
Games and Economic Behavior 77 (2013) 284–297
Contents lists available at SciVerse ScienceDirect

Games and Economic Behavior

www.elsevier.com/locate/geb

Truth, justice, and cake cutting ✩

Yiling Chen a, John K. Lai a, David C. Parkes a,∗, Ariel D. Procaccia b

a School of Engineering and Applied Sciences, Harvard University, 33 Oxford Street, Cambridge, MA 02138, United States
b Computer Science Department, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 11 October 2010
Available online 1 November 2012

JEL classification:
C78
D63
D82

Keywords:
Fair division
Envy-freeness
Cake cutting
Maximum flows
Strategy-proofness
Mechanism design

Cake cutting is a common metaphor for the division of a heterogeneous divisible good.
There are numerous papers that study the problem of fairly dividing a cake; a small
number of them also take into account self-interested agents and consequent strategic
issues, but these papers focus on fairness and consider a strikingly weak notion of
truthfulness. In this paper we investigate the problem of cutting a cake in a way that is
truthful, Pareto-efficient, and fair, where for the first time our notion of dominant strategy
truthfulness is the ubiquitous one in social choice and computer science. We design both
deterministic and randomized cake cutting mechanisms that are truthful and fair under
different assumptions with respect to the valuation functions of the agents.

© 2012 Elsevier Inc. All rights reserved.

Superman: “I’m here to fight for truth, justice, and the American way.”
Lois Lane: “You’re gonna wind up fighting every elected official in this country!”

Superman (1978)

1. Introduction

Cutting a cake is often used as a metaphor for allocating a divisible good. The difficulty is not cutting the cake into pieces
of equal size, but rather that the cake is not uniformly tasty: different agents prefer different parts of the cake, depending,
e.g., on whether the toppings are strawberries or cookies. The goal is to divide the cake in a way that is “fair”; the definition
of fairness is a nontrivial issue in itself, which we discuss in the sequel. The cake cutting problem dates back to the work of
Steinhaus in the 1940s (Steinhaus, 1948), and for over sixty years has attracted the attention of mathematicians, economists,
political scientists, and more recently, computer scientists (Edmonds and Pruhs, 2006a, 2006b; Procaccia, 2009).

✩ A significantly shorter version of this paper appeared in the proceedings of AAAI 2010. Here we fill in missing proofs, discuss the Lorenz dominance of
our allocation, and provide an extended discussion of related work and future directions. The paper was also presented in the Third International Workshop
on Computational Social Choice in Düsseldorf, Germany, September 2010, at a workshop on prior-free mechanism design in Guanajuato, Mexico, May 2010,
and in the Harvard EconCS seminar, February 2010.

* Corresponding author.
E-mail addresses: yiling@eecs.harvard.edu (Y. Chen), jklai@post.harvard.edu (J.K. Lai), parkes@eecs.harvard.edu (D.C. Parkes), arielpro@cs.cmu.edu
(A.D. Procaccia).

0899-8256/$ – see front matter © 2012 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.geb.2012.10.009

Y. Chen et al. / Games and Economic Behavior 77 (2013) 284–297 285
Slightly more formally, the cake is represented by the interval [0,1]. Each of n agents has a valuation function over the
cake, which assigns a value to every given piece of cake and is additive. The goal is to find a partition of the cake among
the agents (while possibly throwing a piece away) that satisfies one or several fairness criteria. In this paper we consider
the two most prominent criteria. A proportional allocation is one where the value each agent has for its own piece of cake is
at least 1/n of the value it assigns to the entire cake. An envy-free (EF) allocation is one where the value each agent assigns
to its own piece of cake is at least as high as the value it assigns to any other agent’s piece of cake. There is a rather large
body of literature on fairly cutting a cake according to these two criteria (see, e.g., the books by Robertson and Webb, 1998
and Brams and Taylor, 1996).

So far we have briefly discussed “justice”, but have not yet mentioned “truth”. Taking the game-theoretic point of view,
an agent’s valuation function is its private information, which is reported to a cake cutting mechanism. We would like a
mechanism to be truthful, in the sense that agents are motivated to report their true valuation functions. Like fairness, this
idea of truthfulness also lends itself to many interpretations. One variation, referred to as strategy-proofness in previous
papers by Brams et al. (2006, 2008), assumes that an agent will report its true valuation rather than lie if there exist
valuations of the other agents such that reporting truthfully yields at least as much value as lying. In the words of Brams
et al., “the players are risk-averse and never strategically announce false measures if it does not guarantee them more-valued
pieces. . . . Hence, a procedure is strategy-proof if no player has a strategy that dominates his true value function” (Brams et
al., 2008, p. 362).

The foregoing notion is strikingly weak compared to the notion of truthfulness that is common in the social choice
literature. Indeed, strategy-proofness is usually taken to mean that an agent can never benefit by lying, that is, for all
valuations of the other agents reporting truthfully yields at least as much value as lying. Put another way, truth-telling
is a dominant strategy. This notion is worst-case, in the sense that an agent cannot benefit by lying even if it is fully
knowledgeable of the valuations of the other agents. In order to prevent confusion we will avoid using the term “strategy-
proof”, and instead refer to the former notion of Brams et al. as “weak truthfulness” and to the latter standard notion as
“truthfulness”.

To illustrate the difference between the two notions, consider the most basic cake cutting mechanism for the case of
two agents, the Cut and Choose mechanism.1 Agent 1 cuts the cake into two pieces that are of equal value according to
its valuation; agent 2 then chooses the piece that it prefers, giving the other piece to agent 1. This mechanism is trivially
proportional and EF.2 It is also weakly truthful, as if agent 1 divides the cake into two pieces that are unequal according
to its valuation then agent 2 may prefer the piece that is worth more to agent 1. Agent 2 clearly cannot benefit by lying.
The mechanism is even truthful (in the strong sense) if the agents have the same valuation function. However, the mech-
anism is not truthful in general. Indeed, consider the case where agent 1 would simply like to receive as much cake as
possible, whereas the single-minded agent 2 is only interested in the interval [0, ε] where ε is small (for example, it may
only be interested in the cherry). If agent 1 follows the protocol it would only receive half of the cake. Agent 1 can do better
by reporting that it values the intervals [0, ε] and [ε,1] equally.

In this paper we consider the design of truthful and fair cake cutting mechanisms. We will design mechanisms where
the agents report valuations and the mechanism, taking the role of a direct revelation mechanism, determines the cuts of
the cake. However, there is a major obstacle that must be circumvented: regardless of strategic issues, and when there are
more than five agents, even finding a proportional and EF allocation in a bounded number of steps with a deterministic
mechanism is a long-standing open problem! See Procaccia (2009) for an up-to-date discussion.3 We shall therefore restrict
ourselves to specific classes of valuation functions where efficiently finding fair allocations is a non-issue; the richness of
our problem stems from our desire to additionally achieve truthfulness.

In particular, we will focus on the case where agents hold piecewise uniform, piecewise constant, and piecewise linear val-
uation functions. Piecewise uniform valuation functions capture the case where each agent is interested in a collection of
subintervals of [0,1] and has the same marginal value for each fractional piece in each desired subinterval. They can be
thought of as dichotomous preferences since intervals can be separated into acceptable and unacceptable intervals, and the
acceptable intervals all have the same marginal utility. While these valuations are restrictive, they are expressive enough to
capture some realistic settings. Piecewise uniform valuations capture the case when some parts of the cake satisfy a certain
property that an agent cares about and an agent desires as much of these parts as possible. An example of such a setting
is a shared computing server. Each researcher has certain times during which the server is not useful because of scheduling
constraints or waiting times for experiments, but outside of these times, the researcher would like as much time on the
computing server as possible. Piecewise constant and linear valuation functions capture the case where an agent’s marginal
value is constant and linear respectively, and are significantly more expressive. In particular, these valuation functions can
approximate any valuation function.

1 This mechanism is described here with the agents taking actions; equivalently, the mechanism acts on behalf of agents using the reported valuations.
2 Proportionality and envy-freeness coincide if there are two agents and the entire cake is allocated.
3 To be precise, previous work assumed that the entire cake has to be allocated, but this does not seem to be a significant restriction in the context of
fairness.

286 Y. Chen et al. / Games and Economic Behavior 77 (2013) 284–297
Our results In Section 3 we consider deterministic mechanisms when agent valuations are piecewise uniform. Our main
result is a deterministic mechanism for any number of agents that is truthful, proportional, EF, Lorenz dominant in a certain
sense, Pareto-efficient, and polynomial time when agents have piecewise uniform valuations.

