment and the accompanying ad fatigue. I show that the second-price
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rule currently used in real-world auctions admits no pure-strategy Nash equilibrium.

I propose the use of a first-price rule and prove the existence of a unique pure-strategy

Nash equilibrium. This reverses the sponsored search result in which the second-price

auction has pure-strategy Nash equilibria while the first-price auction does not. I also

show that by tuning a single parameter in the allocation rule, the auctioneer can make

trade-offs between revenue and efficiency.

In the second essay, I examine an optimize-and-dispatch scheme for delivering

pay-per-impression advertisements in online and mobile advertising. Using traffic

predictions based on historical traffic patterns, the platform provider seeks to allocate

future inventory to advertisers such that commitments are fulfilled in expectation,

and no single advertiser bears too much of the burden if actual traffic diverges from

predicted traffic. I propose a maximum entropy approach and provide theoretical

analysis and simulation to show how it accomplishes these goals.

In the final essay, I analyze the market used in mobile device application stores

that enable the widespread distribution of third-party software. I characterize the

conditions under which an application store seeking to maximize revenue should rank

applications based on revenue versus download volume. I also present empirical data

from the Apple iPhone App Store to illustrate some of the general features of this

type of market.
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Chapter 1

Proportional Allocation Share

Auctions

I analyze a mobile web advertising auction that employs a proportional alloca-

tion rule in which advertisements are shown with frequencies proportional to the

bids. Proportional allocation is used to address the space constraints of the mobile

environment and the accompanying ad fatigue.

I show that the second-price rule currently used in real-world auctions admits

no pure-strategy Nash equilibrium. I propose the use of the first-price proportional

allocation auction (FPP), and show the existence of a unique pure-strategy Nash equi-

librium in a one-shot complete information game. In a dynamic game of incomplete

information, I demonstrate in simulation that bids converge to this Nash equilibrium

quickly. This reverses the sponsored search result in which the second-price auction

has pure-strategy Nash equilibria while the first-price auction does not.

I also show that by tuning a single parameter in the FPP allocation rule, the
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auctioneer can make trade-offs between revenue and efficiency.

1.1 Introduction

Like their counterparts in the online world, many mobile web companies depend on

advertising as a major source of revenue. A number of established players like Google

and Yahoo, along with upstarts such as AdMob or Quattro Wireless, have begun

acting as advertising intermediaries, connecting advertisers with mobile websites. Due

to the highly-constrained environment, most mobile websites choose to only display a

single advertisement on each page. The Generalized Second-Price slot auction (GSP),

which has emerged as the standard auction for selling advertising in the online world,

does not necessarily translate naturally into the mobile setting where there is only

one slot for sale.

GSP maximizes expected revenue to the advertising platform and prices with a

second-price rule. Research on sponsored search auctions1 has uncovered a number of

factors that influence expected revenue, including budget constraints (Abrams et al.

(2007), Feldman et al. (2007)), the need for exploration and exploitation (Gonen

and Pavlov (2007), Pandey and Olston (2006)), and ad fatigue (Abrams and Vee

(2007)). While all these factors remain important in mobile web advertising, the

issue of ad fatigue is especially relevant for a number of reasons. First, users can

quickly tire of seeing the same ads if there is only one slot per page. Fatigue can be

a concern of similar severity with online contextual ads (e.g. Google AdSense), but

another characteristic of the mobile ad environment is that contextual matching is

1For a good overview of results from the sponsored search literature, see Lahaie et al. (2007).
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difficult due to the fact that mobile webpages are on average shorter than their online

counterparts. Addressing ad fatigue as a first-order concern helps protect against

imprecise contextual matching.

In practice, mobile advertising platforms have approached this new setting by

using a proportional share scheme, where bidders receive a share of the impressions

proportional to their bid. The share is a fractional allocation representing the prob-

ability that a particular ad will be shown when mobile web surfers arrive at the

webpage. Of course, only one ad is actually shown for any given pageview, but over

longer periods, the fraction of time that a particular ad is shown converges to the

bidder’s allocated share.

Real-world auctions have generally used a second-price rule, but I show in this

paper that there are no pure-strategy Nash equilibria with the second-price rule. I

propose the use of the first-price proportional allocation auction (FPP) and prove that

there is a unique pure-strategy Nash equilibrium in a one-shot complete information

game. In a dynamic game of incomplete information, I show in simulation that bids

converge to this Nash equilibrium quickly. Note that this result is the opposite of the

sponsored search result where GSP has Nash equilibria and the first-price auction has

bidding cycles (Edelman and Ostrovsky (2007)). I will consider this further in the

Discussion (Section 1.6).

I also show that by tuning a single parameter in the FPP allocation rule, the

auctioneer can make trade-offs between revenue and efficiency. I compare FPP with

the maximally-efficient Vickrey-Clarke-Groves (VCG) auction, and find in simulation

that FPP efficiency is quite efficient relative to VCG. In addition, the FPP allocation
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rule has the benefit of being transparent to the bidder, whereas the VCG allocation

rule can be critiqued for being difficult for bidders to understand.

1.1.1 Related Literature: Proportional Share Mechanisms

Kelly (1997) considers the use of markets to address the problem of network

congestion. In particular, network users bid on resources in a mechanism where each

bid represents a users’s willingness to pay for total network usage. The link manager

computes a clearing price so that every user pays the same unit price, which has the

effect of allocating resources in proportion to bids. For example, suppose that 2 users

submit bids of 2 and 3, and the link has capacity 20. The link manager computes

a per unit price of (2 + 3)/20 = 0.25, implying that bidder 1 receives 2/0.25 = 8 in

capacity and bidder 2 receives 3/0.25 = 12 in capacity. Note that the allocations of

8 and 12 are proportional to the original bids 2 and 3.

Kelly proves that when bidders are price-takers with strictly concave, increasing

utility, there exists a competitive equilibrium (Mas-Colell et al. (1995)) where bidders

maximize their payoffs and the network sets a market-clearing per-unit price. He also

shows that the resulting allocation maximizes aggregate user utility. Note that the

auctioneer does not price differentiate as per-unit prices are uniform across bidders.

Non-price-discrimination results in “aggregate feedback,” which is considered a fea-

ture in the context of communication networks, as it allows for scalability (Shenker

(1990)). Kelly’s non-game-theoretic model differs fundamentally from my first-price

proportional share auction in that my auction price differentiates and my bidders are

strategic. The concept of competitive equilibrium does not apply in my setting since
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competitive equilibrium requires a market-clearing price and my bidders pay different

prices.

Kelly’s work is the basis of much further research in proportional allocation mech-

anisms, most notably Johari and Tsitsiklis (2004), Johari and Tsitsiklis (2007), and

Sanghavi and Hajek (2004). In Johari and Tsitsiklis (2004), the authors relax Kelly’s

assumption that bidders are price-takers, and allow bidders to anticipate their effect

on the price set by the network. They find that aggregate utility at the Nash equi-

librium is no worse than 75% of the maximal aggregate utility. Note that their work

still requires one network-wide unit price for all bidders, resulting in a different Nash

equilibrium from the one I find in FPP.

In Johari and Tsitsiklis (2007), the authors further relax the single price assump-

tion and consider “scalar-parametrized” mechanisms, which restrict users to one-

dimensional bids. This class of mechanisms includes the proportional share allocation

auctions I study. They present the VCG mechanism applied to this setting, verifying

that full efficiency is achievable at Nash equilibrium. I will show in Section 1.5.1 that

FPP is quite efficient relative to VCG.

1.2 First-Price Rule

In this section, I present a complete information model of FPP, following the

sponsored search literature (Edelman et al. (2007)). I assume that all bidder values

are common knowledge since over time, advertisers can learn each others’ values by

experimenting with their bids.

I find an upper bound on bids in equilibrium as a function of bidder value by
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analyzing what a utility-maximizing bidder would do in equilibrium. This upper

bound represents the minimum amount by which any bidder will shade his bid; such

shading is expected in any first-price auction.

Next I prove the existence of exactly one unique pure-strategy Nash equilibrium

and provide a closed-form representation of a symmetric Nash equilibrium for the

case when all bidders have the same value. Bids in this symmetric Nash equilibrium

become arbitrarily close to the previously calculated upper bound as the number of

bidders increases. Analytically computing the Nash equilibrium with arbitrary bidder

values appears to be challenging, but simulations show that Nash equilibria in the

general case are quite close to the the symmetric Nash equilibrium.

1.2.1 First-Price Model

There are N bidders in a one-shot, private value, complete information auction.

Bidder i has value vi per click and submits a positive bid per click bi. Bidder i’s

allocation is proportional to his bid:

xi(bi) =
bαi∑
j b

α
j

=
bαi

bαi + b−i

where α > 0, and b−i =
∑
j 6=i

bαj is the sum of all other bidders’ bids (after taking the

bids to the power α). xi(bi) represents the proportion of the total impressions given

to to bidder i. It is easy to verify that
∑

i xi(bi) = 1, meaning that all impressions

are allocated.

I am interested in bidder clickthrough rate (CTR) since bidder utility is a function

of CTR. I model bidder i’s CTR by multiplying xi(bi) by qi ∈ [0, 1], which is bidder i’s

quality score. The CTR can be interpreted as the probability of a click given a quality
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of 1. In Section 1.4, I also allow for CTRs to vary based on ad fatigue, meaning that

bidders with higher share allocations will have lower CTRs, all else equal.

In practice, for α > 1, I add the restriction bi > 1 to maintain the interpretation

that using a higher exponent α is meant to weight greater bids more heavily. I will

refer to the case of α = 1 as linear proportional allocation and α = 2 as squared

proportional allocation. Note that α need not be an integer.

Consider a first-price rule where bidder i’s per-click price is his bid: pi(bi) = bi.

I assume that utility is quasi-linear:

utility = CTR ∗ (value− price)

ui(bi) = [xi(bi)qi](vi − pi(bi))

=
bαi

bαi + b−i
qi(vi − bi)

1.2.2 Best Response Strategies, First-Price Rule

In this section, I establish some general observations about how bidders will bid

in equilibrium in FPP.

Bidder i picks bid bi to maximize utility ui, so the first-order necessary condition

for a maximizing interior solution gives the best response correspondence:

∂ui
∂bi

=
qib

α−1
i

(
−bα+1

i − b−i(α + 1)bi + b−iαvi
)

(bαi + b−i)2
= 0

⇔ −bα+1
i − b−i(α + 1)bi + b−iαvi = 0 (1.1)

Note that in Equation 1.1, qi drops out completely, so the bidder’s best response is

not dependent on his ad’s quality.
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In the following lemma, I show that the best response correspondence is in fact

a best response function; that is, Equation 1.1 has exactly one root in the relevant

range [0, vi]. I am only interested in the range [0, vi] since this is a first-price auction

in which bids above vi yield negative utility and bids below 0 yield no allocation.

Lemma 1. For bidder i, given any vector of others’ bids b−i, where

b−i = (b1, . . . , bi−1, bi+1, . . . , bN), there exists exactly one best-responding bid b∗i in

[0, vi].

Proof. I am interested in showing that ∂ui/∂bi has exactly one root in [0, vi]. Let

g(bi) = −bα+1
i − b−i(α+ 1)bi + b−iαvi. Then, ∂ui/∂bi will have a root wherever g has

a root unless the denominator (bαi + b−i)
2 is 0.

I now show that g has exactly one root in [0, vi]. By the Descartes Sign Rule,

the maximum possible number of positive real roots of a polynomial is equal to the

number of sign changes starting from the sign of the coefficient of the highest power

and proceeding to the lowest power.

In this case, g has one sign change, so it has a maximum of 1 possible positive

root. Thus, ∂ui/∂bi also has a maximum of 1 possible positive root. Next, I show

that ∂ui/∂bi always has at least 1 positive root.

For any small positive ε, ∂ui
∂bi

∣∣∣
bi=ε

> 0. This is because the expression is dominated

by the positive b−iαvi term while the negative terms all include the small bi. Note

that I cannot simply evaluate ∂ui
∂bi

∣∣∣
bi=0

since ∂ui
∂bi

has a hole at bi = 0.

Next, I find that

∂ui
∂bi

∣∣∣∣
bi=vi

= −
qiv

α−1
i

(
vα+1
i + b−i(α + 1)vi

)
(vαi + b−i)2

< 0
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since every term is positive.

∂ui/∂bi is a rational function (the ratio of two polynomial functions) and is thus

continuous at each point in its domain. Since the sign of ∂ui/∂bi switches as bi goes

from small ε to vi, the intermediate value theorem implies that there must be at least

one positive root. Combining this fact with the observation from Descartes’ Sign Rule

that ∂ui/∂bi has at most 1 positive root, I conclude that ∂ui/∂bi must have exactly

1 positive root, and thus there is exactly one root in [0, vi].

By the following theorem, I establish that any best-responding bid is in the interval(
0,

α

α + 1
vi

)
.

Theorem 1.2.1. In the FPP auction, a utility-maximizing bidder i will always pick

bid bi > 0 such that

bi <
α

α + 1
vi

for any α > 0 and for any b−i > 0. Bidder i will shade down his bid from true value

vi by a factor of
α

α + 1
or more regardless of the other bids.

Proof. Equation 1.1 is a polynomial in bi of degree (α + 1), so it can only be solved

explicitly for small integral values of α. However, with some rearranging I arrive at

the result. I rewrite Equation 1.1 as:

−bα+1
i − b−i[(α + 1)bi − αvi] = 0 (1.2)

Since −bα+1
i < 0 and −b−i < 0, the only way (1.2) can be feasible is if the expression

in brackets is negative, namely:

(α + 1)bi − αvi < 0

⇔ bi <
α

α + 1
vi

9



An implication of this theorem is that as α increases, the upper bound to each

bidder’s best response increases. Intuitively, larger values of α increase the marginal

value of submitting a higher bid since a higher bid receives an even larger allocation

with a higher α.

To graphically illustrate this theorem, I explicitly solve for bi in (1.1) for small

integral values of α. For example, if α = 1, the quadratic formula yields one positive

solution:

bi = −b−i +
√
b2−i + vib−i

If α = 2, the cubic formula yields one positive solution:

bi = (b−ivi +
√
b3−i + v2

i b
2
−i)

1
3 − (−b−ivi +

√
b3−i + v2

i b
2
−i)

1
3

In Figure 1.1, I show the bidder’s optimal bid as a function of the sum of the

other exponentiated bids for the case when bidder value vi is 6. I examine exponents

α of 1 (linear proportional allocation) and 2 (squared proportional allocation). From

the graph, for α = 1, bidder i’s optimal bid approaches the asymptote
1

2
vi = 3 from

below and for α = 2, the optimal bid approaches the asymptote
2

3
vi = 4. There are

no values of b−i for which the bidder will ever bid above
α

α + 1
vi. Re-stated, this

means that with α = 1, no bidder will ever bid greater than half his value and with

α = 2, no bidder will ever bid greater than two-thirds his value.

