
Optimal Envy-Free Cake-Cutting

A thesis presented by

Yuga Cohler

to

Computer Science

in partial fulfillment of the honors requirements

for the degree of

Bachelor of Arts

Harvard College

Cambridge, Massachusetts

April 1, 2011

Abstract

“Cake-cutting” refers to the allocation of continuous resources to agents with hetero-

geneous preferences. In this work, we first provide a relatively comprehensive survey

of the cake-cutting literature and propose a categorization of these results by frame-

work, type of procedure, and theme. Next, we present several novel algorithms which

either exactly or approximately achieve socially optimal envy-free allocations in a

variety of settings. Finally, by developing a theory of k-bit rationals, we specify the

implementations of these algorithms. The implementability of these algorithms gives

further reason to consider cake-cutting a domain of computer science.

ii

Acknowledgements

I am utterly indebted to my thesis advisors Professor David Parkes, John Lai, and

Ariel Procaccia. Their brilliant insights form the core of the novel results presented

herein, and without their very generous help, this work would not have been at all

possible. I would also like to thank my father and grandfather, both of whose teach-

ings and careers have instilled in me a love for computer science.

Note: A condensed version of Chapter 3 [11] has been submitted to the 25th AAAI

Conference on Artificial Intelligence.

iii

Contents

Abstract ii

Acknowledgements iii

1 Introduction 1

2 An Exposition on Cake-Cutting 6

2.1 Establishing a Proper Framework . 7

2.2 Different Types of Procedures . 10

2.2.1 Informal Descriptions . 10

2.2.2 Protocols and Complexity . 11

2.2.3 Moving-Knife Procedures . 14

2.2.4 Algorithms . 16

2.3 Previous Results . 18

2.3.1 Proportionality . 18

2.3.2 Envy-Freeness . 21

2.3.3 Other Fairness Concepts . 30

2.3.4 Complexity . 31

iv

2.3.5 Randomized Procedures . 33

2.3.6 Other Themes . 33

3 Optimal Envy-Free Algorithms 35

3.1 Social Welfare . 36

3.2 Related Work . 37

3.3 Piecewise Constant VDFs . 39

3.4 An Abstract Algorithm for 2 Agents 42

3.5 Piecewise Linear VDFs for 2 Agents 48

3.6 General VDFs . 56

3.7 Discussion . 59

3.8 Conclusion . 60

Bibliography 63

v

Chapter 1

Introduction

Broadly speaking, “cake-cutting” refers to the fundamentally human activity of di-

viding resources amongst people with different preferences. It must therefore have

been practiced since the dawn of man; or, as Brams and Taylor note, at least since the

Hebrew Bible [8, p. 53]. Such a characterization of “cake-cutting” gives us sufficient

reason to study it as a mathematical and scientific discipline.

In cake-cutting, one considers only continuous resources and not discrete ones.

The two are different in that the former can, in theory, be divided into arbitrarily

small parts, whereas the latter cannot. Some examples of continuous resources are

cake, land, and time; some examples of discrete resources are books and pianos.

Some methods of dividing continuous resources are better than others. Suppose,

for instance, that two people are sharing a cake. The goal is to split the cake between

the two in such a manner that both people are satisfied. One can imagine a variety

of ways in which this task could be carried out. For instance, a neutral referee could

both cut the cake into two pieces and assign them randomly. Alternatively, the entire

1

cake could be given to one of the two people. Intuitively, neither of these approaches

seem satisfactory.

On the other hand, consider the following method: first, person 1 cuts the cake

into two pieces such that he is indifferent between the two pieces produced. Next,

person 2 selects the piece he likes better. Finally, person 1 takes the remaining piece.

Because person 1 would have been equally happy receiving either of the pieces, he

must be satisfied. Also, person 2 is satisfied because he chose what was for him the

better of the two pieces. Thus, in contrast to the previous two methods suggested,

both people are guaranteed to be left satisfied. This procedure is known as “Cut-

and-Choose,” and is one of the oldest and most fundamental in cake-cutting.

Of course, not all cake-cutting problems are as simple as the one presented above.

For one thing, there may be more than two people sharing the resource; for an-

other, people may have different preferences over different parts of the resource. The

following two examples demonstrate the types of situations to which cake-cutting

procedures may be applied, giving us further motivation to study them.

Example 1.1. A large computing company outsources its computational cloud to n

firms. For security reasons, the cloud handles the computations of only one firm at

a single time. Each firm has preferences over the interval of time [T, T ′] of when it

would like to use the cloud. How can we assign time slots to firms in a satisfactory

way?

Here, the continuous resource to be allocated is time on the computational cloud.

Clearly, “Cut-and-Choose” does not work here, as there are more than two parties

involved. A cake-cutting procedure would somehow elicit the firms’ preferences and

2

assign a union of intervals [t, t′] ⊂ [T, T ′] to each firm, signifying that the firm can

use the cloud in those intervals.

Example 1.2. A father of n children dies without writing a will, leaving behind a

large plot of land to be divided amongst the bereaved. The children have various ideas

of what to do with different parts of the land. How can the land be divided so that

each child gets his or her fair share?

In this case, the continuous resource is the father’s plot of land. The question

posed here about “fairness” is of central concern to cake-cutting. In fact, fairness is

the primary standard by which a cake-cutting procedure’s usefulness is judged. For

instance, the reason Cut-and-Choose seems to be a satisfactory procedure is that it is

in some sense “fair”: neither person covets the other for his piece of cake. As we shall

see in the following chapter, this particular brand of fairness is called envy-freeness.

In this work, we focus our attention not on the applications of cake-cutting but

on the theory behind it, especially as it pertains to computer science. To this end,

Chapter 2 gives a relatively complete review of the existing literature on cake-cutting

theory. Our goal is not only to provide the reader with an understanding of and

appreciation for cake-cutting, but also to critique and categorize the works presented.

We pay particular attention to the assumptions of each work in three domains: first,

the mathematical framework employed; second, the type of procedure presented; and

third, the most notable characteristic of the result. By examining and organizing

these results, we identify some holes in the literature from a computer scientific per-

spective. In particular, we advocate for both greater formalism in the specification of

frameworks and an increased focus on cake-cutting algorithms, as distinct from other

3

types of procedures.

In Chapter 3, we present several novel socially optimal envy-free cake-cutting

algorithms. A socially optimal allocation of cake is one in which the total value

received by the agents is maximized; hence, a socially optimal envy-free algorithm

achieves envy-free allocations with the greatest possible total value. In our model, n

agents - the people to divide the resource - are equipped with differing value density

functions (VDFs), which represent their preferences over the resource. The encoding

of these VDFs requires a theory of k-bit rationals : numbers of the form a/b where each

of a and b can be expressed in k bits. The development of this theory bestows greater

precision in the specification of our algorithms and represents a useful interaction

between two disparate fields of computer science.

Table 1.1: A Summary of Our Results

Approximate/Exact Abstract/Real Type of VDFs Running Time
Section 3.3 Exact Real Piecewise Constant Polynomial
Section 3.4 Exact Abstract General Polynomial
Section 3.5 Approximate Real Piecewise Linear Polynomial
Section 3.6 Approximate Real General Polynomial

The above table summarizes our results. Here, an “abstract” algorithm is one

which cannot be implemented within the framework of our k-bit rationals, whereas

a “real” one can be. Note that all of the algorithms run in time polynomial in the

input, although the inputs vary slightly from algorithm to algorithm.

Our primary contributions to the literature are cake-cutting algorithms which

achieve either exact or approximate socially optimal envy-free allocations in polyno-

mial time. On a higher level, however, we hope that this work serves as an example

4

of how greater attention to detail in the definitions of frameworks and procedures can

produce new and useful results.

5

Chapter 2

An Exposition on Cake-Cutting

Compared to other subfields of mathematics, computer science and economics, cake-

cutting has been studied relatively little. Although several books on the subject have

recently been written [8, 28], the entire corpus of cake-cutting consists of no more

than 100 academic papers. Moreover, each paper uses a different set of assumptions

from the next, making it all but impossible to state results that hold in general.

The goal of this chapter is threefold. First, we aim to establish a rigorous but

sufficiently general framework in which to study cake-cutting. This framework will

hold throughout Chapter 3 as well. Next, we list the main classes of cake-cutting

procedures that have emerged from the literature and identify their strengths and

weaknesses from a computer scientific perspective. Finally, we present some of cake-

cutting’s most important results in terms of the framework and the types of procedures

we state in the two sections prior. It is our hope that this exposition will allow

the reader to situate our results in Chapter 3 appropriately within the cake-cutting

literature.

6

In all of the following, the n people who wish to divide the cake - called “agents”

- will be denoted by the set N = {1, . . . , n}, and the cake itself will be denoted by

the set C.

2.1 Establishing a Proper Framework

The first and foremost issue that arises with regard to cake-cutting is how to model

it. One can imagine a variety of settings in which the division of continuous resources

could be simulated, and this multitude of possibilities has manifested itself in the

literature.

The earliest works on cake-cutting exhibit little interest in the specific mathe-

matical tools used to represent the cake and the agents’ preferences. The father of

cake-cutting, Hugo Steinhaus [30, 31], for example, mentions nothing to suggest that

the cake should be thought of anything other than a physical confection. In 1961,

Dubins and Spanier [12] proposed the first formal framework for cake-cutting. It runs

roughly as follows:

Framework 2.1. The cake is any set C. The valuation functions of the agents are

given by V = (V1, . . . , Vn), an n-tuple of countably additive finite real-valued functions

defined on a σ-algebra C of subsets of C.

This codification allowed Dubins and Spanier to be much more mathematically

precise about their results than Steinhaus was a decade earlier. Later, Woodall [36]

provided the following slightly different framework:

Framework 2.2. The cake C is a compact convex set in some Euclidean space. The

7

valuation functions of the agents are given by V = (V1, . . . , Vn), an n-tuple of measures

on C such that for every i ∈ N :

• The Vi-measurable sets are Lebesgue-measurable subsets of C,

• The Vi are probability measures (so that Vi(C) = 1), and

• The Vi are absolutely continuous with respect to the Lebesgue measure.

The assumptions of Woodall are slightly stronger than those of Dubins and Spanier.

Interestingly, Woodall assumes the cake to be the interval [0, 1], somewhat sarcasti-

cally advising that “if [the reader] find[s] this thought unappetizing, by all means [he

should] think of a three-dimensional cake” [36, p. 233].

Woodall’s additional specifications grant his framework several advantages over

Framework 2.1. For one thing, we can now assume valuation functions to be of the

form Vi : 2C → [0, 1], where 2C denotes the power set of C = [0, 1]. This assumption

allows us to explicitly specify the agents’ valuation functions. At the same time, we

lose little generality as many reasonable valuation functions satisfy the conditions of

Framework 2.2.

These advantages were very soon noticed by cake-cutting researchers and readily

adopted by them. The following, based on the work of Chen et al. [10], is the

framework we shall employ for the remainder of this thesis:

Framework 2.3. The cake C is the interval [0, 1]. A piece of cake X ⊂ C is a finite

union of disjoint subintervals of C; hence X =
⋃m
j=1 Ij for some intervals Ij. The

valuations of the agents are specified by an n-tuple of value density functions (VDFs)

v = (v1, . . . , vn) with vi : [0, 1]→ [0,∞). We insist that for all i ∈ N , vi is piecewise

8

continuous and
∫ 1

0
vi(x)dx = 1. Finally, the valuation function of an agent i for piece

of cake X is defined by

Vi(X) =

∫
X

vi(x)dx =
m∑
j=1

∫
Ij

vi(x)dx.

Several notable properties follow from this framework. First, the valuation func-

tions are additive: for any pieces of cake X, Y with X ∩ Y = ∅, we have Vi(X ∪ Y) =

Vi(X) + Vi(Y). Second, the valuation functions are atomic: Vi([x, x]) = 0 for all

x ∈ C. This second property allows us to ignore the difference between open and

closed subintervals. Finally, the valuation functions are divisible: for every subinter-

val I ⊂ C and λ ∈ [0, 1], there exists a subinterval I ′ ⊂ I such that Vi(I
′) = λVi(I).

