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Abstract

This thesis designs and analyzes auctions for persistent goods in three domains

with arriving and departing bidders, quantifying tradeoffs between design objectives. The

central objective is incentive compatibility, ensuring that it is in bidders’ best interest to

reveal their private information truthfully. Other primary concerns are expressiveness, i.e.

the richness of the effective bidding language, and optimization, in the form of aiming

towards high revenue or high value of the allocation of goods to bidders.

In the first domain, an arriving bidder requests a fixed number of goods by his

departure, introducing combinatorial constraints. I achieve the global property of incentive

compatibility via self-correction, a local verification procedure, applied to a heuristic mod-

ification of an online stochastic algorithm. This heuristic is flexible and has encouraging

empirical performance in terms of allocation value, revenue and computation overhead.

In the second domain, impatient buyers make instantaneous reservation offers for

future goods. Introducing the practical ability of cancellations by the seller leads to an

auction with worst-case guarantees without any assumption on the sequence of offers. A

buyer whose reservation is canceled incurs a utility loss proportional to his value, but receives

an equivalent cancellation fee from the seller. A simple payment scheme ensures a novel

incentive compatibility concept: no bidder can profit from a lower bid while no truthful

winner can profit from any different bid. I establish that no fully incentive-compatible

auction can achieve similar worst-case guarantees.
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In the third domain, I consider the first dynamic generalization of the classi-

cal economic model of interdependent values for a single good. In this model, a bidder’s

value for the good depends explicitly on other bidders’ private information. I characterize

incentive-compatible dynamic interdependent-value auctions and I establish that they can

be reasonable if and only if no bidder can manipulate his departure. I suggest and analyze

a mixed-integer programming formulation and a heuristic for designing such an auction to

maximize revenue when bidders have fixed arrivals and departures.
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love and care. Although she passed away while I was writing this thesis, I am sure that she

will be watching me at yet another graduation.

ix



In memory of Micuţu
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Chapter 1

Introduction

How should goods be sold over time? Market mechanisms with temporal compo-

nents are becoming widespread, but there is relatively little research on them. A canonical

such mechanism is a dynamic auction, in which the population of buyers changes with time,

and buyers usually have temporal constraints for allocation and payment decisions. For ex-

ample, in sponsored search auctions for banner advertisements (ads) on webpages, bidders

must typically know the characteristics of the ad slots ahead of time in order to develop

appropriate ads. Internet auctions on sites such as eBay.com are quite prone to temporal

manipulations. The best-known example is sniping, which is the practice of outbidding the

current winner in the last seconds of an auction so that he does not have time to respond.

Dynamic auctions are of interest within computer science because they allow con-

nections between online algorithms, stochastic optimization and auction theory. In this

thesis, I explore this space and consider both approximation algorithms that work in a

prior-free environment and sample-based online optimization that requires a generative

model of the environment. In both cases, I explore the constraints that incentive compati-

bility (resilience to manipulations) imposes on the preferences that bidders can express and

1
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on the optimization properties of auctions.

Strategic interactions of self-interested parties (such as the seller and buyers), tak-

ing their environment as given, are analyzed in game theory. An auction is a canonical

example of a mechanism, an environment for self-interested parties. Mechanism design,

sometimes called “inverse game theory”, aims to design such environments with certain ob-

jectives in mind. Mechanism design is thus a natural area for computer science approaches,

since they are traditionally oriented towards building and evaluating systems. Computa-

tional mechanism design additionally sets typical computer science objectives, such as good

performance with a minimal set of assumptions, approximation when optimality is infea-

sible or tackling problem complexity. Unlike in traditional computer science, algorithms

for self-interested parties also require a game-theoretic perspective since design choices may

influence parties’ behavior.

The cross-pollination of computer science and economics has proved very fruitful,

with a growing literature for computationally difficult problems of economic interest. In

prediction markets, traders buy and sell “securities” on outcomes of future events, such as

whether the number of cases of a certain disease will exceed 1000 by a specified deadline1 or

whether a cure for cancer will be found by the end of the year 2010.2 Allowing expressive

languages for securities such as compound securities (e.g. more than 1000 cases and the

discovery of a cure for cancer by the end of 2010) introduces significant computational

challenges for the market maker, both in determining whether to accept an order while

guaranteeing no loss [75] and pricing [20] by the widely used logarithmic market scoring

rule [46]. An important part of the computational mechanism design literature analyzes

combinatorial auctions [26], in which a buyer can bid on combinations of items. On the

1www.intrade.com, accessed May 2009.

2www.ideosphere.com/fx-bin/Claim?claim=Canc, accessed May 2009.
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practical side, Internet auctions yield billions of dollars in revenue yearly and their setup

requires expertise in core computer science areas such as natural language processing or

machine learning.

There is significantly less research on dynamic aspects of auctions than on static

ones. This is partly due to the complex interactions that dynamic auctions entail, often

leading to complex game-theoretic analysis, computational intractability or lack of closed-

form solutions except in the simplest of settings.

Challenges in dynamic auctions

I now review typical challenges in a dynamic auction.

Combinatorial optimization. From an operations research perspective, auctions are

knapsack problems that may have stochastic information. In a static knapsack problem with

full information, one has a container of limited capacity (a knapsack) and a set of resources

to choose from, each with its own volume and profit. One’s goal is to select a set of resources

that fit in the container and that yield a high profit. Due to their widespread applicability,

there is an extensive literature on knapsack problems; see for example the survey of Kellerer

et al. [51]. In combinatorial auctions, where buyers have complex valuations for sets of

goods, both the seller and the buyers may face knapsack problems. In stochastic knapsack

problems, some relevant quantity is not known with certainty, for example the existence of

a certain resource or its reward or volume. Many dynamic auctions are naturally stochastic,

with only partial information about the future. In this thesis, the most challenging knapsack

problems will be encountered in Chapter 3.

Dynamic programming. A common approach to sequential optimization with a

finite horizon and a model of the future is dynamic programming [11], in which one reasons

backwards from the horizon to the current time period. If one determined the optimal
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decision at any state of the world in the next period, one could also compute the optimal

decision in the current time period. “The curse of dimensionality” of dynamic programming

is one of the main reasons for its intractability; Powell [76] identifies three objects leading

to high-dimensionality: states, outcomes and actions. For a dynamic auction that sells

identical copies of a good and faces uncertain future demand, these correspond respectively

to the number of items (supply) available, the realization of demand at each future time

step (bids and quantities) and the number of items to allocate. A dynamic programming

approach would require computing, at each time step t, a matrix specifying the best number

of items to allocate at t for each supply available and each realization of future bidders. In

this thesis, the curse of dimensionality will be most apparent in Chapter 5. In Chapter 3,

I escape it via an online stochastic combinatorial optimization [84] approach.

Incentives. Apart from pure optimization concerns, in any auction one must worry

about manipulations by the bidders. The existing results for static auctions (I review the

most important ones in Chapter 2) usually fall in two categories: impossibility results for

general domains of bidder preferences [54, 77] or possibility results for small domains [2,

60]. In dynamic auctions, resilience to manipulations also poses restrictions on the use of

temporal information by the seller. For example, a bidder may understate his patience if he

fears that stating a high patience will expose him to more competition. Furthermore, the

optimum solution may be prone to manipulations, in which case tradeoffs of optimality and

resilience to manipulations must be made. Such tradeoffs will be encountered throughout

the thesis.

Expressiveness. Bidders have inherently different preferences and are usually inter-

ested in convenient ways of expressing them. On the other hand, too complicated methods

for expressing preferences may discourage auction participants. Having a large space of

possibilities may also render difficult the prediction of bidders’ behavior. While expressive-
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ness is a concern for static auctions as well, in dynamic auctions bidders are additionally

interested in having their temporal constraints met by the seller.

This thesis explores the constraints imposed by incentive compatibility on the ex-

pressiveness and optimization properties of dynamic auctions. I design and analyze dynamic

auctions for three environments, highlighting along the way tradeoffs between objectives.

1.1 Roadmap and contributions

The technical preliminaries are set forth in Chapter 2, reviewing mechanism design

notions and prominent results in both static and dynamic settings. In Chapter 3, I design

and evaluate empirically a method to achieve resilience to manipulations via a self-correction

wrapper around a state-of-the-art approximation algorithm. In Chapter 4, I initiate the

study, from a worst-case perspective, of seller cancellations that negatively affect impatient

buyers. Chapter 5 investigates dynamic versions of a classical static economics model in

which a bidder’s value depends explicitly on other bidders’ private information. This thesis

is concluded by the discussion in Chapter 6.

I will now present the typical setting and my contributions in more detail.

The environments of interest, to be described shortly, aim to satisfy certain ob-

jectives for a seller offering a set of durable items to a population of bidders over a finite

number of time periods. Bidders may arrive and depart from the auction and may be

interested in more than one item. A bidder’s private information may include a form of

evaluation (e.g. willingness to pay) for each set of items and his times of arrival to and

departure from the auction. Typically, a bidder’s value for an allocation will be the same

in his arrival-departure interval, i.e. time does not affect a bidder’s valuation (e.g. by dis-

counting) other than constraining his value to be 0 outside this interval. Each bidder makes
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a single claim about his private information, at a time that becomes his arrival.

A common desideratum is the auctions’ resilience to bidders’ profitable manipula-

tions of their values and, where applicable, of their temporal information. Typical objectives

are the overall value of the allocation and seller’s revenue.

Incentive compatibility via self-correction, Chapter 3

In many auctions, buyers have volume and temporal constraints, being interested

in a fixed number of goods by a certain deadline. The work presented in Chapter 3 is the

first that scalably achieves full resilience to manipulations in dynamic auctions for persistent

goods sold to partially patient bidders, each demanding a fixed number of goods. Interac-

tions in such auctions are complex, due to bidders’ partially overlapping windows of activity

and the combinatorial structure of feasible allocations. Optimizing dynamic auctions with

complex interactions is challenging for two reasons: the large number of possible states of

the market (the “curse of dimensionality”) and the non-standard constraints across these

imposed by resilience to manipulations. I circumvent these challenges via the computa-

tional self-correcting approach of output ironing [71], applied to the Consensus [84] online

stochastic optimization algorithm. Self-correction discards decisions that are profitably ma-

nipulable by buyers, requiring a powerful underlying optimization algorithm that seldom

allows fruitful manipulations.

Most successful algorithms (including Consensus) that are not concerned with

incentives need to wait almost until a buyer is leaving for a maximally informed decision

regarding his allocation, which leads to frequent manipulations in my model. I design a

heuristic modification, NowWait, of Consensus that aggregates quantitative and tem-

poral bid information, and establish its successful interfacing with the ironing procedure.

Compared to a naive simplification of Consensus, NowWait can achieve higher social
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welfare, especially in low-demand markets, and has a limited overhead in both computation

costs and ironing discards. I successfully incorporate in NowWait the classical [64] method

of ranking bidders by virtual valuations towards the alternate goal of high revenue.

All performance measures in Chapter 3 are in expectation over a prior distribution

on future buyers. I adopt a different perspective in Chapter 4, where no distributional

assumption is made on future demand.

Reservations with costly seller cancellations, Chapter 4

Reservations are a widely used retail practice. In numerous markets, each buyer

makes a single instantaneous offer (for example via phone or a web form) to the seller for

obtaining some of the goods in the future.

Chapter 4 presents a simple model and a dynamic auction M for advance-booking

of items by impatient buyers, each aiming to maximize his utility. My model’s novel,

practical, feature is that the seller can cancel at any time any earlier reservation, in which

case its holder incurs a proportional utility loss, but receives an equivalent cancellation

fee. Chapter 4 focuses on the case where bidders have unit-demand, briefly discussing the

challenges of extending the framework beyond unit-demand.

Constant factor approximations are achieved in the worst-case when costly cancel-

lations are allowed, but would otherwise require assumptions on bidders’ values or arrival

order. My auction M approximates within a constant factor both the a posteriori revenue

of the canonical Vickrey-Clarke-Groves auction and the a posteriori social welfare. M can

match an upper bound on the competitive ratio of any deterministic online algorithm if

performance is measured as the sum of winning bidders’ values minus the utility losses of

bidders whose reservations were canceled. M ’s technical core is an approximation algorithm

for a semi-online weighted bipartite matching problem with costly preemptions.
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My auction M induces a novel game-theoretic property that is practical as a

first recommendation for unsophisticated bidders: an honest winner cannot improve his

utility by any other bid and any buyer always prefers bidding his true value to any lower

bid. In contrast, I establish that full resilience to manipulations no longer allows constant

competitiveness with respect to social welfare.

Dynamic interdependent-value auctions, Chapter 5

In a dynamic market, being able to update one’s value based on information avail-

able to other parties currently in the market can be critical to having profitable transactions.

The classical economics model of interdependent values (IDV) in static auctions allows such

a dependence: a bidder’s value is obtained via a publicly known formula from the private

information (signals) of all bidders.

In Chapter 5, I consider the first dynamic generalization of (single-item) auctions

for IDV bidders with one-dimensional signals, arrivals and deadlines. I characterize the

resilience to manipulations of such auctions as equivalent to the existence, for each bidder,

of a critical signal such that the bidder wins the item if and only if the bidder reports a

signal at least as high as the critical one. A bidder’s critical signal cannot decrease if the

bidder reports a later arrival. Using this characterization, I show that reasonable auctions

can be resilient to manipulations if and only if bidders’ deadlines are public.

I then adopt a computational approach for the design of single-item revenue-

optimal dynamic auctions for bidders with known arrivals and deadlines but private one-

dimensional signals. I present a mixed-integer programming formulation of revenue-optimality

that leverages the characterization of resilience to manipulations. I highlight general prop-

erties of revenue-optimal dynamic auctions in a simple parametrized example. The most

promising direction is suggested by a striking resemblance between the policy obtained by
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numerically solving the formulation and the policy obtained by generalizing the single-item

revenue-optimal auction [64] for private values to IDV bidders.



Chapter 2

Static and Dynamic Mechanisms

Abstract. I introduce mechanism design concepts, in both static and dynamic

contexts, anticipating points of interest in later chapters.

In a static context, I highlight the tension between the generality of the domain

of preferences and the richness of the space of incentive compatible social choice functions

that are implementable on that domain. I review existing characterizations of incentive

compatibility and I demonstrate through examples their limited applicability.

I define a dynamic model and a dynamic auction and review dynamic allocation

mechanisms via examples and results regarding their incentive compatibility.

2.1 Static mechanism design

2.1.1 Mechanisms as games

Recall the introductory setting, in which a seller faced a decision on how to allocate

goods that she owns given the values that buyers1 associate to subsets of goods.

1I will use the terms “agent”, “bidder”, “buyer” or “player” interchangeably. Their gender will be
assumed to be masculine, while the seller’s gender will be assumed to be feminine.

10
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The way to aggregate individual preferences and take a decision (usually with some

objectives in mind), is formalized by an outcome rule (known as a social choice function

when players state their preferences directly). A mechanism simply encodes the entire

framework for the decision that affects players and that is taken based on players’ actions.

Definition 1. A static (or simultaneous or one-shot) deterministic mechanism M with n

players consists of

• Θ, the set of each player i’s private information (or type) θi ∈ Θ.

• a set of actions W (same set for each player i)

• a set of outcomes A

• an outcome rule φ : Wn → A, assigning an outcome to an n-tuple of actions.

• a payoff mapping u : Θn × A → R
n such that ui(θ, a) represents player i’s payoff

(or utility) when the outcome chosen is a and the private information of player i′ is

θi′ , ∀ i′ = 1..n.

A mechanism is a game, modeling strategic interactions (through actions) among

players leading to an outcome. I consider mechanisms where the same actions are available,

regardless of a player’s information or of his identity. The payoff of a certain outcome

may however be different among players. The set of possible actions W , the set of possible

outcomes A and the mapping φ from actions to outcomes in M are common knowledge: any

player knows them, any player knows that any other player knows them and so on. Unless

otherwise stated, I will only consider mechanisms with incomplete information: any other

player i′ has some uncertainty about any player i’s payoff function ui.

To formalize the fact that a player has no private information I will use the notation

Θ = {⊥} instead of assuming that Θ = ∅. Note that incomplete information is possible
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even if Θ = {⊥}: then for any outcome a, ui(a) is a constant and for any other player j,

the value of at least one of these constants is not known to j. On the other hand, complete

information is possible when Θ 6= {⊥} if i knows all other players’ payoff functions.

Note that, unless otherwise specified, I inherently assume that a player cannot rule

out any other player having a certain type.2 A player may however have beliefs on other

players’ private information given his own private information: for example the higher his

own value for an item, the higher he expects others’ values for the item to be (this type of

correlation is known as affiliation). We adopt a belief model in Chapters 3 and 5 for each

bidder i, there is a public probability distribution on i’s type.

Apart from Chapter 5, a player’s value for an outcome is invariant to other3 players’

information: ui((θi, θ−i), a) = ui((θi, θ
′
−i), a)∀ θ−i, θ

′
−i ∈ Θn−1. I will adopt shorthand

ui(θi, a) for i’s utility for an outcome a since this utility will not depend on others’ private

information, but only on i’s private information θi.

Strategies encode the dependence of actions on private information.

Definition 2. A pure strategy si for player i is a deterministic mapping from his private

information to the set of actions: si : Θ →W .

In the following, “strategy” may be used as shorthand for “pure strategy” when

clear from context.

Example 1 serves as the running illustration for the concepts introduced. Players’

payoffs are formally specified in Tables 2.1 and 2.2, in which an entry (x1, x2) specifies that

2A more general model is that of information sets (or partitions). Suppose that players may have
some knowledge about each other’s types (e.g. i knows that θi+1 ≥ θi+2) but any player’s type offers
no further information on others’ types. Then each player i has an information partition ∪C∈Ci

Θ × C,
where ∪C∈Ci

C = Θn−1. In our model, there is a single partition class: Ci = {Θn−1}, ∀ i. In contrast, the
more general definition only requires that the partition Ci on others’ information is the same regardless of
i’s private information. A strategy (see Def. 2) maps a class of the partition to an action.

3ζ−i denotes (ζ1, . . . , ζi−1, ζi+1, . . . , ζn) for any vector (or n-tuple) ζ = (ζ1, . . . , ζn) and any 1 ≤ i ≤ n.
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(a) No player i observes his own type θi (value for the item) or

his opponent’s type.

20 40 50 70

20 θ1−20
2 , θ2−20

2 0, θ2 − 40 0, θ2 − 50 0, θ2 − 70

40 θ1 − 40, 0 θ1−40
2 , θ2−40

2 0, θ2 − 50 0, θ2 − 70

50 θ1 − 50, 0 θ1 − 50, 0 θ1−50
2 , θ2−50

2 0, θ2 − 70

70 θ1 − 70, 0 θ1 − 70, 0 θ1 − 70, 0 θ1−70
2 , θ2−70

2

(b) Each player i observes his own type

θi (value for the item) and his opponent’s

type to be 50.

20 40 50 70

20 15 , 15 0, 10 0, 0 0,−20

40 10, 0 5 , 5 0, 0 0,−20

50 0, 0 0, 0 0 , 0 0,−20

70 −20, 0 −20, 0 −20, 0−10,−10

Table 2.1: First-price auction for an item: the highest bid wins (a tie is broken uniformly
at random), paying his bid. Players’ payoffs are shown as a pair assuming that each player
can bid 20, 40, 50 or 70.

player i’s payoff (value minus price) is xi, for i = 1, 2.

Example 1. Consider two buyers interested in one item; bidder i has private type (value

for the item) of θi. Possible4 bids are 20, 40, 50 and 70. The higher bid wins; in case of a

tie, the item is given with equal (50%) chance to one of the bidders.

Two possible payment rules are considered: winner pays his bid (first-price, Ta-

ble 2.1) or winner pays his opponent’s bid (second-price, Table 2.2). In addition to all zero

entries in the payoff matrices, the players have the following information

• Tables 2.1(a) and 2.2(a) present a general setting: neither player knows θ1 or θ2.

• Tables 2.1(a) and 2.2(a) can also represent a private value setting: bidder i knows his

own θi (instantiated in each table entry), but does not know the other θj(j 6= i).

• Table 2.1(b) and Table 2.2(b) present payoffs in a setting with no private information:

each player knows θ1 and θ2.

Given a mechanism, how can one expect it to be approached by players or, more

precisely, when is a certain strategy good in a mechanism? The following definition answers

4Even though bids are restricted for clarity, one can imagine a situation where each bidder has two “chips”
of value 20 and one of value 50. The strategy of bidding 90 is omitted for brevity.
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(a) No player i observes his own type θi (value for the item) or

his opponent’s type.

20 40 50 70

20 θ1−20
2 , θ2−20

2 0, θ2 − 20 0, θ2 − 20 0, θ2 − 20

40 θ1 − 20, 0 θ1−40
2 , θ2−40

2 0, θ2 − 40 0, θ2 − 40

50 θ1 − 20, 0 θ1 − 40, 0 θ1−50
2 , θ2−50

2 0, θ2 − 50

70 θ1 − 20, 0 θ1 − 40, 0 θ1 − 50, 0 θ1−70
2 , θ2−70

2

(b) Each player i observes his own type

θi (value for the item) and his opponent’s

type to be 50.

20 40 50 70

20 15, 15 0, 30 0, 30 0, 30

40 30, 0 5, 5 0, 10 0, 10

50 30, 0 10, 0 0, 0 0, 0

70 30, 0 10, 0 0, 0 −10,−10

Table 2.2: Second-price auction for an item: the highest bid wins (a tie is broken
uniformly at random), paying the second-highest bid. Players’ payoffs are shown as a pair
assuming that each player can bid 20, 40, 50 or 70.

this question in two special cases. First, it identifies as unreasonable5 a dominated strategy:

a strategy that is worse than another one, regardless of other players’ strategies. Second,

it identifies as reasonable a dominant strategy: a strategy that is at least as good as any

other one, regardless of other players’ strategies. Note that for each condition in Def. 3, it

is equivalent to consider all other players’ actions or strategies.

Definition 3. A strategy si is dominated if there exists a strategy s′i that is no worse for i

(i.e. dominates si), for any private information and any actions of other players:

ui(θ, φ(si(θi), w−i)) ≤ ui(θ, φ(s′i(θi), w−i)), ∀ θ ∈ Θn ∀w−i ∈Wn−1

A strategy si is a best-response to actions w−i of other players if it is no worse

for i than any other strategy s′i, for any private information:

ui(θ, φ(si(θi), w−i)) ≥ ui(θ, φ(s′i(θi), w−i)), ∀ s′i : Θ →W ∀ θ ∈ Θn

A strategy si is dominant if it is no worse for i than any other strategy s′i, for any

private information and any actions of other players:

ui(θ, φ(si(θi), w−i)) ≥ ui(θ, φ(s′i(θi), w−i)), ∀ s′i : Θ →W ∀ θ ∈ Θn ∀w−i ∈Wn−1

5Technically, a dominated strategy si should never be played if some s′i is always better than (i.e. strictly
dominates) si.
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That is, a strategy si is dominant if it is a best response to any actions of other

players. If, for each player i, strategy si is dominant then the vector (s1, . . . , sn) is termed

a dominant strategy equilibrium.

In Table 2.2(b), bidding 50, i.e. one’s true type, is a dominant strategy. Notice,

however, that if both players play the dominant strategy then each get a payoff of 0. Sur-

prisingly by coordinating on playing 20, each would have a higher payoff (of 15). A similar

situation is captured in Prisoner’s Dilemma, a classical strategic interaction in game theory.

This is a conflict between incentives and optimization, a common thread throughout this

thesis.

Note that if the discrete bid levels do not contain a bidder’s private value (for

instance, if in Example 1 a bidder’s private value is 30) then the second-price auction may

no longer have a dominant strategy.

It is unlikely that large games with “generic” payoffs have either a dominated or

a dominant strategy. Thus a more general concept for predicting behavior is needed. Nash

equilibrium is a strategic solution with wider applicability, as will be argued soon.

Definition 4. An n-tuple of strategies (s1, . . . , sn) is an ex post Nash equilibrium if si is a

best response to strategies s−i, for any vector of private information:

ui(θ, φ(si(θi), s−i(θ−i))) ≥ ui(θ, φ(s′i(θi), s−i(θ−i))), ∀ θ ∈ Θn, ∀ s′i : Θ →W (2.1)

In the absence of private information (Θ = {⊥}), the concept of Def. 4 becomes

the Nash equilibrium, due to Nash [67]. Each strategy si becomes equivalent to an action

wi and Eq. (2.1) becomes ui(φ(wi, w−i)) ≥ ui(φ(w′
i, w−i)), ∀w′

i ∈W .

Suppose that bidders have private values: ui(θ, ·) = ui(θi, ·). If (s1, . . . , sn) is

an ex post Nash equilibrium and s−i : Θn−1 → Wn−1 is an onto function, spanning all

possible actions, then si must be a dominant strategy. Thus an ex post Nash equilibrium is
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a dominant strategy equilibrium if, in particular, W = Θ and sj(θj) = θj (direct revelation

mechanism, see Definition 7 below).

Note that the notions of dominated and dominant strategy as well as that of

equilibrium use weak inequalities. There are variants of all three concepts with strict in-

equalities: strictly (as opposed to weakly (Def. 3)) dominated and dominant strategies and

strict (as opposed to weak (Def. 4)) equilibrium.

Let us revisit the first-price auction (Table 2.1(b)) in Example 1. Note that bid-

ding 70 is strictly worse than bidding anything else (in particular, bidding 70 is a strictly

dominated strategy). It cannot therefore be part of a best-response. Bidding 50 is weakly

dominated by bidding 20 or 40, but both players bidding 50 is a (weak) Nash equilibrium.

By eliminating the dominated strategies of 50 and 70 in Table 2.1(b), one is left with two

pure strict Nash equilibria: (20, 20) and (40, 40).

In contrast, in the second-price auction (Table 2.2(b)), each player has a dominant

strategy: truthful bidding (which induces, of course, an equilibrium as well).

Thus far I have only considered deterministic strategies.

Note how in Example 1 in Table 2.1(b) at any pure strategy Nash equilibrium the

two bidders need to coordinate on bidding the same amount: 20, 40 or 50.

Randomization can help players compromise between several strategies. Denote

by ∆(W ) the set of distributions over actions, i.e. vectors of |W | non-negative numbers

summing to 1.

Definition 5. A mixed strategy si for player i is a mapping from his private information

to the set of distributions over actions: si : Θ → ∆(W ).

For any θi, the support of the mixed strategy si is the set of strategies with non-zero

probabilities in the distribution si(θi).

A mixed Nash equilibrium is then a Nash equilibrium with mixed strategies.
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Contrast this with Definition 2. Clearly, a pure strategy s can be interpreted as a

mixed strategy with only s in its support (thus having a probability of 1).

The power and generality of Nash equilibria is revealed by the following result

Theorem 1. [67] Any finite matrix game (in my presentation6, a mechanism with complete

information Θ = {⊥} and ui(⊥, φ) = φ) has at least one Nash equilibrium (possibly in mixed

strategies).

Consider two strategies si and s′i of player i in the support of a mixed strategy

si in a mixed Nash equilibrium where others play strategies s−i. If si yields a strictly

higher payoff to i than s′i, then i could strictly improve upon si by playing si whenever the

randomization in si indicates playing s′i, thus contradicting si’s best-response property to

s−i. Thus the expected payoffs of si and s′i must be equal conditioned on others playing

s−i. This property is clearly helpful in finding the weights of strategies in a mixed Nash

equilibrium’s support.7 In Example 1, Table 2.1(b), simple algebra shows that, bidding 20

or 40 with equal (50%) probability is the unique proper mixed Nash equilibrium. 8

2.1.2 Mechanism design and desiderata

Design goals for mechanisms are often in terms of players’ true types; the challenge

is then in choosing the mechanism’s social choice function towards such goals.

Definition 6. A mechanism M with outcome rule ψM implements an outcome rule φ

6Game theory is, naturally, the predecessor of mechanism design. Presenting a (simultaneous) game as
a mechanism preserves the focus on mechanisms and attests to the generality of the mechanism concept.

7This is not to say that finding the support of a mixed Nash is necessarily easy. Finding such a set is
achievable in polynomial time for two-player zero-sum games (in which a player’s gain is the other player’s
loss) via linear-programming, but PPAD-complete [19, 29] for more general games with two or more players.

8The game in Table 2.1(b) has thus four Nash equilibria, three in pure strategies and one mixed. Wil-
son [86] establishes that almost all matrix games have an odd number of equilibria; the game in Table 2.1(b)
is thus peculiar.
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if there exists an equilibrium strategy vector (s1, . . . , sn) such that for any private infor-

mation vector θ, M chooses outcome φ(θ) when the actions are s1(θ1), . . . , sn(θn), i.e.

ψM (s1(θ1), . . . , sn(θn)) = φ(θ1, . . . , θn).

Note that the definition does not specify the exact equilibrium concept, which

could be dominant strategy, ex post Nash etc.

In a direct revelation mechanism, each agent submits a single message privately to

the mechanism: he reports his preferences over the alternatives.

Definition 7. In a direct revelation mechanism, W = Θ i.e. the outcome rule (called the

social choice function) φ decides an action for each vector of types: φ : Θn → A.

Note how the set of actions in a direct revelation mechanism is the set of types.

A goal for a direct revelation mechanism is that, in equilibrium, (yet unspecified,

just like in Definition 6) each agent has non-negative utility by reporting truthfully.

Definition 8. A direct revelation mechanism M with social choice function φ is individually-

rational if no agent i obtains negative utility in equilibrium by taking part in M when re-

porting truthfully (si(θi) = θi).

A direct revelation mechanism is incentive-compatible if and only if it is an equi-

librium (yet unspecified, just like in Definition 6) for each agent to report truthfully.

Definition 9. A direct revelation mechanism M with social choice function φ is incentive

compatible if it implements φ with truthful reporting (si(θi) = θi).

In this thesis I mostly focus on the strongest type of incentive compatibility, which

requires that it is a dominant strategy for bidders to report truthfully.
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Definition 10. A direct revelation mechanism M with social choice function φ is strate-

gyproof (or truthful9) if it is incentive-compatible in a dominant strategy equilibrium i.e.

every agent i maximizes his utility by honestly reporting his true type θi:

ui(θ, φ(θi, θ
′
−i)) ≥ ui(θ, φ(θ′i, θ

′
−i)) ∀θ ∈ Θn, θ′i ∈ Θ (2.2)

for all reports θ′−i ∈ Θn−1 from the other agents with true types θ−i.

In Eq. (2.2), the utility of each bidder is computed with respect to the true (θ),

as opposed to reported (θ′), types, the latter only influencing the mechanism outcome.

Although conceptually simple, direct revelation incentive-compatible mechanisms

are as powerful as any mechanisms for some equilibrium concepts.

Proposition 1 (Revelation principle). [37] Suppose that social choice function φ is imple-

mented by a mechanism M in a dominant strategy or ex post Nash equilibrium. Then φ can

be implemented, in the same equilibrium concept, by a direct revelation incentive-compatible

mechanism Md.

The intuition behind the equivalence of M and Md is that Md can simulate bid-

ders’ strategies given their types. Therefore if no direct revelation mechanism satisfying a

certain property P can implement a social choice function φ then no mechanism at all can

satisfy P and implement φ. The revelation principle (Proposition 1) was introduced for

implementation in a dominant strategy equilibrium by Gibbard [37].

In the rest of this thesis, I will only consider direct revelation mechanisms.

A direct revelation mechanism M with social choice function φ is dictatorial if

there exists a certain player i such that φ always chooses an outcome that maximizes i’s

payoff: ∀ θi, ∀ θ−i, φ(θi, θ−i) ∈ argmaxa∈A ui(θi, θ−i, a).

Under very general preferences, only dictatorial functions can be implemented.

9By a slight abuse of terminology, “incentive compatibility” may also be used to mean strategyproofness.
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Theorem 2. [37, 81] Suppose that there are at least three outcomes in A and at least

two agents with unrestricted preferences: for at least two players i, ui(θ, a) = θi(a), where

θi : A → R can be any such function. Then any social choice function φ that can be

implemented in a dominant strategy equilibrium and that chooses each outcome for at least

one set of preferences must be dictatorial.

This result becomes less discouraging once one realizes that unrestricted prefer-

ences are much more general than any practical domain, in which assumptions on preferences

(such as “I prefer more money to less”) hold.

It is commonly assumed in economic theory that a special good, the numeraire,

exists such that anyone can equate their value for a set of goods with a quantity of numeraire.

While various goods have served as numeraire through history, money is the most standard.

For the rest of this thesis, any agent i’s utility will be modeled as quasi-linear.

Definition 11. A player i has quasi-linear utility if his utility for any outcome a and any

payment vector p = (p1, . . . , pn) is

ui(θ, a, p) = vi(θ, a) − pi (2.3)

where vi is i’s value for the outcome and the type vector is θ = (θ1, . . . , θn).

This definition assumes that no player’s utility is affected by others’ payments.

Any social choice function φ in a direct revelation mechanism will have a payment function

p = (p1, . . . , pn) as component, where pi = pi(θ, a) : Θn × A → R. The quasi-linear utility

of a player i given reports θ′ is then

ui(θ, φ(θ′), p(θ′)) = vi(θ, φ(θ′)) − pi(θ
′, φ(θ′)) (2.4)

Note that payments are ultimately decided by the reports θ′ only.
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If a direct revelation mechanism M = (φ, p) implements social choice function φ

via payment function p then I will say that p implements φ. Suppose buyers bid for one

item. The social choice function “allocate to the buyer who values the item the most” can

be implemented in a dominant strategy equilibrium with a second-price payment scheme

(the winner pays the next highest bid), as will be seen shortly.

In settings with numeraire, one is naturally concerned about the flow of money.

Definition 12. Consider a direct revelation mechanism M = (φ, p) for quasilinear players

that report type vector θ′. M is weakly budget balanced if
∑

i pi(θ
′, φ(θ′)) ≥ 0, i.e. M

never incurs a monetary loss. M is strongly budget balanced if
∑

i pi(θ
′, φ(θ′)) = 0, i.e.

M never incurs a monetary loss or gain. M ’s revenue is the total payment made by the

players
∑

i pi(θ
′, φ(θ′)).

Note that the weak version of budget balance is less restrictive than the strong

one: only a weakly budget balanced mechanism can have positive revenue.

In many mechanisms run by authorities (e.g. governments), the goal may be

efficiency, i.e. maximizing players’ joint value for the outcome.

Definition 13. Consider a direct revelation mechanism M = (φ, p) for quasilinear players.

Social welfare for a type vector θ ∈ Θn is the sum of players’ values for the outcome

chosen by φ:
∑

i vi(θ, φ(θ)).

M is efficient if it maximizes social welfare: ∀ θ ∈ Θn, φ(θ) ∈ argmaxa∈A

∑

i vi(θ, a).

A small set of objectives cannot be jointly achieved

Theorem 3. [47] In an environment with quasilinear buyers and sellers of single units of

a good, no mechanism is simultaneously efficient, weakly budget balanced and strategyproof.

Thus, there are significant limitations on the sets of properties that a mechanism

can achieve, even in simple static environments. In fact, it is quite common in mecha-
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nism design to have impossibility results for strong desiderata and then relax some of the

requirements in order to obtain possibility results.

Expressiveness is an informal measure of how general a mechanism is: the more

expressive a mechanism, the more varied the preferences that agents can express or the

more actions they can take. For example, allowing a buyer i’s value for an item to depend

on other buyers’ private information (interdependent values) is more expressive than i’s

value only depending on i’s private information.

This thesis focuses on the limitations imposed by variants of incentive compatibility

as strong as possible on the expressiveness and optimization properties of auctions.

There are many other desiderata for a mechanism; I briefly mention some of them

that are of diminished importance in the mechanisms in this thesis.

Fairness is the property that all buyers are given, in a sense, equal opportunities

and may be beneficial or detrimental to an auction. Fairness in an auction can be defined

in multiple ways, see e.g. [39]. Simplicity is also an important desideratum since a simple

mechanism may be more readily adopted by the players and is less susceptible to failures

due to complex, unforeseen, interactions. A mechanism M ’s complexity is a measure of the

amount of computation (or communication) that M entails; one seeks to minimize it.

Next section presents a class of functions that maximize a weighted version of

social welfare and that are strategyproof on any domain.

2.1.3 Affine maximizers and the VCG mechanism

In this section I will assume that bidders have private values and quasilinear util-

ities, i.e. ui(θ, a, pi) = θi(a) − pi, i.e. vi(θ, a) = θi(a) where θi : A→ R. The quasi-linearity

of agents’ utility renders any function from the following class truthful, i.e. implementable

in a dominant strategy equilibrium:
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Definition 14. A social choice function φ is an affine maximizer (of social welfare) if it

chooses an alternative that maximizes the weighted sum of players’ welfare, adjusted by a

constant for each alternative: ∀a ∈ A,∀i ∃αi ∈ R≥0,∃βa ∈ R≥0 such that

φ(θ) ∈ argmax
a∈A

{
n∑

i=1

αiθi(a) + βa

}

∀ θ ∈ Θn (2.5)

A dictatorial social choice function is an affine maximizer with αi = 0 for all players

i except one and all βa = 0: the alternative chosen is always the one preferred by i, which

becomes essentially a dictator.

It is well-known that any affine maximizer can be implemented by a payment

function that charges each player the effect he has on the social welfare of the other players.

Proposition 2. Any affine maximizer is truthful. If φ(θ) ∈ argmax
a∈A

{
n∑

i=1

αiθi(a) + βa

}

,

∀ θ ∈ Θn then φ can be implemented by payment function

pi(θ, a) =
1

αi

(

max
a′∈A

{∑

i′ 6=i
αi′θi′(a

′) + βa′

})

− 1

αi

(∑

i′ 6=i
αi′θi′(φ(θ)) + βφ(θ)

)

(2.6)

when αi > 0 and pi(θ, a) = 0 when αi = 0.

The outcome a′, the argmax in Eq. (2.6), is φ(θ−i), i.e. the outcome that the affine

maximizer φ would choose if i did not participate. In a dictatorial social choice function,

the dictator’s payment can be chosen as any constant (0, using Eq. (2.6)) without affecting

incentive compatibility.

The Vickrey-Clarke-Groves (VCG) mechanism [21, 41, 85] is the most promi-

nent affine maximizer. VCG treats equally all agents and respectively all alternatives:

αi = 1, ∀ i = 1..n and βa = 0, ∀ a ∈ A. Thus player i’s payment in the VCG mechanism

amounts to the effect it has on others’ values for the outcome chosen:

pi(θ, a) = max
a′∈A







∑

i′ 6=i

θi′(a
′)






−
∑

i′ 6=i

θi′(a
∗) (2.7)

When there is one item for sale, the VCG mechanism reduces to
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Second-price auction The highest bidder wins and pays the second highest bid.

Let us review an informal proof of this fact. Assume that no two bids are equal

and, without loss of generality, that bids are ordered decreasingly: θ1 ≥ θ2 ≥ · · · ≥ θn.

There are n+ 1 outcomes: not allocating to anyone or allocating to each of the n bidders.

Each bidder i has positive value (θi) only for the outcome in which he wins the item. Thus

the VCG outcome a∗ must be the outcome in which bidder 1 is allocated. Any bidder i 6= 1

must pay 0: a∗ is also the optimum outcome without i. The optimum outcome without

bidder 1 allocates to 2, the second highest bidder. Thus bidder 1, the winner, pays θ2, since

no other bidder has positive value for the VCG allocation.

The second-price auction with reserve price p is also an affine maximizer. If

outcome 0 denotes not allocating the item at all then β0 = p, βa = 0, ∀ a = 1..n and

αi = 1, ∀ i = 1..n.

What desiderata are achieved by VCG and to what extent?