In Figure 1.2, I examine the optimal bid for the case of α = 1, varying vi and

b−i. The level curve that is found by intersecting the graph in Figure 1.2 with the

plane vi = 6 corresponds exactly with the dotted line for α = 1 in Figure 1.1. The

10



0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5

3

3.5

4

b
−i

O
pt

im
al

 b
id

 b
i

v
i
=6

 

 

α=1

α=2

Figure 1.1: As b−i increases, the optimal bid for bidder i approaches 1
2
vi for α = 1,

and 2
3
vi for α = 2.

analogous graph for α = 2 is similar in shape to Figure 1.2, and approaches the

higher asymptote of
2

3
vi. For large B, observe that the level curve that is found by

intersecting the graph with the plane b−i = B approaches the line bi =
1

2
vi.

In simulation, I have found that the
α

α + 1
vi asymptote is reached very quickly

with as few as 5 competing bidders with comparable values. As the exponent α

increases, the shading factor
α

α + 1
becomes arbitrarily close to 1, meaning that with

a high exponent, bidders are effectively incented to bid their true values. Of course,

this is unlikely to be desirable because large exponents tend to heavily favor higher

bidders, effectively cutting out lower bidders.
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Figure 1.2: For α = 1, as b−i increases, the optimal bid for bidder i approaches 1
2
vi.

1.2.3 Nash Equilibrium, First-Price

I begin this section by proving the existence of a unique Nash equilibrium and

then giving a closed-form description of the Nash equilibrium in which all bidders

have the same value.

After that, I will show two results about strategies in the Nash equilibrium. First,

bids are ordered by value, i.e., bidders with higher value bid higher. Second, if I

denote the ratio of bid to value as the shading factor, I find that shading factors

are in reverse order from value, i.e. bidders with higher value shade more.

Theorem 1.2.2. For all vi, there exists one unique pure-strategy Nash equilibrium
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in the FPP auction if a minimum bid is enforced of no more than M for all i, where

M =
(N − 1)αvi

(N − 1)α +N

Proof. I begin by applying Brouwer’s fixed point theorem to show the existence of

a pure-strategy Nash equilibrium. Brouwer’s fixed point theorem is valid because I

showed in Lemma 1 that a bidder’s best response is always a single point rather than

a set of points.

Until now, I have referred loosely to the “best response function” as the solution

in bi to

−bα+1
i − b−i(α + 1)bi + b−iαvi = 0

I will now refer to this as the individual best response function and to the N -tuple

consisting of N individual best response functions as the best response function.

Brouwer’s fixed point theorem states that every continuous function from the

closed unit ball DN to itself has at least one fixed point.

For this proof, I assume that in practice there is a fixed minimum bid m (for

example, one cent). I will show that as long as m is reasonably small (less than vi/3),

there will be one unique Nash equilibrium.

I need to show that the best response function maps from the space R = [m, v1]×

. . .× [m, vN ] to itself and is continuous. I prove these 2 properties in the following 2

lemmas.

Lemma 2. The best response function maps from the space R = [m, v1]×. . .×[m, vN ]

to itself.

Proof. The minimum bid is m by assumption, and the maximum bid for bidder i is vi
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in order to yield non-negative utility; thus, the domain the of best response function

is R. I need to show that the image of the best response function is a subset of R.

The vi upper bound of the interval follows from Theorem 1.2.1 since every bidder i

will always bid below α
α+1

vi, which is less than vi for any α > 0.

Now I suppose that every bidder bids the minimum m and I characterize the

conditions under which best responses will be at least m. If all bidders bid the

minimum m, then for any bidder i, b−i =
∑

j 6=im
α = (N − 1)mα. Bidder i’s best

response is the solution in bi to ∂ui/∂bi = 0, which simplifies in this case to the

following:

−bα+1
i + (N − 1)mα[−(α + 1)bi + αvi] = 0 (1.3)

By Lemma 1, ∂ui/∂bi has exactly one root in [0, vi]. To the left of this root,

∂ui/∂bi > 0 since the root represents the point of maximum utility. This means

that if I substitute m for bi in ∂ui/∂bi and find that the expression is at least 0, it

must be the case that the best response is at least m:

−mα+1 + (N − 1)mα[−(α + 1)m+ αvi] ≥ 0

⇔ −m+ (N − 1)[−(α + 1)m+ αvi] ≥ 0

⇔ m ≤ (N−1)αvi
(N−1)α+N

= M (1.4)

Expression 1.4 establishes that as long as the minimum bid is less than or equal

to M , the best response function will map each bidder’s initial minimum bid to a

higher bid, falling in the set R.

In practice, N is always at least 2 (since there are at least 2 bidders in the auction)
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and α is at least 1, so (1.4) becomes

m ≤ vi
3

Larger values of N and α allow the use of even higher minimum bids.

Next, I show that the best response function is increasing in b−i; this means that

since I have established that the best response to minimum bidding is at least the

minimum bid, best responses will always be at least the minimum bid.

Consider how bidder i would best-respond given two different vectors of others’

bids, b−i and c−i such that b−i = c−i + ε where b−i =
∑

j∈b−i
bαj and c−i is defined

similarly. I want to show that bidder i’s best response b∗i to vector b−i is greater than

his best response c∗i to c−i.

If we assume that it is not, then b∗i < c∗i , so there exists a δ > 0 such that

b∗i + δ = c∗i . Bidder i’s best response function in response to b−i is:

−(b∗i )
α+1 + (c−i + ε)[−(α + 1)bi + αvi] = 0 (1.5)

Bidder i’s best response function in response to c−i is:

−(b∗i + δ)α+1 + c−i[−(α + 1)(bi + δ) + αvi] = 0 (1.6)

If Equation 1.6 is subtracted from Equation 1.5, the left-hand side is greater than

0, yielding a contradiction. Thus the best response function must be increasing in

b−i.

Lemma 3. The best response function is continuous.

Proof. The graph of Figure 1.1 shows that the individual best response func-

tion fi is continuous. In this proof, I show that the best response function f is

continuous.
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Given strategy profile c and any ε > 0, I need to show that d(f(b), f(c)) < ε

whenever d(b, c) < δ for some δ > 0, where I use the ∞-norm distance metric

d(x,y) = maxi(|xi − yi|).

I write b in terms of c by defining γi: ∀i, bi = ci + γi. This means that

b−i =
∑

j 6=i bj = c−i +
∑

j 6=i γj.

d(f(b), f(c)) = max
i

(∣∣∣fi(b−i)− fi(c−i)∣∣∣)
= max

i

(∣∣∣fi(c−i +
∑
j 6=i

γj)− fi(c−i)
∣∣∣)

≤ max
i

(∣∣∣∑
j 6=i

γj

∣∣∣) (1.7)

≤ (N − 1) ∗max
i

(|γi|)

= (N − 1) ∗ d(b, c)

Equation 1.7 follows from the fact that the slope of the individual best response

function is between 0 and 1 when a minimum bid is imposed; in other words, b and

c are to the right of the curve in Figure 1.1. Given any ε > 0, set δ = ε/(N − 1) and

continuity follows.

Since continuity and being a fixed point are invariant under homeomorphisms,

Brouwer’s fixed point theorem also applies if the domain is a set homeomorphic

to the closed unit ball. In particular, the closed unit ball is homeomorphic to the

hyperrectangle R = [m, v1] × . . . × [m, vN ]. Lemmas 2 and 3 demonstrate that the

preconditions of Brouwer’s fixed point theorem are met, so Brouwer’s fixed point

theorem guarantees the existence of a fixed point in this auction. Since a Nash
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equilibrium is by definition a fixed point of the best response function, I have shown

the existence of a Nash equilibrium.

Next, I demonstrate that there can only be 1 unique Nash equilibrium. Assume to

the contrary that there are 2 Nash equilibria x = (x1, . . . , xN) and y = (y1, . . . , yN).

I write x in terms of y by defining εi as follows:

∀i, xαi = yαi + εi

This implies the following:

xi = (yαi + εi)
1
α

xα+1
i = (yαi + εi)

α+1
α

I also write x−i and y−i as the following:

x−i =
∑
j 6=i

xαj =
∑
j 6=i

(yαj + εj)

y−i =
∑
j 6=i

yαj

By the definition of Nash equilibrium, for all i, xi and yi solve the best response

function:

−xα+1
i − x−i [(α + 1)xi − αvi] = 0 (1.8)

−yα+1
i − y−i [(α + 1)yi − αvi] = 0 (1.9)

With some substituting, I now rewrite (1.8) as (1.10) and (1.9) as (1.11):

−(yαi + εi)
α+1
α −

∑
j 6=i

(yαj + εj)
[
(α + 1)(yαi + εi)

1
α − αvi

]
= 0 (1.10)

−yα+1
i −

∑
j 6=i

yαj [(α + 1)yi − αvi] = 0 (1.11)
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If I subtract Equation 1.11 from Equation 1.10, the left-hand side is less than 0 if any

of the εi’s are not equal to 0, yielding a contradiction. The only way to avoid this

contradiction is if every εi = 0, meaning that there is one unique Nash equilibrium.

A possible concern with Theorem 1.2.2 is that it is a nonconstructive proof, so it is

not known whether bidders will actually find this equilibrium in practice. In Section

1.2.2, I present simulations showing that in a repeated FPP game, bidders do indeed

reach this equilibrium with as few as 2 to 3 updates in their bids.

Next, I present a closed-form representation of the Nash equilibrium for the special

case when all bidders have the same value.

Theorem 1.2.3. If there are N bidders with identical value v, then in the Nash

equilibrium, all bidders bid

b =
(N − 1)α

(N − 1)α +N
v

Proof. Besides the bidder in question, there are (N − 1) identical bidders, each with

value v. Thus,

b−i =
∑
j 6=i

bαj = (N − 1)bα

Substitute this into Equation 1.1:

−bα+1 − (N − 1)bα(α + 1)b+ (N − 1)bααv = 0

⇔ b+ b(N − 1)(α + 1)− α(N − 1)v = 0

⇔ b = (N−1)α
(N−1)α+N

v

Note that as the number of bidders N gets large, the optimal bid b approaches
α

α + 1
v,

the bound shown in Theorem 1.2.1.
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Next, I prove that in the Nash equilibrium, bids are ordered by value and that

bidders with higher value shade more. In Figure 1.3, I give an example of bids in a

Nash equilibrium with linear proportional allocation (α = 1) where 5 bidders have

value 8, 6, 5, 4, and 2. Notice that the equilibrium bids are ordered by value and the

shading factors are in reverse order from value. Also note that the shading factors

are all less than α
α+1

= 0.5, the upper bound from Theorem 1.2.1.

Value Nash bid Shading factor

8 3.288 0.411
6 2.594 0.432
5 2.216 0.443
4 1.818 0.454
2 0.954 0.477

Figure 1.3: Nash equilibrium bids and shading factors for 5 bidders with α = 1

Theorem 1.2.4. In the FPP Nash equilibrium, bids are ordered by value. That is, for

N bidders, given values {v1, . . . , vN}, Nash bid profile {b1, . . . , bN}, and any α > 1,

vi > vj ⇔ bi > bj ∀i 6= j

Proof. Without loss of generality, assume that bidder indices are in order by value,

i.e. v1 > v2 > . . . > vN . Assume that {b1, . . . , bN} is the Nash equilibrium bid profile

in which bids for bidders m and n are not in order with m > n, but all other bids are

in order. That is, bm < bn and bi > bi+1 for all i not equal to m or n.

By the definition of Nash equilibrium, for all i, bi solves the best response function:

−bα+1
i + b−i [αvi − (α + 1)bi] = 0
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Let B =
∑
j 6=m,n

bαj

εvm = vn with 0 < ε < 1

bm = δbn with 0 < δ < 1

The best response function for bidder m is:

−bα+1
m + (bαn +B)(αvm − (α + 1)bm) = 0

Substitute δbn for bm:

−(δbn)α+1 + (bαn +B)(αvm − (α + 1)δbn) = 0 (1.12)

The best response function for bidder n is:

−bα+1
n + (bαm +B)(αvn − (α + 1)bn) = 0

Substitute δbn for bm and εvm for vn:

−bα+1
n + ((δbn)α +B)(αεvm − (α + 1)bn) = 0 (1.13)

If Equation 1.13 is subtracted from Equation 1.12, the left-hand side is greater than

0, yielding a contradiction. Thus, the original assumption that bm and bn are not in

order must be impossible. Since m and n were picked arbitrarily, it must be the case

that all bids are in order.

Theorem 1.2.5. In the FPP Nash equilibrium, shading factors are in reverse order

from value. That is, for N bidders, and any α > 1, if {b1, . . . , bN} is the Nash

equilibrium bid profile with shading factor ci defined as ci = bi
vi

for all i, then

vi > vj ⇔ ci < cj ∀i 6= j
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Proof. Without loss of generality, assume that bidder indices are in order by value,

i.e. v1 > v2 > . . . > vN . Assume that {b1, . . . , bN} is the Nash equilibrium bid profile

in which shading factors for bidders m and n are in order with m > n, but all other

shading factors are in reverse order. That is, cm > cn and ci < ci+1 for all i not equal

to m or n.

By the definition of Nash equilibrium, for all i, bi solves the best response function:

−bα+1
i − b−i(α + 1)bi + b−iαvi = 0

Let B =
∑
j 6=m,n

bαj

δcm = cn with 0 < δ < 1

εvm = vn with 0 < ε < 1

By definition, bm = cmvm and bn = cnvn, so bn = δεcmvm. I introduce a new variable

γ = δε with 0 < γ < 1, so bn = γcmvm. The best response function for bidder m is:

−bα+1
m + (bαn +B)(αvm − (α + 1)bm) = 0

Substituting cmvm for bm and γcmvm for bn:

−(cmvm)α+1 + ((γcmvm)α +B)(αvm − (α + 1)cmvm) = 0 (1.14)

The best response function for bidder n is:

−bα+1
n + (bαm +B)(αvn − (α + 1)bn) = 0

Make the same substitutions as above and substitute εvm for vn:

−(γcmvm)α+1 + ((cmvm)α +B)(αεvm − (α + 1)γcmvm) = 0 (1.15)
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If Equation 1.15 is subtracted from Equation 1.14, the left-hand side is less than 0,

yielding a contradiction. Thus, the original assumption that cm and cn are in order

must be impossible. Since m and n were picked arbitrarily, it must be the case that

shading factors are in reverse order.

Note the generality of the previous two theorems, as they hold independent of the

choice of α.

1.3 Second-Price Rule

The main result of this section is that there are no pure-strategy Nash equilibria

when the second-price rule is used in the proportional share auction. I briefly outline

the formal model before proving this result.

1.3.1 Second-Price Model

Values, bids, and the allocation rule are all identical to the First-Price Model.

