
On Expressing Value Externalities in Position Auctions

Florin Constantin
Georgia Institute of Technology

Atlanta, GA, USA
florin@cc.gatech.edu

Malvika Rao
SEAS, Harvard University

Cambridge, MA, USA
malvika@eecs.harvard.edu

Chien-Chung Huang
Max-Planck-Institut für Informatik

Saarbrücken, Germany
villars@mpi-inf.mpg.de

David C. Parkes
SEAS, Harvard University

Cambridge, MA, USA
parkes@eecs.harvard.edu

ABSTRACT
Externalities are recognized to exist in the sponsored search
market, where two co-located ads compete for user atten-
tion. Existing work focuses on the effect of another ad on
the quantity of clicks received. We focus instead on the
negative effect of another ad on the value per click, and
propose a general model of externalities, in which a bid-
der has no value for a slot under a set of certain condi-
tions, each on one other bidder’s allocated slot. We pro-
vide a generic greedy algorithm for the winner determina-
tion problem (WDP) in this model together with a pric-
ing scheme that closely follow the Generalized Second Price
(GSP) auction used in practice. For value externalities that
satisfy a property of downward-monotonicity, these mecha-
nisms provide no new opportunities for manipulation beyond
the ones already available via untruthful claims about bid
value in GSP under the standard slot auction model. Our
main instantiation of downward-monotonic constraints is an
identity-specific language, in which a bidder can require that
it precedes some subset of other bidders. For this language’s
WDP, we establish worst-case complexity and inapproxima-
bility results. This motivates the choice of approximations,
e.g. via the greedy algorithm. As another way of circum-
venting the hardness results, we present fixed-parameter al-
gorithms for the WDPs of two sub-languages of the identity-
specific model.

1. INTRODUCTION
Internet advertisers compete for ad slots on a search results
webpage, e.g. triggered by queries related to sports shoes.
The advertisers only pay for a click and are naturally inter-
ested in attracting user clicks that lead to profits, e.g. via
a subsequent purchase by the user. It is well-known and
backed by consumer data (e.g. [7]) that ads placed higher
on a webpage are considered more seriously by users. It is
also widely accepted that the distribution of clicks that an
ad attracts is dependent on the other ads shown, e.g. via

not below

not slot 1

not slot 1

Sports Shoe

Company 2

General

Retailer
not below

Sports Shoe

Company 1

Figure 1: Each sports shoe company conditions its
value on not being displayed below the other, fearing
that only customers looking for bargains will click on
the lower one as they perceive the higher placed one
as better. The general retailer conditions its value
on neither of the sports shoe companies being placed
in slot 1, fearing that otherwise the clicks it receives
will only be out of curiosity, without an intent of
purchase.

their number [27, 32], or via their relative position [15].

We are especially interested in the effect of co-located ads
on the value of an advertiser for a click (or impression), i.e.
on the value conditioned on receiving a click. This effect is
in addition to the effect that another ad can have on the
quantity of clicks or impressions due to competition with
other ads for user attention. That is, not only does an ad-
vertiser stand to lose user attention if appearing below a
competitor’s ad because people may be satisfied with the
competitor’s product and not visit the advertiser, but the
attention that it does receive may be only from those users
that were not interested in purchasing shoes in any case (see
Fig. 1). Whereas a quantity effect, for example with the
specific set of advertisers allocated affecting the number of
clicks received by each ad, can be learned by a search engine
because the data is observable, value externality is private
to a bidder and needs to be expressed through a bidding
language. It is natural to consider the implications of al-
lowing an advertiser to submit along with its bid additional
constraints to state how its value for impressions or clicks
depends on the (relative or absolute) positions of the other
ads with which it is allocated.

Our general framework for value externalities is provided by

the unit-bidder constraints model, and allows a bidder to
specify a set of constraints, each one forbidding the simulta-
neous allocation of a specific slot for itself and a specific slot
for one competitor. Note that this is a constraint that binds
only in the event that a bidder is allocated a slot: it does
not force the auctioneer to select a particular allocation, but
instead precludes allocations.

Our main instantiation of the unit-bidder constraints model
is the identity-specific model, in which a bidder B can submit
a bid to express a value (e.g., per impression or per click)
and also, optionally, a set of (hard) directed constraints.
Each constraint identifies another advertiser B′ and spec-
ifies that B has full value if it receives a higher slot than
B′ (in particular if B′ is not allocated) and 0 value oth-
erwise. For example, each sports shoe company in Fig. 1
has such a directed constraint towards the other. We im-
mediately see that at most one of the two companies can
be allocated for the given query. The corresponding winner
determination problem (WDP) is to allocate a set of ads
(bidders) to slots such that no constraints are violated and
the total value of the allocation is maximized. The WDP
for the identity-specific model is NP-hard even for the spe-
cial case of constraint graphs with maximum in-degree and
out-degree of 2 (i.e., with at most two constraints per bidder
and no bidder being targeted by three or more others). The
problem is also computationally hard to approximate, under
a plausible complexity assumption, by a reduction from an
inapproximability result for IndependentSet on bounded-
degree graphs.

In seeking approximation algorithms, a natural choice is
a greedy algorithm, extending the current practice in slot
auctions. We provide such a generic algorithm for unit-
bidder constraints and establish its approximation ratio for
the identity-specific model. We identify a subspace of unit-
bidder constraints that insists on downward-monotonic con-
straints and contains identity-specific constraints. For this
family of downward-monotonic constraints, we demonstrate
that a payment rule analogous to the Generalized Second
Price (GSP) rule from current practice precludes any new
manipulations due to the ability to misreport constraints.
That is, a bidder with downward-monotonic value exter-
nalities has no incentive to misreport its set of constraints
by falsely claiming an additional constraint or not report-
ing an existing one. The downward-monotonic property
requires that a bidder who is dissatisfied with a particu-
lar slot given an allocation to other bidders is also dissat-
isfied with any lower slot. Fig. 2 illustrates the inclusion
relationships among the classes of constraints we consider.
Another downward-monotonic class that we consider is the
slot-specific model, generalizing the “bid-to-the-top” model
of Aggarwal et al. [3]. A bidder may specify that it must be
in the top k slots and that certain bidder(s) cannot be in
the top k′ slots.

The aforementioned hardness results alternatively suggest
further narrowing the model in search of tractable algo-
rithms. We offer two such sub-languages of the identity-
specific model. In the category-specific sub-language, bid-
ders are divided into different categories for a given query
(e.g. “cleats”, a certain type of sports shoe), for example
into bidders that insist on an exact match on “cleats” and

Downward-

monotonic

Unit-

bidder

Identity-

specific

Exclusion

Categories

Slot-

specific

Figure 2: Classes of value-externality constraints.

those who are willing to advertise against a broad query
match to “sports shoes.” Allocation constraints can be spec-
ified only within the same category, so that a bidder that
places the constraint must receive a slot higher than any
other bidder in the category. For one category only, this
model is a special case of the exclusivity model of Ghosh
and Sayedi [12]. We present an algorithm solving the WDP
that scales exponentially with the number of distinct cate-
gories (thus polynomial for a fixed number of categories). A
second sub-language that we consider is that of symmetric
identity-specific constraints, i.e. bidders that exclude each
other, like the two sports shoe companies in Fig. 1. We pro-
vide a dynamic programming algorithm for the WDP with
complexity exponential in the tree-width of the constraint
graph, a standard algorithmic measure of a problem’s local-
ity structure.

In the Appendix we discuss a relationship between the identity-
specific model and a classic problem of scheduling to mini-
mize weighted, discounted completion time given precedence
constraints, which provides tractable algorithms for a very
restrictive special case of our problem. We hope this discus-
sion will provide a springboard for future work.

1.1 Previous Work
In recent years ad auctions have formed an active area of
research [8, 34, 24]. Relatively little studied, however, is
the problem of externalities in auctions. Aggarwal et al.
[1] and Kempe and Mahdian [21] describe cascade models
of quantity externalities. These models associate with each
ad a click-through-rate as well as a continuation probabil-
ity representing the probability that a user continues the
search after viewing the given ad. The authors solve the
winner determination problem in their models. Giotis and
Karlin [13] analyze the equilibria of the cascade model in
GSP auctions. Gomes et al. [15] consider the role of in-
formation and position externalities in the ordered search
model, where users are assumed to browse ads from top to
bottom and take clicking decisions slot by slot. They exam-
ine user data to estimate their model and study the Nash
equilibria of GSP under different scoring rules. Athey and
Ellison [5] propose a model where users search in a top-down
manner and clicking is costly. They compute and analyze
the resulting equilibria. Aggarwal et al. [3] study prefix po-
sition auctions where an advertiser can specify that he is
interested in only the top k positions. The authors present
an allocation and pricing mechanism and show the existence
of envy-free Nash equilibria.

