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Abstract

We consider the problem of fairly dividing a heteroge-
neous divisible good among agents with different pref-
erences. Previous work has shown that envy-free al-
locations, i.e., where each agent prefers its own allo-
cation to any other, may not be efficient, in the sense
of maximizing the total value of the agents. Our goal
is to pinpoint the most efficient allocations among all
envy-free allocations. We provide tractable algorithms
for doing so under different assumptions regarding the
preferences of the agents.

1. Introduction

We study the problem of dividing an infinitely divis-
ible resource among several agents, often interpreted
intuitively as cutting a cake. Agents have valuation
functions that assign a value to each piece of cake; in
general agents have different valuation functions. This
problem has attracted significant attention in AI (see,
e.g., Chen et al. (2010) and the references therein).

The reason for this interest is twofold. First, re-
source allocation is considered to be a fundamental
problem in the multiagent systems literature. Second,
although the cake cutting problem, which dates back
to the 1940’s, has mainly been studied by mathemati-
cians, economists, and political scientists, much of the
literature is algorithmic in nature, and therefore calls
for the input of computer scientists.

Envy-freeness is perhaps the most well-studied notion
of fairness in the context of resource allocation. An
envy-free (EF) allocation of the cake is one where each
agent (weakly) prefers its own piece of cake to the piece
allocated to any other agent. Not surprisingly, in order
to achieve envy-freeness one must sometimes sacrifice
the economic efficiency1 of the solution, that is, the
total value received by the agents. However, usually
there are multiple EF allocations and some are more

Copyright c© 2011, Association for the Advancement of Ar-
tificial Intelligence (www.aaai.org). All rights reserved.

1Throughout the paper we use the term efficiency in the
economic sense rather than the computational sense. Our
notion of efficiency should not be confused with the weaker
notion of Pareto-efficiency.

efficient than others. An allocation is optimal among a
set of allocations if it achieves the maximum efficiency
of any allocation in the set. We focus on the case where
the set of allocations is all EF allocations.

Most of the literature on cake cutting investigates
algorithms that instruct agents to perform certain op-
erations. In contrast, we examine an alternate algorith-
mic model where agents report their entire valuations
to the algorithm (see, e.g., Chen et al. (2010); Zivan et
al. (2010)). While this approach is infeasible for general
valuation functions, it is tractable for the special cases
discussed in this paper. Our goal is therefore:

Given the valuation functions, tractably compute
an optimal EF allocation.

In some cases we relax this goal, asking only for approx-
imate efficiency, approximate envy-freeness, or both.

Our results. Our presentation of the results pro-
gresses through three levels of generality in terms of
the supported valuation functions. In Section 3 we as-
sume that the valuation functions are piecewise con-
stant, i.e., can be represented by a step function. We
give a polynomial-time algorithm that computes opti-
mal EF allocations via a simple linear programming
approach.

In Section 4 we deal with piecewise linear valuations,
a rather general class of valuation functions that con-
tains the class of piecewise constant valuations. We first
provide an algorithm that singles out an optimal EF al-
location for the case of two agents. Unfortunately, we
show that in this setting, and even with two agents, no
tractable algorithm exists, as in some instances any op-
timal EF allocation must be specified using irrational
numbers. We therefore leverage our (intractable) al-
gorithm to produce a tractable algorithm for approxi-
mately EF allocations to two agents that are as efficient
as the optimal EF allocation. The algorithm runs in
time polynomial in log 1/ε, where ε specifies the amount
of envy permitted. Technically, this is facilitated by a
delicate search procedure, which in particular employs
a technique of Papadimitriou (1979) for searching for
rational numbers.

Section 5 deals with general valuation functions and
any number of agents. We design a tractable algorithm



that computes approximately optimal, approximately
EF allocations by approximating the given valuation
functions by piecewise constant functions, and employ-
ing the results of Section 3. Our algorithm runs in time
polynomial in 1/ε, where ε specifies the deviation from
optimality as well as the amount of envy that is per-
mitted.