Bids are normalized by quality (CTR): b′i = bi ∗qi. The ranking function σ maps from

bidder index i to rank with smaller-valued ranks indicating better ranking. Bidder

payments per click correspond to a second-price rule: normally, a bidder pays a price

equal to the bid of the bidder ranked directly below him. In case of a tie, the bidders

that tie each pay their bid. The lowest-ranked bidder pays a reserve price pr. To be

22



precise,

pi =



b′i if i’s bid ties with any other bidder

pr if σ(i) = N

b′σ−1(σ(i)+1) otherwise

1.3.2 Nash Equilibrium, Second-Price

In this section, I prove that with a second-price rule, the proportional share auction

has no Nash equilibrium. I begin with a lemma demonstrating that if there were a

Nash equilibrium, there could be no gaps in bids. I then prove the main result.

Lemma 4. In a Nash equilibrium for the second-price proportional share auction,

there can be no gaps in bids. Thus, all bidders must submit the same bid.

Proof. Assume the existence of a Nash equilibrium with bid vector b. Consider two

bidders i and j with a bid gap where i is ranked directly above j: σ(i) = σ(j) − 1.

Bidder i is bidding ε more than j: bi = bj + ε, with ε > 0. If bidder j increases his bid

less than ε, his allocation xi(bj) will increase while his price remains unchanged. This

means that his utility uj rises, contradicting the initial statement that b is a Nash

equilibrium. Thus, it must be the case that in a Nash equilibrium, there cannot be a

gap in bids between any two bidders.

Theorem 1.3.1. There are no pure-strategy Nash equilibria in the second-price pro-

portional share auction.

Proof. By Lemma 4, in a Nash equilibrium, there can be no gaps and thus all bidders

must submit the same bid. Assume the existence of a Nash equilibrium where all
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bidders bid b. Now if any bidder i submits a bid higher than b, then his allocation

xi(bi) will rise while his price remains unchanged. Thus his utility ui rises, meaning

that b could not have been a Nash equilibrium. Since Lemma 4 says that any Nash

equilibrium must have all bidders submitting the same bid and since I have shown

that any bidder can then improve his utility from his “equilibrium” utility, it must

be the case that there are no pure-strategy Nash equilibria.

1.4 Ad Fatigue Extension

A natural next question to ask is whether the proportional allocation framework

can accommodate other concerns such as ad fatigue. I model ad fatigue by decreasing

an ad’s CTR over time as users become fatigued with the ad. In the one-shot setting,

I can use a scaling factor of between 0 and 1, which decreases as the bidder’s share

of the impressions grows. The exact fatigue scaling function f(x) can be interpreted

as the average decrease in CTR over a time period.

More precisely, under the first-price rule, bidder utility is now modeled as:

ui(bi) = xi(bi)qi ∗ f(xi(bi))(vi − bi)

=
bαi

bαi + b−i
qi ∗ f

(
bαi

bαi + b−i

)
∗ (vi − bi)

where f is the fatigue function.

I assume that f can be any non-negative and monotone decreasing function. In

the one-shot game, f is common knowledge to all the bidders. However, in a repeated

setting, bidders do not need to know the specific form of f as they can learn about

it by bidding in the auction over time. For example, a bidder might initially submit
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a bid that shades down his value by some small amount. He gets allocated a large

share, but the accompanying ad fatigue is also large. The bidder then experiments

with dropping his bid a little more. His share is reduced by a little, but ad fatigue is

also reduced and his price drops as well. The bidder does not have information about

his particular allocation or ad fatigue–all he experiences is a rise in clicks. The bidder

can keep revising his bid downwards until he reaches the Nash equilibrium described

later in this section.

1.4.1 Best Response Strategies, Ad Fatigue Extension

Ad fatigue analogues to Theorems 1.2.2, 1.2.4, and 1.2.5 can be shown with similar

analyses to the original proofs; outlines of these proofs are left for the appendix. In

this section, I focus on proving that the bound from Theorem 1.2.1 still holds with

the ad fatigue extension, and examine two concrete ad fatigue functions.

Theorem 1.4.1. In the FPP auction with ad fatigue, a utility-maximizing bidder i

will always pick bid bi > 0 such that

bi <
α

α + 1
vi

for any α > 0 and for any b−i > 0.

Proof. As before, I write the best response correspondence as the roots of the partial

derivative of ui with respect to bi:

∂ui
∂bi

=
qib

α−1
i

(bαi + b−i)3

(
f

(
bαi

bαi + b−i

)
(bαi + b−i) (1.16)

∗[−bα+1
i − b−i(α + 1)bi + b−iαvi] (1.17)

+αbαi b−i(vi − bi)f ′
(

bαi
bαi + b−i

))
= 0 (1.18)
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To make the argument, I am only interested in signs. Every term in (1.16) is non-

negative since f is non-negative, and the expression in (1.18) is non-positive since f ′

is non-positive (f is monotone decreasing). In order to find a value of bi so that the

entire expression is equal to 0, it must be the case that the expression in (1.17) is

positive.

Notice that (1.17) is the exact left-hand side of the best response correspondence

for FPP without ad fatigue (Equation 1.1), so I can apply the same trick as before.

I rewrite (1.17) as the following:

−bα+1
i − b−i[(α + 1)bi − αvi] > 0

As before, the expression in brackets must be negative, yielding the desired result.

Next, I analyze two specific functional forms for the ad fatigue scaling function:

f(x) = 1
βx+1

and f(x) = e−βx. Both functions decline more quickly as β increases,

indicating a greater rate of fatigue.

If I repeat the analysis from Sections 1.2.2 and 1.2.3, I can find the best response

functions and explicitly write out the symmetric Nash equilibrium for the case when

all bidders have the same value.

For the fatigue function f(x) = 1
βx+1

, I find that the best response function can

be written as the roots of the following equation:

−(β + 1)bα+1
i − b−i(α + 1)bi + b−iαvi = 0

Notice that this is identical to Equation 1.1 when β = 0.

For the fatigue function f(x) = e−βx, I find that the best response function can
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be written as the roots of the following equation:

−b2α+1
i − (α + 1)bib

2
−i + bα+1

i b−i(−2− α + αβ)− αbαi b−i(β − 1)vi + αb2−ivi = 0

Again, this is identical to Equation 1.1 when β = 0 (substitute β = 0 and divide by

(bαi + b−i)).

1.4.2 Symmetric Nash Equilibrium, Ad Fatigue Extension

Here, I examine the same two ad fatigue functions as above, beginning with f(x) =

1
βx+1

. Using the same analysis as in the proof of Theorem 1.2.3, I find that in the

symmetric Nash equilibrium with equal bidder values, each bidder bids:

b =
(N − 1)α

(N − 1)α +N + β
v

Note that this is the same result as Theorem 1.2.3 when β = 0. As the ad fatigue

function becomes more severe (β increases), bidders bid less in the Nash equilibrium.

For the fatigue function f(x) = e−βx, in the symmetric Nash equilibrium with

equal bidder values, each bidder bids:

b =
(N − 1)(N − β)α

(N − 1)(N − β)α +N2
v

Again, observe that this is the same result as Theorem 1.2.3 when β = 0, and bidders

bid less in the Nash equilibrium as ad fatigue becomes more severe.

1.5 Empirical Evaluation

In this section, I evaluate FPP’s efficiency and revenue properties and examine

how value is distributed between the auctioneer and the bidders. I also study the

27



dynamics by which I would expect bidders to reach the Nash equilibrium in practice.

I find in Section 1.5.1 that in equilibrium, FPP is quite efficient when compared to

the benchmark Vickrey-Clarke-Groves (VCG) auction, which is maximally efficient.

In Section 1.5.3, I find that there is a choice of exponent α that maximizes social

utility, and that as α increases, the seller extracts an increasing share of the rents.

Finally, in Section 1.5.4, I find that in a repeated FPP setting, bidders very quickly

find the Nash equilibrium simply by myopically best-responding.

1.5.1 Efficiency of FPP

To explore the efficiency of the first-price proportional share auction, I make com-

parisons with the VCG allocation, which is maximally efficient2. I generated 100

instances of 5 bidders, all with value uniformly distributed between 0 and 1. I then

computed the VCG allocation and the Nash equilibrium allocation of FPP, and ex-

amine efficiency, defined as the aggregate bidder utility. Figure 1.4 plots the ratio of

FPP efficiency to VCG efficiency for 3 different values of β over varying values of α;

this will be referred to as the efficiency ratio. For all the simulations, β refers to

the parameter for the fatigue function f(x) = 1
βx+1

.

There are two observations to make in Figure 1.4. First, for a given curve (holding

β constant), the efficiency ratio rises and then falls. Second, for smaller values of α

(α < 7), the curves tend to rise as β is increased.

For the first observation, as α initially increases from α = 1, higher-valued bid-

2In this setting, the VCG mechanism picks the allocation x that maximizes
∑

i xi ∗ f(xi) ∗ vi

where f is the fatigue function. Note that this means that in order for VCG to pick an allocation
other than the trivial one where the highest-value bidder receives all the impressions, the fatigue
function must be something other than f(x) = 1.
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Figure 1.4: FPP efficiency versus VCG efficiency, varying α and β

ders are more heavily favored in the FPP allocation, resulting in higher total utility;

meanwhile, the VCG allocation is independent of α and is thus unchanged, implying

that the ratio of FPP utility to VCG utility increases as α increases. However, after a

certain point, higher-valued bidders receive too much of the allocation and ad fatigue

lowers the number of clicks they receive; this results in lower aggregate utility. As

can be seen from Figure 1.4, this point of maximum efficiency is reached earlier when

ad fatigue is more severe (when β is higher).

Regarding the second observation, for smaller values of α, the intuition behind

why the efficiency ratio rises as ad fatigue increases can be seen from the example in

Figure 1.5. Here, I look at a simple 3 bidder example with (v1, v2, v3) = (0.8, 0.6, 0.4).

Figure 1.5 shows the Nash equilibrium allocations (denoted xi) for FPP with α = 1

and the VCG allocation along with the total utility of the system (prices paid are
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simply a transfer between bidders to the seller) and the efficiency ratio.

x1 x2 x3 utility eff. ratio

β = 1
FPP 0.406 0.388 0.255 0.464

0.975
VCG 0.555 0.346 0.099 0.476

β = 2
FPP 0.4 0.337 0.263 0.367

0.992
VCG 0.472 0.341 0.187 0.37

β = 3
FPP 0.396 0.336 0.268 0.305

0.996
VCG 0.444 0.34 0.216 0.306

Figure 1.5: For small α, high-value bidders have smaller allocations in FPP than
in VCG. As β rises, allocations shift towards lower-value bidders for both FPP and
VCG, but more dramatically with VCG.

Since bidders with higher values shade more in FPP (Theorem 1.2.5), they end

up with less than their socially-optimal allocation. As β rises, both FPP and VCG

allocate more weight to lower-value bidders, but VCG does so more dramatically,

as is evident in Figure 1.5. This occurs because high-value bidders start with lower

allocations in FPP and do not have as much weight to be re-distributed to lower-value

bidders as in VCG.

On the other hand, for high α (in our case, α > 7), higher-value bidders in FPP

start with higher allocations than in VCG, so more weight can be re-distributed to

lower-value bidders. This means that as ad fatigue increases, FPP has re-distributes

more from high-value to low-value bidders than VCG, resulting in lower aggregate

utility for FPP.

1.5.2 FPP Revenue Versus VCG Revenue

While VCG is maximally-efficient, in many settings it does not have the best

revenue properties. Here, I compare FPP and VCG revenue for a simple example
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and find that their relative magnitudes depend on a number of factors including the

choice of α, the fatigue factor, and the bidder valuations.

For the 3-bidder case where bidders have value v = [60, 40, 30], I compute the

VCG and FPP allocations with α ∈ [1, 5]. I use the fatigue function f(x) = 1
βx+1

and

vary β from 1 to 3. In Figure 1.6, I plot the ratio of FPP revenue to VCG revenue

in each of these examples; note that VCG revenue does not vary with α since VCG

returns the efficient allocation (which is independent of α).
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Figure 1.6: FPP revenue is lower than VCG revenue for small values of α, but is
higher for greater values of α.

For the particular β coefficients here, I find that FPP revenue is lower than VCG

revenue for small values of α and at some point, FPP revenue switches over to being

higher than VCG revenue. Recall that as α increases, FPP favors the higher-value

bidders in the allocation; since they pay a higher per-unit price, this increases seller

revenue. I view this graph as a neutral result: FPP revenue can be higher or lower
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than VCG revenue depending on auction environment.

1.5.3 FPP Value: Magnitude and Distribution

The next two questions I address are: 1) how does the magnitude of value created

(total bidder value3 plus total seller revenue) vary with α, and 2) how are the rents

distributed between the seller and the bidders? In Figure 1.7, I plot utility (measured

in dollars4) as a function of α given a fixed fatigue β = 1. The 3 curves represent the

utility captured by the auctioneer (seller revenue), the value captured by all bidders

(bidder value), and the total utility in the system (total utility). The total utility

curve is the sum of the seller revenue and bidder value curves.

The data in Figure 1.7 are generated from 100 trials of 10 bidders with value

uniformly distributed between 0 and 1 with a constant fatigue β of 1. The shapes

of these curves are robust to the number of bidders and β. Figure 1.7 demonstrates

that there exists a socially-optimal α, which in this particular case happens around

α = 6.5. The value of the socially-optimal α depends on all the parameters.

Intuitively, as α increases, FPP will more heavily favor higher bids, meaning

higher-value bidders will be favored (recall from Theorem 1.2.4 that higher-value

bidders bid higher). When higher-value bidders receive more of the allocation, total

social utility rises. However, there is a limit to this rise in utility because ad fatigue

penalizes over-weighting of high-value bidders; without ad fatigue, total utility rises

without bound as α increases.

3Here, total bidder value refers to total bidder utility not including payments.
4The scale of utility on the vertical axis depends heavily on the particular fatigue function. In

the current setting with 10 bidders, β = 1, α = 1, the maximum possible bidder utility for any
allocation is 0.5, and the maximum seller revenue is 9

22 = 0.41.
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Figure 1.7: Bidder value is a convex, decreasing function of α while seller revenue is
a concave, increasing function of α. Total efficiency achieves a local maximum at the
socially-optimal α.

Note that the prices paid by bidders are simply transferred to the seller. In Figure

1.8, I re-scale the bottom two curves from Figure 1.7 to show the proportion of value

captured by the seller versus the bidders. At α = 1, the bidders receive just over

half the total value; as α increases, the seller takes an increasing share of the value

created.

1.5.4 Dynamics of Realizing the FPP Nash Equilibrium

In this section, I demonstrate that bidders can indeed reach the unique Nash equi-

librium in a repeated setting by a simple process of best-responding. This strengthens

the theoretical result from Theorem 1.2.2, which only demonstrates the existence of

a unique Nash equilibrium. I test both synchronous updating, where all bidders si-
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Figure 1.8: As α rises, the seller captures an increasing share of the rents.

multaneously update their bids, and asynchronous updating, where only one bidder

updates his bid in a given time period.