Expressiveness. Players can express arbitrary private values for each outcome. There exist

generalizations of VCG to interdependent values (where a bidder’s value can depend on

other bidders’ private information) that preserve many of VCG’s properties [28, 52].

Efficiency. VCG maximizes social welfare by definition.

Revenue. Krishna and Perry [53] establish that VCG obtains the most revenue among

individually-rational mechanisms that implement the outcome maximizing social welfare in

a Bayes-Nash equilibrium.

Individual rationality. VCG is individually rational for a truthful bidder i: i’s payment in

Eq. (2.7) is at most θi(a
∗) by definition of a∗.

Truthfulness. Truthful reporting a dominant strategy equilibrium in VCG by Proposition 2.

VCG is, however, vulnerable to collusion, i.e. joint manipulations by more than one player.

For example, suppose that the highest three values in a second-price auction were 50, 40, 20.
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When bidders are truthful, the 50 bidder wins and pays 40 while the 40 and 20 bidders

have utility 0. If the 50 bidder paid, say $5, to the 40 bidder to lower his bid to 20, the

50 bidder’s price would be 20 instead of 40. Thus the 50 bidder would save $15 and the 40

bidder would receive $5, which is a strict improvement over their utilities when truthful.

Fairness. All agents have equal weight in VCG.

Simplicity. i’s VCG payment can be interpreted as i’s least value for a∗ such that the

outcome chosen remains a∗, which I consider conceptually simple. Paying the second highest

bid for an item is different from the traditional payment rule of an auction, in which the

winner pay his bid and thus may be considered sophisticated by some bidders.

Computational complexity. In the case of one item to sell, the second-price auction winner

and his price can be easily computed in linear time. The winner determination problem

(WDP) is concerned with the optimal way of allocating K heterogeneous items to n bidders.

Then WDP is NP-complete [59] even in the following simple case: any reported type assigns

a value of 1 to exactly one bundle of items and 0 to the others and every item is contained

in the bundles of exactly two bidders. WDP cannot be approximated by a polynomial

algorithm [80] to a K
1

2
−ε factor, for any ε > 0, unless NP = ZPP. Recall that ZPP is the

subclass of problems in NP that can be solved by a randomized algorithm with expected

polynomial runtime.

In the next section I review characterizations of truthfulness.

2.2 Static characterizations of incentive compatibility

When characterizing truthfulness, there are two levers one can press. One can

restrict the preference space and thus get a rich class of truthful functions or one can

impose constraints on the choice function in order to obtain truthfulness on less restricted



Chapter 2: Static and Dynamic Mechanisms 26

domains. Why does the domain of possible agent preferences influence the space of truthful

functions? Because a truthful mechanism needs to motivate the agents to be honest and

this becomes more difficult as the agents have more ways to manipulate.

I will review several results in the literature showing characterizations for certain

positions of one lever or the other [42, 54, 60, 77, 78, 79]. However, the preference domains

employed by these results are either very comprehensive (unrestricted preferences or order-

based domains) or very restrictive (e.g. single-minded). As will be argued, many domains

of practical importance are structured and are not captured by existing results.

A particular (negative) result I will focus on is presented in [54]: on order-based

domains, under several technical conditions, the only truthful functions are affine maxi-

mizers. I will demonstrate the limited applicability of this result by presenting numerous

examples of relevant domains that are not order-based.

One of the first results characterizing truthful functions is due to Roberts [77]:

Proposition 3. If no restriction whatsoever is imposed on the agents’ preferences (i.e.

agents have unrestricted preferences), then truthful social choice functions and affine max-

imizers coincide.

Thus, in unrestricted domains, any truthful function must be an affine maximizer.

However, most real-world domains are structured: for instance, agents prefer allocated to

not being allocated in an auction, which restricts the functions’ domain, thus rendering

Proposition 3’s result inapplicable.

In the following I will only consider deterministic social choice functions (scf’s).

A well-known characterization in terms of payment functions (see, for exam-

ple, [54]) is that an scf φ is truthful if and only if there exists an agent-independent payment

function that implements φ, i.e. given the outcome chosen, i’s payment does not depend

on his report.
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Proposition 4. Social choice function φ is truthful if and only if there is an agent-

independent payment function p (pi : Θn−1 × A → R ∪ {∞}) that implements it such

that for all θ ∈ Θ and i, φ(θ) ∈ argmaxa∈A{θi(a) − pi(θ−i, a)}.

I provide an informal proof for the necessity of the existence of an agent-independent

payment function, focusing on the intuition behind this result.

Since φ is truthful there must exist some payment function p : Θ ×A→ R ∪ {∞}

that implements it. Suppose agent i’s price for θi is less than the price for θ′i when the others’

reports are fixed to θ−i and φ(θi, θ−i) = φ(θ′i, θ−i). Then, when the agent has preference θ′i,

he can gain utility by misreporting as θi. If the price vector p did not maximize i’s utility

then i could simply benefit by misreporting in a way that gives him the maximum utility

given p.

Following [54], I denote, for agent i and alternatives a, b ∈ A,

δab[θ−i] = inf
θi∈Θ:φ(θi,θ−i)=a

{θi(a) − θi(b)}

where alternative a is assumed to be chosen for at least one type of i given others’ types

θ−i. This quantity measures the minimal difference between the value of outcomes a and b

for i. We will shortly see that these quantities play a central role in truthfulness.

Consider the complete directed graph Γφ[θ−i] that has the alternatives in A as

vertices and weight δab[θ−i] on edge (a, b) for all a, b. Call Γφ[θ−i] φ’s outcome graph for

agent i and θ−i, reports of the other agents.

A general necessary and sufficient characterization of truthfulness is

Theorem 4. [42] scf φ is truthful if and only if Γφ[θ−i] does not have negative cycles of

any length ∀i,∀θ−i.

For a truthful φ, a useful quantity is the least weight of a path in Γφ between
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alternatives a and b:

δ∗ab[θ−i] = inf
(a0=a,a1,...,ak,ak+1=b)

k∑

j=0

δajaj+1
[θ−i] (2.8)

(I will drop the θ−i’s when they are clear from the context). By Theorem 4, if φ is truthful

and A is finite then ∀ a, b ∈ A, δ∗ab > −∞, δ∗ab ≤ δab (as δab is obtained in Eq. (2.8) for k = 0)

and δ∗ab + δ∗ba ≥ 0. In particular, if φ is truthful, outcome a can be priced as pi(a) = δ∗aa0
,

for an arbitrary a0 ∈ A. With this payment function, i prefers being truthful, i.e. prefers

obtaining the truthful outcome a to any other outcome b: θi(a)−θi(b) ≥ δab ≥ δ∗aa0
−δ∗ba0

=

pi(a) − pi(b).

The characterizations in Proposition 4 and Theorem 4 offer rather little insight into

the structure of truthful functions. Other characterizations that will be reviewed (Theorem 6

and Theorem 7) are easier to work with, but have limited applicability.

It is well-known [78, 54] that truthfulness can be characterized as follows

Theorem 5. If the scf φ is truthful then it is also weakly monotonic.

Definition 15. The social choice function φ satisfies weak monotonicity (WMON) if

∀i,∀θ−i ∈ Θn−1, ∀θ′i, θi ∈ Θ

φ(θi, θ−i) = a

φ(θ′i, θ−i) = b







⇒ θ′i(b) − θi(b) ≥ θ′i(a) − θi(a) (2.9)

That is, if the alternative chosen by φ changes from a to b and only agent i has

changed his report, from θi to θ′i, then i’s relative increase in value must be weakly higher

for the new alternative b than for the old alternative a. Intuitively, this condition makes

sense as it requires that if only one agent has changed the social outcome then a shift in the

relative values of the old and new outcomes has occurred for that agent. In terms of δ••’s,

WMON is equivalent to Γφ not having negative cycles of length two. Thus Theorem 5 is

actually a corollary of Theorem 4.
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(0,1,−1)

a1 a2

(−1,0,1)  
(1,−1,0) a3

Figure 2.1: A weakly monotonic, but not truthful single-player function on a non-convex domain
that is a subset of R

3. The preference domain consists only of the line segments shown - it is therefore
not convex. Any point on a line segment represents a possible preference type for the agent. There
are only three alternatives: A = {a1, a2, a3}. A point’s ith coordinate gives agent’s value at that
preference type for alternative ai, i = 1, 2, 3.
The function maps each preference type into an alternative that only depends on the line segment the
preference type lies, as shown. For this function, one can show that δai,a(i+1) = 1 and δa(i+1),ai = −1.
The function’s outcome graph G has the negative weight cycle a1 → a2 → a3 → a1: δa1a2 + δa2a3 +
δa3a1 = −3, therefore the function is not truthful. However, δai,aj + δaj,ai = 0 for all distinct i, j, i.e.
the function is weakly monotonic.

Saks and Yu [79] establish the converse of Theorem 5 for convex domains of pref-

erences.

Theorem 6. Any WMON scf on a convex domain of preferences is also truthful.

Recall that a preference assigns a real value to each outcome. The domain of

preferences Θ is then convex if for any two types θ, θ′ : A → R with θ, θ′ ∈ Θ any linear

combination of the two is also in Θ (αθ + (1 − α)θ′ ∈ Θ for any α ∈ [0, 1]).

The example in Figure 2.1 (also from [79]) shows that for non-convex domains,

the result of Theorem 6 may no longer hold.

In Figure 2.2, the outer-cone illustrates the space of WMON functions. For the

domain of unrestricted preferences, WMON is also sufficient for truthfulness.10 Seemingly

positive, this result which says that all WMON functions are truthful for unrestricted

preferences, turns negative when one realizes that the space of WMON functions is exactly

10This is a corollary of the sufficiency of WMON in convex domains [79] (Theorem 6).
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...v(a)<v(b) interesting

bundle

Figure 2.2: Illustration of the inclusion relations between subclasses of WMON functions on various
domains. WMON is equivalent to truthful for order-based or convex domains. First example in Sec-
tion 7 of [79] provides a function that is WMON but not truthful for a non-convex domain. Roberts’
result [77] states that only affine maximizers (AMs) are truthful for the domain of unrestricted
preferences. Lavi et al. [54] prove that if the domain is order-based then, under several technical
conditions, any WMON scf must be an (almost) affine maximizer. For single-minded preferences (a
particularly structured domain), [60] show that monotonicity is equivalent to truthfulness and thus
the class of truthful functions is richer than the class of affine maximizers.

that of affine maximizers for unrestricted preferences (recall Prop. 3):

unrestricted preferences: WMON ⇐⇒ truthful ⇐⇒ affine maximizer

This is not the case for more structured preference domains.

Affine maximizers are illustrated in Figure 2.2 through the central (cylindrical)

volume. So, for general (unrestricted) preferences (to the left) the transversal sections of

this volume and of the outer WMON cone coincide. On the other hand, Lehmann et al. [60]

have shown that while WMON was also sufficient for single-minded bidders, the class of

WMON functions included non affine-maximizers for that preference domain. Thus, the

WMON outer-cone is larger than the AM cylinder for single-minded preferences (to the

right).
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The following result follows from Proposition 2 and Theorem 5.

Proposition 5. If scf φ is an affine maximizer then φ is also weakly monotonic.

As an affine maximizer is a truthful function, all cycles, not only the length two

ones, of its outcome graph have non-negative weight (see Theorem 4). For the domain of

unrestricted preferences, one can show that all cycles of the outcome graph of an affine

maximizer have weight 0.

Order-based (OB) domains, introduced by Lavi et al. [54], allow some structure

in preferences. As will be seen shortly, essentially any reasonable scf on an order-based

domain is an affine maximizer. This characterization is the motivation for the discussion in

Section 2.3.

Definition 16. A domain Θ is order-based (OB) if it is defined by a set O of (in)equalities

of the form

a {<O,≤O,=O}b (or a =O 0), where a, b ∈ A meaning that

θi(a) {<,≤,=} θi(b) (or θi(a) = 0), for all θi ∈ Θ.

That is, all θi ∈ Θ and only them satisfy the (in)equalities in O. A joint domain

Θn is order-based11 if Θ is order-based.

Let us emphasize the point in the definition once again. O specifies a set of

inequalities and then all preferences satisfying these inequalities and only them are in the

order-based domain specified by Θ.

The domain of unrestricted preferences is trivially OB by using no constraints, i.e.

O = ∅.

11If each player i’s type θi belongs to a different type space Θi then the defining inequalities may differ
between players.
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In a combinatorial auction (CA), the auctioneer has a set of heterogeneous indi-

visible items to sell to the n agents. An alternative a = (a1, . . . , an) in a CA is an allocation

of the goods auctioned with agent i getting bundle ai such that the ai’s are disjoint (ai

can be the empty bundle). The domain of (general) CA preferences is order-based, being

defined by the set of inequalities OCA described below:

• No externalities. (“I only care about my own bundle”): θi(a) = θi(b), ∀ a, b ∈ A with

ai = bi

• Free disposal. (“getting more items never hurts me”): θi(a) ≤ θi(b), ∀ a, b ∈ A with

ai ⊆ bi

• Normalization. (“getting nothing has value 0 for me”): θi(a) = 0, ∀ a ∈ A with ai = ∅

Lavi et al. [54] establish that WMON is sufficient for truthfulness in OB domains.

As already mentioned in Theorem 6, Saks and Yu [79] extend12 this result to the more

expressive class of convex domains13. Note that a domain in one of these two classes is

“rich” in the sense that it guarantees the inclusion in the domain of an infinite set of

preferences with certain properties. More importantly, truthful functions in order-based

domains are restricted to affine maximizers.

Theorem 7. [54] In an order-based domain, any truthful social choice function that has

a dense range and satisfies unanimity, decisiveness and weak-IIA is an almost affine max-

imizer.

12It is not hard to prove that any order-based domain is convex. However, the converse is not true:
there are domains that are convex but not order-based (e.g. the domain of linear threshold preferences -
see Subsubsection 2.3.2). In fact, if A is finite then there are only a finite number of orderings O on A’s
alternatives and thus only a finite number of order-based domains with space of alternatives A.

13I consider convex domains in the topological sense and not domains in which preferences that are convex
functions themselves.
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Theorem 7 is thus an extension of Proposition 3 since the domain of unrestricted

preferences is (trivially) order-based.

I present what Theorem 7’s technical conditions become for the order-based do-

main of combinatorial auctions preferences. An scf φ has a dense range if it does not

always sell all items to a single bidder. An scf φ is unanimous if, when each player i is

single-minded with interesting bundle Li and allocating all players simultaneously is feasi-

ble (Li ∩Li′ = ∅, ∀ i 6= i′), φ allocates each player i his bundle Li. An scf φ is decisive if, for

any fixed types θ−i of the other players and for any bundle Li, φ allocates a single-minded

player i his interesting bundle Li provided i bids high enough on it. An scf φ satisfies weak

independence of irrelevant alternatives (weak-IIA) if, when i causes a flip in φ’s overall

allocation due to a change in his report, it must be that i reported a different value for his

old bundle or for his new bundle. That is, φ satisfies weak-IIA if whenever φ(θi, θ−i) = a

and φ(θ′i, θ−i) = b 6= a, it holds that θi(a) 6= θ′i(a) or θi(b) 6= θ′i(b). Weak-IIA is implied by

SMON, a version of WMON (also introduced in [54]) in which the inequality in Eq. (2.9)

is strict.

An scf f is an almost affine maximizer if it is an affine maximizer for all sufficiently

large values of players: there exists a threshold M and ∀a ∈ A,∀i, ∃αi ∈ R≥0, βa ∈ R≥0

such that if θi(a) ≥M, ∀ a ∈ A \ {0} then φ(θ) ∈ argmaxa∈A {∑n
i=1 αiθi(a) + βa}

In the following section I analyze closely the notion of “order-based”, finding it

quite restrictive.

2.3 The limited expressiveness of order-based domains

In this section I show, by analyzing numerous domains we find important, that the

assumption of order-based domains is quite limiting and thus the negative result of [54] is
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Figure 2.3: Classes of preference domains and example domains.

less powerful than it may first seem. Characterizations that go beyond order-based domains

appear now even more important.

2.3.1 Combinatorial auctions with structure

In the following two subsections I investigate whether several examples of prefer-

ence domains are order-based and thus illustrate the (limited) expressiveness of order-based

domains. Figure 2.3 provides an overview of the considerations in this section.

I first consider domains of preferences in combinatorial auctions (CAs) but with

additional preference structure. In the CA setting, a very restricted preference domain is the

one of single-minded preferences. In this domain, an agent has value only for a particular

set of items, the others being irrelevant.

Definition 17. A bidder i is single-minded if there exists vi ∈ R and a “interesting bundle”

L such that

θi(a) =







vi if L ⊆ ai

0 otherwise

∀a ∈ A

If |L| = 1 then I say that i has an Unknown-Item-Unknown-Value (UIUV) preference.

Note that all single-minded preferences certainly satisfy the constraints in OCA.
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However, the domain of single-minded preferences is not order-based.14

In fact, the following stronger result holds, providing a powerful tool for charac-

terizing several of the domains of interest as not order-based

Proposition 6. Let Θ be a preference domain that satisfies the constraints in OCA, con-

tains all UIUV preferences but does not contain all possible CA preferences. Then Θ cannot

be order-based.

Proof. Suppose for a contradiction that Θ was order-based and let O be the set of constraints

that defines it. Then O must contain all constraints for CAs OCA. However, only these

are not enough as Θ is not the domain of all possible CA valuations. Thus O must contain

at least one inequality of the form θi(a) {<,≤,=} θi(b) where ai 6⊆ bi. Assume without loss

of generality that this relation is θi(a) ≤ θi(b). This inequality is not satisfied by any UIUV

preference θ for item x with x ∈ ai \ bi that has value 0 for bundle bi and some positive

value for bundle ai, contradiction.

The domain of UIUV preferences in the proposition can be replaced with any

domain D with the following property: for any alternatives a and b there exist valuations

θ, θ′ ∈ D such that θ(a) > θ(b) but θ′(a) ≤ θ′(b). The key property in the proof is preserved:

no ordering inequality that holds for all θ ∈ D can be required for any two alternatives a

and b.

I use Proposition 6 extensively in the rest of the section. For now, note:

Corollary 1. Single-minded preferences are not order-based.

Also by Proposition 6, if some preference domain D1 is not order-based and

UIUV ⊆ D2 ⊂ D1, then D2 is not order-based.

14It is also easy to see that the domain of single-minded preferences is not convex. Note that the domain of
known single-minded preferences (where the interesting bundle is the same for all preferences) is order-based.
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Complement-free preferences

Again in a CA setting, consider the domain of complement-free preferences, i.e.

preferences which do not consider synergies between items: a set of items is never worth

more than the sum of its parts (see [58] for a characterization of this domain):

θi(ai) + θi(bi) ≥ θi(ai ∪ bi) ∀ ai ∩ bi = ∅ (2.10)

The domain of complement-free preferences is not order-based as it contains all

UIUV preferences and Proposition 6 applies.

Additive preferences

A valuation θi is additive (OR) if there exist a number l and l “atoms” (bundles)

B(1), . . . , B(l) with values s(1), . . . , s(l) such that the value of any bundle ai is the value of

the maximum packing of the atoms in ai (or 0 if no atom is included in ai). Formally, the

evaluation function for a ∈ A is: θi(a) equals 0 if ∀ 1 ≤ h ≤ l, B(h) 6⊆ ai or max
∑h

j=1 s
(j)

over all disjoint decompositions B(1) ∪ · · · ∪ B(h) ⊆ ai otherwise. The domain of additive

preferences is not order-based because it contains all UIUV preferences but is not fully

expressive, and thus Proposition 6 applies.

Corollary 2. Additive preferences are not order-based.

2.3.2 Multi-unit auctions with structure

Consider a multi-unit auction (MUA) setting, where K identical items are for sale

to the n agents. An allocation a here is defined by a vector of values a1, . . . , an where ai

represents the number of items allocated to agent i and a1 + · · ·+an ≤ K. Out of the three

axioms for CAs I will just assume normalization (“If I get no items then I have value 0 for

this allocation”).
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Envious preferences

Consider a preference such as: “I have positive value for an allocation only if my

share is the biggest”, i.e. θi(a) > 0 iff ai ≥ aj ∀j 6= i. I call these envious preferences. The

set O, that establishes that envious preferences are order-based, contains all inequalities of

the form:

• θi(a) = 0 iff ∃ j 6= i s.t. ai < aj

• θi(a) > θi(∅) = 0 iff ∀j 6= i, ai ≥ aj

Free-disposal does not hold for envious preferences: if there are 3 agents and 20

items agent 1 has positive value for the allocation vector (8, 7, 5) but zero value for (9,

11, 0). However, one can add “limited” free-disposal to envious preferences, in the sense

that a′i ≥ ai ≥ aj ∀j ⇒ θi(a
′
i) ≥ θi(ai) > 0. Envious preferences with limited free-disposal

remain order-based.

Variable-threshold preferences

Again, in a multi-unit auction, consider preferences like “I have positive value

for an allocation if and only if I get at least r items”, where r may vary and is not known

beforehand (to the auctioneer). A formal definition of the domain THR of variable-threshold

preferences is: θi ∈ THR iff ∃ 1 ≤ r = r(θi) ≤ k such that θi(a) = 0 if ai < r and θi(a) > 0

if ai ≥ r.

The following result shows that variable-threshold preferences are not order-based.

The proof is different than the immediate proofs so far and it attacks the notion of order-

based directly. The proof uses the fact that all inequalities for normalization, free-disposal

and no externalities should be used in defining this domain and shows that no other con-

straint can be added.
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Proposition 7. The domain THR is not order-based.

Proof. Suppose for a contradiction that THR was order-based, defined by the set of in-

equalities O. Note first that any variable-threshold valuation satisfies normalization, free

disposal and no externalities so all the inequalities characterizing those properties must

be in O. However, those are not sufficient as there are many MUA preferences that are

not variable-threshold. Let us analyze what kind of constraints can be added to the ones

already in O.

• Can any inequality of the form θi(a) < θi(b) for some a, b ∈ A be added? Because of

free disposal and no externalities, ai < bi. The variable-threshold valuation that has

value 1 for any allocation that assigns at least ai items to agent i does not satisfy this

inequality, so one cannot add such an inequality.

• Can one add any constraint of the form θi(a) = θi(b) for ai < bi? No, as any variable-

threshold valuation with bi as threshold does not satisfy this constraint.

By a similar argument, no constraint can be added to O. Therefore one cannot construct

a set of constraints that defines THR, i.e. THR is not order-based.

Thus, the negative result does not apply to resource-allocation settings with this

“variable-threshold” structure.

Suppose, however, that the threshold r is fixed and does not vary from one pref-

erence to the other. For example, if r = 1, such preferences are known as unit-demand

preferences. Then the domain of fixed-threshold preferences is order-based.

In this thesis, variable-threshold preferences will be encountered in Chapter 3,

while unit-demand preferences will be commonplace.
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2.3.3 Arrival/Departure preferences

In dynamic settings, one can define an outcome as the time when an agent is served.

Then preferences like “I have positive value for outcome t if and only if t1 ≤ t ≤ t2”, (where

t1 and t2 are interpreted as arrival and departure times) are again natural. I call such

preferences arrival/departure preferences. It is easy to prove that these preferences are not

order-based: just note that for all t1, t2 one can find some preferences u that give positive

value to t1, zero value to t2 and vice versa. Therefore no order-based inequalities can be

put forth for this domain. As this domain is not the domain of unrestricted preferences, I

conclude that it is not order-based.

2.4 Distribution-based environments and mechanisms

Thus far, I have made no assumptions about what the center or other players know

about a player’s private information, an important informational aspect in many settings.

A standard way to model uncertainty (players’ types, in this thesis) is to assume

that uncertain quantities are draws from a probability distribution. When using a proba-

bility distribution F on bidders’ types (Chapters 3 and 5), I will assume that each bidder

i’s type is drawn independently from F ’s i-th component Fi. I will assume that each player

j has the same prior Fi, on i’s type but the priors on players’ i and j types may differ. I

will assume that these priors are common knowledge, i.e. each player knows the priors, each

player knows that any other player knows the priors etc. Notationally, the expectation EθI

on θI for a subset I ⊆ 1..n of players is taken on the joint probability distribution FI .

Given a model of uncertainty (a probability distribution on the other types in this

case), a natural goal for a player is to maximize his expected payoff.

Definition 18. An n-tuple of strategies (s1, . . . , sn) is a Bayes-Nash equilibrium in a dy-
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namic revelation mechanism if, for any player i, playing si is, in expectation over the prior

F−i, a best-response to others playing strategies s−i:

Eθ−i
[ui(θ, φ(si(θi), s−i(θ−i)))] ≥ Eθ−i

[ui(θ, φ(s′i(θi), s−i(θ−i)))] ∀ θi,∀ s′i : Θ → Θ

The stochasticity here comes from players’ priors; each si may be a pure strategy.

The revelation principle was extended to the Bayes-Nash equilibrium concept by

Green and Laffont [40]. Myerson and Satterthwaite [66] give a generalization of Theorem 3’s

impossibility result to incentive compatibility in Bayes-Nash equilibrium.

2.4.1 Expected externality (AGV) mechanism

The Arrow-d’Aspremont-Gérard-Varet [3, 30] (AGV, also called “expected exter-

nality”) mechanism achieves strong budget balance and implements the efficient outcome.

It is however only incentive-compatible in a Bayes-Nash equilibrium. It charges agent i

pAGV
i (θ) =

(
1

n−1

∑

j 6=i Eθ̃−j

[

V−j(θj , θ̃−j)
])

− Eθ̃−i

[

V−i(θi, θ̃−i)
]

(2.11)

where V−j(θ) =
∑

h 6=j vh(θ, φ(θ)) and φ(θ) = argmaxa∈A

∑

i vi(θ, a) is the efficient outcome.

Suppose that players have symmetric priors (Fi = F and fi = f) and one item is for

sale to bidders 1 and 2. Bidder 1’s AGV payment is pAGV
1 =

∫∞
θ2
r1f(r1)dr1−

∫∞
θ1
r2f(r2)dr2

while bidder 2’s payment is −pAGV
1 . Thus the higher bidder effectively pays the lower bidder

in this simple instance of the AGV mechanism. If there were at least three bidders (with

symmetric priors) for one item, then in the AGV mechanism the lowest bidder is paid, the

highest bidder pays, but other bidders may pay or be paid depending on the bids.

The AGV mechanism satisfies a very weak form (called ex ante) of individual

rationality: a bidder’s expected payment if he did not know his or any other bidder’s type is

0 (this informational setting is illustrated in Tables 2.1(a) and 2.2(a)). The AGV mechanism

strikes a different tradeoff than VCG between desirable properties. The AGV mechanism
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achieves strong budget balance at the cost of weakening the form of individual rationality

and incentive compatibility.

2.4.2 Revenue-optimality for single-item auctions

The virtual valuation (introduced by Myerson [64]) of a bidder with bid ri is

w̃i(ri) = ri − 1−Fi(ri)
fi(ri)

(2.12)

An auction Aw̃ defined on “virtual valuations” is revenue-optimal [64] among static

incentive-compatible single-item auctions that use a prior for bidders with private values.

Suppose that w̃i(ri) is non-decreasing in ri, for example when Fi has a non-

decreasing hazard rate fi(ri)
1−Fi(ri)

. The revenue-optimal auction Aw̃ allocates to the bidder

with the highest virtual valuation, but only if it is non-negative (otherwise the item re-

mains unsold). This bidder pays his lowest value for which he would still win. Myerson

also provides an (input) ironing technique for rendering an arbitrary w̃i(ri) non-decreasing

in ri.

Aw̃ penalizes to a higher extent bids from a priori more competitive bidders.

For symmetric priors, Aw̃ is a second-price auction with a reserve price of r̃ such that

w̃i(r̃) = 0, ∀ i, i.e. the highest bidder wins provided it bids at least r̃ and pays the next

highest bid or the reserve price, whichever is larger.

2.5 Dynamic environments

Static mechanisms faced the challenge of aggregating preferences with certain ob-

jectives in mind when all the information was available at once. New challenges appear

when designing dynamic mechanisms:
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• there is uncertainty about the future, for example via new information entering the

market. Furthermore, the private information of players currently in the market may

change (such a possibility is not considered in this thesis).

• bidders may have temporal manipulations available,

• computation (for example, of optimal policies) may be significantly more difficult in

the dynamic case than in the static case.

I introduce now a general model for dynamic allocation environments and mecha-

nisms.

2.5.1 Dynamic model

In the domains in this thesis I will consider a dynamic population of agents with

static types over T periods of time.15 That is, each agent arrives and departs (exactly once)

in the interval 1..T , but while present, his type does not change with time. I will identify

the agents present at time t with their types (assuming for ease of notation that no two

agents have the same type) and denote them by θt.

The supply of items will be deterministic, but may change with time, in which

case the supply dynamic is known to the center.

Each agent has private information; his valuation (a publicly known mapping)

aggregates all bidders’ private information into a (real) value for a number of items being

given to or taken away from (after being previously allocated to) the agent. This valuation

on changes in allocation in each period induces a valuation over a sequence of decisions.

Myerson [65] establishes a dynamic version of the revelation principle. In a domain

with bidders with private information that does not change over time and arrival-departure

15Chapter 4’s model does not require T to be known or finite.
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intervals, it states that any social choice function φ that can be implemented by a dynamic

mechanism M can also be implemented by a direct revelation mechanism Md, in which

each agent makes a single claim about its type. The time of this claim becomes the agent’s

reported arrival. An agent’s true arrival is construed as the time he learns about the

auction or he conceptualizes his valuation for being allocated. Unless otherwise specified,

I will assume that a bidder cannot report an arrival that is earlier than his true arrival.

Similarly, I will assume that a bidder needs to have an allocation decision no later than his

true departure and thus cannot report a later departure time.

I now formally define the models and mechanisms studied in this thesis and then

exemplify how the definitions apply to several domains, in particular the settings of Chap-

ters 3, 4 and 5.

Definition 19. A dynamic allocation environment over periods 1..T consists of a seller

(also called auctioneer or center) and, for each time step t ∈ 1..T ,

• a supply St of indivisible items owned by the seller before time t

• a set of active players θt where player i has private information θi ∈ Θ that includes

his arrival ai and departure di.

Player i can report a type θ̂i to the seller at no more than one time of his choosing

ti ∈ 1..T , which becomes his reported arrival: âi = ti. As already mentioned, a player

can only report an activity interval that is tighter than his true one: ai ≤ âi ≤ d̂i ≤

di. The seller considers any player active in his reported arrival-departure interval:

θt+1 = θt|d̂≥t+1∪θ|â=t+1. Thus active players are ones that have reported their arrival,

but that claim to not have departed yet.

I denote i’s (non-negative) number of allocated items before any16 time t by lti. No

16To avoid the conceptual problem of the seller monitoring a player i before i reported anything, one can
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player holds any item before he arrives: lti = 0, ∀ i, ∀ t = 1..âi. All allocations must

be feasible; in particular, for persistent, non-reusable, items,
∑

i∈θt l
t+1
i = |S1| −

|St+1|, ∀ t ≥ 1.

Each player values an update between his number of allocated items lti (before t) and

lt+1
i (before t+ 1) at

δai,di
(t) · vi(θ

1..t, lti, l
t+1
i − lti).

The valuation vi, whose functional form is public knowledge, aggregates private infor-

mation (i’s own and possibly other players’). Thus i’s time-independent value for an

allocation decision is multiplied by a time-dependent coefficient, which I will assume

to be 0 outside i’s true arrival-departure interval: δai,di
(t) = 0, ∀ t /∈ ai..di, modeling

a bidder’s interest in allocations only within this interval. It is encoded in i’s valua-

tion (and thus public knowledge17) that i is only interested in a subset Li of the items

(Li ⊆ ∪T
t=1S

t), called his interesting set.

The chronological order of events for Definition 19 is as follows. First, the supply

St and holdings lt before time t are tallied. Second, the set of active players at time t is

updated from the one at time t − 1: players with reported departures of t − 1 exit the

environment and players reporting an arrival of t enter it. Finally, updates πt are made.

Definition 19 does not allow allocation externalities, that is dependence of a player’s

value on another player’s number of allocated items. It allows however information exter-

nalities, where a player’s value depends on the information of other players, as in Chapter 5.

Fixing all players’ types, a bidder i’s value for an update to his number of allocated items

restrict lti ’s definition to i’s activity interval [âi, d̂i], at the expense of making the other definitions more
complicated.

17This informational assumption is trivially satisfied in Chapters 3 and 5. Without it, however, there are
serious limitations on interesting mechanisms in Chapter 4 (see Example 9).
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at time t (changing i’s number of allocated items to lt+1
i ) is independent of previous up-

dates and only depends on the current time via the δai,di
(t) coefficient. Unless otherwise

mentioned, I will assume that i is indifferent about the time of his allocation: δai,di
(t) = 1

for t ∈ ai..di (recall that δai,di
(t) is defined as 0 outside ai..di). Bidders could instead be

modeled as having a constant discount factor δ for allocations by using δai,di
(t) = δt−ai for

t ∈ ai..di.

Let Θ∗ denote the collection of possible sets of active players, i.e. sets of any

cardinality containing only types: Θ∗ = {∅} ∪ Θ ∪ (Θ × Θ) ∪ . . . . Let Z
Θ∗

=
denote the

collection of functions that associate to any θ ∈ Θ∗ with nθ types a vector of nθ integers:

Z
Θ∗

=
=
⋃

n≥0{ψ|ψ : Θn → Z
n}.

Definition 20. A direct revelation mechanism (henceforth, dynamic auction) for the dy-

namic allocation environment over periods 1..T consists of, at each time step t ∈ 1..T

• a history-dependent allocation update rule

Πt : Θ∗ × · · · × Θ∗
︸ ︷︷ ︸

t−1

×Z
Θ∗

=
× · · · × Z

Θ∗

=
︸ ︷︷ ︸

t−1

→ Z
Θ∗

=

I will use πt to denote Πt(·, ·)(θt). For reported type vectors θ1..t−1 and updates π1..t−1

in the previous periods, Πt(θ1..t−1, π1..t−1)(·) maps the vector of types θt to a vector of

integers with a coordinate for each active type at t. I use shorthand πt
i for the integer

corresponding to θi ∈ θt in πt(θ1..t−1, π1..t−1)(θt). πt
i represents the increment for i’s

current holding of items: lt+1
i = lti + πt

i . In particular, if πt
i = 0 then i’s number of

allocated items is unchanged and if πt
i is negative then |πt

i | items are taken away from

i. Thus the histories of allocations and updates can be obtained from one another.

• a supply update rule: St+1 = R(St,∪i∈θtπt
i).

• for each player i, a payment function pt
i, specifying i’s monetary transfer to the seller.
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The mechanism’s social choice function is composed of the update rule and the payment func-

tion. i’s utility at time t (the payoff mapping of Def. 1) is given by ut
i = δai,di

(t)vi(θ
1..t, lti, π

t
i)−

pt
i(θ

1..t,∪t
t′=1 ∪i′∈θt′ πt′

i′ ). Thus i’s utility is uniformly affected by payment decisions in any

period18, as opposed to updates to his number of allocated items which only matter to i in

periods within his true arrival-departure interval. i’s total utility is the sum of the utilities

in each period: ui =
∑T

t=1 u
t
i.

Here is how this definition supports non-identical items. If at some time t, an

active bidder i finds some item in St not interesting (Li \ St 6= ∅) then the mechanism

must be able to assign each item x to at most one active agent ix who finds it interesting

(x ∈ Lix) such that any agent i is assigned exactly lti items. If some bidder i′’s number of

allocated items is updated (πt
i′ 6= 0), then the mechanism’s internal assignment of items to

bidders may change.

single-minded domain, persistent identical items The domains of Chapters 3 and 5

are for bidders with single-minded preferences and no item can be reassigned or re-

used: a bidder can only be allocated once and no allocation can be undone. There is

an initial supply of S1 identical items; with a slight abuse of notation also let St denote

the number of items available before time t. St+1 = R(St,∪i∈θtπt
i) = St −∑i∈θt πt

i .

In Chapter 3, a bidder i with type θi = (ai, di, qi, ri) has a private value of ri for

qi or more items allocated simultaneously once and a value of 0 otherwise. Thus

vi(θ
1..t, lti, π

t
i) = ri if lti < qi and πt

i ≥ qi (i obtains all his desired items at once in

period t) and 0 otherwise.

In Chapter 5, there is one item and a bidder’s value for it depends on other bidders’

18In this thesis, a bidder’s payments will be zero outside his reported activity interval. In general it
is conceivable that a bidder may only find out his payment after his departure. Arguments for payment
decisions immediately following allocation decisions are proposed in [22].
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private information. Thus πt
i is 1 for at most one (i, t) pair and lti = 0, ∀ i, ∀ t: the

auction effectively ends as soon as the item is allocated. Each bidder i has a publicly

known valuation function vi(θ
1..t, 0, 1); recall that i’s signal θi is, however, private

information. To model a bidder’s value dependence on all private information before

his departure, I let δai,di
(t) = 1 for t = di and 0 otherwise. Consequently, the seller

will only allocate a bidder upon his departure:19 if πt
i = 1 then t = d̂i. Note that

the seller’s decisions in Chapter 5 should depend not only on previous decisions, but

also on previous types, since the values of current bidders are determined by previous

bidders’ signals.

multi-unit domain, persistent identical items Consider a seller owning S1 = K iden-

tical items where each bidder i has a decreasing marginal value for each additional item

won. No cancellations are allowed (πt
i ≥ 0), but a bidder may be allocated at more

than one time period. Bidder i’s private information is a vector (r1i , . . . , r
K
i ) where

rh
i is i’s value for the h-th item won and rh

i ≥ rh+1
i , ∀h = 1..K − 1. i has (marginal

decreasing) value for the items received at t relative to i’s holding: vi(θ
1..t, lti, π

t
i) =

∑lti+πt
i

x=lti+1
rx
i . The supply update rule remains St+1 = R(St,∪i∈θtπt

i) = St −∑i∈θt πt
i .

single-minded domain, persistent heterogeneous items This is the setting of Propo-

sition 8 and Proposition 9, considered in [69] and it differs from Chapter 3 only in

that items are no longer identical. The value of a type θi = (ai, di, (ri, Li)) is defined

as vi(θ
1..t, lti, π

t
i) = ri when lti < |Li| and πt

i ≥ |Li|, but 0 otherwise. This models a

bidder having value only if allocated his entire interesting set.

cancellations for persistent heterogeneous items The setting of Chapter 4 can be

described as follows. Impatient buyers arrive one by one, each buyer i placing an

19i can still report an earlier departure d̂i < di and obtain value from the item at his true departure di.
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instantaneous bid for a future (e.g. at time T + 1) allocation of an item from Li.

The seller must immediately accept (by temporarily reserving an item for) or reject

(deny a reservation for) each bidder. To accommodate future valuable offers, the

seller is allowed to preempt (bump) an already accepted bidder. In particular, any

item is available at any time (by bumping the bidder the item is currently assigned

to). Bumped and rejected bidders do not get a second chance to bid or to be allocated.

A bumped bidder incurs a utility loss amounting to an α fraction of his value, where

α ∈ [0, 1).

Chapter 4’s model can be cast in the framework of Definitions 19 and 20 as follows.

The supply before any t is the same, a set St = K of heterogeneous items: R(K, ·) =

K.

A bidder i’s private information θi consists of his value for an item and also, specific

to Chapter 4, of i’s decision whether to invest if accepted. The investment decision

is also immediate, upon acceptance. No bidder reports his investment decision to the

seller, but without investing, the bidder has no value for gaining or losing the item

(Eq. (2.13) below formalizes i’s value). I construe ai as the time i bids and assume a

bidder cannot manipulate it: âi = ai. Any bidder i can only be allocated at arrival,

because of impatience: πt
i = 1 only possibly at t = ai. No bidder departs until time

T (thus di = T is technically no longer private information, just like ai). Physical

allocations are only made at T + 1, after the mechanism ends. Any bidder i allocated

(at arrival) can be bumped, i.e. have the item removed from his holding: for t ≥ ai+1,

−lti ≤ πt
i ≤ 0. There can be at most one time t ≥ ai + 1 when πt

i = −1; at all other

t′ ≥ ai + 1 i’s number of allocated items is not updated (πt′
i = 0).