Related work. Caragiannis et al. (2009) present a
framework for quantifying the efficiency loss due to fair-
ness requirements, including envy-freeness, under gen-
eral valuation functions. Their price of envy-freeness is
the worst-case ratio between the total utility under an
(unconstrained) optimal allocation, and the total utility
under an optimal EF allocation. Caragiannis et al. pro-
vide a lower bound of Ω(

√
n) and a weak upper bound of

O(n) on the price of envy-freeness, where n is the num-
ber of agents. Note that an upper bound singles out in
every instance (set of valuation functions) an allocation
that achieves a certain ratio (O(n) in this case), but
makes no claim as to the optimality of the allocation.

Reijnierse and Potters (1998) design a clever but in-
volved and computationally demanding algorithm that
computes a Pareto-efficient EF allocation, i.e., an EF
allocation such that no other EF allocation is at least
as good for all the agents and better for at least one
agent, when agents hold piecewise constant valuations.
Crucially, it is easy to see that an optimal EF allocation
is also a Pareto-efficient EF allocation. Therefore, the
results we present in Section 3 provide, as a special case,
a simple alternative for computing a Pareto-efficient
EF allocation, also under piecewise constant valuations.
Reijnierse and Potters ultimately use their algorithm to
compute approximately Pareto-efficient EF allocations
under general valuations; our approximation approach
for general valuations, presented in Section 5, is inspired
by theirs.

Zivan et al. (2010) present a way to find Pareto-
efficient EF allocations that reduce untruthful manip-
ulations, also assuming agents hold piecewise constant
valuations. We do not examine strategic issues in this
paper, as we discuss below.

Nuchia and Sen (2001) provide a procedure which
starts from an externally given EF allocation and im-
proves its efficiency while maintaining envy-freeness.
However, this procedure is not guaranteed to produce
an optimal EF allocation. In Section 4 we do provide
such a guarantee by starting from an efficient allocation
and improving its envy-freeness.

2. The Model

The cake is modeled as the interval [0, 1], and there is
a set of agents N = {1, . . . , n}. A piece of cake X is a
finite set of disjoint subintervals of [0, 1]. Each agent is
endowed with an integrable, non-negative value density
function vi(x) which defines a value for each possible
piece of cake. Specifically, an agent’s value Vi(X) for
a piece of cake X is given by

∑
I∈X

∫
I
vi(x)dx. De-

fined in this manner, agent valuations are additive, i.e.

Vi(X ∪ Y ) = Vi(X) + Vi(Y ) if X and Y are disjoint,
and non-atomic, i.e., Vi([x, x]) = 0. Because of the lat-
ter property, we can treat open and closed intervals as
equivalent. We assume that agents have equal weight,
and in particular their valuation functions are normal-
ized so that the entire cake gives each agent value one,

that is, for all i ∈ N ,
∫ 1

0
vi(x)dx = 1.

An allocation A = (X1, . . . , Xn) is an assignment of
a piece of cake Xi to each agent, ensuring that the Xi

are disjoint. Two notions of fairness have been studied
in the cake cutting literature. An allocation is propor-
tional with respect to V1, . . . , Vn if Vi(Xi) ≥ 1/n for all
i ∈ N , and envy-free (EF) with respect to V1, . . . , Vn
if Vi(Xi) ≥ Vi(Xj) for all i, j ∈ N . Envy-freeness en-
sures that each agent weakly prefers the piece it is given
and implies proportionality when the entire interval is
allocated, i.e.,

⋃
iXi = [0, 1].

Because of normalization, it is meaningful to consider
the sum of agent valuations and define the efficiency of
an allocation A, denoted by e(A), as the sum of agent
values, i.e.,

e(A) =

n∑
i=1

Vi(Xi).

An allocation A is optimal amongst a set of possible
allocations S if e(A) = maxA′∈S e(A

′). In particular,
we will be interested in computing an optimal allocation
when S is the set of EF allocations.

We do not consider truthful algorithms and so our
algorithms can be thought to compute optimal EF al-
locations with respect to reported valuations, or one
can assume agents are truthful. We ignore this distinc-
tion in the sequel and adopt value density vi and value
Vi in describing our algorithms.

3. Piecewise Constant Valuations

The first family of valuation functions that we consider
is the family of piecewise constant valuations. A val-
uation function is piecewise constant if the associated
value density function is piecewise constant, that is, the
cake can be partitioned into a finite number of subinter-
vals such that the density function is constant on each
interval.