For Figure 1.9, I simulate a dynamic game of 10 bidders with values 1, 2, . . . , 10

competing in the FPP auction with fatigue. Each bidder starts by bidding his true

value and during every iteration, one bidder is chosen at random to myopically best-

respond to the bids in the previous iteration. The graph shows that the Nash equilib-

rium is reached in about 25 rounds, corresponding to only around 2 to 3 bid changes

per bidder. The dynamics depicted in this figure are typical, as these results are

robust to choice of fatigue function, choice of α, number of bidders, and starting bids.

Simulations reveal that convergence to the Nash equilibrium also happens within

2 to 3 rounds if all bidders update their bids synchronously, even for as many as 200

bidders.
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Figure 1.9: In the dynamic game of 10 bidders, bids stabilize to the Nash equilibrium
within roughly 25 iterations of asynchronous myopic best response.

Finally, based on the best response behavior seen in Figure 1.9, I would expect

bidders to converge to the new Nash equilibrium quickly if a bidder’s true value

changed. After initially shading his bid to around half his value, each bidder revises

his bid only slightly in every iteration; from the others’ point of view, this effectively

looks like the bidder’s value has changed slightly.

I would also expect the system to reach the new Nash equilibrium quickly if bidders

entered or left the auction. Recall that a bidder’s best response is a smooth function

of the sum of all the other exponentiated bids. Given even a small number of bidders,

this would mean that the loss or addition of a bidder would have minimal impact on

this sum, and would not affect the best response much.
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1.6 Auction Design Discussion

In this section, I consider what principles might be desirable in the design of a

pay-per-click advertising auction for the mobile web. From a bidder’s point of view,

an ideal auction would make the bidding decision process simple: 1) bid selection

would be computationally easy, 2) an unsophisticated bidder would understand the

rules of the auction, and 3) a bidder would have minimal regret over his bid after the

auction.

A strategy-proof mechanism like Vickrey-Clarke-Groves satisfies (1) and (3) by

allowing the bidder to simply bid his true value, but both the allocation and pricing

rules can be opaque to an unsophisticated bidder. To address (2), proportional share

allocation rules coupled with either a first-price rule or a second-price rule seem like

good candidates to consider.

In this chapter, I have demonstrated that there is a unique Nash equilibrium in

the single-shot first-price proportional share auction and that bids converge quickly

to this equilibrium in a dynamic setting. During the process of convergence, bidders

start by arbitrarily shading down from their true value and make slight adjustments

thereafter. This does not require any complex computation, satisfying (1), and at all

times, bidder utility is close to what is achievable at the Nash equilibrium, satisfying

(3).

In contrast, the second-price proportional share auction currently used in real-

world auctions does not necessarily satisfy (1) or (3). I have shown that there are no

pure-strategy Nash equilibria with this auction. A bidder needs to anticipate how the

others will bid, and after every round, there will always be at least one bidder who
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would have favored a different bid. Over time, bids cycle over a range of values and

the system never reaches a resting point. This results in higher operational costs for

the auctioneer as bidders are frequently updating their bids. For all these reasons,

I recommend the first-price rule over the second-price rule in the proportional share

auction.

It is also interesting to consider the notion of stability when comparing the pro-

portional share and sponsored search settings. In sponsored search auctions, the

first-price rule (as originally implemented by Yahoo/Overture) leads to bid cycles

(Edelman and Ostrovsky (2007)) whereas the second-price rule admits Nash equilib-

ria (Edelman et al. (2007) and Varian (2007)). I have demonstrated in this chapter

that stability properties are reversed in proportional share auctions: the first-price

rule admits a unique Nash equilibrium while the second-price rule results in unpre-

dictable bidding. These results are summarized in the following 2x2 matrix:

proportional share sponsored search
1st price stable unstable
2nd price unstable stable

Figure 1.10: Stability of different pricing rules in proportional share versus sponsored
search auctions

Observe that stability results when payments and allocations are both continuous

or both discrete. That is, in the proportional share auction, as a bidder varies his

bid, both his allocated share and the price he pays vary continuously. In GSP for

sponsored search, as a bidder varies his bid, the allocation and price only change

when the bidder changes slots; this results in discrete changes in allocation and price.

If continuity occurs only in payments (e.g. first-price sponsored search) or only in
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allocations (e.g. second-price proportional share), then instability results. Table 1.11

presents the same information as Table 1.10 with the axes re-labeled.

continuous pricing discrete pricing
continuous allocation stable unstable

discrete allocation unstable stable

Figure 1.11: Stability of different pricing and allocation rules

1.7 Conclusion

In this chapter, I have studied the proportional allocation auction under the first-

price and second-price rules. I have demonstrated that there are no pure-strategy

Nash equilibria in the second-price auction, and that there is a unique pure-strategy

Nash equilibrium for the first-price auction in a one-shot complete information game.

My simulations show that bids in the dynamic game quickly converge to this Nash

equilibrium.

I also show that by tuning a single parameter in the FPP allocation rule, the

auctioneer can make trade-offs between revenue and efficiency. I compare FPP with

the maximally-efficient Vickrey-Clarke-Groves (VCG) auction, and find in simulation

that FPP efficiency is quite efficient relative to VCG.

1.8 Appendix to Chapter 1

I outline the proofs for the ad fatigue analogues of Theorems 1.2.2, 1.2.4, and

1.2.5.
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Theorem 1.8.1. For all vi, there exists one unique pure-strategy Nash equilibrium

in the FPP auction with ad fatigue if a minimum bid is enforced of no more than

M for all i, where

M =
(N − 1)αvi

(N − 1)α +N

Proof. As in the original proof of Theorem 1.2.2, I will apply Brouwer’s fixed point

theorem to show the existence of a pure-strategy Nash equilibrium. I will once again

assume the presence of a minimum bid m.

First, I prove the lemmas regarding how the ad fatigue best response function

maps from the space R = [m, v1]× . . .× [m, vN ] to itself and is a continuous function.

Lemma 5. The best response function maps from the space R = [m, v1]×. . .×[m, vN ]

to itself.

Proof. The vi upper bound of the interval follows from Theorem 1.4.1 since every

bidder i will always bid below α
α+1

vi, which is less than vi for any α > 0.

As before, I characterize the conditions under which best responses will be at

least m assuming that bidders all bid the minimum. As shown in Section 1.4.1, the

ad fatigue best response function is the Solution to the following equation:

f

(
bαi

bαi + b−i

)
(bαi + b−i)

∗[−bα+1
i − b−i(α + 1)bi + b−iαvi]

+αbαi b−i(vi − bi)f ′
(

bαi
bαi + b−i

)
= 0

I know that b−i =
∑

j 6=im
α = (N − 1)mα since every bidder is bidding m and can

substitute this into the above expression. I also substitute m for bi and find when the
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expression is at least 0 to determine when the best response is at least m:

f

(
1

N

)
Nmα (1.19)

∗
(
−mα+1 − (N − 1)mα(−(α + 1)m+ αvi)

)
(1.20)

+α(N − 1)m2α(vi −m)f ′
(

1

N

)
≥ 0 (1.21)

(1.19) is non-negative since f is non-negative and (1.21) is non-positive since f ′

is non-positive (f is monotone decreasing). This means that the (1.20) must be

non-negative and the above expression reduces to:

−m+ (N − 1)[−(α + 1)m+ αvi] ≥ 0

⇔ m ≤ (N − 1)αvi
(N − 1)α +N

= M

Thus, if the minimum bid is less than or equal to M , the best response function will

map each bidder’s initial minimum bid to a higher bid.

I can show that the best response function is increasing in b−i with the same proof

by contradiction as before.

Lemma 6. The best response function is continuous.

The proof of this lemma for the ad fatigue case is identical to the original proof.

Having established these 2 lemmas, the preconditions of Brouwer’s fixed point theorem

are met, demonstrating the existence of a Nash equilibrium.

Finally, I can demonstrate that there can only be 1 unique Nash equilibrium by

assuming the existence of 2 Nash equilibria and writing one in terms of the other. I

reach the same contradiction as before.
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Theorem 1.8.2. In the Nash equilibrium for FPP with ad fatigue, bids are or-

dered by value. That is, for N bidders, given values {v1, . . . , vN}, Nash bid profile

{b1, . . . , bN}, and any α > 1,

vi > vj ⇔ bi > bj ∀i 6= j

Theorem 1.8.3. In the Nash equilibrium for FPP with ad fatigue, shading factors

are in reverse order from value. That is, for N bidders, and any α > 1, if {b1, . . . , bN}

is the Nash equilibrium bid profile with shading factor ci defined as ci = bi
vi

for all i,

then

vi > vj ⇔ ci < cj ∀i 6= j

The proofs of Theorems 1.8.2 and 1.8.3 follow the original proofs exactly as long

as I make the additional assumption that the fatigue function f is weakly concave,

i.e. ∂f2

∂2x
≤ 0.

41



Chapter 2

Maximum Entropy Banner

Allocation

I examine an optimize-and-dispatch scheme for delivering pay-per-impression ad-

vertisements in online and mobile advertising. Using traffic predictions based on

historical traffic patterns, the platform provider seeks to allocate future inventory to

advertisers such that commitments are fulfilled in expectation, and no single adver-

tiser bears too much of the burden if actual traffic diverges from predicted traffic. I

propose a maximum entropy approach and provide theoretical analysis and simulation

to show how it accomplishes these goals.

2.1 Introduction

Currently, advertising in the online and mobile arenas employs a number of pric-

ing models including cost-per-click (CPC) and cost-per-impression (CPM). Much of
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the academic literature on online advertising has concentrated on allocating adver-

tisements to web-surfers through real-time auctions, such as Google’s Generalized

Second Price auction (Edelman et al. (2007)). In practice, auctions are often used

to make allocation decisions for both CPC and CPM price schemes. While CPM or

banner advertising can be implemented with an auction, in some cases brand adver-

tisers might prefer to enter into a long-term contract with the platform provider1 to

ensure that their advertisements are shown a certain number of times over a specified

time period. For example, a movie advertiser might wish to guarantee a minimum

number of ad views to coincide with an upcoming theater release.

This chapter will focus on the question of how an advertising platform provider

should make allocation decisions when it has entered into a number of long-term

CPM commitments. Because these commitments are usually known far in advance of

ad-serving time, an “optimize-and-dispatch” approach (Parkes and Sandholm (2005))

can be used, in which the winner-determination problem is solved in an offline opti-

mization and the solution is used to parameterize a simple online dispatcher.

In particular, I take the point of view of the ad-serving platform provider that has

made a number of CPM commitments with various advertisers. Each commitment

specifies a price that will be paid per impression2 and a set of partner websites that

the advertiser wishes to target. The platform provider can forecast future advertising

inventory based on historical user behavior. A unit of inventory becomes available

1Borrowing from the language of the literature on two-sided markets (see Eisenmann et al. (2006)
and Rochet and Tirole (2006) for an overview), two distinct sets of network users transact with
each other and affiliate with a platform provider. Here, the users are advertisers transacting with
“publishers” or the “content network” mediated by the platform providers AdMob or Google.

2In this chapter, I will use “impressions,” “inventory,” and “visits” (as in, website visits)
interchangeably.
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when a user makes a request for an advertisement by visiting a partner website.

The goal of the optimization problem is to pick a set of probabilistic weights used

by the ad server to decide which ad to serve when a user arrives at a partner website.

For each advertiser-site pair, I pick a weight representing the probability that the

advertiser’s ad will be shown if a user goes to the site.

Inventory forecasts are by nature imprecise, so I seek a method for allocating

future inventory to advertisers such that all commitments are fulfilled in expectation.

In general, many allocation rules are possible, so I am interested in a decision rule

that is forgiving when the forecasting engine’s predictions turn out to be incorrect.

I describe such a method using maximum entropy and prove that it is robust to

imprecise predictions by the forecasting engine.

This particular scheme is agnostic to advertisers and sites, treating them all

equally. While it may be the case that the platform provider wishes to favor cer-

tain high-value advertisers over others, it seems plausible that there would be classes

of advertisers for which the platform provider would want to treat advertisers within

each class equally. In that case, this scheme can be used for allocation decisions

within a class.

2.1.1 Related Work

Some early work on online banner allocation is presented in Chickering and Heck-

erman (2000). The authors describe a setting in which a single website operator

makes commitments to various advertisers to deliver a fixed number of impressions.

They employ a linear program to maximize expected click-through rate subject to
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inventory management constraints. Their delivery system computes clusters for tar-

geting based on user click behavior, but the advertisers have no ability to target. My

work addresses the more generalized problem of banner allocation faced by a plat-

form provider connecting multiple advertisers with multiple sites, instead of just one

site. In addition, I allow for advertisers to specify targeting parameters, a feature

especially valuable for large brand advertisers interested in reach or the demographic

mix of users who see their ads.

Tomlin (2000) presents a maximum entropy approach for a similar setting. As

with Chickering and Heckerman (2000), “targeting” in Tomlin (2000) refers to user-

based clustering. Tomlin demonstrates that a maximum entropy allocation shows

each advertiser’s banners to a wider mix of users than other allocation strategies that

maximize the clickthrough rates. He also assumes that the number of impressions

available at each site is known. The work presented in this chapter rigorously proves

that the maximum entropy allocation not only shows the banners to a wider mix,

but also provides a more robust allocation policy in the face of uncertainty of arrival

rates.

This work is an instance of an “optimize-and-dispatch” architecture (Parkes and

Sandholm (2005)). In particular, I allow advertisers to express targeting preferences,

which are used in an offline optimization to enable real-time ad-serving. Optimize-

and-dispatch is also implicit in the approaches of Chickering and Heckerman (2000)

and Tomlin (2000).
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2.2 Banner Allocation Problem

The banner allocation problem I study is composed of two different optimization

problems: the delivery problem and the commitment problem. The delivery problem

returns an allocation of probabilistic weights to be used by the ad server while the

commitment problem returns the amount of inventory available for commitment to

a new advertiser. The commitment problem is solved once for each new advertiser

and these commitments are used to solve the delivery problem once per day. Both

optimization problems are subject to the same constraints, referred to as the banner

allocation problem, and they make use of different objective functions. I begin

with an example before introducing notation.

2.2.1 Example

I conceptualize the banner allocation problem as a bipartite graph with advertisers

on the left, sites on the right, and edges indicating which sites are targeted by the

advertisers:

1

��?
??

??
??

?

2 //

��?
??

??
??

? A

3 // B

4

??��������

The delivery model requires that that optimizer has been exogenously given commit-

ments3 for each advertiser C1, . . . , C4 and predicted inventories for each site ÎA, ÎB.

3The maximum amount of inventory that can be committed to an advertiser is computed in the
banner commitment problem. This value is then used in negotiations with the advertiser as a ceiling
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The delivery optimization problem picks probabilistic weights for each of the edges

in the graph representing the probability that the given advertiser’s ad will be shown

on the given site.