To gain intuition for our mechanism, it is insightful to examine the special case of two agents. In the two agent mech-
anism, the crux of the allocation is how we should allocate intervals that both agents desire. We can throw away intervals
that are undesired by any agent, and allocate the intervals that are only desired by a single agent to that agent. Our mecha-
nism then allocates the intervals desired by both agents to try to equalize the total lengths given to each agent. If the length
of intervals only desired by agent i exceeds the length of intervals only desired by agent j, then agent i will be given a
smaller share of the mutually desired intervals. To see how this encourages truthfulness, consider the deviation where an
agent misstates and increases the lengths of intervals only desired by that agent. The agent receives all of these intervals
(which include intervals it does not actually desire), but obtains a smaller share of the mutually desired intervals. It turns
out that the equalization of lengths removes the incentive for agents to misstate their valuations.

In the general mechanism for n agents, our mechanism examines what the fairness requirement means for the allocation
given to different agents. Agents who receive a small amount of the cake due to fairness requirements are handled first and
given the best possible fair allocation. As an example of agents who might be handled first, there could be a set of agents
who all desire the same small interval of the cake. For fairness to be maintained, each of these agents must receive the
same fraction of this small interval. These agents would be selectively handled earlier by the mechanism. By protecting the
disadvantaged agents in this way, the mechanism removes the incentive to report larger intervals than those that are truly
desired. Our mechanism is highly dependent on the assumption that agents hold piecewise uniform valuations and there is
no easy way to generalize our techniques to piecewise constant valuations.

In Section 4 we consider randomized mechanisms. We slightly relax truthfulness by asking that the mechanism be
truthful in expectation, that is, an agent cannot hope to increase its expected value by lying for any reports of other agents. For
general valuations, we present a simple randomized mechanism that is truthful in expectation, and is ex-post proportional
and EF. Our result relies on the existence of perfect partitions, which are partitions of the cake where every agent has
value exactly 1/n for every element of the partition. Given a perfect partition, the randomized mechanism constructs an
allocation by indexing the elements of the partition, and allocating the elements to agents based on a randomly drawn
permutation. The perfect partition guarantees fairness, while truthfulness in expectation is preserved because the agent’s
expected value is a function of the agent’s value for the entire cake and not of the specific partition. While perfect partitions
are known to exist, there is no known algorithm for constructing perfect partitions for general valuations. We provide
explicit constructions of perfect partitions when agents hold piecewise linear valuations.

Related work We have recently learned of independent parallel work by Mossel and Tamuz (2010), who ask similar ques-
tions about truthful and fair cake cutting. However, their work only considers randomized mechanisms, and they provide
existence results rather than concrete mechanisms for specific classes of valuations. They also focus solely on proportionality
rather than proportionality and envy-freeness together. Under general assumptions on valuation functions (which are essen-
tially the same as our definition of valid valuations), they show that there exists a mechanism that is truthful in expectation
and always guarantees each agent a value of more than 1/n. The results are then extended to the case of indivisible goods.
The technical overlap between the two papers is very small; we refer the reader’s attention to this overlap in a footnote in
Section 4.

Thomson (2007) showed that a truthful and Pareto-efficient mechanism must be dictatorial in the slightly different
setting of pie cutting. In pie cutting, the pie is modeled as a circular object and the feasible cuts are wedges, while in cake
cutting the cake is modeled as the interval [0,1] and feasible cuts are subintervals. Though the two settings appear similar
and even possibly equivalent, they are actually distinct and results for one setting do not readily carry over to the other.
Brams et al. (2008) provide a more in depth discussion. Note that Pareto-efficiency is not a fairness property and neither
implies, nor is implied by, envy-freeness or proportionality.

Our deterministic mechanism is closely related to the egalitarian solution studied by Dutta and Ray (1989) for cooperative
games and Bogomolnaia and Moulin (2004) for the random assignment problem with dichotomous preferences. It is also
related to the probabilistic serial mechanism studied by Bogomolnaia and Moulin (2001) and Katta and Sethuraman (2006)
for the random assignment problem. However, the cake cutting setting is distinct from the cooperative games setting and
the random assignment problem, so though our mechanism uses similar ideas and techniques, our results are not implied
by these earlier results.

Dutta and Ray (1989) propose the egalitarian solution for cooperative games with transferable utility. As cake cutting is
not a transferable utility setting, the connection to Dutta and Ray (1989) involves defining a convex, cooperative game when
agents have piecewise uniform valuations in the cake cutting setting. Our deterministic mechanism finds an allocation that
is closely related to the egalitarian solution, and our algorithm for finding the solution also resembles that proposed in this
earlier work. We expand on this connection in Section 3.5.3, where we use it to show that our deterministic mechanism
finds an allocation that is Lorenz dominant in a certain sense.

Our mechanism also resembles the mechanisms proposed by Bogomolnaia and Moulin (2001), Katta and Sethuraman
(2006), and Bogomolnaia and Moulin (2004) for the random assignment problem under different assumptions on prefer-
ences. Bogomolnaia and Moulin (2001) study the setting where agents have strict ordinal preferences, Katta and Sethuraman

(2006) extend this to the full preference domain (where indifferences are allowed), and Bogomolnaia and Moulin (2004)

Y. Chen et al. / Games and Economic Behavior 77 (2013) 284–297 287
study the case when agents have dichotomous preferences (i.e., items are either acceptable or unacceptable and agents are
indifferent between any two acceptable items).

Because we study cake cutting when agents have piecewise uniform valuations, we can relate the cake cutting setting
to the random assignment setting as follows. Given agents’ reports, make a mark at the beginning of and end of each
agent’s desired intervals. Construct an item for every subinterval formed by consecutive marks. Giving an agent an item
with probability p is the same as allocating the agent a p-fraction of the associated subinterval. While this transformation
converts cake cutting into a discrete allocation problem, there are fundamental differences between our setting and the
random assignment setting. First, in our setting, agents’ valuations affect the items that are created, whereas in the random
assignment problem items are assumed to be given. Second, in our setting, agents want as many items as possible, while the
random assignment setting assumes that each agent wants at most one item. In addition to these two general differences,
there are differences specific to each of the previously studied settings. If we look specifically at dichotomous preferences
studied by Bogomolnaia and Moulin (2004), our agents may not have dichotomous preferences for items created based
on agent reports; that is, some subintervals might be larger than others and agents, though they have piecewise uniform
valuations, might not have the same value for all desired items. Even if we discretize the cake into many tiny items (to
try and equalize agent values for desired items), our agents still desire as many of the created items as possible. If we
look specifically at strict ordinal preferences studied by Bogomolnaia and Moulin (2001), our agents may be indifferent
between the items formed by subintervals between consecutive marks. On the other hand, our agents cannot hold arbitrary
ordinal preferences over subintervals between consecutive marks, since if two agents desire two subintervals, both agents
would value the longer subinterval more than the shorter. This last difference also persists under the full preference domain
studied by Katta and Sethuraman (2006). Because of these differences, our results cannot be derived from these earlier
results, despite the underlying dependence on similar ideas.

The network flow ideas that we use to prove properties of our mechanism are similar to those used by Katta and
Sethuraman (2006) to show that the egalitarian assignment solution can be computed in polynomial time. Interestingly,
Katta and Sethuraman (2006) note that the egalitarian assignment solution is identical to another independent mechanism
for finding a lexicographically optimal flow in a network due to Megiddo (1979).

2. Preliminaries

We consider a heterogeneous cake, represented by the interval [0,1]. A piece of cake is a finite union of subintervals
of [0,1]. We sometimes abuse this terminology by treating a piece of cake as the set of the (inclusion-maximal) in-
tervals that it contains. The length of the interval I = [x, y], denoted len(I), is y − x. For a piece of cake X we denote
len(X) = ∑

I∈X len(I).
The set of agents is denoted N = {1, . . . ,n}. Each agent i ∈ N holds a private valuation function V i , which maps given

pieces of cake to the value agent i assigns them. Formally, each agent i has a value density function, vi : [0,1] → [0,∞), that
is piecewise continuous. The function vi characterizes how agent i assigns value to different parts of the cake. The value of
a piece of cake X to agent i is then defined as

V i(X) =
∫
X

vi(x)dx =
∑
I∈X

∫
I

vi(x)dx.

