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Abstract

In the field of mechanism design, the goal of a decentralized, efficient, and strategy-proof
auction mechanism has been well-established. Integer and linear programs are natural
ways to represent the allocation problems that mechanism design addresses, in this case
the Combinatorial Allocation Problem (CAP). The goal of this thesis is to propose several
frameworks for an iterative, distributed auction, based on the Dantzig-Wolfe and Benders
decomposition methods for linear and mixed integer programs. The strategy is to formulate
the CAP rigorously as a linear or mixed integer program, to solve using a decomposition
method (Dantzig-Wolfe or Benders), and to create a reasonable auction interpretation of the
process. The result is a design for a distributed implementation of a Generalized Vickrey
Auction (GVA), from the family of Vickrey-Clarke-Groves (VCG) mechanisms.



Chapter 1

Introduction

In the field of mechanism design, the goal of a decentralized, efficient, and strategy-proof
auction mechanism has been well established. Central mechanisms, in particular Groves
mechanisms, have been well-researched, but in general fall short of simultaneously providing
both the game-theoretic and computational properties that we might desire from such a
system. The main motivations for a distributed implementation are threefold: 1), that such
an implementation could more easily and naturally be parallelized in the face of increasing
computational demands, 2), that a distributed mechanism could possibly provide stronger
privacy properties than a centralized direct-revelation mechanism, and 3), that in some

applications a trusted, computationally capable central agent might not be feasible.

A distributed implementation provides each agent with the specifications for its role in a
distributed algorithm, which combines the work of all of the agents to produce an optimal
solution to the allocation problem. The difficulty of distributed mechanism lies in the fact
that, compared to a centralized design, the participating agents have more of a role in the
computation and thus more of an opportunity to manipulate the outcome. A self-interested
agent would, if possible, try to deviate from its prescribed actions in order to win more
goods and lower its own payments. Our goal is to design a distributed algorithm that align
incentives such that the agents choose, out of their own self-interest, to perform their part

of the distributed algorithm correctly.

Integer and linear programs are natural ways to represent the allocation problems that
mechanism design addresses, and primal-dual algorithms have been studied in the past as
ways to implement effective mechanisms. In this paper we will propose two frameworks for
an iterative, distributed auction based on decomposition methods for linear programs. The
first is based on the Dantzig-Wolfe decomposition, which takes advantage of block structure
in the coefficient matrix to decompose the problem into a master problem and one or more
simpler subproblems. The second is based on Benders decomposition, which separates the
variables into two classes and iterates toward a solution by fixing one class and solving a

subproblem based on the second class of variables alone. The end goal of both of these
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frameworks is a distributed implementation of a Generalized Vickrey Auction (GVA), from
the family of Vickrey-Clarke-Groves (VCG) mechanisms.

At a high level, the Dantzig-Wolfe decomposition is designed to take advantage of special
structure in large problems to solve them more easily. In the case of an auction, the problem
can be broken down into a separate valuation problem for each agent, linked by constraints
ensuring that no good can be allocated to more than one agent. The center’s role is to
enforce these resource constraints and to pass prices to the agents that reflect the marginal
value or demand for each good. Each agent has its own subproblem, which is to determine

and report its best bundle under these prices.

The Benders is in a sense the opposite of Dantzig-Wolfe. Rather than accumulate a set of
proposals, the center in Benders accumulates a core of pricing information by broadcasting
proposals to the agents and receiving valuation information in return. Whereas Dantzig-
Wolfe terminates when no new proposals are received from agents, in Benders the center
develops a more and more accurate sense of the value of various possible partitions of

bundles, and terminates when it is satisfied that its prices are accurate enough.

The combinatorial allocation problem (CAP) is widely useful model for a resource al-
location problem where agents have complicated valuation schemes. The CAP is easily
formulated as an integer program, but naive linear program relaxation is not guaranteed
to produce feasible allocations, as it may allocate fractions of bundles which are in reality
indivisible. Hence, to employ linear program solution methods, we must first formulate the
program more strongly so that even under a continuous relaxation, solutions are guaranteed
to be integral. Fortunately, Bikhchandani and Ostroy [2001] and Bikhchandani et al. [2001]
have already undertaken this problem and from their work we have three stronger formu-
lations - called LP2, LP3, and LP4 - which will be of tremendous value to us. The main
substance of this thesis treats the application of our two chosen decomposition methods
(Dantzig-Wolfe and Benders) to these three strong linear programming formulations of the
CAP.

1.1 Related Work

The idea of distributed auction mechanisms is not new. Bertsekas [1988] proposed an
iterative distributed process for solving optimization problems with a similar flavor to the
Dantzig-Wolfe auction proposed in this thesis, wherein prices are determined centrally and
at each rounds agents respond with their preferred bundle under these prices. Demange
et al. [1986] propose an iterative, ascending-price auction where prices are raised each round
on over-demanded goods. This can be seen as a primal-dual approach to the problem, as

outlined more generally by Bikhchandani et al. [2001].



CHAPTER 1. INTRODUCTION 3

In his doctoral thesis, Parkes [2001] proposes the iBundle family of iterative combinato-
rial auctions, designed to implement the overall welfare-maximizing outcome in the face of
self-interested agents. This dissertation also connects the idea of primal-dual auction meth-
ods back to the VCG mechanism and the computation of Vickrey payments. Parkes and
Shneidman [2004] take up the idea of distributed mechanism implementations, and demon-
strate a number of principles to guide decentralization, particularly for VCG mechanisms

for implementing outcomes that maximize total agent value.

Kameshwaran [2004] uses Benders decomposition to solve several versions of the piecewise
linear knapsack problem, which is similar to the CAP. His work views the knapsack problem
as a winner determination problem only, and so does not seek to decentralize it or interpret
it explicitly as an auction. He also finds that an exact algorithm based on the Benders
decomposition performs worse empirically on the knapsack problem than a number of other

hybrid algorithms based branch-and-bound and dynamic programming techniques.

Finally, Abrache et al. [2004] directly suggest the use of decomposition methods to
design iterative combinatorial auctions, and explore both Lagrangian relaxation and the
Dantzig-Wolfe decomposition as bases for auctions. They formulate a Dantzig-Wolfe auction
for a continuous allocation problem and conclude that, while the auction has the benefit
of maintaining a feasible provisional allocation at all times, it runs into difficulties with
protecting agent privacy and its incentive properties are weak. In their conclusion they
specifically suggest exploring the Bikhchandani and Ostroy [2001] extended LP formulations
as an avenue for future research in the case of indivisible (rather than continuously divisible)

goods.

Building on this existing body of work, this thesis aims to explore decomposition methods
as a basis for an iterative combinatorial auction, specifically the case of discrete, indivisible
goods. Our hope is to progress in the direction of such a design with favorable properties

in both the incentive realm and the computational realm.

1.2 Outline

Chapter 2 of this thesis presents the combinatorial allocation problem and its importance as
a mathematical model for a diverse set of real-world applications, in order to motivate the
remainder of this work. It also provides a brief overview of classic mechanism theory and
more thoroughly discusses the reasons why a distributed approach seems attractive from

that point of view.

Chapter 3 explains the role of linear programming and introduces the Dantzig-Wolfe
decomposition, mentioning in particular the pricing role played by the solutions to the dual
problem and the economic interpretation thereof. Chapter 4 introduces the auction design in

the simpler domain of the assignment problem, and Chapter 5 and generalizes this design to
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the full combinatorial allocation problem. Chapter 5 also addresses the multiplicity of dual
solutions that may exist, explores the possibility of optimizing the algorithm by exploiting
similarities in the linear programs in consecutive rounds, and offers a concluding assessment

of the Dantzig-Wolfe auction.

Chapter 6 then introduces the Benders decomposition, and Chapter 7 presents in depth
the Benders auction based on the LP2 formulation. The subproblem and master problem are
discussed, the problem of decentralization is investigated at length, and several concrete,
small-scale examples are presented to help develop intuition for the process. Chapter 8
considers designing a Benders auction using the LP3 and LP4 formulations, but finds LP3
a poor match for the Benders technique. Applying Benders to LP4 is quite complicated

and offers long-term more promise, although the analysis presented here is inconclusive.

Finally, Chapter 9 concludes, offering a comparison between the Dantzig-Wolfe and
Benders auctions, thoughts on the implications of this thesis for the goal of an incentive-
compatible, distributed combinatorial auction, and suggestions for further research on this

topic.



Chapter 2

Classic Mechanism Design

Mechanism design is a field that combines computer science and artificial intelligence with
economics and game theory to provide multi-agent systems with solutions to problems.
A key feature of mechanism problems is the need to induce the agents, which are often

self-interested, to collaborate to find the optimal system-wide solution.

2.1 The Combinatorial Allocation Problem

The problem that mechanism design usually attempts to solve is the combinatorial allocation
problem (CAP), which in our case can also be thought of as a combinatorial auction. The
CAP is a resource allocation problem in which agents have non-linear values for bundles
of items, and so may value a bundle of two or more goods differently than the sum of
their values for the goods that comprise that bundle. In our system, we have a set N of
independent, rational, self-interested agents and a set M of items. Each agent j has a
valuation function v;(S) over all possible bundles of items S C M that could be allocated
to that agent. The goal is to determine the allocation that maximizes the overall value to

all of the agents, i.e. to maximize

V(N) = Z%‘(Sj)

where S; is the bundle of items assigned to agent j in the optimal allocation and V(N) is

the total value of the efficient (socially optimal) outcome.

We will make certain simplifying assumptions about agents that are common to mecha-

nism design literature. Each agent’s utility function is quasi-linear, such that

uJ(S) = Uj(S) —pj(S>,VS g M
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where u; is the utility function of the j-th agent, S is a bundle of items, and v; and p; are
the value and price of bundle S to the j-th agent, respectively. Agents are assumed to be

risk-neutral, and there is assumed to be no collusion between agents.

2.2 The CAP as a Model for Real-World Problems

Because of its ability to capture complementarities and other interactions between ”items”
of any kind, the CAP is a highly descriptive and useful mathematical model for a wide range
of computational and real-world scenarios. Parkes [2001] gives a number of examples from
a number of domains which require the expressivity of combinatorial valuation functions,

including:

Manufacturing Scheduling: Allocating machine time in a factory producing
multiple items, each with its own production sequence, quotas, deadlines, and

cost /revenue structure.

Supply Chain Coordination: Allocating multiple components to competing
manufacturers, each of whom needs all of a particular combination of compo-

nents in order to produce.

Pick-up and Drop-off Routing: Designing routes for a distribution system
which has limited transportational resources (i.e. a finite number of delivery
trucks) - important to devise efficient combinations of pick-up and drop-off lo-

cations.

Travel Packages: Matching combinations of airline tickets, hotel reservations,
car rentals, entertainment tickets, etc. to a diverse domain of clients with differ-
ing preferences with regard to location, price, entertainment, etc. In particular
the travel agent needs to provide a complete combination - outward flight and
return flight, hotel for appropriate nights, etc. - if any of these elements are

missing the package is not valuable.

Course Registration: Matching a body of students with different academic
requirements and course preferences with a set of courses with limited enroll-
ment, ensuring that each student enrolls in an appropriate number of courses

and avoids any time-scheduling conflicts.

Dynamic Resource Allocation: For example, the problem of dynamically
allocating bandwidth - defining slots of bandwidth by time and size and allot-

ting them to agents with values for bundles of slots.
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Distributed Query Optimization: Responding efficiently and effectively to
a set of queries with the help of a number of agents with differing expertise
and restrictions on communication and/or the response capacity of individual

agents.

In addition to these examples, two very prominent real-world cases of the CAP were the
subject of the Harvard graduate class Computer Science 286r in the spring of 2004, the aim
of which was to design and implement an iterative combinatorial exchange. The two areas
of application were the FCC spectrum allocation problem and the problem of scheduling

airplane landing and take-off slots at major U.S. airports.

In the 1990s, Congress mandated the FCC to achieve a ”value-maximizing” allocation of
wireless spectrum to wireless phone companies and other potential users. The affected spec-
trum was previously allotted by the FCC to potential users on a case-by-case basis. Studies
showed that this had resulted in massive inefficiencies in spectrum allocation [Kwerel and
Williams, 2000]. The proposed solution was a gradual transition to comprehensive licensing
of the spectrum and a market-based allocation system in which spectrum licenses (over time
and geographic region) could be bought or sold freely. Significant economic and political
issues obstruct an immediate and complete switch to this system, but small progress can be
(and has been) made by licensing small blocks of spectrum and releasing them to the public
with an initial auction. The valuation of spectrum licenses, over various bandwidths and
geographic areas, is quite synergistic - for example, a regional or national company might
have a significantly higher value for the bundle of licenses for New York City, Philadelphia,
and Washington, D.C. than for each of those licenses individually. Furthermore, given
differences in strategy, geographic scope, and technology, the optimal packaging of these
licenses is far from agreed upon. Viewing the problem as a combinatorial allocation prob-
lem allows the market to effectively value and compare overlapping (and hence mutually

exclusive) plans and ultimately to allocate the licenses in the value-maximizing way.

The combinatorial aspect of the airline runway slot scheduling problem arises from the
need to pair take-off and landing slots for each flight, subject to flight-time and flight
scheduling constraints. Historically the FAA directly allocated slots to each of the major
airlines; however, there are compelling economic reasons to transition to a market-based
allocation system which would promote much greater efficiency. Like the FCC with regard
to the spectrum allocation problem, the FAA is actively encouraging research on a combi-
natorial auction as a potential mechanism for both the initial transition to a market-based

system and a continuous method of allocating take-off and landing slots efficiently.

The examples in this section, drawn from a wide range of problem domains, only begin
to demonstrate the breadth of applicability of the CAP. Furthermore, the power of the

combinatorial bidding paradigm to express complicated preferences indicates that the CAP
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may be an effective representation for many unforeseen future problems, as well as those
under consideration today. Hopefully this sufficiently motivates the exploration of the CAP

and of promising auction methods for its solution.

2.3 Incentive Compatibility

A key goal of mechanism design is incentive compatibility or strategy-proofness, which can
be thought of as ensuring that the interests of the individual agents are aligned with those
of the system as a whole. The goal of the system is to compute the optimal allocation given
the valuation functions of each of the agents, which requires that each agent report their
valuation function accurately. Since each agent is self-interested, if an agent can gain utility
by misreporting its valuation function, it will choose to do so. Therefore, we wish to ensure
that each agent prefers to report its valuation function truthfully. In game theoretic terms,

we wish for truthfulness to be a dominant strategy for each agent.

Dominant strategies provide an additional benefit by reducing the strategic complexity for
the agents, and thus the overall complexity of the problem they face in trying to maximize
their utility. If there were no dominant strategy, the agent would have to perform game-
theoretic reasoning to determine the best strategy. Even worse, if the exact nature of the
other is hidden (which is quite probable in competitive real-world applications), the agent
has to reason with incomplete information. Deciding the best strategy could be a very
demanding problem computationally, which we can eliminate by providing a mechanism in

which the dominant strategy is truthfulness.

A very simple example of an incentive compatible mechanism is the single-item, second-
price option, also known as the Vickrey auction. Briefly, each agent’s best strategy is to
bid their true value for the item, since if they win, they only pay the amount of the second
highest bid. The generalization of the Vickrey auction to multiple items is known as the
Generalized Vickrey Auction, in the class of Vickrey-Clarke-Groves mechanisms. It is in

essence a second price auction - each agent j must pay

pi(8;) = V(N/5) = > vi(Si)
i#]
=V(N/j) = V(N) + v;(5;)

where V(N/j) represents the total value of the optimal solution excluding agent j. This
means that the utility of the optimal allocation to agent j is equal to the amount by which

it increases the social optimum V' (IV), as can be seen below:
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ui(S5) = v(S;) — | VIN/G) =Y vil(Si)
i#j

= > w(S) - V)
= V(N) - V(N/j)

Note that to compute the payments for the Generalized Vickrey Auction, the mechanism
needs to compute solutions to V' (N/j) for all agents 7 € N. This means that in a system with
n agents, implementing the GVA requires solving n + 1 combinatorial allocation problems

of approximately the same size as the original problem.