Let us define a bidder i’s value, effectively rewriting Eq. (4.1):
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vi(θ
1..t, lti, π

t
i) =







ξ(I)ri, if πt
i = 1 (hence lti = 0)

0, if πt
i = 0

−(1 + α)ξ(I)ri, if πt
i = −1 (hence lti = 1)

(2.13)

Bidder i’s private information is comprised of his value ri for an item and his invest-

ment decision I ∈ {I0, I1}, where I1 denotes investing and I0 denotes not investing.

Updates affect i only if i invested: ξ(I0) = 0 and ξ(I1) = 1. If i invested and is

bumped, the effect of Eq. (2.13) for πt
i = −1 is to cancel i’s gain in value (obtained

when allocated at his arrival) and additionally inflict an α factor loss.

expiring items I illustrate Definition 20’s versatility by casting the expiring items domain

into its framework; I will focus on unit-demand bidders for simplicity. The natural dy-

namic domain of expiring items is outside the scope of this thesis. The self-correction

approach in Chapter 3 builds upon a similar approach [71] used in an expiring items

domain.

There is exactly one item to be allocated each period t: St+1 = {gt+1} = R({gt}, ·);

πt
i = 1 for at most one player i and 0 for the others. Bidder i has value ri for exactly

one item in some period t ∈ [ai, di]: vi(θ
1..t, 0, 1) = ri and vi(θ

1..t, l, 1) = 0, ∀ l ≥ 1.

Definition 20 can be modified to allow bidders to express combinatorial valuations

on bundles of heterogeneous items; the simpler version avoids notation clutter.

The following two results establish the (almost) equivalence of monotonicity and

incentive compatibility in a dynamic allocation environment with simple preferences. A

unit-demand type θi = (ai, di, ri) dominates another unit-demand type θi = (a′i, d
′
i, r

′
i) if

θ′i bids less (r′i ≤ ri) and has a tighter arrival-departure interval: ai ≤ a′i ≤ d′i ≤ di.

Monotonicity essentially requires that, if a bidder i, that is allocated for type θ′i, were to
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report instead a type θi that dominates θ′i, i would still be allocated. Monotonicity is

analogous to the WMON property in Section 2.2.

Proposition 8. [69] A monotonic, deterministic policy is implementable in a domain with

(known interesting bundle) single-valued preferences.

The following is a converse of Proposition 8.

Proposition 9. [69] Any deterministic policy implementable without paying unallocated

agents in a domain with (known interesting bundle) single-valued preferences and “reason-

able” misreporting must be monotonic.

Reasonable misreporting requires that an agent be able to report any value and

any arrival-departure interval within his true arrival-departure interval. Recall that other

types of temporal misreports are ruled out in Definition 19.

I now present two prominent distribution-based mechanisms; relevant distribution-

free dynamic mechanisms will be reviewed in Chapter 4.

2.5.2 Dynamic distribution-based mechanisms

In this section I assume that, at any time t,

A1 there exists a distribution (which is common knowledge) on future arrivals at any time

t′ ∈ [t+ 1, T ] and this distribution is independent of past arrivals and decisions.

A2 any bidder truthfully reports his arrival: âi = ai, ∀ θi.

While results in this section hold under relaxations of these assumptions, these

assumptions simplify notation and exposition significantly.

Assumption A1 typically holds if buyers’ bids are not influenced by previous prices

or demand.
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Assumption A2 allows defining a dynamic strategy for types without notation for

bidders that are not active only because of delaying their arrival.

Player i’s expected value for a policy of allocation updates Πt..T starting from t is

Vi(θ
t,Πt..T ) = Eθ>t

[
T∑

τ=t

δai,di
(τ) · vi(θ

1..τ , lτi , π
τ
i )

]

(2.14)

where πτ
i is the coordinate corresponding to θi in Πτ (s(θ1..τ−1), π1..τ−1)(s(θτ )) when players

(including i) use reporting strategies s.

The within-period ex post Nash equilibrium concept is a hybrid generalization of

the Bayes-Nash and ex post equilibrium concepts to dynamic settings. It requires that

the equilibrium strategies are a best response for any current types and in expectation

over future types. That is, provided that others play their equilibrium strategies, a player

would not regret playing his equilibrium strategy even if it had access to all the information

currently in the market, i.e. the types of active players.

Definition 21. [4] A dynamic mechanism M = (Π1..T , p1..T ) is within-period ex post Nash

incentive-compatible if, for any player i, reporting his true type maximizes his utility in M

given that others report their true types, for any current types θt
−i and in expectation over

future players.

∀ θt
−i, Vi(θi, θ

t
−i,Π

t..T (θi, θ
t
−i)) − pi(θi, θ

t
−i,Π

t..T (θi, θ
t
−i))

≥Vi(θ
′
i, θ

t
−i,Π

t..T (θ′i, θ
t
−i)) − pi(θ

′
i, θ

t
−i,Π

t..T (θ′i, θ
t
−i))∀ θ′i ∈ Θ

where pi(θ
t,Πt..T ) is i’s expected total payment starting from period t, defined similarly to

Vi(θ
t,Πt..T ) in Eq. (2.14).
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The efficient (in expectation) policy Π∗ is the one that maximizes the expected

social welfare of current and future players.

Π∗(θt) = argmax
policy Πt..T

V t(Πt..T (θt)) where

V t(Πt..T (θt)) =

(
∑

i∈θt

Vi(θ
t,Πt..T )

)

+ Eθ>t





T∑

τ=t+1

∑

i′:âi′=τ

Vi′(θ
τ ,Πτ..T )





I first review a generalization of the VCG mechanism to a dynamic allocation

environment with distributional information about the future.

Definition 22. In any period t, the online-VCG mechanism [72] adopts the efficient policy

Π∗(θt), charging an active player i

pt
i(θ

t) =







Vi(θ
t,Π∗(θt)) −

(
V t(Π∗(θt)) − V t

−i(Π
∗(θt

−i))
)

if i arrived at t

Vi(θ
t,Π∗(θt)) otherwise

(2.15)

Proposition 10 is an immediate corollary of results in [17, 69].

Proposition 10. The online-VCG mechanism is within-period ex-post Nash incentive-

compatible under assumptions A1 and A2.

The online-VCG mechanism also satisfies within-period ex-post Nash individual

rationality, i.e. for any set of active players, an active player has non-negative expected

utility in online-VCG by reporting his true type. Thus, in the online-VCG dynamic gener-

alization, a bidder’s utility is maximized and non-negative by reporting his true type if the

other (active) players report their true types as well and only in expectation over future

players. In contrast, in the static VCG mechanism, a bidder’s utility is maximized and

non-negative by reporting his true type regardless of other players’ reports.

The within-period ex post properties of online-VCG are preserved if one replaces

assumption A2 with
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A2’) no bidder can improve the expected value of the policy Π∗ by delaying his

arrival.

The second mechanism introduced in this section is a generalization of the AGV

mechanism (recall Section 2.4.1) to a dynamic allocation environment, reducing to it in a

static environment, i.e. when T = 1 and bidders are all present at once and do not have

arrivals or departures.

Definition 23. In any period t, the dynamic balanced mechanism [4] adopts the efficient

policy Π∗(θt), charging an active player i

pt
i(θ

t) =
(

1
|θt|−1

∑

θj∈θt
−i

∆j(θj , θ
t−1)

)

− ∆i(θi, θ
t−1) where (2.16)

∆i(θi, θ
t−1) =







E(θi, θ
t−1) − Eθ̃i

[E(θ̃i, θ
t−1)] if i arrived at t

0 otherwise

and (2.17)

E(θ′i, θ
t−1) = Eθ̃a=t

−i

[

V t
−i

(

Π∗
(

θ′i, θ
t−1
−i |d≥t, θ̃

a=t
−i

))]

(2.18)

Π∗’s argument in Eq. (2.18) ensures that the types at time t are correctly updated

from the ones at time t − 1: types active at t − 1 that do not depart at t − 1 (denoted by

θt−1
−i |d≥t) and types arriving at t (denoted by θ̃a=t

−i ).

Proposition 11. [4] The dynamic balanced mechanism is strongly budget-balanced and

has truthful reporting as Bayes-Nash equilibrium.

Apart from strong budget-balance, the dynamic balanced mechanism also pre-

serves the ex ante individual rationality property of the static AGV mechanism.

For concreteness, I consider the online-VCG and dynamic balanced mechanisms

in a very simple dynamic allocation environment.

Example 2. Suppose that there is one item and two periods. Agents 1 and 2 arrive in
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periods I and respectively II, both departing after period II. The efficient policy Π∗ allocates

the item in period II to the highest bidder; say that a tie is broken in favor of agent 1.

In online-VCG, payments are

p1(θ
I) = 0 −

(∫ ∞

0
max(θ1, r2)f(r2)dr2 −

∫ ∞

0
r2f(r2)dr2

)

= −
∫ θ1

0
(θ1 − r2)f(r2)dr2

p1(θ
II) = 1θ1≥θ2

· θ1 and p2(θ
II) = 1θ1<θ2

· θ2 − (max(θ1, θ2) − θ1) =







0, if θ1 ≥ θ2

θ1, if θ1 < θ2

Agent 2’s online-VCG payment is the same as in a second-price auction, i.e. the static

VCG mechanism for one item.

In the dynamic balanced mechanism, payments are determined by

∆1(θ1, ∅) =

∫ ∞

θ1

r2f(r2)dr2 −
∫ ∞

0

∫ ∞

r1

r2f(r2)dr2f(r1)dr1

∆2(θ2, θ
I) = 1θ1≥θ2

· θ1 −
∫ θ1

0
θ1f(r2)dr2

The payments in the dynamic balanced mechanism are quite different from the ones

in the static AGV mechanism in Section 2.4.1.

Summary

I have introduced standard game theory and static mechanism design concepts.

I have reviewed characterization of truthfulness in static mechanisms and I have

highlighted the limited expressiveness of order-based domains, a key assumption in a state-

of-the-art characterization of truthfulness for combinatorial auctions.

I have defined a dynamic allocation environment and I have shown how this defi-

nition can accommodate, among others, the environments in this thesis.
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I have reviewed two prominent examples of dynamic distribution-based mecha-

nisms.



Chapter 3

Self-Correction

Abstract. I use sample-based stochastic optimization methods for the purpose

of strategyproof dynamic, multi-unit auctions. There are no analytic characterizations

of optimal policies for this domain and thus a heuristic approach, such as that proposed

here, seems necessary in practice. Following the framework of Parkes and Duong [71], I

perform sensitivity analysis on the allocation decisions of an online algorithm for stochastic

optimization, and correct the decisions to enable a strategyproof auction. In applying this

approach to the allocation of non-expiring goods, the technical problem that I must address

is related to achieving strategyproofness for reports of departure. This cannot be achieved

through self-correction without canceling many allocation decisions, and must instead be

achieved by first modifying the underlying algorithm. I introduce the NowWait method

for this purpose, prove its successful interfacing with sensitivity analysis and demonstrate

good empirical performance. My method is quite general, requiring a technical property

of uncertainty independence, and that values are not too positively correlated with agent

patience. I also show how to incorporate “virtual valuations” in order to increase the seller’s

revenue.

56
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3.1 Introduction

Mechanism design addresses the problem of private information in economic en-

vironments and seeks to implement desirable outcomes despite the willingness of agents

to misreport this information. Auctions present a canonical problem of mechanism de-

sign. Many important mechanism design problems are in fact dynamic, for example with

a dynamic agent population and new bids arriving online [55, 69]. Consider selling theater

tickets, airline seats, or banner advertisements, where bids may be expected to arrive over

time and associated with bidders that require a response before all bids have been received.

I consider a very natural instance of this problem. There are S1 units of an

identical item for sale, to be sold in the course of T time periods. Each bidder (or agent)

i has an arrival time ai ∈ 1..T , departure time di ∈ 1..T , and value ri ∈ R≥0 for qi ∈ Z>0

units of the item. The semantics of the bidder’s type, θi = (ai, di, ri, qi), are that the bidder

has value ri for receiving qi units in some period t ∈ {ai, . . . , di}. The arrival time models

the moment at which the agent realizes his demand or learns about the existence of the

auction while the departure models the latest moment at which the agent still has value

for receiving the items. The agent types are identically and independently distributed with

probability density function f(θi), and nt agents arrive each period, with associated density

function g(t).

The design goal may be alternatively one of efficiency (i.e., maximizing expected

value) or revenue (i.e., maximizing expected payments). I will consider both objectives

in this chapter. If the goal was efficiency, then one might consider adopting the online

Vickrey-Clarke-Groves mechanism [72, 73]. But this mechanism requires an optimal (or ǫ-

optimal) decision policy, which is not computationally feasible in this domain. This dynamic

allocation problem is inherently combinatorial because of the multi-unit demand of agents,
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and optimal decision policies cannot be computed (or even represented) offline because

of the size of the state space, which needs to include all possible sets of undominated

agent bids that can be received in a single period. Online, sample-based algorithms to

compute ǫ-optimal policies [50], also quickly become intractable because the sample-tree

scales exponentially in the look-ahead horizon.

Other prior work in the probabilistic, dynamic framework considers only domains

that facilitate analytic characterizations of optimal policies; e.g., domains with commonly-

ranked items [36], unit-demand bidders with “regular” valuation distributions [68], smoothly

changing types [74] or unit-demand bidders with time-discounting [33]. I am not aware of

any prior work that is able to scalably address the multi-unit, dynamic auction problem in

this chapter.

In the absence of computational methods to compute optimal policies, or ana-

lytic characterizations of optimal polices, it seems necessary to adopt a heuristic approach.

Parkes and Duong [71] propose “output-ironing” as a methodology to transform heuristic,

online algorithms for stochastic optimization into strategyproof dynamic auction protocols.

A strategyproof dynamic auction is one in which truthful, immediate bidding is a dominant-

strategy equilibrium. It is known that strategyproof dynamic auctions in this environment

require that the allocation policy is monotonic [43, 69]. Loosely, a monotonic policy is one

in which an agent continues to be allocated as he improves his bid (appropriately defined

for arrival, departure, value and quantity). The idea behind output-ironing is to verify

the monotonicity of an allocation policy online, as decisions are made, and correct such

decisions as necessary to make the policy monotonic.

Parkes and Duong [71] successfully apply output-ironing to environments with

expiring goods, where one or more units must be allocated in each period; e.g., the allocation

of compute time on a shared computer. But this self-correcting approach is difficult to apply
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in environments with non-expiring goods, such as the one considered here. The problem is

with regard to establishing departure monotonicity, which requires that an agent allocated

for some bid (or reported type) is also allocated for a bid with the same arrival, value,

and quantity but a later departure. For example, suppose an agent i with reported type

(1, 5, $10, 2) is allocated in period 5. It must be verified that the decision policy will continue

to allocate i (in some period) for all reports of type (1, d′, $10, 2) with d′ > 5. But with

non-expiring goods, any reasonable policy will wait until i’s departure to decide whether

to allocate i so that it maximizes the available information about other bids. This in

turn makes it impossible to verify departure monotonicity with respect to later reports of

departure because the bids that will arrive and affect allocation decisions are as yet unknown

(e.g., at time period 5 it is unknown whether or not bids with later reported departures

will be allocated). Thus, output ironing would need to cancel all allocations except those

to bids for which there are no possible types with later departures (i.e., maximally-patient

agents). This would result in an implemented policy with very low efficiency.

My contribution. I design NowWait, a heuristic modification of the Consensus

algorithm [84] for online stochastic optimization, that is provably departure monotonic

and thus precludes the need for output ironing with respect to departure. When coupled

with output ironing in the other dimensions of a bidder’s type, it provides a strategyproof

and scalable dynamic multi-unit auction. I also establish that a simplified form of output

ironing, referred to here as adjacency ironing is sufficient to establish monotonicity. This

significantly improves the scalability of the methodology. NowWait balances the immediate

reward from accepting a bid with the estimated opportunity cost from waiting to a future

period. Empirical analysis demonstrate higher than 90% efficiency with respect to the

offline optimum, and higher than 98% efficiency with respect to the online optimum when

this benchmark is available. This is achieved with around a 20x slow down due to using
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computational ironing, over-and-above the underlying method of stochastic optimization,

and a per-period solve time of approximately 40 seconds in instances with more than 100

arrivals and 100 goods to allocate. The approach is very flexible, and can be applied to

inputs that are first transformed to “virtual valuations” as in Myerson’s revenue-optimal

offline auction [64]. Experimental results show that this can boost revenue significantly in

environments with low demand relative to supply, as would be expected. The approach can

also be combined with learning of the underlying distribution on agent types, because the

incentive properties do not rely on having a correct probabilistic model.1

Other related work.

Boutilier et al. [14] apply online stochastic combinatorial optimization to clearing

expressive banner ad auctions, but without consideration of incentive issues. Hajiaghayi

et al. [45] adopt a dynamic-programming approach to design simple dynamic auctions for

settings with unit-demand bidders, with values drawn from a known prior but whose number

may not be known in advance. Parkes [69] provides a general survey of online mechanisms,

including both probabilistic and prior-free approaches.

The agenda of automated mechanism design (AMD) [24] shares the goal of creating

a mechanism automatically, but differs from the approach adopted here in that it adopts

optimization to design a functional description of all decisions that will be made by a

mechanism, rather than seeking to adapt an existing decision algorithm, such as in the

approach adopted here. This makes AMD very difficult to scale.

The work presented here conforms to the agenda of heuristic mechanism design,

recently advocated by Parkes [70]. This stipulates that a problem in computational mech-

1The incentive problems that can occur because of informational externalities when learning in the context
of dynamic auctions (see Gershkov and Moldovanu [35]) can be avoided by precluding the use of a new report
of a type θ by bidder i for the purpose of updating the center’s model about future reports until the agent
has departed.
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anism design be considered solved when a state-of-the-art algorithm for solving a problem

with cooperative agents can be adopted, “with small modification” to solve the problem

with self-interested agents. Output ironing is a small modification to Consensus in this

sense, because it retains the vast majority of the decisions and also the same underlying

computational approach in making decisions.

Incremental mechanism design [25] also modifies the rules of a mechanism to re-

move opportunities for manipulation. Unlike this work, it requires an iterative approach

because fixing one opportunity may introduce another, and is described only for offline

mechanisms where the complete type profile is known. Lavi and Swamy [57] provide a

general procedure to transform approximate VCG mechanisms into truthful-in-expectation

mechanisms for static environments. But it is not apparent how to apply the approach to

dynamic policies, where only part of an allocation is available at any point.

Outline. I first define the set-up more formally, and define the Consensus algo-

rithm for online stochastic combinatorial optimization. In Section 3.2, I also define output

ironing and establish a result about the sufficiency of adjacency-ironing. I continue by

defining the important property of departure obliviousness, and noting the flexibility of my

approach in reference to virtual valuations and learning. Sections 3.3 and 3.4 define vari-

ants on Consensus that are adapted to my problem and explain how to perform sensitivity

analysis. In Section 3.5 I present experimental results, before concluding. All proofs are

deferred to the appendix.

3.2 Consensus and ironing

Recall that in my model, the type of an agent (ai, di, ri, qi) specifies a value ri for

an allocation of qi units in some period {ai, . . . , di}. I adopt the standard quasi-linear utility
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model, in which an agent that pays p for qi units has utility ri − p. I refer to di − ai as an

agent’s patience, and assume this is bounded with di − ai ≤ ∆. In the auctions I consider,

an agent can make to the auctioneer a single claim about his type. All misreports of type

are possible except for reports of early arrivals, i.e., I assume that an agent cannot claim to

have an earlier arrival than his true arrival. To motivate this, recall that the arrival period

models the period at which an agent learns of his own demand or learns about the existence

of the mechanism. It is reasonable to restrict an agent’s strategy from bidding before this

period.2

The efficient policy maximizes total expected value:

V ∗(h1) = max
k1∈K(h1)

Eθ2..T

[

max
k2∈K(h2)

Eθ3..T

[

... max
kT∈K(hT )

v(k, θ)

]]

, (3.1)

where kt is the allocation decision taken at t, state ht = (St, At) denotes the number of

available items St and the current set of active agents At (agents with t ∈ {ai, . . . di}), K

defines the set of feasible allocation decisions in period t, θt is the set of types that arrive

at t, and v(k, θ) is the total value to agents allocated by decisions k = k1..T given types

θ = θ1..T . I write i ⊏ k for “agent i is allocated by decision k”.

A dynamic auction M = (π, x) defines a decision policy π = {π1..T } and a payment

policy x = {x1..T }. The decision and payment policy may be randomized and depend on ran-

dom events ω = {ω1..T }, for example random samples of future bids. With this, the decision

policy π induces decisions kt := πt(St, At, ω1..t) and collects payment xt
i(S

t, At, ω1..t) ∈ R≥0

from each active agent. As useful shorthand, let πi(θ, ω) = 1 denote that agent i is allocated

for reported types θ given uncertain events ω, with πi(θ, ω) = 0 otherwise.

Define the critical-value for agent i given policy π and reports θ−i of other agents

as vc
(ai,di,qi)

(θ−i, ω) = min{r′i s.t. πi((ai, di, r
′
i, qi), θ−i, ω) = 1}, or ∞ if no such r′i exists.

2This assumption is adopted in many other papers, including Hajiaghayi et al. [43] and Pai and Vohra [68].
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This is the smallest bid value for which agent i would still win, all else unchanged.Define a

partial order on types: θi�θ θ
′
i ≡ (ai≥a′i) ∧ (di≤d′i) ∧ (ri≤r′i) ∧ (qi≥q′i). Type θ′i is higher

than θi if it offers the seller more flexibility, i.e. it has higher reward, demands less units

and has a larger availability interval.

Monotonicity requires that an allocated agent would still be allocated if his type

were higher, all else unchanged:

Definition 24. Policy π is monotonic if (πi(θi, θ−i, ω) = 1) ∧ (ri > vc
(ai,di,qi)

(θ−i, ω)) ⇒

πi(θ
′
i, θ−i, ω) = 1 for all θ′i �θ θi, for all θ−i, ω, and all agents i.

Monotonicity is sufficient, and essentially necessary (if losing agents receive no

payment) for strategyproofness in this environment [69]. A mechanism with a monotonic

decision policy is made strategyproof by defining a payment policy that charges each allo-

cated agent his critical value. The critical value can be computed upon the departure.

Surprisingly, optimal policies need not be monotonic:

Example 3. [71] There are 3 units to allocate and 2 periods. In period 1, agent 1 has

type (1, 1, $5, 1) and agent 2 has type (1, 2, $500, 2). In period 2, with probability 1 − γ an

agent will arrive with type (2, 2, $1000, 3) and with probability γ an agent will arrive with

type (2, 2, $5000, 1), for some small γ > 0. The optimal policy must make a decision in

period 1 about agent 1 because agent 1 will depart in this period. Agent 1 is not allocated

because this would preclude the ability to allocate to type (2, 2, $1000, 3) that will arrive with

high probability in period 2. Then in period 2, suppose the unlikely event occurs and an

agent with type (2, 2, $5000, 1) arrives and the optimal policy allocates to agent 2 and also

this new arrival.

Now consider what happens were agent 2 to bid $1000 rather than $500. The

optimal decision in period 1 is now to allocate to agent 1 for $5 and expect to allocate to
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agent 2 in period 2. It is better to get certain value of $5 from agent 1 than expected value

γ5000 from the unlikely type in period 2 (for a small enough γ). But now the same unlikely

event occurs, and an agent with type (2, 2, $5000, 1) arrives in period 2. The optimal policy

allocates to this agent and with 1 unit left is now unable to allocate to agent 2. This is a

failure of monotonicity: agent 2 increases his value but went from winning to losing, fixing

the types of other agents.

It is easy to see that this same failure of monotonicity will occur with the policies

constructed using sample-based stochastic optimization algorithms such as Consensus [84],

described next. It is this failure of monotonicity that sets up the problem addressed in this

paper.

3.2.1 The Consensus algorithm

The Consensus (C) algorithm, proposed by van Hentenryck and Bent [84] for

online stochastic optimization, is illustrated in Figure 1, together with the additional step

of output ironing in determining decision k̆t in period t.

Algorithm 1 Consensus algorithm with ironing at time t.

votes(k):=0 for each allocation k of up to St items to At

σj :=GetSample(t) for each j = 1..|Σ|; Σ = {σ1..|Σ|}
for each j = 1..|Σ| do
αj := Opt(St, At, σj) ∩At // active agents only

αj
s:=Select(αj , Σ, St, At)

votes(αj
s):=votes(αj

s)+1
end for
kt:= arg maxk votes(k)
k̆t := {i ⊏ kt : not isIronedA,D,Q(θi, t, (S,A)ai..t, Σ)}
return k̆t

A scenario σj in period t is a sample of a possible future: σj defines the types

θt+1..T for periods t + 1 through T . Given a scenario σj , and the current state (St, At),

there is a well-defined offline optimization problem Opt(St, At, σj). This is a weighted
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knapsack problem: find the subset of bids At ∪ σj that maximize the total value allocated

without exceeding the capacity St. The C algorithm constructs samples, solves this offline

optimization problem for each sample, and of the agents allocated in this offline problem

picks out as winning agents only the active agents (i.e., discarding future, sampled, agents).

Denote this set of winning agents in scenario σj as αj . This set may then be additionally

“filtered” via a Select function to give set αj
s. The set of active agents αj

s then receives

one vote, the one for scenario σj . It is the Select function that will be modified to make

C departure monotonic. C ⊕ Select specifies that C is used together with the Select

function.

The proposed decision kt for current time t is the one with most votes (breaking

ties at random). The final decision k̆t results from discarding all ironed agents.

The C algorithm is applicable in domains satisfying uncertainty independence, i.e.

in which the distribution of future agents is independent of past and current decisions:3

P(θt+1..T |k1..t) = P(θt+1..T ) (3.2)

for all t, all k1..t. This property requires that future demand is exogenous, and independent

of current and past allocation decisions. For example, when selling airline tickets, it requires

that bids for seats arrive irrespective of the number of seats remaining for sale. Uncertainty

independence ensures that scenarios are valid for any decision path and allows for the same

|Σ| scenarios to be valid whatever the decision made now and in future periods.

3All my results remain valid if the uncertainty independence requirement (3.2), is also conditioned on
past and current arrivals: P(θt+1..T |k1..t, θ1..t) = P(θt+1..T |θ1..t). However, at each time step, new scenarios
would have to be generated. The results further extend if the supply is stochastic, satisfying a similar
uncertainty independence property.
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3.2.2 Output ironing

Output ironing proceeds as follows (the “isIroned” function). Policies π and π̆, and

decisions kt and k̆t, denote respectively the policies and decisions before and after ironing.

Let tπi (θ, ω) ∈ T ∪ {∞} denote i’s allocation time (∞ if none exists) when reported types

are θ, for random events ω.

Definition 25 (ironing). Given decision kt, the ironed decision k̆t only keeps those i ⊏ kt

for which

tπi (θ′′i , θ−i, ω) ≤ tπi (θ′i, θ−i, ω), (3.3)

for all θ′′i �θ θ
′
i �θ θi. If (3.3) fails, i’s allocation is canceled.

The ironing step is performed in a period t in which C proposes to allocate an

agent. Eq. (3.3) requires that an allocation to agent i is canceled unless an allocation to

the same agent would have also been made, and in a monotonically-earlier period, for all

higher reported types of agent i. When an allocation is canceled the items that were to be

allocated are discarded and agent i is never allocated.4

Ironing requires not only that an agent is provably allocated for all higher reports,

but that this occurs in monotonically earlier periods. With this, it is never the case that

a type survives ironing, while a higher type would not and one can make an inductive

argument to establish that

Theorem 8. [71] Ironed policy π̆ is monotonic.

The uncertainty-independence property facilitates ironing, because it enables the

4The allocated goods are discarded, rather than returned, when the decision is canceled in order to
prevent a knock-on effect, wherein a decision to iron the decision of one agent would have a ripple effect on
the decision of the “base policy” π and thus whether another agent should be ironed.
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simulation of counterfactual states as the type of an agent is varied.5

In fact, it is sufficient to perform a simplified form of ironing. Let θ′′i ∈ θ′i++ if θ′′i is

a higher type than θ′i but θ′′i strictly improves over θ′i in at most one dimension of (a, d, r, q).

I henceforth fix θ−i and ω, and omit them from the tπi notation.

Definition 26. Given decision kt, adjacency-ironing only keeps those i ⊏ kt for which, for

all θ′i = (a′i, d
′
i, r

′
i, q

′
i) �θ θi = (ai, di, ri, qi), with r′i = ri, it holds that

tπi (θ′′i ) ≤ tπi (θ′i), ∀ θ′′i∈θ′i++ with r′′i = r′i and (3.4)

tπi (〈a′i, d′i, r′′′i , q
′
i〉) ≤ tπi (〈a′i, d′i, r′′i , q′i〉),∀r′′′i ≥r′′i≥r′i

If (3.4) fails, i’s allocation is canceled.

Theorem 9. Adjacency-ironing is equivalent to ironing.

Proof. Suppose tπi (θi) = t. Both π and π̆ can only cancel decisions of the same base policy

π: tπi (θi), t
π̆
i (θi) ∈ {∞, t}.

Suppose tπ̆i (θi) = t. If tπi (θi) = ∞ then by Eq. (3.4), ∃θ′, θ′′i ∈ θ′i++ with tπi (θ′′i ) >

tπi (θ′i). But then tπ̆i (θi) = ∞ by definition (Eq. (3.3)), contradiction. Thus tπi (θi) = t.

Suppose now that tπ̆i (θi) = ∞. By Eq. (3.3) there exists θ′′i �θ θ
′
i �θ θi such that

tπi (θ′′i ) > tπi (θ′i). But then there must exist θ̃′i and θ̃′′i ∈ θ̃′i++ with θ′′i �θ θ̃
′′
i �θ θ̃

′
i �θ θ

′
i �θ θi

such that tπi (θ̃′′i ) > tπi (θ̃′i): on the lattice of types, θ̃′′i to θ̃′i is just a step of the walk from θ′′i

to θ′i. Then tπi (θi) = ∞ as well, by Eq. (3.4): from violating the first condition if r̃′′i > r̃′i

and the second one if r̃′′i = r̃′i.

Algorithm 2 performs adjacency-ironing, following the prescription of this defini-

tion. Algorithm 3 provides pseudo-code for isIronedR, which checks the first condition in

5If the realization of new bids was dependent on policy decisions, then the effect of some earlier change
in decision could not be simulated because the future after that change in decision would not be known.
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Algorithm 2 isIronedA,D,Q(θi, t
∗
i (θi), (S

t, At)ai≤t≤t∗i
, Σ): online verification of monotonic-

ity with respect to all higher types θ′i for an agent of type θi allocated in period t∗i . New

allocation time t∗i (θ
′
i) is found by simulating π starting at ai, where i’s type is replaced by

θ′i. The breakpoints computed in isIronedR for each θ′i allow determining efficiently whether

tπi (θ′′i ) > tπi (θ′i) for any θ′′i ∈ θ′i++.

for each θ′i = (a′i, d
′
i, ri, q

′
i), (a′i ≤ ai, d

′
i ≥ di, q

′
i ≤ qi) do

if isIronedR(θ′i, t
∗
i (θ

′
i), (S

t, At)ai≤t≤t∗i (θ′i)
, Σ) or

for any θ′′i ∈ θ′i++ with r′′i = r′i, t
π
i (θ′′i ) > tπi (θ′i) then

return true // i ironed

end if
end for
return false // i not ironed

Eq. (3.4). It tracks the changes in C decisions for values higher than i’s reported value, ri,

fixing the rest of i’s type and all other agent types. For each scenario in each time period

in {ai, . . . , t
∗
i } it identifies values at which the set of agents selected to be allocated in the

offline allocation in that scenario would change: these are the scenario breakpoints. It does

so via the BrkPts function, which determines the set of all (time, scenario, value) triples

at which the set of agents selected to be allocated changes. This function also determines

the “before” and “after” decision as the value is increased past the scenario breakpoint,

denoted respectively α<
s
(β) and α>

s
(β) for breakpoint β. An example of Algorithm 3 for C

when Select is the IgnoDep function is presented in Example 4.

Example 4. Say 3 items are for sale for 2 time periods. Agents X1,2 arrive at time 1: Xi

has ai = 1, di = i, qi = i, ri = i, i = 1, 2. There are 7 time 2 scenarios σ1..7, each with one

agent with quantity 2, 2, 3 and value 3, 4, 10 on scenarios σ1,2, σ3,4 and σ5,6,7 respectively.

Votes are {X1} and ∅ for σ1..4 and σ5..7 respectively; hence X1 is allocated. Agent X3 arrives

at time 2 : a3 = d3 = 2, q3 = 1, r3 = 0.5. As a result, X2 is allocated at time 2: t∗2 = 2.

Let us follow value output ironing for X2, tracking decision changes from time
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1 = a2 to 2 = t∗2 as 2’s value is increased. Time 1 scenario breakpoints are 3, 4, 9 on

σ1,2, σ3,4 and σ5,6,7 respectively. All 7 time 2 breakpoints are at 0.5.

Denote by Ct the C decision at t. If X2 had value 3, C1 would change to ∅ as σ1,2

votes become {X1, X2}. Using Algorithm 3’s notation, {X1} = C(votes(Σ 6=jβ ), α<
s
) 6=∅ =

C(votes(Σ 6=jβ ), α>
s
) at tβ = 1, for jβ = 1 and 2, rβ = 3, α<

s
= {X1} and α>

s
= {X1, X2}.

All 7 time 2 breakpoints are now at 0 since X2,3 can both be allocated. X2 is still allocated

at time 2, surviving ironing so far.

If X2 had value 4, C1 would change again to {X1, X2} as σ3,4 votes become

{X1, X2}; t2 = 1 and any time 2 breakpoint is discarded since no items are left. Last

breakpoint is at 9: all votes are now for {X1, X2}. As allocation times never increase as

X2’s value increases, isIroned returns false:X2 survives ironing and is allocated at time 2.

In this example, tβ always equaled ti, precluding the need for updating ~S, ~A and

breakpoints.

Consider an agent i that can be allocated, i.e. with qi ≤ Si. For simple Select

methods, such as OnlyDep which selects only those agents that are departing in the current

period, the only breakpoint on scenario j in period t for agent i with type θi = (ai, di, ri, qi)

is given by:

rj
o(i) = V (St, At\{i}, σj) − V (St−qi, At\{i}, σj) (3.5)

where by V (S,A, σj) I denote the value of the solution of the offline optimization problem

Opt(S,A, σj). This follows from the simple combinatorics of the offline weighted knapsack

problem.

I will soon introduce more nuanced Select methods in which there can be multiple

scenario breakpoints, with the decision that receives a vote changing more than once. This

makes sensitivity analysis, and thus ironing, a bit more tricky.
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The payments of agents must be computed as the critical value of the ironed policy.

For this, the procedure outlined above for ironing is essentially reversed: one steps down

lower values until the agent would be unallocated in policy π, or allocated but fail the

ironing test and thus be unallocated in ironed policy π̆ [71].

3.2.3 Departure obliviousness and myopic monotonicity

The obvious concern with ironing, which cancels decisions and discards resources,

is that it may establish monotonicity at the expense of destroying the value of a policy by

canceling almost all decisions.

In fact, if this was a problem of stochastic optimization with cooperative agents

then it would be optimal to delay any allocation decision until an agent’s departure, since

this is without cost to the agent and allows the center to receive more information about

agent types. This is encapsulated in the OnlyDep select method: only allocate to those

agents that are in the majority vote decision and depart now.

But as explained earlier, this would lead to a very low quality policy when coupled

with output ironing. Output ironing would fail to establish the monotonically-earlier prop-

erty of Eq. (3.3) for any types except maximally-patient agents, and cancel most allocation

decisions.

I will focus on departure oblivious Select methods, i.e. invariant to an allocated

agent’s delay of departure:

Definition 27. Policy π is departure-oblivious if for any agent i allocated in period t∗i ,

the decisions made by the policy for periods ai ≤ t ≤ t∗i do not change for any reported

departure d′i > di, holding all other inputs unchanged.

This property trivially implies monotonicity with respect to departure. In com-

bination with ironing with respect to arrival, value and quantity only (“(a, r, q)-ironing”),
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i.e. checking Eq. (3.4) only for types θ′′i and θ′i that differ from θi in these attributes, this

provides full monotonicity.

Proposition 12. For a departure-oblivious policy, (a, r, q)-ironing is equivalent to ironing.

Proof. Let π̀ denote the policy obtained by (a, r, q)-ironing departure-oblivious policy π.

Fix θ−i and ω, and consider type θi with departure di such that tπi (θi) = t.

Both π̀ and π̆ can only cancel decisions of the same base policy π: tπ̀i (θi), t
π̆
i (θi) ∈

{∞, t}. If tπ̆i (θi) = t then tπ̀i (θi) = t as well, as the set of checks for π̀ is a subset of the one

for π̆.

Suppose now that tπ̆i (θi) = ∞. There exists then θ′′i �θ θ
′
i �θ θi such that tπi (θ′′i ) >

tπi (θ′i). Let θ̃′′i and θ̃′i equal θ′′i and θ′i, but with d̃′′i = d̃′i = di. By departure obliviousness,

tπi (θ̃′′i ) ∈ {∞, tπi (θ′′i )}. If tπi (θ̃′′i ) = ∞ then tπ̀i (θi) = ∞ as well, since θ̃′′i and θi have the

same departure. Suppose that tπi (θ̃′′i ) = tπi (θ′′i ) and, similarly, that tπi (θ̃′i) = tπi (θ′i). Then

tπ̀i (θi) = ∞ as i would be (a, r, q)-ironed: tπi (θ̃′′i ) > tπi (θ̃′i).

Note the different decompositions of ironing across the dimensions of a bidder’s

type: Algorithms 2 and 3 separate value from the other dimensions, whereas departure

obliviousness precludes the need for departure ironing.

In terms of constraints imposed on the policy, myopic monotonicity is at the op-

posite end of the spectrum from obliviousness (see Table 3.1 for a summary of the various

monotonicity notions, when restricted to departure).

Definition 28. A myopically monotonic policy π is such that, if i, who is allocated at t∗i

for θi, reports θ′i �θ θi for which actions under π are identical with actions for θi until time

t∗i − 1, then π still allocates i at t∗i for the different report:

if πt(θ′i) = πt(θi)∀ t ≤ t∗i − 1 and θ′i �θ θi then i ⊏ πt∗i (θ′i)
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Property Requirement

Myopic
departure-monotonicity

if πt(di) = πt(d′i)∀ t ≤ t∗i − 1
then i ⊏ πt∗i (d′i)

Monotonicity (Def. 24) tπi (d′i) ∈ [ai, d
′
i]

Ironing condition (Eq. (3.3)) tπi (d′i) ≤ t∗i = tπi (di)

Departure obliviousness πt(di) = πt(d′i)∀ t ≤ t∗i

Table 3.1: Requirements under increasingly stronger notions of departure monotonicity on
policy π when agent i allocated at time t∗i changes his reported departure from di to d′i > di.
Monotonicity does not strictly imply myopic departure-monotonicity.

Note that myopic monotonicity only requires that i is allocated; the other active

agents’ allocation decisions may change. If all agents are impatient then myopic monotonic-

ity is identical to (anytime) monotonicity. I will often restrict myopic monotonicity to one

dimension of a bidder’s type: θi and θ′i of Def. 28 are then identical in the other dimensions.