We note that the valuation functions are additive, i.e. for any two disjoint pieces X and Y , V i(X ∪ Y) = V i(X) + V i(Y), and
non-atomic, that is V i([x, x]) = 0 for every x ∈ [0,1]. The last property implies that we do not have to worry about the
boundaries of intervals, i.e., open and closed intervals are identical for our purposes. We further assume that the valuation
functions are normalized, i.e. V i([0,1]) = ∫ 1

0 vi(x)dx = 1.
A cake cutting mechanism is a function f from the valuation function of each agent to an allocation (A1, . . . , An) of

the cake such that the pieces Ai are pairwise disjoint. For each i ∈ N the piece Ai is allocated to agent i, and the rest of
the cake, i.e., [0,1] \ ⋃

i∈N Ai , is thrown away. Here we are assuming free disposal, that is, the mechanism can throw away
resources without incurring a cost.

We say that an allocation A1, . . . , An is proportional if for every i ∈ N , V i(Ai) � 1/n, that is, each agent receives at
least a (1/n)-fraction of the cake according to its own valuation. We say that an allocation is envy-free (EF) if for every
i, j ∈ N , V i(Ai) � V i(A j), i.e., each agent prefers its own piece of cake to the piece of cake allocated to any other agent.
A proportional (resp., EF) cake cutting mechanism always returns a proportional (resp., EF) allocation.

Note that when n = 2 proportionality implies envy-freeness. Indeed, V i(Ai) + V i(A3−i) � 1, and hence if V i(Ai) � 1/2
then V i(A3−i) � 1/2. Under the free disposal assumption the converse is not true. For example, an allocation that throws
away the entire cake is EF but not proportional. In general, when n > 2 proportionality neither implies nor is implied by
envy-freeness.4
4 If free disposal is not assumed, that is, the entire cake is allocated, then envy-freeness implies proportionality for any n.

288 Y. Chen et al. / Games and Economic Behavior 77 (2013) 284–297
An allocation A′
1, . . . , A′

n Pareto-dominates A1, . . . , An if V i(A′
i) � V i(Ai) for every i, with the inequality strict for some i.

An allocation A1, . . . , An is Pareto-efficient if there is no allocation that Pareto-dominates A1, . . . , An .
A cake cutting mechanism f is truthful if when an agent lies it is allocated a piece of cake that is worth, ac-

cording to its real valuation, no more than the piece of cake it was allocated when reporting truthfully. Formally,
denote Ai = f i(V 1, . . . , Vn), and let V be a class of valuation functions. The mechanism f is truthful if for every
agent i, every collection of valuations functions V 1, . . . , Vn ∈ V , and every V ′

i ∈ V , it holds that V i(f i(V 1, . . . , Vn)) �
V i(f i(V 1, . . . , V i−1, V ′

i , V i+1, . . . , Vn)).
Our results require that agent valuations be elements of a restricted family of valuation functions. In particular, we de-

fine the families of piecewise linear, piecewise constant, and piecewise uniform valuation functions. We say that a valuation
function V i is piecewise linear if its corresponding value density function vi is piecewise linear, that is [0,1] can be parti-
tioned into a finite number of intervals such that vi is linear on each interval. We define piecewise constant valuations in
the same way, requiring that densities be constant rather than linear. We say that V i is piecewise uniform if V i is piecewise
constant and moreover vi is either some constant c ∈ R+ (the same one across intervals) or zero. Piecewise uniform val-
uations can be thought of as dichotomous valuations where intervals are either acceptable or unacceptable, all acceptable
intervals have the same marginal utility, and all unacceptable intervals have marginal utility 0. We call the intervals that
the agent finds acceptable its reference piece of cake, denoted by Ui . Because we require densities to be normalized, Ui pins
down the density function of the agent:

vi(x) =
{

1
len(Ui)

if x ∈ Ui,

0 otherwise.

Given a piece of cake X , it holds that V i(X) = len(X ∩ Ui)/ len(Ui). From the computational perspective, the size of
the input to the cake cutting mechanism is the number of bits that define the boundaries of the intervals in the agents’
reference pieces of cake.

Our deterministic mechanism requires piecewise uniform valuations, while our randomized mechanism allows for piece-
wise linear valuations. We believe that piecewise uniform valuations are very natural. An agent would have such a valuation
function if it is simply interested in pieces of the good that have a certain property, e.g., a child only likes portions of the
cake that have chocolate toppings, and wants as much cake with chocolate toppings as possible. As a more practical exam-
ple, assume that the cake represents access time to a backup server. Each agent is equally interested in time intervals when
its computer is idle or when it is not modifying its data.

3. Deterministic mechanisms

In order to attain a truthful, deterministic mechanism, we focus on the restricted family of piecewise uniform valuations.
The restricted family is still rich enough to make the problem challenging and capture real world situations, and we believe
that our results provide a foundation for future work on truthful cake cutting. Indeed, it remains an open question whether
truthful, deterministic mechanisms exist for even the slightly richer family of piecewise constant valuations. In the rest of
this section, we assume that valuations are piecewise uniform.

3.1. A deterministic mechanism

Before introducing our mechanism we present some required notation. Let S ⊆ N be a subset of agents and let X be
a piece of cake. Let D(S, X) denote the portions of X that are valued by at least one agent in S . Formally, D(S, X) =
(
⋃

i∈S Ui) ∩ X , and is itself a union of intervals.
Let avg(S, X) = len(D(S, X))/|S| denote the average length of intervals in X desired by at least one agent in S . We say

that an allocation is exact with respect to S and X if it allocates to each agent in S a piece of cake of length avg(S, X)

comprised only of desired intervals. Clearly this requires allocating all of D(S, X) since the total length of allocated inter-
vals is avg(S, X) · |S| = len(D(S, X)). Suppose S = {1,2} and X = [0,1]: if U1 = U2 = [0,0.2] then agents 1 and 2 receiving
[0,0.1] and [0.1,0.2] respectively is an exact allocation; but if U1 = [0,0.2], U2 = [0.3,0.7] then there is no exact alloca-
tion.

The deterministic mechanism for n agents with piecewise uniform valuations is a recursive mechanism that finds a
subset of agents with a certain property, makes the allocation decision for that subset, and then makes a recursive call on
the remaining agents and the remaining intervals. Specifically, for a given set of agents S ⊆ N and a remaining piece of cake
to be allocated X , we find the subset S ′ ⊆ S of agents with the smallest avg(S ′, X). We then give an exact allocation of
D(S ′, X) to S ′ . We recurse on S \ S ′ and the intervals not desired by any agent in S ′ , i.e. X \ D(S ′, X). The pseudocode of

the mechanism is given as Mechanism 1.

Y. Chen et al. / Games and Economic Behavior 77 (2013) 284–297 289
Mechanism 1 (V 1, . . . , Vn)
1. SubRoutine({1, . . . ,n}, [0,1], (V 1, . . . , Vn))

SubRoutine(S , X , V 1, . . . , Vn):

1. If S = ∅, return.
2. Let Smin ∈ argminS ′⊆S avg(S ′, X) (breaking ties arbitrarily).
3. Let E1, . . . , En be an exact allocation with respect to Smin, X (breaking ties arbitrarily). For each i ∈ Smin, set Ai = Ei .
4. SubRoutine(S \ Smin, X \ D(Smin, X), (V 1, . . . , Vn)).

In particular, Steps 2 and 3 of SubRoutine imply that if S = {i} then Ai = D(S, X). For example, suppose X = [0,1],
U1 = [0,0.1], U2 = [0,0.39], and U3 = [0,0.6]. In this case, the subset with the smallest average is {1}, so agent 1 receives
all of [0,0.1] and we recurse on {2,3}, [0.1,1]. In the recursive call, set {2} has average 0.39 − 0.1 = 0.29, set {3} has
average 0.6 − 0.1 = 0.5, and set {2,3} has average (0.6 − 0.1)/2 = 0.25. As a result, the entire set {2,3} is chosen as the
set with smallest average, and an exact allocation of [0.1,1.0] is given to agents 2 and 3. One possible allocation is to
give agent 2 [0.1,0.35] and agent 3 [0.35,0.6]. Note that if agent 1 uniformly values [0,0.2] instead, the first call would
choose {1,2} as the subset with the smallest average, equally allocating [0,0.39] between agents 1 and 2 and giving the
rest, [0.39,0.6], to agent 3.

Our goal in the rest of this section is to prove the following theorem.

Theorem 3.1. Assume that the agents have piecewise uniform valuation functions. Then Mechanism 1 is truthful, proportional, EF,
Lorenz dominant (in a certain sense), Pareto-efficient, and polynomial time.

