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Abstract

Rank data is often encountered in our daily lives (e.g. sports team rankings, horse races, voting).

The data is deceptively simple, yet learning from the data is far from straightforward. Traditional

random utility models (RUMs), such as the Plackett-Luce RUM and Normal RUM, seek to capture

the structure of rank data via distributional assumptions on latent utilities. This can make infer-

ence tractable, but leaves the models inexpressive and unable to fully capture features of data. I

propose a new class of nonparametric random utility models (NPRUMs) for rank data, and present

an estimation algorithm based on variational Monte Carlo expectation-maximization and kernel

density methods. I show that NPRUMs provide better insights into random utilities in different

settings, such as elections and sushi preferences. In particular, the model outperforms existing

models in terms of out-of-sample likelihood, rank smoothing, and rank completion.
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Chapter 1

Introduction

Rank data appears in many places. Examples include user preferences, search engine rankings, chess

match results, and votes in elections. Given this data, example ranking problems include assessing

preferences between electric and gasoline cars (Beggs et al., 1981), aggregating search rankings into

meta-search results (Dwork et al., 2001), determining winners of tournaments (Hunter, 2004), and

declaring the winner of an election (Gormley and Murphy, 2006).

The need to analyze or aggregate rank data presents an interesting and challenging machine learning

problem, especially due to the factorial size of the rank order space. For example, in inference, it

may be intractable to enumerate over all rank orders to find the maximum a posteriori probability

ranking.

One approach to learning from rank data is to assume that the rankings come from a probabilistic

model. A specific case of probabilistic models are random utility models (RUMs). RUMs are

statistical methods for ranking problems adopted from economics (Thurstone, 1927; McFadden,

1974) to infer preferences or importance between alternatives (Xia et al., 2008; Azari Soufiani

et al., 2012).

In rank data problems, there are n ranks, denoted ~π1, ~π2, . . . , ~πn, over the m alternatives, denoted C.

For example, on the three alternatives C = {c1, c2, c3}, the first rank order ~π1 can be {c1 � c2 � c2},

1
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Pr(U) πiUi
n

Figure 1.1: Random utility model.

and the second rank order ~π2 can be {c2 � c1 � c3}. Here, n = 2 and m = 3. The symbol �

denotes a preference relationship. The subscript i in ~πi lets us index over all of the ranks.

In RUMs, each rank ordering ~πi arises from a sample of random utilities ~ui for the alternatives

C according to the joint distribution Pr(~u). Then, the alternatives are ordered by their utilities,

and ranks are reported as ~πi (Figure 1.1). Using a random utility model, the goal of learning

from rank data includes performing inference on Pr(~u) in order to predict, model, and complete

ranks. Figures 1.2 and 1.3 illustrates concretely how ranks are formed in a random utility model.

Throughout this thesis, Pr is used as shorthand for Pr(~u).

A rank ~πi may also be a partial rank ordering instead of a full rank ordering. A full rank ordering

is given when all available alternatives are ranked. A partial rank ordering is given when only a

subset of alternatives are ranked (e.g. games, competitions, races) or the orders provide only top

preferences out of a set of alternatives (e.g. candidates in elections).

Since a ranking is determined by the order of utility values, the probability of observing a specific

preference rank is simply the probability of the corresponding ordering of utility draws. Let π(j)

denotes the jth ranked alternative in rank order π. Let Uπ(1) denote a random draw from the

random utility distribution of alternative π(1). For an example with three alternatives:

Pr(π(1) � π(2) � π(3)) = Pr(Uπ(1) > Uπ(2) > Uπ(3)) (1.1)

In existing RUMs, the joint probability is a product distribution. Two popular RUM methods are

the Plackett-Luce (PL) model (Luce, 1959; Block and Marschak, 1960; Plackett, 1975; Marden,

2



Chapter 1. Introduction

AB C

A

B

C

Figure 1.2: A set of draws are observed from
the random utility distributions of
items A, B, and C.

AB C

Figure 1.3: A rank order is formed between
items A, B, C according to realized
utilities.

1995) and the Thurstone model (Thurstone, 1927). The Thurstone model was defined for pairwise

preferences but has been generalized to full rank data by Azari et al. (2012). Plackett-Luce and

Thurstone assume that the latent random utility on each alternative is are drawn from independent

Gumbel and Normal distributions, respectively.

The parametric distributions restrict the space of possible random utility functions. In addition,

these models preclude correlation structure between utilities. In this thesis, I present the nonpara-

metric random utility model (NPRUM), which is designed to address these issues.

3
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1.1 Contributions

I forgo the aforementioned parametric and independence assumptions in existing RUMs, and instead

fit a nonparametric model that allows both flexible densities and correlation between the utility

on each alternative. I present a Monte Carlo expectation-maximization algorithm to perform this

fit, and provide an implementation in the StatRank package in R (Chen and Azari Soufiani, 2013).

Additionally, I present a framework to perform inference on the random utility model via sampling

from the resulting joint utility distribution. I motivate NPRUM by providing a connection to the

rank position distribution.

My empirical results show that NPRUM is a better out-of-sample fit to Kamishima’s sushi dataset (2003),

Tideman’s election dataset (2006), and the 2002 Nascar Winston Cup Series dataset (Hunter, 2004).

It outperforms existing RUMs in multiple predictive tasks, including estimating the pairwise pref-

erence matrix, smoothing ranks given noisy data, and predicting a user’s second preference given

their first. It also demonstrates superior predictive average log-likelihood. I show that the good

predictive performance is due to NPRUM’s flexibility, and its ability to model correlation.

NPRUMs also unlock new understandings via post-processing and visualization. I illustrate this in

Section 6.

1.2 Related Work

Performing inference on rank data is a well-studied problem (Dwork et al., 2001; Conitzer, 2006;

Ailon, 2007; Truchon, 2008; Xia et al., 2008). Famous ranking algorithms include PageRank (Page

et al., 1999), the Elo method for chess ratings (Elo, 1978), and the Bowl Championship Series /

Ratings Percentage Index for NCAA college football and basketball (Langville and Meyer, 2012).

However, these studies and applications all adapt parametric models.

There are other nonparametric methods in the literature, such as that used by Ammar & Shah

(2011) on pairwise data. This thesis focuses on nonparametric models for rank data.

4
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The most relevant related work involves other random utility models. The most common ex-

ample from literature is the Plackett-Luce RUM (PLRUM), which has been applied to rank docu-

ments (Cao et al., 2007), model the effect of party politics (Gormley and Murphy, 2007), and model

dietary preferences in lactating cows (Nombekela et al., 1994). Other papers explore new algorithms

to fit PLRUM via message-passing (Guiver and Snelson, 2009) and minorize-maximization (Hunter,

2004). Others explore extensions of PLRUM that increase the expressiveness of the model with

mixture modeling (Gormley and Murphy, 2008; Azari Soufiani et al., 2013).

Another prominent RUM from literature is the Thurstone RUM, which introduces an uncertainty

parameter for each alternative. Thurstonian models have been adopted for massive online game

systems with Glicko (Glickman, 1999) for chess games and TrueSkill (Herbrich et al., 2006) for

XBox Live games. Azari et al. (2012) provides a Monte Carlo expectation-maximization algorithm

to extend Thurstone RUM from pairwise comparisons to rank data. I use Monte Carlo expectation-

maximization and add certain procedures (e.g. slice sampling and kernel density estimation) to fit

nonparametric distributions.

See Section 2.3 for more discussion on PLRUM, Normal RUM, and extensions of Normal RUM.