Our purpose in studying piecewise constant valuation
functions is twofold. First, there are realistic situations
that are captured by such valuation functions. For ex-
ample, think of the cake as time, in the context of ad-
vertising or access to a shared resource. Agents may
be interested only in specific time slots (e.g., during
the commercial break of a specific program), but are
indifferent between different parts of the desired slot.
Second, the results of this section will be leveraged in
Section 5 to address general valuations.

The main result of this section is a simple polynomial-
time algorithm for finding an optimal EF allocation
when agents have piecewise constant valuations. In or-
der to discuss computational complexity, we must de-
scribe the representation of the input to the algorithm.



Algorithm 1

1. Mark the boundaries of the reported intervals of all
agents, as well as 0 and 1.

2. Let J be the set of subintervals of [0, 1] formed by
consecutive marks.

3. Solve the following linear program:

max

n∑
i=1

∑
I∈J

xiIVi(I) (1)

s.t.

n∑
i=1

xiI ≤ 1 ∀I ∈ J (2)∑
I∈J

xiIVi(I) ≥
∑
I∈J

xjIVi(I) ∀i, j ∈ N (3)

xiI ≥ 0 ∀i ∈ N, I ∈ J (4)

4. Return an allocation which for all i ∈ N and I ∈ J
allocates an xiI fraction of subinterval I to agent i.

While general valuation functions do not admit concise
descriptions, piecewise constant functions have a con-
veniently simple representation. Each agent reports the
boundaries of the inclusion-maximal intervals on which
the agent’s density function is constant, along with the
value of the density function on each of these intervals.
The size of the input is the number of bits required to re-
port these parameters. We assume that the boundaries
of intervals as well as the value of the density function
can be expressed as k-bit rationals, i.e., rational num-
bers of the form a/b where a and b are k-bit integers.

Our procedure for finding an optimal EF allocation is
formally given as Algorithm 1. Step 1 of the algorithm
is illustrated in Figure 1.

The linear program (LP) in Step 3 has variables xiI
for each i ∈ N and I ∈ J (where J is defined in Step
2), which represent the fraction of interval I given to
agent i. Crucially, the value density functions of all
agents are constant on each interval I ∈ J , hence the
value of each agent i ∈ N for a fraction xiI of inter-
val I is xiIVi(I), and the agent’s value for its piece is∑

I∈J xiIVi(I). The objective function (1) then sim-
ply gives the efficiency of the allocation. The first con-
straint (2) ensures that the allocation of each interval in
J is valid, while the second constraint (3) is simply the
envy-freeness constraint. We have the following result.

Theorem 1. Assume that there are n agents with
piecewise constant valuation functions. Then Algo-
rithm 1 computes an optimal EF allocation in polyno-
mial time.

Interestingly, setting the variables xiI to 1/n for ev-
ery i ∈ N and I ∈ J—allocating to each agent a 1/n-
fraction of each interval in J—produces an allocation
where Vi(Xj) = 1/n for every i, j ∈ N ; this is what
Chen et al. (2010) call a perfect allocation. A perfect
allocation is in particular EF. So, under piecewise con-
stant valuation functions finding an EF allocation is

0 0.5 1
0

1

2

Figure 1: An illustration of piecewise contant value den-
sity functions, where n = 2 and the area under the density
function of agent 1 (resp., agent 2) is filled with horizontal
(resp., vertical) lines. Marks made by Algorithm 1 are rep-
resented by white circles on the horizontal axis. Note that
both value density functions are constant between every pair
of consecutive marks.

trivial, and computing an optimal EF allocation only
slightly less so.

4. Piecewise Linear Valuations

Piecewise linear valuations are a significantly more gen-
eral family of valuation functions that includes piece-
wise constant valuations. An agent’s valuation func-
tion is piecewise linear if its value density function is
piecewise linear. Piecewise linear functions offer added
expressiveness, yet can still be concisely represented.
The agent’s valuation function can be pinned down by
breaking down [0, 1] into a set of subintervals on which
the agent’s value density function has constant slope.
The agent then specifies the boundaries of each of these
intervals as well as the slope and intercept of the density
function on the interval.

While Algorithm 1 exactly solves the piecewise con-
stant case, it is not directly generalizable to the piece-
wise linear case. The algorithm relied on the fact that
we could split [0, 1] into a finite number of intervals on
which agent value densities were constant. This allowed
us to focus only on the fraction of each interval given
to each agent rather than the specific part of the inter-
val. With piecewise linear valuations, it is not longer
possible to split [0, 1] into a finite number of intervals
on which value densities are constant.