2.4 Central Agent Mechanisms

The classic VCG mechanism uses a trusted central agent to implement the entire mechanism.
The participating agents submit their valuation functions to the center, the center solves for
the optimal allocation with all agents (which has value V(NN)) and the optimal allocations
without each agent in turn (which have values V(N/j)). It then reports the solutions and
the payments back to the participating agents. However, with large numbers of agents and
items, solving the necessary optimization problems becomes very intensive computationally
- the growth is probably exponential, as the combinatorial allocation problem is NP-hard.
The natural approach to this increasing computational time would be parallelization, but
a mechanism with all problems being solved by one central agent doesn’t easily lend itself
to parallelism. This is a clue that perhaps a more fully distributed implementation of the
VCG mechanism might be desirable, as it could be more easily run in parallel and thus

combat complexity and efficiency issues.

Issues of complexity aside, a broader concern is that a centralized mechanism imple-
mentation may not lend itself to certain domains and real-world problems. The classic,
centralized VCG mechanism serves its purpose well in some cases but has many issues.
We would like to improve the mechanism’s complexity and privacy and eliminate the need
for a trusted center, without compromising its desirable game-theoretical properties like
strategy-proofness. Furthermore, a distributed implementation would be a much better,

more natural fit for many problems.

2.5 Distributed Implementations of VCG Mechanisms

One drawback inherent to classic mechanism design is that all decision-making is neces-

sarily centralized. Parkes and Shneidman [2004] motivate and lay out a framework for
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the exploration of possible distributed implementations of VCG mechanisms. The fusion
of mechanism design with algorithms and knowledge from distributed artificial intelligence
has the potential to address the great challenge of integrating the cooperative methods of
the latter with the self-interested methods of the former. The unification of these disciplines
could have strong benefits for the field of multiagent systems as a whole, according to Lesser
[1999].

The goal of this exploration, according to Parkes and Shneidman, should be a distributed
mechanism implementation that balances good computational properties with good incen-
tive properties. Incentive compatibility in particular is an issue with distributed implemen-
tations since the agents have a greater range of actions available to them and therefore more
room for strategic action and deviation. Good incentive properties will ensure a success-
ful, or faithful, implementation, in that agents choose to be truthful because it is in their
best interest. Parkes and Shneidman [2004] propose three principles to guide the design of
distributed mechanism implementations: the partition principle, the information-revelation
principle, and the redundancy principle. The first two are relevant to the Dantzig-Wolfe
auction put forth in this paper. Since the Benders auction is slightly more complicated
and less rigid in its implementation at this point, it is less clear how these principles apply.
Our ultimate goal is still the same, though, and hopefully the Benders auction can also be

implemented in a way that clearly satisfies both principles.

2.5.1 The Partition Principle

Distributing computation in a VCG mechanism allows the agents more latitude for manip-
ulation than in a classic, centralized mechanism. Whereas in a centralized mechanism the
agents are only responsible for the private information they reveal to the trusted center, in a
distributed implementation the actual winner determination rests on the agents themselves.
Therefore, to ensure incentive compatibility, the distributed implementation must be de-
signed such that no agent has an opportunity to deviate in its computational contribution
in a way that increases its overall utility from the system. The partition principle addresses

this concern:

Theorem 1. (Partition Principle) Consider a distributed implementation dy; of the
VCG mechanism in which a canonical distributed algorithm is adopted to solve the set of
marginal economies {En,En_1,...}. If in dyr computation is partitioned such that the
center can correctly solve En_; whatever the actions of agent j, then dy; is an ex post
faithful distributed implementation of the efficient choice and VCG payments. [Parkes and
Shneidman, 2004]

The Dantzig-Wolfe decomposition can be viewed as a distributed optimization algorithm,

and this paper will later show how it can be used to solve the main economy Ey and each
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of the marginal economies {En_1, EN_g,...}. It will be shown later that in doing so the

Dantzig-Wolfe auction satisfies the partition principle.

2.5.2 The Information-Revelation Principle

Another way of ensuring that agents do not manipulate the solution is to restrict the
action space of agents to actions that reveal private information. The information-revelation
principle formalizes this idea, relying on the concept of information-revelation consistency.
This paper will not discuss consistency rigorously, but will merely suggest that in a Dantzig-
Wolfe auction, disallowing agents from changing their preferences enforces consistency of

information revelation.

Theorem 2. (Information-Revelation Principle) The distributed mechanism dy; with
consistency-checking is an ex post faithful implementation when the only agent actions are
information-revelation actions and when the outcome rule of the mechanism is strategy-
proof. [Parkes and Shneidman, 2004]

In the Dantzig-Wolfe auction prices will be broadcast each round, and agents respond
with new optimal proposals. A proposal and accompanying valuation information constitute
an information-revelation action on the part of an agent. Since these are the only actions
the agents undertake, and the optimal global solution is ultimately determined by the
central agent with the cumulative information revealed over the course of the auction, the

Dantzig-Wolfe auction naturally satisfies the information-revelation principle.



Chapter 3

LP and the Dantzig-Wolfe

Decomposition

Linear programming is a technique that lends itself to a vast range of problems, but in
particular to large-scale optimization problems. Linear program (LP) solvers have evolved
tremendously over time and are now capable of solving problems on a scale perhaps unthink-
able to mathematical programmers decades ago. However, solving some linear programs
directly is still beyond the capabilities of today’s cutting edge LP solvers, suggesting the
desirability of a more elegant approach. Moreover, many of these problems have distinc-
tive structure which can be exploited by a more sophisticated approach to the problem.
The Dantzig-Wolfe decomposition is one such approach, laid out by Dantzig [1963]. The
discussion of decomposition in this chapter will follow that of Bradley, Hax, and Magnanti
[1977].

3.1 Linear Programming and the Allocation Problem

The general allocation problem can be formulated easily as an integer program (IP), but
solving IPs is NP-hard and thus impractical computationally for moderate and large-sized
problems. A natural approach, then, would be to construct the constraint matrix of the IP,
but relax the integral requirements on the variables, resulting in a linear program, which
is easier to solve. This is referred to as the LP relazation of the IP formulation for the

allocation problem.

The difficulty with relaxing the IP to an LP is that it allows for fractional variable values.
Since the variables in the program represent whether or not a certain good is allocated to
a certain agent, a fractional solution can’t have meaning in an allocation problem with
goods that are not continuously divisible. Since the combinatorial allocation problem as

defined above has indivisible goods, we must find some way to constrain the LP to have

12
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only integral solutions. Some particularly tractable instances of the CAP are known to have
this property, in particular the assignment problem where agents have unit demand, the

problem for which the Dantzig-Wolfe auction will be introduced in Chapter 4.

Ultimately we wish to extend the Dantzig-Wolfe auction beyond the special tractable
cases to the entire domain of combinatorial allocation problems. This requires a more so-
phisticated approach to formulating the LP relaxation, since cases are readily apparent
where the simple relaxation of the IP formulation gives rise to non-integral solutions. For-
tunately, there has been considerable work done in modifying LPs by adding constraints
in order to guarantee that the optimal solutions are integral. In particular, the work of
Bikhchandani and Ostroy [2001] is of interest. In their discussion of the package assign-
ment model, they introduce more complicated LP formulations of the CAP that guarantee
integral solutions, but moreover have meaningful interpretations from a pricing perspective.
The Bikhchandani and Ostroy LP formulations will play a crucial role in the Dantzig-Wolfe

auction when the full CAP domain is considered in Chapter 5.

3.2 Decomposition Methods and the Dantzig-Wolfe Decom-

position

Some large linear programs have a distinctive constraint structure that can be exploited
to solve the programs in an efficient manner. In particular, when a problem consists of
independent or nearly independent sub-systems, the idea of breaking the problem down
into smaller blocks, solving them separately and integrating them into the larger solution
is a promising one. A decomposition method aims to break the problem into several parts,
one or more with ”"easy” constraints and one with the ”complicating” constraints. The
Dantzig-Wolfe decomposition solicits partial solutions in the form of solutions to the easy
subproblems, then solves a restricted master problem that is in essence a weighting problem,
determine which proposals to accept and combine based on the complicating constraints
that are invisible to the subproblems. Solving the dual of the master problem provides
shadow prices on the complicating constraints, which provide informative feedback to the
subproblems, who in turn fashion and submit new proposals based on those shadow prices.
Eventually, the proposals submitted can be combined into the optimal solution to the overall
problem, at which point no new proposals will be more valuable than the cost imposed by
the shadow prices. Once no subproblem can submit a proposal the enhances the master
problem, it can be proven that the solution to the master problem gives the solution to the

original problem.

Consider the following example problem from Bradley et al. [1977]:

maxz = C1x1 + ...+ Gy + C41T¢41 + ... + CrTy
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s.t.
a1x1 + ...+ QX + Gipr1Ter1 ... T+ GinZyp b; (’L =1,..., m)
esq1r1 + ... + eqx: = ds (s=1,..,9)
Es,t+1Tt+1 + ...+ esxTn = ds (3 =q+ 1; 7Q)
€ < 0 (] = 1, ,’I?,)

This problem has two nearly independent subsystems (those containing the e;; con-
straints) linked together be a class of overarching constraints (the a;; constraints). To apply
decomposition, we will view each of the two subsystems as a separate subproblem, which
will each submit their own proposals, and the master problem will solve for the optimal
weights to give the proposals it has already received and solicit more proposals if necessary.
For a given proposal X; = (x1,...,2¢) from subproblem 1, define resource coefficients r;;

and profit coefficient p; as follows:
i1 = apry + ... + agry (i=1,...,m)
pr = caxr1 + ... + @y

so that 7;; represents the resource usage of X in the i-th a;; constraint and p; represents
the value of X;. For any proposal Xy = (2441, ..., ) from subproblem 2, define 7;5 and p

similarly:

Tig = Qit1%T41 + ...+ Gz (P=1,...,m)

P2 = C41Tt+1 + ... T+ CpTn

At any given point in the algorithm, with k£ proposals from subproblem 1 and [ proposals

from subproblem 2, the master problem is the following weighting problem:

maxz:p%)\%+...+p]f)\]f+p%)\%+---+pl2)‘l2

s.t.
A+ o+ BN+ b+ o+ A bi ™
)\% + ... + )\If = 1 o1
)\% + ... + )\l2 = 1 09
A > 0, VA

The variables )\{ and )\g refer to the weights placed on the j-th proposals from subproblems
1 and 2, respectively. Note that the m;, 01 and oy denote the optimal shadow prices for
each of the constraints in the weighting problem, and are obtained by solving the dual to
the restricted master problem as expressed above. The next round of proposals X; and X»

will be priced out using these shadow prices:
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m
D1 =p1 — E miTi1 — 01
i=1

m
D2 = p2 — E T2 — 09
i=1

The shadow prices are reported to each subproblem, who evaluate their new subproblems,

based on the latest information. For subproblem 1,

t m
V1 = max E Cj — E Q55 | Lj
7=1 =1

s.t.
es121 + ... + egqry = ds (s=1,...,9)

and for subproblem 2,

n m
Vo = Imax E Cj—g ™A | Ty
=1

j=tt1

s.t.
€st+1Tt+1 T ... + EsmpTp = ds (SZQ_‘FL---,(])
zj > 0 (j=t+1,..,n)

If v1 > 0, then the optimal proposal from the first subproblem is added to the master
problem, and if va > 0 then the optimal proposal from the second subproblem is added.
If v; < oy, then p; < 0 for subproblem ¢, and no new proposal is submitted from that
subproblem in the current round. If no new proposal from any subproblem exceeds the cost
established by the shadow prices, the algorithm terminates and the optimal solution has

been obtained by the final solution to the master weighting problem.

To summarize, the Dantzig-Wolfe decomposition algorithm starts by breaking the orig-
inal problem into a master problem and one or more subproblems. In each iteration, the
master program receives new proposals from one or more of the subproblems. These propos-
als are incorporated into the restricted master problem, which is solved along with its dual.
The shadow prices given by the dual solution form meaningful pricing feedback which is
sent to the subproblems, who again respond with new potentially valuable proposals if they
are able. Once no more valuable proposals have been received, the algorithm terminates
(this will provably happen in a finite number of steps, although exponential in the worst
case) and the solution to the master primal problem provably holds the optimal solution

for the original problem.
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3.3 Economic Interpretation of the Decomposition Proce-

dure

Decomposition has a very natural economic interpretation when the overall problem is
viewed as a resource allocation problem and the prices as reflecting the marginal values
of each resource. The above concrete example could be seen as the profit maximization
problem for a corporation with two subdivisions. Each subdivision has its own internal
constraints and knowledge of its valuation function over the possible resource allocations.
The corporate headquarters (the master problem) need not have explicit knowledge of the

internal constraints or valuation function of any subdivision.

Bradley et al. [1977] point out that in many such situations it would be very costly for
the headquarters to gather detailed information about the subdivisions, and furthermore
that often the expertise required to make the best local decisions is at the subdivision
level, rather than the command level of the headquarters. For these reasons, it is desirable
for each subdivision to operate separately and semi-autonomously, while the headquarters
is responsible for coordinating the activities of the various subdivisions, in this case by

ensuring that the firm’s resources are allocated across subdivisions as efficiently as possible.

During the decomposition procedure, information is passed between the master and
the subdivisions via proposals (from the subdivisions to the master) and prices (from the
master to the subdivisions). The nature of the dual solution to the master problem is such
that the shadow prices on the resource constraints of the master primal problem represent
the marginal cost of each resource at the firm level. The shadow prices on the proposal
constraints for each subdivision represent the value of the current optimal weighted proposal
from that subdivision in the current provisional solution maintained by the master program.

Bradley et al. give the following very clear interpretation of the subdivision problem:

(Net profit) = (Gross revenue) — (Resource Cost)

V1 =Pp1 — 11 — 7221 — .. — TmTml
t m
= E Cj — E mazj .Z'j
j=1 i=1

Here, c; is the per-unit gross profit for activity ;. The shadow price 7; is the value of the
i-th corporate resource, m;a;; is the cost of resource ¢ for activity j, and 221 m;ai; is the

total corporate resource cost to produce each unit of activity z;. [Bradley et al., 1977]

Over iterations of the Dantzig-Wolfe algorithm, the resource prices will be adjusted
according to the new proposals received by the headquarters. Eventually, the prices will
reach an equilibrium, where economically speaking the marginal cost (price) of each resource

exceeds the marginal revenue for that resource for all subdivisions. When prices have thus
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stabilized, no useful new proposals will be generated and the headquarters will allocate

resources based on the optimal final allocation.

A competitive auction connotes more adversarial agents than subdivisions of a firm,
but in fact an auction interpretation follows quite easily from the decomposition method.
Instead of resources, the auctioneer has single indivisible goods, which it wishes to allocate
in the socially optimal manner, i.e. in the way that produces the highest cumulative utility
to all agents participating in the auction. Prices are announced on items (or bundles, in
combinatorial domains), and agents submit bids (proposals) based on those prices. The
prices are adjusted via the dual solution to reflect the new best information on the marginal
desirability of each good, and the process is repeated until no two agents are willing to
meet the price for any conflicted good (or bundle). It is this natural interpretation of the
decomposition method that this paper hopes to introduce, and a more concrete discussion

begins in the following section.