Lately, a few papers have begun to include the effect of value

externalities in their model. Muthukrishnan [27] considers
an auction where advertisers bid on the eventual maximum
number (called the configuration) of ads shown. The pa-
per presents a WDP algorithm and a critical value pricing
scheme. Ghosh and Sayedi [12] design extensions of VCG
and GSP for sponsored search auctions where the user is
allowed to submit two bids: one for being placed alone and
another for being placed alongside multiple other ads. Equi-
libria of these mechanisms are investigated and the tradeoff
between revenue and efficiency properties of the mechanisms
are compared. Ghosh and Mahdian [11] study a model in
which the value to an advertiser depends on the relative
quality compared to other co-located ads, as induced by dif-
ferent probabilistic models of user types. The authors men-
tion the direction of location-dependent externalities but
study externalities that depend only on the set of ads allo-
cated. Sponsored listings appearing just above the organic
search results are referred to as “north” ads [32]. Reiley
et al. [32] conduct experiments to measure the externalities
imposed by additional north listings on existing ones. Sur-
prisingly, these additional north listings appear to impose
a positive, rather than a negative, externality on existing
north listings. The authors propose interesting hypotheses
to explain this phenomenon. Krysta et al. [23] present a
formal model for combinatorial auctions with externalities
and show that the winner determination problem can be
solved in polynomial time with a small number of queries
to an NP-oracle. Within economics, there is a literature on
informational as well as allocative externalities [19, 20] but
without a focus on computational or representation issues.

Paper structure. We set forth notation in Sec. 2. We in-
troduce our general constraints model and present a generic
greedy algorithm in Sec. 3. We present the resilience of
this algorithm to downward-monotonic constraint manipu-
lations and other incentive considerations in Sec. 4. Our
main instantiation of the downward-monotonic constraints
model, the identity-specific model, is defined in Sec. 5 which
also provides computational hardness results for it. Sec. 6
presents fixed-parameter algorithms for two sub-classes of
the identity-specific model.

2. PRELIMINARIES
We start by formalizing our model and introducing notation.
Let N denote a set of bidders {1, . . . , n} in a position auction
with m slots. Since each bidder is interested in exactly one
slot, we assume m ≤ n. We assume that the click-through
rate falls off according to discount factor δ ∈ (0, 1), and to
keep things simple we normalize the first slot’s click-through
rate to 1. Thus slots 1, 2, . . . , m have click-through rates
1, δ, . . . , δm−1. Each bidder i is associated with a per-click
value vi ≥ 0 and a constraint set Ci ⊆ N \ {i}.1 Constraint
set Ci imposes conditions on the slots allocated to bidder i
and other bidders: bidder i has value vi if all conditions in
Ci hold, and value 0 otherwise. A bidder can make a claim
about its bid value bi and its constraint set C′

i. The seman-
tics of a bid are that the bidder is willing to pay bi per click
as long as the allocation satisfies its reported constraint set

1Because the click-through rate in slot 1 is normalized to 1,
value vi is more precisely a normalized per-click value for the
specific click-through rate for slot 1. Moreover, each bidder
may also have a bidder-specific quality term, which can be
easily introduced by adjusting the value vi for bidder i.

C′
i, and zero otherwise. Given the discounted click-through

rate model, bidder i’s willingness-to-pay, in expectation, for
an allocation to slot j is biδ

j−1, given that constraints Ci

are satisfied.

As described, the model also immediately captures settings
with banner ads in which a bidder has a per-impression value
and makes a per-impression payment.

Given this externality-based framework we are interested in
finding the optimal allocation of slots to bidders, i.e. in
solving the winner determination problem (WDP):

Definition 1. Given bids b and constraints C, WDPC

for discount factor δ ∈ (0, 1) is to find a winner set W ⊆ N
and an allocation A (i ∈ W winning slot Ai ≤ m) solving:

max
(W,A)∈F

X

i∈W

biδ
Ai−1 (1)

where F is the set of feasible solutions (W,A): Ai 6= Aj for
all i 6= j (both in W), and A satisfies C1, . . . , Cn.

We model each bidder as self-interested, and seeking to max-
imize its expected utility, which is (vi − pi)δ

Ai−1, where pi

is the per-click payment, given that i is allocated slot Ai

and allocation A satisfies its constraint set Ci. For an allo-
cation that does not satisfy its constraint set, i has value 0
and expected utility −piδ

Ai−1. The bid bi and constraints
C′

i submitted by a bidder will, in general, affect both its
allocation and its payments.

This model of value-externalities restricts a bidder’s value
to be zero if any of its constraints are not satisfied. In prac-
tice, it seems likely to be of interest to extend the model, for
example to allow a bidder to state a smaller but non-zero
value for an allocation that does not satisfy its constraints.
We think this is an interesting direction for future work. For
now, we note the worst-case complexity and inapproxima-
bility results extend to this more general model. Moreover,
the incentive analysis will need to be extended to allow for
a bidder that reports two values in addition to a constraint
set. For now, we prefer to consider just a single extension to
the standard slot auction model, with a notion of incentive-
compatibility that is stated relative to the standard GSP
model.

Unless otherwise specified, each bidder may submit an arbi-
trary number of constraints. However, each constraint can
only impose a condition on the bidder itself and at most one
other bidder (see Fig. 1 for examples). We formalize this
restriction in the next section.

3. UNIT-BIDDER CONSTRAINTS
Let K = {1, . . . , m} denote the set of slots. In the unit-
bidder constraints model each bidder i ∈ N can submit a set
of tuples,

Ci = {(αi, βj)
ℓ : ℓ ∈ {1, . . . , ci}} (2)

where αi ∈ {(i, ki) : ki ∈ K}
S

{True} and βj ∈ {(j, kj) :
j 6= i, kj ∈ K}

S

{True}, and we cannot have both αi

and βj set to True. These constraints are “no goods”, with

a semantics that, conditioned on being allocated, bidder i
insists that no condition (αi, βj) ∈ Ci is true. If αi = True
then this requires that j is not in slot kj for (j, kj) = βj .
If βj = True then this requires that i is not in slot ki for
(i, ki) = αi. Otherwise it requires that j is not allocated
slot kj when i is allocated slot ki, where (i, ki) = αi and
(j, kj) = βj . We think of these as “unit-bidder” constraints
because each constraint (αi, βj) imposes a requirement on
the allocation to a single, other bidder.

We now provide two brief instantiations of the unit-bidder
constraints framework. Sec. 5 will discuss in detail another
language within this framework.

For a first example of unit-bidder constraints we can en-
code in unit-bidder constraints the model of Muthukrish-
nan [27], where each bidder i specifies a maximum of Pi ≤ m
positions that it wants to be displayed (to any bidder):
Ci = {(i, k, True), (True, j, k) : j 6= i, k ∈ {Pi, . . . , m}}.

Slot-specific constraints. In our second model, a bidder
i can require its slot to be in the top kii ∈ {1, . . . , m} slots
and, for an arbitrary set of other bidders j 6= i, that j is not
in the top kij ∈ {0, . . . , m} slots. For kii = m, bidder i has
no constraints regarding its own slot only. For kij = m, i
completely excludes some other bidder j while for kij = 0
no constraint is imposed. This model generalizes the “bid-
to-the-top” model (Aggarwal et al. [3]) by introducing the
ability to restrict the position allocated to other bidders as
a condition to winning.

Slot-specific constraints are a subset of unit-bidder con-
straints: e.g. a constraint kii = 2 and 4 slots can be en-
coded as Ci = {(i, 3, True), (i, 4, True)}, and a constraint
kij = 2 can be encoded as Ci = {(True, j, 1), (True, j, 2)}.
They generate the following structure:

(S1) αi or βj is set to True,

(S2) (True, j, kj)∈Ci ⇒ (True, j, kj − 1)∈Ci for all kj > 1,

(S3) (i, ki, True)∈Ci ⇒ (i, ki +1, True)∈Ci for all ki < m.

The WDP for slot-specific constraints is NP-hard since the
special case of exclusion constraints in which bidder i se-
lects kij ∈ {0, m} for every j 6= i, so that j is either unre-
stricted by i or completely excluded, is equivalent to Inde-
pendentSet. We provide a fixed-parameter algorithm for
this restriction in Sec. 6.

3.1 Generic Greedy Algorithm
Simple and efficient algorithms are desirable given the prac-
tical requirements of position auctions. We present such a
greedy, sub-optimal, algorithm for WDPC . Optimal algo-
rithms for WDPC are unlikely to be efficient as we show,
even for strictly less general models, in Sec. 3 and Sec. 5.

A slot k is allocated to the bidder (if any) with maximal bid
value across those that are eligible, i.e. not yet allocated and
for whom an allocation to slot k is not precluded by a con-
straint of a bidder already allocated or by own constraints.

Greedy Algorithm for unit-bidder constraints

For slot k = 1 to m
Eligible ← {i : i can win k given Ci1 ..Cik−1 , Ci}

Highest bidder (if any) ik ∈ Eligible wins slot k
End

We now analyze this algorithm’s incentive properties and
exhibit its robustness to constraint manipulations.