While the three frameworks presented may seem so similar that a distinction

between them is unnecessary, past work has shown that careless definitions of frame-

works lead to incorrect results. Hill and Morrison [16] demonstrate this fact particu-

larly well. For the sake of uniformity, all of the results below will be presented in the

context of Framework 2.3, even if they hold more generally or were written originally

within a different framework in mind.

A final definition is necessary to complete our framework:

Definition 2.1. An allocation X = (X1, . . . Xn) is an n-tuple of pairwise disjoint

pieces of cake Xi. By this we signify that piece of cake Xi is given to agent i. We say

that X is complete if
⋃n
i=1Xi = C; otherwise the allocation is incomplete.

All of the allocations below will be assumed to be complete unless specified otherwise.

Finally, by a partial allocation we mean an m-tuple X = (Xi1 , . . . , Xim) which assigns

pieces of cake to the subset of agents {i1, . . . , im}. In general, partial allocations may

9

be incomplete.

2.2 Different Types of Procedures

Much like the cakes themselves, cake-cutting procedures come in many different fla-

vors. Some procedures are rigorously defined while others are not; some require a

center for computation while others outsource the computation to the agents them-

selves; some are of only theoretical use while others can be put to practice. Here, as

Brams and Taylor [7] have done in the past, we attempt to outline and, to a certain

degree, formalize, the major categories of cake-cutting procedures that have emerged

out of the past sixty years of research.

This section will prove important to the rest of this work, as it grants us the

terminology necessary to be semantically precise about cake-cutting. This precision is

in contradistinction to much of the literature, in which the various types of procedures

are confused for one another and the differences between them taken for granted.

To begin this task, we advance the following informal definition: a cake-cutting

procedure is a description (mathematical, verbal, or otherwise) of a methodology

to cut the cake in a certain way. The definition is sufficiently general for all of the

following to qualify as “procedures.” The categories presented below are not mutually

exclusive, but nevertheless provide a useful taxonomy for cake-cutting procedures.

2.2.1 Informal Descriptions

In the beginning, cake-cutting was more anecdotal than it was mathematical. This is

not surprising given the social nature of the problem: cake-cutting is fundamentally

10

about satisfying and getting along with other people. As such, the procedures asso-

ciated with it were described only informally. The following is Steinhaus’ account of

the Banach-Knaster procedure, which we cover in Section 2.3.1:

The partners being ranged A,B,C, . . . , N , A cuts from the cake an ar-
bitrary part. B has now the right, but is not obliged, to diminish the
slice cut off. Whatever he does, C has the right (without obligation) to
diminish still the already diminished (or not diminished) slice, and so on
up to N . The rule obliges the “last diminisher” to take as his part the
slice he was the last to touch. This partner being thus disposed of, the
remaining n − 1 persons start the same game with the remainder of the
cake. After the number of participants has been reduced to two, they
apply the classical rule for halving the remainder [30].

Their narrative charm notwithstanding, informal descriptions do not provide a

precise enough framework in which to prove properties about the procedures they

present. Although informal descriptions can still occasionally be found in works on

cake-cutting, the dominant trend has been to replace these descriptions with more

mathematically formal procedures.

2.2.2 Protocols and Complexity

The cake-cutting protocol is strange for being simultaneously the most ubiquitous and

the most nebulous class of cake-cutting procedures. Even and Paz were the first to

capture the notion of a protocol, defining it as

a computer programmable interactive procedure. It may issue queries to
the participants whose answers may affect its future decisions. It may issue
instructions to the participants... The protocol has no information on the
measures of the various pieces as measured by the different participants.
It is assumed also that if the participants obey the protocol, then each
participant will end up with his piece of cake after finitely many steps
[15].

11

A notable characteristic of Even and Paz’s protocol is that it requires the agents,

and not a computational center, to calculate their valuations. Thus agents need not

specify or even explicitly know their value density functions.

In short, a protocol distributes instructions to the agents which the agents must

follow; furthermore, that the agents follow these instructions must be enforceable.

The agents may adopt any strategy in response to these instructions.

This leads us to the definition of the fairness principle for protocols. Informally,

we wish to state that a protocol is “fair” if agents can guarantee their fair share by

following a certain strategy. Furthermore, an agent’s procurement of this fair share

should depend only on his own strategy. “Fairness” may of course be defined in

multiple ways. Thus, let Pi denote the set of all allocations which agent i considers

to be “fair,” and put P = P1 ∩ . . . ∩ Pn, which represents the set of allocations

considered fair by all agents. P will stand for the fairness concept itself in addition to

the set of fair allocations. The fairness principle for protocols may be stated formally

as follows:

Definition 2.2. A cake-cutting protocol satisfies fairness property P = P1 ∩ . . .∩Pn

if, for all agents, there exists a strategy in response to the instructions that guarantees

that the final allocation X = (X1, . . . , Xn) ∈ P. Furthermore, if agent i follows this

strategy but some other agents deviate, then the resulting allocation X ′ = (X ′1, . . . , X
′
n)

must have X ′ ∈ Pi.

The fairness principle is of central concern to the cake-cutting literature, because

the efficacy of most protocols has been determined solely by its satisfaction of some

fairness property. As we shall see, the fairness principle extends naturally to other

types of cake-cutting procedures.

12

Below, we present the Cut-and-Choose procedure as a protocol. Following the

convention of Brams and Taylor [7], the parentheses in each step specifies the strategy

that each agent should assume in order guarantee a fair share.

Protocol 2.1 Cut-and-Choose

1. Agent 1 cuts C into two pieces C1 and C2 (such that V1(C1) = V1(C2)).

2. Agent 2 chooses one of C1 and C2 (that he values more), and agent 1 receives
the other piece.

The protocol as defined by Even and Paz was adopted by several other cake-

cutting papers [1, 7]. The informal nature of its definition, however, made it difficult

to determine what precisely constituted a protocol. The exact specification of the

protocol was then given by Robertson and Webb [28] and formalized by Sgall and

Woeginger [29]. According to this model, a protocol may issue two types of queries

to the agents, as follows:

• Mark(i, α) returns the minimum x such that Vi([0, x]) = α. 1

• Eval(i, x) returns α = Vi([0, x]).

It should be noted that these queries are sufficiently general to answer other useful

queries. For instance, finding the the minimum x such that Vi([x0, x]) = α for some

fixed x0 is the same as issuing the query Mark(i, α+ Eval(i, x0)). Similarly, computing

Vi([xb, xe]) is the same as computing Eval(i, xe) - Eval(i, xb).

A protocol is thus a finite repetition of the two steps of issuing queries to the agents

and the agents responding. Along the way, the protocol constructs an allocation by

performing Assign(i, xb, xe), which grants agent i the subinterval [xb, xe].

1Sgall and Woeginger actually call these “cut” queries; we use the term “mark” so as to avoid
confusion between the queries and the actual cuts to the cake that are required to produce an
allocation.

13

The Sgall-Woeginger model 2 captures all of the characteristics of Even and Paz’s

version of the protocol. Here too, it is the agents, and not a center, who calculate their

valuations of the cake. An agent’s “strategy” in this setting corresponds to a sequence

of answers to the queries issued to him, and we say that the protocol is fair if each

agent can guarantee his fair share by responding truthfully to the queries, regardless

of the other agents’ responses. Finally, an added advantage of the Sgall-Woeginger

model is that it allows us to define the computational complexity of a protocol:

Definition 2.3. The query complexity of a protocol (in the Sgall-Woeginger sense) is

the number of Mark and Eval queries issued by the protocol. The marking complexity

is the number of Mark queries issued by the protocol.

As we will see in Section 2.3.4, many recent papers have investigated the intricacies

of query and marking complexity. This interest in computational complexity probably

accounts for the popularity of the Sgall-Woeginger model.

2.2.3 Moving-Knife Procedures

Moving-Knife procedures take the notion of “cake-cutting” quite literally. An initial

example - Stromquist’s procedure for three agents - will be helpful:

A referee moves a sword from left to right over the cake, hypothetically
dividing it into a small left piece and a large right piece. Each player holds
a knife over what he considers to be the midpoint of the right piece. As the
referee moves his sword, the players continually adjust their knives, always
keeping them parallel to the sword. When any player shouts “cut,” the
cake is cut by the sword and by whichever of the players’ knives happens
to be the middle one of the three [32].

2Some have attributed the formalization of this model to Robertson and Webb and have thus
called it the “Robertson-Webb model” [25]. It is probably more accurate to call it the Sgall-
Woeginger model as they were the first to provide precise notation for the ideas of Robertson
and Webb. The confusion probably results from the fact that Sgall and Woeginger refer to the
“Robertson-Webb model” in their paper [29].

14

More generally, a moving-knife procedure involves a referee who holds a knife (or in

this case, for some inexplicable reason, a sword) which hovers over the cake from left

to right (i.e. from 0 to 1), and the agents, who themselves may be equipped with

similarly moving knives. When the positions of the knives satisfy certain properties,

an agent yells “cut” to stop the knives from moving, a subset of the knives cut the

cake in those positions, and some of the pieces of cake are allocated. This process

is iterated a finite number of times on the remaining pieces of cake until a final

allocation results. Similarly to protocols, a moving-knife procedure is fair if there

exists a strategy for each agent which guarantees him a fair share, regardless of what

the other agents do.

Moving-knife procedures are strange in that they are of great practical but little

theoretical use. Moving-knife procedures can clearly be implemented in real life, but

they are difficult to model because of their continuous nature. As Robertson and

Webb [28] point out, moving-knife procedures are not finite in that they require each

agent to make an infinite number of computations. In Stromquist’s procedure above,

for example, if we let x0 denote the the position of the referee’s sword at any given

moment, each agent i must compute the point x such that Vi([x0, x]) = Vi([x, 1]).

This computation occurs an uncountable number of times unless an agent yells “cut”

before the referee moves his sword.

In sum, because they require computation on a continuous space, moving-knife

procedures are difficult to model with the tools of computer science. The dearth

of formal literature on these types of procedures reflects this fact. Moving-knife

procedures do, however, provide a useful and understandable idiom for cake-cutting.

Other examples of moving-knife procedures have been set forth by Dubins and Spanier

[12] and Jones [17].

15

2.2.4 Algorithms

For a computer scientist, the most natural choice of cake-cutting procedure would be

the algorithm; yet the notion has gained popularity only recently in the literature.

The defining characteristic of an algorithm is that it takes an input - the agents’ VDFs

- and produces an output - the allocation. In contrast to protocols and moving-knife

procedures, algorithms require a computational center which performs the calcula-

tions necessary to produce the allocation. Once the agents submit their VDFs, they

have no way of altering how the allocation will be produced.

Although some definitions of a cake-cutting algorithm have been previously sug-

gested [20], we propose the following fairly general definition:

Definition 2.4. A cake-cutting algorithm is a Turing-computable function f : V1 ×

. . .×Vn → X , where Vi is the set of all possible VDFs for agent i and X is the set of

all allocations X = (X1, . . . , Xn).

In Chapter 3, we will see that restricting Vi to certain subclasses can be quite

useful. Also, it is important to note that the agents can provide false information

about their valuations to the algorithm: if the VDFs of the agents are given by

v = (v1, . . . , vn), an agent i could submit instead some v̂i 6= vi to the algorithm. This

brings us to the fairness principle for algorithms:

Definition 2.5. A cake-cutting algorithm f satisfies fairness property P = P1∩ . . .∩

Pn if, for all i ∈ N and all submitted density functions v̂j with j 6= i, the allocation

X = f(v̂1, . . . , vi, . . . , v̂n) ∈ Pi.

The definition above is analogous to the fairness principle for protocols, where each

submitted VDF v̂i corresponds to a different “strategy” in the protocol setting. An

algorithm is fair if it guarantees an agent a fair share so long as he submits his

preferences honestly.

16

With some notable exceptions [20, 10], researchers have not investigated cake-

cutting algorithms as we have defined them, and have instead focused on protocols

and moving-knife solutions. We hypothesize that there are two reasons for this fact.