Chapter 4

A Simple Domain - the

Assignment Problem

Ultimately, I will extend the Dantzig-Wolfe auction framework introduced in this section
to the generalized combinatorial allocation problem (CAP). However, for clarity I will first
present and analyze the auction with a simplified domain - the assignment problem, noted
as a tractable instance of the CAP by Bikhchandani et al. [2001], who refer to it as the case
of heterogeneous goods and unit demand. The assignment problem is a natural starting
point for a linear programming approach to auction design because of one salient feature in
particular - the linear program relaxation of the integer program formulation is guaranteed
to have integral optimal solutions. This allows for linear programming techniques (in this
case the Dantzig-Wolfe decomposition) to be used to optimize the objective function with
respect to the constraint matrix, while having faith that there exist optimal solutions that
are purely integral and therefore not nonsensical from the point of view of the original

problem.

4.1 Definition of the Assignment Problem

The assignment problem is a restricted instance of the combinatorial allocation problem in
which the agents have unit demand for goods - this means that an agent’s value for a bundle
is its highest value for any single item in the bundle (in other words, no agent derives utility
from a second item in the assignment problem). Say we have a set M of goods which we
wish to assign to a set IV of agents. Using v;; to denote the value of agent j € IV for good

1 € M, we state mathematically that an agent’s value for a bundle S is

v;(S) = min{v;; : i € S}
Clearly this is a version of the CAP with a very restricted valuation space available to the

18
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agents. In this problem no agent can benefit from being assigned more than one good,

hence the name ”the assignment problem.”

4.2 LP Representation of the Assignment Problem

Assuming then that no agent need be allocated more than one good in an optimal allocation,

we can represent the full assignment problem as a linear program as follows:

V(N) = max Z Z Vi Tig

jeENieM
st. Y @ <1, VieM (4.1)
j
d xy <1, VjeEN (4.2)
A
ﬂjij Z O, Vl,]

The first set of constraints (4.1) restricts each good to be assigned no more than once, and
the second set (4.2) constrains each agent to be assigned no more than one good. It is well

known that all extreme points of the above LP formulation are integral. Its dual is

minZWj—i—Zpi

JEN icM
st. m+pi>v, VjeNVieM
Wj,pizo, VjeN,YVie M

Here the dual variables m; refer to the profit of agent j, and the dual variables p; to the
price on good ¢. Note that this does not allow for non-linear prices, and only allows for
non-anonymous prices through the 7; term. This is not an issue for the assignment problem,
but there exist combinatorial allocation problems such that non-linear and non-anonymous
prices may be necessary to reach an optimal solution. This will be discussed at greater

length later in this paper.

Another point of interest mentioned by Bikhchandani et al. [2001] is that while multiple
solutions to the dual almost certainly exist, the dual solution that maximizes ;. 7; (or
equivalently minimizes ) .., p;) yields the Vickrey payments for the optimal allocation.
The multiplicity of dual solutions and the preferability of the solution that maximizes agent

utility will appear later as important considerations in the Dantzig-Wolfe auction.
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4.3 The Dantzig-Wolfe Auction on the Assignment Problem

Having defined the assignment problem as a linear program (and importantly a linear
program with integral solutions), I will now outline the application of the Dantzig-Wolfe
decomposition to the solution of that linear program, and show how the process can be

used and translated into an iterative auction.

4.3.1 The Restricted Master Problem

In formulating the assignment problem for the Dantzig-Wolfe decomposition, we can view
the central, coordinating agent (i.e. the winner determination problem) as the master prob-
lem and each agent’s utility maximization as a subproblem. In each round, the restricted

master problem will be as follows:

max Z Z vf)\g?

jJEN k
st > Y rEA <L, VieM (4.3)
jEN k
Y Ab<1, vjenN (4.4)
k

k .
N> 0, VjeN,Vk

where )\;‘? represents the weight to be placed on the k-th proposal submitted by agent j, and

the )\f’s are the variables that the master problem is maximized over. Each coefficient vf
k>
]
the Dantzig-Wolfe master problem. Each rfj is defined to be 1 if agent j is allocated good ¢

represents agent j’s value for its k-th proposal. The r}.’s are the resource coefficients from
in its k-th proposal, and zero otherwise. Thus the first set of constraints (4.3) (the resource
constraints, one for each good i € M) is analogous to the constraints Zj v < 1L,Vie M
in the original LP formulation of the assignment problem - simply, that no good can be
allocated more than once. The second constraint (4.4) ensures that no agent is given more

than one of its proposals.

The dual is analogous to the dual in the original LP formulation:

miani—l—Zﬂj

ieM jEN
s.t. erjpi—l—wj«zvf, Vj € N,Vk
ieM
m,,p; >0, VjeN,Vie M
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It is worth noting that in the assignment problem, the dual constraints are quite simple
- since agents have unit demand, no agent proposal contains more than one good, so for
each constraint one of the rfj’s will be equal to 1, and the rest will be equal to 0, so each

dual constraint will be of the form

k
pi + 15 = v

where ¢ is the good that agent j gets in its k-th proposal.

The structure of dual solutions is therefore quite transparent - at the beginning of the
decomposition process, when few proposals are on the table and few goods have been bid on
by more than one agent, any p; and 7; such that p;+m; = Uf j will produce a feasible solution.
However, as more agents submit proposals for each good, competing bids will place an upper
bounds on the profit that an agent can reap from a good (because lower prices would result
in overdemand for the good, which we know is not present in the optimal allocation). Again,
it may be that the dual solution that maximizes agent profit and minimizes prices could

support the quickest possible convergence of the decomposition algorithm.

4.3.2 Initial Solutions

The Dantzig-Wolfe algorithm starts from a minimal set of feasible agent proposals that
nevertheless contain enough information for an informative initial solution to the dual and
primal problems. I propose the following starting point for the Dantzig-Wolfe auction in the
assignment problem. Let proposal 0 exist for all agents, where each agent is allocated no
goods and has no value for proposal 0. Then, solicit proposals from each agent, assuming
zero prices on all goods (p; = 0,Vi) and zero shadow prices for all agents (m; = 0,Vj) -
assuming myopic best-response, each agent will submit a proposal (bid) for the good it

values the most.

The first meaningful version of the master problem will then be complete, and is laid

out here. The objective function for the primal problem is:

max o)A + oiAl 4+ WO+ Wil o+ o+ 0N 4 wlAl

and this objective function is optimized subject to the following resource, proposal, and

non-negativity constraints:
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The dual problem has the same objective function in each round:

ieM

miani—i—Zﬂj

JEN

+ A
+ Tnn
+ N

IN

IAIA IN

IN
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and this objective function is optimized each round subject to a growing number of con-

straints, one corresponding to each proposal that an agent has submitted. In the first round,

with two proposals per agent, the dual constraint matrix is:

0
11P1

1
T11P1

0
r1;P1

1
r1;P1

0
T1nP1

1
T1nP1

+
+

+ qulpm
+ Trlnlpm
+ Tgﬁpm
+ Trlnjpm
+ Tmnpm
+ T}nnpm
Di, T4 > 07

+
+

_|_
+

™

T

Vie MVjeN

(A\VARAY

(AVARYS

AVARAY/

To initiate the first round of the auction, the winner determination agent solves the

initial primal and dual problems, resulting in an initial feasible allocation, a set of prices

p; on all goods 7 € M, and a set of agent shadow prices 7; for each agent j € N. These

agent shadow prices represent the marginal contribution of agent j to the value of the initial

feasible allocation.

With only two proposals per agent, the initial problem is very sparse, and the initial

allocation is easy to understand - each good that is requested by at least one agent will be
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allotted to the agent with the highest value for it, and goods which are not requested by

any agent will go unallocated.

Since the primal constraints corresponding to these initially unallocated goods do not
constrain the initial solution, the corresponding dual variables will be zero in an optimal
dual solution. This means that any good 7 that is not bid on in the first round will have
p; = 0 in the first otherwise non-zero vector of prices. The vector of good prices and agent
shadow prices will be communicated to the agents, who will then submit new best-response

proposals to the master.

4.3.3 Subsequent Rounds

Each round of the auction will consist of the following steps.

Step 1: Receive new proposals from each agent (if there are no new proposals,

then terminate)

Step 2: Incorporate the new proposals into the current formulation of the

master primal and dual problems.

Step 3: Solve the master primal and dual problems for the current best-known

allocation and a new vector of prices.

Step 4: Report new good prices and agent shadow prices to agents, requesting

new proposals.

This process, repeated until no new proposals are submitted from any agent, will termi-
nate with an optimal solution to the complete primal problem, by the completeness of the
Dantzig-Wolfe algorithm. In the assignment problem with m goods, since only m proposals

are possible from each agent, the maximum number of rounds needed for a solution is m.

From the optimal solution reached after the final round we know the optimal allocation
of goods to agents, but we don’t yet know the appropriate Vickrey prices to charge them.
In simple domains these prices can be simply determined by finding the so-called ”optimal”
dual solution, but for more complicated problems, that will not be possible, so instead
the Dantzig-Wolfe auction, having determined V' (NN), will proceed to solve each marginal
economy and determine the Vickrey payments once it knows V' (NN/j) for all j. An alternate
method of attempting to determine prices from the dual solutions will also be discussed

later in this section.

Step 3 has some room for interpretation, in the way that both the primal and dual

problems are solved. In fact, solving the primal may not be necessary at each round - the
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most substantive step each is calculating a new price vector to report to the agents. So,
it would be possible for a skeletal implementation of the Dantzig-Wolfe auction to leave
solving the restricted primal until the round where no new proposals are submitted by
the agents, at which point solving the restricted primal will compute the overall optimal
allocation. The computational cost of the auction could be considerably reduced in this
way.

There are two reasons why solving the primal each round could be desirable despite the
additional computation involved. First, an interim solution to the restricted primal provides
a provisional allocation, a ”best-so-far” view of which goods will go to which agents. While
this information isn’t of any strategic use to the agents in this auction, it is conceivable
that in a practical implementation the central agent would want to maintain a provisional
allocation for bookkeeping or transparency purposes. Second, and more compelling, the
value of the current restricted primal solution can be used to solve for the ”optimal” dual
solution, which may have desirable properties from a pricing perspective. This can be
achieved by modifying the dual to maximize jEN T and adding the additional constraint
that > ;cps + 2 ey T = V(IV), where V (V) is the value of the current optimal solution to

the restricted primal problem.

As mentioned previously, the dual will have a multiplicity of solutions. It may be desir-
able to modify the version of the dual that is solved each round in order to obtain certain
solutions that provide more meaningful price feedback to agents, which could ultimately
speed up the convergence of the auction. This will be discussed more thoroughly in Section
5.5.

Finally, a vector of prices is broadcast to the agents, who then formulate and price out
new proposals. This vector will consist of a good price p; for each good and an agent shadow

price 7; for each agent.

Note carefully that notation has changed from the original Dantzig-Wolfe example in
Chapter 3, where the complicating (resource) constraints in the master problem had shadow
prices 7; and the proposal constraints had shadow prices o;. Here, the 7;’s represent the
marginal profit of the agents, so they denote the dual variables associated with the proposal
constraints, and the p;’s represent the marginal cost of the goods, so they denote the dual

variables associated with the resource (i.e. good/bundle) constraints.

Upon receiving the pricing vector, agents will calculate their optimal proposal (assuming

they have already submitted k proposals) under the new good prices as follows:

vj = max{v;j — p;, Vi}

After determining the optimal proposal, and checking that it is new (if it is a proposal
that has already been submitted the agent need not resubmit it), the agent compares the

value of the proposal v; to its proposal shadow price, 7;. If v; > m;, then the proposal is
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a valid one and the agent submits it as a bid to the center. If v; < 7;, the proposal is less
valuable than agent j’s current marginal contribution to the optimal solution, and should
be discarded.

4.3.4 Example of the Dantzig-Wolfe Decomposition on the Assignment
Problem

Here is a simple example of the Dantzig-Wolfe auction on an assignment problem with three

agents, Agents 1, 2, and 3, and three goods, A, B, and C. The valuations are:

(A} {B} {C}

T | O

vie | 0 10 8 1
0
0

6 6 3
12 )

Ugi

U3i

Initial Solutions: Say that each Agent j has submitted the null proposal in Round 0,
which will be represented by the weighting variables )\?.

Round 1, Proposals: To begin, the agents assume prices p; = 0 for all goods i, so each
submits its value for its highest-valued good, which is Good A for Agents 1 and 2 and Good
B for Agent 3. These will each be weighted by the variables )\} for agent j. The coefficients
in the master problem will be v1(A) = 10, va(A) = 6, and v3(B) = 12, respectively.

Round 1, Master Primal: The master problem in the first round is:

max  OA) 4+ 10A! + 0A9 + 6A3 + 0A) + 12)3
st M +A <1 (4.5)
A< (4.6)
M+ <1 (4.7)
M4+ <1 (4.8)
M+ <1 (4.9)

Constraints (4.5) and (4.6) enforce that Goods A and B be allocated no more than once,
respectively (there is currently no proposal for Good C). Constraints (4.7)-(4.9) enforce that
no agent be given more than a full unit of weight across all of its proposals.

The optimal solution is A} = 1, A = 1, A} = 1, and all other )\g? = 0, allocating Good
A to Agent 1 and Good B to Agent 3, with total value 10 + 12 = 22. Note that the null

proposals are not strictly necessary, unless we were to make constraints Constraints (4.7)
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- (4.9) equality constraints, rather than inequalities. There is no practical difference - for

that reason I’ll keep the inequalities and omit the null proposals beyond this point.

Round 1, Master Dual: The dual problem of the first round is:

which yields solutions (for example) p(A4) =6, p(B) =6, p(C) =0, 71 =4, ma =0, m3 = 6.

These prices are reported back to the agents.

Round 2, Proposals: Under the prices p(A) = 6, p(B) = 6, p(C) = 0, each agent solves

max (v; (i) — p(i))

(2
This gives the best-response proposals as Good B for Agent 1 and Good C for Agents 2
and 3. Their values are v1(B) = 8, v2(C) = 3, and v3(C') = 5, respectively.

Round 2, Master Primal: The Round 2 master problem is:

max  10A] + 8A2 + 61 + 3M% + 121 +5)2

st M+ <1 (4.10)
M4+ <1 (4.11)
Mai<t (4.12)
M+a<1 (4.13)
M+ <1 (4.14)
M4+ < (4.15)

Constraints (4.10)-(4.12) enforce that Goods A, B and C be allocated no more than once,
and constraints (4.13)-(4.15) enforce that no agent be given more than a full unit of weight
across all of its proposals.

The optimal solution is A} = 1, A3 = 1, A} = 1, allocating Good A to Agent 1, Good C
to Agent 2, and Good B to Agent 3, with total value 10 + 12 + 3 = 25.
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Round 2, Master Dual: The dual problem of the second round is:

which yields solutions (for example) p(4) = 6, p(B) = 10, p(C) =3, 71 =4, m =0, m3 = 2.

Again, these prices are reported back to the agents.

Round 2, Proposals: Under the prices p(A) = 6, p(B) = 10, p(C) = 3, each agent solves
max; v;(i) — p(i) to find their best-response proposals. Under these prices, it happens that
max; vj(i) — p(i) < 0 for all three agents, so they have no new proposals to submit. This
indicates that the algorithm is finished, and the final, optimal allocation from the Round 2

master problem is optimal.

Computing Vickrey prices: In order to calculate Vickrey prices for this allocation,
one approach wold be to solve each marginal economy (En_; without Agent 1 has value
V(N/1), etc.) Methods for solving the marginal economies will be discussed later - for now
we can tell by inspection that V(N/1) = 18, V(N/2) = 22, V(N/3) = 16. The Vickrey

payments are then easily computed:

=

E
[
<

(N/1) = V(N) +v1(A) =18 —25+10=3
p2(C) =V (N/2) = V(N) 4+ 19(C) =22 -25+3=0
V(N)+wv3(B) =16 —25+12 =3

B
&
I
=
Z
=
|

These payments may seem strangely low, but this is specific to this small example with

as many agents as bundles.