4. INCENTIVES IN GREEDY ALGORITHM
For optimal algorithms for the WDP (such as the ones in
Sec. 6) it would be straightforward to adopt the VCG mech-
anism to determine payments, and achieve a truthful auction
with respect to both bid value and constraints [18].2 The
more interesting incentive question is in regard to our greedy
algorithm.

4.1 Value Truthfulness
In the greedy algorithm a higher bid bi, fixing everything
else, leads to a (weakly) higher slot.

Lemma 1. The greedy algorithm is monotonic (with re-
spect to bids) given unit-bidder constraints.

Proof. Fix constraints C = (C1, . . . , Cn) and bids b−i.
Suppose bidder i is allocated in slot k for bid bi. Then the
bidder is at least allocated in slot k when bidding b′i > bi

because if it remains unallocated when slot k is allocated,
the state of the algorithm is unchanged from when bid bi is
submitted because earlier decisions are oblivious to the bid
values of unallocated bidders.

For known Ci, we could adopt the standard theory due to
Myerson [28] and achieve truthfulness in bid value bi by
charging a winner,

pi(bi, Ci) = bif(bi, Ci)−

Z bi

w=0

f(w, Ci)dw (3)

where others’ bids and constraints b−i and C−i are fixed
and suppressed in the notation, and f(w, Ci) = δAi(w,Ci)−1

where Ai(w, Ci) is the slot allocated to bidder i given
bid value w.3 This can be easily computed, by stepping
through the discrete points at which the allocation to bid-
der i changes as its bid bi is decreased towards 0.

Example 1. Consider 2 slots and three bidders with val-
ues 30, 20 and 10, and in the slot-specific model where bidder
1 reports k12 = 1 to preclude bidder 2 from appearing in slot
1 when bidder 1 is allocated. Discount δ = 0.9. 1’s payment
given this constraint is 30− [(30− 20)] = 20. If bidder 1 did
not have its constraint (i.e. k12 = 0), it would still win slot
1 but pay instead 30− [(30− 20) + (20− 10)(0.9)] = 11.

This example immediately reveals a profitable manipulation
with respect to constraints: bidder 1 can benefit by hiding
its constraint on bidder 2. It is not surprising that we see a
problem here– this is a setting with multidimensional types.
In particular, pi(bi, Ci) is not independent of Ci conditioned
on receiving the same slot.

The basic problem is that a bidder’s constraints can make
the allocation it would receive for lower values look less

2We use “truthful” for dominant-strategy incentive compatible.
3See Aggarwal et al. [2] for a discussion of this payment rule
and its relation to VCG in the context of position auctions.

promising, through the role in f(w, Ci) when computed the
payment in Eq. (3). A bidder can improve his payment by
dropping constraints that are redundant given his true value
but would not be for lower bids. From this, and given the
essential uniqueness of the payment rule in providing value
truthfulness (subject to linear translations) we see that it is
impossible to achieve value and constraint truthfulness with
a greedy algorithm.

4.2 Constraint Truthfulness
We consider now a GSP payment rule for our greedy algo-
rithm, and show that this is in fact truthful with respect
to constraints, while retaining local stability with respect to
value misreports as is familiar from standard position auc-
tions [8]. A winner in slot k pays according to a “next price”
payment rule:

pi(bi, Ci) = δk−1[min
b′
i

b′i] (4)

s.t. Ai(b
′
i, Ci) = k, (5)

determining the smallest bid, given its declared set of con-
straints, for which a bidder is allocated the same slot, and
charging the effective value for a bidder with that value when
allocated slot k. Thus in Example 1 the highest bidder (30)
pays 20 irrespective of the constraints that it (or other bid-
ders) declare.

As is well understood, adopting this payment rule does not
provide truthfulness with respect to bid values: this is also
the case for the standard position auction model [8]. But
the payment rule is nevertheless interesting because it is the
rule used in current practice, and it provides local stability
so that a bidder can only improve the outcome by deviating
enough to change the slot allocated.

In understanding this payment rule’s incentive properties
with respect to the reporting of constraints, we consider
“downward-monotonic” constraints, a generalization of the
slot-specific model. We will analyze in detail the algorithmic
properties of identity-specific constraints, another subclass
of downward-monotonic constraints, in Sec. 5 and Sec. 6.

Definition 2 (Downward-monotonic). Unit-bidder
constraints C = (C1, . . . , Cn) are downward-monotonic if,
for every i, we have

(i, ki, βj) ∈ Ci ⇒ (i, ki + 1, βj) ∈ Ci, for all βj . (6)

This property of downward-monotonicity requires that, fix-
ing the allocation to other bidders, if a bidder i is dissatisfied
with an allocation to slot ki then the bidder is also dissatis-
fied with an allocation to any lower slot. As a special case,
when βj = True it requires that if a bidder has zero value
for slot ki whatever the allocation to other bidders then the
bidder also has zero value for any lower slot.

Theorem 1. The greedy algorithm coupled with the sec-
ond price payment rule in Eq. (5) is truthful for downward-
monotonic constraints when bid values bi ≤ vi.

Proof. Fix any bi ≤ vi. Let k denote the slot allocated
to i when reporting true Ci. Conditioned on report C′

i not
changing the allocated slot k, the payment does not change

because constraints have no effect on other bidders until
a bidder is allocated and so the eligible set is unchanged.
Moreover, i does not want to misreport C′

i 6= Ci if this
changes the allocated slot because (i) if i may be allocated to
some slot k′ < k then there must be a true constraint that is
violated upon allocation to slot k′, since the allocation made
to other bidders on slots [1, . . . , k′− 1] does not change, and
otherwise (ii) any change to preclude i from being eligible for
slot k will preclude i from being eligible for all subsequent
slots k′ > k by the admissibility property. Thus i will not
be allocated, which is not strictly better than an allocation
since bi ≤ vi and the payment rule in Eq. (5) charges no
more than the value of the allocation.

The earlier examples illustrate the basic point: with this
payment rule the constraints are used only to preclude the
allocation of some slots to a bidder and do not affect the
payments collected from a bidder, conditioned on such an
allocation. This is different from the Myerson payment rule
and provides robustness against the misreport of constraints.

Because slot-specific constraints are downward-monotonic
by (S1) and (S3), we have

Corollary 1. The greedy algorithm is truthful for slot-
specific constraints when coupled with the second price pay-
ment rule in Eq. (5) and bid values bi ≤ vi.

The total-position constraints [27], that set an upper bound
on the total number of slots allocated (recall Sec. 3), are
downward-monotonic as well.

This property of downward-monotonicity is required for
truthfulness regarding constraints.

Example 2. Consider 3 slots and 3 bidders with values
60, 40 and 10, and discount δ = 0.9. If bidder 1 is truthful
then he wins slot 1 and pays 40 for payoff 60−40 = 20. But
by reporting constraint “I don’t want slot 1”, he wins slot 2
and pays 10 for payoff (60 − 10)0.9 = 45 > 20. This con-
straint is not downward-monotonic; in particular, it cannot
be expressed within our slot-specific model.

4.3 Complete-Information Nash Equilibrium
We can also explore whether the equivalence between a par-
ticular complete information Nash equilibrium (NE) and the
VCG outcome, established for position auctions in the stan-
dard model without externalities [8, 34] holds in the current
setting. This connection between NE and the VCG outcome
has been used to understand the relative merits of GSP vs
VCG for sponsored search. We show that this connection is
not sustained with constraint-based value externalities.

Example 3. Consider 4 bidders with values 40, 30, 20
and 10, 3 slots, discount δ = 0.9 and the slot-specific model,
with k23 = 3 and k32 = 3 so that each bidder precludes
the other bidder from being allocated in any slot. For the
VCG payments, note that the optimal solution is to allocate
(1, 2, 4) to slots (1, 2, 3), with total discounted value V ∗ =
40 + 30(0.9) + 10(0.92). Considering the solutions without
bidders 1 and 2, we have V−1 = 30 + 10(0.9) and V−2 =
40+20(0.9)+10(0.92) for the total value of the allocation that
would be selected without each bidder, respectively. From

this, we see that the VCG payments would be p1,vcg = 30 +
10(0.9)−30(0.9)−10(0.92) = 3.9 and p2,vcg = 40+20(0.9)+
10(0.92)− 40− 10(0.92) = 18. To sustain the VCG outcome
in a NE we would require b1 > b2 > max(b3, b4). For the
payment to bidder 1 to be correct, we need 3.9 = b2. But for
the payment to bidder 2 to be correct, we need 18 = (0.9)b3

and b3 = 20 but then b3 > b2 and the bidders would be
allocated out of order.

We see the same kind of reversal that is observed by Ag-
garwal [3] in their bid-to-the-top model: they achieved a
correspondence between VCG and GSP for a simple model
in which bidders require only prefix positions (e.g. one of
slots {1,2,3}) but lost this property with more general re-
quirements (e.g., one of slots {2, 4}.) The basic challenge is
that the mapping from GSP to VCG relies on a monotonic-
ity property, where each successively higher bidder imposes
a larger marginal externality on the value of the allocation
to the other bidders. This is not the case in our model of
value externalities.