First, there is a perception amongst researchers that outsourcing the computation of

valuations to the agents is faster and more natural than collecting value density func-

tions to a computational center. Second, researchers have shirked the responsibility

of specifying exact encodings of value density functions.

The first point is valid to an extent. It is reasonable to assume that agents will

be able to compute their valuations in a shorter amount of time than it would take

to specify their value density functions and have a center compute them. Yet there

are other reasons an algorithm might be preferable. For example, an agent may

not be aware of a strategy which ensures him a fair share, or we may not be able to

guarantee that the agents will follow the protocol’s instructions. Algorithms eliminate

these issues by condensing the actions of the agents into the submission of a single

value density function, and are in this sense preferable to protocols or moving-knife

procedures.

The second point demonstrates a hole in the literature that we hope to fill in

Chapter 3. While cake-cutting researchers of the past have, on the whole, avoided

discussing how valuation functions could be encoded, Chen et al. [10] and others have

taken an important step in the direction of greater specificity. Taken in the context

of the entire history of cake-cutting, the decision to specify an encoding reflects a

broader trend of researchers employing greater formalism in their expositions, which

has generally yielded more results from an algorithmic perspective. Insofar as cake-

cutting is a domain of computer science, then, a shift in focus from informal to formal

procedures will, we hope, further research in cake-cutting.

17

2.3 Previous Results

In this section we present some of the most important results in the cake-cutting

literature. We first examine procedures which satisfy certain fairness properties, and

then turn our attention to computational complexity, randomized algorithms, and

other miscellaneous results. We defer discussion of results concerning social welfare

to Chapter 3.

2.3.1 Proportionality

The property that has been longest studied in cake-cutting is that of proportionality,

defined as follows:

Definition 2.6. An allocation X = (X1, . . . , Xn) is proportional if Vi(Xi) ≥ 1/n for

all i ∈ N .

Proportionality has been variously called“fair” [30] and “simply fair” [28] in different

contexts; here, we use the term “proportional” to avoid confusion with other fairness

concepts. In the language of our fairness principle, the class of proportional allocations

P is defined by P = P1∩. . .∩Pn where Pi consists of all allocations X = (X1, . . . , Xn)

with Vi(Xi) ≥ 1/n.

Proportional procedures (i.e. procedures which satisfy the fairness principle with

P being the class of proportional allocations) have been known since the inception of

cake-cutting, which came with Steinhaus [30], who presents an informal description

of a solution he attributes to B.Knaster and S. Banach. The Banach-Knaster “last-

diminisher” procedure assigns a satisfactory piece to an agent and recursively works

on the remaining cake and agents. In each round, the procedure ensures a satisfactory

piece by giving each agent the option to trim the piece of cake, starting with the entire

18

cake; the last person to trim the piece receives the resulting piece. As Steinhaus notes,

agents can guarantee a proportional share if they act in a certain way. In particular,

if in any around an agent i receives a an interval Ii−1, he can guarantee a proportional

piece by cutting Ii−1 into a new piece Ii with Vi(Ii) = 1/n if and only if Vi(Ii−1) > 1/n.

Below, Algorithm 2.2 formalizes the non-recursive portion of the Banach-Knaster

procedure. It takes an interval I, an ordered set of agents M , and their corresponding

value VDFs v′. The variable max keeps track of the agent who has most recently

trimmed the piece of cake under consideration, i.e. the maximum ij with Vij (Ij−1) >

1/n. The algorithm returns a piece of cake Imax and an agent max to whom we assign

the piece of cake Imax, so that Xmax = Imax. In Algorithm 2.3, we run Algorithm 2.2

recursively on the input I − Imax, M − {max}, and v − {vmax}.

Algorithm 2.2 BanachKnasterHelper

Require: Interval I = [xb, xe], Agents M = {i1, . . . , im}, Value densities v′ =
{vi1 , . . . , vim}

Ensure: Interval Imax, Agent max
Find I1 = [xb, x1] ⊂ I with Vi1(I1) = 1/n
max← 1
for j = 2, . . . ,m do

if Vij (Ij−1) ≤ 1/n then
Ij ← Ij−1

else
Find Ij = [xb, xj] ⊂ Ij−1 with Vij (Ij) = 1/n
max← ij

end if
end for
return (Imax,max)

The correctness of Algorithm 2.3 follows from an induction on the number of

agents n. Suffice it to say that the following theorem holds:

Theorem 2.1. Algorithm 2.3 is proportional.

19

Algorithm 2.3 BanachKnaster

Require: Cake C, Agents N , Value densities v
Ensure: Allocation X = (X1, . . . , Xn)
I ← C, M ← N , v′ ← v
while M 6= ∅ do

(Imax,max)← BanachKnasterHelper(I,M, v′)
Xmax ← Imax
I ← I − Imax, M ←M − {max}, v′ ← v′ − {vmax}

end while
return (X1, . . . , Xn)

That a proportional algorithm was found simultaneously with what is generally

considered to be the birth of cake-cutting attests to the ease of achieving propor-

tionality relative to other fairness concepts. A collection of related results quickly

followed Steinhaus’ discovery. Dubins and Spanier [12], for instance, demonstrate the

existence of α-proportional allocations for arbitrary valuations, defined as follows:

Definition 2.7. Let α = (α1, . . . , αn) be such that αi > 0, αi ∈ Q for all i, and∑
αi = 1. An allocation X = (X1, . . . , Xn) is α-propoprtional if Vi(Xj) = αj for all

i, j ∈ N .

α-proportional allocations may at first seem considerably harder to find than

proportional ones because of the additional constraints involved; but in fact, Dubins

and Spainer achieve α-proportionality through a reduction to the Banach-Knaster

scheme. The provision that the αi are rational is essential to the reduction, as it

works as follows: express each αi as the ratio of two integers ri/k such that k is the

same for all agents i. Now we may simulate Banach-Knaster on k fake agents, where

each real agent i stands in for ri of the k agents. Then each agent will receive ri(1/k)

as a result. This leads to the following theorem:

Theorem 2.2. For any α = (α1, . . . , αn), there exists an α-proportional algorithm.

20

It is important to note, however, that such an algorithm may not have a running time

that scales well with k.

Another strengthening of proportionality is strict proportionality, in which each

agent receives value Vi(Xi) > 1/n. Woodall [37] proves the following theorem regard-

ing strict proportionality:

Theorem 2.3. Suppose there exists a piece of cake P ⊂ C and two agents i 6= j such

that Vi(P) 6= Vj(P). Then there exists a strictly proportional allocation.

Of course, if all agents have identical VDFs, then strict proportionality may not be

possible.

Finally, Austin [1] shows three separate methods of achieving proportionality.

The article is notable for its procedural variety: the first procedure is a moving-knife

solution, the second is the Banach-Knaster procedure framed as a protocol, and the

last is a novel protocol.

As this plethora of results suggests, proportionality is both a useful and well-

studied fairness concept in cake-cutting. As we will see in Section 2.3.4, this ease of

proving proportionality goes hand in hand with an ease of achieving proportionality,

at least in terms of complexity. Thus, as Procaccia says, “proportional cake-cutting

is, to all ends and purposes, completely understood” [25]. This status stands in stark

contrast to that of the fairness concept we examine next.

2.3.2 Envy-Freeness

By far, the concept that has attracted the most attention in cake-cutting research is

envy-freeness. For this reason, we examine the results associated with it in consider-

able depth.

21

Definition 2.8. An allocation X = (X1, . . . , Xn) is envy-free (EF) if Vi(Xi) ≥ Vi(Xj)

for all i, j ∈ N .

Envy-freeness is a strong concept of fairness, as it signifies that every agent is happiest

with their own piece of cake. Moreover, if the allocation is complete, then envy-

freeness implies proportionality, as the following proposition demonstrates.

Proposition 2.1. Suppose X = (X1, . . . , Xn) is a complete allocation. Then if X is

envy-free, X is proportional.

Proof. Suppose for a contradiction that Vi(Xi) < 1/n for some i. Because the al-

location is complete, we know that Vi(C − Xi) > (n − 1)/n. By the pigeon hole

principle, this implies that Vi(Xj) > 1/n for some j 6= i. But then Vi(Xi) < Vi(Xj),

contradicting envy-freeness. Thus Vi(Xi) ≥ 1/n for all i ∈ N .

The above produces the following corollary, which we shall employ in Chapter 3.

Corollary 2.1. If n = 2, then a complete allocation is proportional if and only if it

is envy-free.

Finding EF procedures proved to be considerably more difficult than finding pro-

portional procedures. Intuitively, this was because envy-freeness requires a partic-

ular relation between agents’ valuation functions, whereas proportionality does not.

Scholars thus simplified their goal of finding an EF procedure in two ways: first, by

proving only the existence of EF allocations under certain conditions, and second, by

restricting the number of agents n to a small number.

The existence of EF allocations has generally been proved in conjunction with

other properties. For example, Woodall [36] proves the following:

Theorem 2.4. There exists a partition of C into subintervals I1, . . . , In and a per-

mutation π : N → N such that Vi(Iπ(i)) ≥ Vi(Ij) for all i 6= j.

22

Putting Xi = Iπ(i) gives the EF allocation. The proof relies on an application of

Brouwer’s fixed point theorem on simplicial subdivisions. Stromquist [32] provides

the same result, although he frames it as an EF allocation which requires only n− 1

cuts. Both proofs are non-constructive, and thus give no insight into how an EF

allocation might be found in practice.

Cut-and-Choose is the simplest possible EF procedure, working for n = 2. Accord-

ing to Woodall [36], the case of n = 3 was proposed by Gamow and Stern; the problem

is known to have been solved independently by Selfridge and Conway. Woodall claims

Selfridge’s solution is an “algorithm,” but in reality it is a protocol (2.4) in the Even-

Paz sense. The final allocation (X1, X2, X3) is specified by setting Xi equal to the

union of the pieces agent i chose from sets {P ′1, P2, P3} and {L1, L2, L3} respectively.

Protocol 2.4 Selfridge-Conway

1. Agent 1 cuts C into three pieces P1, P2, P3 such that V1(P1) = V1(P2) = V1(P3).

2. WLOG assume that agent 2 prefers the pieces in the decreasing order
P1, P2, P3. If V2(P1) = V2(P2), then he does nothing. Otherwise, he cuts
P1 into two pieces P ′1 and L such that V2(P ′1) = V2(P2).

3. Agents choose pieces from the set {P ′1, P2, P3} in the order 3, 2, 1. If agent 3
does not choose P ′1, then agent 2 is required to do so.

4. If L = ∅, we are done. Otherwise, let j denote the agent in {2, 3} who did
not receive P ′1. Agent j cuts L into three pieces L1, L2, L3 he values equally.

5. Agents choose pieces from the set {L1, L2, L3} in the order 5− j, 1, j.

Theorem 2.5. Protocol 2.4 is EF.

Proof. First consider steps 1 through 3. After these steps are over, the pieces C−L =

{P ′1, P2, P3} have been allocated. We prove that this partial allocation is envy-free.

First, agent 3 envies nobody because he is allowed to choose first from among the

23

three. Next, agent 2 envies nobody because he chooses one of the two largest pieces

in his view, P ′1 or P2. Finally, we note that V1(P3) = V1(P2) ≥ V1(P ′1). Because P ′1

is required to have been taken by this point, then the piece remaining for agent 1 is

one of P2 and P3, implying his envy-freeness. Thus the partial allocation is envy-free.

A similar argument shows that the allocation over L also is envy-free. Because the

union of two envy-free partial allocations is itself envy-free, the theorem follows.

Protocol 2.4 can easily be turned into an equivalent algorithm by having the center

compute agents’ valuation functions, as opposed to distributing these calculations to

the agents themselves.