1.3 Outline

In the next section (Section 2), I introduce the notation used throughout this thesis, the three

types of rank data that I study, and give a brief summary of existing RUMs. Section 3 introduces

nonparametric random utility models, kernel density estimation, and rank position distributions.

I motivate nonparametric RUMs by describing their relationship to the distribution of positions

of alternatives in rank data. I describe an estimation procedure and algorithm in Section 4. In

Section 5, I describe the datasets used in this thesis and motivate applications of NPRUM.

In Section 6, I present the main experimental results and provide performance comparisons between

NPRUM and existing methods. In addition, I present a novel application of the nonparametric

5
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RUM, showing that partial data about a ranking can be used to predict the full ranking.

Section 7 discusses the tradeoffs of using a nonparametric RUM versus existing parametric models.

Finally, I conclude and present ideas for future work in Section 8.
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Chapter 2

Preliminaries

In this chapter, I provide a summary of the notation used in this thesis, the three types of rank data

I used in evaluating the models, and a brief background on existing random utility models.

2.1 Notation

There are n rankings (sometimes attributed to n agents) of m alternatives indexed by i and j

respectively. Let C = {c1, . . . , cm} denote the set of m alternatives. Let Π = {~π1, . . . , ~πn} denote

the data, where each ~πi is a ranking (full or partial) over C. The count n is the total number of

rankings provided. The rankings may come from n agents or may be the result of search engine

results, chess games, and so forth.

The alternatives C are associated with utilities uc1 , . . . , ucm from the interval [0, 1] according to

a nonparametric joint density Pr : [0, 1]m → R. The preference ordering of the alternatives C

is determined by the the relative magnitudes of utilities uc1 , . . . , ucm – alternatives with higher

utilities are ranked higher.

7
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2.2 Types of Rank Data

Full Ranking A B C

CBA

D

D

E

E

F

FTop Ranking

Sub Ranking B D E

Figure 2.1: Different types of rank data: full, top, and sub rankings.

There are different types of rank data. In this thesis, I consider the full ranking, sub ranking, and

top ranking types. See Figure 2.1.

Definition 1 Full Ranking: A full ranking has all alternatives C ranked. One observes the

ranking ~π = [π(1) � π(2) � · · · � π(m)], containing all m alternatives.

Given Pr, the probability for a ranking ~π = [π(1) � π(2) � · · · � π(m)] (which is equivalent to

[uπ(1) > uπ(2) > · · · > uπ(m)]) is defined as follows:

Pr(~π) =

∫
uπ(m)<···<uπ(1)

Pr(~uπ)d~uπ (2.1)

Definition 2 Top Ranking: A top ranking provides full rankings on a proper subset C′ ( C

with at least two alternatives. All elements of C′ are preferred over the elements in C′c, defined

C′c = {c ∈ C|c /∈ C′}. No information is gained of the preference relationship within the set C′c.

One observes the ranking ~π = [π(1) � π(2) � · · · � π(m′) � {πc}c∈C′c ], where the set of m′ (where

m′ < m) alternatives in C′ are fully ranked and preferred over the other alternatives in C′c. This

ranking π implies [uπ(1) > · · · > uπ(m′) > max ({uc}c∈C′c)]. The probability of observing such a

8
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ranking is:

Pr(~π) =

∫
max({uc}c∈C′c)<uπ(m′)<···<uπ(1)

Pr(~uπ)d~uπ (2.2)

This data type occurs for example in elections with many candidates. Voters fill out their top

positions with their preferred candidates, and may leave their less desired candidates unranked.

Definition 3 Sub Ranking: A sub ranking provides full rankings on a proper subset C′ ( C with

at least two alternatives. No information is learned about the alternatives in the set C′c, or about

the relationship between the sets C′c and C′.

One observes the ranking π = [π(1) � π(2) � · · · � π(m′)] on the set of m′ (where m′ < m)

alternatives C. This ranking π implies [uπ(1) > · · · > uπ(m′)]. The probability of observing such a

ranking is:

Pr(~π) =

∫
uπ(m′)<···<uπ(1)

Pr(~u′π)d~u′π (2.3)

where ~u′ is the vector of all u ∈ C′.

This commonly occurs in race or competition data, where only a subset of the racers and competitors

are compared in each ranking.

Integrals 2.1, 2.2, and 2.3 are computationally difficult to compute without distributional assump-

tions. Yet understanding them is vital in order to perform inference. I will use Monte Carlo

methods to estimate probabilities of rank orders and the likelihoods of observed data.

9
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2.3 Traditional Random Utility Models

2.3.1 Plackett-Luce RUM

The Plackett-Luce RUM (PLRUM) is named in honor of independent work by Plackett (1975)

and Luce (1959). It has found many applications, including to horse-racing (Plackett, 1975), the

analysis of Irish election data (Gormley and Murphy, 2007), and permutation-based optimization

problems (Ceberio et al., 2013),

The key feature of the PLRUM is that it satisfies Luce’s Choice Axiom, which states that pairwise

preferences between two items are not affected by the presence or absence of other items being

compared (1959). This implies that the probability of choosing any alternative ci over the other

alternatives in C is

P (ci � the rest) =
γci∑
cj∈C γcj

, (2.4)

where the (non-negative) γcj represents the sole parameter for each alternative. In PLRUM, the

γ parameters are manifested as the parameters in the latent Gumbel distribution. This simple

representation allows easy calculation of probabilities of permutations:

P (c1 � c2 � c3 � c4) =
γc1

γc1 + γc2 + γc3 + γc4

γc2
γc2 + γc3 + γc4

γc3
γc3 + γc4

(2.5)

While Luce’s Choice Axiom simplifies tasks such as identifying maximal posterior probability rank-

ings and distributions over rankings, the same axiom makes the model less useful for other tasks.

For example, one application of rank completion is to predict an agent’s second preference given

the agent’s first preference. A model that features Luce’s Choice Axiom could not adequately per-

form this task since observing a first choice gives no information about the rest. Indeed, we see in

Section 6.4 that PLRUM performs poorly in rank completion compared to other methods.

10
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2.3.2 Normal RUM and its extensions

The Normal RUM extends Thurstone’s model for pairwise data, which assumes that the random

utility distributions are independent, normally distributed, and have the same variance (Thurstone,

1927; Luce, 1977). The Normal RUM allows for both rank data (instead of pairwise data) and

differing variances between the random utility distributions (Azari Soufiani et al., 2012). A further

extension called Normal Multitype RUM (Azari Soufiani et al., 2013), classifies rank data into

multiple clusters, each of which has its own Normal RUM. This allows for heterogeneous data and

a more expressive latent utility model.

11





Chapter 3

Nonparametric Random Utility Models

As discussed in the introduction, previous RUMs impose distributional assumptions on Pr(~u) and

restrict the joint distribution as a product distribution. I propose nonparametric random utility

models (NPRUMs) with a nonparametric and correlated joint utility distribution.

In Section 3.1, I describe and motivate the kernel density estimation procedure that estimates the

marginal utility distributions. In Section 3.2, I define the rank position distribution, connect it

with NPRUMs, and then use it in Section 3.3 to motivate the theoretical need for NPRUMs.