To prove the theorem we exploit a connection to network flow in Section 3.3. As explained in Section 1, this technique
is a simple generalization of related results in the economics and operations research literature, but we include some of the
details for completeness. Our main technical contributions in this section are the truthfulness and fairness of Mechanism 1,
which are established in Section 3.5.

3.2. The two agent mechanism

To gain intuition for the general case of Theorem 3.1 we first describe the special case of two agents. Note that designing
truthful, proportional and EF mechanisms even for this case is nontrivial. To see the difficulty, consider an intuitive first
attempt at a proportional and EF mechanism. We have already seen that Cut and Choose is not truthful for two agents.
Another straightforward approach would be to mark the end points of all submitted intervals and divide every resulting
subinterval equally between the two agents. One possibility is to always give the left half of each subinterval to agent 1 and
the right half to the agent 2. This mechanism is clearly proportional and EF since every agent receives value exactly 1/2.
However, it is not truthful due to a simple example. Under this mechanism, if both agents value the entire cake, agent 1
receives [0,0.5] and the agent 2 receives [0.5,1]. Suppose that agent 1’s true valuation consists of only [0,0.5]. If it reports
truthfully, it receives [0,0.25], [0.5,0.75] which gives value 0.5. The agent can gain by instead reporting that it values all
of [0,1] and receive [0,0.5] which gives it value 1. In particular, suppose that when both agents report [0,1], agent 1
receives [0,0.5]. In order for the mechanism to be truthful, whenever agent 1 reports some set of subintervals of [0,0.5]
and agent 2 reports [0,1], the mechanism must allocate to agent 1 all of this agent’s desired intervals.

We now discuss our truthful Mechanism 1 for the case of two agents. Recall that Ui denotes the reference piece of cake
of agent i ∈ N , and for i ∈ {1,2} let W i = Ui \ U3−i , and W12 = U1 ∩ U2. W1, W2, W12 are disjoint, and this will allow us to
interchangeably write len(W1) + len(W2) + len(W12) and len(W1 ∪ W2 ∪ W12).

For two agents, the decision of the mechanism hinges on the choice of Smin in the first call to SubRoutine. There are
three possibilities for Smin: {1}, {2}, {1,2}. If Smin = {i}, then agent i receives Ui = W i ∪ W12 and agent 3 − i receives
U3−i \ Ui = W3−i . On the other hand, if Smin = {1,2}, then the mechanism gives an exact allocation with each agent
receiving equal lengths. Agent i receives all of W i and W12 is split so that the total lengths for each agent are equal.

3.2.1. Properties of the two agent mechanism
To prove that the mechanism for two agents is well-defined, fair, Pareto-efficient, and truthful,5 it is useful to introduce

variables δi = (len(W12) − len(W i) + len(W3−i))/2 for each agent. It holds that δ1 + δ2 = len(W12) and δ1 + len(W1) =
len(W12 ∪ W1 ∪ W2)/2 = δ2 + len(W2). Qualitatively, δi measures the share of W12 that agent i is entitled to due to the
size of W i . Smaller values of len(W i) give the agent a larger claim to W12 and increase δi . We can relate values of these
variables to the choices of Smin made by the mechanism.
5 We defer a discussion of Lorenz dominance to the proof for the general case with n agents.

290 Y. Chen et al. / Games and Economic Behavior 77 (2013) 284–297
By definition of W i and W12, avg({1}) = len(W1 ∪ W12), avg({2}) = len(W2 ∪ W12), avg({1,2}) = len(W1 ∪ W2 ∪ W12)/2.
There are three cases:

1. δ1 < 0, δ2 > len(W12). Since len(W1) + δ1 = len(W2) + δ2, len(W1) > len(W2) and therefore avg({1}) > avg({2}). More-
over, using δ2 > len(W12), we have

len(W12) − len(W2) + len(W1)

2
> len(W12),

and it follows that

len(W12) + len(W2) + len(W1)

2
> len(W12) + len(W2),

that is, avg({1,2}) > avg({2}).
This case corresponds to Smin = {2}, and the mechanism gives all of W2 ∪ W12 to agent 2 and all of W1 to agent 1.

2. 0 � δ1 � len(W12), 0 � δ2 � len(W12). We can use the same arguments as the previous case with the inequalities
flipped to show that avg({1,2}) < avg({1}) and avg({1,2}) < avg({2}). This case corresponds to Smin = {1,2}, and the
mechanism gives an exact allocation of W1 ∪ W2 ∪ W12 to the agents.

3. δ2 < 0, δ1 > len(W12). The analysis is the same as case 1, with agents 1 and 2 changing roles. This corresponds to
Smin = {1}. Agent 1 receives all of W1 ∪ W12 and agent 2 receives all of W2.

First, we show that Mechanism 1 is well-defined. Mechanism 1 calls for an exact allocation to be made to Smin at each
step, but this may not always be possible. When |Smin| = 1 an exact allocation is trivial, but when Smin = {1,2}, we need to
guarantee that we can exactly split D({1,2}, [0,1]). Because Smin = {1,2} only when 0 � δ1, δ2 � len(W12), this is possible
by giving W i and δi of W12 to agent i.

Next, we establish the fairness properties of proportionality and envy-freeness. If Smin = {1,2}, proportionality and envy-
freeness are clear. If Smin = {1}, then agent 1 receives all of its desired intervals so its value is 1. Agent 2 receives only W2,
but since Smin = {1}, len(W1 ∪ W12) � len(W1 ∪ W12 ∪ W2)/2 which implies len(W12) � len(W2), and hence agent 2
receives value at least 1/2 and is not envious of agent 1.

Pareto-efficiency is easy to see because in all cases, we allocate W i to agent i and fully allocate W12, so it is not possible
to give more lengths to one agent without decreasing the allocation of the other.

In order to establish Theorem 3.1 for the two agent case it remains to show truthfulness. We will take the point of view
of agent i ∈ {1,2}. If it holds that δi > len(W12) then the agent receives all desired intervals and has no incentive to deviate,
hence we can assume that δi � len(W12).

Note that an agent always receives all of W i , so profitable manipulations will try to obtain more of W12 by increasing δi
while not losing too much of W i . Also note that by definition of δi , an increase or decrease of len(W i) by k will respectively
decrease or increase δi by k/2.

Suppose that agent i reports U ′
i �= Ui , inducing new pieces W ′

12, W ′
1, W ′

2. Before manipulating the agent receives
len(W i) + max(δi,0). Note that

len
(
W ′

12

) + len
(
W ′

3−i

) = len(U3−i) = len(W12) + len(W3−i),

that is, this sum is not affected by the report of agent i.
If len(W ′

1) = len(W1) then δi is unchanged, and the agent receives the same length of intervals (though the actual
intervals received may not be desired). If len(W ′

i) = len(W i)−k then the agent loses at least k of W i and gains at most k/2
from an increase in δi ; this is not profitable. Finally, if len(W ′

i) = len(W i) + k, then the agent gains undesired intervals of
length k and δi is weakly smaller, so the agent does not gain any more of W12 by deviating.

3.2.2. An interpretation of the two agent mechanism
When |S| = 2, the mechanism is equivalent to a swapping procedure. The proof of this equivalence is postponed to

Appendix A. As before, let W1, W2, W12 describe the intervals that only agent 1 desires, only agent 2 desires, and both
agents desire. Discard the intervals that neither agent desires, and give an initial grant of half of W1, W2, W12 to each
agent. Assume without loss of generality that len(W1) � len(W2). The swapping procedure can be described as follows:

1. Swap pieces X, Y of equal length where agent 1 owns X , agent 2 owns Y , X ⊆ W2, Y ⊆ W1.
2. Swap pieces X, Y of equal length where agent 1 owns X , agent 2 owns Y , X ⊆ W2, Y ⊆ W12.
3. If there are still pieces of W2 owned by agent 1, give these intervals to agent 2.

This procedure first gives each agent an equal piece of each kind of interval. The first swaps performed are mutually
beneficial: each agent gives pieces of the other agent’s desired intervals in exchange for pieces of its own desired intervals.
However, eventually, agent 1 obtains all of W1 and these swaps no longer exist. The second swaps involve trades where
agent 2 receives remaining pieces of W2 in exchange for giving up pieces of W12. This trade does not improve the utility

of agent 2, but does improve the utility of agent 1. If agent 2 gives away all of its share of W12, then agent 1 receives

Y. Chen et al. / Games and Economic Behavior 77 (2013) 284–297 291
Fig. 1. The flow network induced by the example.

all of W1 and W12, and agent 2 is given all of W2 due to step 3 which gives the remaining shares of W2 to agent 2 for
free. If agent 2 obtains all of W2 without relinquishing all of its share of W12, then agents 1 and 2 split W12 (potentially
unequally), and each agent i receives W i .