4.3.5 Auction Termination and the Calculation of Payments

Once the problem has been solved by the decomposition method, the overall optimal alloca-
tion is known to the central agent. However, to ensure that the agents are truthful in their

proposal submission (and their reported values in particular), the mechanism must ensure
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that it implements an incentive compatible outcome, in this case by computing Vickrey
prices for each bundle and thus implementing a GVA, which is in ex post Nash Equilib-
rium. There are two methods by which these Vickrey prices could be determined, which

are introduced below and will be expanded in the following sections.

One way to determine the prices would be for the central agent to solve each of the
marginal economies for the optimal allocation V' (N/j), using the same method of iterative
price feedback and proposal elicitation as in the main auction. This entails solving n
additional problems of similar complexity to the main problem, but the solution to the
main economy can be used to start searching for solutions to the marginal economies at a
highly advanced point, much nearer in the solution space to the optimal marginal allocation
than the very first round with only two proposals from each agent. It may be that, given the
information the central agent obtained during the main auction, these additional problems

can be solved at a very low computational cost.

A second way to determine the prices, perhaps less clear-cut but potentially more elegant,
is to attempt to use all of the cumulative pricing information to determine a set of prices
which support the optimal allocation in each of the marginal economies, from which Vickrey
prices could easily be determined. Although it is possible that such prices could be found
within the history of solutions to the dual over the rounds leading to the main solution, it
seems that in some cases additional queries would have to be sent to the agents in the form
of price vectors in order to ensure that the competitive equilibrium prices for the optimal

allocation also supported the optimal allocation in each marginal economy.

Both methods have their apparent strengths and weaknesses, and deserve further explo-

ration. They are addressed in turn in the following sections.

4.3.6 Computing Payments by Solving Marginal Economies

One way to compute Vickrey prices is to take advantage of the information the central
agent already has in terms of agent proposals and valuations and efficiently solve each of
the marginal economies. Once V(N/j) is calculated for each agent j, the Vickrey payments,
pj(N) = V(N/j) = 32,5 vi(IN), can be calculated in a straightforward manner.

The prospect of solving n additional combinatorial allocation problems may seem daunt-
ing, and moreover crude and excessive for the purpose of computing Vickrey payments;
however, upon further inspection it becomes clear that the optimal allocation V(N) pro-
vides a greatly advanced starting point for any optimal marginal allocation V(N/j). Over
the course of the solution of the main problem, many or most of the highest-value packages
will be elicited from each agent, and it seems in most cases, especially those with more
than a few agents, that many packages from V(NN) will be allocated to the same winner in
many of the marginal V(N/j). Therefore, starting the auction algorithm for each marginal

economy from the final master problem of the main economy will be far more efficient than
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solving each marginal economy from scratch using the same method. It may in fact be the
case, as indicated by limited experimentation on small test cases, that the number of new
proposals elicited during the solution of all n marginal economies is actually much less than

the number of proposals elicited during the solution of the main problem.

The original master problem can be easily converted into a master problem for the
marginal economy without agent j, in fact by zeroing a single right-hand side constraint in
the primal problem (this amounts to removing that row from the primal problem constraint
matrix, and removing the corresponding column from the dual constraint matrix and elim-
inating the associated dual variable). This constraint is the proposal constraint for agent j,
which after zeroing the right-hand side will be ), A? < 0, which along with non-negativity
constraints on the )\f effectively remove agent j from any possible allocation. The structure
is therefore almost identical to that of the original Dantzig-Wolfe set-up, and its solution is

straightforward.

It is here, in the solution of marginal economies, that the partition principle for dis-
tributed VCG mechanisms is relevant, and it can be seen that since agent j is unable to
influence the outcome of the marginal economy Ey_;, the partition principle is satisfied
and this distributed implementation of the VCG mechanism is therefore faithful from an

incentive standpoint.

4.3.7 Computing Payments by Examining Past Prices

An alternate approach to the straightforward method of solving the primal problem for
each marginal economy En_; is to utilize the pricing history of the main problem to find
feasible solutions for the dual problem for each En_;. After the optimal solution to the
main problem is reached, the center has a sequence of pairs (p, (v, S)), where p is a vector of
prices and (v, S) is a vector of the new proposals received under those prices and the values
of those proposals. It may be possible from this record to identify prices p;,Vi € M, and
agent shadow prices 7, k # j, that satisfy the dual problem for Ex_;. If this is true, then
it may be possible for the Dantzig-Wolfe algorithm to terminate with an optimal solution

V(N/j) without further queries to agents.

However, it also seems likely that in some cases second-best proposals would not be
elicited in the main part of the auction, and that the optimal solution to certain marginal
economies would not be possible until these proposals were incorporated into the restricted
master program. So, it may be that further rounds will be necessary in any case to ac-
cumulate enough information for Vickrey prices to be computed, even after the optimal
allocation is known. The best method to pursue Vickrey prices is not clear at this time and

warrants further scrutiny.
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4.3.8 Price Movement Across Rounds

The idea of designing auctions based on linear programs and primal-dual algorithms is
certainly not a new one - Bikhchandani et al. [2001] mention several in their work on linear
programming and Vickrey auctions. Crawford and Knoer [1981] first proposed an ascending-
price auction based on a primal-dual algorithm that duplicates the outcome of a sealed bid
Vickrey auction for the assignment proble. This idea was developed by Demange et al.
[1986] and Bikhchandani et al. [2001] detail it in their section on the case of heteregeneous
goods and unit demand. More recently, Parkes [2001] developed iBundle, an iterative
combinatorial auction that provably terminates with an efficient allocation, without placing

any restrictions on agent valuations.

The original Crawford-Knoer algorithm and iBundle are both ascending-price auctions,
meaning that the central agent maintains an ask price on each bundle, and possibly for every
agent (non-anonymous prices). The Dantzig-Wolfe auction departs from the requirement
of ascending prices, in part because it does not allow agents to change their values for a
proposal once they have submitted it. The price vector produced by a master dual solution
represents a lower bound on the value of each bundle in the optimal allocation, based on

the information already held in the master program.

It is an interesting question whether, if the master restricts itself to the dual solution that
maximizes jeN Tjs the prices generated by the Dantzig-Wolfe auction will be necessarily
ascending, or not. This warrants further investigation, and in general a more thorough
understanding of the behavior and significance of the prices generated by the dual solutions
should be sought.

4.4 Incentive Compatibility and ez post Nash Equilibrium

The goal of the Dantzig-Wolfe auction is to implement the efficient outcome for whatever
problem it is given, be it the assignment problem or a more general instance of the CAP.
Truthful behavior of the agents is a necessary condition for this to be achieved, and this in
turn hinges on the incentive compatibility of the mechanism. If the auction can guarantee
the efficient outcome and correct Vickrey payments, it will be in ez post Nash equilibrium

and no agent will be able to benefit from deviating.

Clearly one issue that must be resolved concretely is the question of how best to com-
pute the Vickrey prices after the efficient allocation is determined. However, even once
the preferable methodology is chosen, ex post Nash equilibrium is still contingent on each
agent behaving truthfully and not manipulating the outcome. Since the Dantzig-Wolfe auc-
tion is a distributed implementation of a VCG mechanism, the partition principle and the

information-revelation principle from Parkes and Shneidman [2004] both apply.
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The partition principle is satisfied for both methods of final price determination. In the
first, that of solving each marginal economy E_; directly, the principle is satisfied because
agent j is excluded from contributing to the solution of the marginal master problem.
In the second, the principle is also satisfied because after the main problem is solved no
additional information will be required from any agent j to determine prices that solve the

dual problem for En_;.

The information-revelation principle is also satisfied for both methods of final price
determination. The consistency requirement is satisfied because agents are not allowed to
modify any proposal that they have already submitted, and all actions available to the
agents constitute information-revelation actions. As was noted in Chapter 2, the Dantzig-
Wolfe approach lends itself very naturally to an information-revelation-based mechanism,
and is therefore very promising as a generalized approach to distributed mechanism design.
The next section will extend the auction developed here to the more sophisticated domain
of the CAP.



Chapter 5

Full Domain - Dantzig-Wolfe and
the CAP

While Chapter 4 showed that the implementation of the Dantzig-Wolfe auction is straight-
forward for the assignment problem, we wish to generalize it to more difficult cases than the
particularly tractable one of agents restricted to unit demand. In this section the method-
ology introduced in Chapter 4 will be extended to the general combinatorial allocation
problem (CAP). However, substantial challenges arise when all manner of agent valuations
become admissible. In particular, certain problems give rise to fractional solutions to the
linear program relaxation of the integer program representation of the allocation, and while
this can be addressed within the framework of the Dantzig-Wolfe auction, significant mod-

ifications are required.

5.1 IP Representation of CAP and Simple LP Relaxation

The combinatorial allocation problem is naturally represented as an integer program, similar
to the assignment problem. We still have a set M of items and a set N of bidders. Define
vj(S) to be agent j’s value for the bundle of items S C M. Bikhchandani et al. [2001]
introduce a set of binary variables y(.S, j) such that y(S,j) = 1 if the bundle S C M is
allocated to agent j € N and zero otherwise. An important distinction is that if the set of
items {i,4'} is allocated to agent j, then y({i,7'},7) = 1, but y({i},j) = 0. The problem

formulation (as a linear program) is

32
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V(N) =max Y > 0;(9)y(S, j)

jEN SCM

st > > (S <1, VieM (5.1)
S3i jJEN

> y(S.j)<1, VieN (5.2)
SCM

y(S,7) >0 VSCMNVjeN

Constraints (5.1) keep goods from being assigned to more than one bundle, and constraints
(5.2) prevent agents from being assigned more than one bundle. This formulation is known
as LP1, and while it is a natural representation of the problem, it admits fractional solutions,

so we must find stronger constraints to produce an LP with integral extreme points.

5.2 Integral LP Representations of CAP

Bikhchandani and Ostroy [2001] create formulations LP2 and LP3 to strengthen the linear
program formulation of the CAP. More recently, Bikhchandani et al. [2001] produce an

alternate integral LP formulation known as LP4.

We will being by considering LP2 - while it is an intermediate formulation and still
admits fractional solutions, it is a building block for stronger formulations and is worth
introducing. Let II be the set of all possible partitions of the set M of items, and for any
o €1l let S € o signify that the bundle S C M is part of the partition ¢. LP2 introduces
variables z,, where z, = 1 if the partition ¢ is chosen and z, = 0 otherwise. The LP2

formulation is

V(N) =max» > v;(S)y(S, /)

JEN SCM
st > y(S,§)<1, VjeN (5.3)
SCM
Sy <> 2z, VSCM (5.4)
JEN o385
d <1 (5.5)
o€ell

y(S,5),20 >0 VS C M,VjeN,Voell

where the first set of constraints (5.3) limits each agent to one bundle, the second set (5.4)
limits bundles to those present in the chosen partition, and the third constraint (5.5) limits
the solution to a single partition. LP2 is stronger than LP1, but still admits fractional

solutions in certain cases.
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5.2.1 Bikhchandani and Ostroy - the LP3 Integral Formulation

In order to further strengthen the LP relaxation, Bikhchandani and Ostroy [2001] extend
the partition variables to include every possible agent-partition. Denote the set of all such
partitions I', and an agent partition u € I' consists of both a partition of items into bundles
and an assignment of each bundle to a specific agent. S/ € y means that agent j receives
bundle S in agent-partition p. Let §, = 1 if the agent-partition p € I' is selected, and zero

otherwise. Now we have the building blocks for the LP3 formulation, below:

V(N)=max Y Y v;(S)y(S, )

JjEN SCM
st > y(S,j)<1, VjeN (5.6)
SCM
u>SI
> su<1 (5.8)
pel’

y(S,7),0, >0 VSCMVje N vVuel

Here the first set of constraints (5.6) again limits each agent to one bundle, the second (5.7)
only allows bundles to be assigned as per the chosen agent-partition, and the third (5.8)

limits the solution to a single agent-partition.

Define for each constraint from the first set (5.6) the dual variable 7;, with each from
the second set (5.7) the variable p;(5), and with the constraint on agent-partitions (5.8)
the variable %, These dual variables should be familiar - 7; and 7* represent the surpluses
of the agents and the seller, respectively, and p;(S) gives a non-anonymous price for bundle
S to agent j. The dual, which will be referred to as DLP3, is

min E T+ s

JEN
st. p;(S)+7m >v;(S) VjeENVSCM
> pi(S)+7m >0, VYuel
Siep
pi(S),mj, 7 >0 VjeNVSCM

Demonstrating the integrality of LP3 is straightforward [Bikhchandani et al., 2001]. It
is not without its drawbacks, however, not the least of which is the astronomical number
of variables - a simple calculation gives that the number of possible agent-partitions is m".
While the Dantzig-Wolfe approach does not require all of these variables to be enumerated,

it is still tempting to search for a more compact formulation.
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5.2.2 Bikhchandani et al - the LP4 Integral Formulation

Bikhchandani et al. [2001] give a new integral LP formulation LP4 with fewer variables than
LP3. Recall the set IT of anonymous partitions. Let y?(S,7) = 1 if partition o is chosen
from IT and S € o is given to agent j, and zero otherwise. Recalling the variables z, from
LP2, we assemble LP4:

V(N) = maxz Z Z v;(S)y? (S, 7)

o€ll jeN SCM
st > y7(S4) <z, VjENVoell (5.9)
Seo
> y(S)) <z, VSEoVoell (5.10)
JEN
d <l (5.11)
oell
YN y(S4) <1, VieN (5.12)
o€ll Seo

y°(S,7),2¢ >0 VS C M,Vje N, Vo ell

The first set of constraints (5.9) limits each agent to one bundle from a partition o if that
partition is chosen and none otherwise. The second set (5.10) mirrors the first and limits
each bundle to be assigned to only one agent if that bundle is in the partition ¢ and zero
otherwise. The third constraint (5.11) limits the solution to a single partition o, and the
fourth set (5.12) is in fact redundant with the previous constraints, but generates dual

variables that correspond to agent j’s marginal product.

To formulate DLP4, we define K3, wg, 7% and 7; to be the dual variables associated with

the first, second, third, and fourth classes of primal constraints, respectively. DLP4 is:

min E T+ T

JEN
s.t. WSZng—I—Z,u? Vo e I1
Seo JEN

T+ pd +wg >v;(S) VjeN,VS€o,Voell

M??wgﬂﬂj7ﬂ—520 Vj,S,O'

The 7; and 7* dual variables retain their familiar interpretations as bidder and seller surplus.

To obtain bundle-specific prices, we can set

p;i(S) = ggg(u;’ +wg)
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This allows us to break the agents’ payments into a non-anonymous component p7 and a

non-linear component wg. [Bikhchandani et al., 2001]
Bikhchandani et al. also give a proof that the LP4 formulation also has integral solutions.

LP4 is uses anonymous partition variables z, rather than non-anonymous variables ¢,,,
which are more compact but nevertheless still exponential. This gain is somewhat offset by
the fact that the agent-bundle variables y?(S, j) must be partition-specific as well, adding
exponential size in that dimension. The exact trade-off is unclear and merits experimental

examination.

In summary, due to Bikhchandani and Ostroy [2001] and Bikhchandani et al. [2001] we
have at our disposal LP3 and LP4, two LP formulations of the CAP that do not admit
fractional solutions. Both formulations should be explored for use in the Dantzig-Wolfe

auction.

5.3 The Dantzig-Wolfe Auction on LP3

It is not immediately clear which of the two integral LP formulations of the CAP is preferable
for use in a Dantzig-Wolfe auction. One apparent advantage of LP3 is that bundle prices
p;(S) spring more readily from the its dual, DLP3, than they do from LP4.