3.1 Kernel Density Estimation

AA AAA AA AAA AA AAA

Gamma distribution estimate Normal distribution estimate Kernel density estimate

Figure 3.1: Two parametric density estimates (Gamma and Normal) and one non-parametric den-
sity estimate (Kernel density estimate).
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The fundamental random utility model assumption is that ranks are formed from utilities drawn

from a joint distribution. Changing the joint distribution gives rise to different RUMs, such as

PLRUMs which assume Gumbel utility distributions, and Normal RUMs which assume Normal

utility distributions. A good choice of joint distribution will explain the utilities well, while a poor

choice will ignore key features of the utilities. For example, Figure 3.1 illustrates three density

estimates fit on five utilities of alternative A. There appears to be evidence of bimodality in

the utilities and a strong peak on the left, yet the two parametric densities fail to capture this

pattern. Parametric assumptions impose restrictions that may ignore key features of the dataset.

Nonparametric density estimation methods are not as susceptible to the same issues.

The NPRUM method uses kernel density estimation (KDE) to estimate the latent utility distribu-

tion that drives the rank model (Rosenblatt, 1956; Parzen, 1962). KDE smooths out the observed

data by first placing kernels on each of the data points, then summing up the kernels to form the

kernel density estimate. This is illustrated in Figure 3.2.

AA AAA AA AAA AA AAA

Samples Kernels Kernel density estimate

Figure 3.2: The Kernel density estimate of the utility distribution of alternative A is formed by
summing up Gaussian kernels placed on the data points.

NPRUM uses Gaussian kernels with a bandwidth parameter h > 0. The Gaussian kernels assure

that the KDE will be continuous, with smoothness imposed by the bandwidth parameter. The

bandwidth controls for overfitting, as a bandwidth high enough will remove spurious data artifacts.

A bandwidth that is too high however, will drown out features of the dataset. See Figure 3.3.

Specifically, given a set of sample utilities uij for a specific alternative j, the marginal utility

14
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bw = 0.01 bw = 0.05 bw = 0.1 bw = 0.2 bw = 0.5

Figure 3.3: Kernel desntiy estimates with various bandwidths.

distribution of alternative j (Prj) is estimated as:

Prj(x) ∝


0 if x /∈ (0, 1)∑

i φh(x− uij) if x ∈ (0, 1)

(3.1)

where φh(x) ∝ exp{− x2

2h2
}, the density function of the kernel N (0, h2). I adopt a bounded range

for the random utilities. This fixes the effect of h, and prevents the need to consider positive affine

transformations of the RUMs. Picking a set of evaluation points for KDEs is simpler when the

support is finite. The specific bounded interval [0, 1] is chosen for simplicity.

Since unrestricted KDEs will allocate density outside of the bounded interval, I only consider

density within the bounds. I rescale the resulting Prj(x) such that it integrates to 1. To store the

function, I evaluate the Prj(x) on a set of evenly-spaced evaluation points x ∈ {0, 1/d, 2/d, .., 1} for

a d which indicates the resolution of the nonparametric densities.

For the NPRUM method, KDE is only performed on one-dimensional data. While the output of

the algorithm is a m-dimensional nonparametric density, density calculation is not needed here.

This is because inference only requires sampling from the m-dimensional joint density, which can be

accomplished by selecting a utility vector and adding a perturbation (from the kernel). This helps

avoid the need to evaluate the joint density on an m-dimensional grid of dm evaluation points.
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3.2 Rank Position Distribution Chapter 3. Nonparametric Random Utility Models

3.2 Rank Position Distribution

Random utility models are useful because they allow us to represent discrete rank data in continuous

space. The rank position distribution (RPD) is one way to represent this data in continuous m-

dimensional space. It is a density on an m-dimensional hypercube, where each dimension represents

an alternative and takes on values between [0,m]. If a draw from this hypercube has a value of uj

in the jth dimension, this implies that the rank order of the alternative in the draw is duje, where

d·e denotes the ceiling function.

2/3 
A ≻ B

1/3 
B ≻ A

π(1) π(2)

π(1)

π(2)

A

B

Figure 3.4: As example RPD. The space has 22 = 4 squares, but only 2! = 2 are associated with
actual permutations. Those permutations are associated with densities.

Draws from the RPD can imply mm possible rank orderings, but only m! of them are valid rank

orderings – permutations of the ranks 1, 2, . . . ,m. Only the positions within the RPD that imply

valid permutations have non-negative densities. In those positions, the densities are exactly the

empirical probability of observing that permutation. I present an example RPD on two alternatives

16



Chapter 3. Nonparametric Random Utility Models 3.3 Motivation for NPRUM

in Figure 3.4, representing the toy dataset {A � B}, {A � B}, {B � A}.

Definition 4 Rank Position Distribution (RPD): For a distribution on permutations Pr(~π),

the rank position distribution is defined as the following on an m-dimensional hypercube ~r ∈ [0,m]m:

Pr(~r) =


Pr(~π) drje = π(j) ∀j ∈ {1, 2, . . . ,m}

0 otherwise

For a numeric example, consider observing the ranks {c1 � c2 � c3}, {c1 � c2 � c3}, and {c2 � c3 �

c1}. The rank position distribution is a distribution over the m-dimensional hypercube ~r ∈ [0,m]m.

The region where dr1e = 1, dr2e = 2, dr3e = 3 corresponds to the permutation {c1 � c2 � c3}. That

region has a density of 2/3, the empirical probability of observing the permutation. The region

where dr2e = 1, dr3e = 2, dr1e = 3 corresponds to the permutation {c2 � c3 � c1}. That region

has a density of 1/3, the empirical probability of observing the permutation. The remainder of

the hypercube is allocated no density. We confirm that the density in the hypercube integrates to

1.

In this way, the RPD is the m-dimensional histogram density that encodes the distribution for all

permutations π given in the dataset.

3.3 Motivation for NPRUM

Draws from the RPD imply rankings. The RPD has the property that each of these implied rankings

occurs with a probability exactly equal to the empirical probability of observing that ranking in

the original dataset.

For small n, Pr(~r) is an approximation for the true RPD. The greater the n, the better the

estimation of the true RPD. However, since Pr(~r) has on the order of O(m!) probabilities to

estimate, n >> m! data points would be needed in order to get a good statistical approximation.

This is not feasible for modest values of m (e.g. m > 10).
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NPRUM can be used to approximate Pr(~r) instead of relying on more samples. NPRUM also esti-

mates a joint utility density on a hypercube (NPRUM uses [0, 1]m instead of RPD’s [0,m]m), but

imposes a continuous, smooth density within the hypercube unlike the multidimensional “checker-

board” seen in RPD.

The smoothness constraints on NPRUM achieved through KDE allow permutations in the data to

“borrow” information from other permutations nearby in the hypercube. An MLE achieved via

Monte Carlo EM is used to estimate this nonparametric random utility distribution.

18



Chapter 4

An Estimation Algorithm

As described in Section 2, computation of the likelihood function involves a multidimensional

integral, which means that direct optimization of the likelihood function is intractable. Thus, I

adopt a Monte Carlo expectation-maximization (EM) algorithm similar to the one presented by

Azari et al. (2012). The EM algorithm is particularly well-suited for applications involving a

latent variable space (Dempster et al., 1977). The algorithm iteratively determines the maximum

likelihood estimation of the joint distribution Pr∗(~u).

The algorithm is composed of iterations of an E-step and an M-step. Given Prt(~u) from the previous

iteration t, the following are performed on each iteration t+ 1:

E-step : Q(Pr,Prt) = E~u

{
log

n∏
i=1

Pr(~ui, πi) | D,Prt

}
(4.1)

M-step : Prt+1 ∈ arg max
Pr

Q(Pr,Prt) (4.2)

The algorithm starts with an initialization of the joint density to Pr0(~u) to a uniform distribution.