3.3. Exact allocations and maximum flows

Having defined Mechanism 1 and shown that it has the desired properties in the case of two agents, we now generalize
the proofs to n agents. Before turning to properties of truthfulness and fairness, we point out that, as in the two agent case,
it is unclear whether Mechanism 1 is well-defined. In particular, the mechanism requires an exact allocation E with respect
to the subset Smin and X , but it remains to show that such an allocation exists, and to provide a way to compute it. To this
end we exploit a close relationship between exact allocations and maximum flows in networks.

For a given set of agents S ⊆ N and a piece of cake to be allocated X , define a graph G(S, X) as follows. We keep track
of a set of marks, which will be used to generate nodes in G(S, X). First mark the left and right boundaries of all intervals
that are contained in X . For each agent i ∈ N and subinterval in Ui , mark the left and right boundaries of subintervals that
are contained in Ui ∩ X . When we have finished this process, each pair of consecutive markings will form an interval such
that each agent either uniformly values the entire interval or values none of the interval. In G(S, X), create a node for each
interval I formed by consecutive markings, and add a node for each agent i ∈ N , a source node s, and a sink node t . For
each interval I , add a directed edge from source s to I with capacity equal to the length of the interval. Each agent node
is connected to t by an edge with capacity avg(S, X). For each interval–agent pair (I, i), add a directed edge with infinite
capacity from node I to the agent i if agent i desires interval I .

For example, suppose U1 = [0,0.25] ∪ [0.5,1] and U2 = [0.1,0.4]. If X = [0,1] then the interval markings will be
{0,0.1,0.25,0.4,0.5,1}. Agent 1 values [0,0.1], both agents value [0.1,0.25], agent 2 values [0.25,0.4], neither agent val-
ues [0.4,0.5] and agent 1 values [0.5,1]. It holds that len(D({1,2}, [0,1])) = 0.9. Average values are 0.75, 0.3 and 0.45 for
sets {1}, {2} and {1,2} respectively. See Fig. 1 for an illustration of the induced flow network.

Lemma 3.2. Let S ⊆ N, and let X be a piece of cake. There is a flow of size len(D(S, X)) in G(S, X) if and only if for all S ′ ⊆ S,
avg(S ′, X)� avg(S, X).

We prove the lemma using an application of the classic Max-Flow Min-Cut Theorem (see, e.g., Cormen et al., 2001).

Proof. Assume that for all S ′ ⊆ S , avg(S ′, X) � avg(S, X). By the Max-Flow Min-Cut Theorem, the minimum capacity re-
moved from a graph in order to disconnect the source and sink is equal to the size of the maximum flow. The only edges
with finite capacity in G(S, X) are the ones that connect agent nodes to the sink, and the ones that connect the source to
the interval nodes.

Construct a candidate minimum cut by disconnecting some set of agent nodes T ⊆ S from the sink at cost |T | · avg(S, X)

and then disconnecting all the (s, I) connections to interval nodes I desired by an agent i ∈ S \ T . This means that the total
additional capacity we need to remove is len(D(S \ T , X)), the total length of intervals desired by at least one agent in S \ T .
By assumption, this is at least |S \ T | · avg(S, X). As a result, this cut has capacity of at least

|T | · avg(S, X) + |S \ T | · avg(S, X) = |S| · avg(S, X) = len
(

D(S, X)
)
.

In the other direction, assume that there is a flow of size len(D(S, X)) in G(S, X), and assume for contradiction that
there exists S ′ ⊆ S such that avg(S ′, X) < avg(S, X). Construct a cut by disconnecting the (s, I) connections to interval
nodes desired by an agent i ∈ S ′ , and disconnecting the agent nodes S \ S ′ from the sink. The total capacity of the cut is

∣∣S ′∣∣ · avg
(

S ′, X
) + ∣∣S \ S ′∣∣ · avg(S, X) <

∣∣S ′∣∣ · avg(S, X) + ∣∣S \ S ′∣∣ · avg(S, X)

= |S| · avg(S, X)()
= len D(S, X) ,

292 Y. Chen et al. / Games and Economic Behavior 77 (2013) 284–297
and by the Max-Flow Min-Cut Theorem the maximum flow must be of size less than len(D(S, X)), in contradiction to our
assumption. �

The following lemma establishes that a flow of size len(D(S, X)) in G(S, X) induces an exact allocation.

Lemma 3.3. Let S ⊆ N, and let X be a piece of cake. There exists an exact allocation with respect to S, X if and only if there exists a
maximum flow of size len(D(S, X)) in G(S, X).

Proof. Suppose that we have a maximum flow of size len(D(S, X)); we show how to use this flow to generate an exact
allocation with respect to S, X . For each edge between interval node I and agent i ∈ N that receives positive flow of c in
the max flow, allocate c of I to agent i. This allocation is feasible because the interval nodes represent disjoint subintervals
of X and the flow to the interval’s node is limited by the capacity of the edge between s and the interval node, which is
the length of the interval. In addition, this allocation must give each agent exactly avg(S, X) in desired intervals. To see this,
note that all paths to the sink must pass through agent nodes, and the sum of capacities of the edges between the agents
and the sink is D(S, X). For a maximum flow to have size D(S, X), these edges must saturated.

In the other direction, suppose that we have an exact allocation with respect to S , X . We can generate a feasible flow
of size len(D(S, X)) by setting a flow of c on an edge (I, i) if agent i receives c of interval I in the exact allocation, and
saturating all the edges (s, I) and (i, t) for intervals I and agents i ∈ N . �

By combining the “if” directions of Lemma 3.2 and Lemma 3.3 we see that the mechanism is indeed well-defined: if S
has the smallest average then there exists an exact allocation with respect to S , X .6 Moreover, we obtain a tractable mecha-
nism for computing an exact allocation, by computing the maximum flow and deriving an exact allocation. A maximum flow
can be computed in time that is polynomial in the number of nodes, that is, polynomial in our input size (see, e.g., Cormen
et al., 2001).

3.4. Polynomial time

In order to show that Mechanism 1 can be implemented in polynomial time it remains to show that it is also possible
to implement Step 2 of SubRoutine in polynomial time. Indeed, an efficient implementation of Step 2 would mean that
SubRoutine can be implemented in polynomial time, and there are at most n + 1 calls to SubRoutine. So, the task is to find
Smin ∈ argminS ′⊆S avg(S, X) in polynomial time, given S ⊆ N and a piece of cake X . This can be done using network flow
arguments, which are an easy variation on those employed by Katta and Sethuraman (2006) (see Section 1 above). For com-
pleteness we quickly describe an implementation that is less efficient than Katta and Sethuraman (2006) but nevertheless
polynomial time.

Given S ⊆ N , a piece of cake X , and c > 0, construct a graph G ′(S, X, c); this graph is identical to G(S, X) as defined
above, except that the capacity on the edges between the agents and the sink is c (instead of avg(S, X)). The proof of the
following statement is identical to the proof of Lemma 3.2 (by replacing avg(S, X) with c everywhere): there is a flow of
size c|S| in the network G ′(S, X, c) if and only if for all S ′ ⊆ S , avg(S ′, X)� c.

Assume that the boundaries of the agents’ reference pieces of cake are represented by at most k bits, i.e. multiples
of 1/2k . For ease of exposition (so that we deal with integers rather than rationals), scale the interval by 2kn! so that the
boundaries are an element of {0,n!,2n!, . . . ,2kn!}.

There is a maximum c∗ such that G ′(S, X, c∗) has a flow of size c∗|S|. This c∗ is a member of a set of numbers that
includes all the possible values of avg(S ′, X) for S ′ ⊆ S . Because we have scaled the boundaries, the possible values for the
average are contained in {0,1, . . . ,2kn!}. Indeed, the numerator is an element of {0,n!,2n!, . . . ,2kn!}, and the denominator
is in {1, . . . ,n}. It holds that we can search for c∗ by performing binary search over {0,1, . . . ,2kn!} in polynomial time.
Binary search takes O (k + n log n) iterations, with each iteration taking time polynomial in k, n.7

Now, consider c∗ + 1. This network does not have a network flow of size (c∗ + 1)|S|. We can find a minimum cut in this
network in polynomial time (see, e.g., Cormen et al., 2001). In this cut there is a subset T ⊆ S such that the cut separates
S \ T from the sink, and the intervals desired by T from the source. This subset T must have avg(T , X) < c∗ + 1, and since
avg(T , X) (after scaling) must be an integer, avg(T , X) � c∗ .