2.2.2 Notation

The banner allocation problem is formally defined as follows:

Indices

t ∈ T The targets (websites)

a ∈ A The advertisers

Variables

wt,a Probability of serving advertiser a’s ad on target t;

wt,a only exists if advertiser a chooses to target site t

Data

Ît Estimated number of impressions served for target t

Ca Number of impressions committed to advertiser a

Constraints ∑
a∈A

wt,a = 1 ∀t ∈ T (Delivery) (2.1)

∑
t∈T

Îtwt,a = Ca ∀a ∈ A (Commitments) (2.2)

wt,a > 0 ∀t ∈ T , ∀a ∈ A (Positive weights) (2.3)

The commitment constraint makes use of a forecasting engine for estimating inven-

tories Ît = E[It] where random variable It is the actual inventory for target t. The

figure for how much inventory can be committed to the advertiser.
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commitment constraint also takes the number of committed impressions Ca as exoge-

nously given.

Note that the goal of fulfilling commitments in expectation need not be a hard

constraint. One might imagine that in order to build in some slack, the platform

provider could select weights so that the ad-serving engine plans to serve more than

the promised commitment; this could be implemented by adding a scaling factor

greater than 1 to the right-hand side of the commitment constraint.

Any selection of weights {wt,a} that satisfies the preceding constraints constitutes

a feasible solution to the banner allocation problem.

2.2.3 Banner Commitment Problem

The banner commitment problem is an optimization problem that returns the

maximum number of impressions that can be allocated to a new advertiser without

violating any existing commitments (in expectation). For new advertiser ã, this value

C ã is:

C ã = max
w

∑
t∈T

wt,ãÎt

subject to
∑
a∈A

wt,a = 1, ∀t ∈ T

∑
t∈T

Îtwt,a = Ca, ∀a ∈ A ∪ {ã}

wt,a > 0, ∀t ∈ T , ∀a ∈ A ∪ {ã}

If the optimizer chooses the actual commitment Cã so that it is less than or equal
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to C ã, then it must be the case that every instance of the banner commitment problem

and the banner delivery problem is feasible. As new advertisers enter the system, the

banner commitment problem is solved and informs the platform provider how much

inventory is available for the new advertisers. These commitments are then used as

inputs to the banner delivery problem.

2.2.4 Banner Delivery Problem: Maximum Entropy Formu-

lation

Any selection of weights wt,a that satisfies the banner allocation problem con-

straints (2.1), (2.2), and (2.3) is a valid solution to the banner delivery problem. In

practice, when a user surfs to site t, the online dispatcher looks at the set of all the

advertisers targeting t and randomly selects advertiser a based on the weights wt,a.

If all commitments to all advertisers targeting t have already been fulfilled, the dis-

patcher selects an ad from outside the banner allocation system; this ad is usually

chosen through a CPC auction4.

In this section, I describe the maximum entropy solution, beginning with a defi-

nition of entropy.

Definition The Shannon entropy of a variable X is

H(X) ≡ −
∑
x

P (x)log[P (x)]

where P (x) is the probability that is in the state x.

4Note that long-term CPM contracts are fulfilled first since they are more profitable than CPC
ads and since under-serving these commitments leads to penalties.
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In this setting, a state x corresponds to an edge in the advertiser-site graph and

P (x) corresponds to the weight of an edge wt,a. In the absence of other constraints,

entropy maximization returns the uniform distribution. In this section, I show that

the maximum entropy solution has useful properties when constrained by (2.1), (2.2),

and (2.3) (see Theorem 2.2.1).

More formally, I maximize Shannon entropy subject to the constraints of the

banner allocation problem:

max
w

∑
t∈T

∑
a∈A

−wt,a lnwt,a (2.4)

subject to
∑
a∈A

wt,a = 1, ∀t ∈ T

∑
t∈T

Îtwt,a = Ca, ∀a ∈ A

wt,a > 0, ∀t ∈ T , ∀a ∈ A

This concave maximization is equivalent to a convex minimization, so the solution

can be computed efficiently using convex optimization techniques (Boyd and Vanden-

berghe (2004)).

Next, I will show in Theorem 2.2.1 that when the maximum entropy problem is

solved, the objective value provides an upper bound on the maximum shadow price

for the commitment constraint. To interpret this result, recall that a shadow price, or

the value of the Lagrangian dual variable at the optimal solution, reflects the change

in the objective value of the optimal solution when relaxing the constraint by one

unit. Here, the objective function is the information entropy of the weight vector,

and the shadow price of interest is the Lagrangian dual variable for the commitment

constraint. The entropy of the weight vector is a measure of randomness, or the
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evenness of the allocation: for a higher entropy allocation, the impressions are spread

more evenly among all the advertisers (i.e. closer to the uniform distribution).

Since inventory commitments are based on estimated traffic patterns, it is possible

for there to be violations to commitments made in (2.2). By bounding the shadow

price on the commitment constraint, I limit the change in the objective value if

commitments are violated.

Theorem 2.2.1. The maximum entropy solution to the banner allocation problem

provides an upper bound on the maximum shadow price for the commitment con-

straint. Formally, the concave maximization in (2.4) is equivalent to the following

convex minimization:

min
w

∑
t∈T

∑
a∈A

wt,a lnwt,a (2.5)

subject to
∑
a∈A

wt,a = 1, ∀t ∈ T

∑
t∈T

Îtwt,a = Ca, ∀a ∈ A

wt,a > 0, ∀t ∈ T , ∀a ∈ A

If the vector λ∗ denotes the optimal values of the dual variables corresponding to the

commitment constraints and the vector w∗ denotes the optimal values of the primal

variables, then:

max
a∈A

λ∗a ≤
−
∑

t∈T
∑

a∈Aw
∗
t,a lnw∗t,a∑

t∈T Ît −
∑

a∈ACa

Proof. The dual problem to (2.5) with dual variables ν and λ for the equality con-
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straints and µ for the inequality constraints is given by:

max
λ,ν,µ

−
∑
t∈T

νt +
∑
a∈A

λaCa +
∑
t∈T

e−νt−1
∑
a∈A

eÎtλa+µt,a

subject to λ � 0, ν � 0, µ � 0

(See Appendix 2.5 for a derivation of the dual).

The dual objective function is maximized when the derivative with respect to νt

is zero:

νt = ln

(∑
a∈A

eÎtλa+µt,a

)
− 1

Substituting νt into the objective and multiplying by -1 to switch to a minimization,

the dual problem is now:

min
λ,µ

∑
t∈T

ln

(∑
a∈A

eÎtλa+µt,a

)
−
∑
a∈A

λaCa (2.6)

subject to λ � 0, µ � 0

Slater’s conditions are satisfied for the problem in (2.6) and hence, the duality gap is

zero.

If the vector λ∗ denotes the optimal values of the dual variables corresponding

to the commitment constraints, µ∗ denotes the optimal values of the dual variables

corresponding to the positive weight constraints, and w∗ denotes the optimal values
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of the primal variables, I can conclude the following:

−
∑
t∈T

∑
a∈A

w∗t,a lnw∗t,a =
∑
t∈T

ln

(∑
a∈A

eÎtλ
∗
a+µ

∗
t,a

)
−
∑
a∈A

λ∗aCa (2.7)

≥
∑
t∈T

max
a∈A

(Îtλ
∗
a + µ∗t,a)−

(
max
a∈A

λ∗a

)∑
a∈A

Ca (2.8)

≥
∑
t∈T

max
a∈A

(Îtλ
∗
a)−

(
max
a∈A

λ∗a

)∑
a∈A

Ca

=
∑
t∈T

Ît

(
max
a∈A

λ∗a

)
−
(

max
a∈A

λ∗a

)∑
a∈A

Ca

=

(
max
a∈A

λ∗a

)[∑
t∈T

Ît −
∑
a∈A

Ca

]
(2.9)

Equation (2.7) follows from the fact that the duality gap is zero, so the objective value

from maximizing entropy in (2.5) is equivalent to the objective value from minimizing

the dual in (2.6). In (2.8), I use the softmax approximation for the max function:

max{x1, . . . , xn} ≤ ln
∑
i

exi

In (2.9), the expression in brackets is a scalar representing the total amount of pre-

dicted traffic minus the total commitments.

Re-arranging, I arrive at the result:

max
a∈A

λ∗a ≤
−
∑

t∈T
∑

a∈Aw
∗
t,a lnw∗t,a∑

t∈T Ît −
∑

a∈ACa
(2.10)

In (2.10), observe that the entropy expression in the numerator on the right-hand

side is always positive since the weights w∗t,a are between 0 and 1; also, the denomi-

nator is always positive since the commitments
∑

a∈ACa are chosen in order to avoid

exceeding the predicted inventory
∑

t∈T Ît. To summarize, the maximum entropy

value provides an upper bound on the maximum shadow price for the commitment

constraint.
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2.3 Empirical Evaluation

2.3.1 Commitment Violations

The goal of this current design is to choose a feasible solution to the banner

allocation problem that is robust to imprecise inventory estimates. To evaluate the

maximum entropy solution empirically, I solve the offline optimization and simulate

use of the maximum entropy weights in the online ad-serving mechanism. I measure

robustness by counting the number of commitment violations that would be made for

each advertiser. In particular, for each advertiser a, I sum the number of impressions

over-committed and under-committed:

va =

∣∣∣∣∣∑
t∈T

(Ît − It) ∗ wt,a

∣∣∣∣∣
where It is the realized number of impressions for site t. Since I take the point of view

of the platform provider, I am interested in both over- and under-commitments. Over-

commitments result in direct revenue loss and reputation damage to the platform

provider5 while under-commitments result in lost opportunities. There is no particular

motivation for treating over- and under-commitment differently, so for this model I

treat them symmetrically. The goal is to spread commitment violations uniformly

across all the advertisers; in practice, the penalties for missing commitments are

marginally increasing with the size of the missed commitment.

5Depending on the specifics of the contract, under-serving can lead to linear costs in terms of direct
revenue loss, but damage to the platform provider’s reputation can have long-term repercussions that
are more difficult to measure.

54



2.3.2 Methodology

In order to test the maximum entropy (ME) approach to the banner allocation

problem, I measured its performance against two other objective functions: least-

squares (LS) and least-norm (LN), i.e., minimizing the `2 and `1 norms. I gener-

ated problem instances randomly and solved the banner allocation for each problem

instance with each of the three objectives. Each problem instance consisted of 4

components:

1. advertiser/target graph

2. actual traffic It drawn from a stochastic distribution

3. predicted traffic Ît for each target t

4. commitments Ca for each advertiser a

I randomly created advertiser/target graphs with varying numbers of advertisers

and targets, and with varying numbers of edges. I created commitments for each

advertiser by sequentially allotting inventory to each advertiser. For each advertiser

a, I took every site t targeted by a and allot to a a value drawn from the uniform dis-

tribution from 0 to the amount of inventory still available from site t. This mimicked

the actual process of creating commitments whereby commitments to new advertis-

ers enter the system sequentially. For each problem instance, I generated 50 days of

traffic realizations. I drew traffic from three distributions: Poisson, multinomial, and

multivariate normal. I found the results to be robust to choice in distribution, so I

only present results for traffic drawn from the multivariate normal distribution.
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For each objective function, I computed the commitment violation va for every

advertiser a, resulting in a vector of violations v. I then normalized the vector v into

the unit simplex v̂ (
∑

i v̂i = 1). This new vector v̂ could then be compared to the

uniform distribution u = ( 1
|A| , . . . ,

1
|A|). If the commitment violations were perfectly

spread among all the advertisers, then v̂ would equal u. Thus, I was able to com-

pare the evenness of violations experienced by the advertisers under the 3 objective

functions by examining the distances between v̂obj and u for obj = ME,LS,LN.

In particular, I measured the Kullback-Leibler divergence (KL) of the uniform dis-

tribution from v̂ for each of the three objective functions: KL(v̂ME||u), KL(v̂LS||u),

and KL(v̂LN ||u). Recall that:

KL(P ||Q) =
∑
i

P (i) log2

P (i)

Q(i)

I define the uniformity score U as a value between 0 and 1 that measures how uni-

formly violations are spread between the advertisers:

U(v̂) :=
H(v̂)

H(u)
= 1− KL(v̂,u)

H(u)

where H(x) = −
∑

i xi log2 xi is the information entropy of probability vector x.

2.3.3 Results

My simulations reveal that on average, the ME allocation achieves a higher uni-

formity score than either LS or LN. In Figure 2.1, I show uniformity scores for all 3

objective functions on a graph with equal numbers of advertisers and sites, and traffic

drawn from a Poisson distribution; I vary the graph density from 0 (no targeting) to
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1 (fully-connected). ME consistently outperforms LN and outperforms LS for graph

densities greater than 0.3.
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Figure 2.1: Uniformity scores for Poisson-distributed traffic, |T | = |A|

The shape of the ME and LS curves reflects an increase in uniformity score as

graph density increases. The intuition behind this shape is that with fewer edges in

the advertiser-site targeting graph, each edge bears a greater burden in carrying the

flow of advertisements. Thus, when actual inventory differs from predicted inventory

for a particular site, the edges connected to that site carry more weight and violations

are not spread as evenly. In aggregate, this lowers the potential uniformity score that

can be achieved.

The downward-sloping portion of the LN curve reflects that the LN objective

is not effectively spreading commitment violations evenly among the advertisers as

graph density increases.

57



 0.68

 0.7

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

U
ni

fo
rm

ity
 S

co
re

Graph Density

4|A| sites
2|A| sites
|A| sites

Figure 2.2: Maximum entropy uniformity scores with varying site count

In Figure 2.2, I present the effect of increasing the number of sites relative to the

number of advertisers6. As the ratio of sites to advertisers increases, the uniformity

score rises. The intuition behind this behavior is the same as the intuition for why

uniformity scores rise with increasing graph density–with more sites, each edge bears

less of the flow and thus the potential for spreading violations evenly increases, thus

increasing the uniformity score.

For the top two curves where there are more advertisers than sites, above a certain

graph density, the curve starts sloping downwards. The intuition here is that when

the graph gets too dense, each advertiser has many targeted sites and is likely to be

6I only examined graphs with more sites than advertisers since I am modeling the situation
where the platform provider actively enters into contracts with CPM advertisers. Signing up new
advertisers does not scale as quickly as signing up new websites, a process which is largely self-serve
or medium-serve.
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affected whenever there are traffic shocks somewhere in the system.

The policy implications of Figure 2.2 are that the platform provider can improve

the uniformity score by influencing the ratio of sites to advertisers (e.g., signing on

sites more quickly than advertisers) or by influencing the graph density (e.g., sug-

gesting to the advertisers that they may wish to target at a certain level). With

regard to targeting recommendations, the platform provider faces a trade-off: en-

couraging advertisers to target widely makes it easier for the platform provider to

fulfill commitments while potentially decreasing ad relevance; on the flip side, en-

couraging highly-specific targeting makes it harder for the platform provider to fulfill

commitments while increasing ad relevance. This results in a tension since both bet-

ter performance in fulfilling commitments and increasing ad relevance will likely tend

to increase revenue to the platform provider.

2.4 Conclusion

In this chapter, I have described an optimize-and-dispatch approach for delivering

pay-per-impression advertisements. Using traffic predictions based on historical traffic

patterns, the platform provider seeks to allocate future inventory to advertisers such

that commitments are fulfilled in expectation, and no single advertiser bears too much

of the burden if actual traffic diverges from predicted traffic. I proposed a maximum

entropy approach and provided theoretical analysis and simulation to show how it

accomplishes these goals.
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2.5 Appendix to Chapter 2

I derive the Lagrangian dual function for the maximum entropy objective function

subject to the constraints of the banner allocation problem.