The algorithm alternates between the E-step and the M-step. If successful, it converges to the

maximum likelihood estimate Pr∗(~u).
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4.1 E-step

AB

A

B

B A

AB

A

B

B A

AB

SampleInitialize Fix

AB

Fix Sample

AB

Sample Fix

Repeat until 
convergence

Start here

Figure 4.1: In this example, the observed rank order {A � B} and the latent utility distributions
from the M-step are used to sample utilities uA and uB. The steps alternate between
making draws for A and B, always preserving the relation uA > uB. This continues
until convergence. The resulting utilities are passed to the M-step.

For ease of presentation, I will assume in this chapter that every data point is contributed by an

agent. The E-step samples a vector of utilities for each agent that is conditional on their observed

rank preference. This process is illustrated in Figure 4.1.

Since drawing directly from the joint density is intractable, I rely on variational Monte-Carlo

methods. Specifically, I adopt a Gibbs sampler to sample each utility sequentially.

Within the Gibbs sampler, slice sampling (Neal, 2003) is used to sample latent utilities. Slice

sampling is a Monte Carlo algorithm for sampling draws from any distribution. It starts by selecting

a point on a random vertical slice of the distribution, then samples a point from the corresponding

horizontal slice of the distribution. This repeats until a sufficient number of samples are made (Neal,

2003). Tarlow et al. (2012) argues slice sampling is well suited for sampling latent variables in
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Chapter 4. An Estimation Algorithm 4.1 E-step

Monte Carlo EM. This appropriateness is partly due to its ability to sample from a wide range of

distributions while not requiring any tuning parameters. The method utilizes Neal’s implementation

of his slice sampler (2008). I leave a more detailed explanation of this algorithm and implementation

to Neal (2003).

To sample a value for uπ(j), I use the slice sampler to draw from the truncated marginal utility

distribution of that alternative. The truncation depends on the type of rank data. Let π(j) denote

the alternative in the jth position. uπ(j) denotes its utility. The full ranking type of data imposes

the following restriction on utilities:

uπ(j) ∈



(
uπ(2), 1

)
j = 1(

uπ(j+1), uπ(j−1)
)

1 < j < m(
0, uπ(m−1)

)
j = m

(4.3)

In the top ranking type of data, only alternatives in C′ are ranked (let |C′| = m′ < m). These

alternatives are preferred over those left unranked. The top ranking type imposes the following

restriction on utilities:

uπ(j) ∈



(
uπ(2), 1

)
j = 1(

uπ(j+1), uπ(j−1)
)

1 < j < m′(
maxcj∈C′c ucj , uπ(m′−1)

)
j = m′(

0, uπ(m′)

)
m′ < j ≤ m

(4.4)

In the sub ranking type of data, only alternatives in C′ are ranked (let |C′| = m′ < m). Unlike the

top ranking type, the data observation provides no information is available about alternatives that

are not in C′. Because of this, the E-step does not sample utilities for the unranked alternatives.
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4.2 M-step Chapter 4. An Estimation Algorithm

The sub ranking type imposes the following restriction on utilities:

uπ(j) ∈



(
uπ(2), 1

)
j = 1(

uπ(j+1), uπ(j−1)
)

1 < j < m′(
0, uπ(m′−1)

)
j = m′

NA m′ < j ≤ m

(4.5)

For all types of datasets, this sampling is repeated until convergence for each row of rank data.

Convergence can be determined by a convergence diagnostic such as the Gelman and Rubin diagnos-

tic (1992), which uses multiple chains of samples to determines whether the chains are sufficiently

similar. It accomplishes this by comparing within-chain variance and between-chain variance.

The result of the E-step is a set of utilities that is passed to the M-step.

4.2 M-step

AA AAA AA AAA AA AAA

Samples Kernels Kernel density estimate

Figure 4.2: In this example, five values of ua are returned from the E-step. No distributional
assumptions are made in NPRUM, and so the random utility distribution for alternative
A is estimated using Gaussian kernels with bandwidth h. The resulting kernel density
estimate is passed back to the E-step. (copy of Figure 3.2)

In the M-step (illustrated in Figure 4.2), the joint utility distribution is inferred from the utility

samples from the E-step. However, KDE on many dimensions is intractable because the number

of evaluation points grows exponentially with the m. Therefore, I adopt a variational method and

estimate the joint distribution as a product distribution Pr(~u) =
∏
j Prj(~u).
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Chapter 4. An Estimation Algorithm 4.3 Algorithm

The algorithm estimates each marginal density via kernel density estimation. More information

about the kernel density estimation is presented in Section 3.1. The result is a set of utility

distributions that is passed back to the E-step.

Even though the M-step only uses only the marginal distributions for inference, the final output of

the Monte Carlo EM algorithm retains the correlation structure, because it consists of samples of

utilities returned from the E-step.

4.3 Algorithm

The output of the Monte Carlo EM algorithm provides the means to construct the joint distribution

over utilities using KDE. This joint distribution is easy to sample from, because the method can

draw a random ~ui and a corresponding value from the kernel associated with the point. See

Algorithm 1 for a summary.

Algorithm 1 Monte Carlo EM algorithm for NPRUM

set t← 0
set Pr0 ← Uniform
1: repeat
2: (Variational MCMC E-step)
3: for all rank data i do
4: repeat
5: for all alternatives j do
6: ut+1

ij ← slice sample from Prtj(uij |ui(−j), πi)
7: end for
8: until Gibbs convergence
9: end for

10: (Variational M-step)
11: for all alternatives j do
12: (KDE estimation of Prj)

13: Pr′j(x)← Ix∈(0,1)
∑

i exp

{
−(x−ut+1

ij )2

2h2

}
14: Prt+1

j (x)← Pr′j(x)/
∫ 1
0 Pr′j(x)dx

15: end for
16: t← t+ 1
17: until Convergence of all Prtj
18: return Joint KDE on the n×m matrix of latent uij
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Chapter 5

Datasets

The purpose of this chapter is to introduce the three datasets used in this thesis, and to delineate

the features that I want the rank aggregation model to express. While reviewing properties of the

datasets, I will introduce the metrics used to evaluate the various rank data methods. The Sushi

dataset receives more attention in this chapter because it is the focus of all four metrics in this

thesis.

The Election and Nascar datasets are used to demonstrate NPRUM’s effectiveness on the two

types of partial rank data: top and sub. Election datasets are common examples of top rank data,

since agents may choose and rank their top few preferences out of a list of candidates. Competition

datasets (such as Nascar) are common examples of sub rank data, where only a subset of alternatives

are compared at a time.

5.1 Sushi dataset

In this section, I introduce and perform exploratory analysis on one of Toshihiri Kamishima’s Sushi

Preference datasets (Kamishima, 2003). The 10 types of sushi in the dataset are shrimp, sea eel,

tuna, squid, sea urchin, salmoe roe, egg, fatty tuna, tuna roll, and cucumber roll.
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5.2 Sushi Rank Positions Chapter 5. Datasets

Figure 5.1: The ten sushi variants in the Kamishima sushi dataset.

The data was collected by Toshihiro Kamishima and his colleagues at the National Institute of

Advanced Industrial Science and Technology in Japan. Kamishima et al. surveyed 5000 indi-

viduals living in Japan about their preferences between the ten sushi variants and asked the in-

dividuals to rank the sushi in the order of their preference. The dataset and the corresponding

paper (Kamishima, 2003) have been influential in ranking research and have been used to eval-

uate new methods in collaborative filtering (Lee et al., 2010; Chen and Cheng, 2008) and rank

aggregation problems (Lu and Boutilier, 2011; Bonilla et al., 2010).