We wish to claim that T is the Smin we are looking for. Indeed, note that since there is a flow of size c∗|S| in G ′(S, X, c∗),
it must hold that for all S ′ ⊆ S , avg(S ′, X)� c∗ , which directly implies the claim.

3.5. Fairness, efficiency, truthfulness

Our main tool in proving that Mechanism 1 is truthful and EF is the following lemma.

6 Note that the network in Fig. 1 does not satisfy the minimum average requirement and does not provide a corresponding exact allocation.

7 Even though we multiply values by 2kn!, the number of bits needed is only O (k + n log n) and still polynomial in n, k.

Y. Chen et al. / Games and Economic Behavior 77 (2013) 284–297 293
Lemma 3.4. Let S1, . . . , Sm be the ordered sequence of agent sets with the smallest average as chosen by Mechanism 1 and X1, . . . , Xm

be the ordered sequence of pieces to be allocated in calls to SubRoutine. That is, X1 = [0,1], X2 = X1 \ D(S1, X1), . . . , Xm =
Xm−1 \ D(Sm−1, Xm−1). Then for all i > j, avg(Si, Xi) � avg(S j, X j), and agents that are members of later sets receive weakly more
in desired lengths.

Proof. Suppose not. Then at some point, avg(Si, Xi) > avg(Si+1, Xi+1). Now consider Si ∪ Si+1. We will show that
avg(Si ∪ Si+1, Xi) < avg(Si, Xi), contradicting the choice of Si as the subset of agents with the smallest avg at step i. Note
that Si and Si+1 are disjoint since agents are removed once they have been part of the subset with the smallest average.
Thus,

avg(Si ∪ Si+1, Xi) = len(D(Si ∪ Si+1, Xi))

|Si| + |Si+1|
= len(D(Si, Xi)) + len(D(Si+1, Xi \ D(Si, Xi)))

|Si | + |Si+1|
= |Si | · avg(Si, Xi) + |Si+1| · avg(Si+1, Xi+1)

|Si| + |Si+1|
<

|Si | · avg(Si, Xi) + |Si+1| · avg(Si, Xi)

|Si | + |Si+1|
= avg(Si, Xi),

where the second transition is true since Si and Si+1 are disjoint, and the inequality follows from our assumption. �
3.5.1. Envy-freeness

Envy-freeness now follows immediately from Lemma 3.4. Indeed, consider an agent i ∈ N , and as before let S j be
the subset of agents with the smallest average in the j’th call to SubRoutine. Suppose i ∈ S j . The agent does not envy
other agents in S j since these agents are given an exact allocation and all receive the same length in desired intervals. By
Lemma 3.4, the agent does not envy agents in Sk for k < j because the amount agents receive weakly increases with each
call. The agent does not envy agents in Sk for k > j because all intervals desired by the agent are allocated and removed
from consideration when the agent receives its allocation.

3.5.2. Proportionality
Before we establish proportionality, we prove the following useful lemma, which shows that no intervals are wasted in

the allocation produced by Mechanism 1.

Lemma 3.5. Mechanism 1 assigns all subintervals desired by at least one agent to an agent who desires the interval.

Proof. Every interval in [0,1] is either allocated in one of the calls to SubRoutine, or it is left unallocated by the final call
to SubRoutine. If an interval is allocated in one of the calls to SubRoutine, then it is part of an exact allocation, and in
an exact allocation, each allocated agent receives only desired intervals. If an interval is left unallocated in the final call to
SubRoutine, then it must be that no agent desired the interval. Indeed, all intervals desired by agents allocated prior to the
final call have already been allocated, and the final call allocates all of D(S ′, X ′) to agents in S ′ , where S ′ and X ′ are the
inputs to the final call of SubRoutine. �

Combining Lemma 3.5 with envy-freeness gives us proportionality. Indeed, suppose that some agent i receives less than
len(D({i}, [0,1])/|S| of its desired intervals. Because no desired intervals are thrown away, some other agent must receive a
length of at least len(D({i}, [0,1])/|S| of the desired intervals of agent i, in contradiction to envy-freeness.

3.5.3. Lorenz dominance
The allocation produced by Mechanism 1 is related to the egalitarian solution for supermodular transferable utility coop-

erative games described by Dutta and Ray (1989). In particular, the length in intervals received by an agent in Mechanism 1
is equal to the value assigned to an agent in the egalitarian solution of a corresponding convex cooperative game.

To translate our setting into the cooperative game setting, consider the following coalitional value function for each set
of agents S:

v(S) = len
(

D
(

S, [0,1])).
This value function is clearly concave, so to translate to the convex setting, we consider the negation. Viewed in this
light, we have a cost-sharing scenario, where the interval [0,1] represents inputs to production which must be purchased.
For instance, we can think of [0,1] as a strip of land, and each agent requires irrigation canals on certain subintervals of

this strip of land. Once irrigation canals are built on a given subinterval, they can be used jointly by all the agents.

294 Y. Chen et al. / Games and Economic Behavior 77 (2013) 284–297
For convex games, Dutta and Ray (1989) give an algorithm (which is very similar to Mechanism 1) to find the egalitarian
solution, and they show that the egalitarian solution Lorenz dominates every solution in the core of the cooperative game.
To understand the significance of this result in our setting, we first need to understand Lorenz dominance and the core.

Translated to our setting, Lorenz dominance is the following criterion. For a given allocation A1, . . . , An , define a lengths
vector �(A1, . . . , An) which sorts the lengths in intervals agents receive from smallest to largest. An allocation A1, . . . , An

Lorenz dominates an allocation A′
1, . . . , A′

n if
∑k

i=1 �i(A1, . . . , An)�
∑k

i=1 �i(A′
1, . . . , A′

n) for all 1 � k � n with strict inequal-
ity for some k. In other words, the partial sums of the lengths vector are weakly greater, with strict inequality for at least
one partial sum. As an example, if we have two agents that split the interval [0,1] (they each receive lengths of 0.5), then
this allocation Lorenz dominates an allocation that gives the entire interval to a single agent.

Translated to our setting, the core consists of all allocations where no subset of agents S is allocated more than
len(D(S, [0,1])) in intervals. In particular, the core contains at least all allocations that do not allocate intervals to agents
who do not desire them. Indeed, if agents only receive desired intervals, there is no way that the total length of intervals
received by agents in a subset S can exceed len(D(S, [0,1]).

Given the correspondence between the egalitarian solution and the allocation produced by Mechanism 1, the allocation
Lorenz dominates any other allocation that only allocates intervals to agents who desire them and has a distinct lengths
vector.8 It was a priori unclear whether there would exist an allocation in which the desired lengths received by agents
corresponds to the values in the egalitarian solution because our setting is not a transferable utility setting. This is what is
established in Section 3.3. Moreover, our definition of Lorenz dominance looks at the lengths vector and not agent utilities.
Indeed, it is easy to show that a similar criterion is not satisfied if we characterize allocations by the vectors of agent’s
utilities.

3.5.4. Pareto-efficiency
Each agent’s utility is a function of the length in desired intervals it receives. As a result, Pareto-efficiency follows directly

from the discussion on Lorenz dominance.

3.5.5. Truthfulness
We establish truthfulness by examining the possible ways in which an agent can affect the progression of Mechanism 1.

In particular, we examine whether an agent i ∈ S would want to deviate from truthfulness in each call to SubRoutine(S, X).
Let Smin denote the set of agents with the smallest average if agent i reports truthfully. For a given call to SubRoutine,
agent i can report a valuation which changes the exact allocation made to Smin or which changes the choice of Smin
(or both).

We first consider deviations which try to modify the exact allocation for Smin, X . The exact allocation for Smin only
depends on the reports of agents in Smin, so we assume i ∈ Smin. If agent i reports truthfully, it receives exactly
len(D(Smin, X))/|Smin| in desired lengths. Agent i can deviate, causing the set of desired intervals to change to D ′(Smin, X).
If len(D ′(Smin, X))� len(D(Smin, X)), then this is not profitable. Suppose that len(D ′(Smin, X)) > len(D(Smin, X)). Now each
agent receives len(D ′(Smin, X))/|Smin| of intervals. The intervals received by agents other than i are in D(Smin, X) since
the other agents have not changed their reports. Subtracting off these intervals, the maximum length in desired intervals
agent i can receive from this deviation is len(D(Smin, X)) − (|S| − 1) · len(D ′(Smin, X))/|Smin| � len(D(Smin, X))/|Smin|, and
this deviation is not profitable.