The Selfridge-Conway protocol suggests two key ideas in the development of envy-

free procedures. First is that of recursive trimming : agents trim pieces of cake in ways

that create ties, thereby guaranteeing envy-free partial allocations, and recursively

repeat this procedure on the remaining trimmings. Next is the process of reverse

selection: agents choose pieces of cake in the reverse order in which they trimmed the

cake. The combination of these two strategies results in what Brams and Taylor call

an “irrevocable advantage” for agent 1 over the piece of cake C − L and agent j over

L [8, p. 119]. Because these agents divide the cake in such a way that they cannot

possibly envy the other agents after they have all picked their pieces, the procedure

guarantees an EF partial allocation C − L and L respectively. The question arises of

whether such techniques can be extended to n > 3 in a natural and tractable way;

the answer is unfortunately “no.”

Consider the following case of n = 4. According to a natural extension of Selfridge-

Conway, agent 1 would cut the cake into four pieces of equal value, A,B,C and D.

Next, agent 2 would trim two pieces to create a three-way tie between pieces; suppose

these are C and D, trimmed to C ′ and D′ respectively and tied with A. Similarly,

24

agent 3 would trim one piece to create a two-way tie; suppose this is between B′,

now trimmed, and A. Now consider what happens in the reverse selection process.

Agent 4 might very well choose A, as the other pieces have been trimmed. In this

case, agent 3 would be required to choose B′, and agent 2 would choose one of C ′ or

D′. This leaves agent 1, who is now required to choose one of C ′ or D′; but both of

these have been trimmed, implying that he will envy agent 4, who has A!

Finding envy-free allocations for general n thus proved to be a difficult prob-

lem, which Brams and Taylor [7] were the first to solve. Their protocol is based on

the “trim-and-choose” paradigm, relying on recursive trimming and reverse selection

much like Protocol 2.4. It suffers, however, from a significant increase in descriptive

complexity. For example, their description [7] of the n = 4 case takes 20 steps, while

Protocol 2.4 for n = 3 takes just 5 steps.

This protocol’s descriptive complexity is a direct consequence of its computational

complexity. In the Brams-Taylor protocol, the number of cuts that agents are required

to make is very large relative to the number of agents: Brams and Taylor [7] show

that, in order to guarantee envy-freeness, the second agent must make O(2n) initial

trimmings. With so many pieces to consider, it becomes difficult to describe how

the procedure actually runs. Moreover, such protocols are inherently hard to specify

because they are in some sense asymmetric: which agent acts next depends on which

agent just acted. For these reasons, “trim-and-choose” protocols become mired in a

web of quantifiers, notational difficulties, and an exponentially large number of cuts

that make them of little use to human beings, and even less so for computers.

In recent years, however, more comprehensible envy-free procedures have cropped

up. They have not attracted nearly as much attention, most likely because by the

time they were discovered, EF cake-cutting procedures had existed for several years.

Both Pikhurko [24] and Robertson and Webb [27] provide informal descriptions of

25

envy-free algorithms which are mathematically more intuitive than the Brams-Taylor

protocol. Here we give an exposition of Pikhurko’s findings, which we consider to be

an elegant solution to the envy-free cake-cutting problem. At the crux of Pikhurko’s

algorithm is the following lemma.

Lemma 2.1. For every piece of cake P ⊂ C, m ∈ N, and ε > 0, there exists a

partition P = Y1 ∪ . . . ∪ Ym such that, for all j,

Vn(Yj) =
Vn(P)

m
and (2.1)∣∣∣∣Vi(Yj)− Vi(P)

m

∣∣∣∣ < ε for all other i. (2.2)

Proof. We proceed by induction on the number of agents. The statement holds

trivially for n = 1, so suppose n > 1 and let m and ε be arbitrary. By the inductive

hypothesis, there exists a partition Y1 ∪ . . . ∪ Ymt of P which satisfies (2.1) and (2.2)

with respect to mt and ε′ for the first n− 1 players. The values of mt and ε′ will be

specified later. Without loss of generality, we may assume that

Vn(Y1) ≥ . . . ≥ Vn(Ymt). (2.3)

Now let us define

W = Y1 ∪ Y2 ∪ . . . ∪ Ym and

Wi = Ym+i ∪ Y2m+i ∪ . . . ∪ Y(t−1)m+i for i = 1, . . . ,m.

By (2.3), it follows that

Vn(W1) ≥ . . . ≥ Vn(Wm).

We now bound the possible difference in value, from n’s perspective, between any two

26

sets Wi,Wj. The maximum possible difference is

Vn(W1)− Vn(Wm) =
(
Vn(Ym+1) + . . .+ Vn(Y(t−1)m+1)

)
− (Vn(Y2m) + . . .+ Vn(Ytm))

= Vn(Ym+1)− (Vn(Y2m)− Vn(Y2m+1))− . . .− Vn(Ymt)

≤ Vn(Ym+1).

Then because Vn(W) ≥ mVn(Ym+1), it follows that there is enough cake in W to form

from W1, . . . ,Wm pieces of equal value to agent n. We achieve this by taking the cake

from W and adding pieces of it to each Wi so that the newly formed pieces each have

value Vn(P)/m to player n. Call these corresponding pieces Z1, . . . , Zm. Clearly, these

pieces satisfy (2.1). Further, Wi ⊂ Zi ⊂ Wi∪W , so that by the inductive hypothesis,

(t− 1)

(
Vi(P)

mt
− ε′

)
< Vi(Zj) < (t− 1 +m)

(
Vi(P)

mt
+ ε′

)

for all i and j. Now, given m and ε, we can make t sufficiently large, and then ε

sufficiently small so that |Vi(Zj)− Vi(P)/m| < ε.

Pikhurko’s algorithm considers a piece of cake P , beginning with P = C, and

maintains groups G1, . . . , Gk of agents such that two agents are in the same group

if and only if they value P the same amount. Thus at the beginning, k = 1. At

each step, the algorithm divides both P and C −P amongst the k groups. If a group

cannot find an envy-free division, then the algorithm finds a different piece of cake

P such that there are strictly more groups. Because there are at most n groups, the

algorithm must terminate.

More notation is necessary for a description of the algorithm. Suppose we are at

some point in the algorithm where we consider a piece of cake P . Each group Gi has

mi members. For now, assume that all agents in the same group Gi have the same

27

valuation function Vi. Then define

ai = Vi(P), bi = mi

(
b− d(1− ai)2

)
, and ci = mi(c− da2

i) (2.4)

for all i ≤ k, where b and c are such that
∑k

i=1 bi =
∑k

i=1 ci = 1, and d > 0 is a small

enough rational number for all bi and ci to be non-negative.3 Now, suppose that we

could find partitions X = U1 ∪ . . . ∪ Uk and C −X = W1 ∪ . . . ∪Wk such that

Vi(Uj) = biVi(P) and Vi(Wj) = ciVi(C − P)

for all i and j. Suppose further that we allocate each piece Zi = Ui ∪Wi to group

i. Then if we allocate each Zi evenly to the mi members, then the allocation is envy

free. This is because, for any two i 6= j,

Vi(Zi)

mi

− Vi(Zj)

mj

=
biai + ci(1− ai)

mi

− bjai + cj(1− ai)
mj

(2.5)

= dai
(
(1− aj)2 − (1− ai)2

)
+ d(1− ai)(a2

j − a2
i) (2.6)

= d(ai − aj)2 > 0. (2.7)

That is, each group considers its own share of the cake per member to be the largest.

Unfortunately, the assumption that an allocation exists which corresponds to these bi

and ci does not necessarily hold. However, by Lemma 2.1, the following is certainly

true:

3Such a choice is always possible because there are more variables than there are linearly inde-
pendent equations.

28

Corollary 2.2. There exists a group-level allocation Z = (Z1, . . . , Zk) such that

Vi(Zi)

mi

− Vi(Zj)

mj

> 0 (2.8)

for all i 6= j.

Proof. By Lemma 2.1, we can get arbitrarily close to the allocation corresponding to

the bi and ci - in particular, by taking m to be some multiple of their least common

denominator. Hence there must exist an allocation Z which satisfies the above.

Once we find such an allocation Z, we use Lemma 2.1 on each group Gi to find an

individual allocation such that each player in Gi receives Vi(Zi)/mi of the cake and

the agents not in Gi consider these pieces “sufficiently equal.” If this assumption does

not hold for our original piece of cake P , we simply consider some smaller P ′ which

increases the number of groups. In particular, if Q is any piece which has value smaller

than min1≤i<j≤k |Vi(P)−Vj(P)|, then the symmetric difference P ′ = (P−Q)∪(Q−P)

will suffice.

Algorithm 2.5 formalizes Pikhurko’s procedure. Here, k(P) represents the number

of groups Gi as a function of the piece of cake P under consideration. The advantage

that Pikhurko’s algorithm has over protocols like that of Brams and Taylor is its

mathematical clarity. The algorithm iteratively selects a subset of C and assigns an

allocation based on a particular division of the cake as specified by the bi and ci’s.

If it cannot find within every group an individual EF allocation, it simply increases

the number of groups until it can (which must occur because the number of groups

is bounded by n).

The disadvantage of Pikhurko’s procedure is its lack of specificity: the imple-

mentation of how, for instance, to compute the bi’s and ci’s is left up to the reader.

29

Algorithm 2.5 Pikhurko

Require: Cake C, Agents N , Value densities v
Ensure: Allocation X = (X1, . . . , Xn)
P ← C
repeat

if P 6= C then
Find P ′ ⊂ P which increases k(P)
P ← P ′

end if
Find bi, ci satisfying (2.4)
Use Lemma 2.1 to find group-level allocation Z which satisfies (2.2)
If possible, distribute each Zi equally amongst members of Gi to create allocation
X = (X1, . . . , Xn)

until X is found
return (X1, . . . , Xn)

Similarly, how we employ Lemma 2.1 to create the partitions with properties (2.1) and

(2.2) is not explicitly stated by the algorithm. Nevertheless, it is evident that such

a construction is possible in a variety of ways, and this freedom of choice on behalf

of the implementer does not detract from the concision and clarity of the algorithm,

especially in relation to the Brams-Taylor protocol.

2.3.3 Other Fairness Concepts

Several further fairness concepts deserve mention:

Definition 2.9. An allocation X = (X1, . . . , Xn) is perfect if Vi(Xi) = 1/n for all

i ∈ N .

Definition 2.10. A(n) (possibly incomplete) allocation X = (X1, . . . , Xn) is equi-

table if Vi(Xi) = Vj(Xj) for all i, j ∈ N .

Complete, equitable allocations are perfect; conversely, perfect allocations are equi-

table. Both equitability and perfection are stronger than envy-freeness. Work focus-

ing on these fairness concepts has burgeoned in recent years [10, 5]. Another property,

30

recently proposed by Manabe and Okamoto [21], is meta-envy-freeness, which is as-

cribed to procedures that produce envy-free allocations regardless of the “slot” each

agent is assigned, i.e. the number i ∈ N designated to each agent.

2.3.4 Complexity

Having in large part solved the issue of how to achieve these fair allocations, the

cake-cutting community next turned its attention to the question of how difficult it

is to achieve these allocations. Even and Paz [15] were among the first to examine

the complexity of various cake-cutting procedures, using their definition of a protocol

as a starting point. In this somewhat informal setting, Even and Paz focus on the

number of “cuts” required to produce an allocation, where a “cut” corresponds exactly

to the Mark query of Sgall and Woeginger. After noting that the Banach-Knaster

procedure requires O(n2) cuts, the authors provide an O(n log n)-cut proportional

protocol which relies on a “divide-and-conquer” methodology. They also prove the

following rather surprising theorem:

Theorem 2.6. No deterministic proportional protocol (in the Even-Paz sense) exists

which makes only n− 1 cuts.

n − 1 cuts is the minimum number necessary to form any allocation, and the above

theorem precludes this possibility for proportional protocols. On a related note,

Barbanel and Brams [3] have studied the restricted case of small values of n, and

provide envy-free moving-knife procedures which require only 2 cuts for n = 3 and 5

cuts for n = 4.

As noted before, the advent of the Sgall-Woeginger model rendered it possible to

place uniform bounds on the complexity of entire classes of cake-cutting procedures.