5.2 Sushi Rank Positions

One natural query we can explore is the distribution of the agents’ first, second, third, and last

sushi preferences on sushi.

Fatty tuna is a common favorite and cucumber roll is a common least-favorite. Interestingly, there

is an element of controversiality about sea urchin: 15% rank sea urchin their favorite, while 20%
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Figure 5.2: Agents’ favorite, second-favorite, third-favorite, and least favorite sushi variants.

rank sea urchin their least favorite. A good model will capture this disagreement about sea urchin

(i.e. this diversity in data).

Figure 5.3 plots the rank distributions for each sushi variant – these are the marginals of the rank

position distribution described in Definition 4. We can verify that fatty tuna tends to appear early

in agents’ ranks, cucumber roll tends to appear later, and sea urchin is indeed controversial, with

a bimodal marginal rank position distribution.

Later on in Section 6.2, I will study different methods for modeling rank data. The total variation

distance (TVD), denoted δ(P,Q), will be used to measure the quality of the estimation, where

δ(P,Q) =
1

2
||P −Q||1, (5.1)

and P is the actual and Q is the estimated marginal rank position distributions. The evaluation
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Figure 5.3: Marginal rank position distributions of all 10 types of sushi.

metric will be the TVD averaged over all alternatives, where Q is estimated from a training set

and P is the empirical distribution of the test set.

5.3 Sushi Pairwise Preferences

Another natural question about rank data is the nature of the pairwise preferences, since (1)

pairwise preferences are the smallest unit of rank data, (2) pairwise preferences are often considered

when talking about desirable properties of ranking algorithms (e.g. Condorcet), and (3) looking

at pairwise preferences instead of full rank preferences allows us to estimate a polynomial O(m2)

number of probabilities instead of a factorial number.

I construct a pairwise preference matrix (Figure 5.4) to visualize the answer to the question what

proportion of agents prefer alternative i (row) over alternative j (column)?. From the figure we

see that every entry in fatty tuna’s row is greater than 70%. This means that in any pairwise

comparison between fatty tuna and any other sushi variant, at least 70% of the agents would prefer

fatty tuna. Fatty tuna would hence be declared the Condorcet winner as it dominates every other

sushi in pairwise preferences (1785). Extending that concept, the full Condorcet ranking is the
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Figure 5.4: The pairwise preference matrix for the sushi dataset (only the upper right triangle is
shown for visualization clarity). Each entry is the probability that the sushi variant in
the row is preferred over the sushi variant in the column.

following:

fatty tuna � tuna � salmon roe � shrimp � sea eel � . . . (5.2)

. . . sea urchin � squid � tuna roll � egg � cucumber roll

This is a Condorcet ranking for the following reason: in any pairwise match-up between two sushi
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variants, a majority of the agents will prefer the one earlier in the preference ranking over the one

later in the preference ranking. I note that the preference between squid and tuna roll is very close,

with 2503 agents preferring squid over tuna roll and 2497 agents preferring tuna roll over squid.

The sushi variants in Figure 5.4 are ordered according to their Condorcet ranking.

In Section 6.3, I will use TVD (δ(P,Q)) to assess the quality of the prediction, where P is the true

preference matrix for a hold-out test set of the rank data, and Q is the predicted preference matrix

for the model trained on the training set. This measures the ability of a model to predict pairwise

preferences in the dataset.

5.4 Sushi Recommendations

An interesting application of a ranking model is that given a sushi that an agent likes, recommen-

dations can be made about other sushi variants the agent might like.

This requires that for alternatives c1, c2, . . . , c10, observing that the agent ranked c1 first will give a

distribution of second preferences (on alternatives c3, . . . , c10) that is different from that when rank-

ing c2 first. A good model can capture these patterns and make more appropriate recommendations

for an agent given the agent’s top choice.

In Figure 5.5, I use four pairs of sushi variants to illustrate how a first preference can predict a

second preference. The four pairs are sea urchin / egg, fatty tuna / squid, salmon roe / tuna roll,

and shrimp / tuna.

Those who ranked squid first are much more likely to rank sea eel, shrimp, egg, and cucumber

roll second, than those who ranked fatty tuna first. This is an intuitive result because squid, sea

eel, shrimp, egg, and cucumber roll are the non-raw options out of the 10 alternatives. Those who

ranked tuna first are much more likely to rank fatty tuna and tuna roll second, than those who

ranked shrimp first. This is also an intuitive result.

Using a simulated Fisher Exact Test and drawing 100,000 random permutations, the differences in
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Figure 5.5: Each graph compares the distribution of second-preference sushi between two types of
agents: those who listed the first sushi of a pair as first-preference, and those who listed
the second sushi of a pair. The p-values are from a (simulated) Fisher Exact Test with
100,000 simulated draws. Error bands show 95% confidence intervals for proportions.
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the distributions in these four examples is highly significant (with α = 0.05). In fact, 40 of all 45

pairs of sushi returns a significant result – thus, knowing the agent’s first-preference sushi informs

us of the second preference.

I focus on the case of predicting the second preference of an agent given the agent’s first preference,

and measure accuracy using TVD. I calculate the TVD on all possible first preferences, and then

weigh the TVDs by the count of each first occurrence. I present these results in Section 6.4.

5.5 Election Dataset
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Figure 5.6: The pairwise preference matrix for the election dataset.
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This dataset is one of 87 ranked-ballot election datasets collected by Nicolaus Tideman (2006) and

contains top rankings of 10 candidates from 380 voters from a British organization. The objective

was to select three candidates onto a committee. Voters were allowed to select any number of

candidates to rank – it would be implied that any candidate that is ranked is preferred over any

candidate that is not ranked. The candidates are anonymized.

Figure 5.6 illustrates the pairwise probabilities in this dataset. From the pairwise matrix visualiza-

tion, we can see that candidates 1, 3, 9 would win this election under the Condorcet rule, since a

majority of the voters would prefer those three candidates over any of the other seven candidates

in pairwise elections. Interestingly, there is no Condorcet ranking in this dataset because of the

presence of Condorcet’s paradox (1785)– there are three candidates where the collective preference

is cyclical: 52.8% of voters prefer candidate 4 over candidate 2, 51.2% of voters prefer candidate 2

over candidate 7, and 50.2% of voters prefer candidate 7 over candidate 4.

Table 5.1 illustrates the common ballots in this election. We see that the top three most common

ballots agree with selecting candidates 1, 3, and 9 as winners. However, one must be careful as

these top three ballots represent less than 10% of the total ballots selected. Moreover, looking

at the most common ballots is most likely an unreasonable method to learn about the choices of

voters because of sparsity – there are total of 6235301 possible ballots in a top ranking election of

10 candidates, yet only 252 of these ballots are represented here.

To calculate the 6235301 number, we consider all possible top ranking ballots. For an election of m

candidates, the total number of ballots is
∑m−1

k=0 m!/k!, where k is the total number of candidates

ranked. I note that in top ranking, ranking k = m − 1 candidates is equivalent to ranking k =

m candidates. Also, I include the case where no candidates are ranked. I further note that∑m
k=1m!/k! = bm!(e−1)c, so the total number of top ranking ballots is O(m!) (OEIS, 2011).