5. IDENTITY-SPECIFIC EXTERNALITIES
In this section we introduce identity-specific externalities,
which fall within the unit-bidder constraints model and also
satisfy downward-monotonicity.

In this new language, a bidder i can specify a set Ci of other
bidders such that i’s value for a slot is realized if and only if
all bidders in Ci are either not allocated or allocated in slots
below i. Each sports shoe company in Fig. 1 specifies such
a constraint towards the other one. This precedence model
is motivated by the inherent interpretation (by users) of the
list of ad slots as a ranking. We denote the corresponding
value maximization problem by WDPpre

C .

Identity-specific constraints are a subset of unit-bidder con-
straints: for example a constraint Ci = {j} and with 3 slots
is encoded as Ci = {(i, 2, j, 1), (i, 3, j, 2), (i, 3, j, 1)}.

In fact, identity-specific constraints generate the following
structure on Ci:

(I1) (i, ki, j, kj) ∈ Ci ⇒ (i, ki, j, kj − 1) ∈ Ci for kj > 1

(I2) (i, ki, j, kj) ∈ Ci ⇒ (i, ki + 1, j, kj) ∈ Ci for ki < m,

(I3) (i, ki, j, kj) ∈ Ci ⇒ (kj < ki).

Thus, due to property (I2), identity-specific constraints are
downward-monotonic yielding, via Theorem 1,

Corollary 2. The greedy algorithm is truthful with re-
spect to identity-specific constraints when coupled with the
second price payment rule in Eq. (5) and bid values bi ≤ vi.

Example 3’s constraints are easily expressible in the identity-
specific model and its conclusions thus carry through.

The unit-bidder constraints model is strictly more general
than the union of the identity-specific and slot-specific mod-
els. For example a downward-monotonic set of unit-bidder
constraints that cannot be encoded with the earlier models
is (1, s, 2, m), for all slots s ≤ m, specifying that bidder 1
does not want bidder 2 in the last slot m, regardless of 1’s

slot. This may be of interest for example if bidder 2 is com-
pelling for users that scroll down the page and click on 2
instead of considering the other ads again. In future work it
will be interesting to understand the most general semantics
consistent with the downward-monotonic property.

5.1 Algorithmic considerations
Let Gc = (Vc, Ec) denote a constraint graph, which is a
directed graph where there is one vertex vi ∈ Vc for each
advertiser i ∈ N and the edges represent constraints. The
edge semantics are that there exists a directed edge from
vertex i to j if and only if i wants to be placed above j.

We provide (proof deferred to the Appendix) a guarantee
on the quality of approximation of our greedy algorithm.
We say that an algorithm achieves a ρ-approximation if the
value of the assignment it outputs is within a multiplicative
factor of ρ ≤ 1 of the value of the optimal offline solution,
for all possible instances.

Theorem 2. Let d denote an upper bound on all vertices’
in-degrees in Gc. The greedy algorithm for the WDPpre

C

problem achieves an 1−δ
1−δd+2 approximation when δ < 1, and

an 1
d+2

approximation when δ = 1 in O(n log n) time.

The bound on this algorithm’s performance is almost tight:
consider a setting with d + 1 bidders where every bid-
der in {1, . . . , d} bids 1 and has d + 1 as common enemy:
Ci = {d + 1}. Bidder d + 1 bids 1.01 and has Ci = ∅.
Then the greedy algorithm achieves value 1.01 while the op-
timal solution achieves value 1+1δ + . . .+1δd−1 +1.01δd =
1−δd+1

1−δ
+0.01δd. For a general graph (arbitrary d) and δ < 1

we recover the trivial approximation bound (1− δ).

A drawback of this solution is that the approximation ratio
is stated in terms of a bound on the indegree of the problem.
By Theorem 3 in Sec. 5.3, a certain dependence of approx-
imation ratios on the constraint graph structure is however
unavoidable. Whereas a bidding language can easily con-
strain the outdegree of a graph by limiting the number of
constraints a bidder is allowed, it is more difficult to see how
to control a priori the maximum indegree.

5.2 Structural Observations
We have the following easy lemma:

Lemma 2. Given a constraint graph Gc and a subset S
of bidders, an allocation that allocates every bidder in S is
infeasible if and only if there exists a directed cycle in the
subgraph induced by S on Gc.

Consider the constraint graph induced for a fixed set of bid-
ders S ⊆ N . For bidders S with an acyclic constraint graph
the optimal ordering is defined as the sequence of bidders
allocated to slots 1 through min{m, |S|} that maximizes the
total discounted bid price. That is, the optimal ordering
solves the WDPpre

C problem restricted to allocating all bid-
ders in S. A contiguous sub-ordering refers to any contigu-
ous subsequence of such an ordering. A sub-ordering is opti-
mal if the ordering of the bidders in the sub-ordering would
be maintained if the same restricted WDPpre

C problem was
solved on just those bidders.

Lemma 3. All contiguous sub-orderings of an optimal or-
dering are optimal. In particular, an optimal ordering can-
not have bidder i placed immediately above bidder j where i
and j have no constraints between them and i’s bid is less
than j’s bid.

To understand this, notice that any bidders outside of a
subsequence are agnostic to a local reordering within a sub-
sequence: if their constraints are satisfied beforehand then
they are satisfied for any reordering. For a pair of adja-
cent bidders in any optimal ordering, a useful swap could
be executed because it does not violate any new constraints
with other bidders. The only concern is that a constraint
between these two bidders themselves is not violated in the
rearrangement.

From Lemma 3, it seems that dynamic programming (DP)
is a possible technique for the WDPpre

C problem. We will
highlight the challenge of applying DP on a very simple case,
an increasing path: the constraint graph is a directed path
with bids increasing along the path. We have bi < bi+1 and
Ci = {i+1} for all i ∈ {1, . . . , n−1}, with Cn = ∅. In light of
Lemma 2, we can consider paths as basic building blocks of
a potential recursive algorithm for constructing a subset of
bidders with an associated directed acyclic constraint graph.

A first approach is to apply DP on the number of slots,
by obtaining the optimal solution with k slots from optimal
solutions on k − 1 slots. Such an approach fails, however,
as illustrated by the following increasing path instance with
4 bidders and bids 30, 32, 36, 40 respectively. Let δ = 0.45.
Then the optimal solution for k = 2 slots is to allocate 40
in the top slot followed by 32 (40, 32). This solution has
total value of 40 + 32 · 0.45 = 54.4 whereas allocating 36, 40
yields 36 + 40 · 0.45 = 54. However the optimal solution
for k = 3 slots is 36, 40, 30, with a higher value (60.075)
than that of any feasible ordering containing bidders 40 and
32 (40, 30, 32; 32, 36, 40; 40, 32). We note that the optimal
solution may not allocate all available slots, even if that
is feasible: the only feasible allocation of 4 slots has value
55.335, inferior to that using just 3 slots.

An alternate approach is to apply DP on the number of
bidders. Recall from our example that 40 is placed in the
second slot in the optimal solution for k = 3 slots. Two
issues that complicate DP appear upon considering the sub-
problem (fixing bidder 40 in slot 2) with the other three
bidders and slots 1 and 3. First, the 36 bidder cannot placed
in position 3. Second, there is now a gap in discount factors,
which are 1 and δ2 instead of decaying at a constant rate
δ. Such issues render us skeptical about the effectiveness of
DP on general problem structures.

For an increasing path, however, a successful DP approach
exists. It exploits additional structure (via Lemma 3) on the
optimal allocation, which must display bidders in decreasing
order of value except for contiguous sub-paths (with bidders
in increasing order). For example, for k = 3, the optimal so-
lution {36, 40, 30} has increasing sub-path {36, 40}, followed
by 30 < 36. By Lemma 3, sub-ordering {40, 30} cannot be
improved by a swap. The DP has one state for each pair of
i ≤ n and k′ ≤ m, corresponding to the optimal allocation
of a subset of bidders {1, . . . , i} on at most k′ slots. Sec. 6
provides a different DP method for a special case of the slot-

specific externalities model, in which bidders can only choose
to completely exclude another bidder when allocated.

5.3 Complexity on Bounded-Degree Graphs
In this section, we provide computational hardness results
for WDPpre

C with equal bids by a unified reduction from
two well-studied graph-theoretical problems. For the reduc-
tion, we adopt the following construction of an instance of
WDPpre

C from a given graph G = ({1, . . . , n}, E): construct
an WDPpre

C instance where each vertex i is mapped to a bid-
der i ∈ N with bid bi = 1, and for each edge a = (i, j) ∈ E
we place i ∈ Cj (note that if G is undirected we also place
j ∈ Ci), that is, we add the corresponding edge(s) to the con-
straint graph Gc. Clearly, a set of winners W in WDPpre

C

is feasible if and only if W is an acyclic set in G (if G is
directed) and an independent set in G (if G is undirected).
If so, then there is a feasible allocation of slots to i ∈W : by
Lemma 2 if G is directed and by the lack of any constraints
within W if G is undirected. Since all bids are equal, the
value-maximizing W is a maximal set with the correspond-
ing property in G.