We next consider deviations which attempt to change the choice of subset with the smallest average. There are two
cases to consider. Let avg′ denote the new averages induced by a deviation of agent i:

1. i /∈ Smin. For any set S ′ , if i /∈ S ′ , agent i cannot change D(S ′, X) with its reports. As a result, agent i cannot make the
mechanism choose some other S ′, i /∈ S ′ since the agent cannot change avg(Smin, X) or avg(S ′, X). Therefore, the agent’s
only deviation is to try and make the mechanism choose a set S ′, i ∈ S ′ . However, in order to do so, the agent must
make avg′(S ′, X) � avg(Smin, X) and will receive avg′(S ′, X) in desired lengths. By Lemma 3.4, the agent was receiving
at least avg(Smin, X) under truthful reports since the agent was chosen in a later round, so this is not profitable.

2. i ∈ Smin. Agent i receives avg(Smin, X) if it reports truthfully. Suppose agent i deviates and forces selection of another
set S ′ as the set with the smallest average. If i ∈ S ′ , then to be profitable, avg′(S ′, X) � avg(Smin, X). If i /∈ S ′ , then
agent i could not have affected avg(S ′, X) and S ′ was not chosen when i was truthful, so avg′(S ′, X) � avg(Smin, X).
Either way, to be profitable, it must be that avg′(S ′, X)� avg(Smin, X). Now consider some agent j ∈ Smin. When agent i
reported truthfully, agent j was receiving avg(Smin, X) of D(Smin, X). If j ∈ S ′ , then agent j receives exactly avg′(S ′, X)

in intervals. If j /∈ S ′ , then by Lemma 3.4, agent j receives at least avg′(S ′, X) in intervals. In either case, agent j receives
at least avg′(S ′, X) in intervals.

8 There may be multiple allocations with the same lengths vector. As a result, the allocation we produce does not Lorenz dominate every other allocation;

however, it does Lorenz dominate every other allocation that generates a distinct lengths vector.

Y. Chen et al. / Games and Economic Behavior 77 (2013) 284–297 295
Using arguments similar to the case above, we can now show that no deviation is profitable. While agent i deviates,
the other agents in Smin do not, so the intervals they receive are a part of D(Smin, X). This leaves

len
(

D(Smin, X)
) − (|Smin| − 1

) · avg′(S ′, X
)
� len

(
D(Smin, X)

) − (|Smin| − 1
) · avg(Smin, X)

= avg(Smin, X)

in desired intervals for agent i, so the deviation is not profitable.

This completes the proof of truthfulness. Putting everything together gives us Theorem 3.1.

4. Randomized mechanisms

In the previous section we saw that designing deterministic truthful and fair mechanisms is not an easy task, even if the
valuation functions of the agents are rather restricted. In this section we demonstrate that by allowing randomness we can
obtain significantly more general results.

A randomized cake cutting mechanism outputs a random allocation given the reported valuation functions of the agents.
There are very few previous papers regarding randomized mechanisms for cake cutting. A rare example is the paper by
Edmonds and Pruhs (2006b), where they give a randomized mechanism that achieves approximate proportionality with
high probability. We are looking for a more stringent notion of fairness. We say that a randomized mechanism is universally
proportional (resp., universally EF) if it always returns an allocation that is proportional (resp., EF).

One could also ask for universal truthfulness, that is, require that an agent may never benefit from lying, regardless of
the randomness of the mechanism. A universally truthful mechanism is simply a probability distribution over deterministic
truthful mechanisms. However, asking for both universal fairness and universal truthfulness would not allow us to enjoy
the additional flexibility that randomization provides. Therefore, we slightly relax our truthfulness requirement. Informally,
we say that a randomized mechanism is truthful in expectation if, for all possible valuation functions of the other agents, the
expected value an agent receives for its allocation cannot be increased by lying, where the expectation is taken over the
randomness of the mechanism.

We remark that while truthfulness in expectation seems natural, consistent as it is with expected utility maximization,
fairness (i.e., proportionality and envy-freeness) is something that we would like to hold ex-post; fairness is a property
of the specific allocation that is being made, and continues to be relevant after the mechanism has terminated. Interest-
ingly enough, if we were to turn this around, then achieving universal truthfulness and envy-freeness/proportionality in
expectation is trivial: simply allocate the entire cake to a uniformly random agent!

There is a simple class of randomized mechanisms which are truthful in expectation. Specifically, define a partition
mechanism as follows. On input V 1, . . . , Vn a partition mechanism chooses a partition {X1, . . . , Xn} of [0,1]. The mechanism
then uniformly samples a random permutation π over the n agents, and assigns agent i the piece Xπ(i) . If an agent reports
truthfully, then in expectation, it receives value

∑n
j=1

1
n V i(X j) = 1/n. If the agent reports some other valuation V ′

i , then the

partition the mechanism chooses may change to {X ′
1, . . . , X ′

n}, but the agent still receives value
∑n

j=1
1
n V i(X ′

j) = 1/n.
However, depending on the partitions chosen, a partition mechanism may not be universally proportional and EF. In order

to obtain a mechanism that is universally proportional and EF, we require that the partitions selected are perfect partitions.
A partition is perfect for reports V 1, . . . , Vn if V i(X j) = 1/n for every i and j. As the agents have value exactly 1/n for every
element of the partition, a partition which always selects perfect partitions is clearly universally proportional and EF.9

Though partition mechanisms which select perfect partitions are truthful in expectation and universally proportional and
EF, there still remains the obstacle of actually finding a perfect partition given the valuation functions of the agents. Does
such a partition exist, and can it be computed? More than sixty years ago, Neyman (1946) proved that if the valuation
functions of the agents are defined by the integral of a continuous probability measure then there exists a perfect partition.
Unfortunately, Neyman’s proof is nonconstructive, and to this day there is no known constructive method under general
assumptions on the valuation functions. This is not surprising since a perfect partition induces an EF allocation, and finding
an EF allocation in a bounded number of steps for more than four agents is an open problem.

However, if we assume more structure on agent preferences, then it is possible to explicitly construct perfect partitions.
As an example, consider the class of piecewise constant valuation functions. Each agent makes a mark at the left and right
boundaries of each of the intervals it is interested in, and we add two marks at 0 and 1. The value density function of each
agent is constant over each subinterval between two consecutive marks, as this subinterval is either contained in one of
the subintervals agent i is interested in or completely disjoint from any of them. Hence, the allocation that assigns to each
agent exactly 1/n of each of the subintervals between two consecutive marks is a perfect partition. A similar procedure can
be applied to piecewise linear valuation functions by observing that if agent densities are linear on a subinterval, we can
partition the subinterval into n elements that have the same value to each agent. Specifically, we can divide the subinterval
into 2n pieces of equal length and label the pieces 1, . . . ,2n from left to right. To construct element i of the partition, we

9 Mossel and Tamuz (2010) also observe that partition mechanisms which select perfect partitions are truthful in expectation and universally propor-

tional.

296 Y. Chen et al. / Games and Economic Behavior 77 (2013) 284–297
match piece i with piece 2n − i + 1. An agent has the same value for every element of the partition due to the assumption
of linear densities on the subinterval.

5. Discussion

We have made progress on the new question of fair and (dominant strategy) truthful cake cutting. On the way we have
made several conceptual contributions, including our consideration of restricted valuation functions in the context of cake
cutting, and (independently of Mossel and Tamuz, 2010) the introduction of randomized notions of fairness and a focus on
truthfulness which is familiar from mechanism design but has not been the focus of existing cake cutting literature.

The free disposal assumption For our deterministic result we rely heavily on the ability to throw undesired pieces of the
cake away. The reason this is important is that it prevents agents from being able to gain by reporting smaller intervals, in
hopes of gaining a larger share of the overlap while obtaining desired intervals for free. The following example illustrates
why removing the free disposal assumption can be problematic.

Since we can no longer discard undesired intervals, we must specify how to allocate the undesired intervals. Suppose
we decide to allocate undesired intervals evenly between agents 1 and 2, giving the left half to agent 1. While this seems
benign, our mechanism is no longer truthful.

Suppose there are two agents. Consider the allocation made when both agents report that they desire the interval [0,0.2].
Mechanism 1 calls for any allocation that splits [0,0.2] equally between the agents.10 Assume a simple implementation that
gives [0,0.1] to agent 1 and [0.1,0.2] to agent 2. Our rule for allocating undesired intervals gives [0.2,0.6] to agent 1 and
[0.6,1] to agent 2.