As mentioned in Section 3.2, looking at the distribution of permutations or rank position distribu-

tions directly poses an issue because of sparsity. However, the distribution over ranks can still be

estimated well using random utility models because of the introduction of a latent utility space.

With a latent utility space, the model can “smooth” over possible rankings and let data “bor-
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row” information from each other. For example, the top three rankings ({3 � 1 � all others},

{1 � 3 � all others}, and {1 � 3 � 9 � all others}) are very similar and a good model should

incorporate this information and deal with sparsity.

Table 5.1: The thirteen most common ballots (all ballots that at least 4 voters submitted).

Count Ranking

13 3 � 1 � all others
9 1 � 3 � all others
9 1 � 3 � 9 � all others
6 2 � 8 � all others
5 1 � 5 � 8 � all others
4 1 � 3 � 9 � 7 � all others
4 1 � 8 � 4 � all others
4 1 � 9 � 3 � all others
4 3 � 6 � 8 � all others
4 4 � all others
4 7 � 9 � 3 � all others
4 9 � all others
4 9 � 8 � 7 � all others

5.6 Nascar Dataset

This dataset contains race data from the 2002 NASCAR Winston Cup Series (Hunter, 2004). The

season contained 36 races involving 83 drivers. Each race involved either 42 or 43 drivers.

The Winston Cup champion in 2002 was Tony Stewart of Indiana, who achieved the title for gaining

the most points under the Championship points system (Wikipedia, 2014a). The Championship

points system is each driver’s score under a modified positional voting rule. In a positional voting

system, each driver is given points according to their rank position in each race. The final ranking

is made by ordering the alternatives by total number of accumulated points, including additional

bonus points for leading laps or winning a race (Wikipedia, 2014b).

While a positional voting rule is adequate for giving a final rank order, it does not reveal potentially

useful information, such as the probability of a driver beating another in a pairwise matchup
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(illustrated in Figure 5.7), or how consistently a driver performs well. This is when statistical rank

aggregation methods, such as RUMs, become useful. I will compare the ability of NPRUMs to

predict pairwise matchups and fit the data. The experiments will cover only a subset of the Nascar

dataset (only those drivers who have participated in 20 to 30 races), since some baseline RUM

metrics do not converge on the full dataset.
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Figure 5.7: Pairwise win matrix of Nascar dataset. Drivers are ordered by final ranking in the 2002
Nascar Tournament, which was decided by a modified positional voting rule. Drivers
ranked in the top half have all participated in 20 or more races, while almost all drivers
in the bottom half have participated in 10 races or fewer. Gray squares indicate that
the pair of racers have never faced each other in the same match.
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Chapter 6

Experimental Results

I evaluate various RUM methods on the datasets in Table 6.1. Via experiments, I compare the

ability of RUMs to:

(i) Capture heterogeneity and correlation of utilities

(ii) Predict RPDs via smoothing

(iii) Predict out-of-sample data and pairwise matrices

(iv) Complete the rank order given partial rank information

Table 6.1: Datasets used for evaluation. † denotes a subset of the full data

Rank Data Type m n

Election (Tideman, 2006) Top Partial 10 380
Nascar (Hunter, 2004) Sub Partial 7† 36
Sushi (Kamishima, 2003) Full 10 5000

All code and data, with the exception of the sushi dataset,1 is available via the R package StatRank

(Chen and Azari Soufiani, 2013).

1I was not granted permission to redistribute the sushi dataset due to the terms that were shown to the respondents.
The sushi dataset is available at http://www.kamishima.net/sushi/.
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6.1 Capturing Heterogeneity and Correlation of Utilities Chapter 6. Experimental Results

6.1 Capturing Heterogeneity and Correlation of Utilities

6.1.1 Heterogeneity

The heterogeneity of the utility distribution for an alternative captures information that reveals

properties about the rank dataset. In the case of user preferences or voting in elections, heterogene-

ity represents diversity of opinion. In other rank data applications, heterogeneity may represent

different factors affecting performance. To understand this heterogeneity, I fit various RUMs to

5000 data points of the sushi dataset and plot the estimated marginal utility distributions for five

alternatives in Figures 6.1-6.5.
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Figure 6.1: Estimated Gumbel densities on utilities in the Plackett-Luce RUM.

Generally, more expressive RUMs can encode a wider range of features. With more parameters,

a model can go beyond other models such as the Plackett-Luce RUM by capturing more than

just the location parameter of a utility distribution. Some models can also capture multimodality

and differing variances across alternatives. The most notable example of features in a utility

distribution is that of the sea urchin sushi in Figures 6.3 and 6.4. I explore these features more in

Section 6.1.2.
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Figure 6.2: Estimated densities on utilities in the Normal RUM.
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Figure 6.3: Estimated densities on utilities in the Multitype Normal RUM.

Comparing the empirical RPD and NPRUM within Figures 6.4 and 6.5, we see that the estimated

utility distributions are expressive enough to share common features with the empirical RPDs. The

utility distribution becomes more expressive with more parameters, and is most expressive when

fit using NPRUM.
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Figure 6.4: Estimated densities on utilities in the Nonparametric RUM (h = 0.11). Bandwidth
chosen through cross-validation (see Section 6.3).
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Figure 6.5: Marginal rank position distributions of the sushi dataset (copy of Figure 5.3)

6.1.2 Utility Correlation

A key benefit of NPRUM over existing RUM methods is NPRUM’s ability to capture the correlation

structure between utilities. Modeling correlation allows us to better understand rank data (e.g.

agents’ taste preferences), and will assist us in rank completion later on in Section 6.4. Figure 6.6

illustrates this correlation structure for two pairs of sushi.
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Figure 6.6: Joint distribution for two sets of positively correlated (salmon roe and sea urchin) and
negatively correlated (cucumber roll and fatty tuna) sushi. The orange region represents
the preference salmon roe over sea urchin or cucumber roll over fatty tuna.

The two modes in the joint distribution of salmon roe and sea urchin utility correspond to two

different types of agents. One type ranks both high, while the other ranks both low. Similarly, we

see agents that tend to like fatty tuna tend to dislike cucumber roll sushi. Figure 6.7 shows the

pairwise correlation preferences between all pairs of sushi. A positive correlation means that the

sushi tend to be liked or disliked in tandem, whereas a negative correlation means that an agent

may like one but not the other.

6.2 RPD Prediction via Smoothing

As discussed in Section 3, estimating the rank position distribution (RPD) of rank data is hard

with small n. However, the RPD is very useful in many contexts. For example, we might want to

ask What will be the demand for this sushi?

We can use NPRUMs to smooth out noise. After fitting the RUM, I regenerate rank data by

drawing a large number of samples from the model. By comparing the Figures 6.8 and 6.10 with
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Figure 6.7: Pairwise correlation matrix for observed utilities of all ten sushi variants.

the actual RPD in Figure 6.5, we see that the regenerated RPD is a better estimate of the RPD

than the empirical RPD.

In order to explore this concretely, I compare NPRUM with the following other RUMs in their

ability to estimate RPDs:

• Empirical: Unsmoothed RPD as a baseline.