Thus, for any δ ∈ (0, 1], the WDPpre
C problem is NP-hard for

general constraint graphs by the immediate reduction from
Independent Set. Moreover, this provides an inapprox-
imability lower bound for δ = 1, namely min(n1−ǫ, c

2
1/2−ǫ)

for any fixed ǫ > 0, where c is the number of constraints [16],
relying on the NP 6= ZPP complexity assumption. We ob-
tain instead two statements we regard as more informative
for practical settings where the number of constraints ex-
pressed by a bidder is bounded. Let WDP=

d denote the
restriction of WDPpre

C to constraint graphs with degree at
most d and equal bids. Via an analogous hardness of approx-
imation result [6] for Independent Set on bounded-degree
graphs relying on the Unique Games conjecture [22] our
construction yields:

Theorem 3. Let l(d)= log2 d
d

and φ(d)= 1−δ1+(n−1)l(d)

1−δn =
1+δ+···+δ(n−1)l(d)

1+δ+···+δn−1 . Symmetric (i ∈ Ci′ ⇐⇒ i′ ∈ Ci) WDP=
d

is Unique Games-hard to approximate to within a O(l(d))
factor for δ = 1 and to within a O(φ(d)) factor for δ < 1.

Proof. The result for δ = 1 follows from our construc-
tion and [6]. We prove that for δ < 1, any algorithm A
with a better approximation factor on any instance must
have a better approximation factor than l(d) for δ = 1.
Consider an instance with maximum independent set of size
s ≤ n. We claim that A must output an independent set
of size at least s′ ≥ s · l(d). Otherwise the approximation

ratio of A is at most 1+δ+···+δsl(d)

1+δ+···+δs which in turn is at most
1+δ+···+δ(n−1)l(d)

1+δ+···+δn−1 .

In fact, the problem is computationally challenging even for
a bound of 2 on the in-degree and out-degree of each vertex.

Theorem 4. For all δ ∈ (0, 1], WDP=
2 is NP-hard.

Proof. We use the NP-hardness [10] of MinimumFeed-
backVertexSet (MFVS) under the same in-degree and
out-degree bound of 2. Recall that the MFVS problem is
to determine a minimum set of vertices S whose removal
makes a given graph (V, E) acyclic. Our construction pro-
vides a simple reduction from the MFVS problem to the

WDPpre
C problem: S is a MFVS in a directed graph G if

and only if V \S is a maximal acyclic set in G, i.e. a bidder
set whose allocation maximizes value given constraint sets
Ci for i ∈ {1, . . . , n}.

In a sparse constraint graph, “high” bids will win.

Lemma 4. Let d ≥ 1 denote an upper bound4 on any ver-
tex’s in-degree and out-degree. There is no optimal solution
to the WDPpre

C problem in which an advertiser whose bid

ranks below the (d + 1)m−1th highest ranking bid, for m
slots, is assigned a slot.

Proof. We prove by contradiction. Let B denote the set
of bidders with the (d+1)m−1 highest ranking bids. Assume
that in an optimal solution a bid b(v) which is lower than
all bid values in B is assigned a slot Ai. Then at least dm
members in B are unallocated. We claim we can use at least
one of them to replace v to get a higher-valued allocation
without violating the constraints. To see this, note that
for each of the unallocated dm members u ∈ B, there are
two possible reasons why we cannot replace v with u: either
there are at most d vertices {v′

1, ..., v
′
d
} having an incoming

edge from u such that at least one vertex v′ ∈ {v′
1, ..., v

′
d
} is

assigned a higher slot Ai′ for i′ < i, or there are at most d
vertices v′

1, ..., v
′
d

having an outgoing edge toward u such that
at least one vertex v′ ∈ {v′

1, ..., v
′
d
} is assigned a lower slot A′

i

for i′ > i. However, there can be at most m−1 slots occupied
by vertices other than v. By the Pigeonhole principle, at
least one of the dm members in B who is unassigned does
not have any out-neighbors or in-neighbors in the other m−
1 slots (excluding Ai). We can safely use this member to
replace v without violating any constraints. This contradicts
the assumption that the given allocation is optimal.

Lemma 4 allows us to preprocess input data and discard
bidders ranked below the (d + 1)m− 1 highest bids for any
d and m. If, for a given instance of WDPpre

C , the number

of slots m is a constant then, for small d, an enumerative
WDP algorithm examining all feasible allocations becomes
practical: its asymptotic runtime is dominated by that of
finding the top (d + 1)m− 1 bids, which is linear in n.

By considering restricted identity-specific models, we will
circumvent the earlier computational hardness results.

6. FIXED-PARAMETER ALGORITHMS
In this section we introduce two instantiations of the
identity-specific model and we provide fixed-parameter al-
gorithms for the respective WDPs.

6.1 Category-Specific Externalities
The category-specific model is a special case of the identity-
specific model in which every bidder is associated with a
category and value externalities are limited to choosing to
require placement above all bidders in the same category
as a bidder. The category-specific model moves towards a
more anonymous setting and provides additional structure
to enable an optimal algorithm.

The algorithm presented below computes an optimal alloca-
tion in polynomial time in m and n if the number of cate-
gories g is a constant. To motivate this model, suppose the
4The WDP for d = 0, i.e. no constraints, is straightforward.

user query is “cleats” which is a specific type of sports shoes.
For this query, there will be bidders for exact match (e.g.
Nike and Adidas bidding precisely on cleats) and bidders for
broad match (e.g. Amazon bidding on sports shoes). In this
example bidders belong either to the exact match category
or the broad match category and would be able to express
externalities only in these terms.

Let G = {1, . . . , g} represent the categories, defining a par-
tition of the bidders N . Let ci ∈ G denote the category of
bidder i ∈ N . Each bidder is offered a binary choice when
submitting a bid, of having constraints with respect to all
other bidders that belong to the same category or having no
constraints at all. Let Fc ⊆ N denote the set of bidders in
category c ∈ G who have chosen to target all other bidders
in category c through constraints. In a feasible allocation
only one bidder in Fc can be allocated and clearly it is the
maximum value bidder fc

max. Let F = ∪c∈Gfc
max. Let Qc

denote the set of bidders in category c who have no con-
straints. Let Q = ∪c∈GQc. Finally let Qfree = ∪c∈GQc

such that Fc = ∅. In other words Qfree is the set of free
bidders who are nobody’s “enemies”. Let S be the list con-
taining chosen slot positions. Note that we assume, in the
algorithms described next, that once bidders are allocated
they are removed from the sets to which they belong.

Algorithm AllocateCategories(G, F, Q)

For each permutation F ′ ⊆ F .
For each slot combination S for F ′.

Run Subroutine(G, F’, Q, S).
Store the resulting allocation.

End
End
Output the allocation of highest value.

Algorithm Subroutine(G, F’, Q, S)

Initialize j = 0. c = 0. Q0 = ∅.
Build and sort Qfree in decreasing bid order.
Sort S to list slots in order of increasing index.
While there remain available slots and
unallocated bidders

1. Update Qfree = Qfree ∪Qc.

2. Place next bidder f ∈ F ′ in slot
determined by the next unused slot
position in S. Let c represent f ’s category.

3. Allocate top bidders i ∈ Qfree in
decreasing bid order in free slots above f .

End

Proposition 1. Algorithm AllocateCategories outputs
the optimal allocation.

Proof. The algorithm enumerates and compares all fea-
sible allocations involving max value bidders fc

max∀c ∈ G
and bidders in Qc∀c ∈ G. The only allocations not con-
sidered are those involving lower value bidders in Fc who
impose the same constraints as fc

max. Other than due to
constraints, no low bidder can be placed right above a higher
bidder. This reduces the space of candidate optimal alloca-
tions to only the ones we consider.

We introduce some notation to analyze the runtime of
AllocateCategories. Let P (z, t) denote the number of t-
permutations of a set of z elements. P (z, t) = z!

(z−t)!
. In or-

der to enumerate all feasible allocations involving max value
bidders fc

max∀c ∈ G, each permutation of bidders within a
particular subset F ′ must be evaluated.

Proposition 2. If g, n, and m represent the number
of categories, the number of bidders, and the number of
slots respectively, then the runtime of AllocateCategories is
O((n log n + gn)(mg)(gg)).

Proof. Sorting Qfree and S takes O(n log n). Steps 1-3
in Subroutine take O(n). The while loop is run at most g
times. Hence Subroutine takes O(n log n+gn). The number
of slot combinations for each subset F ′ is

`

m
|F ′|

´

where |F ′| ≤

g.
`

m
g

´

≤ mg. Since the permutation of the subset F ′ is
important in determining the optimal allocation, the total
number of subsets (denoted TF) is P (g, 1) + P (g, 2) + . . . +
P (g, g−1)+g!+1. Hence TF = g!+

Pg−1
h=1 P (g, h) ≤ g(g!) ≤

gg.