The maximum entropy problem is the following:

max
w

∑
t∈T

∑
a∈A

−wt,a lnwt,a (2.11)

subject to
∑
a∈A

wt,a = 1, ∀t ∈ T

∑
t∈T

Îtwt,a = Ca, ∀a ∈ A

wt,a > 0, ∀t ∈ T , ∀a ∈ A

The Lagrangian with dual variables ν and λ for the equality constraints and µ for

the inequality constraints is:

L (w, λ, µ, ν) =
∑
t∈T

∑
a∈A

wt,a lnwt,a +
∑
t∈T

νt

(∑
a∈A

wt,a − 1

)

+
∑
a∈A

λa

(∑
t∈T

Îtwt,a − Ca

)
+
∑
t∈T

∑
a∈A

(−µa,twt,a)

Consider a general convex minimization problem with inequality and equality

constraints,

min
x

f(x) (2.12)

subject to Ax � b

Cx = d

I write the dual function for (2.12) with equality dual variables λ and inequality

dual variables ν using the convex conjugate of f , which I denote f ∗ (see Boyd and
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Vandenberghe (2004)):

g (λ, ν) = inf
x

(
f(x) + λT (Ax− b) + νT (Cx− d)

)
= −bTλ− dTν + inf

x
(f(x) + (ATλ+ CTν)Tx)

= −bTλ− dTν − f ∗(−ATλ− CTν)

Recall that the convex conjugate is defined as:

f ∗ = sup
x∈domf

(yTx− f(x))

In (2.11), f is the sum of negative entropy functions: f(x) =
∑

i xi lnxi with domf =

[0, 1]. The function
∑

i xiyi − xi lnxi attains its maximum at xi = eyi−1,∀i. By

substituting, I find the convex conjugate:

f ∗(y) =
∑
i

eyi−1 (2.13)

Applying (2.13), I write the dual function for (2.11):

g (λ, ν, µ) = inf
w

[∑
t∈T

∑
a∈A

wt,a lnwt,a +
∑
t∈T

νt

(∑
a∈A

wt,a − 1

)

+
∑
a∈A

λa

(
−
∑
t∈T

Îtwt,a + Ca

)
+
∑
t∈T

∑
a∈A

(−µa,twt,a)

]

= −
∑
t∈T

νt +
∑
a∈A

λaCa + inf
w

[∑
t∈T

∑
a∈A

wt,a lnwt,a +
∑
t∈T

νt
∑
a∈A

wt,a

−
∑
a∈A

λa
∑
t∈T

Îtwt,a +
∑
t∈T

∑
a∈A

(−µa,twt,a)

]
= −

∑
t∈T

νt +
∑
a∈A

λaCa − f ∗
(
−νt + Îtλa + µt,a

)
= −

∑
t∈T

νt +
∑
a∈A

λaCa −
∑
t∈T

e−νt−1
∑
a∈A

eÎtλa+µt,a
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Chapter 3

Market Design for Mobile

Application Stores

I analyze the markets used in mobile device application stores, the largest of which

is currently the Apple iPhone App Store. In these markets, software developers submit

their applications to be sold in the store and set the price paid by consumers. The

application store takes a fixed percentage of each sale and assigns a ranking based on

parameters like download volume, price, and age of the application.

In this chapter, I study how the application store should set its ranking policy

to maximize its own revenue. I characterize the conditions under which there are no

pure strategy Nash equilibria in product prices. Given that these conditions are likely

to exist in real-world mobile application stores, I would like to understand how the

choice of ranking function influences the set of prices through which bidders cycle.

Using agent-based simulation, I am able to study bidding cycles and compare ranking

functions.
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I also present empirical data from the iPhone App Store both to illustrate some

of the general features of this market and to validate the assumptions used in the

simulations.

3.1 Introduction

The development of mobile application stores in 2008 dramatically reshaped the

mobile application market. Prior to this point, mobile software application developers

seeking to distribute their products at scale to customers had to strike deals with

network operators, network by network, and country by country. They often had to

develop the same software for tens or even hundreds of mobile devices with differing

technical capabilities. All of these factors greatly limited software distribution to

mobile devices.

On July 11, 2008, Apple launched the iPhone App Store, and as of this writing,

over one billion applications (free and paid) have been downloaded1. Apple shipped

over 10 million iPhones in 2008 to over 50 countries2. Industry leaders that are

also starting their own mobile application stores include Google3, Nokia4, Microsoft5,

Research in Motion (BlackBerry’s manufacturer)6, T-Mobile7, and Palm8. For the

first time, individual software developers have the ability to create mobile software

and easily distribute their products to millions of customers in multiple countries.

1Apple website, http://www.apple.com/itunes/billion-app-countdown/, retrieved 4/30/2009
2Apple earnings call, 10/21/08
3see Android Market, http://www.android.com/market/
4see Nokia Ovi Store
5see Microsoft Skymarket
6see BlackBerry App World
7see T-Mobile App Store
8see Palm Software Store, http://appstore.pocketgear.com/palm/
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Successful developers programming in the evenings and weekends for the iPhone have

earned enough to quit their day jobs9, and a number of companies have been formed

specifically to develop iPhone applications (e.g., Smule, Pelago).

Of interest to economists is the fact that mobile application stores are a new

type of market for study. Software developers submit their applications to be sold in

the store and set the price paid by consumers. The application store takes a fixed

percentage of each sale10 and has the freedom to list the application anywhere in the

store. This application ranking is generally done algorithmically based on a number

of possible parameters including sales volume, price, and age of the application.

An open policy question revolves around how the application store should deter-

mine its ranking algorithm to maximize its revenue. The two extremes I will study

in this chapter are rank-by-download and rank-by-revenue. In a related mechanism

used in online sponsored search advertising, search engines rank by expected revenue

(Edelman et al. (2007)), which is the product of bid price and expected clickthrough

rate (CTR). The crucial difference between these two settings is that with mobile

application stores, the download rate (which is the analog of CTR in this setting) is

a function of price since the end consumer is the one paying the price, not the bidder

in the auction.

In this chapter, I present a model of the mobile application store and consider

how the store sponsor (e.g., Apple) might design its ranking algorithm to maximize

9For example, $4.99 iPhone game Trism earned its one developer $250,000 in profits in its first
two months, http://www.cnn.com/2008/TECH/11/18/iphone.game.developer/index.html

10For each application sold in the iPhone App Store, Apple keeps a revenue share of 30%,
http://developer.apple.com/iPhone/program/distribute.html. Google also takes 30% of each
sale in the Android Market, http://android-developers.blogspot.com/2008/10/android-market-now-
available-for-users.html
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its own revenue. I characterize the conditions under which there are no pure strategy

Nash equilibria in product prices. When these conditions hold, the usual analytical

tools for equilibrium analysis are unavailable; instead, I use agent-based simulation

to compare ranking functions. I model the incentives faced by bidders and simulate

how they would respond to different ranking functions.

I also present empirical data gathered directly from the Apple iPhone App Store

both to illustrate some of the general features of this market and to validate the

assumptions used in the simulations.

3.1.1 Related Work

I compare mobile app stores with sponsored search (Edelman et al. (2007)) and

dynamic aggregation websites such as digg.com (Wu and Huberman (2008)). There

are three dimensions on which comparisons can be made:

1. how applications/ads/websites are ordered,

2. how users respond to the choices with which they are presented, and

3. how advertisers/developers bid or interact with the market.

Mobile app stores currently have “Top 100” lists that order applications based on

popularity and may be experimenting with price and other factors; in this chapter, I

model ranking based on popularity and revenue. Users purchase applications based on

application price, quality, and ranking. Application developers seek to maximize their

revenue by investing the appropriate amount of time into application development and

by selecting an appropriate application price.
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In sponsored search (Edelman et al. (2007)), search engines rank advertisements

based on expected revenue, which is the product of expected clicks and price. Users

click on ads based on the position of the ad and the quality of the match between

their search and the ads displayed. Advertisers submit bids based on expected sales

once a user clicks through to their website.

In Wu and Huberman (2008), the authors explore three ranking rules for dynamic

aggregation websites: 1) novelty, 2) popularity, and 3) expected clicks (defined as

the product of past popularity and a novelty decay factor). The goal is to pick a

ranking mechanism that maximizes clicks over time. Users click on links to websites

based on quality (which includes novelty) and link position. Unlike the app store and

sponsored search settings, the websites to which links point are not clear strategic

actors. Wu and Huberman (2008) find that the best click-maximizing ranking rule

depends crucially on the rate of decay of novelty. In this chapter, I will find that the

revenue-maximizing ranking rule will depend on the consumer demand and developer

cost functions.

I summarize this comparison in Table 3.1.

ranking rule user behavior bidder strategy
app stores popularity quality, price, position maximize revenue,

or revenue amortize development costs
sponsored revenue quality, position keep marginal cost

search below marginal revenue
dynamic popularity quality, position n/a
websites or novelty

Figure 3.1: Comparison between app stores, sponsored search, and dynamic websites
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3.2 App Store Model

In this section, I present a model of the app store in which developers select

application price and effort in response to 1) expected user demand, 2) the app store

ranking rule, and 3) the slot effect. I model the choice of price and effort since I am

interested in studying how developers price their products and which market designs

encourage developers to create high-quality applications.

3.2.1 Applications

There are N software developers, also referred to as bidders, who each submit 1

application for sale in the app store. Each application i has an associated price pi

and quality qi. The price is set by the bidder and the quality is determined based on

his effort, ei. A bid is the pair (pi, ei) composed of bidder i’s price and effort level.

Bidder i expends effort ei to create his application, resulting in an application of

quality qi = qi(ei). This quality function is the single parameter that distinguishes

between different developers; it represents a developer’s ability to create a quality

product from hours invested. Quality is increasing in effort, i.e., ∂
∂e
qi(e) > 0.

Each bidder bears a cost c(ei) for expending effort ei. I assume that this cost

function is identical across bidders and is increasing in effort, i.e., ∂
∂e
c(e) > 0. This

models the situation in which the per-hour cost of development time is the same across

developers; the difference in cost is due only to the number of hours invested. I also

assume that the marginal cost function is increasing, which models the phenomenon

in which managing larger projects costs more than smaller projects due to increases

in complexity; that is, ∂2

∂e2
c(e) > 0.
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3.2.2 Demand Functions

Consumer demand D(pi, qi) for a given application i is a function of the price pi

and quality qi. D(pi, qi) is the demand that application i would receive if it were in

the top slot. This is scaled down by the slot effect based on the application’s actual

ranking (see Section 3.2.4).

I assume that demand decreases as price increases, i.e., ∂
∂p
D(p, q) < 0, and demand

increases as quality increases, i.e., ∂
∂q
D(p, q) > 0. There are no interactions between

consumer demand for two competing products.

Throughout this chapter, I will refer to an example demand function D(p, q) =

1− p
q
.

3.2.3 Ranking Functions

The application store ranks each application based on revenue, download volumes,

or a mixture of the two. In reality, there may be other parameters such as product

reviews or developer reputation that are also used in ranking, but this model focuses

solely on price and quantity sold.

In particular, the application store assigns a ranking score

r(p, q) = D(p, q) ∗ pα

to each bidder. Let σ(i) be application i’s rank, which is based on its score relative

to other scores (ranks start from 1 and increase). α is a parameter that allows the

application store to vary the ranking function smoothly between rank-by-revenue and

rank-by-download. α = 0 corresponds to rank-by-download and α = 1 corresponds to
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rank-by-revenue. This chapter will explore the conditions under which the application

store would prefer certain values of α over others.

I assume that every single application receives a ranking, i.e., there are N slots.

This corresponds to a setting in which the consumer can eventually view each appli-

cation by scrolling through the entire app store.

3.2.4 Slot Effect

A key characteristic of the mobile application store is the existence of a slot

effect. This captures the phenomenon in which users are less likely to download an

application that is further down in the rankings because they need to expend more

effort to scroll down to see this application. In the sponsored search literature, the

slot effect has often been modeled using the exponential decay model where slot j

has its clickthrough rate decreased by a factor of γ(j) = 1
δj−1 for δ > 1. Feng et al.

(2007) empirically fit actual online clickthrough data to an exponential decay model

with δ = 1.428. In Section 3.6, I will present some empirical data estimating the

magnitude of the slot effect in the iPhone App Store.

In this model, the slot effect γ multiplicatively scales down demand, so that de-

mand for bidder i in slot σ(i) is D(pi, qi) ∗ γ(σ(i)). For example, in Section 3.6, I

approximate the slot effect to be around γ = 0.971. This means that the application

in slot 1 receives demand D(p, q)γ(1) = D(p, q) ∗ 0.9710 = D(p, q), the application in

slot 2 receives demand D(p, q)γ(2) = D(p, q) ∗ 0.9711, and the application in slot 3

receives demand D(p, q)γ(3) = D(p, q) ∗ 0.9712.
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3.2.5 Application Store Revenue Share

The application store gives each developer a fixed revenue share s ∈ [0, 1]. For

example, Apple keeps 30% of all revenue from the App Store and the individual

developers keep 70%, so for the iPhone App Store, s = 0.7.

3.2.6 Bidder Utility

Bidder i’s utility is the difference between his revenue and his cost:

ui(pi, ei) = D(pi, qi(ei))γ(σ(i))pis− c(ei)

3.2.7 Platform Revenue

The platform earns revenues:

∑
i

D(pi, qi)γ(σ(i))pi(1− s)

3.2.8 Bidder Strategies

In this market, there is no notion of a bidder’s “true value,” as the marginal cost of

distributing an additional application after it has been produced is zero. In selecting

his (price, effort) strategy pair, a bidder cares only about maximizing his profits,

measured as the difference between revenue and the original cost of development.

Even if a developer thinks his application is “worth” a certain amount, a lower price

would increase his demand and could potentially increase his revenue.

For example, in my interview with a top iPhone app developer, the developer

originally priced his application at $0.99 and experimented with repricing at $1.99.
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He discovered that doubling his price decreased his sales volume by more than 50%, so

he quickly dropped his price back down to $0.99 again. Even though he believed his

application was delivering far more than $0.99 of value to the consumer, he selected

the $0.99 price to maximize his profits. My model of the app store is consistent with

this bidder logic.