• Plackett-Luce: Gumbel RUM

• 2 x Normal Fixed Variance (FV): Each agent is in one of two “types” with a certain
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Figure 6.8: The empirical RPD of first 50 sushi agents
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Figure 6.9: The NPRUM fit on first 50 sushi agents. In this graph h = 0.12, the best performing
bandwidth from the experimental smoothing results from Figure 6.11.
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Figure 6.10: The regenerated RPD. This is the RPD on 5000 simulated agents drawn from NPRUM
fit on first 50 sushi agents.
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probability. The two types each have a different multivariate normal distribution (with the

identity covariance matrix) for the joint utility density. (Azari Soufiani et al., 2013)

• Normal Different Variance (DV): The alternatives each have independent normally-

distributed utilities with different variances, estimated from the data. (Azari Soufiani et al.,

2012)

I fit each of these models on the noisy data, then regenerate 5000 samples from the models and

calculate the regenerated RPDs on the new data.

I measure the success of smoothing by comparing the regenerated RPD from a random n =

25, 50, 75 or 100 agents from the sushi dataset with the RPD of the remaining 5000 − n. I use

total variation distance (δ(P,Q)) between the RPDs as my metric, where Q is the regenerated

RPD of the original n agents, and P is the RPD of the remaining 5000 − n agents. I present

the results of this experiment in Figure 6.11. In the case where n = 50, a bandwidth of 0.12

outperforms all other bandwidths with a TVD of 0.0856± 0.0026 (95% interval), which is 7% and

47% less than the TVDs of Normal RUM and empirical, respectively. The nonparametric RUM

for n = 50 outperforms all other RUMs with statistical significance (α = 0.05) at bandwidths

h ∈ {0.10, . . . , 0.16}. NPRUM’s advantage is more pronounced with a smaller n, when there is

more noise in the empirical RPD.

6.3 RUM Comparison Results

To compare predictive and estimation capabilities of various RUM models, I adopt two metrics.

The first metric, average log-likelihood, evaluates both in-sample and out-of-sample fit. The second

metric measures error in estimating the pairwise matrix P . I also include the error metrics for the

“Empirical” model, where the model matrix is exactly the preference matrix of the training dataset.

I use cross-validation to determine the best bandwidth parameter to use for NPRUM. As shown in

Figure 6.12, a larger h leads to more smoothing of the marginal utility distribution.

I run each model and dataset pair for 20 repetitions and 20 iterations each, with 80% of the data
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Figure 6.11: Out-of-sample RPD prediction performance. x-axis is bandwidth (h). y-axis is TVD.
75 repetitions are done for each data point. Error bars represent 95% confidence
intervals. n represents the number of agents for which RPD was smoothed.

used as a training set and 20% used as the test set. While the methods converge in fewer than 10

iterations, I chose to run 20 iterations for all methods for a fair time comparison. Methods are run

on a random 100 agents from the sushi and the election dataset. I report the mean and standard
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Figure 6.12: The choice of h affects the underlying nonparametric random utility distribution. If h
is too low, there are spurious artifacts. If h is too high, it drowns out the features of
the distribution.

error for each predictive metric. The results are shown in Table 6.2.

Table 6.2: (top) Average log likelihood. (bottom) Total variation distance between pairwise ma-
trices. Numbers in bold are significantly better than other methods. * means that the
method does not converge

Election Nascar Sushi
Method Train Test Train Test Train Test

Plackett-Luce -5.95 (1e-02) -5.98 (3e-02) -3.97 (1e-02) -4.43 (5e-02) -14.25 (6e-03) -14.37 (1e-02)
Normal FV -7.73 (1e-02) -7.44 (3e-02) -5.37 (1e-01) -6.89 (3e-01) -14.06 (7e-03) -14.06 (1e-02)
2 x Normal FV -8.16 (2e-02) -8.41 (3e-02) -3.79 (8e-03) -4.17 (3e-02) -13.87 (1e-02) -14.21 (2e-02)
Normal DV -7.73 (1e-02) -7.66 (2e-02) * * -13.66 (8e-03) -13.96 (1e-02)
NP (h = .11) -2.65 (1e-02) -2.70 (3e-02) -3.83 (6e-03) -3.96 (2e-02) -13.75 (6e-03) -13.86 (1e-02)

Plackett-Luce 15.29 (4e-02) 14.51 (6e-02) 7.31 (6e-02) 5.83 (3e-02) 2.28 (1e-02) 4.35 (3e-02)
Normal FV 5.49 (2e-02) 6.16 (4e-02) 2.42 (2e-02) 3.07 (2e-02) 4.86 (1e-02) 5.85 (4e-02)
2 x Normal FV 4.65 (3e-02) 5.64 (5e-02) 2.55 (8e-03) 2.80 (2e-02) 4.57 (2e-02) 4.94 (4e-02)
Normal DV 2.76 (6e-02) 5.27 (7e-02) * * 2.95 (5e-02) 5.29 (6e-02)
NP (h = .11) 2.12 (6e-03) 4.45 (4e-02) 1.86 (8e-03) 2.71 (2e-02) 0.93 (4e-03) 3.63 (2e-02)
Empirical 0 (0) 4.68 (4e-02) 0 (0) 3.19 (2e-02) 0 (0) 3.86 (3e-02)

Table 6.3: Runtime (seconds). Numbers in bold are significantly better than other methods. *
means the method does not converge.

Method Election Nascar Sushi

Plackett-Luce 28390 (2e+02) 930 (8e+00) 150 (1e+00)
Normal FV 28570 (1e+02) 920 (3e+00) 13680 (7e+01)
2x Normal FV 39120 (2e+02) 1910 (9e+00) 22280 (1e+02)
Normal DV 27570 (1e+02) * 13610 (7e+01)
NP (h = .11) 210 (1e+00) 60 (3e-01) 180 (8e-01)

The nonparametric method outperforms the parametric RUMs on every out-of-sample metric and

for all of the datasets. In the Sushi data, the Normal DV outperforms the NPRUM on in-sample log-
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likelihood, but NPRUM outperforms Normal DV on out-of-sample log-likelihood, which is evidence

that the Normal DV may have overfit to the training set. The same explanation goes for 2x Normal

FV on the in-sample log-likelihood on the Nascar dataset. In the same data, the same behavior is

evident when comparing 2x Normal FV to Normal FV. The 2x Normal FV outperforms in training,

but not in the test set.

As we see from Table 6.3, the nonparametric method also takes significantly less time than any

other method in all datasets except for PL on sushi. Estimation of parameters for PL model for

Nascar and Sushi data was done with Hunter’s minorize-maximization algorithm (2004) which is

faster than the general Monte Carlo EM algorithm proposed by Azari et al. (2012).

6.4 Rank Completion

Nonparametric RUMs are also applicable to rank completion, a recommendation problem where

one may want to predict the full rankings for an agent given observed partial rankings.

Specifically, one may want to predict the agent’s second-ranked sushi given the agent’s top-ranked

sushi. From the n-agent training set, I estimate the conditional distribution Pr(π(2)|π(1)) for each

first-ranked distribution. I calculate the TVD between this predicted conditional distribution and

the actual conditional distribution on the 5000− n agents used as test data. I take the average of

the conditional TVDs as the performance metric, weighted by the frequency of each first-ranked

alternative.

Figure 6.13 shows that the NPRUM model outperforms existing RUM methods at this rank comple-

tion problem. Interestingly, the parametric RUMs barely improve when the sample size is increased

from n = 50 to n = 100. NPRUM’s advantage widens with more data because NPRUM is the only

existing RUM able to capture correlation, which is vital for rank completion.
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Figure 6.13: Out-of-sample rank completion performance. x-axis is bandwidth (h). y-axis is
weighted mean TVD. 100 repetitions are done for each data point. Error bars repre-
sent 95% confidence intervals. n represents the number of agents used as training for
rank completion.
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6.5 Summary

Table 6.4 summarizes five implemented methods with respect to the out-of-sample evaluation

metrics discussed above. NPRUM outperforms the best benchmark method by 1% in average

log-likelihood, 6% in pairwise preference matrix TVD, 7% in rank smoothing TVD, and 14% in

rank completion TVD. These differences are statistically significant (α = 0.05), and demonstrate

NPRUMs superior performance in fitting the data, predicting pairwise comparisons, smoothing

noisy data, and predicting second ranks given the first rank.