6.2 Symmetric Constraints
We restrict bidders to only specify exclusion constraints,
i.e., a bidder i has zero value if any bidder i′ in set Ci is
also allocated, regardless of i′’s slot. This model can be
viewed as the symmetric restriction of the identity-specific
model since i and i′ can exclude each other by specifying
i ∈ Ci′ and i′ ∈ Ci. It can also be viewed as a restriction
of the slot-specific model. We thus view the collection of
constraint sets C as a set of (undirected) forbidden edges
on {1, . . . , n}: if (i, i′) ∈ C then i and i′ cannot be both
allocated: |W ∩ {i, i′}| ≤ 1.

By relabeling bidders, assume that bids are sorted decreas-
ingly: bi ≥ bi+1, ∀i ∈ 1..n−1. Clearly, winners are allocated
in this order: otherwise the allocation could be improved,
while still feasible, by swapping slots.

Lemma 5. If i, i′ ∈W , for i < i′ then Ai < Ai′ .

We provide a dynamic programming approach for the asso-
ciated WDP based on a standard tree-width decomposition
technique (see for example [29]). This approach has time
and space complexity exponential in the tree-width of the
graph, a quantity associated in our model with a locality
measure of the constraints, to be defined shortly. Our algo-
rithm is thus reasonably efficient for constraint graphs with
a local structure.

Let L be a constraint locality measure such that if (i, i′) ∈ C
then |i−i′| ≤ L−1 (note that indices do not wrap around). L
measures how far apart can two mutually excluded bidders
be in the sorted order of bids. Lemma 5 is the critical prop-
erty enabling DP in this context; in particular if the highest
bidder 1 is allocated (necessarily in the first slot) then in
all slots bidders in 2..L only need to be excluded because of
1. Lemma 5 (and this approach) fails if constraints are not
symmetric (i.e. the WDPpre

C problem).

Let an (i, L)-byte be an L-digit binary word B : {i, . . . , i+L−
1} → {0, 1}, where B(i + l) for ℓ ∈ {0, . . . , L − 1} indicates

1 1+1 m<

1 vX1

0 0 0 0
0 1 0 b2

1 0 0 b1

1 1 0 −∞

2 2+1 m<

2 vX2

0 0 0/1 max{0, b1}

0 1 0/1 max {0+δ0+0b3,

b1+δ1+0b3}

1 0 0 max{b2,−∞}
1 1 0 −∞

table T1 for state X1 table T2 for state X2 from table T1

Table 1: Exclusion-only dynamic programming ex-
ample with C = {(1, 2), (2, 3)} and mutually excluded
bidders closer than L = 2.

whether bidder i + ℓ is allocated. Let #<

B (ℓ) denote the
number of 1s in B(i..i+ℓ−1). An (i, L)-byte B is feasible
if no constraints are violated, i.e. if (i1, i2) 6∈ C whenever
B(i1) = B(i2) = 1.

We use m<

i ∈ {1, . . . , m} for i ≥ 1 storing how many bidders
are allocated before i in the corresponding optimum. For
each state Xi = {i, . . . , i+L−1}we compute in a table called
Ti via DP the value of each allocation given the optimum
solutions in table Ti−1. The value of the optimal allocation
is found in Tn−L+1 and this allocation can be traced back
in lower-indexed states via standard DP techniques.

Initialization. For all (1, L)-bytes B , let m<

1 = 0 and
initialize in X1 the total value of allocating according to B

vX1(B) =

(

PL
i=1 B(i) · bi · δ

#<
B

(i), if B feasible

−∞, otherwise
(7)

Dynamic programming. We describe how to populate Ti

from Ti−1 where i ≥ 2. Table 1 illustrates L = 2 and i = 2.5

For all infeasible (i, L)-bytes B let vXi
(B) = −∞. Fix now

a feasible (i, L)-byte B . For β ∈ {0, 1}, let Bβ = βB−(i+L)

be the (i − 1, L)-byte obtained by prepending the bit β to
B (i.e. Bβ(i− 1) = β) and deleting B ’s last bit.

B’s value is the best value from either allocating i − 1 or
not (i.e. B1’s and B0’s values), plus the consequent value
V +(β) resulting from whether B(i+L−1) = 1, i.e. whether
i + L − 1 is allocated. Critically for Eq. (8), bidders i − 1
and i + L − 1 cannot exclude each other. V +(β) depends
on β only by how many bidders in 1..i−1 are allocated in
vXi−1(Bβ). δ’s exponent in Eq. (9) plus one equals i+L−1’s
slot number Ai+L−1, i.e. one plus the number of allocated
higher bidders: m<

i (Bβ) in 1..i−1 and #<

B (L) in i..i+L−2.

vXi
(B) = max

β∈{0,1}
{vXi−1 (Bβ) + V +(β)} where (8)

V +(β) = B(i + L− 1) · bi+L−1 · δ
m<

i−1
(Bβ)+#<

B
(L) (9)

m<

i (B) is also updated according to the max in Eq. (8).

We get a DP time and space complexity exponential in L.

5L = 1 amounts to no constraints. The greedy algorithm
allocating bidders in decreasing order of their bids and re-
moving excluded bidders is always optimal for L = 2 but
not for L = 3: consider C′ = {(1, 2), (1, 3)} with δ = 1 and
b′i = 1− (i− 1)ε for i = 1, 2, 3.

Theorem 5. For constraint locality L, the dynamic pro-
gramming technique in Eqs. (7) and (8) correctly computes
optimal allocation OPT in O(n2L +m) time and O(2L +m)
space. OPT’s value can be recovered from table Tn−L+1.

Proof. Only table Ti−1 is needed for updating Ti. Each
table has size 2L and one entry in Ti is computed in Eq. (8)
in constant time6 from two entries in Ti−1.

7. DISCUSSION
The problem of externalities in auctions is relatively little
studied. In particular, while the effect of quantity external-
ities in sponsored search auctions has received some atten-
tion, very few papers have addressed the issue of value ex-
ternalities. Unlike quantity externalities, value externalities
cannot be estimated by a search engine. Hence capturing
bidders’ value externalities must necessarily entail design-
ing ways in which they can express this value. To this end
we have developed a constraint-based model of the effect of
co-location on a bidder’s value, conditioned on receiving a
click.

Although the basic identity-specific model is NP-hard we
are encouraged that a simple greedy algorithm can be cou-
pled with a GSP payment rule and provide for truthfulness
for constraints while retaining the same kind of local incen-
tive properties with respect to value as in standard position
auctions. Looking at our slot-specific model, we provide a
dynamic programming algorithm for a special case of “ex-
clusion constraints” and establish that the same incentive
properties hold for GSP together with a greedy algorithm.
It is interesting that the semantics of these two models pro-
vide for truthfulness with respect to constraints under this
natural payment rule and it seems that similar results could
be identified for other forms of expressiveness.

Turning to complexity results, a special case that remains
open is that of the WDPpre

C problem with at most one con-
straint per bidder so that the out-degree of any vertex is
at most 1. We colloquially refer to this as the “one enemy”
special case. We find this case interesting because it could
be achieved through a simple restriction to a bidding lan-
guage. Another compelling direction is to expand on the
possibility of connections with scheduling under precedence
constraints, which is equivalent to a version of our problem
in which a subset of bidders are selected to be allocated but
the order of allocation is to be determined.

The most intriguing extension is a “soft” constraints model,
in which a bidder also has a non-zero value for an allocation
violating its constraints. This will require new algorithmic
and incentive analysis but seems of practical importance. In
this paper we have established a foundation on which future
work may build towards even more realistic settings.

Acknowledgments. We thank Yiling Chen, Lisa Fleischer,
Nicole Immorlica, David Pennock, Ariel Procaccia and the
anonymous reviewers for valuable feedback and discussions.

8. REFERENCES
[1] G. Aggarwal, J. Feldman, S. Muthukrishnan, and M. Pal.

Sponsored search auctions with Markovian users. In

6δ’s power can be looked up in a pre-computed vector δ2..m.

Proceedings of the 4th International Workshop on Internet
and Network Economics (WINE), pages 621–628, 2008.

[2] G. Aggarwal, A. Goel, and R. Motwani. Truthful auctions
for pricing search keywords. In Proc. of ACM Conference
on Electronic Commerce EC’06, 2006.

[3] G. Aggarwal, S. Muthukrishnan, and J. Feldman. Bidding
to the top: VCG and equilibria of position-based auctions.
In Proceeding of the 4th International Workshop on
Approximation and Online Algorithms, pages 15–28, 2006.

[4] C. Ambühl and M. Mastrolilli. Single machine precedence
constrained scheduling is a vertex cover problem. In Proc.
of European Symposium on Algorithms, pages 28–39, 2006.

[5] S. Athey and G. Ellison. Position auctions with consumer
search. In NBER Working Paper, 2009.