As with the assignment problem, for the restricted master program we introduce the

k
VR
the agent j in the master problem. Recall that agent j has value v}“ for proposal )\é‘?.

weight variables \?, each of which denotes the weight assigned to the k-th proposal from
Furthermore, analogous to the original LP3 formulation, the restricted master will have
variables ¢,, corresponding to each agent-partition y, although these variables do not appear
in the objective function of the weighting problem. Define )\f € 1 to mean that the bundle
in agent j’s k-th proposal is assigned to agent j in agent-partition p € I'. The restricted

master problem for the LP3 formulation is then given by

max Z Z vf/\;?

JEN k
st A< )6y, VieNVE (5.13)
JTERY
<1 (5.14)
pel’
Y Ab<1, vjenN (5.15)
k

Af 6, >0 VjeNVEVueT

The dual of the master problem is identical to DLP3 except that not all bundles have
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variables p;(S) - only those that appear as proposals in the primal problem do. Let A;
denote the set of proposals submitted by agent j, and say S € A; if bundle S appears in
a proposal already submitted by agent j. The dual price variable p;(S) is generated by
the constraint from (5.13) corresponding to agent j and the proposal k in which agent j
proposed the bundle S. The dual payoff variables 7° and 7; correspond with constraints
(5.14) and (5.15), respectively. The dual is then

min g T+ Ty

JEN
st. pj(S)+m >v;(S) Vje N, VS €A
- Z pj(S)+ms >0, Vpel
Siep,A;
pj(S),mj, ™ >0 Vje N,V €A,

with variables p;, m; and 7° that can easily be interpreted as bundle prices and agent

surpluses.

Each round, each agent will receive an updated vector of non-anonymous prices p;(.S)
and payoffs 7;, although only the prices are necessary for the Dantzig-Wolfe subproblem.

The agents price out potential proposals and determine the best proposal by solving

vy = max (;(S) — p;(9))

If U;-“ > 0, then there is a valid proposal to be made and the agent submits that proposal
(S,v;(S)) to the center, where it will be incorporated and given the weighting variable )\;?
in the master problem. If, on the other hand, vf < 0, the best-response proposal is not an
improvement on agent j’s current best proposal and the agent need not report anything for

the round.

This formulation is rigorous and will have an integral solution, and a Dantzig-Wolfe
auction on it would terminate in a finite number of iterations. However, the number of
variables is immense - the number of J,’s is m" - so conducting the auction with this
formulation may require considerable refinement in practice. The key to practicality will
be reducing the number of variables that must be explicitly stated in the master program,
as well as taking advantage of prior information to solve each addition step of the master
program, which will be discussed more in Section 5.6. In particular, it may be desirable to
generate and consider the non-anonymous partition variables d,, only as they are required
by the current set of agent-proposals under consideration. While the number of §,, variables
thus generated will still grow very quickly as more and more proposals are submitted, this

is strongly preferable to representing all m™ of them through the entire computation.
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5.4 The Dantzig-Wolfe Auction on LP4

This section will present an alternate version of the Dantzig-Wolfe auction, based on the
Bikhchandani et al. LP4 formulation. The restricted master program will use the weight
variables )\?(0), each of which denotes the weight assigned to the k-th proposal from the
agent j in the master problem, under the anonymous partition of goods o. Agent j has
value v;? for proposal )\?(0‘), for all partitions o - we are assuming that an agent’s value for
a bundle does not change based on how the other goods are partitioned or allocated. Let

)\é‘? (o) ~ S indicate that agent j’s k-th proposal is a proposal for bundle S.

It may seem strange to have )\g‘? (o) weighting variables for each partition o, all with iden-
tical values v;?, but this redundancy in LP4 is the mechanism by which solution integrality
is ensured. Glancing at the original LP4 formulation, we can see how the )\é? (o) variables
in the restricted master problem have replaced the agent-, bundle-, and partition-specific

variables y7 (S, j) in the original.

Analogous to the original LP4 formulation, the restricted master will have variables z,
corresponding to each anonymous partition ¢ which do not appear in the objective function

of the weighting problem. The restricted master problem is then given by

max Z Z vf)\f

jEN k
st. Y M(0)<z, VjENVoell (5.16)
k
Y M(o)<z, VSeoVoell (5.17)
JENNr(o)~S
d <l (5.18)
oell

YD Mo)<1, VjeN (5.19)
k o

k- .
Ni0),20 >0 Vj € N,Vk,Yo €Tl

The dual is very similar to the original, DLP4. It has four classes of variables: O

corresponding with primal constraints (5.16); wg, corresponding with constraints (5.17);

S

7%, corresponding with constraint (5.18); and 7, corresponding with constraints (5.19).

The dual formulation is:
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min E mj + Ts

JEN
st. 7w > Z wg + Z p; Vo ell (5.20)
Seo JEN
mi + pd +wg > vi(S) Vi€ N, VS~ \i(0),Vo €11 (5.21)

M??wgvﬂ-jaﬂ-szo Vj,S,O'

where constraints (5.20) correspond with the z, primal variables and the constraints (5.21)
correspond with the )\9? (o) variables. To offer an intuitive interpretation, the constraints
(5.20) require that the seller’s profit exceed the minimum for each possible partition. When
the dual is solved, the constraints from (5.20) which are binding at the solution will corre-
spond to the partitions o which can give optimal allocations. The constraints (5.21) ensure
that the combination of prices and payoffs exceeds agents’ values across all submitted pro-

posals and possible partitions.

Note one slight difference with DLP4 - the constraints (5.21) are only needed for agent-
bundles in a partition that have been proposed by those agents, rather than all agent-bundles
possible in this partition. This is the meaning of V.S ~ )\;?(0) - for all bundles contained in a
proposal from some agent j in some round k. There will be considerably fewer constraints

in (5.21) than there were in the original dual, where there was one for each S € o.

The agent subproblem is the same as in the LP3 auction: each agent will receive an
updated vector of non-anonymous prices p;(.S) in each round, and price out its best-response

proposal by solving

of = max (15(S) — py(S))

If U;? > 0, then there is a valid proposal to be made and the agent submits that proposal
(S,v;(S)) to the center, which will then be associated with the weighting variables )‘? (o) in
the master problem. Otherwise (if vé? < 0) there is no good new proposal for the agent to

make in this round.

One disadvantage of LP4, mentioned earlier, is that the dual does not directly yield a
single set of non-anonymous prices p;(S). Rather, the prices must be extrapolated from the
partition-specific pg and wg variables. In Section 5.2.2 it was proposed that this be done

by solving

() = min(u + ug)

This pricing structure is very flexible - it can allow for both non-anonymous and non-linear

prices if necessary. The downside is the additional computational burden imposed, if we
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wish to solve thusly for p;(.S) for all agent-bundle combinations.

Like the Dantzig-Wolfe auction on LP3 proposed in the Section 5.3, the LP4 version as
formulated here is rigorous and will terminate in a finite number of steps with an integral
solution. Again, program size is a concern, given the exponential numbers of variables
floating around. Two ideas to streamline the process jump to mind immediately. The first
is to generate and represent the z, variables only as needed by the set of agent proposals
under consideration, analogous to generating the J,, as proposed in the previous section.
The second is to try to harness the parallel structure of the /\;?(a) weighting variables
across partitions o (recall that they all have identical value vf) in order to consider fewer
variables and thus solve the problem more efficiently. This would require a deeper practical
understanding of the structure of the dual and would likely require substantial empirical

work to explore and verify.

Brief Summary

It is clearly possible to translate advanced LP relaxations of the integer program represen-
tations of the CAP into the master problem and subproblems required for decomposition to
take place. A theoretical Dantzig-Wolfe auction for the full combinatorial valuation domain
is near realization. However, the exponential number of variables required to constrain
the LP relaxation to integral solutions pose an enormous computational challenge, and the
theoretical auction hinted at here may not be capable of addressing large problems in prac-
tice. The key to a smaller, more practical implementation of the Dantzig-Wolfe auction is
a deeper understanding of the integral LP formulations, how they can be represented more
compactly, and the way in which their primal and dual solutions interact with the master

and subproblems over the course of a Dantzig-Wolfe optimization.

5.5 Multiple Dual Solutions

We have seen, first in Section 4, that the solution to the master dual program at each round
of the bidding may not be unique - on the contrary, is seems that a continuum of dual
optimal solutions will often be available, taking advantage of an equal tradeoff in the dual
constraint matrix between good or bundles prices p; and agent shadow prices 7;. This adds
a degree of freedom to the progression of the auction - the algorithmically correct path
taken by the central agent is not uniquely defined even for a specific instance of the CAP.
The Dantzig-Wolfe algorithm provably terminates with the optimal solution, so the auction
will have an efficient outcome, whatever dual solutions are chosen; however, it would be
best to thoroughly understand the behavior of the master dual solutions, and the impact
of the specific solutions chosen in any instance on the path of the auction. One conceivable

scenario is that restricting the dual problem to a certain dual solution supports uniformly
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faster convergence of the auction; alternately, it is possible that the specific dual solution
chosen does not have any effect on convergence time, or that its effect on convergence is not
uniform, and there is no incentive for the designer of the auction to try to restrict the dual

solution in any way.

Bikhchandani et al. [2001] find that for the purposes of computing Vickrey payments from
the dual solution (in the tractable cases where that is possible), the preferred dual solution
is that which maximizes profit to the bidders, > jeN Tj- The can be understood intuitively
by thinking that the play between optimal dual solutions is in the tradeoff between the p;’s
and the 7;’s, and that in a terminal state of the Dantzig-Wolfe auction the p;’s must be at
or greater than the ”second prices” of the goods or bundles to which they refer (otherwise
valuable proposals would still be found by at least one agent and the auction would not
have terminated). Implementing the Vickrey auction requires the second-price principle, or
else the auction loses its ex post strategy-proofness. Maximizing profit to the bidders forces
the prices to the minimum of their acceptable range in the dual solution, which corresponds

to the second price.

The way in which an inferior dual solution to the master in a given round could be
detrimental to convergence is that it could encourage the submission of proposals which
are not part of the efficient outcome and would not be elicited under a different dual
solution. Prices in the Dantzig-Wolfe auction represent lower bounds on the values of goods
or bundles, and intuitively tighter lower bounds could eliminate extraneous bidding in some
cases. The agent-optimal dual solution has been shown to be of theoretical interest in other
situations and the question of whether it is provides tighter lower bounds through prices

and is thus preferable in the Dantzig-Wolfe auction is worthy of investigation.

If it turns out to be the case that any dual solution to the master problem is equally valid
from a convergence standpoint, there arises a question of whether it is actually necessary to
solve the master primal problem at every round of the auction, or even at all before all of the
worthy bids have been submitted. The current value of V() is useful in specifying a dual
solution - as we have seen earlier, this is achieved by modifying the objective function of the
dual and adding a dual constraint to the effect of 3,y pi+> ey mj = V(N). If no specific
dual solution need be specified, though, the only benefit to solving the master primal during
intermediate rounds of bidding is maintaining a provisional feasible allocation, which does
not provide any useful information to the agents. Therefore, if the auction converges equally
fast regardless of which dual solutions are chosen, the computational aspect could be sped
up considerably by only solving for the dual solution to the master until no new proposals

are submitted and the optimal solution is contained in the restricted master primal problem.
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5.6 Linear Program Similarities

The main computational demand of the Dantzig-Wolfe auction is solving the primal and
dual linear programs after each round of new agent proposals. In settings with large numbers
of agents and goods, both the primal and dual formulation will be very large LPs, that must
be solved many times. Furthermore, after the main economy V' (V) is solved, each marginal
economy V' (N/j) must also be solved, so running the entire auction requires solving n + 1

problems, each requiring many iterations of LP solving.

5.6.1 Similarities Between Consecutive Primal and Dual Formulations

The computational situation may be greatly mitigated, however, by the fact that the master
primal and dual problems differ only slightly from round to round. Each round, one or more
new proposals are submitted from agents and incorporated as columns and variables A into
the master primal program and as rows (i.e. constraints) into the master dual program.
The master programs maintain the same basic structure as in the previous round, and, even
more promisingly, all of the variables and coefficients from the previous round, which may
dwarf the new proposals, especially late in the auction. It seems intuitive that the solutions
to the master primal and dual problems for a given iteration will incorporate much, even
most of the solutions from the previous round. Thus, a simple technique to take advantage
of this similarity would be to start searching for solutions to the master primal and dual
problems in round k from the optimal solutions to those problems in round k£ — 1. If the
simplex method were being used to solve these LPs, this might entail seeding the beginning

tableau for the k-th round solution with the final basis from the round before.

It is also possible that other techniques exist that would allow for the solutions to the
master problem in round k& + 1 to be determined very efficiently, given the solutions to
rounds 1 through k. If effective techniques were known, they could greatly enhance the

practicality and computational speed of a Dantzig-Wolfe auction.

5.6.2 Current Research

To the best of my knowledge, there is no current research in the area of optimizing the
solution time of a sequence of similar linear programs. It seems an interesting problem with
a wide range of applications in decomposition and elsewhere, and worth focused pursuit if

it is indeed the case that it has not been investigated thoroughly before.
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5.7 Assessing the Dantzig-Wolfe Auction

Although the Dantzig-Wolfe auction has not been fully fleshed out, it is possible to have
some idea of how it compares to other implementations of the Generalized Vickrey Auc-
tion, in particular other distributed implementations. In terms of incentive compatibility,
the Dantzig-Wolfe auction comfortably satisfies the partition principle and the information-
revelation principle, and therefore as long as it implements a VCG mechanism with pay-
ments p; = V(N/j) — 32, ,;vi(N) it is a faithful distributed implementation, avoiding the
problem of manipulation by agents effectively. We can therefore say that the Dantzig-Wolfe
auction as a distributed implementation of the VCG mechanism will surely meet the second

main goal of Parkes and Shneidman [2004], namely that it has good incentive properties.

The current picture of the computational properties of the Dantzig-Wolfe auction, on
the other hand, is much more cloudy. The size of the linear programs that the central win-
ner determination agent needs to solve could quickly grow beyond the capacity of current
methodology and hardware. In particular, the problem formulations for the full combinato-
rial allocation problem, based on the LP3 and LP4 linear relaxations, utilize an exponential
number of variables in the size of the problem, making a complete solution of the problem
very difficult. The key to addressing this issue is by carefully formulating the restricted
master program so that it is as compact as possibly while still faithfully implementing the

strengthened LP formulation of the original CAP.

A second computational consideration, discussed in Section 5.6, is the solution method
used to solve the master linear program round after round. There are tremendous similari-
ties between consecutive iterations of the master program and if these are harnessed by the
solution technique huge computational benefits would accrue. The state of current research

on such techniques is unclear and bears further investigation.

A final interesting question about the Dantzig-Wolfe auction regards the behavior of
prices. Many auction implementations of the VCG mechanism (such as iBundle [Parkes,
2001]) have ascending prices over the course of the auction. The Dantzig-Wolfe auction, on
the other hand, is certainly not constrained to ascending prices - prices are free to fluctuate
up or down over rounds depending on the specific solution to the master dual problem.
However, the prices may operate as lower bounds on current perceived bundle values for
each round, and as more competitive proposals are submitted these values will rise, so it may
be that prices do end up weakly ascending on some forms of the Dantzig-Wolfe auction. This
may happen particularly if the central agent prefers a specific optimal solution of the dual
problem, such as the bidder-optimal solution, for convergence reasons. Further exploration
and analysis is necessary to more thoroughly comprehend the behavior and significance of

the prices in the Dantzig-Wolfe auction.