The main result of this section is an algorithm that
finds an optimal EF allocation for two agents when val-
uations are piecewise linear.2 We first outline an ab-
stract algorithm for handling these valuation functions.
We then prove an impossibility result that an exact im-
plementation of this abstract algorithm is intractable.
We conclude by sketching an approximate implementa-
tion of the algorithm. An algorithm for any number of
agents is left open.

An abstract algorithm

At a high level, the algorithm starts with an optimal
(not necessarily EF) allocation, and transfers pieces to

2Envy-freeness and proportionality are equivalent in the
case of two agents, so the algorithm equivalently finds an
optimal proportional allocation.



Algorithm 2

1. If V1(Y1≥2) ≥ 1/2 and V2(Y2≥1) ≥ 1/2, give agent 1
Y1>2, agent 2 Y2>1.

(a) If V1(Y1>2) ≥ 1/2, give Y1=2 to agent 2.

(b) Otherwise, divide Y1=2 so that agent 1 receives
value exactly 1/2.

2. Without loss of generality, assume V1(Y1≥2) < 1/2.
Give Y1≥2 to agent 1. Let r∗ be the maximal r such
that V1(Y1≥2∪Y≥r) ≥ 1/2. Give Y>r∗ to agent 1, and
divide Y=r∗ so that agent 1 receives exactly value 1/2.

the envious agent until the agent is no longer envious.
The crux of the procedure lies in the choice of which
pieces are given to the envious agent. A key notion will
be that of the ratio between the density functions of
agent 1 and agent 2.

Definition 2. Given x ∈ [0, 1] where v2(x) 6= 0, the
value ratio at x is R(x) = v1(x)/v2(x).

Notationally, for i, j ∈ {1, 2} let Yi op j = {x ∈ [0, 1] :
vi(x) op vj(x)}, where op ∈ {>,≥,=}. For instance,
Y1≥2 = {x ∈ [0, 1] : v1(x) ≥ v2(x)} . Let

Yop r = {x : (v1(x) < v2(x)) ∧ (R(x) op r)},

where op ∈ {>,≥,=}. Using these notations we can
present our algorithm, given as Algorithm 2. In the
rest of this subsection we prove the following theorem.

Theorem 3. Assume that there are two agents with
piecewise linear valuations. Algorithm 2 finds an opti-
mal EF allocation.

Before proving Theorem 3, we establish a few useful
lemmas.

Lemma 4. Suppose that agent i ∈ {1, 2} receives a
piece of cake Xi, with Vi(Xi) ≥ 1/2. Agent i will not
envy the other agent.

Proof. By additivity, Vi(Xi) + Vi([0, 1] \Xi) = 1. The
proposition follows by observing that the other agent
receives at most [0, 1] \Xi if agent i receives Xi.

Lemma 5. In any optimal EF allocation, V1(X1) ≥
1/2 and V2(X2) ≥ 1/2.

Proof. To prove this lemma, we first show that any op-
timal EF allocation allocates all intervals on which some
agent has strictly positive value. Suppose for contradic-
tion that there is some optimal EF allocation X1, X2

that does not allocate an interval I where v1(I) > 0
or v2(I) > 0. We can augment X1, X2 with an allo-
cation of I that maintains envy-freeness while improv-
ing efficiency. Indeed, assume without loss of gener-
ality that V1(I) > 0. Divide I into two subintervals
I ′, I ′′ such that V1(I ′) = V1(I ′′). Allocate to agent 2
the subinterval with higher value according to V2, and
give the remaining subinterval to agent 1. Efficiency
is improved because agent 1 receives strictly greater

value and agent 2 receives weakly greater value. Envy-
freeness is maintained since agent 1 is indifferent be-
tween the two pieces, and agent 2 prefers the additional
piece it receives.

Thus, all desired intervals are allocated to one of the
agents, so for i ∈ {1, 2}, Vi(X1) + Vi(X2) = 1, and
envy-freeness requires that Vi(Xi) ≥ 1/2.

We are now ready to prove Theorem 3.

Proof of Theorem 3. Consider each of the cases speci-
fied by Algorithm 2.