Clearly, if π is departure-oblivious then it also is myopically departure-monotonic.

While necessary for anytime-monotonicity, myopic monotonicity does not preclude

output ironing if decisions earlier than t∗i change for θ′i. Without any information on the

policy, if some θ′i �θ θi is not checked, for θ′i the agent may be allocated later than for θi,

or not allocated at all. However, all Select methods I introduce are departure-oblivious,

and therefore anytime departure monotonic. Hence, none of them needs departure output-

ironing; only method OnlyDep will employ it. They do however need (a, r, q)-ironing.

3.2.4 Flexibility: virtual values and learning

In the context of single item, static auctions, Myerson [64] proved the revenue-

optimality of an efficient auction defined on “virtual valuations”. The virtual valuation of

a bidder whose bid ri is drawn with probability density function (pdf) f and cumulative

distribution function (cdf) F is:

w̃(ri) = r − 1−F (ri)
f(ri)

(3.6)
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My approach to dynamic auction design provides considerable flexibility. For ex-

ample, one can apply the algorithm essentially unchanged, except for substituting valuations

with virtual valuations. Each reported type is converted into a virtual valuation by retaining

(ai, di, qi) but replacing ri with w̃(ri). All computation is then performed with respect to

virtual valuations: samples are taken from the distribution on virtual valuations induced by

the distribution on valuations, ironing is performed with respect to a partial order defined

on virtual valuations, and the payment is first determined as the critical “virtual value”

and then transformed into the corresponding actual value.

When the distribution f has a non-decreasing hazard rate (as required by My-

erson [64]), the ironed policy remains monotonic and thus strategyproof. Without this

property, then it would be necessary to also adopt Myerson’s notion of ironing to first

transform the virtual valuation function into a monotone increasing function, and adopt

this as the mapping from values into virtual values. Myerson’s transformation could be

termed “input ironing” whereas the ironing adopted here is “output ironing.”

As another indication of this approach’s flexibility, the self-correcting methodol-

ogy advanced here does not require that the mechanism has correct information about the

underlying distribution on types. The distribution can simply be learned over time, for ex-

ample through a non-parametric approach that samples from the past such as that proposed

by van Hentenryck and Bent [84]. In order to retain strategyproofness, it is necessary to

preclude the reported type of an agent until the agent has itself departed from the system.

This way, the report of an agent cannot affect the mechanism’s distributional model while

the agent still cares about the model.
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3.3 Basic Select methods

In this section, I introduce some basic Select methods that are departure oblivious

and therefore useful together with output ironing for the design of strategyproof, dynamic

multi-unit auctions. An already encountered method is

OnlyDep: Select(αj , Σ, St, At) = αj |d=t

OnlyDep is clearly not departure oblivious.

For a straw man method that is departure oblivious, I use the identity Select

method that ignores all departure information:

IgnoDep : Select(αj , Σ, St, At) = αj (3.7)

HazRate only selects bidders somewhat likely to leave soon:

HazRate : Select(αj, Σ, St, At)=
{

i⊏αj:
1−F D

i (di)

fD
i (di)

<c
}

(3.8)

where departures have pdf fD
i and cdf FD

i , and c ∈ (0, 1) is a parameter. Agent i is retained

in αj
s by HazRate iff his reported departure di is late enough.

HROrRew also selects bidders with high value-per-item:

HROrRew : Select(αj , Σ, St, At) =

{i⊏αj:
(

1−F D
i (di)

fD
i (di)

<c
)

∨
(

P[
R

Q
>
ri
qi

]<w

)

} (3.9)

where parameters c ∈ (0, 1) and w ∈ (0, 1), and R and Q are random variables denoting

an agent’s value and quantity. That is, if i is “too good to miss” then he is selected even

if his departure does not satisfy Eq. (3.8). Parameters c and w can be optimized for the

distribution on agent types to maximize the performance of C⊕HazRate or C⊕HROrRew.

Lemma 1. C⊕IgnoDep is departure-oblivious. If FD
i has a monotone non-decreasing haz-

ard rate (i.e. it is regular) then C⊕HROrRew and C⊕HazRate are departure-oblivious.
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Proof. The claim for select method IgnoDep is immediate. For C⊕HROrRew and

C⊕HazRate, let us assume that agent i is allocated at t∗i when reporting departure di.

If di satisfies the departure condition in Eq. (3.8) and Eq. (3.9), and FD
i is regular then all

d+
i > di also satisfy this condition. As decisions before t∗i are unchanged, the t∗i decisions

for d+
i and di will be identical since for any scenario j at time t, the event i ⊏ Optj is

independent of i’s departure. Therefore HROrRew and HazRate are departure-oblivious.

Just as with OnlyDep, the selected subset of agents αj
s in scenario σj will change

at most once as the value of agent i is increased with the HazRate method. The change, if

any, occurs if qi ≤ St and at bid value rj
o(i) = V (St, At \ {i}, σj) − V (St − qi, A

t \ {i}, σj).

Agent i is in αj
s for ri ≥ rj

o(i) if and only if Eq. (3.8) is satisfied.

When the departure condition in HROrRew is satisfied then this behaves as HazRate

and there is one breakpoint at rj
o(i) for an agent that can be feasibly allocated. But

otherwise, there can be two breakpoints when the value rc
j(i), at which P[R

Q >
rc
j (i)

qi
] = w,

is greater than rj
o(i). In this case, for ri ∈ [rj

o(i), rc
j(i)) agent i is in αj but not selected and

then for ri ∈ [rc
j(i),∞) agent i is also selected. More importantly, within ironing, HROrRew

only yields one breakpoint: the condition in Eq. (3.9) is independent of time and is satisfied

by all higher types if satisfied by a certain type.

Table 3.2 shows that all simple methods have a single value breakpoint on a sce-

nario j at t for an agent i that is allocated at t∗i ≥ t. Since i is allocated at t∗i , if ri ≥ rj
o(i)

then i is also in j’s vote at t: the additional Select test is independent of time for both

HazRate and HROrRew. Recall that only breakpoints for an agent that is allocated matter.

I denote by Optj,±∞ = Optj(St, At|ri:=±∞) the offline optimum for scenario j

at t given supply St and active agents At when i’s value is changed to ±∞. As sets,

Optj,+∞ = {i} ∪ Optj(St − qi, A
t \ {i}) and Optj,−∞ = Optj(St, At \ {i}).

Method OnlyDep is myopically-monotonic in arrival and value but not departure.
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Value ri [0, rj
o(i)) [rj

o(i),∞)

Interpretation i 6⊏ Optj i ⊏ Optj

Vote Optj,−∞ Optj,+∞

Table 3.2: Possible votes of IgnoDep, HazRate or HROrRew on scenario j at time t for
different values of agent i allocated at time t∗i ≥ t, given others’ reports.

None of the methods are myopically quantity-monotonic, because reporting a lower

quantity by a winning agent i ⊏ Optj may induce a vote change on j to some other action

i ⊏ α′ possibly resulting in a change of the Consensus decision.

The following Proposition provides a necessary condition for a violation of myopic

quantity monotonicity in the basic Select methods. The rather involved nature of the

necessary condition offers a non-rigorous explanation for the scarcity of ironing with respect

to quantity.

Proposition 13. Consider a time t and method S being one of OnlyDep, IgnoDep, HazRate

or HROrRew. Bidder i, who is in the C decision πt
C⊕S

at t for θi, reports q′i < qi for which

actions under C⊕ S are unchanged until time t− 1. Suppose that i is no longer allocated at

t for q′i : i 6⊏ πt
C⊕S

. Then there must exist a partition Σa ∪Σb ∪Σc ∪Σd = Σ of scenarios

such that

• on each σja ∈ Σa, the voted allocation is the same (αa
s
) and includes i for qi and q′i.

Any active agent in exactly one of the offline optima αa and αa′ must not be selected

by S.

• on each σjb ∈ Σb, the voted allocation when i reports qi is αa
s

(the same as for Σa).

The voted allocation for q′i contains at least one active agent not allocated by αa; in

particular, v(αa\{i}) + V (St − #(αa\{i}), ∅, σjb) < V (St − q′i, A
t\{i}, σjb)

• on each σjc ∈ Σc, i is not in the voted allocation when i reports qi or q′i. That is,

ri +V (St − q′i, At\{i}, σjc) < V (St, At\{i}, σjc); otherwise i would be selected if in the
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offline optimum for either quantity.

• on any σjd ∈ Σd, the offline optimum is neither αa nor αc and it may or may not

allocate i for qi or q′i

• |Σa| ≤ |Σc| ≤ |Σa| + |Σb|

Proof. Take αa
s

and αc
s

to be the C⊕S decisions for qi, respectively q′i. Take Σa (respectively

Σc) to be the scenarios on which the voted allocation is αa
s

(respectively αc
s
) for both qi and

q′i. Take Σb to be the scenarios on which the voted allocation is αa
s

only for qi. On any Σb

scenario, i must be allocated for q′i: i remains in the offline optimum and still passes the

Select test for the lower quantity. Finally, take Σd as all scenarios not in Σa, Σb or Σc.

Otherwise the voted allocation would be either αa
s

nor αc
s

.

A bidder i may no longer in the C⊕ S decision after lowering his quantity even if

all other bidders have unit-demand and q′i = 1:

Example 5. qi = 2, q′i = 1, St = 3, ri = $6, At = {$2, i}. 5 copies of σja with {$7, $3}

(αa = αa′ = {i}), 5 copies of σjb with {$7} (αb′ = {$2, i}), 8 copies of σjc with {$7, $7, $7}

(αc = αc′ = ∅) and 2 copies of σjd with ∅ (αd = αd′ = {$2, i}). If allocated in the offline

optimum then $2 or i are selected.

3.4 The NowWait heuristic

In this section I describe NowWait, a departure-oblivious Select method that

makes an explicit tradeoff between the value of allocating to an agent that could disappear

and the likely benefit of waiting for other opportunities.

The NowWait Select method filters αj down to αj
s by retaining those agents for

which the estimated value from allocating now is greater than the estimated value from
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waiting, considering that i’s value may be lost because he may depart:

NowWait : Select(αj , Σ, St, At) = {i⊏αj: nowt
i(α

j,ri)≥waitt
i(α

j,ri)}

For estimating the future value on a scenario j′, I make the pessimistic assumption

that all agents present in At (except i) either depart or are allocated in this period so that

the future demand is represented only by that in each scenario j′ ∈ Σ. The global estimate

is simply an average over the per-scenario estimates.6

Let αj
− = αj \ {i} and v(αj

−) denote the total value to the agents allocated in

αj
−. Let #(α) denote the number of items allocated by action α. The value obtained by

allocating to agent i with value ri in period t is estimated as:

nowt
i(α

j , ri) = ri + v(αj
−) + 1

|Σ|
∑

j′∈ΣV (St−#(αj), ∅, σj′),

Let ρ = ρt be the probability that agent i will still be present in the next period

t+1 given type θi but ignoring his reported departure (to provide departure obliviousness):

ρ = P[D > t|D ≥ t, ai, ri, qi] (3.10)

The value for waiting to allocate i is estimated as:

waitt
i(α

j , ri) = v(αj
−) + (1−ρ) 1

|Σ|
∑

j′∈ΣV (St−#(αj
−), ∅, σj′)

+ ρ 1
|Σ|
∑

j′∈ΣV (St−#(αj
−), {i}, σj′)

Since for any i and σj , αj , nowt
i(α

j , ri) and waitt
i(α

j , ri) are independent of i’s

reported departure one gets

Proposition 14. C⊕NowWait is departure-oblivious.

6If I were to retain an unallocated agent i′ and consider the presence of this agent when computing
opportunity costs for i in scenario j′, then ironing for i′ would also need to analyze the effect of i′ raising
his value on the allocation decision for i and maybe other agents at t because of this coupling effect through
the NowWait select rule. I wish to avoid this additional complication.
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Figure 3.1: Subsets of agents for Select on a scenario.

Figure 3.1 highlights the subsets of interest among active and future (sampled)

agents on a scenario. Select methods select subsets of active agents in the offline optimum:

A and B for IgnoDep, A (only departing now) for OnlyDep and subsets of A and B (a priori

“urgent”) for NowWait.

3.4.1 Sensitivity analysis

NowWait requires sensitivity analysis of the resulting C algorithm. For this it

is crucial to be able to compute scenario breakpoints to determine when the decision αj
s

changes as agent i’s value varies. There may be two breakpoints per scenario. The first

occurs at rj
o(i) when agent i enters αj and the second at rj

c(i) when agent i is retained by

the Select method.

To better understand NowWait’s behavior, use shorthand vj′ = V (St− #αj, ∅, σj′)

and cj′ = V (St− #αj
−, ∅, σj′) − V (St− #αj , ∅, σj′). cj′ is the opportunity cost incurred by

allocating to i if scenario j′ was the actual future. If αj = {i} and j′ = j then cj = rj
o(i).

With this, nowt
i(α

j , ri) = ri + v(αj
−) + 1

|Σ|
∑

j′∈Σ vj′ and waitt
i(α

j , ri) = v(αj
−) + (1 −

ρ) 1
|Σ|
∑

j′∈Σ(cj′ + vj′) + ρ 1
|Σ|
∑

j′∈Σ(max(ri, cj′) + vj′), where the final term comes from

recognizing that V (St − #(αj
−), {i}, σj′) = max(ri + vj′ , cj′ + vj′) = max(ri, cj′) + vj′ .

Simplifying, agent i, allocated in αj , is retained if and only if:

ri|Σ| ≥ (1 − ρ)
∑

j′∈Σ cj′ + ρ
∑

j′∈Σ max(ri, cj′) (3.11)
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Note that, apart from the number of items (implicit in cj′) allocated by αj
−, the

condition in Eq. (3.11) is independent of scenario j.

I claim that if, for some scenario σj′ , αj′ allocates the same number of items as αj

and allocates i then ri ≥ cj′ . Indeed,

ri + v(αj′

−) + V (St− #αj′ , ∅, σj′) ≥ v(αj′

−) + V (St− #αj′

−, ∅, σj′)

and cj′ is the difference of the two V terms, since I assumed that #αj′ = #αj .

In general, the value and patience of an agent may be correlated according to type

distribution f(θi). This will complicate sensitivity analysis for C⊕NowWait. For now I

assume that patience and value are independent, and thus ρ does not depend on an agent’s

value ri.

Given this independence assumption, there is a threshold τ∗ρ (i), for i in αj to be

selected by NowWait such that:

nowt
i(α

j , ri) ≥ waitt
i(α

j , ri) if and only if ri ≥ τ∗ρ .

Theorem 10 will prove a more general statement.

Denote the second scenario breakpoint by rj
c(i) = max(rj

o(i), τ∗ρ ). It may be the

case that τ∗ρ > rj
o(i) and thus rj

c(i) > rj
o(i) if, for example, scenario j predicts less demand

than the other scenarios and i is likely very patient (ρ is close to 1). For values in the

range [0, rj
o(i)), neither αj nor αj

s include agent i. For values in the range [rj
o(i), r

j
c(i)), i is

included in αj , but is removed by NowWait: i 6⊏ αj
s. For values in the range [rj

c(i),∞), both

αj and αj
s include i.

Table 3.3 summarizes NowWait breakpoints. Out of α−
S
, α+

S
\{i} and α+

S
∪{i}, one

is the actual vote on j; only α−
S

and α+
S
\ {i} can coincide as only α+

S
∪ {i} allocates i.

Let φρ(ri) = ri|Σ| − (1 − ρ)
∑

j′∈Σ cj′ − ρ
∑

j′∈Σ max(ri, cj′) = nowt
i(α

j , ri) −

waitt
i(α

j , ri).
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Value ri; [0, rj
o(i)) [rj

o(i), r
j
c(i)) [rj

c(i),∞)
interpretation i 6⊏ Optj i ⊏ Optj i ⊏ Optj

Reference αj Optj,−∞ Optj,+∞ Optj,+∞
Vote (action); α−

S
α+
S
\ {i} α+

S
∪ {i}

interpretation ignore i wait for i allocate i

Table 3.3: Possible votes of NowWait for different values of agent i, when the reports of other
agents are fixed. Optj,±∞ = Optj(St, At|ri:=±∞) denotes the offline optimum for scenario

j given supply St and active agents At when i’s value is changed to ±∞.

Proposition 15 establishes the intuitive property that the more likely an agent i is

to still be present in the next period, the higher value i needs to have in order not to be

filtered from the decision by the NowWait Select method.

Proposition 15. As ρ increases from 0 to 1, the threshold τ∗ρ at which an agent i ⊏ αj is

selected by NowWait weakly increases from the average to the maximum of the costs {cj′ :

j′ ∈ Σ}, when agent patience is independent of value.

Proof. One gets τ∗ρ ≤ τ∗ρ′ for ρ ≤ ρ′ as it is easy to check that for all ri and all ρ, φρ(ri) is

non-decreasing in ρ.

For ρ = 0, the threshold τ∗0 is the average of marginal costs {cj′ : j′ ∈ Σ}:

τ∗0 |Σ| =
∑

j′∈Σ cj′ . For ρ = 1, τ∗1 |Σ| =
∑

j′∈Σ max(τ∗1 , cj′) and thus τ∗1 = maxj′ cj′ .

Say there are only two scenarios σ1,2 with opportunity costs c1 < c2. Consider

the computation of agent i’s τ∗ρ on scenario σ1. Given that i is allocated on scenario σ1,

ri ≥ c1. Suppose that ri ≤ c2; otherwise ri clearly satisfies Eq. (3.11). Eq. (3.11) amounts

to 2ri ≥ (1 − ρ)(c1 + c2) + ρ(ri + c2) i.e. ri ≥ (1−ρ)c1+c2
2−ρ and Proposition 15 can be readily

verified.

My implementation of sensitivity analysis accounts for the fact that, by varying

ai (and thus ρ) or qi, the threshold τ∗ for NowWait may change.
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ri 2 copies of σj 4 copies of σj4 5 copies of σj5 C

[rj
c ,∞)

Opt: α4∪{i}
vote: α4∪{i}

Opt: any
vote: any

Opt: i ⊏ α5

vote: i ⊏ α5

α5 or
α4∪{i}

[rj
o, r

j
c)

Opt: α4 ∪ {i}
vote: α4

Opt: i 6⊏ α4

vote: i 6⊏ α4

Opt: i ⊏ α5

vote: i ⊏ α5
α4

[0, rj
o) i 6⊏Opt=vote=αj Opt=vote=α4 Opt=vote=α5 α5

Table 3.4: An example with two distinct breakpoints for NowWait. When i’s value is r,
decisions α5, α4 and αj receive 5, 4 and 2 votes respectively: the C decision is α5 which
allocates i (thus r ≥ rj5

c (i)). When i’s value is r′ > r, α5 and α4 receive 5 and 6 votes
respectively: the C decision is α4, not allocating i. However, i ⊏ C for values higher than
rj
c(i).

3.4.2 Monotonicity properties of NowWait

I unveil now a potential failure of myopic value monotonicity in NowWait. Consider

two values r < r′ for which decisions on scenarios other than σj are identical. If i ⊏

Opt(S,A, σj) for r then Opt(S,A, σj) will not change for r′. Thus, if i ⊏ C for r, then the

same holds for r′. If i 6⊏ Opt(S,A, σj) for r′ then the σj vote is the same for r or r′: i does

not influence any bidder’s rj
c .

However, suppose that i ⊏ C for r and r < rj
o(i) < r′ < rj

c(i), i.e. i ⊏ Opt(S,A, σj)

only for r′ but even then i is not “urgent” enough (this is the setting of Table 3.4). Then

i may no longer be in the winning Consensus allocation for r′. Therefore, as defined,

NowWait is not myopically value-monotonic. By value output ironing, i will only be selected

by NowWait when his value is at least

vNW(i) := infr{ ∀ r′ ≥ r, i ⊏ C({brkPtj(i)}σj∈Σ , ri := r′)}

This potential lack of monotonicity is only for a bounded range of values: if i ⊏

Optj(S,A)∀ j and ri ≥ maxj,j′ cj′(σ
j) on any scenario j then i ⊏ C for any ρ. That is,

vNW(i) ≤ maxj,j′ cj′(σ
j). Furthermore,

Proposition 16. NowWait is myopically value-monotonic for an agent i whose ri ≥ vNW(i).
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As Section 3.5 shows, NowWait’s ironing cancellations are limited. I attribute this

success to myopic monotonicity:

Proposition 17. NowWait is myopically arrival-monotonic if the patience distribution is

regular.

Proof. Consider the effect of i reporting arrival ai − 1 instead, such that πt(ai − 1) =

πt(ai)∀ t ≤ t∗i − 1.

I claim that the vote on a scenario σj at t∗i can only change to an action including

i. Whether i is in Optj is independent of i’s arrival. If the vote changes then rj
c(i) must

have changed. Let ρ (respectively ρ+) denote P[∆ > t − a|∆ ≥ t − a] when a is ai − 1,

respectively ai. Since the patience distribution is regular, ρ ≤ ρ+. By Proposition 15,

τρ ≤ τρ+ . Therefore the actions must be α+
S
\ {i} for arrival ai and α+

S
∪ {i} for ai − 1, for

some action α+
S
.

Let vNW+ (i), respectively vNW(i) be the vNW thresholds for ai respectively ai − 1. I

claim vNW+ (i) ≥ vNW(i). Suppose that the contrary was true; let r ∈ (vNW+ (i), vNW(i)): if i had

value r, the Consensus decision would include i for ai − 1, but not for ai. As the only vote

counts that can increase are for decisions that allocate i, i must also be in the Consensus

decision for ai − 1, contradicting r < vNW(i).

Surprisingly, I observed more ironing experimentally with respect to reward rather

than quantity. The following Proposition establishes a partial monotonicity with respect to

quantity of NowWait. It suggests a reason for the relative scarcity of ironing with respect

to quantity observed.

Proposition 18. Fix quantities q
i
< qi and a scenario j such that i is selected by

C⊕NowWait (i.e. ri ≥ τ∗ρ ) for qi. Let αj be the allocation to active agents in the offline

optimal solution when i reports the lower quantity q
i
. Clearly αj allocates i.
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Suppose that one of the following conditions is satisfied

A. all other bidders have unit demand

B. αj allocates the same number of items as αj

C. αj
− allocates the same number of items as αj

−

Then cj′ ≥ cj′ , ∀σj′ ∈ Σ and i is also selected by C ⊕ NowWait for q
i
(i.e. ri ≥ τ∗ρ).

Proof. I will focus on proving that opportunity costs cannot increase when i reduces his

quantity. The fact that i is still selected by C⊕NowWait follows after recalling that i being

selected amounts to ri|Σ| ≥ (1 − ρ)
∑

j′∈Σ cj′ + ρ
∑

j′∈Σ max(ri, cj′) and that cj′ is defined

as V (St− #αj , ∅, σj′) − V (St− #αj
−, ∅, σj′).

A. Suppose that all others have unit demand.

I claim that if some active bidder i′ (other than i) is allocated by αj then i′ is also

allocated by αj . Indeed, Opt(St, At, σj) contains i and the highest St − q other active

and sampled bidders, where q can be qi or q
i
. Thus #αj

− ≤ #αj
−.

I now claim that αj cannot allocate more items than αj . Suppose the contrary: let

i′ be the active bidder (apart from i) with the lowest bid among all active bidders

allocated by αj and iσ be the sampled bidder with the highest bid among all sampled

bidders that are not allocated by Opt(St, At, σj) when i reports q
i
. i′ must be preferred

to iσ (in particular if ri′ > riσ). As αj allocates more items than αj , but the supply

is the same, αj cannot allocate i′ and it must allocate iσ. i′ cannot be preferred to iσ

(in particular if ri′ < riσ), a contradiction. Thus #αj ≥ #αj .

B. #αj′

− ≤ #αj′

− since αj allocates the same number of items as αj (#αj′ = #αj′).

The proof for case C is similar and omitted.

Table 3.5 summarizes monotonicity properties of NowWait and the basic methods.
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OnlyDep IgnoDep HROrRew NowWait

Value myopic myopic myopic myopic∗

Departure ∅ oblivious oblivious oblivious

Arrival myopic myopic myopic myopic

Quantity none† none† none†
myopic‡ if

unit-demand
competitors

Table 3.5: Degrees of monotonicity of Select methods with respect to type components.
∗ if bidder’s value is higher than all his opportunity costs (by Proposition 16).
† violations of myopic monotonicity appear unlikely by Proposition 13.
‡ by Proposition 18

3.4.3 Correlation of value and patience

I now consider the consequence of allowing an agent’s patience to be correlated

with his value. For computational tractability, it will again be important to identify a

single threshold τ∗ at which the agent will pass the NowWait Select test. The estimated

probability ρ that an agent i will still be present in the next period becomes a function

ρ(ri), that depends on i’s value and therefore varies as i’s value is adjusted in performing

sensitivity analysis.

Theorem 10. If ri·(1−ρ(ri)) is non-decreasing in ri, then ∃ threshold τ∗with: nowt
i(α

j, ri)≥

waitt
i(α

j, ri) ⇐⇒ ri ≥ τ∗.

Proof. Assume c1≥. . .≥ c|Σ|. Let c0 =∞ and c|Σ|+1 =0.

Fix k in 0..|Σ| and let sk =
∑k

j′=1 cj′ . I show that φ(r) (that becomes

|Σ|r −∑|Σ|
j′=1 cj′ + ρsk − kρr) is non-decreasing in r on the interval (ck, ck+1). φ(·)’s global

monotonicity follows from its continuity. φ(·)’s monotonicity clearly holds for k = 0 since

s0 = 0. Let k ≥ 1, r′ > r and x = 1
k (φ(r′) − φ(r) − (r′ − r)(|Σ| − k)).

x = (r− sk

k )(ρ(r)−ρ(r′)) + (r′−r)(1−ρ(r′)) and

x = r′(1 − ρ(r′)) − r(1 − ρ(r)) + sk

k (ρ(r′) − ρ(r))
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If ρ(r)≥ ρ(r′) then x ≥ 0 from the first line. Otherwise, as r′(1−ρ(r′)) − r(1−ρ(r)) ≥ 0,

one gets x ≥ 0 from the second line. In either case, x ≥ 0 implying φ(r′)−φ(r) ≥ 0.

Negative or moderately positive correlation between value and patience is thus

sufficient for the existence and uniqueness of a threshold τ∗, such that nowt
i(α

j , τ∗) =

waitt
i(α

j , τ∗), with nowt
i(α

j , r′i) ≥ waitt
i(α

j , r′i) if and only if r′i > τ∗.7 For ri(1 − ρ(ri))

to be non-decreasing, it is sufficient for example that: (i) ρ(ri) is independent of ri, (ii)

ρ(ri) is non-increasing with ri, or (iii) ρ(ri) is not increasing too quickly with ri, such that

∂ρ(ri)/∂ri ≤ 1−ρ(ri)
ri

for all ri.

As the smallest solution of φ(·) = 0 with weakly monotone φ (see Theorem 10’s

proof), τ∗ can be found via binary search in [ 1
|Σ|
∑
cj′ ,max cj′ ] (recall Proposition 15).

Assume for simplicity that c1 ≥ c2 ≥ · · · ≥ c|Σ| and let c0 = ∞ and c|Σ|+1 = 0. With

no correlation, the binary search can be sped up by finding cl such that rj
c(i) ∈ [cl+1, cl];

Eq. (3.11) becomes then a linear equation.

For the remainder of this subsection, denote possible patiences by {δ1 < . . . <

δn∆
}. The following Proposition provides a sufficient condition for ρ(ri) to be non-increasing

in ri (case (ii)).

Proposition 19. If patience and value are negatively correlated in the following sense:

∀ l = 1..n∆−1, the ratio

P[∆ = δl, R = ri]

P[∆ = δl+1, R = ri]
(3.12)

is non-decreasing in ri, ∀ l = 1..n∆ − 1 then ρ(r) ≥ ρ(r′), ∀ r < r′.

Proof. The fact that the agent’s ρ does not increase is equivalent to P[∆ > δl|∆ ≥ δl, r]

being non-increasing with r, for all 1 ≤ l ≤ n∆. Thus P[∆ > δ|∆ ≥ δ, r] = P[∆>δ,R=r]
P[∆≥δ,R=r] .

7In a unit-demand domain, Pai and Vohra [68] also require negative correlation of value and patience, in
the form of a decreasing hazard rate condition in one parameter out of value, arrival and departure when
the other two are fixed.
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Denoting pl(r) = P[∆ = δl, R = r]

P[∆ > δl|∆ ≥ δl, r] =

∑n
h=l+1 ph(r)
∑n

h=l ph(r)
= 1 − pl(r)

∑n
h=l ph(r)

I assumed that for all l,
pl+1(r)
pl(r)

is non-increasing in r. This implies that so is ph(r)
pl(r)

for any

h ≥ l + 1 or still that so is
Pn

h=l+1 ph(r)

pl(r)
and therefore pl(r)

Pn
h=l ph(r)

is non-decreasing.

If patience and value are independent then the Eq. (3.12) ratio equals P[∆=δl]
P[∆=δl+1] ,

constant in r. Proposition 20 quantifies the negative correlation implied in general by the

Eq. (3.12) condition.

Proposition 20. If the domain of possible values R = [r, r] ⊆ R+ then the Eq. (3.12)

condition implies E[r|δl] ≥ E[r|δl+1].

Proof. E[r|δl]−E[r|δl+1] =
∫ r
r r(fl(r)− fl+1(r))dr where fh(r) denotes the density of value

given patience δh.

I prove fl(r) ≤ fl+1(r). Suppose the contrary and let 1 < c = fl(r)
fl+1(r) . That implies

fl(r)
fl+1(r) ≥ c∀ r ∈ [r, r] and

1 =
∫ r
r fl(r)dr ≥

∫ r
r cfl+1(r)dr ≥ c > 1

Similarly, fl(r) ≥ fl+1(r). By Eq. (3.12), for r0 = inf{r : fl(r)
fl+1(r) ≥ 1}

fl(r) ≤ fl+1(r) if r < r0 and fl(r) ≥ fl+1(r) if r > r0

Letting z(r) = fl(r) − fl+1(r),

∫ r
r rz(r)dr =

∫ r0

r rz(r)dr +
∫ r
r0
rz(r)dr

≥
∫ r0

r r0z(r)dr +
∫ r
r0
r0z(r)dr (3.13)

= r0
∫ r
r (fl(r) − fl+1(r))dr = r0 − r0 = 0

where Eq. (3.13) is implied by z(r) ≤ (≥)0 if r < (>)r0.
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3.4.4 Example: one item, two impatient bidders

I illustrate NowWait and IgnoDep, in a simple optimal stopping environment with

one item for sale, two periods and one impatient, unit-demand, bidder per period with value

i.i.d. sampled from distribution F . Method OnlyDep does not remove any agent from αj

on scenario σj (i.e. it is identical to IgnoDep) since agents are completely impatient.

Denote by v1
c the first bidder’s critical value. As the number of scenarios tends to

∞, OnlyDep’s v1
c is the median of F : half of the second period draws need to be higher for

the first bid to be rejected. In comparison, NowWait’s v1
c is the mean of F : ρ = 0, each cj′ is

drawn from F and τ∗ = 1
|Σ|
∑

j′ cj′ . Thus, NowWait appears better placed for average-case

performance. Section 3.5.1’s experimental data show the effects of different critical values

on allocative efficiency for two or more periods keeping the unit-supply constraint.

3.4.5 Likelihood of being selected if in offline optimum

i’s reward ri is greater than the opportunity cost cj on scenario j if i is in the

offline optimum on scenario j. Intuitively, one expects that, over all scenarios j′, ri will

often be greater than cj′ ’s, i.e. ri ≥ cj is unlikely to be an “accident”. In particular, if i is

likely to depart in the next period (has low ρ), then it becomes likely that i will be selected

by NowWait given that he is in the offline optimum on one scenario (recall Proposition 15).

I will quantify this intuition by abstracting ri and cj′ ’s. Suppose ri is a random

variable R with cdf F and pdf f = F ′ and cj′ is a random variable C with cdf G and pdf

g = G′, both F and G being defined on positive values. Given that ri is higher than a draw

from C, if |Σ|−1 more draws are taken from C (each denoted by C ′) then one expects that

ri will be greater than cj′ in (|Σ| − 1)P[R ≥ C ′|R ≥ C] draws. Note that this expectation
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is before taking any draws from R or C. Thus

P[R ≤ r|R ≥ C] =

∫ r
0 f(α)

∫ α
0 g(β)dβ

∫∞
0 f(α)

∫ α
0 g(β)dβ

and f [R = r|R ≥ C] =
f(r)

∫ r
0 g(β)dβ

∫∞
0 f(α)

∫ α
0 g(β)dβ

P[R ≥ C ′|R ≥ C] =

∫ ∞

0
f [R = r|R ≥ C]

∫ r

0
g(β)dβdr =

∫∞
0 f(r)G2(r)dr
∫∞
0 f(r)G(r)dr

Suppose there were one item for sale and one bidder in the current period and each of the

next k periods. Then G = F k: cj′ , the opportunity cost on scenario j′, is the highest order

statistic of k draws from F . Simple calculus shows that P[R ≥ C ′|R ≥ C] = k+1
2k+1 ≥ 1

2 .

That is, one expects a priori that if ri is in the offline optimum on scenario j then ri is

greater than cj′ on average in 1 + (|Σ| − 1) k+1
2k+1 scenarios, i.e. more than half of them.

3.5 Experimental evaluation

I analyze in turn the allocative efficiency, revenue and runtime of this ironing-based

approach to the design of dynamic, multi-unit auctions. Unless otherwise mentioned, the

C algorithm uses 50 scenarios (samples of possible futures) and a bidder’s quantity and

patience are uniform in 1..5 and his value distribution is Exp(0.1) times his quantity.

3.5.1 Allocative efficiency

Each of the 124 points in Figure 3.2 represents an average over at least 20 runs

of NowWait and IgnoDep’s relative efficiencies on a domain where a bidder’s value is his

quantity times an exponentially distributed variable. In such domains, I varied supply,

demand, the number of time periods, the exponential parameter λ or bidders’ maximum

quantity or patience. IgnoDep performs at least 9% worse in about a quarter of the domains,

5% worse on average and never better than 9% in comparison with NowWait.

I go on to study more closely an auction with 10 items, 5 time periods, and 2

bidders arriving in each period. The Select method HazRate is of course dominated by
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Figure 3.2: NowWait’s versus IgnoDep’s relative efficiency (offline optimum = 1) for 124
domains with exponentially distributed values with independence of value and patience.
The pink diamond, at (0.882, 0.849), represents the average of all 124 points.

the more general HROrRew, and only results for this second method are presented. The

parameters c and w for the HROrRew method were optimized offline, but no setting was

better than that for IgnoDep (i.e., allowing all allocated, active agents to remain in the

selected set of winning agents). Table 3.6 presents allocative efficiencies as an average over

200 trials, divided by the average offline efficiency, i.e. the value that would be achieved if

all bids were available in period 1.

Whereas ironing destroys the efficiency of OnlyDep (as expected, because all allo-

cations except those to maximally patient agents must be canceled), NowWait still yields an

efficiency of 0.895 after ironing. Note that the overall performance of NowWait with ironing

is 5% better than that of both IgnoDep and HROrRew. Standard deviations for Table 3.6

are around 0.15 for all entries but OnlyDep with ironing, for which it is around 0.3. For

all entries except OnlyDep with ironing, the 95% confidence intervals have a radius of 0.02,

confirming the statistical significance of my results. The Fixed method is less sophisticated

than the other methods. It optimally (offline) tunes a per-item price p and allocates any

bidder whose bid amounts to at least p per item. This method’s average allocative efficiency
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Ironing NowWait OnlyDep HROrRew IgnoDep Fixed Opt

No 0.915 0.952 0.860 0.860 0.815 1
Yes 0.895 0.526 0.852 0.852 0.815 1

Table 3.6: Allocative efficiency normalized to offline efficiency in a dynamic auction for 10
items when value is distributed Exp(0.1) and is thus not correlated with patience.

Ironing NowWait OnlyDep HROrRew IgnoDep Opt

No 0.944 0.941 0.881 0.881 1
Yes 0.918 0.245 0.874 0.874 1

Table 3.7: Allocative efficiency normalized to offline efficiency in a dynamic auction for 10
items when value is distributed Exp(0.1 · (di − ai)) and is thus correlated with patience.

is 0.815, which further highlights the extent of NowWait’s (efficiency 0.895) improvement

over IgnoDep (efficiency 0.852).

For comparison, NowWait’s and IgnoDep’s efficiencies are very similar if per-item

values are U(0,1) instead. This is again an effect of each policy’s approach: NowWait (re-

spectively IgnoDep) aims for good mean (respectively median) performance (see Sec. 3.4.4).

The mean and median are equal for the uniform, but not for the exponential distribution,

as used in Table 3.6.

Table 3.7 considers the effect of allowing for negative correlation between value

and patience, when the exponential distribution parameter is proportional to a bidder’s

patience. Before ironing, NowWait’s allocative efficiency is slightly better than OnlyDep’s,

that has the advantage of waiting until a bidder’s departure. Ironing is now even more

destructive on OnlyDep. This is because high-value bidders, the ones selected by the offline

knapsack problem, tend to have small patiences, and thus are often ironed.

For all methods except OnlyDep, cancellations were very infrequent. There were

no ironing cancellations if all bidders have unit-demand. This confirms the intuition that

even though possible, instances of ironing are rather rare and caused by combinatorial

peculiarities. For NowWait, more than half the cancellations were due to ironing in value
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rather than arrival or quantity.

One item, impatient bidders

I now consider the simple domain of a single unit of supply and one impatient

bidder per period. This domain, considered in Section 3.4.4 for two periods, is appealing

due to the availability of an optimal policy (Gilbert and Mosteller [38], henceforth GM), that

is monotonic and thus strategyproof, providing an optimal online benchmark.

As bidders are impatient, there is no need for monotonicity with respect to de-

parture. Thus, this is a setting in which the additional complexity of NowWait should not

be expected to be worthwhile over-and-above the simplicity of OnlyDep (identical here to

IgnoDep). Furthermore, unit-supply and impatience render all Select methods monotonic.

The optimal policy GM is defined by a sequence Rn of posted prices (where n bidders

are yet to arrive). The critical value Rn also represents the expected efficiency after the n-th

remaining bidder arrives. GM is monotonic and truthful for impatient agents because Rn is

independent of the reported value of an agent (and no temporal strategies are available for

impatient agents). For the Exp(λ) distribution, R0 = 0 (allocate last bidder if no earlier

winner) and Rn+1 = Rn + 1
λe

−λRn [38].

In Table 3.8 I compare the efficiency of NowWait and OnlyDep with GM and the

offline optimum. The results for NowWait and OnlyDep are averaged over 100,000 trials.

For small horizons (and hence small numbers of agents), the NowWait method actually

outperforms OnlyDep. But the simpler, OnlyDep method does better for larger horizons

and more agents. I explain this by noting that if n bidders are yet to arrive, NowWait

(respectively OnlyDep) sets as critical values the mean (respectively median) of the highest

order statistic of n iid Exp(0.1) variables.

In summary, it is encouraging to us that the sample-based stochastic optimization
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Horizon E[NowWait] E[OnlyDep] E[GM] E[Opt]

2 0.911 0.897 0.911 1
4 0.871 0.867 0.873 1
8 0.855 0.859 0.863 1
16 0.854 0.863 0.867 1
32 0.858 0.871 0.877 1

Table 3.8: Relative (offline optimum=1) allocative efficiency in a unit-supply domain with
impatient bidders. GM is the maximally-efficient, monotonic policy.
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Figure 3.3: Revenue normalized to offline efficiency in a dynamic auction for 30 items,
varying the number of time periods (and thus the level of competition). Examines the
effect of adopting virtual valuations.

methods can come within 97.8% of the value of the optimal online policy in this environment

(this is the relative performance of C with NowWait at a horizon of 32), while being flexible

and general enough to extend to multi-unit demand environments.