Chapter 6

The Benders Decomposition

The overarching goal of this thesis is to create new ways of implementing combinatorial auc-
tions by representing them as linear programs and applying two well-known decomposition
techniques to them. The center and the agents will interact by exchanging information and
over time progress toward an optimal allocation. In the Dantzig-Wolfe decomposition, the
information flow is such that the center announces a set of prices and the agents submit in
response possible allocations supported by those prices. Benders decomposition is in many
ways the opposite approach to Dantzig-Wolfe, and it is thus not surprising that the center-
agent information flow is reversed: when we apply the Benders decomposition to the CAP,
it will be the center that is announcing allocations (or, more accurately, partitions) and the
agents who are responding with price information. The reasons for this will become more
clear once we have thoroughly examined the process of applying the Benders decomposition
to various LP formulations of the CAP.

6.1 The Benders Decomposition Procedure

The Benders decomposition is a decomposition method that is often used to attack prob-
lems which have both an integral and a continuous component. It does this by separating
the problem into two parts: a linear subproblem with only continuous variables, and an
integral master problem with the complicating integral variables and their constraints. The
subproblem can be solved easily using established LP methods - the Benders strategy is
to fix the integral variables, solve the dual of the subproblem, and from that dual solution
generate constraints to add to the master problem, until the re-written master problem
is sufficiently constrained to yield an optimal solution. This discussion of Benders follows
those in Kameshwaran [2004] and Lasdon [2002].

In general, the Benders decomposition could be used on a problem of the following form:

44
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MIP : max cx+ fy
st. Ax+ By <d
x € R,y € {0,1}"

where ¢, f, A, B, and d are coefficient matrices of appropriate dimensions. The x variables
are continuous and the y variables integral. In Benders we will rewrite the MIP as the
Benders master problem MP with a single continuous variable, z. To construct MP we
will also reformulate the constraints using the Benders subproblem, which is the dual of
the linear program when the integer variables are fixed. Consider the problem when the

integral variables y have been fixed at y:

SP(¥): max cx+ fy
st. Ax < d-— By

m
x € RY

Its dual is the Benders subproblem, DSP(y).

DSP(y): min u(d — By)+ f¥
s.t. uG >c

ue R,

We define £ = {(u)¢} to be the set of extremal points of the polyhedron DSP(¥). Note,
though, that this polyhedron is independent of (¥). Using E we can reformulate the original
problem to create the Benders MP:

MP: max z
st. z< fy+u®(d—By), ecFE
z€ R,y e{0,1}"

The constraints are the dual cuts generated by the extreme points. Lasdon [2002] and

others have proven the equivalence of MP to the original MIP.

Since there are generally a large number of extremal points of the Benders subproblem,
MP will have a correspondingly large number of constraints. However, the Benders decom-

position takes advantage of the fact that only a few of these constraints will be binding at
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the optimal solution and generates them as needed, rather than enumerating all of them.
The goal of Benders is to solve the modified master problem, MP2, with a subset of cuts
from E.

To begin Benders, MP2 is solved with £ = @ to obtain a feasible ¥. Then we solve the
subproblem DSP(¥) to obtain a dual cut. We add this cut to F and solve the new MP2 to
obtain a better §. This process of solving in turn the subproblem DSP(y) and the modified
master problem MP2 is continued until £ contains a sufficient set of cuts and the optimal

solution is obtained (we can tell because the values of DSP(¥) and MP2 will converge).

Here is an outline of the Benders algorithm:

Step 1: £ = &. Choose an initial feasible § by solving MP2 with no complicat-
ing constraints. (If MP2 is infeasible than there is no feasible solution, so STOP).

Step 2: Solve the Benders subproblem DSP(y) and obtain a solution u® with
objective value DSP(¥).

Step 3: Add the dual solution u® to E.

Step 4: Call MP2, which gives a new solution y with objective value z. If
z = DSP(¥), then we have an optimal solution, so STOP.

Step 5: Otherwise, DSP(y) < z and we have not yet converged to an opti-

mal solution, so return to Step 2 with the new ¥y.

Since there are a finite (but exponential) number of extremal points u, the Benders
decomposition is guaranteed to converge in a finite number of steps. However, in the worst
case convergence still takes exponential time, if we are forced to solve the subproblem
for every possible ¥ in order to sufficiently constrain MP2. Kameshwaran [2004] suggests
several ways to accelerate convergence, including starting with a dual cut generated from a
good feasible solution, rather than an empty E. Another option is to attempt to judiciously
select the best dual cuts in each step, which is treated by Magnanti and Wong [1979]. A
third option is to restrict the space of possible ¥ using some prior information, which we
will consider later in the form of pricing only agent-declared ”interesting” bundles. As
convergence time is a potentially important issue in the application of Benders to the CAP,

we will explore these options to address it.



Chapter 7

Mapping the Benders
Decomposition to LP2

Whereas with the Dantzig-Wolfe decomposition we began on the simpler domain of the
assignment problem, this domain does not provide an interesting problem for the Benders
decomposition. (The reason, which will become more clear later, is that the partition of
goods into bundles is already fixed, which will be the work of the Benders master problem
under the natural decomposition). Therefore, we will start immediately with LP representa-
tions of the full CAP. This section will focus on the results of using Benders decomposition
on Bikhchandani and Ostroy’s LP2 formulation [2001]. Bikhchandani et al. [2001] give LP2
as an intermediate formulation of the CAP, a stepping stone from the simple LP formulation
to stronger formulations that guarantee an integral solution. Solving LP2 as a strict LP
does not guarantee an integral solution; however, we can take advantage of the ability of
the Benders decomposition to mesh continuous and discrete variables in a MIP to structure

the problem such that we are guaranteed an integral solution.

The LP2 formulation of the CAP is as follows:

V(N) =max Y Y v;(S)y(S, )

JEN SCM
st > y(Si) <1, VjeN (7.1)
SCM
STy, ) <> 2, VSCM (7.2)
JEN EN]
d <1 (7.3)
o€ell

y(Svj)azO' Z 07 VS,Vj,VO'
N is the set of agents, M is the set of goods, vj(S) is agent j’s value for bundle S, and

47
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y(S,7) equals 1 or 0 depending on whether agent j is allocated bundle S. We also have a
variable z, for each possible partition o € II, where II is the set of all possible partitions of

the set of goods M across n = |N| agents.

The intuition for the constraints is as follows. The first set, (7.1), ensures that no agent
receives more than one bundle. The second set, (7.2), ensures that no agent gets a bundle
unless that bundle appears in a selected partition o - that is, that y(S,7) can only be 1 if
there is some agent partition o such that S/ € o and z, = 1. The third, (7.3), ensures that

only one partition is active in the solution.

Note that the z,’s do not appear in the objective function, but they do appear in the
constraints and constrain the solution to a single partition. To use Benders, we will impose

the restriction that z, € {0,1} and allow the y(S, j)’s to be continuous.

7.1 Overview of the Benders Decomposition on LP2

The y(5,j) are agent-bundle decision variables. Since fixing all y(.5, j) effectively chooses
a partition o and fixes all z,, the logical Benders breakdown of LP2 is to instead fix all z,
(analogous to the y in Lasdon [2002] and Chapter 6). This means setting one z, to 1 and
the rest to 0 - equivalent to choosing (temporarily fixing) a partition. This allows a degree
of freedom in the y(.S, j) variables - an agent can choose between any of the bundles in the
partition, and this choice will be made within the Benders subproblem. Note that once a
partition of goods has been chosen, the allocation problem is equivalent to the assignment
problem (since we now have n bundles that cannot be divided or combined to allot to n

agents).

For clarity, we will make explicit the connection with the general Benders problem struc-
ture as outlined in Chapter 6. The y(S,j) are the continuous variables analogous to x in
the general example, and the z, are the integral variables analogous to y. The values v;(S)
are the objective coefficients of the continuous variables, analogous to ¢, and since the z,

do not appear in the objective function, f = 0.

We then solve the dual with the z, fixed and use the solution to generate constraints
in our modified master problem, MP2. We will represent the modified master problem in
round ¢t as MP!. The process of solving the dual and adding constraints to the modified
master problem is iterated until MP? is sufficiently constrained to yield a feasible optimum.

We’ll know this when the objective values of the dual and of MP? coincide.

Since LP2 as a linear program is not guaranteed to have integral solutions, it is important
to show that making z, € {0,1} constrains the solution of the entire problem to integral

solutions.

Theorem 3. Solving LP2 with the z, € {0,1} guarantees an integral solution and thus a

feasible allocation.
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Proof. Note that once the partition o is fixed, the restricted problem L(o) is an assignment
problem and thus has integral optimal solutions for any 0. When we enforce that z, € {0,1}
and > ve?o < 1,1t s clear that no feasible solution can have more than one z, such that

zo > 0. Therefore we can re-write the problem as

V(N) = max L(o)

which clearly has an integral solution since L(o) is integral for all o € II. O

The remainder of this chapter will address the Benders subproblem (the dual D(0)),
the modified master problem MP?, the decentralization of the subproblem and subsequent
auction interpretation, and finally a few examples of the Benders auction in action on very

small domains.

7.2 Subproblem: Primal and Dual of LP2 with z, fixed

Choosing a partition o and fixing the z, € {0,1} accordingly, we obtain the following linear

program L(o):

L(o) =max ) > v;(S)y(5.5)
i s

st Y y(S.j)<1, VjeEN
s

dy(S.j) <1, VSeo
J

> y(S,j) <0, VS¢o
J

y(S,j) =0, VS,V
This program has the dual:

D(o) = min Z i+ Zp(S)

JEN Seo
s.t. p(S)+m >vi(S), VjeENVSCM
ﬂ-jap(‘s’) > Oa \V/],\V/S

The term ) g, p(S) is intuitively equivalent to s, the seller’s surplus. Note also that
we still consider the p(S) variables for all bundles, not just bundles S € o.
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Solving this dual will give us an objective value D(c), which provides a lower bound on
the value of the final allocation. Also, importantly, it provides us with a set of prices that
support the given partition o and provide the necessary information to add a meaningful
constraint to MP?. This means that even though p(S) for some S ¢ o does not appear in
the objective function of the dual, all p(S) are important, as they contribute to a set of

supporting prices.

The need to retain p(S) for S ¢ o makes the dual as written above different than
the assignment problem, because there are bundles whose prices do not appear in the
objective function which nevertheless need to be priced. However, if we do solve the dual
as an assignment problem and obtain a solution (7, p) where p = {p(S) : S € o}, we can
artificially construct from p a set of prices p that support the partition ¢ over all bundles
S C M, and then use (7, p) as a dual solution to generate an MP' constraint within the

Benders scheme.

7.3 The Modified Master Problem, MP’

If we denote as E the set of solutions to the dual D(o) over all partitions o, the complete

Benders master problem is given by:

MP: max 6

st. 6< ij + Z (zg * Zpe(5)> , V(% p°)eFE
J ocll Seo

Z 2o <1

o€ell

>0, z,€{0,1}, Voell

Define E! to be the set of solutions generated to the dual problem D(c) in rounds
7 € {1,...,t}. The modified master problem MP’ problem for round ¢ is then given by:

MP': max 6

st 08 < Zﬂ'; + Z <ZU * Zpe(5)> . Y(r%,p°) € E
J

o€ell S€o

' >0, z,€{0,1}, Voell

Having solved the dual D(c?) for round ¢ and received back a set of prices (#,p) that
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t

supports the given partition o' over all bundles S C M, we formulate and add a new

constraint of the form

z R <zg > ]3(5)) (7.4)

oell Seo

Solving this updated version will give us a new setting for the z,, which will dictate
a new partition o to fix, and we’ll repeat the Benders process for round ¢ 4+ 1 unless the

solution is optimal.

Since MP? is a MIP and the z, give a doubly exponential number of 0-1 variables, we
might in practice represent the z, variables with decision variables z:(S), each corresponding
to a bundle S. Instead of a single constraint on partitions, there would be a constraint for
each good i € M that it not be contained in more than one bundle S. Thus MP? would be
given by:

MP!: max 6
st 00 <Y w4y w(S)p(S), V(x°,p°) € B
7 S

doa(s) <1, VieM

S3i
0 >0, x(S)ec{0,1}, VS

and we could determine from the decision variables z(S) the new partition o for the next
round. However, in order to preserve clarity and best illustrate the connection with the Ben-
ders decomposition, we will continue with the first representation of MP? for the remainder
of this chapter, and leave the substitution of decision variables x(S) as a suggestion for a

practical implementation of this auction.

Here is the complete process of applying the Benders decomposition to LP2:
Step 1: t =1, E° = @,0 = co. Choose an initial partition o' at random.
Step 2: Call the dual problem D(c!) and obtain a solution (7!, p!) with objec-
tive value L(o?). If L(c') = #~! then we have an optimal solution and ¢! is an
optimal partition, so STOP.

Step 3: Add the payoffs and prices (7!, p!) to E‘~! to create E.

Step 4: Call M P!, which gives a new solution #' and a new partition o?*?.
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t +— t+ 1 and return to Step 2.

We can see that this is a valid decomposition by noticing that it has the following two
important properties. First, if solving MP? gives a solution z, that has already been selected,
the dual D(o) has already been solved and a corresponding constraint added to MP? with
the same value for this particular ¢. This means that we cannot select the same partition
more than once (unless it turns out to be optimal), ensuring that progress will be made at
each step. Second, the constraint added to MP? for a cut (7¢, p¢) does not overconstrain
the solution value for any other partition ¢’ - in other words, it is a valid inequality. Note
that (7¢,p°) is a feasible solution for D(o’), and that the objective function for D(o’) is
comprised of 3 j 7'(']6- and ) g p°(S). This second property ensures that the master problem
will not be constrained below the optimal value and thus that the decomposition algorithm

is optimal.

7.3.1 Exploitable Structure of MP!

Having formulated the master problem and examined its behavior in several examples,
it becomes apparent that the structure of the problem is perhaps simpler than it initially
appears. It seems that after each round, the modified master problem MP? could incorporate
the new dual cut into existing constraints, rather than generating new ones. This could be

to our advantage if we are somehow able to exploit this special structure.

Definition 7.3.1. Define V(o) to be the true total value of the optimal allocation under

partition o.

Proposition. The complete master problem as formulated at the beginning of Section 7.3

can be equivalently written as the “re-written master problem” RMP:

RMP: max 6
st. 0< Z (26 * V(o))

oell
ZZ" <1

o€ll
0>0, z,€{0,1}, Voell

The intuition behind this idea is that only one of the z, variables can be 1 (the rest
must be 0), so the value of 6 is effectively constrained by the selection of o and bound from
above by all of the constraints on that ¢. In an optimal solution, only the constraint with

the minimal value on o will be binding (this will be the true value, the rest being high
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estimates from various dual solutions). Therefore, once there is a new lower bound on the
value of ¢ in another constraint, all other constraints are effectively obsolete with regard to
that o. This leads to the idea of combining all non-obsolete bounds into a single constraint,

rather than keeping them around at some cost and no benefit.

We can extend this proposition to the modified master problem:

Definition 7.3.2. Define V (o, 7) to be the total value of partition o under the payoffs and

prices (77, p") from Round 7:

Vo, 1) = Zﬂ'} + ZpT(S)

Seo

With V (o, 7) thus defined, after each round, we can re-write the modified master problem

as:

MP': max 6

st 00 <Y (2 V(o,7), Vre{l,..t} (7.5)
oell
Z 2o <1 (7.6)
o€ell

' >0, z,€{0,1}, Voell

Due to constraint (7.6) in a solution at most one of the z, will be 1, and the rest will
be 0. Call the chosen partition, whichever partition it turns out to be, ¢’. Since z, = 0 for
all 0 # o', and due to constraints (7.5), the value of 6 is bound to be < V(¢/,7) for all
7 € {1,...,t}. Of all the constraints (7.5), only the one with the minimal V' (¢',7) will be
active at the optimal solution, and the rest are irrelevant. (It is possible for more than one
to be minimal, in which case some are redundant). Thus we could re-write the modified
master problem again with only one constraint (aside from ) .z, < 1) as below. Call it
the RMP?.