For example, Sgall and Woeginger [29] consider the class of proportional protocols

31

which use Assign(i, xb, xe) only once for each i (i.e. each agent is assigned exactly

one subinterval in the final allocation), and prove that the query complexity of any

protocol in this class is Ω(n log n) in the worst case. The proof is rather involved,

and employs an adversary argument in a decision tree. Magdon-Ismail et al. [20]

demonstrate a related result, showing that sorting can be reduced to cake-cutting.

Edmonds and Pruhs [14] proved the following landmark theorem:

Theorem 2.7. The query complexity of any deterministic proportional protocol is

Ω(n log n).

This result effectively completed the community’s inquiry into proportional cake-

cutting procedures, although some derivative questions were still pursued. Woeginger

and Sgall [35], for example, give a procedure which guarantees ε-proportionality - that

is, Vi(Xi) ≥ (1− ε)/n for all i ∈ N - with O(n) marking complexity.

Bounds on EF procedures are even more recent. Most notably, Procaccia [25]

demonstrated the following:

Theorem 2.8. The query complexity of any deterministic EF protocol is Ω(n2).

The theorem above is particularly significant because it implies a fundamental differ-

ence between proportional and envy-free cake-cutting. This disparity in complexity

can be seen as a partial explanation for why finding EF procedures was so much more

difficult than finding proportional ones. In fact, while proportional procedures have

an upper bound of O(n log n) query complexity, no upper bound is yet known for EF

procedures. Stromquist [33] provides a step in the right direction:

Theorem 2.9. For n > 2, there exists no protocol which uses Assign(i, xb, xe) only

once and has finite query complexity.

Thus, both in terms of lower and upper bounds, envy-free cake cutting is markedly

more difficult than proportional cake-cutting.

32

2.3.5 Randomized Procedures

All of the results examined thus far have pertained to deterministic procedures; how-

ever, a small but growing literature exists on randomized ones. Generally, these

procedures yield complexity and fairness results that are better in expectation than

those produced by deterministic procedures. Even and Paz [15], for instance, give

a randomized proportional protocol with an expected number of cuts (i.e. expected

marking complexity) that is O(n). This protocol is similar to the deterministic one

alluded to previously. The random aspect of this protocol is the choosing of an ar-

bitrary agent in each iteration to determine a partition of the remaining agents into

two halves.

Edmond and Pruhs [13] provide an “approximately” proportional randomized

protocol with query complexity O(n). Perhaps most compellingly, Chen et al. [10]

give a proportional and envy-free randomized algorithm for piecewise linear VDFs, a

class of value density functions we study extensively in Chapter 3.

2.3.6 Other Themes

Some researchers have taken the theme of “truthfulness” from mechanism design and

applied it to cake-cutting in the following way:

Definition 2.11. A cake-cutting algorithm f is truthful if, for all i ∈ N , v̂i, and v̂j

with j 6= i,

Vi (fi(v̂1, . . . , v̂i−1, vi, v̂i+1, . . . , v̂n)) ≥ Vi (fi(v̂1, . . . , v̂i−1, v̂i, v̂i+1, . . . , v̂n))

Truthfulness applies more naturally to algorithms than other cake-cutting procedures

because algorithms require agents to report their preferences directly. Truthful cake-

33

cutting algorithms give agents no incentive to lie because they receive the biggest

piece of cake when they tell the truth. Truthfulness is related to fairness in that

both give agents reasons to submit their true valuations. However, there exist fair

algorithms in which agents can necessarily profit by lying, which makes the algorithm

non-truthful. Of course, there also exist algorithms which are truthful but not fair -

consider the algorithm which always gives the entire cake to one agent.

Little has been done in the way of studying truthful cake-cutting procedures:

Chen et al. [10] give a truthful envy-free algorithm for piecewise uniform valuations,

and Mossel and Tamuz [22] construct a proportional algorithm that is truthful in

expectation. Of all of the themes in cake-cutting, truthfulness seems to be the one

that remains most undeservedly understudied. The nascence of this theme in the

cake-cutting literature is most likely due to the extremely recent recognition that

cake-cutting can be considered multi-agent systems problem.

A final theme in the cake-cutting literature is that of “pie-cutting,” which differs

from cake-cutting in that the resource considered is circular as opposed to linear.

A fundamental difference between cake-cutting and pie-cutting is that the former

requires n−1 cuts to divide amongst n agents, whereas the latter requires n. Barbanel,

Brams, Jones, and Klamler [2, 6] have been the largest proponents of this emerging

subfield.

34

Chapter 3

Optimal Envy-Free Algorithms

In this chapter, we present several novel algorithms that produce exact or approximate

socially optimal envy-free allocations. Social optimality refers to the best possible

“social welfare,” a concept which broadly corresponds to the overall happiness of the

agents.

We begin by defining these notions in mathematical terms and discussing work

that has been done in the area. We then give four novel algorithms and their as-

sociated theorems: an optimal EF algorithm for n agents with piecewise constant

VDFs, an abstract algorithm for 2 agents, an approximation algorithm for 2 agents

with piecewise linear VDFs, and an approximation algorithm for n agents. Three of

these require a theory of k-bit rationals, which we develop throughout the chapter.

We conclude by suggesting some directions for future research.

35

3.1 Social Welfare

Social welfare is generally defined in two ways: Pareto optimality and social effi-

ciency. In order to avoid confusion about the various meanings of “efficient,” we will

substitute the phrase social optimality, or simply optimality, for social efficiency. The

word “efficient” will be reserved for describing procedures which run quickly.

Put in the language of cake-cutting, the two concepts are defined as follows:

Definition 3.1. An allocation X = (X1, . . . , Xn) is Pareto optimal if there exists

no other allocation X ′ = (X ′1, . . . , X
′
n) such that Vi(Xi) ≤ Vi(X

′
i) for all i ∈ N and

Vj(Xj) < Vj(X
′
j) for some j ∈ N .

Definition 3.2. An allocation X = (X1, . . . , Xn) is socially optimal (optimal) if for

any other allocation X ′ = (X ′1, . . . , X
′
n),

n∑
i=1

Vi(Xi) ≥
n∑
i=1

Vi(X
′
i).

We call the sum of the valuation functions the social welfare function, denoted s(X).

In general, Pareto optimal and socially optimal allocations need not be unique. One

can also speak of Pareto optimal and socially optimal allocations of a particular set.

For example, if P is some class of allocations (e.g. the class of EF allocations), then

X∗ ∈ P is a socially optimal allocation of P if it satisfies

s(X∗) = max
X∈P

s(X).

The case for Pareto optimality is defined analogously. In practice, rather than saying

“X is a Pareto optimal allocation of P ,” we say “X is a Pareto optimal P-allocation,”

36

where P stands for both the class of allocations and the property that defines this

class.

The next theorem shows that for complete allocations, social optimality is stronger

than Pareto optimality. This fact will come in handy in our next section.

Theorem 3.1. If X is a socially optimal complete allocation, then X is Pareto op-

timal.

Proof. Suppose for a contradiction that X is not Pareto optimal amongst complete

allocations. Then there exists some EF allocation X ′ = (X ′1, . . . , X
′
n) which has

Vi(X
′
i) ≥ Vi(Xi) for all i and Vj(X

′
j) > Vj(Xj) for some j. Adding together the

inequalities gives

∑
i 6=j

Vi(Xi) + Vj(Xj) <
∑
i 6=j

Vi(X
′
i) + Vj(X

′
j)

which contradicts the fact that X is socially optimal. Hence X must be Pareto

optimal as well.

3.2 Related Work

The first works in the literature to focus on social welfare were not procedures but

existence proofs. Weller [34], for instance, shows the existence of Pareto optimal envy-

free allocations; his proof, however, is non-constructive and thus does not indicate

how to obtain such allocations. Berliant et al. [4] provide further existence results

relating to social welfare, but these are similarly non-constructive.

Reijnierse and Potters [26] give a price-based algorithm for finding Pareto optimal

37

EF allocations in the restricted setting of agents with piecewise constant value density

functions. Reijnierse and Potter’s algorithm is useful because it can be employed

to find approximately Pareto optimal EF allocations of Lipschitz continuous value

density functions, where such functions are defined as follows:

Definition 3.3. Given a subset C ⊂ R, a function f : C → R is said to be Lipschitz

continuous or K-Lipschitz if there exists a constant K ∈ N such that

|f(x1)− f(x2)| ≤ K|x1 − x2|

for all x1, x2 ∈ C.

In our case C is the unit interval [0, 1]. Many reasonable value density functions can be

seen to be Lipschitz continuous, and in fact, our approximation algorithm for general

VDFs in Section 3.6 is inspired by theirs. The weakness of Reijnierse and Potters’

work lies in the fact that it provides no guarantees on the algorithm’s running time,

which makes it of limited practical use. By comparison, our algorithms run in time

polynomial in the length of the input.

Even more restrictive settings have been explored: Jones [17] gives a procedure

for two agents cutting the rectangle [0, 1] × [0, 1] rather than a single interval. The

algorithm achieves the socially optimal allocation amongst ones that are equitable,

envy-free, and made with a “single cut” - that is, each player receives exactly one

subinterval of [0, 1]. While the result is intriguing, the assumption that n = 2 is too

restrictive to give any insight into the case of general n.

Nuchia and Sen [23] present a procedure which assumes an envy-free allocation

has already been found, and improves upon its social welfare through swaps of pieces

38

of cake while maintaining envy-freeness. The procedure does not necessarily find

a socially optimal envy-free allocation; given a fixed initial envy-free allocation, it

instead finds the best possible envy-free allocation that can be obtained through a

particular set of swaps. The assumption that an envy-free allocation is supplied is

quite strong given the difficulty of finding such allocations (see Section 2.3.4).

Finally, Caragiannis et al. [9] define a concept called the price of envy-freeness,

given by

max s(X)

max
X′∈P

s(X ′)

where the max in the numerator is taken over all allocations, and P is the set of all

envy-free allocations. Taken from similar notions in multi-agent systems, the price

of envy-freeness captures how much social welfare we sacrifice by opting for envy-

freeness. Cargiannis et al. provide a lower bound of Ω(
√
n) and a weak upper bound

of O(n).

3.3 Piecewise Constant VDFs

Our first algorithm applies when all agents have piecewise constant value dennsity

functions.

Definition 3.4. A value density function v : [0, 1] → [0,∞) is said to be piecewise

constant if it can be written as the sum

v(x) =
m∑
j=1

αjχj(x)

where the αj are non-negative constants and the χj are indicator functions on some

39

collection of disjoint intervals {I1, . . . , Im}; that is,

χj(x) =


1 if x ∈ Ij,

0 otherwise

for j = 1, . . . ,m.

There are many natural settings in which agents might have piecewise constant VDFs.

Suppose in sharing a cake, for instance, that one half of the cake were covered with

chocolate frosting and the other half covered with vanilla frosting. It is reasonable

to assume that agents would attribute the same marginal value within each haf, but

that they may attribute different values to the chocolate half than to the vanilla half.

This situation would be best modeled with piecewise constant VDFs. A less trivial

example would be access to a shared resource (e.g. a computational cloud), in which

agents are interested in specific time slots, but are indifferent between particular parts

within each time slot.

We next define a concept which will be critical in specifying the encodings of

agents’ VDFs.

Definition 3.5. A k-bit rational is a rational number of the form a/b, where each of

a and b is a k-bit integer.

The notion of k-bit rationals is intuitive for computer scientists and grants greater

specificity in the implemenation of our algorithms.

We now give our procedure for piecewise constant VDFs. Each agent i will submit

two sets of numbers as inputs to the algorithm. The first set, Θi, will consist of the

40

intervals on which vi has non-zero value. For instance, if agent i has marginal value

2 on [0, 1/4] and [3/4, 1] and 0 elsewhere, he will submit Θi = {[0, 1/4], [3/4, 1]}. The

second set Φi, a multi-set, will consist of the non-zero values αj corresponding to

these intervals. Hence in the preceding example, Φi = {2, 2}; in general, |Θi| = |Φi|.

We assume that both the boundaries of the intervals in Θi and the non-zero values in

Φi are k-bit rationals. We also assume that |Θi| is finite. Note that this specification

completely describes the preferences of our agents.