Now consider the case where agent 1 values [0,0.6] and agent 2 values [0,0.2]. If the agents report truthfully, Mecha-
nism 1 gives [0,0.2] to agent 2 and [0.2,0.6] to agent 1. Agent 1 receives [0.6,0.8] and agent 2 receives [0.8,1] due to our
rule for allocating undesired intervals. Agent 1 receives value 2/3. On the other hand, if agent 1 reports [0,0.2] (assuming
agent 2 remains truthful), it receives [0,0.1] ∪ [0.2,0.6] which gives value 5/6. Notice that the problem here persists even
if we allocate [0.2,0.6] to agent 2 when both agents report [0,0.2]. In this case, agent 2 can deviate when it has true value
[0,0.6] and agent 1 reports [0,0.2].

It is unclear whether we can dispose of the free disposal assumption. Indeed, it may be that there is an impossibility
result when we force all intervals to be allocated. It would be nice to be able to apply the same insights of Mechanism 1,
though as the example shows, we now have to be careful about the exact mechanics of how intervals are allocated rather
than simply the fraction of each interval each agent receives. This adds significant complexity to the problem which we are
able to avoid in Mechanism 1 when we assume free disposal.

The communication model In general, communication issues in cake cutting are rather subtle since the input (that is, the
valuations functions) is continuous. To deal with this issue, Robertson and Webb (1998) introduced a concrete model of
complexity for cake cutting mechanisms. Under their model, a mechanism is restricted to making two types of queries,
an evaluation query (whereby the mechanism learns the value of an agent with respect to a given interval) and a cut
query (whereby the mechanism obtains a piece worth a given value to an agent). Through the queries the mechanism
must obtain sufficient information to output a fair allocation. Existing work on computational aspects of cake cutting uses
this framework (see, e.g., Busch et al., 2005; Edmonds and Pruhs, 2006a; Woeginger and Sgall, 2007; Procaccia, 2009), but
without considering truthfulness.

In this paper we have implicitly assumed that the agents report their full valuation, an assumption that facilitates our
focus on strategic issues. However, the classes of valuation functions that we have considered have compact representations.
Therefore, agents can in fact efficiently report their full valuation functions. Indeed, in the case of piecewise uniform valua-
tion functions it is sufficient to report the left and right boundaries of each of the desired intervals. In the case of piecewise
linear valuation functions, agents also report a partition of the cake into intervals, along with the two parameters of the
linear function on each of the intervals. This allows us to design mechanisms that are polynomial time in the size of the
input.

That said, it is unclear whether our mechanisms can be efficiently implemented via evaluation and cut queries. For
example, it seems difficult to isolate the desired intervals of an agent using a finite number of such queries. This does not
preclude, however, the existence of results that are analogous to ours via mechanisms that only rely on evaluation and cut
queries.

Future work The most prominent technical challenge is to generalize Mechanism 1. The first step would be a deterministic,
truthful, proportional, and EF mechanism under the assumption that the agents have piecewise constant valuations, and the
second step would be achieving the same result with respect to piecewise linear valuations. Unfortunately we cannot rule
out the scenario where no such mechanisms exist; future work would have to resolve this issue.
10 In Mechanism 1, any exact allocation suffices in SubRoutine, and it is not necessary to worry about the specific way an exact allocation is achieved.

Y. Chen et al. / Games and Economic Behavior 77 (2013) 284–297 297
Acknowledgments

We thank Noga Alon for his wise advice regarding the tractable implementation of Step 2 of SubRoutine. We also thank
Anna Bogomolnaia and Hervé Moulin for pointing our attention to the connection between our problem and the random
assignment problem. We also thank anonymous referees for insightful critiques and suggestions for improvements. This
work is supported in part by NSF grant CCF-1215883. John Lai is supported by an NDSEG fellowship.

Appendix A. Equivalence of swapping procedure and Mechanism 1

We prove that the swapping procedure from Section 3.2.2 is equivalent to Mechanism 1 for two agents. In the swapping
procedure from Section 3.2.2, there are two cases. The first is where agent 2 gives away all of its share of W12, and the
second is where agents 1 and 2 divide W12. We can give precise conditions for when each of the two cases occurs. After the
first set of swaps, agent 1 has all of W1, and agent 2 has len(W2 ∪ W1)/2 of W2 and still desires the (len(W2)− len(W1))/2
of W2 still held by agent 1. If len(W12)/2 � (len(W2) − len(W1))/2 then agent 2 can get all of W2 without exhausting all
of its share of W12, and the agents equally split W1 ∪ W2 ∪ W12. Otherwise, agent 1 receives all of W1, W12 and agent 2
receives only W2.

The crux of the swapping procedure is the allocation of W12. Each agent always receives W i , and W12 is allocated to
try and equalize the total lengths of intervals obtained by each agent. However, this may not always be possible because
agent 1 may desire less than len(W1 ∪ W2 ∪ W12)/2, and in this case, agent 1 receives all of W12. To summarize, there are
two cases in the swapping procedure:

1. len(W1 ∪ W12) � len(W1 ∪ W2 ∪ W12)/2. Agent 1 receives W1, agent 2 receives W2 and the agents split W12 so that
their allocated lengths are equal.

2. len(W1 ∪ W12) < len(W1 ∪ W2 ∪ W12)/2. Agent 1 receives W1 ∪ W12 and agent 2 receives W2.

To see that this swapping procedure is exactly equivalent to Mechanism 1 for two agents, assume again without loss of
generality that len(W1)� len(W2). In Mechanism 1, either {1} or {1,2} is the subset with the smallest average. {1,2} is the
chosen subset if len(W1)+ len(W12) � len(W1 ∪ W2 ∪ W12)/2. If {1,2} is chosen, then agents 1 and 2 split W1 ∪ W2 ∪ W12
in an exact allocation. If {1} is chosen, then agent 1 receives all of W1, W12, and agent 2 receives all of W2.

References

Bogomolnaia, A., Moulin, H., 2001. A new solution to the random assignment problem. J. Econ. Theory 100, 295–328.
Bogomolnaia, A., Moulin, H., 2004. Random matching under dichotomous preferences. Econometrica 72, 257–279.
Brams, S.J., Taylor, A.D., 1996. Fair Division: From Cake-Cutting to Dispute Resolution. Cambridge University Press.
Brams, S.J., Jones, M.A., Klamler, C., 2006. Better ways to cut a cake. Not. Am. Math. Soc. 53 (11), 1314–1321.
Brams, S.J., Jones, M.A., Klamler, C., 2008. Proportional pie-cutting. Int. J. Game Theory 36 (3–4), 353–367.
Busch, C., Krishnamoorthy, M.S., Magdon-Ismail, M., 2005. Hardness results for cake cutting. Bull. Eur. Assoc. Theor. Comput. Sci. 86, 85–106.
Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C., 2001. Introduction to Algorithms, 2nd edition. MIT Press.
Dutta, B., Ray, D., 1989. A concept of egalitarianism under participation constraints. Econometrica 57, 615–635.
Edmonds, J., Pruhs, K., 2006a. Cake cutting really is not a piece of cake. In: Proc. of 17th Symposium on Discrete Algorithms, pp. 271–278.
Edmonds, J., Pruhs, K., 2006b. Balanced allocations of cake. In: Proc. of 47th Foundations of Computer Science, pp. 623–634.
Katta, A., Sethuraman, J., 2006. A solution to the random assignment problem on the full preference domain. J. Econ. Theory 131, 231–250.
Megiddo, N., 1979. A good algorithm for lexicographically optimal flows in multi-terminal networks. Bull. Am. Math. Soc. 83, 407–409.
Mossel, E., Tamuz, O., 2010. Truthful fair division. In: Proc. of 3rd Symposium on Algorithmic Game Theory, pp. 288–299.
Neyman, J., 1946. Un théorèm d’existence. C. R. Acad. Sci. Paris 222, 843–845.
Procaccia, A.D., 2009. Thou shalt covet thy neighbor’s cake. In: Proc. of 21st Int. Joint Conference on Artificial Intelligence, pp. 239–244.
Robertson, J.M., Webb, W.A., 1998. Cake Cutting Algorithms: Be Fair if You Can. A.K. Peters.
Steinhaus, H., 1948. The problem of fair division. Econometrica 16, 101–104.
Thomson, W., 2007. Children crying at birthday parties. Why? J. Econ. Theory 31, 501–521.

Woeginger, G.J., Sgall, J., 2007. On the complexity of cake cutting. Discrete Optim. 4, 213–220.