3.5.2 Boosting revenue

I also performed experiments with virtual valuations in place of agent valuations

in order to test the effectiveness of this approach to boosting revenue.

Figure 3.3 plots the revenue with and without virtual valuations. The revenue

metric is normalized with respect to the total value from the efficient offline allocation.

In this auction, there are 30 items available and vary the number of periods from 6 to
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Figure 3.4: Runtimes in a dynamic auction. The left-hand side, respectively center, exper-
iment shows relative runtime including, respectively excluding, ironing for an auction with
20 items and 10 time periods. The x-axis varies the number of scenarios. In the right-hand
side experiment, showing seconds of runtime per time period, the expected demand:supply
ratio is kept constant at 3 by adjusting them together with the number of time periods, as
shown on the x-axis.

25, with 2 bidders arriving per period. As the number of periods increases the competition

increases: the expected demand ranges from low-demand (36) to high-demand (150), i.e. the

demand:supply ratio trends from 1.2x to 5x. Virtual valuations have a significant positive

effect on revenue for low demand environments. For example, in the case of 6 periods (and

thus a low demand:supply ratio of 1.2x), adopting virtual valuations provides a boost of as

much as 169% for IgnoDep and 49% for NowWait. On the other hand, virtual valuations can

also be detrimental to revenue properties for high demand environments (a demand:supply

ratio of 4 or more). Thus, it would be important for a designer to understand the type of

environment before adopting virtual valuations. The revenue statistics of NowWait generally

dominate those of IgnoDep, both with and without ironing. OnlyDep’s revenue (not shown in

Figure 3.3) is always significantly below that of other methods due to extensive cancellations

by ironing.

3.5.3 Computational scalability

All experiments were run on a CentOS 8-node Pentium 4 at 3GHz cluster with

512 MB of RAM. Figure 3.4 summarizes the results, averaged over 50 trials, for a dynamic
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auction with 2 bidders arriving each period. In the set of experiments for the left-hand

side and the center plot in Figure 3.4, there are 20 items and 10 periods and I increase the

number of scenarios sampled within C. In the experiments for the right-hand side plot in

Figure 3.4, I increase the supply of items while holding the expected demand:supply ratio

constant at 3, by increasing the time horizon and thus the total expected demand as the

supply increases. In addition to looking at the scalability of the system, I am also interested

in the overhead that is imposed by the need to perform computational ironing.

All three plots show that NowWait’s computational overhead when compared to the

other Select methods is limited and reasonable. For example, as the number of scenarios

increases, NowWait’s overhead grows sub-linearly. This is despite NowWait’s theoretical

quadratic (as opposed to linear) dependence on the number of scenarios (for all j, j′ ∈ Σ,

the cj′ costs must be computed for each scenario (σj) by solving two offline optimization

problems). I believe that this is due in part to some NowWait-specific improvements that

I have made, for example caching the offline optimization results for the cj′ costs (see

Sec. 3.4.1). For most experimental settings considered, on average, C and ironing take

around 15 times more than C alone for all methods except OnlyDep, for which the overhead

is around 40x.8

The right hand side experiment in Figure 3.4 measures my methods’ absolute, per

period runtime (in seconds) of Consensus and ironing, as the relevant characteristics (num-

ber of time periods, supply and expected demand) of the domain are scaled proportionally.

It is quite encouraging, though perhaps surprising, that NowWait’s per-period runtime is

8OnlyDep’s higher overhead of ironing can be noticed in Figure 3.4: the ratio of the runtimes of OnlyDep
and IgnoDep is close to 1 without ironing, but about 2.5 with ironing. There exists (a slightly smaller)
difference in ratios even if a, d and q are kept constant in isIronedA,D,Q (see Algorithm 2). The reason for
this discrepancy is revealed by recalling that isIronedR (see Algorithm 3) computes breakpoints at all times
between a bidder’s arrival and time of allocation. OnlyDep allocates bidders at their departure, which is
significantly later on average than the other methods. Consequently, breakpoints for significantly more time
periods are computed in isIronedR for OnlyDep.
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decreasing for the longer horizons.

In closing the discussion on NowWait’s scalability, note that all NowWait’s theoret-

ical properties would still hold if any agent-independent opportunity costs, not necessarily

the set of cj′ used by nowt
i() and waitt

i(), were plugged into NowWait. More sophisticated,

agent-dependent, estimates may also render output-ironing feasible. Alternate estimates

would be particularly appealing if they led to even better scalability, while preserving the

quality of optimization.

Summary

I presented the first application of stochastic optimization to dynamic, incentive-

compatible multi-unit auctions with patient bidders that demand multiple units of an item.

Method NowWait is used to modify the Consensus algorithm [84] and evaluate opportunity

costs when deciding whether to retain a vote to allocate to a particular agent given a

particular scenario. Self correction by output ironing yields truthfulness, and one can aim

for either good efficiency or revenue. The results show excellent efficiency and scalability,

with a sub-linear computational overhead of NowWait with respect to Consensus, and also

demonstrate the effect of revenue boosting via the use of virtual valuations.
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Algorithm 3 isIronedR(θi, t
∗
i (θi), (S

t, At)ai≤t≤t∗i
, Σ): verification of value-monotonicity

for an agent i with type θi allocated in period t∗i . The set of breakpoints B =

{〈tβ , σjβ , rβ, α
<
s
(β), α>

s
(β)〉}β track the changes in scenario votes. As i’s value increases

past rβ, the vote on scenario σjβ at time tβ changes from α<
s
(β) to α>

s
(β). If changing only

the vote on scenario jβ causes the C decision to flip, then π must be simulated to allow

checking that i’s allocation time (stored by ti) for the higher (slightly above rβ) reward is

no later than for his lower (below rβ) reward. Finally, as the C decision changes at tβ,

breakpoints between periods tβ + 1 to ti (where tβ ≤ ti) must be updated. The counter-

factual sets {~S, ~A} = (St, At)ai≤t≤t∗i
are maintained, being initialized to the actual ones

determined by π for i’s reported value, which is lower than all rβ ’s.

B :=
⋃t∗i

t=ai
BrkPtsR(θi, t, ~S, ~A,Σ)|r≥ri

ti := t∗i
while B 6= ∅ do

Let β :=〈tβ, σjβ, rβ, α
<
s
, α>

s
〉 such that rβ ≤ rb ∀ b ∈ B.

if at tβ,C(votes(Σ 6=jβ ), α<
s
)6=C(votes(Σ 6=jβ ), α>

s
) then

// Simulate π until time min{ti, time i wins}
increase i’s value to slightly over rβ
t̆ := tβ

repeat
πt̆ := πt̆(At̆, S t̆)
update active agents: At̆+1 := θt̆+1 ∪At̆|d≥t̆+1 \ πt̆

update supply: S t̆+1 := S t̆ − #(πt̆)
t̆ := t̆+ 1

until i ⊏ πt̆−1 or t̆ > ti
if i has not won then

return true // i ironed

else
ti := t̆− 1 // allocation time for new value rβ
B:=

(
B|t≤tβ\{β}

)
∪⋃

t=tβ+1..ti

BrkPtsR(θi, t, ~S, ~A,Σ)|r≥rβ
end if

end if
end while
return false // i not ironed



Chapter 4

Cancellations for Impatient Buyers

Abstract.

Reservations, also known as advance-booking, are a standard selling practice. Sell-

ers with a varying inventory and audience (for example, in sponsored search) are interested

in automatic, simple yet powerful market mechanisms for the allocation of reservations.

I introduce a simple model for reservations, in which impatient private-value unit-demand

bidders arrive sequentially. The seller can cancel at any time an earlier reservation, resulting

in a utility loss to the reservation holder of a fraction of his value.

My main result is an online mechanism Mα(γ) with many desirable game-theoretic

and optimization properties. Winners have an incentive to be honest and bidding one’s

true value dominates any lower bid. Mα(γ)’s revenue is within a constant fraction of the a

posteriori revenue of the Vickrey-Clarke-Groves mechanism. Mα(γ)’s efficiency is within a

constant fraction of the a posteriori optimal solution. If efficiency also takes into account

the utility losses of bidders whose reservation was canceled, Mα(γ) can match an upper

bound on the competitive ratio of any deterministic online algorithm. Several extensions

are considered, including matroids and bidders with value for more than one item.

98
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4.1 Introduction

In a system for booking items at a specific time in the future, buyers are typically

interested in a reasonable guarantee in the present. For example, in the airline industry, a

ticket is very likely, but not guaranteed, to allow its owner to board the plane. In particular,

airlines often use overbooking since statistically a few passengers will miss their flight. In

the unlikely scenario that more passengers than seats arrive, the airline typically offers

compensation to passengers who will not board the plane (volunteers or randomly chosen).

My motivation arises from automatic systems enabling such reservations. In par-

ticular, my focus is on large systems that have to manage items in many different environ-

ments. One such example is sponsored search, where advertisers place advertisements (ads,

henceforth) in response to users’ web search queries, or at predetermined slots on publish-

ers’ web pages. These web pages differ wildly in their traffic, targeting and effectiveness

and the overall inventory levels are massive. Not all publishers can estimate their inventory

accurately: traffic to websites responds, among others, to time-dependent events. Most

web publishers are not able to estimate accurately a price for an ad slot, or provide sales

agents to negotiate terms and would like automatic methods to price ad slots. Thus, what

is desirable is a simple, effective, automatic, online1 market-based mechanism to enable

advance booking over such varied, massive inventory.

Inspired by these considerations, I investigate worst-case mechanisms for advance-

booking (reservations). My contribution is to propose a simple model, to design a suitable

mechanism and to analyze its properties. In more detail, my contributions are as follows.

Model. I propose the following simple model for advance booking. An auction starts at

time 1; the seller has a set of items for sale that will be available at time T . Bidder i may

1I use the word online as in online algorithm—i.e., the input arrives over time, and the algorithm makes
sequential decisions —I do not mean “on the Internet.”
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arrive at some time ai < T , having a value v(i) for exactly one item out of a subset of

items L(i). Upon his arrival, i places a bid w(i) (which results in L(i) becoming known to

the seller) and requests an immediate response. Bidder i is either accepted or rejected. If

accepted, the bidder faces a second strategic decision: whether to invest or not in the item.

If accepted (regardless of the investment decision), he may be removed (bumped) later by

the seller. If the bidder did not invest, being bumped or winning an item have no effect on

his utility. If however he invested and is bumped, he incurs a loss of an α fraction of his

value and may be compensated with a bump payment. At time T , each accepted bidder i

that has not been bumped obtains one item from L(i) (his items of interest). The model is

presented formally in Section 4.2.

This model lets the seller accept a reservation at time t for an item available at a

later time T , and lets the buyer get a reasonable guarantee. However, crucially, it lets the

seller cancel the reservation at a later time. Cancellation is necessary for the seller to take

advantage of a spike in demand and rising prices for an item and not be forced to sell the

item below the market because of an a priori contract. In addition, in a pragmatic sense,

cancellation is crucial: for example, a seller might overestimate her inventory for a later date

and accept reservations, but as time progresses, her inventory may be smaller, and the seller

will not be able to honor all the accepted reservations from the past. Finally, cancellations

are very much part of the business with advance bookings, both within advertising and

beyond such as in airline bookings. At the same time, it comes at a cost, which is the

bumped bidders’ utility loss. The seller benefits from the reduction in uncertainty, and

pays for this via bump payments.

Mechanism. I present an efficiently implementable mechanism Mα(γ) for determining who

is accepted, who is bumped and also the prices and bump payments. The parameter γ

represents how much higher a new bid has to be in order to bump an older bid. A bumped
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bidder will be paid an α fraction of his bid, making up for his utility loss.

Properties of My Mechanism. I show a number of important strategic as well as

efficiency- and revenue-related properties of Mα(γ). First, the strategic properties:

• Mα(γ) is individually rational and winners have an incentive to bid truthfully while

losers should bid at least their true value.

• I study speculators, that is, bidders who do not invest. Speculators are only interested

in earning the bump payments as opposed to winning items. I show several game

theoretic properties about the behavior of the speculators, including bounding their

overall profit.

Next, optimization properties:

• With respect to the bids received, the efficiency (value of assignment) of Mα(γ) is at

least a constant factor (depending on γ and α) of the offline optimum. Under mild

player rationality assumptions, I also show that my mechanism is competitive with

respect to the optimum offline efficiency on bidders’ true values.

• I prove similar bounds under the notion of effective efficiency which interprets social

welfare as the sum of the winners’ bids minus bumped bidders’ losses. For suitable

γ(α), Mα(γ) is optimal: its effective efficiency matches a numerically obtained upper

bound on the effective efficiency of any deterministic algorithm.

• Under a very slight rationality assumption, the revenue of Mα(γ) is at least a constant

factor (dependent on γ and α) of that of the VCG mechanism on all received bids.

To the best of my knowledge my results are the first about mechanisms with strong game-

theoretic properties for advance booking (more generally, online weighted bipartite match-

ing) with a costly cancellation feature. I make no assumptions on the arrival order of the
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bidders or on their values. All results extend to a more general setting where the items for

sale are elements of a matroid; I discuss this in Section 4.6.6.

There are specific examples of systems that implement advance booking with can-

cellations, not necessarily through an automatic mechanism. For example, this is common

in the airline industry, where tickets may be booked ahead of time, and customers may

be bumped later for a payment. In the airline case, the inventory is mostly fixed, sophis-

ticated models are used to calculate prices over time, and often negotiations are involved

in establishing the payment for bumping, just prior to boarding (time T ). In some cases,

bump payments may even be larger than the original bid (price) of the customer. Likewise,

in offline media such as TV or Radio, advance prices are negotiated by humans, and often

if the publisher does not respect the reservation due to inventory crunch, a payment is a

posteriori arranged including possibly a better ad slot in the future. These methods are not

immediately applicable to the auction-driven automatic setting that I consider.

From a technical point of view, one can view my model as an online weighted

bipartite matching problem (or more generally, an online maximum weighted independent

set problem in a matroid). On one side there are items known ahead of time. The other

side contains buyers whose bids (weighted nodes) arrive online. My goal is to find a “good”

weighted matching in the eventual graph. Each time a buyer appears, he must be retained

or discarded; retaining him may lead to discarding a previously retained bidder. My mecha-

nism builds on an one-pass matching algorithm [62] to determine a suitable bump payment

and prices.

I have initiated the study of mechanisms for advance reservations with cancella-

tions. A number of technical problems remain open, within my model as well as in its

extensions, which I describe later for future study.
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4.1.1 Related work

Several papers consider similar offline settings with no cancellations. Bikhchandani

et al. [12] present an ascending, efficient, truthful in equilibrium auction for selling elements

of a matroid to patient bidders. Cary et al. [16] show that a random sampling profit

extraction mechanism approximates a VCG-based target profit in an offline procurement

setting on a matroid.

Feige et al. [32] study an offline weighted bipartite matching problem where the

seller can partially satisfy a bidder’s request at the cost of paying a proportional penalty.

They show that approximating the optimal solution with respect to effective efficiency

(see Section 4.2) within any constant factor is NP-hard, but they provide a bi-criterion

approximation result for an adaptive greedy algorithm.

There has been extensive work in the field of revenue management for advance

sale of goods (with or without cancellations), but only under a probabilistic distribution

of bidders’ values or arrivals [83]. In particular, Gallien and Gupta [34] exhibit symmetric

Bayes-Nash equilibria in online auctions with buyout prices.

The results in this chapter are in contrast to the impossibility, when no cancel-

lations are allowed, of achieving a constant factor approximation with respect to the bids

received when there is no prior information on the number of bidders, even if a prior dis-

tribution on bidders’ values is known [45].

In a worst-case approach (like the one here), any nontrivial online result must make

additional assumptions; in my case, I overcome these impossibilities by allowing cancella-

tions. In contrast, in secretary problems, bids may be arbitrary but their order is assumed

to be uniformly random (cannot be specified by an adversary): Dimitrov and Plaxton [31]

provide an algorithm with a constant efficiency competitive ratio. Generalizing their setting

to matroids, Babaioff et al. [6] provide a log r-competitive algorithm where r is the rank of
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the matroid. Both these algorithms observe half of the input and then set a threshold price.

A different assumption is that of bounded values: Lavi and Nisan [55] show that a simple

online posted-price auction based on exponential scaling is optimal among online auctions

for identical goods without cancellations.

Cole et al. [22] study a model where the patience levels of items and bidders

are almost opposite to my model’s: items are instantaneous (one per period), but bidders

are partially patient, with arrivals and departures. They present an optimal constant-

competitive prompt mechanism for the case where bidders’ arrival-departure intervals are

known. In contrast, they obtain lower bounds on the competitive ratio of mechanisms if

both value and departure time are private information.

Lu et al. [61] study online worst-case revenue-optimal auctions with instantaneous

bidders. They provide an essentially optimal auction whose revenue is within a lnOpt ·

ln lnOpt · . . . · (ln(k) Opt)1+ε factor of the optimum Opt, for any positive integer k and any

ε > 0. Typical revenue-optimality results claim bounds with respect to weaker goals, such

as the second-price or the optimal revenue from selling at least two units.

In Hajiaghayi et al. [44]’s model, unit-demand bidders have arrivals and departures,

but their values come from a (possibly) unknown distribution. The authors present a

constant-competitive mechanism that is incentive-compatible with respect to both temporal

and value misreports.

Biyalogorsky and Gerstner [13] study contingent pricing for a seller offering for an

item over two time periods. There is an impatient buyer L in period 1 and possibly a buyer

H with higher value in period 2. Contingent pricing is the practice of offering a discount,

respectively a consolation reward, to the impatient buyer L if the higher-value buyer H

arrives, respectively does not arrive, in period 2. The structure of optimal contingent

pricing is dependent on L’s attitude towards risk (of not being allocated the item).
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Independently and concurrently, Babaioff et al. [8] study the same problem as

this chapter, but from an algorithmic perspective only, leaving incentives and revenue con-

siderations aside. The algorithms and efficiency results coincide. They focus on effective

efficiency, for which they analytically prove an upper bound on any deterministic algo-

rithm’s competitive ratio (I only present numerical results in Figure 4.1 strongly suggesting

this bound). Unlike us, they go on to study costly cancellations (“buyback”) in knapsack

problems. They provide an algorithm similar to Mα(γ) and prove a bi-criterion approxima-

tion result, an informative bound since they also prove that no deterministic algorithm has

a constant competitive ratio.

4.2 Auction model

I define an online reservation auction as follows. There is a seller who has a finite

set of non-identical items, which will be allocated at some future time T + 1. The seller

runs a continuous, online auction beginning at time 0, and ending at time T .

Each bidder i arrives online, at a unique time ai ∈ [0, T ] and he reports a choice

set L(i) of items he is interested in, as well as a bid (positive amount) w(i), demanding

an immediate response (i is not allowed to bid again later). He is instantly accepted (i.e.

promised an item from L(i)), or rejected. However, at any point between time ai and T ,

the seller may choose to bump an accepted bidder i, in which case a bump payment p̂i is

given to the bumped bidder. Any rejection, at arrival or by being bumped, is definitive. At

time T , there must be a matching of items to accepted bidders that have not been bumped

such that each such bidder i receives one item from his choice set L(i); each such i is then

charged a price pi.

A mechanism for the advance-booking problem defines the actions of the seller:
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whether to accept/reject incoming bidders, when to bump accepted bidders, and how to set

bump payments and prices.

4.2.1 Bidder model

I assume a private value model for the bidders contingent on a private investment

decision. If accepted, a bidder can privately choose whether to “invest” or not. i obtains

positive value from being allocated or incurs a utility loss (defined below) when bumped

only if he chose to invest.

Suppose that bidder i chooses to invest. He then has a private value v(i) ≥ 0

for being allocated (at time T + 1) any single item from his choice set L(i). The bidder

may not report this value as his bid. Additionally, the bidder’s cost for being bumped is

modeled as a negative value −αv(i), that is, an α fraction of his value for being allocated. I

will require2 that any mechanism pays back αw(i) to a bumped bidder i, making up for his

utility loss when bumped. The parameter 0 ≤ α < 1 modeling the negative bump utility

will play a central role in my mechanism and analysis. I formally model bidder i’s utility as

quasilinear in money:

utility(i, I) = ξ(I) · v(i) − x(i), where (4.1)

• ξ(I0) = 0 for any decision; ξ(I1) = 0 if i is rejected, ξ(I1) = 1 if i is accepted and

granted an item from L(i), and ξ(I1) = −α if i is bumped;

• x(i) is i’s money transfer to the seller: x(i) = 0 if i is rejected, x(i) = pi ≥ 0 if i is

accepted and allocated, and x(i) = −αw(i) ≤ 0 if i is bumped.

For a mechanism run on bids w, I will denote by S = S(w) the set of survivors

(bidders still accepted after time T ) and by R = R(w) the set of bumped bidders.

2I impose this constraint primarily to ensure that honest bidders have non-negative utility. See Example 8
for further motivation.
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4.2.2 Efficiency and revenue.

How to measure the quality of an outcome? The efficiency (or social welfare) of

an auction is the total value derived by the bidders participating in the auction. Usually in

a mechanism design setting, efficiency is the sum of the valuations of the bidders who were

allocated items:

efficiency =
∑

i∈S
v(i).

However there is another interpretation in my model since the bidders lose value if they are

accepted then bumped; thus I will also consider the notion of effective efficiency:

effective efficiency =
∑

i∈S
v(i) −

∑

i∈R
αv(i).

A mechanism’s revenue is its total monetary gain/loss:

revenue =
∑

i∈S
pi −

∑

i∈R
αw(i)

I would like a mechanism that scores favorably in all of these metrics on all in-

stances of the auction, under hopefully mild conditions on strategic behavior. Following the

logic of competitive analysis, I will compare my mechanism to the standard offline solution:

the VCG mechanism [52]. Mapped to my setting (but offline), this amounts to finding a

maximum matching of bidders to items, and charging prices that induce truthfulness.

Note that it is essential to the novelty of this model that the bidders derive negative

utility from having their allocation promise revoked. Indeed if α = 0, one could simply

accept all bidders as they arrive, and then after time T run the VCG mechanism (giving

no bump payments) which makes being truthful a dominant strategy.
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4.3 Main results

In this section I will state my main results (without proof) and highlight the

significance of each. In the next section, I will define my mechanism Mα(γ). The mechanism

is parametrized both by the model parameter α as well as an additional parameter γ > 0

that can be set arbitrarily as long as 0 < α < γ
1+γ . I will state my main results in terms of

these two parameters.

The algorithmic game-theoretic perspective requires reasoning about the strategic

behavior of bidders in order to motivate the results’ preconditions. One basic property that

any reasonable mechanism must have is that it is individually rational, which simply means

that participating in the auction is always a rational thing to do (i.e. participating is never

worse than not participating). A common relaxation of this definition, that I will use, is

the following: if a bidder bids his true value (sets wi = vi) and invests, then his utility is

always non-negative.

Another desirable property of an auction mechanism is for it to be truthful, which

means that the optimal strategy for participating bidders is always to report their true

value. In my model it is also desirable that any accepted bidder invests. Unfortunately

with bump payments (which I just argued were necessary) I cannot hope to have a truthful

mechanism since anyone with no interest in any allocation (i.e., vi = 0) can bid without

investing hoping to get a bump payment. So, given that I cannot assume bidders will be

honest, the natural thing to do is analyze the efficiency and revenue of the mechanism in

a Nash or other form of equilibrium. Unfortunately, a (pure-strategy) Nash equilibrium

does not always exist, as I will argue in Section 4.6.2. However I can still argue that my

mechanism has some strong incentive properties.

Recall the following standard game-theoretic terminology from Chapter 2: a bid
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dominates another bid if it is at least as good a strategy given any bids by other players; a

best-response is the best possible bid given a particular set of others’ bids.

Theorem 11. [Basic Incentive Properties] In Mα(γ),

1. A truthful, investing, bidder cannot run a loss (i.e. Mα(γ) is individually rational),

2. For a fixed investment decision, truthful bidding dominates any lower bid,

3. If truthful and investing, any survivor is best-responding, and

4. Bidding truthfully is a best-response unless a higher bump payment can be achieved

with a higher bid.

This theorem (proved in Section 4.6.1) establishes individual rationality, but more

importantly it rules out the possibility that the bids will be lower than the values. To the

best of my knowledge, this is a novel form of incentive compatibility: while it does not make

truthfulness a dominant strategy, it ensures that competition is no less than if every bidder

were truthful. Furthermore, it highlights truthfulness as a simple viable strategy from a

practical point of view, or for unsophisticated bidders. The only reason for not bidding

truthfully is the prospect of a higher bump payment.

I can now state the efficiency and revenue bounds for Mα(γ) assuming in partic-

ular that no bidder underbids, which one would expect by Theorem 11. The only other

assumption I make for my efficiency bounds is that the set of bidders does not jointly incur

a loss, which is quite mild an assumption. Indeed, truthful, investing, bidders never incur

a loss and if other bidders incur a loss and can collude then they would be better off not

participating at all.

For any vector w = (w(1), . . . , w(n)) of bids, I let Opt[w] denote the weight of

the optimal matching. Note that Opt[v] then gives the optimal efficiency and effective
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efficiency of an offline mechanism, achieved by VCG. On bids w I denote the VCG revenue

by REVvcg[w].

Theorem 12. [Efficiency] Let w be a set of bids such that all bidders bid at least their

true value and bidders’ total utility is non-negative. Then Mα(γ) has

efficiency ≥
1

1+γ − α
γ

( 2
1+γ − α

γ )(1 + γ)
· Opt[v] and

effective efficiency ≥
1

1+γ − α
γ

2 − α
· Opt[v].

Theorem 13. [Revenue] Let w be a set of bids such that all bidders bid at least their true

value. Then Mα(γ) has

revenue ≥ ( 1
1+γ − α

γ ) · REVvcg[w] ≥ ( 1
1+γ − α

γ ) · REVvcg[v]

Note that a limit on manipulation is needed for a lower bound on true efficiency:

if low value bidders bid really high, being allocated all the items and preventing the rightful

winners from being allocated, the true efficiency of the mechanism is very low. I further

discuss manipulations in Section 4.6.2, where I also give additional results on speculator

strategies.

Efficiency bounds that leave incentives aside (Theorem 14 and Corollary 3 in Sec-

tion 4.5) are tighter than the bounds in Theorem 12, and can be obtained more easily.

In Section 4.7.4 I give an upper bound on the effective efficiency (in terms of bids) of

any deterministic algorithm, for which my allocation algorithm is tight (only when α < 0.618

and for a certain γ that depends on α).

For example, suppose α = 1
4 . Then for γ = 1, the constants become: 1

6 -competitive

on efficiency, 1
7 -competitive on effective efficiency, and 1

4 -competitive on revenue. For γ spec-

ified in Section 4.7.4 (about 0.809), the mechanism is about 0.382-competitive on effective

efficiency.
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I defer the proofs of Theorems 12 and 13 to section 4.7. As a revenue benchmark,

I use the offline VCG mechanism that charges each bidder his externality on the other

bidders. Theorem 13’s proof uses Lemma 2 and the following facts: a winning bidder’s

VCG payment is a losing bid and the VCG revenue can only increase if some bids are

increased.

4.4 Mα(γ): an online mechanism

I present my advance-booking online mechanism Mα(γ) in this section. The al-

location algorithm follows the Find-Weighted-Matching algorithm in [62]3, that uses an

unconstrained improvement factor γ > 0. I require α < γ
1+γ i.e. γ ∈ ( α

1−α ,∞) (recall that

0 ≤ α < 1) for non-negative lower bounds in Theorems 12 and 13.

My mechanism Mα(γ) (given formally in Algorithm 4) maintains a set of accepted

bidders for which there exists a matching of bidders to items. For each new arriving bidder

i bidding w(i), Mα(γ) adds i to the current matching if it can do so without bumping a

currently accepted bidder. Otherwise, Mα(γ) looks for some bidder j in the accepted set

with w(j) < w(i)
1+γ such that replacing j by i maintains the existence of a matching. If such

a bidder exists, the mechanism accepts i and bumps j∗, the lowest weight such bidder, who

is paid the bump payment αw(j∗). After time T , when all bidders have been processed, the

accepted bidders become the survivors. Each survivor is allocated an item from his choice

set using an arbitrary matching and makes a payment that I define below.

Eq. (4.2) below establishes a survivor’s payment to the seller, and requires the

following definitions.

Definition 29. Let i be a bidder and fix the bids of all other bidders. Let wac(i) (i’s

3Unlike in [62], a bidder i’s value is the same for any item (vertices as opposed to edges are weighted).
My mechanism may then change the item i is currently assigned to at various stages in the algorithm.



Chapter 4: Cancellations for Impatient Buyers 112

Algorithm 4 Mα(γ): Allocation algorithm. A new bidder is accepted if he improves by at

least a γ factor over his lowest-bidding indirect competitor. A bumped bidder receives a

bump payment making up for his utility loss.

Let A0 := ∅.

for each arriving bidder i ≥ 1 bidding w(i) do

if Ai−1 ∪ {i} can be matched then

grant i a reservation: Ai := Ai−1 ∪ {i}.

else let j∗ be the lowest-bidding j ∈ Ai−1 such that Ai−1 ∪ {i} \ {j} can be matched

if w(i) < (1 + γ)w(j∗) then reject i: Ai := Ai−1.

else cancel j∗’s reservation and pay him αw(j∗)

grant i a reservation: Ai :=Ai−1 ∪{i}\{j∗}.

end for

Each bidder i in S = An (i.e. survivors) is allocated an item from L(i) and charged as in

Eq. (4.2).

acceptance weight) be the infimum of all bids that i can make such that i is accepted given

i’s arrival ai and i’s choice set Ni. Similarly, let wsv(i) ≥ wac(i) (i’s survival weight) be

the infimum of all bids that i can make such that i is accepted and survives until time T

(the end) given ai and Ni.

Note that wsv(i) always exists since it suffices to bid (1 + γ)maxj 6=iw(j). Also,

wac(i) and wsv(i) are independent of i’s actual bid, but may depend on the time i arrives

and on the other bidders’ bids or arrivals.

I will now introduce the prices charged by Mα(γ). If i is a survivor, i’s price pi is
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set as follows:

pi =







wsv(i)(1 − α) if wac(i) < wsv(i).

wsv(i) if wac(i) = wsv(i).

(4.2)

These prices are designed with Theorem 11’s conditions in mind, as will be clear in its proof.

I present now an example run of Mα(γ). wsv(i) at some time step is i’s survival

weight if Mα(γ) stopped then.

Example 6 (a particular instance of Mα(γ)). Suppose α < 0.5
0.5+1 and let γ = 0.5. Consider

two items Ia, Ib and bidders B1..4 (Bi arrives at time ti; T = t4): B1 bids 6 on L(1) =

{Ia, Ib}, B2 bids 4.4 on L(2) = {Ib}, B3 bids 10 on L(3) = {Ia} and B4 bids 7.5 on

L(4) = {Ib}. Mα(γ) accepts B1 at t1, accepts B2 at t2, accepts B3 and bumps B2 at t3 and

then rejects B4 at t4. Both wac(1) and wac(2) are 0; wac(3) = 1.5 · 4.4 = 6.6 (to bump B2)

and wac(4) = 1.5 · 6 = 9 (to bump B1); w
sv(1) = 7.5

1.5 = 5 (to prevent being bumped by B4),

wsv(2) = 6 (to prevent being bumped by B3 and B4), w
sv(3) = 6.6, and wsv(4) = wac(4) = 9.

B1 and B3 survive: B1 pays (1− α)wsv(1) since wac(1) < wsv(1) and B3 pays wsv(3) since

wac(3) = wsv(3).

4.5 Algorithmic properties

For my incentive-aware bounds from Section 4.3, Mα(γ) must find a good matching

given the declared bids w, regardless of those bidders’ true values. This is a pure online-

algorithms question (i.e., no game theory), which I treat in this section.

Recall that Opt[w] denotes the optimal offline matching on the bids w. For bids

w and a set of bidders B, I let w(B) =
∑

i∈B w(i) and wsv(B) =
∑

i∈B w
sv(i).

Theorem 14 shows a competitive ratio for efficiency (the difficult part of the proof

is deferred to Section 4.7.3):
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Theorem 14. Mechanism Mα(γ) is a 1
1+γ -approximation to the optimal offline matching:

w(S) ≥ 1
1+γ Opt[w].

Proof. My key technical lemma shows that if non-survivor bids are essentially given a late-

arriving penalty, then the optimal offline matching coincides with Mα(γ)’s solution:

Lemma 2. S = Opt[w̃] for w̃(i)=







wsv(i), if i ∈ S

w(i)
1+γ , if i /∈ S

I prove this Lemma in Section 4.7.3. To finish the theorem, let ŵ(i) =

max(wsv(i), w(i)
1+γ ) if i ∈ S, and w(i)

1+γ otherwise. I have w(S) ≥ ŵ(S) = Opt[ŵ] ≥

Opt[w]/(1 + γ): each inequality is implied by the fact that no bidder’s contribution de-

creases when going from the left to the right hand side. Lemma 2 yields the equality: when

going from w̃ to ŵ only bids already in the optimum (i.e. S) can increase.

The following bound assures us that not too much utility (of bumped bidders) is

sacrificed for high efficiency:

Theorem 15. Total bumped bidder weight w(R)≤wsv(S)
γ .

Proof. For an r ∈ R, let s∗(r) ∈ S be the survivor at the end of the sequence of bumps

that starts from r. For an s ∈ S, let Rs be the refunded bidders in s’s sequence of bumps:

Rs = {r ∈ R : s∗(r) = s}. As R is the disjoint union of Rs for all s ∈ S, the theorem follows

by showing:

For all s ∈ S, w(Rs) ≤ wsv(s)/γ. (4.3)

To show Eq. (4.3), fix s ∈ S, and, to simplify notation, assume that the elements in Rs are

1, 2, . . . , s−1, s: j+1 bumps j, ∀ 1 ≤ j < s. I now show that:
∑s−1

j=1w(j) ≤ wsv(s)/γ. As s

bumps s−1, ws−1 ≤ wsv(s)
1+γ . As j+1 bumps j, ∀ 1 ≤ j ≤ s−2, wj ≤ wj+1

1+γ . Thus by induction,

wj ≤ wsv(s)(1+γ)j−s, ∀ 1 ≤ j < s. I get
∑s−1

j=1 wj ≤ wsv(s)
∑s−1

j=1(1+γ)j−s ≤ wsv(s)/γ.
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Let the effective weight of a solution be the weight of the matching minus a penalty amount-

ing to the total utility loss by bumped bidders (αw(i) for each i ∈ R). Theorem 15 implies

w(S) − αw(R) ≥ w(S)(1 − α/γ), implying (by Theorem 14) the following lower bound on

effective weight:

Corollary 3. The Mα(γ) mechanism is a 1−α/γ
1+γ -approximation to the optimal offline match-

ing in terms of effective weight: w(S) − αw(R) ≥ 1−α/γ
1+γ Opt[w].

Theorems 14 and 15 have analogs in [62]. My constants are tighter because in my

model, a bidder’s value for any item is the same, and all edges incident to a bidder arrive

simultaneously. My bounds for revenue, efficiency and effective efficiency are almost tight:

Example 7 (tight bounds). Consider k + 2 truthful bidders competing on one item; the

i-th bidder to arrive has value (1 + γ)i−1 unless i = k + 2, whose value is (1 + γ)k+1 − ε.

Bidder i+ 1 bumps i, ∀ 1 ≤ i ≤ k. Only the k+ 1-st bidder survives. Bumped bidders’ total

weight is
∑k−1

i=0 (1 + γ)i = ((1 + γ)k − 1)/γ. Opt = (1 + γ)k+1 − ε.

I also present an empirical4 upper bound on how well any deterministic algorithm can

approximate the effective weight:

Proposition 21. Fix n (the number of bidders). No deterministic online algorithm can

approximate the optimal offline matching in terms of effective weight with a factor better

than cn, where cn is the lowest number (if any) in [0, 1] for which Eqs. (4.12) and (4.13)

simultaneously hold (see Section 4.7.4). Based on computing cn numerically, I conjecture

that cn approaches 2α+ 1 − 2α0.5(α+ 1)0.5 as n→ ∞.

For α <
√

5−1
2 ≃ 0.618 and the best γ given α, the approximation ratio in Corol-

lary 3 for Mα(γ) matches this upper bound (see Section 4.7.4 for further discussion).

Thus, despite Mα(γ)’s simplicity,

4Babaioff et al. [7] offer an insightful technical proof.
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Theorem 16. Mα(γ) is optimal among deterministic algorithms with respect to the compet-

itive ratio of effective weight.

In an extension [8] of [7], the same authors show that there exist randomized

algorithms that achieve a competitive ratio of 1 + α − 20.5α0.5(1 + α)0.5 which is more

than 2α + 1 − 2α0.5(α + 1)0.5 for α < 0.5, thus improving upon the optimal deterministic

competitive ratio for such α.

The following Lemma is used in proving Mα(γ)’s constant competitiveness for (ef-

fective) efficiency.

Lemma 3. v(ST ) + wsv(ST ) =
∑

s∈ST

v(s) +
∑

s∈ST

wsv(s) ≥ Opt[v]

1 + γ

Proof. Let w′(x) :=







max(v(x), wsv(x)), if x ∈ ST

w(x), if x /∈ ST

. Clearly, w(x) ≥ w′(x), ∀x and

v(s) + wsv(s) ≥ w′(s)∀ s ∈ ST .

ST (w) = ST (w′) since only survivors in ST (w) change their bid, still bidding

above their survival thresholds.
∑

s∈ST w′(s) ≥ Opt[w′]/(1 + γ). The claim follows by

noting that Opt[w′] ≥ Opt[v] since w′(x) = w(x) ≥ v(x), ∀x /∈ ST .

Computational requirements. Each update step in Mα(γ) amounts to finding

an augmenting path with respect to the current matching, which can be done in O(|E|)

where E is the set of edges connecting each current and past bidder to each item in his

choice set.

4.6 Game-theoretic properties

I now focus on the game-theoretic properties induced by my mechanism. I first

offer some more intuition on survival and acceptance weights and then prove Theorem 11.
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Recall from Section 4.4 that i is rejected if w(i) < wac(i), bumped if wac(i) ≤

w(i) < wsv(i) and a survivor if wsv(i) ≤ w(i). If i bumps j∗, wac(i) = (1 + γ)w(j∗) but

wsv(i) can either be (1 + γ)w(j∗), w(k) for a (past or future) bumped bidder k or w(k)
1+γ for

a future rejected k. Thus, wac(i) can be computed when i arrives but wsv(i) may depend

on future bidders and can only be computed at T + 1.

Let us focus now on a survivor i’s (w(i) ≥ wsv(i)) payment in Eq. (4.2). The

common case is when wac(i) < wsv(i): i gets a discount amounting to the highest bump

payment he could have otherwise obtained: αwsv(i). The special case of wac(i) = wsv(i)

occurs when i’s acceptance is enough for his survival (in particular if i is the last bidder).

When wac(i) = wsv(i), from the bidder’s point of view, Mα(γ) posts a price of wsv(i).

Say that in Example 6 a bidder B5 were to arrive after B4 bidding 10.5 on Ia.

Only wsv(3) would change to 10.5
1.5 = 7 and B3’s price would now be (1 − α) · 7 which may

be lower than 6.6. Unless a bidder i’s wsv(i) price coefficient goes from 1 to 1 − α (like in

Example 6 for B3 if B5 arrives), i’s price cannot go down if new bidders arrive.

4.6.1 Proof of Theorem 11.

If bidder i invests and bids his true value v(i), then his utility is: v(i) − pi ≥

v(i) − wsv(i) ≥ 0 if he survives, 0 if he is rejected, or αv(i) − αv(i) = 0 if he is bumped.