Algorithm 3.1 PiecewiseConstant

Require: Intervals Θi, Non-zero values Φi

Ensure: Allocation (X1, . . . , Xn)
for i = 1, . . . , n do

Mark the boundaries of each Ij ∈ Θi

end for
Mark 0 and 1
Let Ψ be the set of subintervals of [0, 1] formed by consecutive marked boundaries
Solve the following linear program:

max
n∑
i=1

∑
I∈Ψ

xiIVi(I) (3.1)

s.t.
n∑
i=1

xiI = 1 ∀I ∈ Ψ (3.2)∑
I∈Ψ

xiIVi(I) ≥
∑
I∈Ψ

xjIVi(I) ∀i, j ∈ N (3.3)

xiI ≥ 0 ∀i ∈ N, I ∈ Ψ (3.4)

return (X1, . . . , Xn) which, for all i ∈ N and I ∈ Ψ, gives a xiI fraction of I to
Xi

Above is our algorithm for agents with piecewise constant VDFs. Here, “marking

the boundaries” can be implemented in a variety of ways - for instance, by adding

these numbers to some sorted set. The linear program (LP) in this algorithm has

41

variables xiI , which represent the fraction of interval I given to agent i, and constants

Vi(I), which can be calculated given Θi and Φi. If we define m such that |Θi| ≤ m

for all i ∈ N , the importance of Algorithm 3.1 can be summarized thus:

Theorem 3.2. Assume agents have piecewise constant VDFs. Then Algorithm 3.1

produces a socially optimal envy-free allocation in time polynomial in n, m, and k.

Proof. (3.2) and (3.4) ensure that the allocation produced is both feasible and com-

plete. Furthermore, (3.3) guarantees that the allocation is envy-free. Thus maximiz-

ing the social welfare function is tantamount to (3.1). Because LPs can be solved

exactly given rational inputs, it follows that the allocation (X1, . . . , Xn) is socially

optimal amongst envy-free allocations.

It remains to prove that the algorithm runs in time polynomial in the size of the

input. It suffices to show that the size of the LP is polynomial in the size of the input

[18]. Each Vi(Ij) is the product of the length of Ij and αj. The first of these factors is

an O(k)-bit rational, while the second is a k-bit rational; hence the product of these

two is an O(k)-bit rational. Next, because each agent makes at most 2m marks, we

know that |Ψ| = O(nm). Thus there are O(n2m) variables. As for the number of

constraints, (3.2) yields O(nm), (3.3) yields O(n2) and (3.4) yields O(n2m), for a

total of O(n2m) constraints. Thus all of the coefficients are O(k)-bit rationals, and

there are a polynomial number of variables and constraints.

3.4 An Abstract Algorithm for 2 Agents

We next present an abstract algorithm which achieves socially optimal EF allocations

for n = 2 with general valuations. The algorithm is “abstract” in the sense that it

42

cannot be exactly implemented within the framework of k-bit rationals. However, it

will serve as a useful springboard for an approximation algorithm we present later.

Informally, our algorithm works by beginning with a socially optimal allocation

and trading pieces of cake until neither agent is envious. Thus the bulk of the work

is in determing which pieces of cake should be traded. A key notion in this process

will be the value ratio.

Definition 3.6. The value ratio at x ∈ [0, 1] where v2(x) 6= 0 is defined by R(x) =

v1(x)/v2(x).

Intuitively, the value ratio represents how much agent 1 values an infinitessimal piece

of cake relative to agent 2. By finding regions of the cake for which R(x) satisfies

certain properties, we will be able to achieve envy-freeness.

Next, we establish some notation to discuss specific regions of the cake. For

i, j ∈ {1, 2} and op ∈ {>,≥,=}, we let

Yi op j = {x ∈ [0, 1] : vi(x) op vj(x)}.

This notation allows us to concisely represent portions of the cake for which an agent

has strictly greater, weakly greater, or equal value as the other agent. Note that

non-atomicity of valuation functions implies that if Y1=2 is trivial, we can treat it as

the empty set. Similarly, let

Yop r = {x ∈ [0, 1] : R(x) op r} ∩ Y2>1.

Yop r specifies the parts of the cake for which the ratio of VDFs stand in relation to

43

a number r. For instance, Y>0 = C. A similar comment applies in this case when

op is =. In all of the following, we assume that all such Y ’s can be expressed as a

finite union of subintervals of [0, 1]. Indeed, this holds for most reasonable VDFs (e.g.

piecewise continuous ones).

One additional lemma will be useful in constructing our algorithm.

Lemma 3.1. Any allocation (X1, X2) in which Y1>2 ⊂ X1 and Y2>1 ⊂ X2 is socially

optimal.

The lemma formalizes the simple fact that if each agent receives all parts of the cake

which he strictly prefers over the other agent, then the social welfare function will be

maximized. The proof is immediate and is omitted.

We now present our abstract algorithm (Algorithm 3.2) and its associated theorem

(Theorem 3.3).

Algorithm 3.2 Abstract

Require: Value densities {v1, v2}
Ensure: Allocation (X1, X2)

if V1(Y1≥2) ≥ 1/2 and V2(Y2≥1) ≥ 1/2 then
Give Y1>2 to agent 1 and Y2>1 to agent 2
if V1(Y1>2) ≥ 1/2 then

Give Y1=2 to agent 2
else

Divide Y1=2 between the two such that agent 1 receives total value exactly 1/2
end if

else {Assume WLOG that V1(Y1≥2) < 1/2}
Give Y1≥2 to agent 1
Let r∗ = max{r : V1(Y1≥2 ∪ Y≥r) ≥ 1/2}
Give Y>r∗ to agent 1
Divide Y=r∗ between the two such that agent 1 receives total value exactly 1/2

end if

44

Theorem 3.3. Given 2 agents, Algorithm 3.2 produces a socially optimal envy-free

allocation.

Proof. Let (X1, X2) be the allocation produced by this algorithm. We consider each

of the two larger branches of the algorithm.

Case 1: V1(Y1≥2) ≥ 1/2 and V2(Y2≥1) ≥ 1/2. Then because we give Y1>2 to agent 1

and Y2>1 to agent 2, by Lemma 3.1 the allocation specified is optimal. Further, by

Corollary 2.1, the allocation is EF. 1

Case 2: V1(Y1≥2) < 1/2. We first prove the allocation is EF. Agent 1 cannot be

envious as he is given a piece X1 with V1(X1) = 1/2. Moreover, because the allocation

is complete, we know V1(X2) = 1/2. Since X2 consists only of points x for which

v1(x) ≤ v2(x), we know that V2(X2) ≥ V1(X2) ≥ 1/2. Hence the allocation is EF.

In order to ensure this envy-freeness, we sacrifice social welfare by granting to

agent 1 pieces of cake on which v1(x) < v2(x) - that is, portions from Y2>1. Thus our

task is to prove our method of doing so is the best possible way. Let (X ′1, X
′
2) be any

socially optimal EF allocation. Then define

A = X1 ∩X ′1 ∩ Y2>1

B = (X1 −X ′1) ∩ Y2>1

C = (X ′1 −X1) ∩ Y2>1

A gives the intervals on which both allocations lose welfare due to giving agent 1 pieces

preferred by agent 2. B gives the intervals on which only (X1, X2) loses welfare and

1In this case, the allocation is not only socially optimal amongst EF allocations, but also socially
optimal in the general sense.

45

C gives the intervals on which only (X ′1, X
′
2) loses welfare. Additionally, A ∩ B = ∅,

A ∩ C = ∅, B ∩ C = ∅, A ∪B = X1 ∩ Y2>1 and A ∪ C = X ′1 ∩ Y2>1.

Now let ε > 0 be such that V1(Y1≥2) = 1/2− ε. Because the algorithm gives value

exactly 1/2 to agent 1, we have

V1(A) + V1(B) =

∫
A

v1(x)dx+

∫
B

v1(x)dx = ε. (3.5)

Also, because (X ′1, X
′
2) is EF, by Corollary 2.1 agent 1 must receive at least ε from

the portion of Y2>1 he receives:

V1(A) + V1(C) =

∫
A

v1(x)dx+

∫
C

v1(x)dx ≥ ε. (3.6)

Combining (3.5) and (3.6) gives

∫
C

v1(x)dx−
∫
B

v1(x)dx ≥ 0. (3.7)

Next, let X∗ = (X∗1 , X
∗
2) be a (not necessarily EF) optimal allocation, and let A =

(A1, A2) be any arbitrary allocation. Then define the loss function as

l(A) = s(X∗)− s(A)

i.e. the difference between the social welfare of an optimal allocation and the social

46

welfare of A. By Lemma 3.1, we have the following:

l(X1, X2) =

∫
A

(v2(x)− v1(x))dx+

∫
B

(v2(x)− v1(x))dx

l(X ′1, X
′
2) ≥

∫
A

(v2(x)− v1(x))dx+

∫
C

(v2(x)− v1(x))dx

The loss for (X ′1, X
′
2) is an inequality because while our algorithm assigns all of Y1>2

to 1, (X ′1, X
′
2) may not and lose welfare on these intervals as well.

Now we need only prove that l(X ′1, X
′
2) ≥ l(X1, X2). To do so, note that by

definition, X1 ∩ Y2>1 consists of all points with R(x) > r∗ and some points with

R(x) = r∗. Because B ∩ C = ∅, it follows that if x ∈ B then R(x) ≥ r∗ and if x ∈ C

then R(x) ≤ r∗. Hence

l(X ′1, X
′
2) − l(X1, X2)

≥
∫
C

(v2(x)− v1(x))dx−
∫
B

(v2(x)− v1(x))dx

=

∫
C

(
v1(x)

R(x)
− v1(x)

)
dx−

∫
B

(
v1(x)

R(x)
− v1(x)

)
dx

≥
(

1

r∗
− 1

)(∫
C

v1(x)dx−
∫
B

v1(x)dx

)
≥ 0

where the last inequality follows from (3.7).

In the next section, we will see precisely why Algorithm 3.2 is intractable in our

computational setting.

47

3.5 Piecewise Linear VDFs for 2 Agents

Piecewise linear functions have much the same form as piecewise constant functions,

except that the non-zero portions are linear rather than constant.

Definition 3.7. A value density function v : [0, 1] → [0,∞) is said to be piecewise

linear if it can be written as the sum

v(x) =
m∑
j=1

Lj(x)

where the Lj are linear functions on some disjoint intervals {I1, . . . , Im}; that is, for

some constants αj and βj,

Lj(x) =


αjx+ βj if x ∈ Ij,

0 otherwise

for j = 1, . . . ,m.

Note that if αj = 0 for all j, then the function is piecewise constant.

Similarly to the piecewise constant case, we express agents’ preferences with k-

bit rationals. Each agent i submits their preferences in terms of two sets: Θi, as

before, is the set of intervals on which he has non-zero value; Φi is now a set of slope-

intercept pairs (αj, βj) corresponding to these intervals. As before, we assume that

all boundaries in the intervals in Θi and all αj, βj can be expressed as k-bit rationals.

Piecewise linear VDFs are considerably more expressive than piecewise constant

VDFs because agents are no longer indifferent between portions of the cake to which

48

they attribute non-zero value. Thus Algorithm 3.1 fails in this case. Moreover, while

it may be tempting to apply Algorithm 3.2, there is a flaw to this approach. In

particular, even if the inputs to the algorithm are all k-bit rationals, there is still no

guarantee that the r∗ found by the algorithm is itself a k-bit rational. In fact, as the

following theorem proves, r∗ may not be rational at all.

Theorem 3.4. Suppose the two agents have piecewise linear VDFs that can be spec-

ified by k-bit rationals. Then r∗ need not be rational.

Proof. Suppose agent 2 has VDF v2(x) = 2x over the entire interval [0, 1] and agent

1 has VDF

v1(x) =


1
2

if 0 ≤ x ≤ 1
4

32x+1
18

if 1
4
< x ≤ 1.

Note that v1(x) integrates to 1 over the interval [0, 1]. In the initial phase of the

algorithm, agent 1 will receive the interval I1 = [0, 1/4] and agent 2 will receive the

rest, I2 = (1/4, 1] to make the optimal allocation. At this point, agent 1 will be

envious of agent 2, having only value (1/2)(1/4) = 1/8 for his piece of the cake.