[6] P. Austrin, S. Khot, and M. Safra. Inapproximability of
vertex cover and independent set in bounded degree
graphs. In CCC ’09, pages 74–80, 2009.

[7] N. Craswell, O. Zoeter, M. Taylor, and B. Ramsey. An
experimental comparison of click position-bias models. In
Proceedings of ACM WSDM ’08: the international
conference on Web search and web data mining, pages
87–94, 2008.

[8] B. Edelman, M. Ostrovsky, and M. Schwarz. Internet
advertising and the generalized second price auction:
Selling billions of dollars worth in keywords. American
Economic Review, 97(1):242–259, 2007.

[9] M. R. Garey. Optimal task sequencing with precedence
constraints. Discrete Math., 4:37–56, 1973.

[10] F. Gavril. Some NP-complete problems on graphs. In
Proceedings of the 11th Conference on Information
Sciences and Systems, pages 91–95, 1977.

[11] A. Ghosh and M. Mahdian. Externalities in online
advertising. In Proc. WWW’08, pages 161–168, 2008.

[12] A. Ghosh and A. Sayedi. Expressive auctions for
externalities in online advertising. In Proc. of WWW, 2010.

[13] I. Giotis and A. R. Karlin. On the equilibria and efficiency
of the GSP mechanism in keyword auctions with
externalities. In Proc. of 4th WINE, pages 629–638, 2008.

[14] K. D. Glazebrook and J. C. Gittins. On single-machine
scheduling with precedence relations and linear or
discounted costs. Operations Research, 29(1):161–173, 1981.

[15] R. Gomes, N. Immorlica, and E. Markakis. Externalities in
keyword auctions: An empirical and theoretical assessment.
In Proc. of the 5th WINE, pages 172–183, 2009.

[16] J. Håstad. Clique is hard to approximate to within n
1−ǫ.

Acta Mathematica, 182:105–142, 1999.
[17] S. Iwata, L. Fleischer, and S. Fujishige. A combinatorial,

strongly polynomial-time algorithm for minimizing
submodular functions. Journal of the ACM, 48:761–777,
2001.

[18] M. Jackson. Mechanism theory. The Encyclopedia of Life
Support Systems, 2000.

[19] P. Jehiel and B. Moldovanu. Efficient design with
interdependent valuations. Econometrica, 69(5):1237–1259,
2001.

[20] P. Jehiel, B. Moldovanu, and E. Stacchetti.
Multidimensional mechanism design for auctions with
externalities. Journal of Economic Theory, 85(2):258–294,
1999.

[21] D. Kempe and M. Mahdian. A cascade model for
externalities in sponsored search. In Proc. of the 4th
WINE, pages 585–596, 2008.

[22] S. Khot. On the power of unique 2-prover 1-round games.
In STOC ’02: Proceedings of the thiry-fourth annual ACM
symposium on Theory of computing, pages 767–775, 2002.

[23] P. Krysta, T. Michalak, T. Sandholm, and M. Wooldridge.
Combinatorial auctions with externalities. In Proc.
AAMAS, 2010.

[24] S. Lahaie, D. Pennock, A. Saberi, and R. Vohra. Sponsored
search auctions. In N. Nisan, T. Roughgarden, E. Tardos,
and V. Vazirani, editors, Algorithmic Game Theory.

Cambridge Univ. Press, 2007.
[25] E. Lawler. Sequencing jobs to minimize total weighted

completion time subject to precedence constraints. Annals
of Discrete Math., 2:75–90, 1978.

[26] C. L. Monma and J. B. Sidney. Sequencing with
series-parallel precedence constraints. Mathematics of
Operations Research, 4(3):215–224, 1979.

[27] S. Muthukrishnan. Bidding on configurations in Internet ad
auctions. In Proc. of the 15th Annual International
Conference COCOON 2009, pages 1–6, 2009.

[28] R. B. Myerson. Optimal auction design. Mathematics of
Operations Research, 6(1):58–73, 1981.

[29] R. Niedermeier. Invitation to fixed-parameter algorithms.
Oxford Univ. Press, 2006.

[30] D. C. Parkes and T. Sandholm. Optimize-and-dispatch
architecture for expressive ad auctions. In Proc. of First
Workshop on Sponsored Search Auctions, 2005.

[31] M. Pinedo. Scheduling: Theory, Algorithms, and Systems.
Springer, 2008.

[32] D. Reiley, S. Li, and R. Lewis. Northern exposure: A field
experiment measuring externalities between search
advertisements. In Proc. of ACM EC, 2010.

[33] J. B. Sidney. Decomposition algorithms for single-machine
sequencing with precedence relations and deferral costs.
Operations Research, 23(2):283–298, 1975.

[34] H. Varian. Position auctions. International Journal of
Industrial Organization, 25:1163–1178, 2007.

Appendix
Greedy algorithm for WDPpre

C

We state the greedy algorithm for vertices and edges on a
graph, noting that each bidder is associated with a vertex
and the edges are such that an edge from i to j indicates
that j ∈ Ci. Let N(v) denote the set of in-neighbors of
vertex v in the constraint graph G. The greedy algorithm
proceeds as follows:

Algorithm

While there is vertex left in G
Choose the remaining vertex v with highest bid
Assign v to the highest available slot
Remove {v} ∪N(v) from G
End

Proof of Theorem 2 . Let Gre(v) and Opt(v) be the
value collected from vertex v in the greedy algorithm and
in the optimal solution respectively. Let G′ be the same
constraint graph as G; we assume that it is “used” by the
optimal solution in our discussion. We give an inductive
proof showing that in every step of the greedy algorithm, the
value of the chosen vertex v is at least 1−δ

1−δd+2 or 1/(d + 2)

of the accumulated values of those vertices in {v} ∪N(v) in
the optimal solution (if they are assigned), and of possibly
an additional vertex whose assigned slot position is at most
as high as v in the greedy algorithm. In the following, we
assume δ < 1; the case δ = 1 follows essentially the same
argument.

In the base case, let the chosen vertex in the first step of the
greedy algorithm be vg

1 . Let opt denote the optimal solution.
It is obvious that b(vg

1) ≥ b(u),∀u ∈ V . In the greedy algo-
rithm, none of the vertices N(vg

1) can be assigned; however,
they along with vg

1 , may all be assigned in opt. Moreover,
it may be the case that none of the vertices {vg

1} ∪ N(vg
1)

is assigned the highest slot in opt and that slot is occupied
by another vertex ṽo

1 /∈ {vg
1} ∪N(vg

1). Now remove from G′

all the vertices {vg
1 , ṽo

1}∪N(vg
1), and from G all the vertices

{vg
1} ∪N(vg

1) (so after this step, G ⊇ G′). We claim that

Gre(vg
1) ≥ 1−δ

1−δd+2

P

u∈{v
g
1 ,ṽo

1}∪N(v
g
1) Opt(u) (10)

For this, assume that in opt, u ∈ {vg
1 , ṽo

1}∪N(vg
1) wins slot t

and among all vertices in {vg
1 , ṽo

1}∪N(vg
1) that are assigned

in opt, its position is i-th highest (thus t ≥ i). Then

Gre(vg
1) = b(vg

1) ≥ b(u) = Opt(u)

δt−1 ≥
Opt(u)

δi−1 (11)

Summing the above expression from i = 1 to |{vg
1 , ṽo

1} ∪
N(vg

1)| gives the RHS expression in equation (10). (If not
all vertices |{vg

1 , ṽo
1} ∪ N(vg

1)| are assigned in opt, the RHS
expression serves as an upper bound).

For the second step, we observe that the bid of vertex vg
2

in the greedy algorithm must be at least as high as all the
remaining vertices in G′. This follows from the fact that
at this point, G ⊇ G′. Moreover, the highest position of a
vertex remaining in G′ that is assigned in opt can be at most
as high as 2. (It can be even lower, since it is possible that
the vertex that is assigned the second slot in opt happens to
be part of {vg

1} ∪N(vg
1) and is already removed in our first

step). Now we can proceed in the same way as before. We
remove {vg

2} ∪N(vg
2) from G and {vg

2 , ṽo
2} ∪N(vg

2) from G′,
where ṽo

2 is the vertex currently in G′ that is assigned the

highest position in opt. By essentially the same argument,
we can show that

Gre(vg
2) ≥ 1−δ

1−δd+2

P

u∈{v
g
2 ,ṽo

2}∪N(v
g
2) Opt(u) (12)

Repeating the same argument, since G ⊇ G′, G′ becomes
empty before G; moreover opt is fully accounted for during
induction.

The “One Enemy" Special Case
A special case that remains open is that of the WDPpre

C

problem with at most one constraint per bidder so that the
out-degree of any vertex is at most 1. We colloquially refer
to this as the “one enemy” special case. We find this case
interesting because it could be achieved through a simple
restriction to a bidding language. We have not been able
to prove that this is NP-hard or identify a polynomial time
algorithm.