This establishes (1).

Clearly, investing is preferred if and only if winning. If wac(i) < wsv(i), bidder i’s

highest possible bump payment is αwsv(i). The price of (1−α)wsv(i) has been chosen such

that i prefers winning to being paid αwsv(i) if and only if v(i) ≥ wsv(i). That is, i’s best

response is to bid just below wsv(i) if v(i) < wsv(i) and to bid his true value otherwise.

This establishes (2), (3) and (4) for this case.

If wac(i) = wsv(i), then i can never get a bump payment and i simply faces a
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take-it-or-leave-it offer of wsv(i). Bidding truthfully is a best response in this case, and (2),

(3) and (4) follow.

Theorem 11 establishes a separation property: for fixed bids by others, a bid-

der’s best-response results in the same allocation for him as when truthful. Since this last

statement is conditioned on others’ bids, it is possible that the allocation at a pure Nash

equilibrium (when each bidder is best-responding to others’ bids) is different than the one

resulting if all bidders were truthful.

Let us note a weakness of Mα(γ)’s best-response structure. Consider a bidder i

that would not survive when truthful (vi < wsv(i)) but for whom being bumped is possible

(wac(i) < wsv(i)). i can benefit by overbidding just below wsv(i) instead of being truthful.

4.6.2 Speculators

In Mα(γ), any participant that is bumped and did not invest obtains the bump

payment for free. This motivates the following definition:

Definition 30. [Speculators] A speculator is a bidder who does not invest. The auctioneer

does not know if a bidder is a speculator or not.

Speculators are thus bidders who only aim to get bump payments. Note that an

investing bidder may also overbid for a higher bump payment if bumped (recall that, by

Theorem 11, dishonest bidding cannot help a survivor), while having value for an item.

In this section I will focus on speculators’ strategic behavior. At times, I may

allow speculators more manipulations, such as colluding with each other or lying about

their choice sets L(i) or arrival times.

Prop. 22 bounds overbidders’ (and thus speculators’) total monetary profit:

Proposition 22. Overbidders’ profit is at most αOpt/γ.
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Proof. Denote overbidders’ profit by Π ≤ −(1 − α)wsv(S ∩H) + αw(R). By Theorem 15,

w(R) ≤ (wsv(S ∩H) +w(S ∩H))/γ. I get Π ≤ −(1−α− α
γ )wsv(S ∩H) + α

γw(S ∩H). The

claim follows since (1 − α− α
γ )wsv(S ∩H) ≥ 0 and w(S ∩H) ≤ Opt.

At first glance, it would seem that speculators’ best strategy is to induce an assign-

ment of actual bidders of weight as high as possible in the survivor set, since then overall

bump payments would be maximized. This is true in some cases but not always, and indeed

colluding speculators may even want some of them to survive:

Theorem 17. Under the Mα(γ) mechanism,

1. there exist input instances such that optimal speculator bidding induces optimal effi-

ciency, and truthful bidding is a Nash equilibrium for all non-speculators;

2. there exist input instances where optimal speculator bidding induces sub-optimal effi-

ciency,

3. there exist input instances where there is no pure-strategy Nash equilibrium,

4. there exist input instances where speculators achieve higher profit if they “sacrifice”,

i.e. some of them intentionally survive so that others obtain high refunds.

Definition 31 will render the proof of Theorem 17 more concise. A speculator who

is bumped with a bid of x could have obtained more bump payment by entering an earlier

bid of at most x/(1 + γ); likewise, he could have obtained yet more by bidding earlier

x/(1 + γ)2; and so on:

Definition 31. Let x > 0. I say that the speculator σ is an x-geometric speculator with

choice set N if σ places bids as follows on choice set N . Let ε be the minimum strictly

positive bid that can be made and

l = 1 +

⌊
log(x/ε)

log(1 + γ)

⌋

i.e. l is integer &
x

(1 + γ)l
≥ ε >

x

(1 + γ)l+1
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Then σ places l + 1 consecutive bids (each under a different identity) of

x
(1+γ)l ,

x
(1+γ)l−1 , . . . ,

x
(1+γ) , x on N .

Proof. 1. Consider two items and two speculators arriving before two bidders with values

1 and C > 1 + γ. Assume that speculators cannot collude. I now show via a case

analysis that there is no pure strategy Nash Equilibrium for speculators. Suppose

that at a pure Nash equilibrium the two speculators bid l < h. If one of them is not

refunded, then that is h and he can get a refund by underbidding l (unless l = 0, in

which case l can bid between 0 and h and be refunded more). So both of them must

be refunded. If h bids strictly less than 1− ε he can increase his bid to 1− ε and still

be refunded. Since both bidders are refunded, l must bid at most 1/(1 + γ). But he

can do better by increasing his bid until right below 1− ε since he will be bumped by

the C bidder (in particular he will prevent the actual 1 bidder from being accepted).

But in this case h is no longer best-responding: he is not refunded anymore.

2. Fix a set of actual bids such that Opt[v] bids arrive in increasing order. Suppose

that speculators collude and want to maximize their joint revenue. Then optimal

speculator bidding implies that:

• no speculator survives, no investing bidder is bumped; all Opt bidders and only

them are accepted.

• speculators can achieve the highest payoff possible as given by Prop. 22.

• truthful bidding is a Nash equilibrium for all investing bidders.

Optimal speculator bidding in this case is as follows. For each bidder i ∈ Opt there

will be one w(i)/(1 + γ)-geometric speculator σi with the same choice set.

This result has an appealing interpretation. If very well informed, speculators can
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overcome the efficiency loss due to late bidders not being able to improve by a 1 + γ

factor over their earlier competitors.

In general however, speculators may prefer to induce a suboptimal perfect matching:

3. Consider two items i1, i2 and three bidders b1, b2, b3 arriving in this order, each with

choice set {i1, i2}. Note that any two bidders, but not all three, can be matched.

Assume that w(b1) < w(b3) < (1 + γ)w(b1) and w(b2) > 2w(b3). The following

analysis shows that speculators prefer the suboptimal set of actual bidders b1 and b2

to the optimal one with b2 and b3.

• If both b2 and b3 survive, then speculators’ profit is at most 2w(b3)/γ: the

speculator bumped by b2 must have a lower weight than the one bumped by b3,

which is at most w(b3)/(1 + γ). Even if speculators are geometric, speculator

profit can only go as high as 2w(b3)/γ.

• If however b1 and b2 are alive when b3 arrives, b3 cannot bump b1. By simply

having one geometric w(b2)/(1+γ)-speculator which is bumped by b2, speculator

profit is w(b2)/γ > 2w(b3)/γ.

4. Consider set I with k items, k − 1 bidders bidding C > 1 all arriving before a bidder

bidding 1; all k have choice set I. If speculators coordinate and participate with k

identities as C/(1 + γ)-geometric speculators on all the items then total speculator

payoff is (k − 1)αC/γ − (1 − α)C/γ = (kα− 1)C/γ, since k − 1 will be bumped, but

one will survive. If no speculator survives, the most money speculators can make is

k/γ, by participating as k 1/(1 + γ)-geometric speculators. For any α > 1/k, for a

large enough C, speculators’ profit is higher when one of them is sacrificed.
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I may conclude from this theorem that it is unreasonable to expect stronger in-

centive properties than Theorem 11, such as truthfulness or a Nash Equilibrium. However,

despite all the game-theoretic complexity that can arise from speculators, their effect on

efficiency and revenue can still be bounded: implicitly via the results in Section 4.3 or

explicitly in Prop. 22.

4.6.3 Relation to other game-theoretic concepts

I now position the mechanism’s incentive properties with respect to several estab-

lished game-theoretic concepts.

Algorithmic implementation in undominated strategies

In a game, an outcome is implemented by an equilibrium concept if the outcome

is realized whenever players play strategies at such an equilibrium. Algorithmic implemen-

tation in undominated strategies has as desired outcome c-approximating an optimization

problem if no dominated strategy is played.

Definition 32 (Babaioff et al. [9]). A mechanism M is an algorithmic implementation in

undominated strategies (AIUS) of a c-approximation algorithm if there exists a set D of

dominating strategies such that

• M obtains a c-approximation whenever all players play strategies from D

• for any strategy s 6∈ D, there exists s′ ∈ D (computable in polynomial time from s)

that dominates s.

The following result effectively restates the Theorems in Section 4.3. It establishes

the conditions under which Mα(γ) is an algorithmic implementation.

Theorem 18. Let D be the set of strategies representing truthful bids and overbids.
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• Fix a c <
1−α−α

γ

1+γ . Then Mα(γ) is an AIUS with respect to the VCG revenue.

• Assume a c less than the appropriate constantin Theorem 12 and its total non-negative

utility assumption. Then Mα(γ) satisfies Def. 32 for (effective) efficiency.

Being truthful is an equilibrium in undominated strategies of Mα(γ) and I argue

that it is a focal point (Schelling [82]), being highlighted by Theorem 11.

For the remainder of this section I will analyze the structure of best-responses,

assuming that bidders’ values and order of arrival are fixed and public knowledge.

CURB sets

For any player, a joint strategy in a CURB set [10] by the other players also has

all best-responses to it in the CURB set.

Definition 33 (CURB set). Consider a game with n players. A set of pure strategies

Σ1 × · · · × Σn is closed under rationalizable behavior (CURB set) if, for all i, Σi contains

all best responses to any σ−i ∈ Σ−i.

A minimal CURB set is a CURB set such that none of its proper subsets is a

CURB set.

Basu and Weibull [10] prove that any game with compact strategy sets and con-

tinuous payoff functions has at least one minimal CURB set C and C contains the support

of at least one mixed Nash equilibrium. Additionally, the minimal CURB set is the least

set-theoretic generalization of Nash equilibrium.

The following Proposition establishes the richness of any CURB set in a simple

case of my algorithm with two players. It exhibits a minimal CURB set (which contains

a pure strategy Nash equilibrium) even though the strategy sets are not compact (since a

player can bid any positive number).
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Proposition 23. Suppose there is only one item and only two bidders, B1 and B2. Also

suppose that (1 + γ)v1 < v2 and that bidders’ values are public knowledge. Then any pure

Nash equilibrium is parametrized by a w2 ∈ [(1 + γ)v1, v2], with B1 bidding w2

1+γ , B2 bidding

w2 where only B2 invests. Furthermore, any such pair of strategies is a Nash equilibrium.

The collection of CURB sets is the collection of Cartesian products of sets W1 with

the whole strategy space for B2 (〈[0,∞), I0,1〉) where W1 contains 〈[0,∞), I1〉∪〈[v1,∞), I0〉.

Proof. I will often refer to Theorem 11.

Note that B2 cannot obtain any refund. So B2’s investment decision is uniquely

determined by him being accepted. Therefore bidding truthfully (and investing) is always

one of his best-responses.

At any pure Nash equilibrium, B2 must win (and invest). Otherwise, B1 would

have bid at least v2

1+γ and paid at least 1 − α of that, which is worse than being refunded.

Given that B2 wins, B1’s best-response is to get the highest possible bump payment, which

implies that B2 pays his own bid. Winning is then a best-response for B2 if and only if he

affords the item: w2 ≤ v2. Were w2 less than (1 + γ)v1, B1 would prefer to win and invest,

since then B1’s utility would be at least αv1.

B2’s set of best responses W ′
2 to B1 bidding v2

1+γ is 〈[v2,∞), I1〉. Consider some

〈w′
2, I1〉 ∈ W ′

2 with w′
2 > v2. B1’s best response w′′

1 to w′
2 is 〈 w′

2

1+γ , I0〉. B2’s set of best

responses W ′′
2 to w′′

1 is bidding at most (1 + γ)w′′
1 = w′

2 and being bumped: 〈[0, (1 +

γ)w′
2), I0,1〉: the item becomes too expensive for B2. Since w′

2 can be arbitrarily large, the

union of the sets W ′′
2 (one for each w′

2) spans B2’s entire strategy space. If B2 bids 0, any

positive bid by B1 coupled with investment is a best-response.

The only strategies that have not been noted as a best-response for B1 so far are

〈[0, v2

1+γ ), I0〉. Consider now x2 ∈ ((1 + γ)v1, v2), which is a possible best-response by B2.

B1’s best-response to x2 is 〈 x2

1+γ , I0〉.
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Let x1 < v1. I claim that 〈x1, I0〉 cannot be a best-response. This is clear if B2

bids higher than (1 + γ)x1. If B2 bids lower than that, then x1 strictly prefers investing to

not investing and being bumped.

If (1+γ)v1 > v2 then the CURB sets are the same. The set of pure Nash equilibria,

however, is the set of bids w1 and w2 = (1 + γ)w1 − ε, where w1 ∈ [ v2

1+γ , v1] and only B1

invests. Whether (1 + γ)v1 is higher than v2 or not, the set of Nash equilibria has the

truthful winner winning by bidding some w that is at most his value. Furthermore, if w

was winner’s true value, he would still win.

Interestingly, any CURB set also includes dominated (lower than true value) bids

for B2. Such bids are only weakly dominated and can thus be best-responses (even if B1

bids truthfully). The existence of a continuum of best-responses when surviving or not

being accepted is also the reason for the richness of the CURB sets.

Set-Nash equilibrium

Lavi and Nisan [56] introduce the following set-theoretic generalization of a Nash

equilibrium.

Definition 34 (Set-Nash equilibrium). In a game with n players, a collection of n sets of

strategies Σ1, . . . , Σn is a Set-Nash equilibrium if for each i = 1..n, for each σ−i ∈ Σ−i,

there exists a strategy σi ∈ Σi that is a best-response to σ−i.

Note that the collection where each Σi is i’s entire strategy space is trivially a Set-

Nash equilibrium. At the other end of the spectrum, if Σi = {σi} for all i then (σ1, . . . , σn)

is a Nash equilibrium. Thus the Set-Nash equilibrium concept is more powerful for “small”

Σ sets.

For Mα(γ), in the example of Proposition 23, if 〈w2, I0,1〉 ∈ Σ2 with w2 ≥ (1+ γ)v1
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then 〈 w2

1+γ , I0〉 ∈ Σ1: B1’s best-response to a “high” bid by B2 is to obtain a bump payment

as high as possible.

4.6.4 Other game-theoretic considerations

I now ask a couple of “what if?” questions, whose answers further help motivate

my model choices.

For stronger incentive properties, a standard modification to Mα(γ) is to pay a

bumped bidder i αwsv(i) (a bid-independent amount) instead of αw(i). Example 8 shows

why this may result in a deficit:

Example 8 (Alternate bump payments). Consider two bidders on one item: B1 arrives

first, bidding 1, followed by B2 bidding L > (1 + γ)2/α. Bidder B2 survives and pays 1 + γ.

If B1’s bump payment were αwsv(e) = αL/(1 + γ) then the choice of L ensures that B1 is

paid more than B2 pays, i.e. the mechanism runs a deficit.

Relation to outcome graph. Consider one item, a bidder i and bids by others w−i such

that wac(i) < wsv(i). Let a = wac(i) and s = wsv(i).

Denote i’s outcome φ(wi) in Mα(γ), dependent on his bid wi, as follows: φ(wi) = D

if i is rejected (wi < a), φ(wi) = R if i is accepted and bumped (a ≤ wi < s) and φ(wi) = S

if i is a survivor (s ≤ wi).

Consider the following simplified version of Mα(γ). Assume that, when bumped,

i does not invest, not incurring any penalty at all (regardless of his bid). Despite this, i

receives a bump payment of αs (as opposed to α times his bid as in Mα(γ)). Assume that i

invests whenever winning.
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For outcomes X and Y , recall from Section 2.2 δXY = inf
wi:φ(wi)=X

{wi(X)−wi(Y )}:

δDR = 0 δRD = 0

δDS = −a δSD = s

δRS = −s δSR = s

Note that φ satisfies WMON, and cycle DSD actually has positive weight s− a.

Since the domain of bids is convex (the real line for each bidder), it is no surprise (recall

Theorem 6 from Chapter 2) that both cycles with three outcomes have non-negative weight

as well.

Payments in this simplified version of Mα(γ) are pi(D) = 0, pi(R) = −αs and

pi(S) = (1 − α)s. They cannot be written as pi(X) = δ∗XX0
for a fixed outcome X0 and

any outcome X, which is a “universal” payment function for a truthful function (recall

Eq. (2.8)).

Out of the pi(X) − pi(Y ) ≤ δXY , ∀X,Y ∈ {D,R, S} inequalities needed for

truthfulness, pi(S) − pi(D) < δSD , pi(S) − pi(R) = δSR , pi(R) − pi(S) = δRS and pi(R) −

pi(D) < δRD . These four inequalities are a different formulation of best-responses in Mα(γ):

truthful bidding (and investing) for a survivor and obtaining the highest refund (amounting

to an αs bump payment) without investing for a rejected or bumped bidder.

I assumed throughout that as soon as a bidder arrives, his choice set is known. If

however that is private information as well, incentives become weaker: in Example 9, no

bid by B∗ on his true choice set {i1, i2} is a best-response if bidding on different item(s)

instead is allowed. This example also suggests why a naive generalization of Mα(γ) to the

setting where bidders have a different value for each of several items would not be able to

incentivize bidders to bid at least their true value for each item.
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Example 9 (Private choice sets). Consider two items i1, i2 and the following three

bidders, arriving in this order: B−3/2with value (1+γ)−3/2, B∗ with value x < α(1+γ)−3/2

and B1 with value 1, all with choice set {i1, i2}. Assume B−3/2and B1 bid truthfully. I will

show that, whenever B∗ bids on {i1, i2}, he can do strictly better by bidding on i1 only.

I claim that if B∗ bids on {i1, i2} then his utility is at most α(1 + γ)−3/2. This is

clear if he survives. If he is bumped by B1, then his bid cannot be higher than (1 + γ)−3/2

(B−3/2’s bid), since B1 can replace any of B−3/2 and B∗. But then B∗’s bump payment is

at most α(1+γ)−3/2. Let 0 < ε < 1/2. By bidding (1+γ)−1−ε on i1 only and being bumped

by B1, B∗ can get utility α(1 + γ)−1−ε > α(1 + γ)−3/2.

I have however the following conjecture: if a bidder prefers surviving to being

refunded, he is better off bidding on his true choice set. Surviving yields the same value on

any item in the choice set and restricting the choice set should not decrease the bidder’s

payment.

One can show that, if bidders myopically and simultaneously best-respond (over

sequences of instances of Mα(γ)), they may reach bid vectors with a negative sum of utilities.

Given the instantaneous nature of bidders, temporal manipulations (such as

changes in the order of arrival or multiple bids) become less motivated. Note however

that in Mα(γ) a certain item’s price is almost never decreasing with a new bidder: see the

continuation of Example 6 at the start of Section 4.6. If bidders could delay, but not hurry

their arrival, only temporal manipulations that improve bump payments would be useful.

4.6.5 Tension of strategyproofness and competitiveness

Proposition 24 highlights the need for partial incentive compatibility constraints

(i.e. not dominant-strategy) when aiming for constant competitiveness.

Call the optimal stopping problem with preemptions and self-interest the problem of
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selecting the maximum entry in a sequence, supplied in an online fashion by selfish players,

when cancellations are allowed. This problem is this chapter’s setting for one item. Note

that, in the absence of game-theoretic considerations, this problem can be solved optimally

by selecting the current entry in the sequence if and only if it is higher than the previously

selected entry.

Proposition 24. For the optimal stopping problem with preemptions and self-interest, no

deterministic mechanism exists that is simultaneously

• dominant-strategy incentive-compatible

• constant-competitive with respect to efficiency

• individually-rational

Proof. Suppose for a contradiction that there was a deterministic incentive-compatible

individually-rational mechanism M with a (relative) competitive ratio of c ∈ (0, 1): ∃b ∈ R

such that

vM (Z) ≥ c · Opt(Z) + b for any input sequence Z. (4.4)

Let X ∈ R≥0 such that 0 < cX + b.

Consider a sequence Z starting with a bid of X, possibly followed by a bid of X ′,

where X < X ′ · c + b. M must select X as otherwise it would fail to satisfy Eq. (4.4) for

Z = {X}. But, similarly, M must select X ′ to satisfy Eq. (4.4) for Z = {X,X ′}.

As M is individually-rational, the X bidder must be paid back at least αX when

bumped. When the X bidder has true value 0 and X ′ arrives, he prefers overbidding such

that he is bumped and receives the bump payment.

4.6.6 Extensions

I now consider the robustness of Mα(γ) to variations in the assumptions used.
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Matroids

Matroids are abstract structures that capture the basic properties of numerous

problems of interest in combinatorial optimization and economics. Indeed, problems such

as matching in bipartite graphs (in particular allocating indivisible goods, or multiple units

thereof) or forming spanning trees of a graph can be cast in matroid terms.

All my results, except the ones regarding Mα(γ)’s computational complexity, extend

to a setting where the items for sale are elements of a matroid, defined as follows.

Instead of K items, the seller has a finite set E of elements. There is a matroid

structure M on E defined by a collection I of independent subsets of E (I ⊆ 2E):

• The empty set is independent: ∅ ∈ I,

• If some X ⊆ E is independent then any subset X ′ ⊂ X is also independent.

• If X,Y are independent, |X| < |Y | then there exists y ∈ Y \X such that X∪{y} is

also independent. (the exchange axiom)

A bidder bids on exactly one element of the matroid, which is known ahead of time to the

seller and may vary across bidders.

A bipartite matching problem generates a transversal matroid. For each subset S

of items there is an element eS (together with sufficiently many copies) in E. A multi-set

of elements {e1S , . . . , elS} is independent if it can be matched to l distinct items I1, . . . , Il,

i.e. I1 ∈ S1, . . . , Il ∈ Sl. A bidder with choice set S bids on exactly one copy of element

eS . A set of bidders (elements) is independent if the bidders can be matched to items such

that each one receives an item from his subset.
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Identical items

For the remainder of this chapter, I consider identical items, with each bidder

having each copy of the item in his choice subset. I first prove that survival thresholds

(and, thus, prices) for survivors are “close” in Mα(γ) if items are identical.

Fix a survivor B. When a later bidder B+ arrives, let wsv
B+(B) be the minimum

of: 1) the lowest active bid w∗ other than B’s (w∗ = min{wx : X 6= B is active before B+})

and 2) B+’s adjusted bid B+

1+γ .

As in Section 4.7.3, denote by wsv
≤B+(B) the minimum bid that B could have made

in order to survive until after the arrival of bidder B+. At B+, the survival threshold

wsv
≤·(B) of a bidder B is increased if and only if wsv

≤B+−1(B) < wsv
B+(B). That is, if and only

if, were B to bid just above wsv
≤B+−1(B), B+ would bump B instead of bumping no one or

the lowest other active bid at B+−1, depending on whether B+

1+γ < w∗ or not. Thus

wsv
≤B+(B) = max

{
wsv

≤B+−1(B), wsv
B+(B)

}
where wsv

B+(B) = min
{

B+

1+γ , w
∗
}

(4.5)

Proposition 25 establishes an intuitive property for Mα(γ): the survival threshold

of a later unit-demand bidder is lower, but not by more than a 1+γ factor, than that of an

earlier unit-demand bidder. An analogous relationship (with a factor of 1−α
1+γ ) holds between

their prices.

Proposition 25. Suppose that items are identical. Let Sa and Sb be survivors in Mα(γ)

such that Sb arrives after Sa. Then the ratio of their survival thresholds and the ratio of

their prices are bounded: wsv(Sa)
wsv(Sb)

∈ [ 1
1+γ , 1] and pa

pb
∈ [ 1−α

1+γ , 1].

Proof. I claim by induction that at any bidder B+ after Sb,

wsv
≤B+(Sa)

wsv
≤B+(Sb)

∈
[

1

1 + γ
, 1

]

(4.6)
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Suppose that Sb bumped a bidder B1 who bids w1. Then wsv
≤Sb

(Sb) = wsv
Sb

(Sb) =

(1 + γ)w1 and wsv
Sb

(Sa) = w1. Thus wsv
≤Sb

(Sa) ≥ 1
1+γw

sv
≤Sb

(Sb) = w1 by Eq. (4.5) for B = Sa

and B+ = Sb. Since B1 is active before Sb arrives, it must be that wsv
≤Sb

(Sa) ≤ (1 + γ)w1:

otherwise, a bidder with value higher than B1 would have been bumped before B1, which

is impossible. Therefore wsv
≤Sb

(Sa) ≤ wsv
≤Sb

(Sb). The bound in Eq. (4.6) for B+ = Sb is thus

obtained.

For all B+ after Sb at which the lowest active bid w∗ is neither Sa’s nor Sb’s,

wsv
B+(Sa) = wsv

B+(Sa). Eq. (4.6) follows from Eq. (4.5) for each such B+.

Suppose that, starting with some B0, the lowest active bid is Sa’s or Sb’s. Since Sa

and Sb survive, no bidder starting with B0 can be accepted. In particular, for all B+ after

B0,
w

B+

1+γ < min{wa, wb} and wsv
B+(Sa) = wsv

B+(Sb) =
w

B+

1+γ . Eq. (4.6) follows from Eq. (4.5)

for each such B+.

The bounds on the ratio of Sa’s and Sb’s survival thresholds (wsv(Sa)
wsv(Sb)

∈ [ 1
1+γ , 1])

are obtained by choosing B+ in Eq. (4.6) as the last bidder to arrive.

Recall that a bidder’s price is his survival threshold, possibly discounted by a 1−α

factor. A bidder B receives the α discount only when his survival threshold is increased

beyond wac(B). The inductive proof above also reveals that Sa and Sb never appear in

each other’s wsv
B+(·) and furthermore wsv

B+(Sa) = wsv
B+(Sb) at any B+ later than Sb. Since

wsv
≤Sb

(Sb) ≥ wsv
≤Sb

(Sa), if Sb receives the discount then Sa must also receive the discount.

Note that
wsv

≤Sb
(Sa)

wsv
≤Sb

(Sb)
may be strictly between 1

1+γ and 1. Consider a small modifica-

tion to Example 10 with two bidders Sa and Sb bidding 5 and 7 instead of B and bumping

bidders with bids of 2 and 3 respectively, where γ = 1. Then wsv
≤Sb

(Sa) = 4, wsv
≤Sb

(Sb) = 6.

It is also possible that Sa receives the α discount, while Sb does not: continuing with this

example, if a 9 bidder arrives after the 7 bidder Sb, then Sa’s survival threshold increases

to 4.5 but Sb’s remains at 6.
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Clearly, Proposition 25 does not hold if items are not identical: for example if

there are two items such that half the bidders are interested in one item and the other half

in the other item then there are practically two independent problems, one for each half-set

of bidders and the corresponding item.

Multi-unit demand

One of the main limitations of my bidder model is that each bidder can only

demand one item. I present now an informal discussion of the challenges in extending Mα(γ)

to a setting where a bidder can have value for more than one item.

If items are not identical, Example 9 suggests why a naive generalization of Mα(γ)

to multi-unit demand bidders would not be able to incentivize bidders to bid at least their

true value for each item: a bidder may prefer bidding only on an item that yields a high

bump payment instead of surviving on an item for which he has low value.

In the following I will consider, for simplicity, two identical items and a natural

model where any bidder has a lower marginal value for the second item than for the first

item received.

It seems difficult to generalize Mα(γ) to incentivize winners to bid both their true

values. Consider a bidder B with a value of 1 for each of two items, followed by a bidder

with a value of 100 for exactly one item out of the two. Then B does best going for a high

refund, which cannot be achieved unless he overbids on both items, since the lower bid is

the one bumped.

There are challenges in generalizing Mα(γ) to incentivize bidders to bid at least their

true value for each item, a game-theoretic property of Mα(γ). Fix, for simplicity, γ = 1: a

new bid bumps an existing bid if and only if the new bid is at least twice the old bid.

Let us first note that such a generalization should consider the new bidder’s bids
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in decreasing order and then essentially treat them as bids in Mα(γ). Clearly, in this fashion,

no bidder can bump one of his own bids.

Example 10. Two unit-demand bidders with bids 2 and 3 arrive followed by B who bids 7

and 5 for the first and second item respectively. Even though B could bump both active bids

if his bids were instead considered in increasing order, only B’s first bid (7) is accepted and

bumps 2. B’s second (5) bid can no longer bump 3 and is rejected.

If B had both bids accepted then B should pay 4 and 6, achieving an utility of

7 + 5− 4− 6 = 2. Following the descending order, only B’s 7 bid is accepted, for an utility

of 7− 4 = 3. Intuitively, a new bidder’s bids are accepted as long as that it is in his interest

given his bids: the price for the second item is 6, higher than B’s value for it, 5.

Proposition 25 establishes that any two survival thresholds in Mα(γ) are within a

1 + γ factor of each other. In particular, when the last bidder B bumps some bidder B′

instead of a survivor Ba (with bids wa < wB′), survival thresholds may be: (1 + γ)wB′ for

B, but wB′ for Ba. Essentially because of this distinction, a multi-unit demand bidder (Ba)

can prefer underbidding so that he competes against wB′ without a 1 + γ multiplicative

handicap, as shown in the following example.

Example 11. Consider bidders Bε, B2, Ba, B40 arriving in this order. Let Ba have equal

marginal value 5 for the first and second item and bid an equal amount wa (3 or 5) on

each. All other bidders have zero value for the second item and bid truthfully ε, 2 and 40

respectively. Note that, regardless of whether wa is 3 or 5, B40 and a bid by Ba survive.

When Ba bids truthfully (wa = 5), he has a 2 handicap when bumping B2 (he

needs a value of at least 4). When Ba underbids (wa = 3), he only needs to have a value of

at least 2 to have B2 bumped by B40.

There is, however, a more subtle difficulty. Example 12 shows that, by under-
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bidding on his second bid, bidder 3 can have a bid survive by influencing the acceptance

decisions for future bidders. Note that, similar to Example 11, a bidder (0.90) has the 1+γ

handicap only for one of 3’s true and lower second bids.

Example 12. Bidder 3 has values 1.30 and 0.50 for first and second item respectively. All

other bidders have zero value for the second item: ε, 0.20 (both before 3) and 0.90, 1.50 and

6 (after 3).

The set of active bids evolves as follows, depending on whether 3’s second bid is

0.50 (truthful) or 0.30 (an underbid).
3 0.90 1.50 6

{1.30, 0.30} {1.30, 0.20} {1.30, 0.90} {1.30, 0.90} {1.30, 6}
{1.30, 0.50} {1.30, 0.50} {1.30, 0.50} {1.30, 1.50} {1.50, 6}

Bidder 3 prefers underbidding since it leads to winning an item.

Surprisingly, before 1.50 arrives, the lowest active bid is higher when 3 underbids

than when truthful.

Note that if bidder 3 only bids 1.30 and 0.30 is another bidder, then bidder 3’s

price in Mα(γ) is (1−α)0.90. Proposition 25 suggests the following conjecture for two item

settings where a bidder with value for one or two items can win one item by underbidding:

the utility from surviving (by underbidding and investing) is better than the utility for being

bumped (by bidding truthfully and not investing) by no more than a constant fraction of

one’s value.

Other extensions

Here are some potential additional features for an auction with seller cancellations.

reserve prices By starting out Mα(γ) with dummy bidders with non-zero values, the seller

can set reserve prices on items. Reserve prices are particularly useful if the seller
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has information about future bidders, for example a distribution on their values as in

Chapter 3.

bidder cancellations Suppose that a bidder i wants to cancel his allocation. Such a

cancellation could be offered even for free when the seller receives another bid with

a high value compared to bidders other than i. Otherwise, the seller could charge

a fee for i’s cancellation, which may have to be close to i’s potential payment if the

mechanism closed when i requests his cancellation.

discounting Suppose that bidders discount future utility. The game-theoretic properties

of Mα(γ) hold if bump payments are made at the same time as allocations, despite

the fact that the amount and occurrence of the bump payment are known when the

bidder is bumped.

departures If, unlike in Mα(γ), a bidder’s type includes his patience, then a bidder will

aim to pretend a minimal patience in order to give future bidders a 1 + γ handicap.

insurance Babaioff et al. [8] present an extension of Mα(γ), with the same competitive

ratio for effective efficiency, for the case where a bidder requests for him a higher α

(a higher bump payment) or a higher γ (making it more difficult for future bidders

to bump him). This algorithm, effectively providing insurance to bidders, accepts

such a request provided the bid is high enough compared to the improved parameter

requested.

optimality given model If the number of bidders and a distribution on bidders’ values

are known, then one can compute the optimal allocation rule with cancellations via

a dynamic program analogous to [38]. For example, if there are two bidders with

Exp(1) values, then the efficiency-maximizing threshold for the first bidder is a value
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Rα
1 such that e−(1+α)Rα

1 = 1 − Rα
1 . Note that this equation has a positive solution if

and only if α > 0. As expected, Rα
1 = 0 (first bidder is accepted for any bid) when

α = 0 (cancellations are free) and Rα
1 → 1 (first bidder is accepted with any bid higher

than the mean of the Exp(1) distribution) when α→ ∞ (cancellations are essentially

not allowed).

Summary

Mechanisms for reservations reduce the uncertainty for both buyers and sellers and

are well established in many markets today. Sellers often have a large inventory of items

and seek automatic, online pricing and allocation of reservations.

I present a simple model for auctioning items in advance, which allows canceling

allocations, imposing a proportional utility loss to the buyer, compensated by the seller via

a bump payment. I present an efficiently implementable online mechanism to derive prices

and bump payments that has many desirable properties of incentives, revenue and efficiency.

This mechanism is essentially a form of price discovery (like an auction), but its online nature

induces a constant factor error. These properties hold even in the presence of speculators,

who are in the game for earning bump payments only, and require no assumptions about

bids’ order of arrival or their value distribution.

If bidders have value for more than one item then achieving even partial incentive

compatibility with an extension of the unit-demand mechanism appears challenging.
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4.7 Missing proofs

4.7.1 Proof of Theorem 12

Proof. If in Mα(γ) the sum of all bidders’ utility is positive then

v(ST ) − (1 − α)wsv(ST ) + αw(RT ) − αv(RT ) ≥ 0 (4.7)

For efficiency, notice that:

v(ST ) ≥ (1 − α)wsv(ST ) + αv(RT ) − αw(RT ) (4.8)

≥ (1 − α− α

γ
)wsv(ST ) (4.9)

where Eq. (4.8) follows from Eq. (4.7) and Eq. (4.9) follows from Theorem 15. Lemma 3

then implies v(ST ) ≥ 1−α−α
γ

2−α−α
γ
Opt[v].

For effective efficiency, letting y =
1−α−α

γ

1+ α
γ

yields

(1 + y)(v(ST ) − αv(RT )) ≥ (1 − α)wsv(ST ) − αw(RT ) + y(v(ST ) − αv(RT )) (4.10)

≥ (1 − α− (1 + y)
α

γ
)wsv(ST ) + yv(ST ) (4.11)

= y(v(ST ) + wsv(ST ))

where Eq. (4.10) follows from Eq. (4.7) and Eq. (4.11) follows from Theorem 15. Finally,

Lemma 3 implies v(ST ) − αv(RT ) ≥ 1−α−α
γ

(2−α)(1+γ)Opt[v].

I conjecture that v(S)−αv(R) ≥ 1−α−α
γ

1+γ Opt[v]: one can show that v(S)−αv(R) ≥
1−α−α

γ

1+γ wsv(S). Note that
1−α−α

γ

(2−α)(1+γ) ≤ 1−α−α
γ

(2−α−α
γ

)(1+γ) ≤ 1−α−α
γ

1+γ .

4.7.2 Revenue - proof of Theorem 13.

Lemma 4. A winning bidder’s VCG payment is a losing bid. The VCG revenue can only

increase if some bids in w are increased.
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Proof. An optimal matching can be found by adding bidders greedily to the matching in

decreasing order of their values. This implies the following well-known (see e.g. [16], Fact

3.2) combinatorial property of my setting: ∀ i 6= x, if x ∈ Opt[w] then x ∈ Opt[w−i].

This fact implies that there exists a bidder k such that Opt[w−i] = {k}∪(Opt[w]\

{i}). But then i’s VCG price must be w′(k), i.e. a losing bid.

If Opt changes when bidder i’s bid is increased, then i must displace a single lower

bid by another bidder j since Opt is constructed greedily in decreasing order of bids.

Proof of Theorem 13. The payments received by Mα(γ) are at least wsv(S)(1−α) and The-

orem 15 implies that bump payments sum to at most wsv(S)α/γ. Thus the theorem follows

from showing wsv(S) ≥ REVvcg[w]/(1 + γ). I argue this in three steps below.

Let ŵ(i) = max(wsv(i), w(i)/(1 + γ)) if i ∈ S, and w(i)/(1 + γ) otherwise.

1. I have wsv(S) = w̃(S) = Opt[w̃] ≥ REVvcg[w̃], where the second equality follows from

Lemma 2, and the final inequality follows from the fact that VCG payments cannot

be higher than VCG efficiency.

2. I claim that REVvcg[w̃] = REVvcg[ŵ]. To see this note that when going from w̃ to ŵ,

only VCG winners may increase their bid. Increasing the bid of a winner has no effect

on the allocation, and no effect on that winner’s price. Furthermore it has no effect

on any other price, since any price is a losing bid.

3. Finally, Lemma 4 implies REVvcg[ŵ] ≥ REVvcg[w/(1 + γ)] = REVvcg[w]/(1 + γ) since

VCG payments scale linearly if all the bids are multiplied by a scalar.

4.7.3 Proof of Lemma 2.

In this section it will be simpler to have as initial matching A0 for Mα(γ) an

arbitrary perfect matching on dummy bidders instead of the empty matching. I introduce
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dummy bidders (one per item, each bidding 0) whose choice set is the whole set of items,

arriving before all actual bidders. This will ensure that a perfect matching is maintained

by Mα(γ), but will not affect other arguments below5

At time t, I call currently accepted bidders alive, and denote the set of alive bidders

as At. Let Xt = {b ∈ At−1 : At−1∪{t}\{b} can be matched}; Xt is the set of alive bidders

at t− 1 that can be swapped for t and j∗ = argminj∈Xi
w(j) (see Algorithm 4).

Assume wlog that bidder i arrives at time i. I denote by wsv
≤t(b) the minimum bid

bidder b must make in order to survive up to and including time t. Then wac(b) = wsv
≤b(b)

and wsv(b) = wsv
≤T (b). It is clear that wsv

≤t(b) ≤ wsv
≤t+1(b).

Definition 35. Let B be a set of bidders. I say that B is tight for a bidder i at time

t if all bidders in B are alive at t, B can be matched but B ∪ {i} cannot be matched. I

say that B γ-dominates a bidder i at time t if B is tight for i at t and for all b ∈ B,

wsv
≤t(b) ≥ w(i)/(1 + γ).

Lemma 5. Xt is tight for t at t.

Proof. Xt can be matched since Xt ⊆ At−1. Suppose for a contradiction that Xt∪{t} can

be matched. Then Xt 6= At−1 since At−1 is a perfect matching by assumption. Therefore

there exists X ⊂ At−1 \Xt, |X| = |At−1| − |Xt| − 1 such that Xt∪{t} ∪X can be matched.

There exists exactly one bidder {y} = At−1 \ (Xt ∪X) and Xt∪{t} ∪X = At−1∪{t}\{y} is

a perfect matching, implying y ∈ Xt, contradiction.

Let i∗ be the time step when i ceases to be alive (i.e. i∗ = i if i is not accepted or the time i

is bumped if i was accepted). I inductively construct a sequence {Bt}i∗≤t≤n as follows: if i

is not accepted, Bi = Xi; if i is bumped by i∗ then Bi∗ = Xi∗∪{i∗}\{i}. At time t ≥ i∗ +1,

5When bidder t arrives, assume At−1 = A ∪D where D only contains dummy bidders and there exists a
matching It of A∪{t} which matches t to some item it. By reassigning dummy bidders, I can assume that
actual bidders are matched according to It. Then bidder t can bump at least the dummy bidder d ∈ D that
is matched to it in At−1.
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• if no bidder in Bt−1 is bumped, then I let Bt = Bt−1.