Table 6.4: Performance summary of five implemented solutions on the Sushi dataset. Standard
errors are included in parentheses. Smoothing is evaluated with n = 50 and completion
is evaluated with n = 100. Bandwidth is set to the h = 0.11 used in Section 6.3.

Method Average LL Pairwise Smoothing Completion

Empirical N/A 3.86 (3e-02) 0.162 (1e-03) 0.299 (3e-03)
Plackett-Luce -14.37 (1e-02) 4.35 (3e-02) 0.131 (7e-04) 0.228 (1e-03)
Normal DV -13.96 (1e-02) 5.29 (6e-02) 0.092 (9e-04) 0.202 (2e-03)
2 x Normal FV -14.21 (2e-02) 4.94 (4e-02) 0.129 (2e-03) 0.255 (4e-03)
NP (h = 0.11) -13.86 (1e-02) 3.63 (2e-02) 0.086 (9e-04) 0.174 (2e-03)
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Discussion

In this chapter, I discuss the advantages and disadvantages of NPRUMs. Naturally, increasing the

model complexity comes with challenges in regards to estimation and inference. But on the other

hand, it brings more expressive descriptions of the dataset with new capabilities and increased

predictive power.

7.1 Distributional assumptions

NPRUM’s weak modeling assumptions make them more generally applicable than parametric

RUMs. However, assumptions are useful in certain settings, and RUMs with the correct assump-

tions may perform better than other models. For example, PL outperforms Normal for Election

data, but Normal outperforms PL for Sushi data (see Table 6.2). Still, NPRUM outperforms both

PL and Normal in the datasets, indicating that NPRUM’s weak assumptions work better than the

strong ones of PL and Normal RUM.
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7.2 Estimation

The Monte Carlo EM algorithm for NPRUM is based on the Monte Carlo EM algorithm for the

exponential family of RUMs introduced by Azari et al. (2012). I compare the time and space

complexities of Monte Carlo EM in the parametric and nonparametric settings.

7.2.1 Time Complexity

In the E-step, sampling from the truncated parametric and nonparametric distributions can be

accomplished via similar techniques. This leads to a similar complexity for each iteration. In prac-

tice, NPRUM is faster than existing methods (Table 6.2). I believe this is because the intermediary

iterations are not limited by distributional assumptions, so NPRUM can take a quicker path to

convergence within the E-step.

In the M-step, fitting utility densities for Exponential Family distributions (Morris, 1982) is simple

because of the relationship between the sufficient statistics and the MLE parameters. Fitting the

nonparametric model is more difficult as it requires kernel density estimation, a choice of kernel

(fixed at Gaussian for this thesis), and a bandwidth. Identifying the distribution in the M-step of a

parametric RUM is O(mn), while identifying the KDE in the M-step of NPRUM is O(dmn), where

d is the number of evaluation points desired in a dimension, and can be a large constant.

7.2.2 Space Complexity

Representing a parametric RUM requires m location parameters for a Plackett-Luce model or 2m

parameters for a Normal model. In contrast, the nonparametric model needs to be represented

by the original vectors of utilities from the rank data, which is proportional in size to the data.

Parametric RUMs are O(m) in space complexity while NPRUMs are O(mn). The other option for

representing NPRUM is storing values of the density function on a lattice grid – but this quickly

becomes infeasible with many alternatives since it is exponential in m, leading to the curse of
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dimensionality.

7.3 Inference

Tasks such as identifying the maximal posterior probability ranking and specifying the distribu-

tion over ranks are intractable because of the m! size of the permutation space. However, RUM

properties such Luce’s Choice Axiom in the Plackett-Luce RUM lend conveniences to inference.

Specifically, maximal posterior probability rankings and distributions over ranks can be identified

easily. Pairwise preferences are also found easily in Normal and PL RUMs. NPRUM must instead

rely on Monte-Carlo and resampling methods to perform these inferential tasks – sampling from

multivariate kernel density estimates is easy, but integration and summarization is difficult.
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Conclusions

In this thesis, I introduced a nonparametric random utility model, and demonstrated that it out-

performs existing methods on multiple real-world datasets. The evaluation has been done for

multiple predictive metrics, including rank position distribution prediction, out-of-sample average

log-likelihood, and rank completion. Results include statistically significant improvements in pre-

dictive average log-likelihood for all three datasets, and a 14% performance improvement in rank

completion TVD on the sushi dataset.

In providing a comprehensive study of various RUMs, I observed that certain models consistently

outperform other models on different types of datasets. Nonparametric models are flexible enough

to capture the best features in every setting, leading to superior performance.

NPRUMs also outperform existing RUMs in regard to rank completion. This is due to a more

expressive latent utility model that accounts for features such as correlation, which is imperative

in any rank model that seeks to complete ranks given partial data.

This approach is the first random utility model method on full rank data to forgo distributional

assumptions. I demonstrate that by approaching this carefully, new interpretations can be achieved

and new applications will be enabled.

55



8.1 Extensions Chapter 8. Conclusions

8.1 Extensions

I present possible research extensions for nonparametric random utility models, both in the context

of this thesis and in the larger context of rank aggregation.

Extension of RUMs to incorporate ties. Common rank data, such as chess matches and football

games, include tied ranks. However, random utility models cannot currently incorporate tied

rank data, because the generative model involves ordering draws from a continuous space.

Incorporating ties will extend the usefulness of RUMs in modeling domains that involve tied

rankings.

Continued development of StatRank R package. In the interest of making the results reproducible

and the methods useful for general application, I have released StatRank, an R package avail-

able on CRAN with productionalized versions of all of my functions. This includes (1) estima-

tion methods for PL, normal, multitype, and nonparametric RUMs (2) Nascar and Election

datasets (3) various evaluation metrics (4) useful evaluation functions (e.g. pairwise prefer-

ence matrices and likelihood functions) (5) visualization functions used to make a number of

figures in this thesis.

Application to pairwise comparison settings. The NPRUM algorithm also accepts pairwise data

as input, which allows it to be compared against other pairwise methods such as Elo, Bradley-

Terry, Zemel, Thurstone, Rank Centrality, Glicko, and TrueSkill. NPRUM’s superior pre-

dictive ability on pairwise preferences compared to other RUMs suggests its usefulness in

predicting winners in paired comparison data (e.g. a recent Kaggle competition to predict

the outcomes of the 2014 NCAA March Madness tournament). Paired comparison data is

common in sports and game analysis.

Optimization with respect to applied metrics. All of the metrics used to evaluate NPRUMs in

this thesis (rank estimation, log likelihood, rank completion, pairwise preferences) are re-

lated to how well NPRUM predicts the structure of out-of-sample rank data. I have shown

56



Chapter 8. Conclusions 8.1 Extensions

that NPRUM outperforms existing RUMs in capturing out-of-sample structure, but other

metrics are more appropriate for some rank data applications, such as accuracy of sports

match prediction (predicting spreads or brackets), meta-search results (using metrics such as

normalized discounted cumulative gain), and aggregating crowd-sourced ranks (using metrics

such as Kendall’s tau).
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