3.3 Examples

I present some 2-bidder examples to illustrate sample conditions when Nash equi-

libria exist or do not exist. In these examples, I will assume the following functional

forms and parameters:

• demand function D(p, q) = 1− p
q

• cost function c(e) = c ∗ e3 with c > 0; I will set c = 0.01

• quality function qi(ei) = ai ∗ ei with ai > 0; I will vary ai

• slot effect γ to vary

• revenue share s = 0.7

• ranking function exponent α = 1 (rank by revenue)

I will look at the effects of varying quality coefficient ai and slot effect γ on whether

there exists a pure-strategy Nash equilibrium. In each example, there will be 2 bidders

with bidder 1 having higher quality than bidder 2; the technical condition for having

greater quality is that the marginal quality function is always greater.
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Due to Theorem 3.4.1 in the next section, if there is a pure-strategy Nash equilib-

rium, the bidders will be sorted by quality; i.e., bidder 1 is assigned slot 1 and bidder

2 is assigned slot 2. By Corollary 3.4.2, if there is a pure-strategy Nash equilibrium,

each bidder submits a bid targeting this assigned slot; i.e., bidder 1 maximizes his

utility assuming he will be assigned slot 1, and likewise for bidder 2. If I can find any

bid that yields greater utility than this “Nash equilibrium bid,” then there can exist

no pure-strategy Nash equilibrium, by Corollary 3.4.3.

I can determine the Nash equilibrium analytically (if one exists) by finding bidder

1’s optimal bid conditional on winning slot 1 and bidder 2’s optimal bid conditional

on winning slot 2. Given the parameters above, the utility function for bidder i is:

ui(pi, ei) =

(
1− pi

aiei

)
γ(σ(i))pis− ce3

Conditional on winning slot 1, which has a slot effect of γ(1) = 1, bidder 1’s utility

is u1(p1, e1) =
(

1− p1
a1e1

)
p1s− ce3.

I find the optimal bid (p∗1, e
∗
1) by examining the first-order necessary conditions

for a critical point; I set the partial derivatives of u1 equal to 0 and solve for p1 and

e1.

∂u1

p1

= s

(
1− 2p1

a1e1

)
= 0

⇔ p1 =
a1e1

2
(3.1)

∂u1

e1
= p1s

(
p1

a1e21

)
− 3ce21 = 0

⇔ e1 =

√
a1s

12c
(3.2)
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I arrive at (3.2) by substituting p1 = (a1e1)/2. By substituting (3.2) back into

(3.1), I can write p1 in terms of a1, s, and c. I find that bidder 1’s optimal bid is

(p∗1, e
∗
1) =

(√
a3

1s

48c
,

√
a1s

12c

)

In the appendix, I verify that this bid is indeed utility-maximizing for this utility

function combined with a more general class of functions q and e.

Similarly, I compute bidder 2’s optimal bid (p∗2, e
∗
2) by finding the maximal point

for bidder 2’s utility function u2(p2, e2) =
(

1− p2
a2e2

)
γp2s− ce3 where the slot effect

for slot 2 is γ(2) = γ. I find that the optimal bid is

(p∗2, e
∗
2) =

(√
a3

1sγ

48c
,

√
a1sγ

12c

)

To check whether these bids do indeed represent a Nash equilibrium, I will look

for bids targeting other slots that yield greater utility. For example, let (p′2, e
′
2) be

bidder 2’s optimal bid when targeting slot 1 (instead of slot 2). If bidder 2’s utility

from bidding (p′2, e
′
2) is greater than his utility from (p∗2, e

∗
2), then there cannot exist

a pure-strategy Nash equilibrium.

In Figure 3.2, (p∗i , e
∗
i ) is bidder i’s optimal bid when targeting his “appropriate”

Nash equilibrium slot; i.e., bidder 1 targets slot 1 and bidder 2 targets slot 2. u∗i

is bidder i’s utility when assigned his Nash equilibrium slot. (p′2, e
′
2) is bidder 2’s

optimal bid when targeting slot 1 assuming that bidder 1 submits his optimal slot 1

bid (p∗1, e
∗
1). u

′
2 is bidder 2’s utility when assigned to slot 1.

If u′2 < u∗2, then bidder 2 prefers slot 2 to slot 1 and ((p∗1, e
∗
1), (p

∗
2, e
∗
2)) is the Nash

equilibrium. If u′2 > u∗2, then bidder 2 prefers to target slot 1. By Corollary 3.4.3,

this is a situation where there can be no pure-strategy Nash equilibrium.
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Example bidder i ai γ p∗i e∗i u∗i p′2 e′2 u′2

1
1 1.2

0.9
1.59 2.65 0.370 - - -

2 1 1.15 2.29 0.241 1.59 3.17 0.236

2
1 1.2

0.85
1.59 2.65 0.370 - - -

2 1 1.11 2.23 0.220 1.59 3.17 0.236

Figure 3.2: Bids and utilities when quality functions and slot effect are varied

In Example 1, bidder 2 prefers his utility of 0.241 from targeting slot 2 to his utility

of 0.236 from targeting slot 1. This means that I have identified a Nash equilibrium.

Going from Example 1 to Example 2, the slot effect is changed from 0.9 to 0.85, so

the bidder assigned to slot 2 is now penalized more and has a greater incentive to

consider targeting slot 1. In this particular example, bidder 2 prefers his utility of

0.236 from targeting slot 1 to his utility of 0.220 from targeting slot 2, so he will

target slot 1. Bidder 1 will also fight for slot 1, and cycling ensues, resulting in no

pure-strategy Nash equilibrium (by Corollary 3.4.3).

3.4 Characterizing Nash Equilibria

Since the app store market employs a first-price rule, there are cases where bidder

strategies would cycle in a dynamic setting and never reach equilibrium. In this

section, I examine properties of a Nash equilibrium and the conditions under which

a pure-strategy Nash equilibrium exists in a one-shot game of complete information.

For all the theorems in this section, I assume that bidders can be ordered by quality

functions q(e). Bidder i has higher quality than bidder j if ∂
∂e
qi(e) >

∂
∂e
qj(e) ∀e > 0.

In this case, I say that qi � qj. Note that since qi(0) = 0 and qj(0) = 0, this

assumption also implies that qi(e) > qj(e) ∀e > 0.
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First, I show that in any Nash equilibrium, bidders are ordered by quality with

the highest-quality bidder assigned to the best slot. Intuitively, since bidders in this

model are only differentiated by their quality function, a bidder with higher quality

can more easily convert effort into quality so his optimal bid will be at a higher effort

level, resulting in higher quality. Since demand is increasing in quality, a higher-

quality bidder will be receive a better ranking from the app store.

For all the theorems in this section, I assume that bidders can be ordered by quality

functions q(e). Bidder i has higher quality than bidder j if ∂
∂e
qi(e) >

∂
∂e
qj(e) ∀e > 0.

In this case, I say that qi � qj. Note that since qi(0) = 0 and qj(0) = 0, this

assumption also implies that qi(e) > qj(e) ∀e > 0.

Theorem 3.4.1. If a pure-strategy Nash equilibrium exists, then bidders are sorted

by quality. That is, the bidder with the ith highest quality is assigned slot i.

Proof. For this proof, I assume that in addition to having the form u(p, e) = D(p, q(e))ps−

c(e), the utility function has exactly one critical point, which is the global maximum;

in the appendix, I give an example of functions D, q, and c such that this is true.

Without loss of generality, consider the case of 2 bidders where bidder 1 has higher

quality than bidder 2, i.e., q1 � q2. Assume that there exists a Nash equilibrium where

the bidders are reverse sorted by quality. Bidder 1 is assigned to slot 2 and bidder 2

is assigned to slot 1.

Let the following dotted variables be unconstrained utility-maximizing bids where

the first subscript refers to the bidder and the second subscript refers to the targeted

75



slot:

˙b11 = ( ˙p11, ˙e11) = arg max
(p,e)

D(p, q1(e))ps− c(e)

˙b12 = ( ˙p12, ˙e12) = arg max
(p,e)

D(p, q1(e))δps− c(e)

˙b21 = ( ˙p21, ˙e21) = arg max
(p,e)

D(p, q2(e))ps− c(e)

˙b22 = ( ˙p22, ˙e22) = arg max
(p,e)

D(p, q2(e))δps− c(e)

Let the following be utility-maximizing bids contingent on winning the appropriate

slot:

b11 = (p11, e11) = arg max
(p,e)

D(p, q1(e))ps− c(e)

s.t. D(p, q1(e))p
α ≥ D(p2, q2(e2))p

α
2 (3.3)

b12 = (p12, e12) = arg max
(p,e)

D(p, q1(e))δps− c(e)

s.t. D(p, q1(e))p
α < D(p2, q2(e2))p

α
2 (3.4)

b21 = (p21, e21) = arg max
(p,e)

D(p, q2(e))ps− c(e)

s.t. D(p, q2(e))p
α ≥ D(p1, q1(e1))p

α
1 (3.5)

b22 = (p22, e22) = arg max
(p,e)

D(p, q2(e))δps− c(e)

s.t. D(p, q2(e))p
α < D(p1, q1(e1))p

α
1 (3.6)

The reverse-quality Nash equilibrium is (b12, b21).

To simplify notation, I will write utility as

ui(bij) = ui(pij, eij) = D(pij, qi(eij))pijδ
j−1s− c(eij)

and rank score as

ri(bij) = ri(pij, eij) = D(pij, qi(eij))p
α
ij
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where i is the bidder index and j is the targeted slot.

I can re-write constraints (3.3)-(3.6) using the new notation for the reverse-quality

Nash equilibrium as (3.7)-(3.10):

r1(b11) ≥ r2(b21) (3.7)

r1(b12) < r2(b21) (3.8)

r2(b21) ≥ r1(b12) (3.9)

r2(b22) < r1(b12) (3.10)

First, I show that ˙b11 and ˙b21 are infeasible as solutions to the constrained opti-

mizations. Observe that

u1( ˙b11) > u1( ˙b12)

since δ < 1. By the definition of Nash equilibrium, bidder 1 prefers slot 2 to slot 1:

u1(b12) > u1(b11) (3.11)

The only way that (3.11) can be true is if ˙b11 is infeasible in the constrained opti-

mization, i.e.,

r1( ˙b11) < r2(b21) (3.12)

Next, I establish in the following lemma that bidder 1’s unconstrained slot 1 bid

is ranked above bidder 2’s unconstrained slot 1 bid:

Lemma 7.

r1( ˙b11) > r2( ˙b21) (3.13)
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Proof. I expand and re-write the rank score expressions in (3.13) as the following:

D( ˙p11, q1( ˙e11)) ˙p11
α > D( ˙p21, q2( ˙e21)) ˙p21

α

⇔
(
u1( ˙b11) + c( ˙e11)

)
˙p11
α−1 >

(
u2( ˙b21) + c( ˙e21)

)
˙p21
α−1 (3.14)

Since q1 � q2, bidder 1’s utility from bidder 2’s unconstrained bid is strictly greater

than bidder 2’s own utility for this bid: u1( ˙b21) > u2( ˙b21). Bidder 1’s unconstrained

utility-maximizing bid must yield at least this much utility, so u1( ˙b11) > u2( ˙b21).

Next, I show that ˙e11 > ˙e21 and ˙p11 > ˙p21 for the specific demand function

D(p, q) = (1 − p/q) and general cost and quality functions c(e), q1(e) and q2(e). As

before, I assume that marginal cost is increasing, and marginal quality for bidder 1

is greater than marginal quality for bidder 2.

Given this demand function, the utility functions are:

u1(p1, e1) = (1− p1/q1(e1))p1s− c(e1)

u2(p2, e2) = (1− p2/q2(e2))p2s− c(e2)

To find bidder 1’s utility-maximizing bid, I set the first partial derivative with

respect to both p and e equal to 0:

∂u1

∂p1

∣∣∣∣
( ˙p11, ˙e11)

= 1− 2
˙p11

q1( ˙e11)
= 0

⇔ ˙p11 =
q1( ˙e11)

2
(3.15)

∂u1

∂e1

∣∣∣∣
( ˙p11, ˙e11)

=
˙p11

2

[q1( ˙e11)]2
∂q1( ˙e11)

∂e
− ∂c( ˙e11)

∂e
= 0

⇔ ∂q1
∂e

∣∣∣∣
˙e11

= 4
∂c

∂e

∣∣∣∣
˙e11

(3.16)
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Similarly, for bidder 2, I have:

˙p21 =
q2( ˙e21)

2
(3.17)

∂q2
∂e

∣∣∣∣
˙e21

= 4
∂c

∂e

∣∣∣∣
˙e21

(3.18)

Since ∂
∂e
q1(e) >

∂
∂e
q2(e) and marginal cost is increasing, (3.16) and (3.18) imply

that ˙e11 > ˙e21. Since cost is increasing, c( ˙e11) > c( ˙e21). Finally, combining (3.15),

(3.17), and the fact that q1(e) > q2(e) ∀e > 0, I conclude that ˙p11 > ˙p21.

I have now established that every term on the left-hand side of (3.14) is greater

than the corresponding term on the right-hand side, proving the lemma.

Combining (3.12) and (3.13), I have that:

r2(b21) > r2( ˙b21) (3.19)

Re-stated, ˙b21 is infeasible in the constrained optimization.

Next, I use the fact that the utility function has exactly one critical point, which

is a global maximum. This means that when I start from the unconstrained utility-

maximizing bid ˙b21 and pick bids with greater rank score, these new bids must have

lower utility. This implies that the constrained utility-maximizing b21 has as low a

rank score as possible, equal to the minimum rank score that is feasible, r1(b12).

I prove this formally in the next lemma:

Lemma 8.

r2(b21) = r1(b12) (3.20)

Proof. Assuming that (3.20) is not true, there exists a bid b∗ with the following two

properties:
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1. r2(b
∗) > r1(b12)

2. u2(b
∗) > u2(b) for any b where r2(b) ≥ r1(b12)

Since u has only one critical point, which is the global maximum, the arc A from

u2( ˙b21) to u2(b
∗) is monotonically decreasing. By continuity of r, there exists a bid b′

in the neighborhood of b∗ on arc A such that r2(b
′) ≥ r1(b12). However, since arc A is

monotonically decreasing from u2( ˙b21) to u2(b
∗), b′ must have higher utility than b∗:

u2(b
′) > u2(b

∗). This contradicts property 2 regarding b∗, so b∗ cannot exist.

Since (3.8) and (3.20) cannot both be true, a contradiction has been reached, and

bidders cannot be sorted by reverse-quality in a Nash equilibrium.

Corollary 3.4.2. Let bidders be numbered so that higher-quality bidders have lower

indices (e.g., bidder 1 has the highest quality). If a pure-strategy Nash equilibrium

exists, then the equilibrium bid vector is ( ˙b11, . . . , ˙bNN), where

ḃii = arg max
(p,e)

D(p, qi(e))pδ
i−1 − c(e)

That is, bidder i targets slot i and bids his unconstrained utility-maximizing bid.

Proof. From Theorem 3.4.1, bidders must be sorted by quality in a pure-strategy

Nash equilibrium. This means that the bidder i is assigned slot i. Contingent on

being assigned slot i, bidder i’s optimal bid is to maximize utility assuming that he

will be assigned slot i: max ui(bii) = D(pii, qi(eii))piiδ
i−1s − c(eii). This is exactly

the unconstrained utility-maximizing bid ḃii.