Next, the algorithm takes pieces from I2 and gives them to agent 1, even though

he values I2 less than agent 2 does. In particular, the algorithm will allocate some

interval of the form [1/4, x∗] to agent 1. At the point of envy-freeness, agent 1 will

have been given 1/2− 1/8 = 3/8 worth of cake. Thus x∗ will satisfy

∫ x∗

1
4

v1(t)dt =
3

8
.

49

Integrating and solving, we have that

x∗ =
−1 + 3

√
57

32
.

However, on the interval [1/4, 1], R(x) is given by

R(x) =
32x+ 1

36x
.

As x∗ is irrational, it follows that r∗ = R(x∗) is irrational.

The irrationality of r∗ precludes us from implementing Algorithm 3.2 in terms of k-

bit rationals. Furthermore, given the relative simplicity of piecewise linear functions,

the preceding theorem suggests that finding exact values of r∗ for our algorithm will

be intractable for a large number of valuation functions. Our best hope now is to

come up with an approximation scheme. We look for an ε-EF allocation, defined as

follows:

Definition 3.8. An allocation X = (X1, . . . , Xn) is ε-envy-free (ε-EF) if Vi(Xi) ≥

Vi(Xj)− ε/2 for all i, j ∈ N .

Before specifying this algorithm, we turn our attention to some properties of k-bit

rationals. Here, we take k-bit rationals to include numbers of the form ±a/b, where

a, b can be expressed in k-bits. In all of the following, we assume that v1(x) = α1x+β1

and v2(x) = α2x+β2 on some interval I ⊂ C, where α1, α2, β1, β2 are all k-bit rationals.

Proposition 3.1. Assuming it exists, the point x∗ ∈ I such that v1(x∗) = v2(x∗) can

be computed in time polynomial in k, and x∗ can be expressed as an O(k)-bit rational.

50

Proposition 3.2. If r is an O(k)-bit rational, the point x∗ ∈ I such that v1(x∗)/v2(x∗) =

r (if it exists) can be computed in time polynomial in k, and x∗ can be expressed as

an O(k)-bit rational.

To see that these claims are true, we need only note that the arithmetic of k-bit

rationals can be reduced to integer arithmetic in polynomial time. Because standard

arithmetical operations on integers can be computed in polynomial time, it follows

accordingly that these operations on k-bit rationals can be computed in time polyno-

mial in k. Also, it is easy to see that O(k)-bit rationals are closed under the operations

of addition and multiplication, so that our propositions hold. We next examine the

integral of these VDFs.

Proposition 3.3. If a, b ∈ I are k-bit rationals with a < b, then

1.
∫ b
a
vi(x)dx can be computed in time polynomial in k.

2. If δ is such that a ≤ b− δ ≤ 1,

∣∣∣∣∫ b

a

vi(x)dx−
∫ b−δ

a

vi(x)dx

∣∣∣∣ ≤ δ2k+2.

Proof. Claim 1 follows from the fact that the vi are linear functions. To prove claim

2, we note that

∣∣∣∣∫ b

a

vi(x)dx−
∫ b−δ

a

vi(x)dx

∣∣∣∣ =

∣∣∣∣∫ b

b−δ
αix+ βidx

∣∣∣∣
=

∣∣∣∣δ(αib+ βi −
αiδ

2

)∣∣∣∣
≤

∣∣δ (2k + 2k + 2k−1
)∣∣ ≤ δ2k+2.

51

Item 2 in particular will allow us to bound the loss of social welfare in our approxi-

mation algorithm.

Our next propositions concern the value ratio.

Proposition 3.4. R(x) = v1(x)/v2(x) is strictly increasing, strictly decreasing, or

constant on the whole of I. If R(x) is constant, then R(x) is a 2k-bit rational.

The proposition follows almost immediately from the definition of R(x) and so we

omit its proof. A final observation is the following, which is similar to item 2 of

Proposition 3.3:

Proposition 3.5. If R(x) is not constant on I, then for x1, x2 ∈ I,

|R(x1)−R(x2)| ≤ δ ⇒ |x1 − x2| ≤ δ24k+2.

Proof. Substituting in values for R, we get

∣∣∣∣(α1β2 − α2β1)(x1 − x2)

(α1x1 + β1)(α2x2 + β2)

∣∣∣∣ < δ ⇒ |x1 − x2| ≤
∣∣∣∣δ(α1x1 + β1)(α2x2 + β2)

(α1β2 − α2β1)

∣∣∣∣
≤ δ

∣∣∣∣(2k + 2k)(2k + 2k)

2−2k

∣∣∣∣
= δ24k+2.

Equipped with this knowledge of k-bit rationals, we can now specify our imple-

mentation of Algorithm 3.2. Similarly to the beginning of Algorithm 3.1, we first

52

preprocess the input by marking the boundaries of all intervals in Θi for all i ∈ N .

As before, let Ψ denote the set of intervals formed by consecutive marks. On each

of these new intervals I ∈ Ψ, check whether the two agents’ VDFs intersect. If they

do, break I into two separate intervals at the point of intersection. Now both VDFs

have constant slope on every interval I ′ in the newly formed set of intervals Ψ′.

We must ensure that this preprocessing does not take too long. As before, let

m be such that |Θi| ≤ m for all i ∈ N . From before, we know that |Ψ| = O(nm).

Additionally, each intersection point creates two new intervals, so that |Ψ′| = O(nm).

Finally, by Proposition 3.1, we know that these intersection points can be computed

in time polynomial in k and that these will be O(k)-bit rationals. Because there are

a polynomial number of such intersections, this entire preprocessing step can be done

in time polynomial in n, m, and k.

We now consider each possible branch of Algorithm 3.2 and specify what changes

need to be made, if any. Note that part 1 of Proposition 3.3 tells us that given Ψ′,

we can compute any Vi(Yi op j) or Vi(Yop r) in polynomial time.

Case 1: V1(Y1≥2) ≥ 1/2 and V2(Y2≥1) ≥ 1/2. Then simply allocate Y1>2 to agent 1

and Y2>1 to agent 2. There are two subcases:

• V1(Y1>2) ≥ 1/2. Then allocate Y1=2 to agent 2 and we are done.

• V1(Y1>2) < 1/2. Because we are opting for an ε-EF allocation, we wish to find a

division of Y1=2 so that the total value agent 1 receives from all of Y1>2 and his

portion of Y1=2 is approximately 1/2. Since V1(Y1≥2) ≥ 1/2, there exists some

x∗ such that

V1 (([0, x∗] ∩ Y1=2) ∪ Y1>2) = 1/2.

53

Now let x′ be the greatest multiple of 1/2p less than x∗, where p ≥ log2(1/ε) +

k + 2. Because the above function is monotonically increasing in x, x′ can be

found in time polynomial in p using binary search over p-bit numbers. Moreover,

by part 2 of Proposition 3.3, we know that V1 (([0, x′] ∩ Y1=2) ∪ Y1>2) is within

δ2k+2 = (ε2−k−2)(2k+2) = ε of 1/2. Thus we allocate [0, x′]∩Y1=2 to agent 1 and

the rest of Y1=2 to agent 2. Because we always allocate intervals to an agent

who weakly prefers the interval, the allocation is optimal.

Case 2: V1(Y1≥2) < 1/2. First, we allocate Y1≥2 to agent 1. Next, we wish to find an

O(k)-bit rational r′ which best approximates r∗. We do this by performing a search

over p-bit rationals for the smallest r that satisfies

∣∣∣∣V1(Y≥r ∪ Y1≥2)− 1

2

∣∣∣∣ ≤ ε

where p ≥ max{2k, log M
ε

+ 5k + 4} and M = |Ψ′|. Specifically, our binary search

computes both V1(Y≥r∪Y1≥2) and V1(Y>r∪Y1≥2) in case there are any intervals which

have constant value ratio R(x) = r. As both functions are monotonic in r, a result

by Kwek and Mehlhorn [19] shows that our search for r′ over p-bit rationals can be

done in O(p) steps, which is polynomial in log(1/ε), k, and m. There are two possible

subcases:

• Y=r∗ contains an interval I ∈ Ψ′. Because R(x) is constant on I, it follows from

Proposition 3.4 that r∗ is a 2k-bit rational. Thus our search will find r∗ exactly

and the algorithm proceeds as specified: we give Y>r∗ to agent 1 and divide

Y=r∗ amongst the two such that agent 1 receives total value exactly 1/2.

54

• Y=r∗ does not contain an interval I ∈ Ψ′. Then by Proposition 3.4, on every

I ∈ Ψ′ which has an x with R(x) = r∗, R(x) is monotonically decreasing or

increasing. Thus on these intervals, the inverse R−1(r) is well-defined. By

Proposition 3.5, the r′ found will be such that

|R−1(r′)−R−1(r∗)| ≤ ε2−k−2

M
.

Proposition 3.2 now tells us that on every I, x′ = R−1(r′) and x∗ = R−1(r∗)

can be computed in O(k) time, and that these points will be O(k)-bit rationals.

Finally, by applying part 2 of Proposition 3.3 on each I and summing, we get

that ∣∣∣∣V1(Y≥r ∪ Y1≥2)− 1

2

∣∣∣∣ ≤ ε.

Thus we allocate Y≥r to agent 1 and the rest to agent 2.

In either subcase, we have r′ ≥ r∗ so that the social welfare of the allocation found is

greater than that of the one found by Algorithm 3.2.

Because every step we described was performed in time polynomial in log2(1/ε),

log2m, k, and n, we have the following theorem:

Theorem 3.5. Suppose there are 2 agents with piecewise linear VDFs. There exists

an algorithm that, for every ε > 0, runs in time polynomial in the input (log2m, k,

and n) and log2(1/ε) which produces an ε-EF allocation X such that s(X) ≥ s(X∗),

where X∗ is any optimal EF allocation.

55

3.6 General VDFs

Our final algorithm will employ the results from Section 3.3 to handle general value

density functions. The algorithm will produce an allocation which is ε-EF and whose

efficiency is within ε of the optimal EF allocation. The procedure relies primarily on

the following lemma:

Lemma 3.2. Let ε > 0 and v1, . . . , vn be arbitrary VDFs. Suppose v′1, . . . , v
′
n are

piecewise constant VDFs such that for all i ∈ N and x ∈ C,

vi(x) ≤ v′i(x) ≤ vi(x) +
ε

2
. (3.8)

Further, let X = (X1, . . . , Xn) be an optimal EF allocation with respect to valuations

Vi (induced by vi) and let X ′ = (X ′1, . . . , X
′
n) be an optimal ε/2-EF allocation with

respect to valuations V ′i (induced by v′i). Then X ′ is ε-EF with respect to Vi and

s(X ′) ≥ s(X)− ε/2, where s is taken with respect to Vi.

Proof. To prove that X ′ is ε-EF with respect to Vi, note that

Vi(X
′
i) ≥ V ′i (X

′
i)−

ε

2
≥ V ′i (X

′
j)− ε ≥ Vi(X

′
j)− ε

for all i, j ∈ N , where the first and third inequalities come from (3.8) and the second

inequality comes from the fact that X ′ is ε/2-EF with respect to Vi.

Next, we claim that

n∑
i=1

V ′i (X
′
i) ≥

n∑
i=1

V ′i (Xi). (3.9)

56

Because X ′ is an optimal ε/2-EF allocation with respect to V ′i , it is sufficient to prove

that X is ε/2-EF with respect to V ′i . Using (3.8) and the fact that X is EF with

respect to Vi, we have

V ′i (Xi) ≥ Vi(Xi) ≥ Vi(Xj) ≥ V ′i (Xj)−
ε

2
.

Finally, it holds that

n∑
i=1

Vi(X
′
i) =

n∑
i=1

∫
X′i

vi(x)dx ≥
n∑
i=1

∫
X′i

(v′i(x)− ε/2)dx

=

(
n∑
i=1

∫
Xi′

v′i(x)dx

)
− ε/2 =

(
n∑
i=1

V ′i (X
′
i)

)
− ε/2.