• if t bumps some b ∈ Bt−1 then I let Bt = (Bt−1 ∪Xt∪{t})\{b}

I will prove inductively on t that

Lemma 6. Bt γ-dominates i at time t.

Proof. By definition, all bidders in Bt are alive at t. I proceed by induction starting with

the base case t = i∗. If i is not accepted (i∗ = i), i cannot bump any bidder in Xi: therefore

∀ b ∈ Xi, w
sv
≤i(b) ≥ w(i)/(1 + γ). Xi is tight for i at i by Lemma 5. If i is bumped, then

w(i) ≤ wsv
≤i∗(r), ∀ r ∈ Xi∗ . Bi∗ = Xi∗∪{i∗}\{i} can be matched since they are all alive at

i∗. Xi∗∪{i∗} cannot be matched: otherwise i∗ would not bump i ∈ Xi∗ .

In the inductive step, I assume that Bt−1 γ-dominates i at t − 1. If at time t,

no bidder in Bt−1 is bumped, then the claim obviously holds by the induction hypothesis.

Otherwise, let b ∈ Bt−1 be the bidder that is bumped by t. Clearly, (Bt−1 ∪Xt∪{t})\{b}

can be matched since they are alive at t. Suppose for a contradiction that Bt ∪{i} =

(Bt−1 ∪Xt∪{t})∪{i}\{b} could be matched. i /∈ Bt since i is no longer alive. Bt−1 ∪Xt

can be matched since they are all alive at t − 1. As |Bt−1 ∪ Xt| = |Bt∪{i}| − 1, either

Bt−1 ∪ Xt∪{i} or Bt−1 ∪ Xt∪{t} can be matched. The first case is not possible since a

subset, Bt−1∪{i}, cannot be matched (by the induction hypothesis); the second case is not

possible since Xt∪{t} cannot be matched (Lemma 5). I have reached a contradiction, so

Bt must be tight for i.

By the induction hypothesis, ∀ b′ ∈ Bt−1, w
sv(b′)≤t−1 ≥ w(i)/(1 + γ). As noted

before, survival thresholds can only increase from t− 1 to t and w(t) ≥ (1 + γ)w(b).

Proof of Lemma 2. Let V be the Opt[w̃] assignment (where ties are broken in favor of

bidders in S). Suppose for a contradiction that there exists a non-survivor i ∈ V . By
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Lemma 6 for time n, i is dominated by a set Bn ⊆ S at time n. Since i /∈ S, but Bn ⊆ S,

in w̃ any bidder in Bn has a higher weight than i.

Since V is a perfect matching and Bn can be matched there must exist V ′ ⊂

V \ Bn, |V ′| = |V | − |Bn| (V ′ = ∅ if Bn is a perfect matching) such that Bn ∪ V ′ is a

(perfect) matching. I know that Bn∪{i} cannot be matched, therefore i /∈ V ′. However,

i ∈ V therefore i ∈ V \ V ′. V \{i} can be matched and has size |V | − 1. Therefore there

∃b ∈ Bn ∪ V ′, b /∈ V \{i} such that V ∪{b}\{i} can be matched. That implies b ∈ Bn ⊆ S,

i.e. w̃(b) ≥ w̃(i). But then V ∪{b}\{i} is a perfect matching of higher weight than V ,

contradiction. That is, V \ S = ∅, i.e. V = S since both are perfect matchings.

4.7.4 Proof of Proposition 21

For c ∈ R+, consider one item and a sequence of bids {ak(c)}1≤k≤n on it such that

a1 = 1, a2 = 1
c > 1 and cak+1(c) = ak(c) − α

∑k−1
j=1 aj(c)∀ k ≥ 2, implying

cak+1 = (1 + c)ak − (1 + α)ak−1 ∀ k ≥ 2 (4.12)

For a fixed n ≥ 1, I will look for a c = cn such that

an(c) − α
n−1∑

j=1

aj(c) = can(c) ⇐⇒ an

1 + α
= an−1 (4.13)

E.g. c2 = 1
1+α > c3 = 1

1+2α > c4 = 2

1+3α+
√

(1+5α)(1+α)
. Unfortunately, cn does not have a

nice closed form for n ≥ 4 (in addition, cn may be not be unique - the smallest cn ∈ [0, 1]

is then of interest). Furthermore, for certain c and n no such sequence may exist.

Proof of Theorem 21. Suppose towards a contradiction that there was a deterministic algo-

rithm A with a competitive ratio c′ > cn. Assume that the bids that arrive are a1, . . . , ak0

for some 1 ≤ k0 ≤ n. Then at each k, the algorithm A must accept ak, or its competitive

ratio will be smaller than cn when k = k0. This is clear for k = 1. Fix k ∈ [2, n − 1]. Let
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2α +1 − 2 α0.5 (α + 1)0.5

Mα(γ) for best γ 
 = max(α + (α2 + α)0.5, α/(1−α))

Figure 4.1: Effective efficiency competitive ratio (EECR) bounds as a function of α. The
top curve is c3 = 1/(1 + 2α). The middle curve is a numerical upper bound (c = cn
of Eq. (4.13)) on any deterministic algorithm’s EECR. The bottom curve shows (a lower
bound on) my algorithm’s EECR for the best γα: it matches the upper bound for α < 0.618.
γ is constrained by α < γ/(γ + 1); if it were not, the bounds would match for all α.

Mk be the highest (i.e. the offline optimum) of a1, . . . , ak. If A does not accept k then the

competitive ratio on input a1, . . . , ak will be at most

ak−1(cn) − α
∑k−2

j=1 aj(cn)

Mk(cn)
=
cnak(cn)

Mk(cn)
≤ cn

where the equality follows from Eq. (4.12). Now I claim that whether or not A accepts

an, the competitive ratio will be at most cn, which contradicts my assumption. If an is

accepted, α
∑n−1

j=1 aj has been lost due to bumping bidders 1, . . . , n− 1; if an is rejected the

effective efficiency is an−1 − α
∑n−2

j=1 aj . By Eqs. (4.12) and (4.13), both quantities are a cn

fraction of an, which in turn is at most Mn, the optimal (effective) efficiency.

Figure 4.1 strongly suggests that the competitive ratio of any algorithm cannot be
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higher than 2α + 1 − 2α0.5(α + 1)0.5, shown as squares in the figure. Note that for this c

the characteristic equation of Eq. (4.12) has a double root.

The triangles plot the minimum c found for the corresponding α for different values

of n (I used Fibonacci values up to rank 12, i.e. largest n was 144). The c values were

found via binary search. It was true in general, although not always, that the higher n, the

lower cn. I suspect that there exists an increasing sequence of integers {ni}i≥1 such that a

solution cni
to Eqs. (4.12) and (4.13) converges from above to 2α + 1 − 2α0.5(α + 1)0.5 as

i→ ∞.

Let u(γ) = 1
1+γ

(

1 − α
γ

)

, the competitive ratio from Corollary 3. Subject to the

constraint α ≤ γ
γ+1 , u(γ) is maximized for γ0 = max{α+

√
α2 + α, α

1−α}. u(γ0) is displayed

in Figure 4.1 by circles. The value 0.618 (the golden ratio) is where α
1−α becomes higher

than α +
√
α2 + α. If α < 0.618, u(γ0) = 2α + 1 − 2α0.5(α + 1)0.5, which matches the

numerical upper bound. The top curve plots c3 = 1/(1 + 2α).



Chapter 5

Interdependent Values

Abstract. I initiate the study of incentive compatible dynamic auctions for bid-

ders with interdependent values. These auctions are appropriate for dynamic environments

with informational externalities (i.e. environments where other bidders’ information on a

good’s value leads to a better estimate of one’s own value for the good). I show that if

bidders can misreport their departure times as well as their private signals, no reasonable

auction satisfying a weak version of consumer sovereignty can be incentive compatible. For

all other subsets of misreports I present conceptually simple incentive compatible auctions

that respect consumer sovereignty.

I adopt a computational approach to design single-item revenue-optimal dynamic

auctions with known arrivals and departures but (private) signals that arrive online. In

leveraging the characterization of truthful auctions, I present a mixed-integer programming

formulation of the design problem. I highlight general properties of revenue-optimal dy-

namic auctions in a parametrized example and study the sensitivity of prices and revenue

to model parameters.

145
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5.1 Introduction

In a dynamic market, being able to update one’s value based on information avail-

able to other bidders currently in the market can be critical to having profitable transactions.

In most dynamic auctions, however, the interaction between bidder valuations is limited and

only indirect, through the competition between bids. If bidders have only partial informa-

tion about the value of the item(s) to be sold then they may want a framework that allows

them to “listen” to the market. Such a framework, well-established in the static auction

theory literature [52, 63], is the model of interdependent values (IDV): each bidder’s value

is defined as an aggregation (expressed via a valuation function) of all the information in

the market, but he only knows his own private information (his signal).

Suppose that every day a web content provider, such as the New York Times

(NYT), auctions the right to have a banner ad appear next to the lead sports story the

following day. The NYT must complete the auction by 4AM each morning, whereupon the

auction for the subsequent day commences. One may imagine that advertisers will have a

hard time knowing the value of having their own banner ad appear because this depends,

in part, on the breaking news stories that day and on the associated user demographics.

For this reason, an advertiser may naturally be interested in other bidders’ information

regarding the value of the banner ad. In fact, auctions are usually a means of obtaining

information (the market price) for the seller. Continuing with the IDV model, each bidder’s

private information is encoded in his signal, but his value depends on his own signal as

well as the signals of other bidders. For example, a bidder may express his value as $1 (his

signal) + one fifth the maximum (or the average) signal among all the other bidders. Each

bidder becomes interested in buying the ad at a different time (construed as his arrival),

and each bidder has a deadline (or departure) by which he must send a request to his ad
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design team.

For a second example consider a task allocation problem in which multiple agents

are competing for the right to perform tasks in an dynamic, uncertain, environment. To-

gether with an agent’s private information about own capabilities and goals, each agent

may have useful information about the domain; e.g., the reward or difficulty of performing

a particular task. An interdependent value auction in this environment would allow each

agent to condition the bid on this information, as reported by other agents, and enable each

agent to ultimately report more accurately the value for a task.

I introduce a model of interdependent valuations in dynamic settings and identify

a tension between interdependent values (IV), elementary misreports (EM), and dynamic

dependencies (DD). A general negative result is established: no ex post IC and reasonable

auction can satisfy all three of these properties. Elementary misreports model bidders as

being able to report any signal, any departure but an arrival no earlier than their true one.

An auction is reasonable if, loosely, there is some time beyond which any bidder can win

for a high enough bid while the item remains unsold, but there is no bidder that can win

for an arbitrarily low signal.

On the positive side, I design reasonable auctions when bidders can only mis-

report either their signal or departure (IV, ¬EM and DD). Previous work has identified

reasonable auctions for bidders with interdependent values (IV, EM and ¬DD) in static

environments [52, 27], as well as dynamic, private value environments (¬IV, EM, DD) [44].

Thus, any two of these three properties are possible but not all three together.

I leverage the characterization of incentive compatibility to design a revenue-

optimal dynamic auction for IDV bidders. I propose a mixed integer program formulation

and study its sensitivity to parameters in a simple example.
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5.1.1 Related work

This work is the first that aims to bridge two distinct bodies of work: the economics

literature on auctions for interdependent valuations and the computer science literature on

online mechanisms.

In the economics literature there are two main models of interdependent valuations.

In the first model, each bidder’s private information is his signal, but his valuation

(aggregating his and others’ signals) is publicly known. Dash et al. [28] present a multi-unit

extension of the VCG mechanism for interdependent values [52]. Jehiel and Moldovanu [49]

show that for incentive compatibility it is essentially necessary that bidders’ private infor-

mation has low dimensionality. Milgrom and Weber [63] study affiliation in bidders’ signals,

a form of correlation in which a higher signal for one bidder implies a priori higher signals

for other bidders as well.

Dasgupta and Maskin [27] provide an IC (static) auction that is efficient when

bidders’ signals are one dimensional and introduce contingent bids. In this second model of

interdependent values, a bidder does not report his signal, but rather a function describing

how his value depends on the other bidders’ values instead of signals. Ito and Parkes [48]

instantiate this model to linear contingent bids and also extend it to single-minded combi-

natorial auctions.

Online (dynamic) mechanisms have received recent attention in computer science

and operations research, motivated by the fast growing number of electronic commerce

applications. Hajiaghayi et al. [44]’s setting is very similar to the one in this chapter,

except that bidders’ values are private. See also Lavi and Nisan [56], who establish an

interesting negative result in private value environment with expiring goods and propose a

relaxed notion of incentive compatibility as a work-around. The IC characterization in this

chapter generalizes similar characterizations that are provided in earlier work for private
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value environments [56, 43].

5.2 Preliminaries

Assume that there is only one item for sale.1 The item must be sold within T

time units of the auction’s start, which I will denote by time 1. Each bidder has an arrival

and a departure time, and I call the interval between a bidder’s arrival and departure the

bidder’s activity interval. I assume that any bidder i has a (single-dimensional) signal si and

a valuation function vi that aggregates all signals available in the market and determines i’s

actual value for the item. The signal si represents i’s private information and vi is a formula

for i to compute his value from all the information in the market if i had this information.

I will assume that the functional form of vi for every bidder i is known.2

Signals are independent random variables, not necessarily from the same distribu-

tion, with values 0 ≤ si < ∞ unless otherwise specified. For time period t ∈ [1, T ] denote

by A≤t (respectively θ≤t) the signals (respectively types) of bidders that arrive at or before

t.

Similarly, if ai ≤ t, A≤t
−i (respectively θ≤t

−i) denotes the signals (respectively types)

of all bidders except i that arrive at or before t.

Bidder i’s value for the item is vi(si, A
≤di) at his departure and zero at any other

time. Before his departure, the signal information from other bidders may not yet be

revealed and thus i’s value may be undefined. This is a significant change from the standard

model for online, private-value auctions in which a bidder’s valuation is known to him

1The characterization results generalize immediately to settings with known supply of multiple units of
an item and unit-demand bidders.

2This assumption can be dropped, gaining practicality, if working in the contingent bids model instead,
in which bidders state their values as a conditional value of the values of other bidders and a fixed point is
determined [48].
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throughout his time in the auction. A bidder’s value is modeled as zero after departure to

indicate that a bidder is uninterested in the item after his departure.

For example, vi(si, A
≤di) = 0.8si + 0.2 max{sj : aj ≤ di} if bidder i, whose signal

is si, estimates the item’s value to be the weighted average of si and the maximum signal

of another bidder, where i’s signal weighs four times more than the external signal. In a

private values setting, vi(si, A
≤di) = si.

I consider a model of elementary misreports in which the misreports available

are arbitrary signal misreports coupled with late arrival misreports and arbitrary departure

misreports. I justify the assumption of late misreports of arrival by modeling the arrival time

as the period at which a bidder first learns of the existence of the auction, or first realizes his

demand for the item. Thus it is nonsensical to consider early reports. However, one may ask

“why do bidders have arrivals at all if their value is only defined at departure?”. Arriving

in the system will grant a bidder the right to compete against other bidders. Moreover,

since the arrival time is the time at which a bidder’s signal is realized, it is desirable for the

auction designer to provide incentives for a bidder to share that signal with other bidders.

I will call a bidder’s type his private information: (arrival, departure; signal). Let

bidder i’s true type be (ai, di; si), i’s reported type be (a′i, d
′
i; s

′
i) and let θ−i denote a vector

of types (not necessarily the true ones) from bidders other than i. An auction defines

an allocation rule πi(a
′
i, d

′
i; s

′
i, θ−i) ∈ {0, 1} (I will only consider deterministic auctions) to

indicate whether or not bidder i is allocated the item, and a payment rule pi(a
′
i, d

′
i; s

′
i, θ−i) ≥

0 to define the payment made by bidder i. In a dynamic environment these must be

online computable, i.e. πi(a
′
i, d

′
i; s

′
i, θ−i) = πi(a

′
i, d

′
i; s

′
i, θ

≤d′i
−i ) for all i, all θ, and similarly for

payments. Moreover, payments must be collected by departure.

Bidders are modeled with quasilinear utilities: the utility of bidder i with type



Chapter 5: Interdependent Values 151

(ai, di; si) when reporting (a′i, d
′
i; s

′
i) is

πi(a
′
i, d

′
i; s

′
i, θ−i)vi(si, A

≤di

−i ) − pi(a
′
i, d

′
i; s

′
i, θ−i).

That is, utility is value minus price, where i’s value for winning the item is aggre-

gated by vi from all true signals until i’s departure. Note that i’s true value for the item is

vi(si, A
≤di

−i ), whatever his report, where A≤di

−i contains others’ true signals.

Given this model of self-interest I restrict attention to incentive-compatible, online

auctions such that there is an equilibrium in which every bidder chooses to report his true

type immediately upon arrival into the auction:

Definition 36. An auction is incentive compatible (IC) if, when the other bidders report

their true types, the ex post utility of any bidder i is maximized if he reports his true type

as well (i.e. truthful reporting is an ex post Nash equilibrium).

This is ex post IC, meaning that when the other bidders are truthful (i.e. the set

θ≤di

−i contains the true types of the other bidders arriving no later than di in the auction),

πi(ai, di; si, θ−i)vi(si, A
≤di

−i ) − pi(ai, di; si, θ
≤di

−i ) ≥

πi(a
′
i, d

′
i; s

′
i, θ−i)vi(si, A

≤di

−i ) − pi(a
′
i, d

′
i; s

′
i, θ

≤d′i
−i ), (5.1)

for all types (a′i, d
′
i; s

′
i) of bidder i such that a′i ≥ ai.

Definition 37. An auction is individually rational (IR) if the payment by the bidder win-

ning the item is at most his true value for the item when all bidders (including the winner)

report truthfully, and losing bidders pay zero.

Note that the definitions of IC and IR do not specify anything about out-of-

equilibrium behavior, thus being subject to the usual critiques of Nash equilibria, notably

the question of how will bidders get to the Nash equilibrium and how to deal with multiple

equilibria. On the other hand, the same critique serves to strengthen the negative result.
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Let i be a bidder and t ∈ [ai, di]. Let s = A≤di for notational convenience. These

following two assumptions are necessary for IC in static interdependent-value auctions (see

[27]) and therefore I adopt them as well. The first assumption is that the bidders’ valuations

satisfy v-monotonicity: vi(s
+
i , s−i) ≥ vi(si, s−i)∀ i, ∀ s−i, ∀ s+i ≥ si. That is, a higher

private signal cannot result in a lower value for the item. The second assumption is the

single crossing condition (SCC): ∀ s

∂vi(s)

∂si
>
∂vj(s)

∂si
, ∀ i, j : vi(s) = vj(s) = max

k 6=i,j
{vk(s)}.

SCC requires that an infinitesimal change in bidder i’s private signal influences i’s value

more than it influences the value of j if i’s value is equal to j’s and at least as high as the

values of the other bidders.

5.3 Characterization of incentive compatibility

Let A be a dynamic auction for bidders with interdependent values. Consider

bidder i and let (âi, d̂i, ŝi) denote his reported type and fix the reports of other bidders

θ≤d̂i

−i . When referring to the types of other bidders θ≤d̂i

−i , the superscript on i’s reported

departure d̂i will be dropped if it can be inferred from the context.

I will show that the following conditions (to be denoted as cad) are necessary and

sufficient for A to be ex post IC and IR:

Critical signal: Let sc
i [âi, d̂i, θ−i] = inf{si : i wins in A reporting (âi, d̂i, si)}

and ∞ if no such si exists (e.g. if the item has already been sold). Then when

ŝi > sc
i [âi, d̂i, θ−i], bidder i must win in A at price vi

(

sc
i [âi, d̂i, θ−i], A

≤d̂i

−i

)

.

Arrival monotonicity: sc
i [a

+
i , d̂i, θ−i] ≥ sc

i [âi, d̂i, θ−i],

∀ a+
i ∈ (âi, d̂i], where sc

i [ai, d̂i, θ−i] denotes as above the critical signal given i’s arrival
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ai, departure d̂i and the types of other bidders θ−i.

Departure monotonicity: for ∀ d′i:

vi

(

sc
i [âi, d

′
i, θ

≤d′i
−i ], A

≤d′i
−i

)

≥ vi

(

sc
i [âi, d̂i, θ

≤d̂i

−i ], A≤d̂i

−i

)

Note that if di is fixed, i.e. bidder i cannot lie about his departure, then depar-

ture monotonicity trivially holds. Also note that sc
i is allowed to fall with an early

departure if the later signals are “bad news” for i.

Proposition 26. The conditions cad are necessary for IC and IR in an online, interde-

pendent value environment.

Proof. Let A be an auction having truthful reporting as ex post Nash equilibrium and

consider bidder i.

Condition critical signal is necessary. Consider bidder i with true type θi = (ai, di; si),

fix the other bidders’ types θ≤di

−i and assume they are truthful. To ease notation, I use sc
i

instead of sc
i [ai, di, θ

≤di

−i ]. I prove that if the auction satisfies IR and IC, i must win whenever

si > sc
i . By sc

i ’s definition, bidder i must lose when si < sc
i .

Recall that vi satisfies v-monotonicity i.e. vi(s
+
i , s−i) ≥ vi(si, s−i) if s+i > si. Note

that i’s price cannot be different for signals s1i 6= s2i , with s1i and s2i > sc
i : otherwise when i

has the high-price signal he will be better off reporting the low-price one. By IR, since the

other bidders are truthful, the price i pays must be at most vi(s
c
i , A

≤di

−i ). But if i’s price is

strictly less than this, then when i has a signal barely under sc
i , i will want to misreport a

signal higher than sc
i since the price is less than his value at di. Also, if bidder i loses for

some s′i > sc
i then i can misreport some s−i ∈ [sc

i , s
′
i] for which he wins. The price that i

pays is vi(s
c
i , A

≤di

−i ), which is less than vi(s
′
i, A

≤di

−i ). Thus i would have an incentive to report

s−i , contradicting IC.



Chapter 5: Interdependent Values 154

Condition arrival monotonicity is necessary. Assume the critical signal condition.

Now, if arrival monotonicity did not hold then bidder i could lower his price by report-

ing a late arrival, contradicting IC.

Condition departure monotonicity is necessary. Assume the critical signal con-

dition so that the price for a report of (âi, d̂i) has to be vi(s
c
i [âi, d̂i, θ

≤d̂i

−i ], A≤d̂i

−i ). But if

vi(s
c
i [âi, d

′
i, θ

≤d′i
−i ], A

≤d′i
−i ) < vi(s

c
i [âi, d̂i, θ

≤d̂i

−i ], A≤d̂i

−i ) for some d′i 6= d̂i then i will want to report

d′i instead of d̂i, contradicting IC.

Say that an auction “allocates late” if the winning bidder is never allocated the

item until his reported departure.

Proposition 27. The conditions cad are sufficient for IC and IR in an online, interdepen-

dent value environment when the v-monotonicity and SCC properties also hold and when

the auction allocates late.

Proof. Let i be a bidder, (ai, di, si) his true type and assume that the other bidders are

truthful. I will prove that if conditions cad hold, then it is in the best interest of bidder i

to be truthful as well. Note that IR trivially holds because of the way sc
i is defined.

Whatever the signal report and for all misreports of departure, for i to be strictly

better off by reporting a late arrival a+
i , v-monotonicity implies that sc

i [a
+
i , ·] < sc

i [ai, ·].

But this is specifically what arrival monotonicity precludes. I can henceforth assume

that i reports his true arrival. I now show that bidder i cannot be better off reporting some

d−i < di, whatever signal i reports. If it were, then the price when reporting d−i must be

less than the price for di (which may be ∞):

vi

(

sc
i [ai, d

−
i , θ

≤d−i
−i ], A

≤d−i
−i

)

< vi

(

sc
i [ai, di, θ

≤di

−i ], A≤di

−i

)

.

But this contradicts the departure monotonicity condition. In addition, it is never

useful to report a late departure because the auction allocates late and this would have zero
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value. Thus I can assume that i reports his true departure and true arrival, whatever his

signal misreport.

Bidder i’s price does not depend on his signal and he can maximize his chances of

winning by reporting his true signal. If i does not win reporting his true signal then sc
i > si

i.e. his value is less than his price so i does not want to win.

Theorem 19. The conditions cad are necessary and sufficient for IC and IR in an online,

interdependent value environment, and when the auction allocates late.

In private values settings vi(s1, . . . , sn) = si and the conditions cad amount to the

existence of a critical value function vc
i [ai, di, θ−i] such that vc

i [a
+
i , d

−
i , θ−i] ≥ vc

i [ai, di, θ−i]

if [a+
i , d

−
i ] ⊂ [ai, di]. That recovers Theorem 5 from Hajiaghayi et al. [43].

The ability (due to interdependence) of changing the values of other bidders by

temporal misreports makes the critical signal property harder to achieve than it may

first seem and definitely harder than the critical value property from private values settings.

5.3.1 Obvious winner acceptance

In this section I use the IC characterization to show that any IC auction satisfying

a weak version of consumer sovereignty (CS) must in fact transition at some time into a

state in which it will subsequently sell (at a low price) to the first bidder to arrive, whatever

his signal. Thus, no IC auction in the interdependent value, dynamic auction environment

with elementary misreports can be reasonable, when reasonable is construed as providing

some variant on CS3 coupled with an absence of this “oblivious selling” property.

In private value settings, an auction satisfies consumer sovereignty if, with arbi-

3With sufficient uncertainty about the future, not selling to some bidder when it has a high signal (and
therefore a high value as well) can significantly hurt the revenue or the efficiency of an auction. I leave it to
the reader to judge the performance of an auction that sells to a bidder whatever he reports.
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trary fixed values of the other bidders, any bidder can win provided he reports a high enough

value. The following definition applies to an online setting, where one also conditions on

the item still being available:

Definition 38. An auction satisfies obvious winner acceptance (OWA) if there is some time

T (the OWA cut) with the following property: whenever some bidder w’s (with aw ≥ T)

activity interval is disjoint from any other bidder’s activity interval there is some finite value

Sw (that can depend on the other bidders’ signals) such that w wins the item with any signal

at least as high as Sw (see Figure 5.1).

Time

Item still available

dw−1

aw dw

aw−1

sw ≥ Sw[aw, dw, θ≤w−1] ⇒ win

T

Figure 5.1: If obvious winner acceptance holds then w (whose interval is disjoint from the
other bidders’ intervals) must win for a high enough signal (assuming the item was not sold
earlier).

The OWA condition requires that there is some time, past which if w faces no

active competition then for some (high enough) signal w must win. Bidder w is in this

case the “obvious winner”. Note that if the OWA cut is before bidder w’s [aw, dw] interval

and the auction is IC then the threshold Sw[aw, dw, θ≤w−1] required by OWA must be

sc
w[aw, dw, θ≤w−1].

The following claim shows that any IC auction satisfying OWA must uncondition-

ally sell, after the OWA cut, to a bidder whose arrival makes him the only active bidder

(i.e. bidder 3 in the setting of Figure 5.2), whether or not some other bidder later arrives

during his activity interval.
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Time

a3 d3d−3

a1 d1a2 d2

v2 = s2 = ε < sc
2 v1 = s1 > 4ε

v3(s3, s−3) = s3 + 1
3 max(s−3)

T

sF
3 = sc

3[a3, d
−
3 ; s2] + εsT

3 = sc
3[a3, d

−
3 ; s2] − ε

Figure 5.2: Illustrating Claim 28: any IC auction satisfying OWA must sell to agent 3
irrespective of his signal when 3 reports departure d−3 .

Definition 39 (sensitive). Bidder i is said to be sensitive to the signal of bidder j if, for

any si, s
′
i, s−ij, there exists sj such that vi(si; s−ij ∪ {sj}) ≥ vi(s

′
i; s−ij).

That is, bidder i is sensitive to bidder j’s signal if, whatever two values of bidder i

that do not use j’s signal, any one of them can be made higher than the other by allowing

it only to also use some (perhaps sufficiently high) signal of j. This property holds for

example if vi = αsj + f(s−j), where α > 0 and vi uses some fixed value for sj if it is not

(yet) available.

Proposition 28. Let 2, 3 and 1 denote three bidders in order of arrival, and with d2 < a3

but a1 < d3. Suppose the OWA cut occurs in T ∈ (d2, a3), that the item is still available at

T, and that bidder 3 is sensitive to bidder 1’s signal. Any IC auction with both signal and

early departure misreports must allow bidder 3 to win for any reported signal and his price

is that defined by the value for his minimal signal.

Proof. Let A be an auction satisfying OWA and IC. Since A is IC, A must satisfy the crit-

ical signal condition. Let sc
3[d, s−3] be shorthand for sc

3[a3, d, s−3]. Note that sc
3[d

−
3 , s2] <

∞ by OWA. Suppose sc
3[d

−
3 , s2] > 0. Let sT

3 < sc
3[d

−
3 , s2]: bidder 3 would not win if report-

ing truthfully. consider what happens for an s1 such that v3(s3, s1, s2) > v3(s
c
3[d

−
3 , s2], s2)

(such an s1 must exist since 3 is sensitive to 1’s signal). Bidder 3 can simply report a signal
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higher than sc
3[d

−
3 , s2] and win: bidder 3 will be happy since the price he pays is less than

his true value at d1. Therefore sc
3[d

−
3 , s2] = 0. This holds for all d−3 ∈ (a3, a1). But then,

if 3 reports a departure after a1, an IC auction must give the item to him as otherwise 3

can do better by misreporting a departure before a1. In conclusion, the auction must sell

unconditionally to bidder 3.

This negative result immediately generalizes in the following sense: if at some

(sufficiently late) time in the auction, there is no active bidder then the item must be

allocated to the first arriving bidder f whatever his signal if f is sensitive to signals of

future bidders.

Thus OWA, a reasonable requirement, is shown to imply this non-competitive

property for a large set of scenarios. The requirement of incentive compatibility transforms

the requirement of selling to the obvious winner into obliviously selling to what can be the

obvious loser, e.g. when bidder 3 has a very low signal.

Theorem 20. There is no reasonable, IC and IR auction in the interdependent values,

online environment when bidders can misreport arrival (later only), departure and signal.

5.3.2 Limited classes of misreports

As already seen, reasonable IC auctions are not possible even if bidders only have

elementary misreports at their disposal. I now present reasonable auctions for environments

in which bidders cannot report both a different signal and an early departure. In any auction

in the sequel, I define the critical signal for any bidder to be ∞ after the item has been sold.

In the auctions of Figure 5.3 and 5.5 when I consider different arrivals a′i for bidder

i I will just consider the counter-factual world where i arrives at a′i instead of ai. Thus,

when considering arrival a′i, i’s signal will be available to bidders active at a′i or later.
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I will assume an upper bound ∆ on the patience of any bidder (di − ai ≤ ∆, ∀ i).

This assumption could be dropped, but then one would have to look back as far as the start

of the auction for counter-factual arrivals of agent i.

Late arrivals and signal misreports

In this subsection I assume that bidders cannot lie about their departure. This

can happen if, for example, the seller, sets a (possibly different for each bidder) deadline

for selling the item. Thus, condition departure monotonicity is trivially satisfied.

The auction in Figure 5.3 sells to the highest bidder i, provided that no different

arrival of i would have made another bidder j win early. Why worry about this? In

retrospect (i.e. ex post), if bidder i loses to j and j’s value depends significantly on i’s

signal and great news arrive for i after j’s departure, i may be tempted to stop j from

winning by hiding his signal from i via a late arrival misreport.

Proposition 29. The auction in Figure 5.3 is IC and reasonable in interdependent, online

environments, when v-monotonicity and SCC hold and when bidders can only misreport

signals and arrival times but not departure times.

Proof. Departure is fixed, so departure monotonicity is trivially satisfied.

The only way i’s reported arrival can matter is if i has an arrival ai < dj for some

bidder j that would win (have the highest value) only if i were to report his true arrival

ai. i can instead report a false arrival of a+
i > dj and thus j would not win anymore. But

then si < sthr
i [dj ] < s∗i , so, when misreporting, i would pay more than his true value. The

auction is reasonable since the winner must outbid his competitors.

The auction satisfies CS (a stronger property than OWA) if vi’s satisfy the following
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Decision times for allocation: Bidders’ departures.

Pricing rule: Fix bidder i. For all j such that dj ∈ [d̂i −∆, d̂i) let sthr
i [dj ] be the infimum

of all signals s with the following property: whenever i reports some signal s′i ≥ s

along with an arrival of dj , at dj there is some active or departed bidder (that may

be i) with a value strictly higher than j’s value. Let

sPA
i [d̂i] = max

d̂i−∆≤dj<d̂i

sthr
i [dj ]

Let shi
i [d̂i] be the minimum signal i could have reported such that his value is the

highest across all active and departed bidders at d̂i. Let

s∗i [d̂i] = max{sPA
i [d̂i], s

hi
i [d̂i]}

Sell to i only if si > s∗i [d̂i] (s∗i [d̂i] is i’s critical signal)

Figure 5.3: IC and reasonable auction for the case of late arrival and signal misreports.

natural condition:

∀ i, ∀ s−i,∃s0i s.t. vi(s
0
i , s−i) > maxj 6=i{vj(s

0
i , s−i)} (5.2)

Indeed, by SCC and v-monotonicity, ∀ si ≥ s0i , i’s value is the highest one, i.e. i wins (s∗i [di]

is at most s0i ).

When bidders cannot misreport arrivals either, this auction becomes the interde-

pendent (generalized) second-price auction in [52].

Example for the truthful auction in Figure 5.3

In the example of Figure 5.4: v1(s1, s−1) = 3
5s1 + 2

5 max(s−1), v2(s2, s−2) = 13
15s2 +

2
15avg(s−2), v3(s3, s−3) = 3

5s3 + 2
5400 and signals s1 = 600, s2 = 690, s3 = 900. If 3 reports
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a3

• at d1: v1 = 3
5600+ 2

5690 = 636; v2 = 13
15690+ 2

15600 = 678. Thus, 1 does not win since

2 has a higher value.

• at d2: v1 = 3
5600 + 2

5690 = 636; v2 = 13
15690 + 2

15(600+900
2 ) = 698; v3 = 700. Thus, 2

does not win since 3 has a higher value. The values do not change at d3 and therefore

3 wins the item at d3.

Contrast this with what would happen if 3 reported a′3 = d3 − ∆: v1 = 3
5600 +

2
5900 = 720; v2 = 13

15690 + 2
15(600+900

2 ) = 698, v3 = 700. Thus, 1 wins since he has the

highest value at d1.

This is why the auction has the extra wrinkle of checking all possible arrivals for

the candidate winner. With no check and simply selling to the bidder with the highest

value, 3 would win when reporting a3. But then, when 3 has true arrival a′3 = d3 − ∆, 3

can do better by reporting a late arrival of a3, hiding his signal from 1. Bidder 3 can win

by reporting s3 > 1000: then v3 > v1 for any arrival of 3 (v3 > v2 as well). Then one can

set sc
3 to 1000 (or higher).

Time

3
5s1(= 600) + 2

5 max(s−1)

a2

a3 d3

d2

a1 d1
13
15s2(= 690) + 2

15avg(s−2)

3
5s3(= 900) + 2

5400

d3 − ∆

Figure 5.4: Example setting for the auction in Figure 5.3. Without the check for all possible
arrivals, bidder 3 can benefit by reporting a3 (thus hiding his signal from 1) when his true
arrival is d3 − ∆.
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Decision times for allocation: Bidders’ arrivals

Pricing rule: Fix bidder i. For all aj ∈ [d̂i − ∆, âi] let shi
i [aj ] be the minimum signal i

could have reported along with an arrival of aj making i’s value the highest across all

active and departed bidders at aj . Let

s∗i = max
d̂i−∆≤aj≤âi

shi
i [aj ]

If si ≥ s∗i , reserve the item for agent i but only give him the item at di. Charge i

min
âi≤t≤d̂i

vi(s
∗
i , A

≤t
−i).

Figure 5.5: IC, reasonable auction for the case of late arrival and early departure misreports.

Departures and late arrivals misreports

In this subsection I assume that bidders cannot lie about their signals, but can

misreport a late arrival and an early departure. This may be of relevance in a dynamic

planning problem where the goal is to take the best decision given partial (local) information

from each bidder, that may have limited (e.g. battery-powered) life.

The auction in Figure 5.5 sells to the highest bidder i, provided i would still be

the highest bidder for any possible true arrival given his reported interval [âi, d̂i]. Since

di − ai ≤ ∆ and only early departure misreports, ai ∈ [d̂i − ∆, âi]. i’s price is taken

as the minimum value given his critical signal s∗i across all his reported activity interval.

This motivates i to report an interval as large as possible, i.e. his true one. Furthermore,

reporting a tighter interval only has the effect of raising s∗i , which is the max over more aj ’s

than when being truthful. Thus,

Proposition 30. The auction in Figure 5.5 is IC and reasonable in interdependent, online

environments, when v-monotonicity and SCC hold and when bidders can only misreport late
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arrival and early departure times but not signals.

As before, the auction satisfies CS if vi’s satisfy condition (5.2).

5.4 Revenue maximization with known intervals

Recall the example from the introduction, in which the New York Times auctioned

a banner ad slot. Assume as well that the NYT has contracted with various advertisers,

where the contract defines a fixed bidding interval wherein the advertiser can choose to bid

for the right at the same time each day (the “arrival” time of the bid) and is guaranteed a

response by some subsequent time (the “departure” time of the bid.) Only the bid of the

advertiser, and indeed whether or not the advertiser will choose to bid, is uncertain.

I first consider a naive generalization of the optimal static and IC auction for

interdependent bidders [15] and point out that the solution obtained fails to satisfy IC

constraints. The reason is that, in retrospect, a bidder i will regret reporting truthfully in

the following scenario: i can misreport his signal changing the value or price of an earlier

bidder h such that h is now precluded from winning and i is going to win (maybe because

the future signals turn out to be “favorable” for i to misreport).

To determine the optimal, revenue-maximizing auction in this dynamic IDV envi-

ronment I adopt a mixed-integer programming (MIP) formulation and follow the framework

of automated mechanism design [23], building on the heritage of the Myerson [64] approach.

For practical scalability I require that the interdependencies between bidders are of bounded

degree, that the designer is able to constrain the number of signals that must be propagated

from earlier periods into defining the price of bidders in later periods, and that a coarse

discretization of signals can be tolerated. The formulation is illustrated in a simple, three

bidder scenario. Based on this formulation I can compare the revenue from this, IC formu-
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lation with the one obtained using the naive generalization and the one obtained using a

clairvoyant approach.

Related work

Branco [15] studies static revenue-optimal auctions for IDV bidders and shows that

under a certain regularity condition, an asymmetric critical signal-based auction is optimal

(I review this auction in Subsection 5.4.2). The regularity condition is satisfied if bidders’

valuations are increasing and concave in their own signal and the signals’ distribution has

a non-decreasing hazard rate. Segal and Toikka [74] also extend Myerson [64]’s revenue

equivalence theorem and optimal auction design to dynamic settings, but their formulation

appears to be restricted to private values.

Aoyagi [1] investigates optimal pricing schemes in dynamic settings with IDV bid-

ders, without considering incentive compatibility. A bidder infers his value indirectly, from

the decisions of other bidders. If a previous bidder j accepted (respectively rejected) the

price offered by the seller, then a current bidder i’s estimation of j’s signal will increase

(respectively decrease), leading to a corresponding change in i’s value. Aoyagi shows that

for any simultaneous selling scheme, there exists a sequential one with at least as high a

revenue.