Corollary 3.4.3 is the contrapositive of the Corollary 3.4.2.
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Corollary 3.4.3. If there exists a bid for bidder i that gives the bidder greater utility

than his unconstrained utility-maximizing bid ḃii = arg max(p,e)D(p, qi(e))pδ
i−1−c(e),

then there can exist no pure-strategy Nash equilibrium.

In cases where bidders can be ordered by quality, there are two implications of

Theorem 3.4.1, Corollary 3.4.2, and Corollary 3.4.3:

1. Whether or not a pure-strategy Nash equilibrium exists can be computed easily.

2. If a pure-strategy Nash equilibrium exists, it can be computed easily.

The following steps can be used to compute the Nash equilibrium or determine

that no pure-strategy Nash equilibrium exists:

1. Assuming bidders are numbered so that higher-quality bidders have lower in-

dices, for each bidder i, compute the unconstrained utility-maximizing bid tar-

geting slot i:

ḃii = arg max
(p,e)

D(p, qi(e))pδ
i−1 − c(e)

2. For each bidder i, compute the unconstrained utility-maximizing bid targeting

slot j for all j 6= i:

˙bij = arg max
(p,e)

D(p, qi(e))pδ
j−1 − c(e)

3. If ˙bij > ḃii for any (i, j) pair (i.e., bidder i prefers targeting slot j over targeting

his appropriate slot i), then there exists no pure-strategy Nash equilibrium.

Otherwise, the pure-strategy Nash equilibrium is ( ˙b11, . . . , ˙bNN).
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3.5 Simulation

In this section, I simulate bidders participating in a dynamic app store game. As

shown in the previous section, there are conditions under which no pure strategy Nash

equilibria exist, but I would still like to be able to analyze how bidders respond to

differing market designs. In particular, I allow bidders to best-respond to each other

and record their bids and app store revenue over the course of a bidding cycle.

In Simulation 1, I plot app store revenue, and price/effort levels as the ranking

function α is varied in Examples 1 and 2 from Section 3.3. In cases where there is no

Nash equilibrium, I record average values over the entire bidding cycle.
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Figure 3.3: Simulation 1: average app store revenue for Examples 1 and 2, γ = 0.9,
0.85

In Example 1 (γ = 0.9), for α between 0.7 and 1, I find that there is a Nash

equilibrium that is independent of α. For high values of α, there are Nash equilibria

where bids are stable, but below α = 0.7, bidding becomes unstable and there are no
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Figure 3.4: Average price and average effort for Simulation 1: Example 1, γ = 0.9

Nash equilibria.

In Figure 3.3, for values of α between 0.7 and 1, the Nash equilibrium yields

constant revenue for the app store. When α drops below 0.7, app store revenue starts

rising until the peak at α = 0.5. The price and effort graphs in Figures 3.4(a) and

3.4(b) demonstrate that this increase in revenue is largely due to a large increase in

effort by bidder 2. For α near 0.5, bidder 2 expends more effort in order to fight for

the top slot over the course of the bid cycle.

From the point of view of the market designer, it is unclear from Figure 3.3 how to

choose α. There appears to be an optimal α greater than 0 and less than 1, but this

peak depends on the particular conditions (such as the magnitude of the slot effect

and the relative abilities of the bidders). However, these examples do suggest that

rank-by-revenue (α = 1) and rank-by-download (α = 0) are not revenue-maximizing

for the app store. These simulations suggest that a market designer may opt to pick

α to be high so that a Nash equilibrium is more likely, but not as high as 1 since it
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Figure 3.5: Average revenue, average price, and average effort for Simulation 2

appears that revenue may be increased by picking smaller values of α.

Next, I present some larger scale simulations with 10 bidders. In Simulation 2,

the 10 bidders have quality coefficients a = [1.1, 1.2, . . . , 1.9]. I examine slot effects

γ = .9 and γ = .95.

In Figure 3.5(a), the app store maximizes revenue by picking an α of around 0.7

in each case. The exact value of α that maximizes revenue appears to depend on the

particular distribution of abilities, but these simulations show that revenue for α = 1
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seems to be higher than revenue for α = 0, with a maximum somewhere in between.

In Figure 3.5(b), average prices rise monotonically as α increases. At the extremes,

this means that I would expect to see higher average prices when the app store ranks

by revenue than when it ranks by popularity. This coincides with intuition since as

α rises, the app store favors higher prices, and I would expect to see average prices

rise.

In Figure 3.5(c), effort levels are lower for low values of α and higher for α > .3.

The specific shape of this curve depends heavily on the demand and cost functions;

the functions I have studied tend to result in an effort curve that reaches a max-

imum away from the extremes of α = 0 and α = 1. This suggests that the app

store may want to pick an α value such as 0.5 to create incentives for higher-quality

application development, although more research would be necessary to support such

a recommendation.

3.6 Empirical Work

In this section, I present empirical data from the iPhone App Store both to il-

lustrate some of the general features of this market and to validate the assumptions

used in the simulations.

3.6.1 iPhone App Store Background

My iPhone App Store data was gathered starting late December 2008, so I describe

the user experience during this period. On November 21, 2008, Apple released its

version 2.2 firmware for the iPhone and iPod Touch; this update affected the App
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Store by allowing users to sort applications by “Top Paid,” “Top Free,” and “Release

Date.”

When a user launches the iPhone App Store from his iPhone, he can view ap-

plications by category (e.g., Entertainment, Games, or Productivity) or by selecting

the “Top 25” list. For each application, the user sees cover art, application title,

category, price, and release date, and can click through to read a longer description

of the application and see other users’ reviews.

3.6.2 App Store Data

The raw data for this analysis comes from the XML used by Apple’s desktop

iTunes client. For 9 days in the period from December 23, 2008 to January 7, 2009,

I collected data once a day for every application available in the iPhone App Store

(free or paid). For each application, I recorded 1) price, 2) popularity, and 3) days

since release. “Popularity” is a field in the iTunes XML between 0 and 1 and for this

analysis, I use it as a proxy for sales volume. I assume that the popularity scores are

correct up to a scaling factor; that is, if Application A has a popularity score twice

that of Application B, then Application A has double the sales.

I separately recorded Apple’s overall Top 50 list on each of these days. When

viewing the App Store from an iPhone device, the Top 25 list is prominently featured

with a link to the Top 50 list, meaning that the Top 50 applications receive much

visibility. The Top 50 list changes daily and many developers have observed that an

application’s specific rank in the list has a large effect on sales volume, so the Top 50

list is a natural place to begin studying the magnitude of the slot effect.
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3.6.3 App Store Prices

Here, I present summary statistics for overall prices set by developers in the iPhone

App Store. Note that Apple constrains pricing for paid applications so that applica-

tions must cost $0.99, $1.99, $2.99, and so on. This means that the lowest possible

price that can be charged for a paid application is $0.99. Figure 3.6 is a histogram of

all applications that have prices lower than $20 available on January 2, 2009. This

sample represents 98.5% of the total 12,477 applications.
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Figure 3.6: Distribution of applications over price for free applications and applica-
tions less than $20, iPhone App Store, 1/2/09.

On this day, free applications accounted for 23.6% of all applications, the average

price overall was $2.21 and the average price of paid applications was $2.90.

Figure 3.7 shows the distribution of applications over prices for applications under

$10, representing 95% of all paid applications.

As can be seen from Figures 3.6 and 3.7, many developers are setting low prices,
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Price Number of apps %
$0.99 4567 47.9
$1.99 1741 18.3
$2.99 856 9.0
$3.99 366 3.8
$4.99 696 7.3
$5.99 209 2.2
$6.99 53 0.6
$7.99 89 0.9
$8.99 25 0.3
$9.99 448 4.7
$10+ 1093 5.0
Total 9528 100.0

Figure 3.7: Distribution of applications over price for paid applications, iPhone App
Store, 1/2/09.

with almost half of all paid applications selling for the minimum paid price of $0.99.

There are also spikes at multiples of $5, probably because these are natural anchor

points for consumers.

3.6.4 Application Popularity and the Slot Effect

In this section, I examine the key drivers behind application popularity. Using

the iTunes XML dataset, the most readily available data are: 1) price, 2) rank, and

3) days since release. In Figure 3.8, I plot the natural logarithm of popularity against

rank for all applications in the Top 50 during the 9-day period, resulting in 450 data

points. Using a linear fit, I show the average values as the red line and the 95%

prediction interval as the green lines.

In Figure 3.9, I present the results from three linear regressions predicting log-

popularity where I pooled data from all 9 days. The results from a fixed effects

OLS regression with date dummy variables are very similar. Model 1 regresses log-
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Figure 3.8: Point and interval predictions demonstrating relationship between log-
popularity and rank, iPhone App Store, 12/23/08-1/7/09.

popularity on rank, which is the scatter plot shown in Figure 3.8. Model 2 adds

log-price as an independent variable, and Model 3 adds the number of days since

release. Every coefficient is significant at the 99.9% level.

I find that in the iPhone App Store, application ranking is the single most im-

portant factor in predicting popularity. This is unsurprising given the constraints of

shopping for applications on a mobile device–it seems reasonable that if users need

to scroll down a couple pages to see an application, they will have a lower likelihood

of purchasing the application. What may be surprising is how important rank is;

in particular, I can see from the R2 value of Model 1 in Figure 3.9 that rank alone

explains 46.3% of the variation in log-popularity.
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Variable (1) (2) (3)
Rank -0.029∗∗∗ -0.028∗∗∗ -0.027∗∗∗

(0.001) (0.001) (0.001)

Ln Price -0.133∗∗∗ -0.139∗∗∗

(0.024) (0.024)

Days 0.0013∗∗∗

(0.0004)

Constant -2.512∗∗∗ -1.500∗∗∗ -1.562∗∗∗

(0.043) (0.189) (0.187)

R2 0.463 0.497 0.511

N 450 450 450

∗∗∗p < .001
Standard errors are in parentheses.

Figure 3.9: OLS models of log-popularity, iPhone App Store Top 50 List, 12/23/08-
1/7/09

Since the dependent variable is log-popularity, I can interpret the coefficient

−0.029 on the rank variable in Model 1 as the percentage change in popularity for

each unit increase in rank11. Re-stated, if an application increases in rank by 1 (i.e.,

its rank becomes worse by 1), its expected popularity will decrease by 2.9%. This

corresponds exactly to the slot effect γj described in Section 3.2.4.

Similarly, in Model 2, a 1% increase in price will result in a 13.3% drop in expected

popularity.

3.6.5 Data limitations

There may be potential concerns about simultaneity in these regressions since

Apple states it takes popularity into consideration when determining ranking for the

11Taking the Taylor expansion of ln(1 + x) near x = 0, ln(1 + x) ≈ x for small x. For regression
ln y = βx, if x is increased by 1, the left-hand side becomes ln y+β ≈ ln y+ ln(1 +β) = ln[y(1 +β)].
Thus, a unit increase in x corresponds approximately to a percentage increase in y.
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App Store. There is a positive feedback loop wherein an application that sells well

gets picked up by the ranking algorithm and placed in a highly visible rank, leading

to even further sales.

Next, the “popularity” field in the iTunes XML is undocumented so I cannot

be certain that it is correct to a scaling factor as assumed in the above analysis.

To address some of these concerns, I present some download versus ranking data

made publicly available by the creator of the top-selling iFart Mobile application12.

In Figure 3.10, I show the number of units sold accompanied by ranking for each

available data point when iFart made it in the Top 100 list.

Ranking Units sold
1 13274
2 9760
4 5497
9 3117
10 3086
15 2836
22 1797
39 1510
76 841

Figure 3.10: Downloads and ranking for iFart application, iPhone App Store,
12/14/08-12/22/08.

If I repeat the OLS regression of log-popularity on rank from Section 3.6.4 for this

single application, I find the following:

ln(popularity) = −0.031 ∗ rank + 8.71

These coefficients are significant at the 99% level and the R2 is 71.4%. The

coefficient on rank of −0.031 is very close to the coefficient from the pooled OLS

12Data available at: http://www.joelcomm.com/updated iphone app sales the f.html. The price
of this application remained constant at $0.99 throughout this period
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regression of −0.029 in Section 3.6.4, lending confidence to my interpretation of the

“popularity” field in the iTunes XML.

3.7 Conclusion

In this chapter, I have studied market design in mobile app stores. I have presented

a model of this market where developers select application price and effort in response

to expected user demand and the app store ranking rule. I analytically characterize

the conditions under which there are no pure-strategy Nash equilibria, and prove that

bidders are sorted by quality if there exists a Nash equilibrium.

Using agent-based simulation, I find that the optimal choice of ranking rule lies

somewhere between the extremes of ranking by revenue and ranking by popularity,

and depends on characteristics of the developer population and consumer demand.

I also present empirical data from the iPhone App Store to illustrate some of the

general features of this market and to validate the assumptions used in the simula-

tions.

3.8 Appendix to Chapter 3

I give an example of a utility function of the form u(p, e) = D(p, q(e))ps − c(e)

that has exactly one critical point, which is the global maximum.

Let the demand function be D(p, q) = 1− p/q. I will characterize the conditions

for functions q and c such that the utility function has one critical point, the global

maximum.
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The first-order necessary conditions for a critical point are:

1. ∂u
∂p

= 0

2. ∂u
∂e

= 0

The second-order sufficient conditions for the point (p∗, e∗) to be a local maximum

are:

3. ∂2u
∂p2

< 0

4. ∂2u
∂p2

∂2u
∂e2
−
(
∂2u
∂p∂e

)2

> 0

where (3) and (4) are both evaluated at (p∗, e∗).

For my particular utility function, (1) becomes:

∂u

∂p
= s

(
1− 2p∗

q(e∗)

)
= 0

⇔ p∗ =
q(e∗)

2
(3.21)

(2) becomes:

∂u

∂e
= −c′(e∗) +

(p∗)2sq′(e∗)

(q(e∗))2
= 0

⇔ c′(e∗) =
s

4
q′(e∗)

(3) becomes:

∂2u

∂p2
=
−2s

q(e∗)

This is always less than 0 since q is always positive.

(4) becomes:

∂2u

∂p2

∂2u

∂e2
−
(
∂2u

∂p∂e

)2

=
2s ([q(e∗)]2c′′(e∗)− (p∗)2sq′′(e∗))

[q(e∗)]3
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This expression is positive if the numerator is positive. That is, if:

[q(e∗)]2 c′′(e∗)− (p∗)2sq′′(e∗) > 0

⇔ [q(e∗)]2 c′′(e∗)−
(
q(e∗)

4

)2

sq′′(e∗) > 0 (3.22)

⇔ c′′(e∗) >
s

4
q′′(e∗) (3.23)

In (3.22), I substitute (3.21).

If c′′ and q′′ are such that (3.23) is true, then condition (4) is met and (p∗, e∗) is

a local maximum.

Next, (3.21) has only one solution, so this utility function has one critical point.

This means that the local maximum I identified must also be the global maximum.

To summarize, whenD(p, q) = 1−p/q, utility function u(p, e) = D(p, q(e))ps−c(e)

has one critical point, which is the global maximum, and functions q and c satisfy

(3.23).
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