RMP!: max 6!

b0t < . in V(o,
st 03 (s (L pin, Vie))

oell

Zzagl

o€ell
0' >0, z,c{0,1}, Voecll
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In other words, each round, when a constraint of the form of (7.4) is added to MP?
from (t,p'), the information contained in that constraint is the value of each partition
o under that set of payoffs and bundle prices, which is an upper bound on the true value
V(o) of that partition. The master problem is a collection of upper bounds on the values
of all partitions, and the solution to the master problem is the partition o with the highest
upper bound. Therefore, if for some partition o the pre-existing upper bound was V (o, 7")
and the Round t dual solution (7%, pt) gives V(o,t) < V(o,7'), then this new, better upper
bound will supersede the old from Round 7" and the old bound is obsolete and no longer
contributes any information relevant to the solution of MP?. The master problem is thus a

minimax problem over the V (o, 7):
RMP!: Maximize over all o € II the value of min, ey Vo, 7).

This lends itself to an updating strategy where, instead of maintaining all of the V' (o, 7) we
only maintain the current minimum for each o, and update that minimum at each round if

necessary.

From this view of the master problem, we can see that for a non-optimal solution cor-
responding to a partition o to be ruled out (without its being fixed as a partition and its
dual solved), there must be a constraint in MP - the minimal value of V' (o, 7) - which binds
its true value below the current best-known solution. This gives intuition to the impact of
our selection of dual cuts (prices and payoffs) on the convergence of the algorithm. Even
though in practice we might use decision variables z(S) instead of z,, in which case the
updating strategy above might not make sense, viewing the master problem in this way has

yielded a valuable insight into its structure.

7.4 A Simple Example of Benders on LP2

To help illustrate the process of solving LP2 using the Benders decomposition, here is a
very simple example. In this instance of the problem there are two agents, Agent 1 and

Agent 2, and two goods, Good A and Good B. Their valuations are as follows:

S | {A} {B} {A,B}
n(S) [0 10 9 19
w$) [0 5 6 20

So, Agent 1 values each separate item more than Agent 2 does, but Agent 2 values the

two together more than Agent one does.
There are two possible partitions - call them oX = {{A},{B}} and ¢¥ = {{A, B}, 2}.

We can tell by inspection that the optimal solution is with the partition 0¥ = {{A, B}, @},
Agent 1 receiving {@} and Agent 2 receiving {A, B}.
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To begin Benders, we fix a partition for round one - let’s choose 0! = 0% = {{A}, {B}}.

Round 1, Dual: It can be seen by inspection that the optimal solution under partition
ol is for Agent 1 to receive A and Agent 2 to receive B, with a total value of 10 + 6 = 16.
The restricted dual is

D(o") = min (m1 + 7 + p({B}) + p({A}))
S) > v1(S),VS C M

) > 1s(S),VS C M

)>0, j=12VYSCM

st. m+p

Notice that even though the p(S) terms associated with our chosen partition(o!) are the
only p(S) terms to appear with non-zero coefficients in the objective function, all of them
appear in the constraints and will have non-trivial values in a solution. This is how this

problem differs from a simple assignment problem.

Solving D(o!) directly, one possible solution is:

m =5, m=1
p(2) = 0, p({A}) = 5, p({B}) = 5, p({A, B}) = 19

with an objective value of m; + w2 + p({A}) + p({B}) =5+ 1+5+5 = 16.
We now use the p(S) and 7; to add a constraint to the modified master problem, MP!,

Round 1, Modified Master: To the modified master problem, which began as simply
maximizing a variable 6 subject to the condition that no more than one partition is active,

we add a constraint of the following form:

0<> 2 (Zp(S)) +)

oell Seo JjEN

With our solution from the dual, we get:

01 < zox # (54 5) + 2,y * (0+19) +5+1

Solving MP! gives us the values 8! = 25, z,x =0, z,v = 1. We compare §! = 25 to the

dual solution 16 and conclude that we need iterate another round, with the partition fixed

as 0'2 = O'Y.
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Note that, if we had not solved for p({A4,B}) in the dual and instead plugged in
p({A, B}) = 0, the solution would have been #! = 16, matching the dual and terminat-

ing the process. This shows how all prices are important, not just those for S € o.

Round 2, Dual: Now the restricted dual is

D(0?) = min (my + 2 + p({4, B}) + p(2))

st. m +p(S) >wv(S),¥VSC M
T2 +p(S) > ()VSQM
75, p(S) > j=12VvVSCM

One possible solution is:

™ = 0, T = 0
p(@) =0, p({4}) = 10, p({ B}) =9, p({4, B}) = 20

with an objective value of 20.

Round 2, Modified Master: With our solution from the dual, we add to MP? the

constraint:

02 < 21 % (10 +9) + 2,2 % (0+20) +0+0
Solving this gives us the values #? = 20, z,x = 0, z,v = 1. Since this matches our dual
value, we know it’s the best solution.

Notice that our additional constraint that we added in Round 2 is in fact only a more
binding version of the constraint we added in Round 1. This reflects the possible ”one-
constraint” structure of the modified master problem as discussed in Section 7.3.1, where

that the complete version MP can be written with only one additional constraint, namely

0<) (2% V(0))

oell

where V(o) is the maximal value of the allocation under partition o.

7.5 Decentralizing and Solving the Benders Subproblem

Having seen an example, we now come to the most challenging and interest part of the

implementation of a Benders auction - decentralization. Applying Benders decomposition
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to LP2 is an iterative process, and each round has two parts - fixing a partition o and solving
the dual D(o?), and solving the updated modified master problem MP? using the updated
set of (7€, p°) solutions. From the auction perspective, it is naturally the central agent
(the auctioneer or seller) who will solve MP? and the bidding agents who will contribute to
solving D(c!). As in Dantzig-Wolfe, solving the subproblem by collaboration between the
buyer agents and the central agent provides the meat of the auction interpretation of the
entire process. The subproblem can be broken down and addressed in a number of ways,

which in turn lend themselves to different auction interpretations.

A high-level auction interpretation of the dual is that the central agent announces a
partition o, and requires in order to proceed a set of prices and payoffs that supports that
partition over all possible partitions. That means that these prices and payoffs must satisfy

two properties:

Property 1: The prices p(S) are explicitly defined for all bundles S C M, and
these prices and the agent payoffs support an efficient allocation of the partition

o to the bidding agents (note that this is the assignment problem).

Property 2: The prices on bundles S’ ¢ o are high enough that no buyer
agent could increase its surplus by switching the bundle it is assigned from the

partition ¢ to another bundle not in o.

At each round, for a fixed partition ¢!, the Benders subproblem is:

D(c") = min Z ;i + Zp(S)
JEN Seo

s.t. p(S)+m >v(S), VjeENVSCM
ﬂ-jap(S) 20’ \V/],VS

The term )¢, p(S) is intuitively equivalent to 7, the seller’s surplus. Note that there
are constraints on the p(S) variables for all bundles, not just bundles S € o, although
only those prices for S € o appear in the objective function. We can see from this that
in an optimal solution, p(S’) for S" ¢ o need only be high enough that the corresponding
constraints p(S’) + m; > v;(S),Vj are not violated. For instance, if we had an optimal
assignment for 7; and p(S), S € o, we could then set p(S’) = 00,VS" ¢ o, and the entire
set of prices would support an efficient allocation over the partition o because clearly all
constraints are satisfied. Intuitively, no agent would switch to a bundle not in the partition

because the cost would clearly be too high.

This points to the idea that we could construct a solution to the subproblem without

solving the entire problem explicitly.
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t over all bundles

Although we require a dual solution (7, p') to support the partition o
S C M, solving D(c") would be much simpler if we didn’t need to worry about calculating
p(S) for S ¢ o!. This is attractive from a computational standpoint because the total
number of bundles S is exponential, but in a problem with n agents only n bundle prices
appear in the objective function of the subproblem, along with n 7; variables. As mentioned
before, the problem of determining an efficient allocation (with supporting prices) of a
fixed partition o is a case of the assignment problem, which is quite well-studied and easily
tractable. Therefore, a viable alternate approach to solving the complete subproblem (which
involves an exponential number of variables) would be to solve the underlying assignment
problem and then construct the remainder of a comprehensive set of prices that would

support that assignment.

However, while there exist a multiplicity of solutions to the subproblem, it is clear that
with the Benders decomposition some dual cuts are superior to others from the point of
view of constraining the master problem and thus speeding up convergence. Magnanti
and Wong [1979] address this issue for Benders decomposition generally, and Kameshwaran
[2004] adapts some of their proposals specifically for Benders decomposition on the knapsack
problem. In the auction setting, there will exist a tension between quality of the dual cuts
we generate and the amount of computational effort we're willing to expend to ensure that

certain level of quality.

Another idea to address the complexity issue is to have agents report at the beginning
of the auction the set of bundles that they are ”interested” in. For example, it may be that
for agent j, the set of bundles for which v;(S’) < v;(S) for all S C S is small, and the
agent is thus only interested in those bundles which are not supersets of equally valuable
bundles. Eliminating the ”uninteresting” bundles at the beginning could result in much
greater computational efficiency later, depending on the valuation domain of the agents.
This technique would clearly be more effective in problems where the agents had sparse
valuation functions and were interested in only a small fraction of the available bundles.
A simple example where this would not make a difference is an agent with a non-zero
value for each good and a linear additive valuation function - for this agent every bundle is
”interesting” by the definition given above. However, it is also easy to imagine examples of
more complex, combinatorial, and sparse valuation functions which would lend themselves

quite naturally to the ”interesting bundle” approach.

This section will first discuss the impact of selection of dual cuts on the convergence
of the Benders algorithm as a whole with reference to some prior papers that treat the
subject [Magnanti and Wong, 1979, Kameshwaran, 2004]. It will then explore both the
direct approach to solving the subproblem D(o) (which ultimately yields little of interest)
and the assignment problem approach, which itself has several different potential avenues
to pursue and proves to be the more interesting of the two. We will continually keep in

mind the issue of convergence and the effect that our various approaches might have on
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the number of iterations of the Benders process required to come to an optimal overall

allocation.

7.5.1 Selecting Dual Cuts to Optimize Benders

Since its creation, the Benders decomposition method has been used on a very wide range of
problems, with varying degrees of success. Magnanti and Wong [1979] examine the Benders
decomposition in general and propose several ideas to minimize the number of iterations
required for convergence, including making a good selection of initial cuts and selecting
good cuts to add to the master problem at every step. They introduce the notions of dom-
inance and Pareto optimality to the consideration of dual cuts in the Benders subproblem,
which turn out to be effective ways of defining the ”best” cuts to add to the master prob-
lem. Kameshwaran [2004] utilizes these definitions specifically for Benders on the knapsack

problem.

Definition 7.5.1. Define V (7, p, o) to be the total value of any partition o under the dual

cut (7,p), so

V(& p.o) =Y 7+ Y B(S)
J Seo
Definition 7.5.2. We say that the cut (7,p) dominates the cut (7,p) if V(7,p,0) <
V (7, p,0) for all o € II, with strict inequality holding for at least one o.

Definition 7.5.3. We say that a cut (7, p) is Pareto optimal if it is not dominated by any

other cut.

It is difficult to generalize across a wide range of problem structures, but it seems clear
intuitively that we would always prefer to add a Pareto optimal constraint to the modified
master problem MP? rather than a dominated constraint, if possible, for the sake of faster
convergence. Unfortunately, even given the transparent structure of MP? in this case, the
wide range of possible agent valuation functions makes it difficult to make strong claims

about which dual cuts are the "best.”

Searching for Pareto Optimal Cuts

Let us examine for a moment only the payoffs and prices associated with bundles S € o.

Since there is a clear trade-off in the dual constraints between price and agent payoff,

p(S) +m; = v(S), V5,5
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a natural question to ask is whether one is preferred to the other from the standpoint of
convergence. In particular, is it possible to make general statements about whether buyer-

optimal prices or seller-optimal prices have the best convergence properties?

Looking again at the form the modified master problem constraints take,

6 < ije + Z (zo * Zpe(5)> , Y(r%p%) e E
i oell Seo

it would seem that in many cases, since prices are bundle-specific and agent payoffs get

added to all partitions, that we would prefer higher prices to higher payoffs because the

latter would inflate the partition values for all partitions, rather than just those including

certain bundles.

It is tempting to claim that this is always the case. We could define a general seller-
optimal solution (7, p) as follows. Solve the assignment problem under partition o for the
optimal assignment and determine the seller-optimal payoffs and prices 7; and p(.S) - that
is, the prices for S € o that minimize Zj 7j, the payoff to the bidding agents. Then, for
all bundles S” ¢ o, set the prices p(S’) = max;(v;(S’) — ;). This will choose the minimum

possible prices while still satisfying the constraints that m; + p(S) > v;(95).

Fitting this into the framework of Magnanti and Wong [1979], we would like to assert
that the dual cut (7, p) is always Pareto optimal. A stronger assertion still would be that
(7r,p) is the best possible cut - that no other cut provides a tighter upper bound on any
partition ¢’. Analytically, there is no other feasible dual cut (7, p) in that round for which

the strict inequality V (7, p,o’) > V(7, P, o’) holds for any partition o’.

Unfortunately, while this holds in many plausible examples, it is not universally true.

Consider the following counterexample.

Example. There are two agents, Agent 1 and Agent 2, and two goods, Good A and Good

B. Their valuations are as follows:

s | {A} {B} {4B}
vi(S)| 0 4 3 8
va(S) | 0 6 5 10

Again there are two possible partitions - call them oX = {{A},{B}} and oY = {{A, B}, 5}.
Fiz partition o' = o¥ = {{A, B}, @} for Round 1. Consider the following two dual solu-
tions, both of which are valid and the first of which has been formulated to be the seller-

optimal solution as described above:

m m | @ {A} {B} {A B}
#p|lo olo 6 5 10
#p |0 2|0 4 3 8
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It can be seen that, counter to what we would hope, (7,p) dominates (7r,p), because

V(’f(,ﬁ, JY) =10= V(ﬁ—aﬁa UY)
and

V(r,poY)=11>9=V (7, p,o")

If we start with the dual solution (7, p), in general, it will be impossible to decrease the
price on a bundle S” ¢ o without increasing the corresponding agent payoff 7; for the agent
j with the maximal value for that bundle. However, this counterexample has been created
by ”overloading” Agent 2, who has the highest values for both Good A and Good B, and
therefore increasing Agent 2’s payoff 7o by 1 allows us to decrease both p(A) and p(B) by
1 and attain a lower total value, even though it would be impossible for Agent 2 to receive

both A and B as separate bundles.

Given the somewhat contrived nature of this counterexample, it seems plausible that if
we impose certain “niceness” restrictions on the problem - for example, perhaps no agent’s
valuation function can be allowed to complete dominate another’s - we may be able to make
more forceful claims about the strength of the seller-optimal cut (7,p). I leave this as a

proposition for future exploration.

Proposition. Under certain well-constructed assumptions about agent valuations, the seller-

optimal dual cut (7r,p) is guaranteed to be Pareto optimal.

Ultimately, it seems from this analysis that it will be difficult to make sweeping domain-
independent claims about Pareto optimality and buyer-optimal versus seller-optimal dual

solutions.

Negative Claims about Pareto Optimality

As it turns out, we can make the negative assertion that any cut from a large, easily-defined

class of cuts is not Pareto optimal.

Theorem 4. Let (7, p) be a cut for which p(S") > max;(v;(S")—7;) for some bundle S’ ¢ o.
This cut is not Pareto optimal because it is dominated by the cut (7,p), if we define (7r,p)

to be identical to (T, p) except that p(S’) = max;(v;(S’) — ;).