Hajiaghayi et al. [44, 43] provide competitive mechanisms for selling one or more

goods in a dynamic environment, but they model bidders’ values as private. See Parkes [69]

for a recent survey on mechanism design in dynamic environments. The strategy of find-

ing optimal-revenue mechanisms through search is in the spirit of automated mechanism

design [23]. However, rather than impose IC constraints directly, this formulation amounts

to an informed search, since one searches only for critical signals that support a truthful

allocation policy.
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5.4.1 Preliminaries

The auctioneer has uncertainty about bidders’ signals s and models each si as an

independent draw from a distribution on non-negative values with cumulative distribution

function (cdf) Fi and probability density function (pdf) fi. I consider only deterministic

auction rules and assume for simplicity that all bidders have disjoint departures.4

Without loss of generality I can focus on auction protocols that sell to a bidder

upon his departure. Not only does this ensure that a bidder’s own value is known at the

time of his allocation but this allows the auctioneer to gain maximal information about

other demand in the market. I assume that vi is differentiable with respect to any bidder

j’s signal sj and: (1) v-monotonicity: vi(s
+
i , s−i) ≥ vi(si, s−i)∀ i, ∀ s−i, ∀ s+i ≥ si. That is,

a higher private signal cannot result in a lower value for the item; (2) the single crossing

condition (SCC): an infinitesimal change in bidder i’s private signal influences i’s value more

than it influences the value of j if i’s value is equal to j’s and at least as high as the values of

the other bidders. Any non-trivial incentive compatible auction in static IDV environments

must satisfy (1) and (2) (see [52]).

Incentive compatibility characterization

Consider a dynamic auction for IDV bidders that can only misreport their signal.

In Section 5.3 I have established three conditions that are necessary and sufficient for IC

in dynamic, IDV auctions. Two of the conditions require that a bidder’s price does not go

down if he misstates his interval – they are trivially satisfied in the known-interval setting

considered. The third condition, adapted to a no-interval-misreports domain, requires:

4If two bidders depart in the same period then they are effectively taking part in an one-shot IDV auction.
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Unconditional critical signal: Fix the signals of other bidders. For bidder

i there is a signal, c̃∗i [s−i], such that i is allocated if and only if si ≥ c̃∗i [s−i] (and is ∞ if i

is not allocated for any si.) When allocated, the payment by i is vi(c̃∗i [s−i], s−i).

This implies that the allocation rule is monotonic in the bidder’s signal. The exis-

tence of an unconditional critical signal generalizes the “critical-value” concept in private-

value settings, where a bidder wins iff his value is higher than the critical value, which is

also the price he pays [69].

In designing optimal, dynamic IDV auctions I find it easier to work with an equiv-

alent characterization that is defined in terms of conditional critical signals, when coupled

with additional inter-temporal constraints. This will lead to more natural multi-period

optimization problems.

Conditional critical signal: Fix the signals of the other bidders. For bidder

i there is a signal, ci[s−i], such that i is allocated if and only if si ≥ ci[s−i] and there

is an item available for allocation at i’s departure. When allocated, the payment by i is

vi(ci[s−i]), s−i).

It is quite easy to see that this property is not sufficient for IC. The reason is that

it can be in a bidder’s interest to influence whether or not the item is still available at his

departure. Consider a scenario in which

• i loses (before departing) to a competitor h when reporting signal si, but

• i can misreport some signal s′i causing h to lose (e.g. if his critical signal goes from

below to above sh when i’s signal changes from si to s′i), and resulting in i now winning

at a price less than his true value for the item.

To address this one must combine conditional critical signals ci[s−i] with additional inter-
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temporal constraints:

Theorem 21. A dynamic auction in the known-interval, IDV model is IC if and only if

it has conditional critical signals with the property that there are no signals s−i (of bidders

arriving before i), si and s′i such that all of the following hold: (a) cj0 [si, s−ij0 ] ≤ sj0 for

some j0 < i; (b) cj [s
′
i, s−ij ] > sj for all j < i; and (c) ci[s−i] ≤ min{si, s

′
i}.

The constraints in Theorem 21 are referred to as inter-temporal IC constraints

(ITIC). Given this, there is never an instance for which some bidder i loses when reporting

true signal si (a), could have prevented all earlier bidders from winning for some s′i 6= si (b),

and wins for report s′i and with a critical signal less than his true signal and thus a payment

less than his true value (by v-monotonicity). Conditional critical signals that satisfy ITIC

become unconditional: i wins if and only if his signal is at least ci[s−i].

5.4.2 Special cases

I now present two simple dynamic IDV environments for which revenue optimal

auctions can be easily constructed. I first review Branco’s [15] solution for non-dynamic

IDV environments and then provide a multi-step optimization formulation for the case of

disjoint intervals.

Revenue-optimal static auctions

Definition 40. If a bidder i’s valuation is vi(si, s−i) then i’s virtual valuation is

w̃i(si, s−i) = vi(si, s−i) −
∂vi

∂si
(si, s−i)

1 − Fi(si)

fi(si)
(5.3)

For example, if i = 3, signals are distributed uniformly on [0, 1] and v3(s1, s2, s3) =

s3 + s1

4 + s2

4 + 1
4 then w̃3(s1, s2, s3) = s3 + s1

4 + s2

4 + 1
4 − 11−s3

1 = 2s3 + s1

4 + s2

4 − 3
4 .

Branco [15] provides a revenue-optimal static auction for IDV bidders if i’s virtual valuation
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is increasing in si, for all i. This holds in particular if bidder valuations are increasing

and concave in their own signal and the distribution of each bidder’s signal has a non-

decreasing hazard rate ( fi(si)
1−Fi(si)

). Branco’s auction generalizes Myerson’s [64] revenue-

optimal private-value auction, and is thus based on the fact that in equilibrium, virtual

valuation = revenue. This insight suggested the virtual valuation-based heuristic for the

non-clairvoyant mechanism in Subsection 5.4.4. In Branco’s solution, the bidder with the

highest virtual valuation w̃i wins, but only if w̃i is non-negative. The winner pays his value

computed at the lowest signal for which he still wins.

Branco’s result extends to any dynamic setting in which all bidders’ intervals have

at least one point in common, making the auction a static one.

Disjoint intervals

In this subsection I analyze the case of disjoint intervals when the number of

bidders n is known in advance and I show that the revenue-optimal auction can be obtained

as a solution to a multi-period decision problem.

The earlier characterization implies that an IC auction in this environment must

define a critical signal schedule, (cj)1≤j≤n, where cj denotes the critical signal for bidder j

conditioned on the item still being available, and computed with knowledge of the signals

s<j reported by earlier bidders but not with knowledge of the signal of bidder j himself

(else it would not be IC). In this case the ITIC constraints are vacuously satisfied because

no bidder can influence the critical signal faced by an earlier bidder.

One can compute an optimal schedule by adopting dynamic programming: bidder

j’s critical signal should optimally balance the revenue from selling to him now (at a price of

vj(cj , s<j)) and waiting. Let cj ∈ argmaxcRj(c, s<j), where Rj(c, s<j) = E[vj(c, s<j)|sj ≥

c] + E [Rj+1(cj+1, s≤j)| sj < c] and Rn+1(·) = 0. Rj(c, s<j) is the expected revenue from
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Figure 5.6: Bidder configuration as known a priori (at a1) in each of the four scenarios. At
d1 or d2, if 3’s scheduled arrival a3 is later, the probability that 3 will arrive at all is p3A.
If bidder 3 arrives, then his interval is known to be [a3, d3].

selling to bidder j at a price defined by critical signal c and selling to future bidders under the

optimal critical signal schedule. For the last bidder, cn ∈ argmaxc{(1−F (c)) ·vn(c, s<n)}. If

the n-th bidder’s valuation is increasing and concave in his own signal then w̃n(cn, x<n) = 0.

5.4.3 Working with a specific problem instance

For the remainder of the chapter I will work with a set of four specific 3-bidder

scenarios as shown in Figure 5.6. In all scenarios bidders’ arrivals and departures are known

and fixed, with a slight variation for the scenarios in which bidder 3 is supposed to arrive

later than time d1. In those scenarios, if bidder 3 has not arrived yet, the auctioneer only

knows the (correct) probability of bidder 3 arriving: 0 ≤ p3A ≤ 1.

Each scenario is labeled X12X13X23 where Xij is ‘T’ or ‘F’ (shorthand for ‘True’

and ‘False’) and Xij specifies whether sj can be used in vi, i.e. whether bidder j arrives

before bidder i departs. Clearly, i’s own signal si can be used in vi. For instance, in scenario

TFT bidder 1 uses his signal and 2’s while bidders 2 and 3 use both other bidders’ signals.

Note that because of the bidder ordering, one cannot have scenarios FTF, FTT or TTF –

bidders’ arrival and departure order is the same: 1,2,3. Scenario FFT was omitted as it is
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expected to be analogous to TFF.

For simplicity, I will model the signal of any bidder as being uniformly distributed

on [0, 1]. In the continuous Branco formulation, the distribution-dependent part of i’s

virtual valuation (see Eq. (5.3)) will then be 1 − si.

MIP formulation

I present a mixed-integer programming (MIP) formulation for the TFT scenario.

This formulation can be extended to any other dynamic scenario.

The signal space of each bidder b is discretized such that sb can take on values

sb1, . . . , sbmb
. I will hereafter assume that bidders’ valuations are linear in the signals avail-

able: vi(si, s−i) = si +
∑

j 6=i vijsj . In Section 5.4.4 specific numeric values will be used for

the vij weights, i.e. for the weight that bidder i assigns to the signal of some bidder j 6= i.

This discretized type space provides an approximation to a continuous one.

To use a mechanism defined on a discrete type space in a continuous one, compute

the critical signal for a bidder 1 ≤ i ≤ 3 as follows: let sj and sk be the other bidders’ signals

and sj and sk be the highest discrete signals lower than sj and sk respectively. Bidder i’s

critical signal is then the discrete critical signal that was computed for (sj , sk).

Decision variables As seen in Theorem 21, any IC auction can be defined by conditional

critical signals when coupled with ITIC constraints. The MIP includes decision variables

ci, instantiated for each bidder i on the discretized signals of the other relevant bidders,

and defining the conditional critical signals (just “critical signals” hereafter). A bidder gets

the item if no earlier bidder won the item and the bidder’s signal satisfies ci ≥ ci(s−i) upon

departure. Given critical signals, binary variables λ, µ and ν encode whether each bidder



Chapter 5: Interdependent Values 171

(1, 2 and 3 respectively) does not win the item:

λij = 1 ⇐⇒ s1i < c1(s2j)

µijk = 1 iff s2j < c2(s1i, s3k) µ¬3
ij = 1 iff s2j < c¬3

2 (s1i) (5.4)

νijk = 1 ⇐⇒ s3k < c3(s1i, s2j)

Within the MIP, one can capture logic such as λij = 1 ⇐⇒ s1i < c1(s2j) via a

linear constraint such as −Mλij ≤ s1i − c1(s2j) < M(1− λij) where a “big M” is adopted,

and set to the smallest constant that can be proved to be larger than the maximal absolute

value of s1i − c1(s2j). Monotonicity constraints on indicator variables are λij ≤ λi−1,j ,

µijk ≤ µi,j−1,k, µ
¬3
ij ≤ µ¬3

i,j−1, and νijk ≤ νi,j,k−1.

These indicator variables are used both in the ITIC constraints and in the objective

function. For example, λij indicates whether bidder 1 does not win the item when his signal

is s1i and bidder 2’s signal is s2j . Note that in TFT bidder 1’s critical signal depends on s2,

bidder 3’s on (s1, s2) and bidder 2’s depends on whether or not bidder 3 arrives. Variables

c2(s1i, s3k) and µijk capture the behavior of the auction in respect to bidder 2 when bidder

3 arrives while variables µ¬3
ij and c¬3

2 (s1i) are for the case without bidder 3.5

ITIC constraints In the TFT scenario the ITIC constraints are encoded as:

• If p3A < 1, bidder 2 does not have a useful signal misreport when 3 does not arrive:

he cannot report a signal s2j′ instead of s2j such that he loses with j, wins with j′

and his critical signal is less than his true signal s2j (note that bidder 2 can only lose

to bidder 1). In critical signal notation,

6 ∃s1i, s2j , s2j′ s.t.

{
c1(s2j) ≤ s1i and s1i < c1(s2j′) and
c¬3
2 (s1i) ≤ s2j and c¬3

2 (s1i) ≤ s2j′

5Note that
P

i λijk may be different than 1 for some j and k as long as [min s1i, max s1i] does not cover
s1’s domain: e.g. if c1(s2j , s3k) < min s1i. A similar observation holds for

P

j µijk and
P

k νijk.
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which, using the variables in Eq. (5.4), can be written as

6 ∃i, j, j′ such that (¬λij) ∧ λij′ ∧ (¬µ¬3
ij ) ∧ (¬µ¬3

ij′ )

or still: ∀ i, j, j′ (1− λij) + λij′ + (1−µ¬3
ij ) + (1−µ¬3

ij′ ) ≤ 3, as a linear constraint.

• If p3A > 0, bidder 2 does not have a useful signal misreport when 3 arrives: he cannot

report a signal s2j′ instead of s2j such that he loses with j, wins with j′ and his critical

signal is less than his true signal s2j (note that in this case bidder 2 can only lose to

bidder 1). In critical signal notation,

6 ∃s1i, s2j , s2j′ , s3k s. t.

{
c1(s2j) ≤ s1i and s1i < c1(s2j′) and

c2(s1i, s3k) ≤ s2j and c2(s1i, s3k) ≤ s2j′

which is easily expressed into linear constraints as above.

• If p3A > 0, bidder 3 does not have a useful misreport when 3 arrives:

6 ∃s1i, s2j , s3k, s3k′ s.t.

{
c2(s1i, s3k) ≤ s2j and s2j < c2(s1i, s3k′) and
c3(s1i, s2j) ≤ s3k and c3(s1i, s2j) ≤ s3k′

The TFT scenario misses one type of ITIC constraint that is present in scenarios

where a bidder i can influence the ability of more than one earlier bidder to win the item.

For example, if there is a bidder 4 that is visible to both 2 and 3: a3 < a4 < d2 < d3 < d4

then the ITIC constraints for bidder 4 would require: he cannot report a signal s4l′ instead

of s4l such that he loses with l, wins with l′ and his critical signal is less than his true signal

s4l. Note that bidder 4 could lose to bidder 2 or bidder 3. In critical signal notation,

6 ∃s1i, s2j , s3k, s4l, s4l′ such that







[c2(s1i, s3k, s4l) ≤ s2j or c3(s1i, s2j , s4l) ≤ s3k] and
s2j < c2(s1i, s3k, s4l′) and
s3k < c3(s1i, s2j , s4l′) and

c4(s1i, s2j , s3k) ≤ s4l and c4(s1i, s2j , s3k) ≤ s4l′

(5.5)

which can also be easily expressed in linear constraints.
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Objective function The objective is to maximize the expected revenue given the proba-

bilistic model on bidder signals and whether or not bidder 3 will arrive. Let P(sil) denote the

discrete probability mass assigned to discrete signal level l for bidder i by evenly distributing

pdf fi. The objective is:

∑

k,j,i

P[s3k]P[s2j ]P[s1i]
(
R1(i, j) + (1 − p3A)R¬3

2 (i, j) + p3A(R2(i, j, k) +R3(i, j, k))
)

where
R1(i, j) = (1 − λij) (c1(s2j) + v12s2j + v10)

R¬3
2 (i, j) = λij(1 − µ¬3

ij )
(
c¬3
2 (s1i) + v21s1i + v20

)

R2(i, j, k) = λijk(1 − µijk) (c2(s1i, s3k) + v21s1i + v23s3k + v20)

R3(i, j, k) = λijkµijk(1 − νijk) (c3(s1i, s2j) + v31s1i + v32s2j + v30)

Recall that vij is a constant, denoting the weight that the bidder assigns to the

signal of some other bidder j 6= i. To linearize the objective, note that an objective term

such as R1(i, j) = (1 − λij) (c1(s2j) + v12s2j + v10) can be reduced to R1(i, j) ≤ c1(s2j) +

v12s2j + v10 and R1(i, j) ≤ M(1 − λij) for a suitable big M constant. Similar tricks can

be used for the other terms in the objective. The Rh(·) quantities measure the revenue

obtained when signals take the specific values s1i, s2j and s3k and bidder h wins the item.

For instance R2(i, j, k) is only activated if bidder 1 has not won the item (λij = 1 i.e.

s1i < c1(s2j)) but bidder 2 wins the item (µij = 0 i.e. s2j ≥ c2(s1i, s3k)). The winning

bidder pays his valuation given his critical signal and the signals of other bidders.

Formulation size The following problem characteristics define the size of the MIP in a

general scenario:

• D+ (≤ m): the maximum number of earlier bidders’ signals that can influence a

bidder’s value
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• D−: the maximum number of earlier bidders whose value can be influenced by any

single bidder’s signal

• S: the maximum size of the discrete signal space of any bidder

• n: the number of bidders

• m: the maximum number of other bidders’ signals that can influence the critical signal

to some bidder.

By generalizing Eq. (5.4), one can see that for each bidder i, each discrete signal

si and each possible signal tuple of bidders that influence i’s value, there is a variable

controlling whether si is smaller than the critical signal ci computed at that particular

tuple. Since in the tuple there can be at most D+ bidders, the number of variables is

O(nSD++1).

To analyze the number of constraints, one needs to extrapolate Eq. (5.5) since the

bulk of constraints will be of this form. Each such ITIC constraint must ensure that no

bidder i (i = 4 in Eq. (5.5)) can misreport his signal such that: all earlier bidders (2 and 3

in Eq. (5.5)) who should be winning when i is honest do not win anymore and furthermore,

i wins. There are n bidders in total. Each bidder i can influence the value of at most D−

earlier bidders and each of those other bidder’s ITIC constraint depends on his own signal,

together with perhaps m other signals, where m is the maximal number of other signals

that can influence his critical signal. Thus, the number of constraints is O(nD−Sm+1).

Note that there are no ITIC constraints when D− = 0, which occurs either in the IDV but

disjoint interval case or in the non-disjoint but private-values case. In both of these cases it

is sufficient for IC to simply formulate the decision problem as one of setting critical signals.

Remarks: Signals are discrete and critical signals are only constrained by in-

equalities of the form si < ci, from the ITIC constraints. Because critical-signals have
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non-negative weights in the objective function, if a critical signal ci is in between two con-

secutive discrete points sa and sa+1 then a solution as least as good as the current one

can be obtained by setting ci = sa+1, without affecting any ITIC constraints. Thus critical

signals will only be defined at discrete points.

While it is reasonable to consider structured problems in which D− and D+ are

small, the main bottleneck in encoding MIPs for large instances is in the dependence of the

number of constraints on Sm+1. For practical formulations the designer will need to impose

some limit to the number of earlier signals that can factor into setting the critical signal

for the current bidder, or adopt an alternate formulation that restricts this dependence to

some other derived statistic; e.g., the maximal earlier value of a departing bidder, or the

maximal signal of an earlier bidder.

5.4.4 Instantiation

I now initiate the simulation study, by instantiating particular scalars for the

valuation model described above.

Let s1, s2, s3 ∼ U [0, 1] and assume the following valuations (whose choice will be

motivated shortly):

v3(s1, s2, s3) = s3 +
s1
4

+
s2
4

+
1

4

v2(s1, s2, s3) =







s2 + s1

4 + s3

4 + 1
4 ,if d3 ≤ a2

s2 + s1

2 + 1
4 , otherwise

v1(s1, s2, s3) =







3
2s1 + 1

4 , if 1 cannot see 2 or 3

s1 + s2

2 + 1
4 , if 1 can see 2, but not 3

s1 + s2

4 + s3

4 + 1
4 , if 1 can see both 2 and 3
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The virtual valuations are

w̃1(s1, s2, s3) =







3s1 − 5
4 , , if 1 cannot see 2 or 3

2s1 + s2

2 − 3
4 , if 1 can see 2, but not 3

2s1 + s2

4 + s3

4 − 3
4 , if 1 can see both 2 and 3

w̃¬3
2 (s1, s2, s3) = 2s2 +

s1
2

− 3

4

w̃2(s1, s2, s3) = 2s2 +
s1
4

+
s3
4

− 3

4

w̃3(s1, s2, s3) = 2s3 +
s1
4

+
s2
4

− 3

4

The valuations were chosen to be symmetric and such that:

• they depend linearly on the signals available,

• ∂vi

∂si
> ∂vi

∂sj
∀ i, j, implying the v-monotonicity and SCC conditions

• v1 = v2 = v3 and w̃1 = w̃2 = w̃3 when s1 = s2 = s3 in all scenarios, except w̃1 < w̃2 =

w̃3 in scenario FFF.

The final property ensures that there is no a priori bias between bidders and it is

meant to facilitate the analysis of the interaction of interdependent values and uncertainty

about the future. One cannot have, however, v1 = v2 = v3 and w̃1 = w̃2 = w̃3 when s1 =

s2 = s3 in all scenarios unless values are private. For the weights chosen, E[w̃1(s1)] = 0.25

in scenario FFF, less than 0.5, the expected value of any bidder’s virtual valuation in all

other scenarios.

Experimental setup

I compare the performance of the MIP-based auction with two additional auctions

as summarized in Table 5.1. The continuous, clairvoyant (ContCV) auction provides a
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Table 5.1: Auctions used for evaluation (left), as characterized by whether or not the
auctioneer is clairvoyant (CV), whether or not a discretization is imposed when designing
the auction (Cont == “continuous,” no discretization), and whether or not the auction is
IC. The expected revenue is summarized by scenario (right) in an environment where bidder
3 always arrives.

Auction CV Cont IC

ContCV
√ √ √

Cont NonCV X
√

X
MIP policy X X

√

FFF TFF TFT TTT

Cont CV 0.8875 0.9471 0.9474 0.9448
Cont NonCV 0.8848 0.8551 0.85 0.9448
MIP policy 0.8843 0.9015 0.9018 0.9175

best-case revenue. Here, I allow the auctioneer to observe the signals of all bidders from

the start, regardless of the scenario. Bidder i’s critical signal is then computed as the least

signal for which i has the highest non-negative virtual valuation w̃i (recall that w̃i depends

on the scenario). In other words, ContCV implements Branco’s auction as if the auctioneer

could have perfect knowledge of all signals.

The continuous, non-clairvoyant (Cont NonCV) auction is a naive generalization

of Branco’s offline auction that is not IC in general. At each departure di, the item is sold

to i iff i’s virtual valuation w̃i is higher than the maximum of the expectations of the virtual

valuations of bidders still to arrive and zero (as in Eq. (5.6)). If any bidder j has already

departed, w̃i is not compared with w̃j . For example, in scenario TFT, this solution requires

selling to:

Bidder 1, if w̃1 ≥ (1 − p3A)max(w̃¬3
2 , 0) + p3AE[max(w̃2, w̃3, 0)]

Bidder 2, if w̃¬3
2 ≥ 0 when 3 does not arrive and haven’t sold to 1 (5.6)

Bidder 2, if w̃2 ≥ max(w̃3, 0) when 3 arrives and haven’t sold to 1

Bidder 3, if w̃3 ≥ 0 when 3 arrives and haven’t sold to 1 or 2

For scenario TFT in particular however, this is not IC: one can verify that for s1 = 0.6, s2 =

0.3 and any s3 ≤ 0.3 bidder 2 is better off reporting s′2 = 0.5.

For the MIP-based policy, recall that there are mi discrete signals for each bidder
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i, chosen as 1
1+mi

through mi

1+mi
, where m1 = 14,m2 = 9,m3 = 7. These numbers were

calibrated so as to balance solution quality in the time allotted with the granularity of the

discretization. A higher emphasis was placed on bidders 1 and 2 since the critical signals

vary the most for them. In the MIP formulation, 3’s critical signals are usually not used for

high values of s1: if s3 ≥ c∗3 then 1 wins the item since s1 ≥ c∗1 as well (in other words, the

unconditional critical signal of bidder 3 for high values of s1 is ∞). As mentioned before,

critical signals c∗1 will only take values at discrete signals s1i. Allowing bidder 1 the most

discrete signals makes the solution more informative.

The MIP formulation was encoded using CPLEX and JOpt, a simplified Java

Wrapper for mixed integer or linear programming6. It was run on each scenario and auction

for three hours on a Pentium IV at 3GHZ, allowing 256MB of memory for CPLEX. For

comparison, 256MB is not enough memory in the TTT scenario for m1 = m2 = m3 = 19.

Note that the CPLEX solution was stopped before reaching its tolerance level of 99.9%; any

feasible solution to the MIP is however IC, because it must satisfy the ITIC constraints.

Unless stated otherwise, p3A = 1, meaning that bidder 3 always arrives. For each

auction, a critical signal set matrix was obtained by solving the MIP and then evaluated

using sampling of signals: 500000 independent uniform samples of (s1, s2, s3) ∈ [0, 1]3 were

taken for the clairvoyant tests and 10000 for the non-clairvoyant ones, due to these taking

significantly longer.

Empirical results

The average revenue for the MIP formulation and the Clairvoyant and Non-

Clairvoyant settings are shown in Table 5.1, right. Let us take a closer look at these

numbers. In all three auctions, as the bidders intervals’ overlap increases, so does the rev-

6http://www.eecs.harvard.edu/econcs/jopt
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Figure 5.7: Critical signals of bidder 1 as a function of bidder 2’s signals in scenario TFT
for several values of p3A (shown in legend). The critical signals obtained from the MIP
policy are on the left, while the ones obtained from the (Branco) ContNonCV heuristic are
on the right.

enue – this is expected since the uncertainty in the model decreases with the amount of

overlap.

The MIP solution generates a higher revenue than the non-clairvoyant one in

scenarios TFF and TFT. Thus, it appears that tackling the online problem directly provides

a better solution despite having to impose ITIC constraints and having the auction limited

to be defined at discrete points. Scenarios TFF and TFT have produced close revenues for

all auctions.

I also experimented with varying p3A in scenario TFT. Recall that in scenario TFT,

bidder 1 can only observe bidder 2’s signal, but bidders 2 and 3 observe every bidder’s signal.

At d1 only the probability p3A of 3 arriving is known – whether 3 arrives will be known

before d2. This scenario offers the most interesting IC considerations (for bidder 2), at least

without bidders fully overlapping.

As expected, as the probability p3A of bidder 3 arriving goes down, so does the

expected revenue of the optimal auction as approximated by the MIP formulation. The
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table below was obtained by sampling, in the same way as above, 100000 triples of signals:

p3A 1.0 0.75 0.5 0.25 0.0

revenue 0.902 0.868 0.848 0.815 0.807

The critical signals for bidders 2 and 3 computed at time d1 are basically identical

for all values of p3A. What differs are the critical signals of bidder 1, plotted in Figure 5.7,

left. The signals have an increasing, convex shape and appear to become flatter as p3A

increases.7 The similarity with the signals predicted by the Branco non-clairvoyant (on the

right in the same Figure) is striking. Recall though that the Branco non-clairvoyant are

not IC! It is an interesting question whether this phenomenon is in fact output ironing in

order to achieve IC (in the sense of Myerson [64]) or whether it is due to the discretizations

imposed in the MIP methodology together with suboptimal solutions. I conjecture this

effect to be due to leveling of critical signals in regions of the signal space that may violate

IC (in this case, pairs of low s1 and s2 in Figure 5.7). By way of comparison, I also used

the above formulation on the TTT scenario, which is effectively an one-shot, non-dynamic

scenario. The (approximate) optimal auction was almost identical to the optimal IC auction

predicted by Branco’s result, as described in Subsection 5.4.2.

Summary

In this chapter I extended the model of interdependent values to dynamic single-

item auctions for bidders with arrivals and departures. I showed that an incentive compati-

ble dynamic auction with interdependent values must assign to each bidder a critical signal

that may depend on others’ signals and intervals. This critical signal cannot decrease if the

bidder reports a later arrival. I showed that no ex post incentive-compatible and reasonable

auction exists in the general setting. I developed incentive-compatible, reasonable auctions

7The variance in this picture is probably due to CPLEX stopping in each instance on one of the many
approximately optimal solutions.
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for settings where bidders cannot misreport both signal and departure.

I considered a simple single-item dynamic setting where bidders have interdepen-

dent values, but their arrivals and departures are public. I formulated the design problem

of revenue-optimal auctions as a mixed-integer program defined on discretized signals. The

formulation has reasonable size if the amount of interdependence between bidders’ valua-

tions is small, a coarse signal discretization can be tolerated, and a bound is imposed on

the maximal dependence on earlier signals of any bidder’s price. The formulation leverages

my characterization in terms of critical signals for dynamic incentive-compatible auctions.

The design problem thus becomes one of setting appropriate critical signals, which in turn

induce an optimal decision policy. In the example I have considered, the optimal policy is

close, but not identical, to a heuristic policy generalizing the static revenue-optimal auction.



Chapter 6

Conclusions and Perspectives

In this thesis I designed and analyzed expressive, resilient to manipulations, dy-

namic auctions with good performance under economic measures such as revenue or social

welfare.

I proceed by reviewing the main contributions, discussing the tradeoffs encountered

between the different desiderata and finally presenting promising directions for future work.

Summary: Thesis contributions

Incentive compatibility via self-correction

I extended to the domain of non-expiring goods the framework of self-correction,

applied to optimization based on a distributional model of future demand.

Self-correction, introduced in [71] for expiring goods, is a local, run-time, rectifica-

tion technique that establishes the global property of incentive compatibility. Self-correction

eliminates opportunities for profitable manipulations in Consensus, an online stochastic

combinatorial optimization algorithm [84]. From an allocation perspective, self-correction

amounts to discarding the items of bidders who might have benefited from a manipulation.

182
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For the non-expiring goods model that I considered, simply applying self-correction

to Consensus leads to frequent discards due to impossibility of verifying that bidders can-

not profitably report earlier departures. To overcome this problem, I designed the NowWait

heuristic adaptation of Consensus, that only allocates to a bidder when his reward is

higher than his current estimated opportunity cost. To estimate this opportunity cost,

NowWait uses the prior distribution on departures (and not any information on reported

departures). NowWait has encouraging efficiency, despite more discards, and limited com-

putational overhead when compared to a naive simplification of the method in [71]. My

framework also allows targeting revenue; I showed how to incorporate the classical method

of virtual valuations [64] towards this goal.

Costly cancellations of reservations for impatient buyers

I initiated the worst-case study of mechanisms for impatient buyers bidding on

reservations that can be canceled by the seller. I provided an online mechanism Mα(γ) for

a model in which each buyer has value for a single item and makes an instantaneous offer

for it, incurring a loss of a fraction of this value if his reservation is canceled later.

Mα(γ) is always at most a multiplicative constant factor away from the optimum

achievable if all offers arrived simultaneously, in terms of social welfare with or without

accounting for the value losses of bidders whose reservations were canceled. A similar

bound holds for the revenue of Mα(γ) when compared to the standard VCG mechanism.

If bidders are moderately truthful (the sum of their utilities is non-negative) then

Mα(γ) is constant-competitive with respect to bidders’ true values as well.

In Mα(γ), no bidder can profit by underbidding, whereas overbidding is profitable

only if the bidder would have his reservation canceled when truthful. Constant competi-

tiveness is no longer achievable if one requires that a bidder be best off by bidding his true
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value under any circumstances.

Competitive and incentive-compatible extensions of Mα(γ) to domains where bid-

ders’ information is no longer one-dimensional appear challenging.

Interdependent values

I extended the classical static model of interdependent values from the auction

theory literature to single-item dynamic auctions. In my model, each bidder has a private

estimate (signal) regarding the item’s quality, a public mapping from all signals to his value,

and an arrival and a departure specifying the interval in which he has value for the item.

I provided a characterization for incentive compatibility, which requires the exis-

tence of a critical signal for each bidder: a bidder wins if and only if his reported signal is

higher than his critical signal. A bidder’s critical signal cannot increase if the bidder reports

a later arrival. Using this characterization, I showed that when a bidder can manipulate

his departure, no reasonable auction can be incentive-compatible.

I formulated the problem of maximizing revenue in a simple dynamic setting with

interdependent values and known arrivals and departures as a mixed-integer program. I

showed the similarity of the optimal solution with the solution obtained via a heuristic that

generalizes Myerson’s [64] virtual valuation auction to dynamic interdependent values.

Tradeoffs between desiderata of dynamic auctions

In the mechanisms designed in this thesis, tradeoffs had to be made between

performance Typical economic performance measures are revenue and social welfare. A

usual concern in computer science is the complexity of running a certain auction, for

example in computing the optimal allocation or prices.
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expressiveness Expressiveness measures the extent to which information provided by a

buyer is taken into account by the seller towards making a decision. For instance,

allowing each bidder to specify a quantity and perhaps an arrival-departure interval

in addition to a bid and taking them into account when deciding an allocation increases

an auction’s expressiveness.

incentive properties Guarantees of a mechanism’s performance are most powerful when

they are consistent with predictions on player behavior, for example via equilibrium

concepts. A central goal for the auctions in this thesis was achieving strong incentive

compatibility, which requires that it is best, under a small set of assumptions, for a

bidder to reveal his private information truthfully.

Here are some of the tradeoffs encountered:

Chapter 2 Any truthful function for unrestricted preferences must be an affine maximizer.

In contrast, for the very restrictive case of single-minded preferences, there is a rich

set, beyond affine maximizers, of social choice functions that are truthful. In dy-

namic environments, dynamic VCG maximizes expected social welfare and has good

incentive properties but is not scalable computationally.

Chapter 3 When all bidders have unit-demand, no cancellations due to self-correction were

encountered in any of the experiments. In particular, if all other (active and sampled)

bidders have unit-demand, reducing one’s quantity cannot result in not being selected

anymore by NowWait.

Interestingly, NowWait’s smooth interfacing with self-correction is guaranteed only

when bidders with high values and high patiences tend to be rare.

There exist analytic characterizations of revenue-optimal dynamic auctions only for
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simple, unit-demand, domains. In contrast, the complex interactions between bidders

in my domain seem to require a computational approach.

Chapter 4 If bidders treat items identically and each bidder has value for exactly one

item, then no bidder can be strictly better off by bidding below his true value in Mα(γ).

However, incentives properties become more involved when bidders have more refined

preferences. First, if a bidder has value for exactly one item in a choice subset (and

0 for any other item) then this subset must be known by the seller to ensure that the

bidder does not prefer pretending a different choice subset. Second, naively extending

the unit-demand algorithm to a setting where items are identical and a bidder may

have value for more than one item leads to new opportunities for manipulation.

Call a mechanism with cancellations for allocating a single item competitive if, on any

sequence of bids, the bid it allocates to is at least a constant factor of the highest

bid. It is established in Chapter 4 that no competitive mechanism can incentivize a

bidder to always bid his true value. In contrast, if all bids are received at once, the

second-price auction always allocates to the highest bid and has truthful bidding as

dominant strategy.

Chapter 5 For interdependent values, the most powerful variant of incentive compatibility

usually considered is ex post: a bidder is best off by truthfully reporting his private

information given that others do the same, for any private information the other

bidders may have.

There exists an ex post incentive-compatible, reasonable, dynamic auction for bidders

with interdependent values if and only if no bidder can misreport his departure. In

contrast, in static auctions with interdependent values, a generalization of the VCG

mechanism chooses the socially-optimal allocation and is ex post incentive-compatible.
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Opportunities for future work

Despite the common thread defining this thesis, in each chapter there are some

assumptions that are not touched on in the other chapters. For example, the ability of

cancelling previous allocations, correlation between the components of a bidder’s type,

correlation or interdependence of a bidder’s value on other bidders’ private information etc.

It is of interest to consider the robustness of results in one chapter when assumptions are

relaxed or enriched.

I first describe several appealing open questions related to each chapter and then

I go on to discuss open-ended questions of more general interest.

Incentive compatibility via self-correction. Before discards due to self-

correction, NowWait achieves higher social welfare on some distributions when compared

to the Consensus algorithm, that only allocates a bidder upon departure. This suggests

that better performance may be attained using more sophisticated online stochastic combi-

natorial optimization methods, such as the Expectation algorithm [84]. Better estimates

of opportunity costs for NowWait may also lead to better performance. Either extension

will, however, require care in coupling with self-correction. It is clearly of interest to study

the “first best” solution, i.e. the value- or revenue-maximizing policy among monotonic

policies. Obtaining this solution appears a significant technical and computational chal-

lenge because monotonicity constraints break the “principle of optimality” that underlies

many computational approaches.

Self-correction holds promise in other settings where optimization has been studied

mostly without considering incentives. Potential applications include both static traditional

computer science domains and dynamic settings such as dynamic auctions with interdepen-

dent values (Chapter 5) or dynamic combinatorial auctions. Another research question,
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suggested by Chapter 4, is the applicability of self-correction to establishing less restrictive

notions of incentive compatibility. Such a question may benefit from characterizations of

such notions, for example via outcome graph considerations as in Section 4.6.4.

Reservations. Chapter 4 introduces a relaxed form of incentive compatibility:

truthful winners are best-responding and underbidding is never better than bidding one’s

true value. Is (constant) competitiveness possible in other domains under this incentive

compatibility notion where it is impossible under dominant strategy incentive compatibility?

Such domains should probably involve more complex decisions than a binary decision for

players with one-dimensional private information, for which the incentive compatibility

notion defined in Chapter 4 appears identical to dominant strategy incentive compatibility.

Lavi and Nisan [56] establish such a competitiveness gap in an expiring goods setting for

strategies in a Set-Nash equilibrium, a relaxation of dominant strategy equilibrium that

may be more or less general than the notion in Chapter 4.

Interdependent values. One appealing variation of the model in Chapter 5 is to

allow correlation between bidders’ signals, which I assumed to be independent. It is of inter-

est to better understand the relationship between virtual valuation-based methods [15, 64]

and the solutions generated through optimization subject to incentive compatibility con-

straints. A relevant extension towards overcoming the curse of dimensionality are graphical

models of interdependent values with rich structure.

In all chapters in this thesis, a bidder’s value dropped to 0 at departure. A more

practical assumption is that a bidder’s value is decreasing over time after departure. A

model in which a bidder’s value is discounted via a publicly known function is appealing

because it does not introduce further opportunities for manipulations.

There is a significant gap between the economics approach of assuming distri-

butions on bidder valuations and the theoretical computer science approach of worst-case
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analysis. In this thesis, I adopt the distribution-based approach in Chapters 3 and 5 and the

distribution-free one in Chapter 4. Obtaining better bounds with significantly less informa-

tion than a distributional model (such as bounded values [55] or uniform order of arrival,

as in the secretary problem and its variants) is an important direction of research aimed at

bridging the aforementioned gap.

Perhaps one of the most promising approaches to simultaneously aiming for incen-

tive compatibility and optimization is reducing the former to the latter, as achieved by, for

example, Awerbuch et al. [5] or Lavi and Swamy [57]. It seems likely that, regardless of the

approach, tradeoffs of incentive compatibility and optimization will need to be made; the

findings in this thesis support this statement. A unified metric for losses in performance

and profitable manipulations is currently missing and of interest.

“Dynamic” and “online” are sometimes used interchangeably for specifying that

an auction takes place over time. More often however1, the first term is used for persistent

populations with changing types whereas the second term is used for changing populations

with persistent types. There is a clear need to unify the literatures for the two types of

environments, but the unified treatment by Cavallo [18] is the only one that I am aware of.

Beyond dynamic auctions, dynamic mechanism design is very promising for collab-

orations between computer scientists and economists. While economists are traditionally

the experts in mechanism design, the prescriptive approach and the increased relevance of

computational considerations in dynamic, as opposed to static, mechanism design render it

amenable to computer science expertise.

1I feel that “dynamic” is an appropriate name for both settings, whereas “online” auctions are often
taken to mean “on the Internet”.
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