Case 1: V1(Y1≥2) ≥ 1/2, V2(Y2≥1) ≥ 1/2. Algorithm
2 allocates Y1>2 to agent 1 and Y2>1 to agent 2. The
allocation made by Algorithm 2 is always efficient, since
the agent who strictly prefers an interval always receives
it. What is left to be shown is that the allocation is EF.

Case 1(a): V1(Y1>2) ≥ 1/2. Algorithm 2 gives Y1=2 to
agent 2. V2(Y2≥1) ≥ 1/2 by assumption. Both agents
have value at least 1/2, and by Lemma 4 are not envi-
ous.
Case 1(b): V1(Y1>2) < 1/2. Algorithm 2 splits Y1=2

so that agent 1 receives value exactly 1/2 after adding
in Y1>2. This must be possible since V1(Y1≥2) ≥ 1/2.
Agent 1 is not envious by Lemma 4. Let X2 be the piece
given to agent 2 (the remaining portion of Y1=2 along
with Y2>1). Algorithm 2 allocates the entire interval,
so by additivity, V1(X2) = 1/2. However, the piece
X2 consists only of intervals where v2(x) ≥ v1(x), so
V2(X2) ≥ V1(X2) = 1/2.

Case 2: V1(Y1≥2) < 1/2. First, note that Algorithm 2
finds an EF allocation X1, X2. Indeed, as before, agent
1 is not envious as V1(X1) = 1/2. Since agent 2 is given
all the intervals not given to agent 1, V1(X2) = 1/2.
The piece X2 consists only of intervals where v2(x) >
v1(x), so V2(X2) ≥ V1(X2) = 1/2.

Because V1(Y1≥2) < 1/2, envy-freeness requires us to
sacrifice efficiency since we need to give agent 1 some
intervals that are strictly preferred by agent 2. To show
that X1, X2 is an optimal EF allocation, let X ′1, X

′
2 be

any optimal EF allocation. Define the following three
pieces of cake:

A = X1 ∩X ′1 ∩ Y2>1,

B = (X1 \X ′1) ∩ Y2>1,

C = (X ′1 \X1) ∩ Y2>1.

A gives the intervals where both allocations lose effi-
ciency due to giving piece preferred by agent 2 to agent
1. B gives the intervals where X1, X2 loses efficiency,
and C gives the intervals where X ′1, X

′
2 loses efficiency.

Let V1(Y1≥2) = 1/2 − ε, ε > 0. Note that A ∩ B =
∅, A∩C = ∅, and A∪B = X1∩Y2>1, A∪C = X ′1∩Y2>1.
Algorithm 2 gives agent 1 exactly value 1/2 yielding:3

V1(A) + V1(B) =

∫
A

v1(x)dx+

∫
B

v1(x)dx = ε. (5)

3We slightly abuse notation and take the integral over
A,B,C to signify the sum of integrals over inclusion-
maximal subintervals of A,B,C respectively.



Similarly, Lemma 5 says that sinceX ′1, X
′
2 is an optimal

EF allocation, agent 1 must receive value at least ε from
its allocation of Y2>1:

V1(A) + V1(C) =

∫
A

v1(x)dx+

∫
C

v1(x)dx ≥ ε. (6)

Combining (5) and (6) yields∫
C

v1(x)dx−
∫
B

v1(x)dx ≥ 0. (7)

Let `(X1, X2) denote the difference between the effi-
ciency of the optimal allocation (not necessarily EF)
and the efficiency of X1, X2.

`(X1, X2) =

∫
A

(v2(x)− v1(x))dx+

∫
B

(v2(x)− v1(x))dx

`(X ′1, X
′
2) ≥

∫
A

(v2(x)− v1(x))dx+

∫
C

(v2(x)− v1(x))dx

The loss for X ′1, X
′
2 is an inequality because while Al-

gorithm 2 gives all of Y1>2 to agent 1, X ′1, X
′
2 need not

and may lose efficiency from those intervals as well.
To complete the proof, recall how Algorithm 2 con-

structs X1. Let r∗ be the value computed in Step 2 of
Algorithm 2. By definition of Algorithm 2, X1 ∩ Y2>1
consists of all points with R(x) > r∗ and some or all of
the points with R(x) = r∗. Therefore, if x ∈ B then
R(x) ≥ r∗, and if x ∈ C then R(x) ≤ r∗. We conclude
that

`(X ′1, X
′
2)− `(X1, X2)

≥
∫
C

(v2(x)− v1(x))dx−
∫
B

(v2(x)− v1(x))dx

=

∫
C

(
v1(x)

R(x)
− v1(x)

)
dx−

∫
B

(
v1(x)

R(x)
− v1(x)

)
dx

≥
(

1

r∗
− 1

)(∫
C

v1(x)dx−
∫
B

v1(x)dx

)
≥ 0,

where the last inequality follows from (7).