In considering this problem, one initial observation is that
without the directed externality constraints the problem is
just that of the assignment problem. A standard linear pro-
gramming (LP) formulation adopts xij to indicate whether
bidder i is allocated in position j. The feasibility constraints
then specify that each bidder (resp. slot) is assigned to at
most one slot (resp. bidder). It is well-known that, for
general values of each bidder in each slot but without ad-
ditional constraints, this problem is totally unimodular and
has an integral solution. Using the same encoding, a con-
straint i′ ∈ Ci for bidder i can be specified as a set of linear
constraints of the form

xij + xi′j′ ≤ 1, for all 1 ≤ j′ < j ≤ m

That is, if i is allocated in slot j, then i′ cannot be allocated
in a better slot j′. Let LP2 denote the linear program with
these constraints. This linear program is no longer totally
unimodular and its solutions can be fractional. Consider
now an arbitrary LP, LP3 , with a zero-one constraint ma-
trix B. It is known that such an LP has an integral solution
for any linear objective function if B is the clique-vertex in-
cidence matrix of a perfect graph. Unfortunately, using the
hole characterization of perfect graphs, one can show that
even a reformulation LP3 of LP2 , strengthened by clique
inequalities does not satisfy this condition and can still have
fractional solutions.

Scheduling with Precedence Constraints
We note here an intriguing connection between the WDPpre

C

problem and a classic problem of scheduling non-preemptive
jobs on a single machine with precedence constraints to min-
imize total weighted, discounted completion time.

Definition 3. Given a set J = {1, . . . , n} of n jobs on a
single machine, where each job j is of length pj ≥ 0 and has
weight wj ≥ 0, precedence constraints between jobs specified
by a directed acyclic graph G = (J, R) such that (i, j) ∈ R
implies that job i must be completed before job j can be
started, and discount factor r ∈ (0, 1), the Discounted-
Scheduling problem is to find a schedule that minimizes
Pn

j=1 wj(1 − e−rCj) where Cj is the time at which job j
completes. In the scheduling literature this problem is de-
noted 1|P rec|

P

wj(1 − e
−rCj) [31].

We establish an equivalence between a special case of our
WDPpre

C problem and the DiscountedScheduling prob-
lem. In particular, we consider a scheduling problem in
which jobs have unit processing times, and note that,

arg min
X

j

wj(1−e−rCj) = − arg max(
X

j

wje
−rCj−

X

j

wj).

so that the optimal solution to 1|Prec|
P

wj(1− e−rCj)
also solves the scheduling problem with objective
arg max

P

j wj(e
−rCj). Substituting δ = e−r, where

0 < δ < 1, this is equivalent to the problem of scheduling
jobs to solve arg max

P

j wjδ
Cj , and dividing through by δ

just arg max
P

j wjδ
Cj−1. But with processing time pj = 1,

then completion time Cj is equivalently the position of job
j in the ordering. For the special problem of WDPpre

C in
which the constraints are acyclic and every bidder must be
allocated, we immediately see that this problem is equivalent
to DiscountedScheduling for pj = 1.

Scheduling: Tractable Special Cases
Some interesting special cases have been identified for which
the DiscountedScheduling problem is tractable. One
possible motivation to Internet advertising is to a dispatch
problem, in which a set of winners has been determined (and
all can be feasibly allocated simultaneously) but a dispatcher
must determine which slot to which bidder. There is inter-
est, for example, in using offline optimization to guide the
allocation by a dispatcher of banner ads to content networks,
in meeting campaign targets [30].

The Sidney decomposition algorithm [33] provides a frame-
work by which to solve both the discounted and undis-
counted version of the job scheduling problem. The undis-
counted version seeks to allocate jobs to minimize the total
weighted completion time while respecting precedence con-
straints. When jobs have unit processing time, this is equiv-
alent to our WDP problem for the case of δ = 1. Not only
can the Sidney decomposition be used to identify polynomial
time, optimal algorithms, for special structures on prece-
dence graphs but it also provides the basis for most known
2-approximation algorithms for the undiscounted scheduling
problem [4].

Given a problem instance (J, R), a Sidney decomposition
partitions J into subsets S1, S2, . . . , Sn such that there ex-
ists an optimal schedule where jobs from Si are processed
before jobs from Si+1 for any i ∈ {1, . . . , n−1}. The Sidney
decomposition does not specify any ordering among the jobs
within a set Si. If U ⊂ J , and V ⊂ J then U has precedence
over V if there exist jobs i ∈ U, j ∈ V such that (i, j) ∈ R.
A set U is said to be initial in (J, R) if there are no jobs in
J − U that must be processed before jobs in U . If α is any
permutation of J then α/U is the permutation induced by
α on U . Accordingly U is initial if and only if there exists
a feasible permutation α of the form α = (α/U, α/J − U).
Let ρ be a real-valued function whose domain is the set of all
subsets of J . U ⊂ J is defined to be ρ-minimal for (J, R) if U
is initial in (J, R), and ρ(U) ≤ ρ(V) for any V that is initial
in (J, R). U is ρ∗-minimal for (J, R) if U is ρ-minimal for
(J, R), and there is no V ⊂ U that is ρ-minimal for (J, R).

For suitable ρ the following algorithm produces optimal per-

mutations for deterministic problems with either linear or
discounted costs.

Algorithm(ρ)

(N, R) represents the current network and α the
current permutation in the algorithm. Initialize
by setting (N, R) = (J, R), α = 0.

1. Find any ρ∗-minimal subset S for (N, R).

2. Set β to be any feasible optimal ordering for
(S, R).

3. Append β to the end of α.

4. Replace N by N − S.

5. If N is not empty then return to Step 1. If N
is empty, stop. α is optimal.

For the undiscounted version of the problem, the ρ func-
tion is defined as ρ(U) =

P

i∈U pi/
P

i∈U wi. The main
obstacle to applying this algorithm to arbitrary precedence
structures lies in implementing steps 1 and 2. However
Lawler [25] showed that the next subset in a Sidney decom-
position (step 1) can be computed in polynomial time. The
difficulty in running the algorithm suggested by Sidney is in
step 2, which is NP-hard in general [25]. However for certain
graph structures (“parallel chain networks, rooted trees, job-
modules, and series-parallel networks”) efficient algorithms
exist [33]. We illustrate the workings of Algorithm(ρ) with
the example shown in Figure 3, which is taken from [31].
This is an undiscounted weighted completion time problem.
The nodes are labeled as follows: at the top is the number
j of the task, on the right is the processing time pj and on
the left is the weight wj = 1. The algorithm produces the
optimal permutation, α, as follows:

N = {1, 2, . . . , 7}, α = ∅
S = {1, 3}, α = {1, 3}, N = {2, 4, 5, 6, 7}
S = {2, 4, 5}, α = {1, 3, 2, 5, 4}, N = {6, 7}
S = {6, 7}, α = {1, 3, 2, 5, 4, 6, 7}, N = ∅

For the DiscountedScheduling problem, a more compli-
cated ρ function is required. Glazebrook and Gittins [14]
show how to define the ρ function for the discounted setting
but it is not immediately apparent how to compute ρ in
general problems. Monma and Sidney [26] show that series-
parallel networks 7 with suitable preprocessing can be solved
in O(n log n) time. Of interest to us are solvable instances
where the input graph has the kind of structure that can
be produced by a bidding language. Garey [9] proposes an
O(n2) algorithm to solve problems with an acyclic prece-
dence graph G in which each connected component has the
property that either no task in that component has more
than one immediate predecessor or no task in that compo-
nent has more than one immediate successor. In particular a
graph may contain some connected components that satisfy
the “maximum one immediate predecessor” property while
others may satisfy the “maximum one immediate successor”
property. An acyclic instance of the WDPpre

C problem has
this property as long as a bidder is allowed at most one con-
straint, and this observation of Garey [9] is relevant for such
a instance of our problem, under the additional restriction
that all bidders should be allocated.

7A series-parallel graph is a graph with a source and a sink
that may be constructed by a sequence of series and parallel
compositions.

1

15

2

8 1

3

3 1

4

5 1

5

3 1

6

7 1

7

6 1

Figure 3: A precedence graph for task scheduling.

Scheduling: Discussion
From the above, we see that there is a rich literature on
scheduling under precedence constraints that has strong par-
allels to the WDPpre

C problem. In particular, there are spe-
cial constraint graphs for which there are fast algorithms to
allocate every bidder to maximize discounted bid value (and
thus, requiring an acyclic constraint graph for these bidders).
Based on this, one natural approach for solving the WDPpre

C

problem is to couple this with a search algorithm over sets of
winners, for example by establishing a certain local property
P of optimal allocations and employing algorithms tailored
to P . A candidate property P that unfortunately fails is su-
permodularity of the optimal allocation value, which would
couple well with existing efficient algorithms for supermod-
ular maximization (or equivalently submodular minimiza-
tion[17]). To see this failure of supermodularity, consider
the example in Section 5.2: the marginal value to the opti-
mal allocation of bidder 32 is less (54.4 − 40) when added
to the 40 bidder than 32, the marginal value when added to
the empty set.