Combining the above, (3.9), and (3.8) in that order yields our desired result.

Using this Lemma, we can now specify our algorithm with the following theorem:

Theorem 3.6. Suppose there are n agents whose VDFs vi are K-Lipschitz with

vi(x) ≤ M for some M ∈ N, all i ∈ N . There exists an algorithm that, for every

ε > 0, runs in time polynomial in n, log2M , K, and 1/ε which produces an ε-EF

allocation whose social welfare is within ε of the optimal EF allocation.

Proof. Our algorithm will rely on a reduction to Algorithm 3.2 through Lemma 3.2.

Our first task is to find an appropriate set of piecewise linear VDFs v′i which approx-

imates the set of real VDFs vi. We do so by splitting [0, 1] into m = d4K/εe disjoint

intervals, each of size at most ε/(4K). Call this new set of intervals Θ. For all Ij ∈ Θ,

57

define

v∗(Ij) = max
x∈Ij

vi(x) and S =
{ a

2p
: a ∈ [0,M2p]

}

where p = d2 + log(1/ε)e. The set S is similar in spirit to the sets over which

we performed searches in the previous section. Finally, if Ij ∈ Θ and x ∈ Ij, let

v′i(x) = q∗(Ij), where

q∗(Ij) = min{s ∈ S : s ≥ v∗(Ij)}.

That is, v′i(x) is defined as the minimum multiple of 1/2p greater than the maximum

value of vi(x) on I.

Clearly, the v′i are piecewise constant. Their encodings are given by Θi = Θ and

Φi = {αj}, where αj = q∗(Ij), for j = 1, . . . ,m and i = 1, . . . , n. Moreover, because

the vi are K-Lipschitz and the intervals Ij are of size at most ε/(4K), we know that

|vi(x)− vi(x′)| ≤
ε

4

for any x, x′ ∈ Ij, Ij ∈ Θ. Hence

|vi(x)− v′i(x)| ≤ |vi(x)− vi(x′))|+
1

2p

≤ ε

4
+
ε

4
=
ε

2

for x, x′ ∈ Ij, so that the vi satisfy (3.8). By Lemma 3.2, then, an optimal ε/2-EF

allocation with respect to v′i will be ε-EF with respect to the true VDFs vi and have

greater social welfare. We can easily find such an allocation by submitting Θi, Φi to

58

a modified version of Algorithm 3.1, where (3.3) is replaced by

∑
I∈Ψ

xiIVi(I) ≥
∑
I∈Ψ

xjIVi(I)− ε

2
∀i, j ∈ N.

Finally, we specify the running time of the algorithm. First we have that |Θi| =

|Φi| = d4K/εe. Next, we know that the values of q∗(Ij) are (log2M +p)-bit rationals.

We can easily choose the boundaries of the intervals in Θi to be O(log2M + p)-bit

rationals, so that all of the inputs to Algorithm 3.1 are polynomial in log2M , K, and

1/ε. The theorem follows.

The only unstated assumption made in the above is that v∗(Ij), and hence q∗(Ij), can

be computed in polynomial time. This assumption depends on the encodings of the

vi, but seems reasonable given the size of the intervals in Θ.

3.7 Discussion

We have described four different methods for optimal envy-free cake-cutting. Of these,

we find Algorithm 3.1 to be our most elegant and useful result for several reasons.

First, it finds an exact solution given rational inputs; second, it works for any number

of agents n; third, it operates in an intuitive way; and fourth, it can be applied in a

variety of different settings. Indeed, Section 3.6 proves that piecewise constant VDFs

are sufficiently expressive to approximate arbitrary Lipschitz-continuous functions, so

that Algorithm 3.1 can presumably be used for a wide range of VDFs.

Given Theorem 3.6, one may wonder whether Sections 3.4 and 3.5 were necessary

in the first place: after all, piecewise linear VDFs may be approximated by piecewise

59

constant ones. We nevertheless hold that Theorem 3.5 stands on its own right in

spite of Theorem 3.6. For one thing, the algorithm of Section 3.5 produces an ε-

EF allocation which has greater social welfare than the optimal EF allocation. For

another, Theorem 3.5 gives a running time that is polynomial in the represetation and

therefore logarithmic in the slope of the VDFs, as the slope is specified by O(k)-bit

rationals. In contrast, the running time in Theorem 3.6 is polynomial in the slope

of the vi (as specified by K) and hence exponential in the representation. Finally,

we note briefly that piecewise linear VDFs, too, can be used to approximate general

valuations as well, so that a variant of Theorem 3.5 could produce an approximation

algorithm for n = 2.

A surprising side effect of studying these procedures has been the development,

albeit an incomplete one, of a theory of k-bit rationals. Thus, specifying exact en-

codings of agents’ preferences has led not only to novel results, but also interesting

interactions with other areas of computer science. It is our hope that researchers will

follow this trend of greater specificity, as we discuss in the next section.

3.8 Conclusion

To conclude, we provide some possible directions for future work in cake-cutting.

• A homogenization of framework and procedure. As described in Chapter

2, the cake-cutting literature currently suffers from an overwhelming heterogene-

ity in both framework and procedure. When the assumptions of one researcher

are unknowingly different from those of another, it becomes that much more

difficult to compare results and understand the significance of one in the con-

60

text of the other. While researchers such as Sgall, Woeginger, Robertson, and

Webb have proposed some unifying frameworks and protocols, the cake-cutting

community is far from finding the single best setting in which to pursue its

study. This work has categorized these frameworks and procedures in the lit-

erature, and even proposed a single framework (Framework 1.3) and procedure

(the algorithm) in order to further this goal.

• Further specificity in algorithmic settings. So long as cake-cutting is

viewed as a domain of computer science, researchers must address the issue of

how agents’ preferences are encoded. While the dominant trend has been to

skirt this issue by outsourcing computation to the agents’ themselves (e.g. via

a protocol), a centralized algorithm no longer allows such an option. Our work

has shown that further specificity in this regard leads not only to new results,

but also to meaningful intersections with other areas of computer science.

• Achievement of additional properties. While we have found an optimal

EF algorithm for piecewise constant VDFs and an approximately optimal EF

algorithm for general VDFs, the possibility of finding an optimal EF algorithm

for general VDFs remains open. We imagine this will not be trivial given

the general difficulty of finding EF allocations. Next to social optimality, the

property that unfortunately remains the least studied in cake-cutting is that of

truthfulness.

• Concrete applications. Surprisingly, this author knows of no real-world ap-

plications of the more sophisticated cake-cutting procedures. We hope that

in the next several years, the theoretical work that has thus far been devel-

61

oped will provide a useful ground on which researchers can base their practical

applications.

62

Bibliography

[1] A. Austin. Sharing a cake. Mathematical Gazette, 66(437):212–215, 1982.

[2] J. Barbanel and S. Brams. 2-person pie-cutting: The fairest cuts. Forthcoming.

[3] J. Barbanel and S. Brams. Cake division with minimal cuts: Envy-free pro-
cedures for 3 persons, 4 persons, and beyond. Mathematical Social Sciences,
48:251–269, 2004.

[4] M. Berliant, W. Thomson, and K. Dunz. On the fair division of a heterogeneous
commodity. Journal of Mathematical Economics, 21:201–206, 1992.

[5] S. Brams, M. Jones, and C. Klamler. Better ways to cut a cake. Notices of the
American Mathematical Society, 53(11):1314–1321, 2006.

[6] S. Brams, M. Jones, and C. Klamler. Proportional pie-cutting. International
Journal of Game Theory, 36:353–367, 2008.

[7] S. Brams and A. Taylor. An envy-free cake division protocol. The American
Mathematical Monthly, 102(1):9–18, 1995.

[8] S. Brams and A. Taylor. Fair Division: From Cake-Cutting to Dispute Resolu-
tion. Cambridge University Press, 1996.

[9] L. Caragiannis, C. Kaklamanis, P. Kanellopoulos, and M. Kyropoulou. The
efficiency of fair division. In Proceedings of the 5th International Workshop on
Internet and Network Economics, pages 475–482, 2009.

[10] Y. Chen, J. Lai, D. Parkes, and A. Procaccia. Truth, justice, and cake cutting.
Unpublished version of AAAI 2010 paper, 2010.

[11] Y. Cohler, J. Lai, D. Parkes, and A. Procaccia. Optimal envy-free cake cutting.
Submitted to the 25th AAAI Conference on Artificial Intelligence, 2011.

[12] L. E. Dubins and E. H. Spanier. How to cut a cake fairly. The American
Mathematical Monthly, 68(1):1–17, 1961.

63

[13] J. Edmonds and K. Pruhs. Balanced allocations of cake. In Proceedings of the
47th FOCS, pages 623–634, 2006.

[14] J. Edmonds and K. Pruhs. Cake-cutting really is not a piece of cake. In Proceed-
ings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
271–278, 2006.

[15] S. Even and A. Paz. A note on cake cutting. Discrete Applied Mathematics,
7:285–296, 1984.

[16] T. Hill and K. Morrison. Cutting cakes carefully. The College Mathematics
Journal, 41(4):281–288, 2010.

[17] M. Jones. Equitable, envy-free, and efficient cake cutting for two people and its
applications to divisible goods. Mathematics Magazine, 75(4):275–283, 2002.

[18] N. Karmarkar. A new polynomial-time algorithm for linear programming. Com-
binatorica, 4:373–395, 1984.

[19] S. Kwek and K. Mehlhorn. Optimal search for rationals. Information Processing
Letters, 86:23–26, 2003.

[20] M. Magdon-Ismail, C. Busch, and M. Krishnamoorthy. Cake-cutting is not a
piece of cake. Lecture Notes in Computer Science, 2607:596–607, 2003.

[21] Y. Manabe and T. Okamoto. Meta-envy-free cake-cutting protocols. Mathemat-
ical Foundations of Computer Science, 6281:501–512, 2010.

[22] E. Mossel and O. Tamuz. Truthful fair division. Lecture Notes in Computer
Science, 6386:288–299, 2010.

[23] S. Nuchia and S. Sen. Improving optimality of n agent envy-free divisions. In
Proceedings of the 8th International Workshop on Agent Theories, Architectures,
and Languages, pages 277–289, 2001.

[24] O. Pikhurko. On envy-free cake division. The American Mathematical Monthly,
107(8):736–738, 2000.

[25] A. Procaccia. Thou shalt covet thy neighbor’s cake. In Proceedings of the 21st
International Joint Conference on Artificial Intelligence, 2009.

[26] J. Reijnierse and J. Potters. On finding an envy-free pareto-optimal division.
Mathematical Programming, 83:291–311, 1998.

[27] J. Robertson and W. Webb. Near exact and envy-free cake division. Ars Com-
binatoria, 45:97–108, 1997.

64

[28] J. Robertson and W. Webb. Cake-Cutting Algorithms: Be Fair If You Can. A
K Peters, 1998.

[29] J. Sgall and G. Woeginger. A lower bound for cake cutting. Lecture Notes in
Computer Science, 2832:459–469, 2003.

[30] H. Steinhaus. The problem of fair division. Econometrica, 16(1):101–104, 1948.

[31] H. Steinhaus. Sur la division pragmatique. Econometrica, 17(Supplement):315–
319, 1949.

[32] W. Stromquist. How to cut a cake fairly. The American Mathematical Monthly,
87(8):640–644, 1980.

[33] W. Stromquist. Envy-free cake divisions cannot be found by finite protocols.
The Electronic Journal of Combinatorics, 15(1), 2008.

[34] D. Weller. Fair division of a measurable space. Journal of Mathematical Eco-
nomics, 14:5–17, 1985.

[35] G. Woeginger and J. Sgall. On the complexity of cake-cutting. Discrete Opti-
mization, 4(2):213–220, 2007.

[36] D. Woodall. Dividing a cake fairly. Journal of Mathematical Analysis and Ap-
plications, 78(1):233–247, 1980.

[37] D. Woodall. A note on the cake-division problem. Journal of Combinatorial
Theory (A), 42(2):300–301, 1986.

65