Interestingly, Algorithm 2 does not make specific use
of the piecewise linearity assumption. In theory, it can
be applied to more general classes of valuation func-
tions, provided that the sets Y1>2, Y1=2, Y2>1, Y≥r cor-
respond to legal pieces of cake. However, we do use the
piecewise linearity assumption in the next subsection.

Implementing Algorithm 2

To discuss implementation details, we need to discuss
the representation of the input. As alluded to earlier,
piecewise linear valuations can be represented by asking
agents to partition [0, 1] into intervals on which their
value density functions have constant slope. The agents
then report the boundaries of the intervals as well as
the slope and intercept of the density function on each
interval. We assume that all points can be specified
with k-bit rationals. Since slopes and intercepts can
be negative, in this section we take k-bit rationals to
include numbers of the form −a/b where a, b are k-bit
rationals.

While it is tempting to apply Algorithm 2 to pro-
duce an optimal EF allocation, there is a barrier to
this approach. Even when the inputs are k-bit ratio-
nal numbers, the r∗ defined in Step 2 of Algorithm 2
and the boundaries of the resulting allocation may be
irrational. In fact, this limitation is not specific to Algo-
rithm 2. There are cases where the allocation computed
by Algorithm 2 is the unique optimal EF allocation and
has irrational boundaries. The proof is omitted due to
lack of space.

Theorem 6. There exist piecewise linear valuations
whose interval boundaries, slopes, and intercepts are all
rational numbers yet whose optimal EF allocations can
only be specified with irrational numbers.

As a result, it is necessary to resort to approximation.
Indeed, we relax envy-freeness by considering approx-
imately EF allocations. Specifically, an allocation is
ε-EF if for all i, j ∈ N , Vi(Xi) ≥ Vi(Xj) − ε (see, e.g.,
Lipton et al. (2004)). The following theorem formally
presents our approximation guarantees.

Theorem 7. Assume that there are two agents with
piecewise linear valuations. For any ε > 0 there is
an algorithm that runs in time polynomial in the in-
put and log(1/ε), and finds an ε-EF allocation A′ such
that e(A′) ≥ e(A), where A is an optimal EF allocation.

The theorem’s proof is omitted due to lack of space,
but we give a very brief sketch. In the case considered
in Step 1 of Algorithm 2, we would like to find a point
x∗ such that

V1(([0, x∗] ∩ Y1=2) ∪ Y1>2) = 1/2.

Using binary search over [0, 1], we find a point x that
is smaller but very close to x∗. It is then possible to
bound the envy, while the resulting allocation is at least
as efficient as the optimal EF allocation. In Step 2 of
Algorithm 2, we need to search for a ratio r close to r∗.
This is more subtle, because very small differences in
|r− r∗| can lead to significant differences in the derived
value when there is a long interval with constant value
ratio. Fortunately, in this problematic case it can be
shown that r∗ is a rational, and hence it is sufficient to
find the rational r closest to r∗. This can be done using
a delicate search over rationals, via techniques due to
Papadimitriou (1979).

5. General Valuations
In this section we give a method for handling general
valuation functions (under some mild conditions) and
for any number of agents. We approximate general val-
uation functions with piecewise constant valuations and
leverage Algorithm 1. We construct an allocation that
is ε-EF and whose efficiency is within ε of the optimal
EF allocation. Our central observation is the following
lemma, whose proof is omitted due to lack of space.

Lemma 8. Given ε > 0 and value density functions
v1, . . . , vn, suppose that v′1, . . . , v

′
n are piecewise con-

stant value density functions such that for all i ∈ N ,

vi(x) ≤ v′i(x) ≤ vi(x) + ε/2. (8)



Let A = (X1, . . . , Xn) be an optimal EF allocation with
respect to valuations Vi (induced by vi), and let A′ =
(X ′1, . . . , X

′
n) be an ε/2-EF allocation with respect to

valuations V ′i (induced by v′i). Then A′ is ε-EF and
e(A′) ≥ e(A)− ε/2.

Given piecewise constant value density functions
v′1, . . . , v

′
n that satisfy (8), it is easy to find an ε/2-EF

allocation A′ by applying Algorithm 1 to these valua-
tions, where the envy-freeness constraint (3) is relaxed
by ε/2.

To find v′1, . . . , v
′
n as required by Lemma 8, we assume

that v1, . . . , vn are K-Lipschitz, i.e., for all x, y ∈ [0, 1],

|vi(x)− vi(y)| ≤ K · |x− y|.

Now, split [0, 1] into d(4K)/εe intervals of size at most
ε/(4K). Let S = {k/2p : k ∈ [0,M2p]}, where M is
an upper bound on vi(x) for all i ∈ N and x ∈ [0, 1],
and p will be specified later. For each interval I and
agent i, let v∗(I) = maxx∈I vi(x). For all x ∈ I let
v′i(x) = s∗(I), where s∗(I) = min{s ∈ S : s ≥ v∗(I)}.

The K-Lipschitz condition ensures that the density
function varies by at most ε/4 on each interval. Letting
p = d2 + log(1/ε)e, s∗(I) − v∗(I) ≤ ε/4, so v′i satisfies
condition 8.

While the K-Lipschitz condition rules out valuation
density functions with discontinuities, our results ex-
tend to valuation density functions with a finite number
of discontinuities that are K-Lipschitz on each continu-
ous subinterval. In particular, we can use the described
procedure separately on each continuous subinterval to
find v′i that satisfy (8). We have the following theorem.

Theorem 9. Assume that there are n agents with value
density functions v1, . . . , vn that have a finite number
of discontinuities, are K-Lipschitz on each continuous
subinterval, and have maximum value M . For any ε >
0, there is an algorithm that runs in time polynomial in
n, logM,K, 1/ε and computes an ε-EF allocation whose
efficiency is within ε of the optimal EF allocation.

Given the rather strong Theorem 9, one may wonder
in what way the results of Section 4 are superior. In
fact, for the (interesting, we believe) case of two agents
with piecewise linear valuations, the method of Sec-
tion 4 has two technical advantages. First, it produces
an ε-EF allocation that is as efficient as the optimal EF
allocation. Second, Theorem 7 provides running time
that is polynomial in the representation and therefore
logarithmic in the slope of the valuation functions, as
the slope is specified by O(k)-bit rationals. In contrast,
the running time in Theorem 9 is polynomial in the
slope (since the maximum slope determines the Lips-
chitz constant), and hence exponential in the represen-
tation. Finally, note that piecewise linear (rather than
constant) valuation functions can in theory be used to
approximate general valuations, making it possible to
relax the assumptions of Theorem 9 (when there are
only two agents).

6. Discussion

Interestingly, envy-freeness can be replaced with the
weaker notion of proportionality in all of our results.
As mentioned in Section 2, any EF allocation is pro-
portional, and for the case of two agents the two no-
tions coincide. Using the last observation, the results
of Section 4 immediately hold for proportionality. The
results of Section 3 can easily be adapted by modifying
(3), implying that the results of Section 5 hold as well.
The purpose of our focus on envy-freeness is to simplify
the exposition.

In Sections 3 and 4 we assume, as in Chen et
al. (2010), that agents report their entire valuation
function. This is possible because piecewise constant
and piecewise linear valuations are concisely repre-
sentable. Of course, in Section 5 we cannot adopt this
model. However, notice that Theorem 9 merely requires
finding values that are close to vi(x) for a polynomial
number of points x ∈ [0, 1]; an implicit, reasonable
assumption is that the valuation information at these
points can be elicited from agents.

In contrast to Chen et al. (2010), we do not attempt
to design truthful algorithms. The algorithms of Chen
et al. are truthful and yield EF allocations, but these
allocations may be highly inefficient compared to other
EF allocations. Furthermore, it is known that a truthful
algorithm cannot produce efficient allocations (Thom-
son 2007). A natural direction for future research is
quantifying how much efficiency must be sacrificed to
obtain truthfulness, in the spirit of recent work on ap-
proximate mechanism design without money (Procaccia
and Tennenholtz 2009).
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