Proof. Since p(S) = p(S) for any S # S, we know that for any partition o such that
S' ¢ o, V(7,p,0) =V(&,p,0). Now consider any partition ¢’ > S’. Since (7, p) and (7, p)

are identical except with respect to S’,
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V(ﬁ-vpv Ul) 713(5’/) = V(ﬁ-aﬁa OJ) 715(5/)

Therefore, since p(S’) > p(S’), V(7,p,0') > V(#,p,0’). Thus, V(7,p,0) > V(7,p,0
for all o, with strict inequality for those o’ 5 S’. Therefore (7, p) dominates (7, p). O

~—

This is useful theoretically because it makes clear the optimal value of the p(S’) for
S" ¢ o once the agents payoffs 7; are set. However, in practice, it will be hard to determine
every price optimally in a computationally satisfactory manner, so it is likely that most

cuts in practice will come from this class that is verifiably not Pareto optimal.

We now have a better understanding of what constitutes a good cut; unfortunately,
determining the best cut for a round is tantamount to conducting an auction over the entire
bundle space, since we must determine an exact price for every single bundle, whether or
not it is contained in 0. A more pragmatic approach would be to rely on effective and much
faster heuristics that generate a dual cut approaching the optimal cut. It is clear that the
lower the partition values a cut gives, the better it is (it provides a tighter upper bound).
This means that we will aim for low prices that still support the fixed partition o. The
desired tradeoff between agent payoffs 7; and the prices p(S) on bundles S € o is even less

clearcut once we have surrendered the idea of obtaining a Pareto optimal cut.

Having determined the cuts we should aim for, we now must address the inevitable
tension between the quality of the cuts we use and the efficiency we’re willing to sacrifice

to guarantee that quality.

7.5.2 Decentralized Solution of the Complete Subproblem

The most straightforward approach to the subproblem is to distribute the computation to
agents by the appropriate variables, and aggregate the results in the center. The problem

D(o) breaks down in the following way, for a setting with n agents:

min Z i+ Zp(S)

Seo
s.t.
[T+ + p(S) > w(S) vscMm ]
T+ ... 4+ p(S) > wv(S) VS C M
™+ p(S) > wvp(S) VS CM
i 7, p(S) > 0 VjeN,SCM |

To solve this in a distributed way, each agent j would solve the problem:
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Dj;(o") = min 7; + ij(S)
Seo
s.t. pj(S)—l—Wj Z’Uj(S), VS CM

7, pi(S) >0, VS

and submit a solution (7, p;) to the center, which would then construct an overall solution
to D(o") using the 7;’s and according to the rule p(S) = max; p;(S) (this will guarantee

that none of the pricing constraints are violated and thus the overall solution is valid).

It would be possible to obtain a similar result by conducting an actual auction over all
bundles - but, as our goal is to design such an auction, it hardly makes sense to include one
at every single step! An important question is whether there exists a more effective method
to obtain this comprehensive set of prices. For example, if the number of ”interesting”

bundles were small, agents could only submit prices on bundles they found interesting.

If we wish to decentralize further, the determination of the final p(S) from the p;(.S)
could presumably done in a distributed fashion as well, although there could be some

complications if privacy and information revelation to other agents were an issue.

If we look at this approach critically, we notice that each agent submitting prices on
all bundles (or all interesting bundles) has the same complexity as agent’s entire valuation
function. This means that we could conduct, in similar time, the entire simplistic auction
wherein each agent submits its complete valuation function to the center and the center
computes the optimal allocation in one shot. This begs the question of whether we are
really gaining anything from decomposing the original problem in this fashion. It seems
that using Benders decomposition on LP2 and solving the dual in this manner does not
provide sufficient advantages over the simplistic one-shot complete-revelation auction de-
scribed above to justify the computational cost. We are therefore motivated to search for
alternate ways to solve the Benders subproblem. A promising idea to pursue is the structure
of the allocation problem once a partition has been fixed, which is identical to that of the

assignment problem, which is well-explored.

7.5.3 Decentralizing and Solving Using the Assignment Problem Reduc-

tion

The overview of this approach should be familiar by now. The first step is to solve the
allocation problem under the fixed partition o, obtaining efficient prices p(S) on all S €
o. This step will also yield agent payoffs 7; which are an important component of the
subproblem solution. The second step is to use this and other information to construct a
set of prices p(S’) on the bundles S’ ¢ o. Since these prices don’t affect the objective value

of the subproblem, we only require that they not violate any of the constraints, i.e. none of
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them are so low that an agent would prefer a bundle S’ to one in the partition . Finally
we’ll combine all of these prices and payoffs into a single solution, (7, p) that is an optimal
solution for D(o).

There are a number of ways to attack the assignment problem, each with slightly different
properties. Demange et al. [1986] describe an ascending-price auction which could be used
with prices on bundles S € o. Their auction will yield the buyer-optimal (i.e. payoff
maximizing) prices. Bikhchandani et al. [2001] outline some other methods that attain
similar results. From the previous discussion of Pareto optimal cuts comes interest in
an algorithm for the assignment problem that yields the seller-optimal prices (those that
minimize the agent payoffs). This outcome can be obtained as a result of more recent
work on descending-price auctions by Garg and Mishra [2004]. However, once we retreat
from demanding Pareto optimality of our dual cuts, it is less clear that the seller-optimal
prices are the ones we desire. Our pricing needs will likely vary depending on the nature of
heuristics that we choose to employ and thus, our choice of method to solve the assignment
problem will be influenced by the following discussion which further explores the problem of
best extrapolating a larger set of supporting prices p from prices p that support the efficient

assignment of a fixed partition.

Assuming the assignment problem has been solved, we want to take the solution (7, p)
(with prices p(S) only for S € ¢) and construct a complete set of prices p(S) for all S C M

such that (7, p) is a solution for D(o?). One way to do so would be the following scheme:

Step 1: Let p(M) = p(M) if M € o, and otherwise let p(M) =V —minjen 7;,
where V' is an upper bound on the values of all agents. One way to compute V'
would be to solicit before the first round from each agent j its valuation v;(M)

of the set of all goods. Then V' = max;v;(M) is a valid upper bound. Also let
p(2) = 0.

Step 2: For all S" ¢ o, set p(S’) to

S = i p(.S).
p(S") s0in & P(5)

The set of prices p thus constructed from p create a complete and valid solution (7, p)
to D(o"). This can be seen from two properties of the p(S). First, no bidder would have
a greater payoff for a bundle S’ C S at the same price as the bundle S € o, which ensures
that no agent can increase their profit ;. Second, the objective value of D(o?) is unaltered,

because the only prices that appear in it are for bundles S € o.

In practice, the issue that we must confront is that while all sets of prices p(S’),S" ¢ o
that support the allocation under the fixed partition can be part of a complete solution
(m,p), the higher the prices p are above the true values of their bundles, the less useful

information they contain to be incorporated into the modified master problem. As discussed
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previously in this section, for faster convergence we want tighter bounds and therefore less
inflated prices. From the point of view of convergence, the ”"best” dual solution is the
solution under a given partition with the lowest possible supporting prices. For example,
if the dual solution had prices p such that p(S) = max; v;(S), the new master constraint
would perfectly price each partition and the optimal partition would be determined in the

subsequent solution to the modified master problem.

On the other hand, if we employ the extrapolation scheme described above, wherein
each bundle S ¢ o is given the same value as minimally-valued superset in o (or M, the set
of all goods), our dual cut is likely to be weak. It is almost guaranteed to be non-Pareto
optimal by Theorem 4, and the bounds it provides leave much room for improvement by
more sophisticated heuristics in many cases. In a later concrete example, we will see how
this strategy leaves bundles not included in the fixed partition with excessively high prices,
which impedes convergence. Of course, it is worth noting that every domain is different,
there will always be exceptions to heuristic rules, and the empirical testing and verification

of heuristics across a wide test suite of cases is highly desirable.

As we already discussed in Section 7.5.1, since there is a clear trade-off in the dual

constraints between price and agent payoff:

p(S) +m; > v;(S), V5, S

a natural question to ask is whether one is preferred to the other from the standpoint of
convergence. In particular, is it possible to make general statements about whether buyer-

optimal prices or seller-optimal prices have the best convergence properties?

Looking again at the form the modified master problem constraints take:

<> 7+ <z0 % Zpe(5)> . V(% p°) € E
J

oell Se€o

it would seem that in many cases, since prices are bundle-specific and agent payoffs get
added to all partitions, that we would prefer higher prices to higher payoffs because the
latter would inflate the partition values for all partitions, rather than just those including

certain bundles.

Selectively Maintaining Pricing and Payoff Information

Jumping to another level of sophistication, another idea to maximize the use of informa-
tion that has already been gathered would be for the center to maintain information on

the reported prices for all bundles over all rounds, in particular the minimal price thus far
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on every bundle. Rather than immediately aggregating the information into full-partition
valuations, we could maintain information on current minimal prices, their associated pay-
offs, and also maximal cumulative agent payoffs, and combine these to get a current ”best”
valuation for every partition. We can take advantage of the ”one-constraint” property of
the modified master problem (from Section 7.3.1) and combine all of the pricing and payoff

information from all rounds into a single bound for each partition.

The advantage of this approach is that valuable bundle-specific information is not lost.

Here is a pared down example to illustrate the potential benefits:

Example. Imagine that there is a partition o = {a, B} with two bundles, o and 3. Say
that two rounds have been conducted, both of which yielded solutions with m; = 0 for all
agents j. Say that price on bundle « in the Round 1 was lower than in Round 2, and vice
versa for bundle 3. So, p'(a) < p*(a), and p*(B) < p'(B). With the original setup, the
modified master problem would bound the value of partition o and indirectly the value of 0

from above at:

V(o) < p'(e) +p'(B)

and

V(o) < p*(@) + p*(B)

However, had we employed a scheme that updated prices, we might better be able to take
advantage of the fact that Round 1 generated a lower supporting price for o and Round 2
generated a lower supporting price for 3. Combining this information into one value, we

can get a strictly better bound:

V(o)serious < p'(a) + p*(B)
< min{p!(a) + p*(B8), p*(a) + p*(B)}

where the final strict inequality follows from p*(a) < p*(a), and p*(3) < p*(B).

Clearly, there are cases where valuable bundle-specific price information gets subsumed
by the partition-valuing structure of the MP constraints and is thus lost. A price-updating
scheme would hope to retain and take advantage of this information. It would also dovetail
well with the conversion of the master problem from partition variables z, to bundle decision

variables x(.5), as mentioned in Section 7.3.

Any scheme of maintaining prices is greatly complicated by the addition of agent payoffs

into the mix. In general, it seems that lower agent payoffs are preferred, but as we saw in
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the example from Section 7.5.1, if one agent has the highest values on multiple mutually
exclusive bundles, raising that agent’s surplus and decreasing the prices on those bundles
will lead to a better solution than the payoff-minimizing one. More analysis and empirical
evidence are required to better understand these tradeoffs and develop appropriate heuristics

for pricing non-included bundles.

Another idea to improve efficiency would be to have, after the first round, agents only
submit bundle prices which have changed since the last round. If the prices for a majority
of bundles remain static across rounds, it makes sense to cut that dead weight from the
informational exchange between the bidding agents and the central agent. Again, this is an
idea that merits empirical experimentation to determine its effectiveness across a variety of

settings.

Returning to the broad view, since Benders and Dantzig-Wolfe are in a sense duals of
each other, we might expect the opposite of the Dantzig-Wolfe auction, in which the center
announces prices and the bidding agents respond with best-response bundles under those
prices. Indeed, in the Benders auction as it has taken shape, it is the master problem (at
the center) which finds an allocation across all feasible allocations, and the subproblem (the

agents) who respond to that proposal with prices.

7.6 Second Example of Benders on LP2, Using the Assign-

ment Problem Reduction

Now I'll step through an example borrowed from Bikhchandani and Ostroy [2001] to demon-
strate the idea of solving a reduced D(c') as the assignment problem and using a simple
technique to construct the remainder of a full dual solution. Additionally, Bikhchandani
and Ostroy use this specific example to as a counterexample to show that as a pure LP, the
LP2 formulation does not always yield integral results. In this example, though it is cast as
a mixed integer program and results in a valid integral allocation, as predicted by Theorem
3.

In this example there are two agents, Agent 1 and Agent 2, and three goods, A, B, and

C. The valuations are:

S |o {A {B} {¢} {A,B} {40} {B,C} {ABC0)}
nwS)lo 4 4 425 75 7 7 9
w(S) |0 4 425 4 7 7.5 7 9

There are four possible partitions in this example. Call them:

oV = {{A7B>C}7®}> oX = {{AaB}’ {C}}
oV = {{A,C}, {B}}7 o? = {{B’ C}v {A}}
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For Round 1, let’s fix 0! = oV = {{A, B,C},{@}}.

Round 1, Dual: Having fixed o', solving the assignment problem under that partition
would assign {A, B, C'} to one of the agents (say Agent 1), @ to the other agent (Agent 2),
and give D(a') =9, m = m =0, p({A, B,C}) =9, (@) = 0.

Now, assume we have obtained the information that v1({A, B,C}) = v2({4,B,C}) =9
(this is plausible and could be an argument for always starting with the partition that
includes M as a single bundle). We can therefore use V' = 9 as an upper bound on the

value of any bundle.

Now using the technique described in Section 7.5.3, we can construct a complete set of

prices p! over all of the bundles:

S | o {4} {B} {¢} {AB} {AC} {B,C} {ABC)}
pS)[o 9 9 9 9 9 9 9

We’ll use these to add a constraint to the modified master.

Round 1, Modified Master: With our dual solution, we’ll add to create MP! the

following constraint, given first in the general form and then in this instance:

0<> 255 (Zp(S)) +>

o€ll Seo JEN

01 < 2w x (940) +2,x x(94+9)+ 2,0 * (94+9) + 2,2 % (94+9)+0+0

Solving MP? gives us the values 6! = 18, z,z = 1, all other 2z, = 0 (ties broken arbitrar-

ily). ' > D(o'), so we iterate another round, with 0% = 0.

Round 2, Dual: Solving the assignment problem under 0%, the center gives { A} to Agent
1 and {B,C} to Agent 2. D(0?) =11, 71 =1 =0, p({A}) =4, p({B,C}) =T.

Reusing our bound of V = 9, we construct a complete set of prices p? over all of the
bundles:

S | o {A} {B} {¢} {AB} {AC} {B,C} {ABC)}
pS)[o 4 7T 7 9 9 7 9

Round 2, Modified Master: With the new constraint from (72, p?), MP? is:
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MP2: max 62
st. 02<90" + 180X +180Y + 1857
0% < 96V + 160X + 160" + 1167

L
oell
62 >0, z,€{0,1}, Voell

with solution % = 16, z,x = 1, all other 2, = 0. Again #? > D(0?), so we iterate another

round, with % = oX.

Round 3, Dual: Under ¢¥, the center gives {A, B} to Agent 1 and {C} to Agent 2.
D(03) =115, m =1 =0, p({A4, B}) = 7.5, p({C}) = 4.

S |eo {4} {B} {¢} {AB} {AC} {B,C} {4B0)}
pS)| 0 75 75 4 7.5 9 9 9

Round 3, Modified Master:
MP?: max 63
st. 62 <90 +180% + 180" + 1807
03 < 96" + 160~ + 1607 + 1107
0> <90 +11.50% +16.50" + 16.507

with solution #3 = 16, z,v = 1, all other z, = 0. % > D(03), so we iterate another round

with o4 = &Y.

Round 4, Dual: Under o, the center gives {B} to Agent 1 and {A4,C} to Agent 2.
D(o*) =115, 1 =7 =0, p({B}) =4, p({A,C}) = 7.5.

S e {4y {B} {¢} {4B} {AC} {B.C} {A4,BC)}
p(S)| 0 75 4 75 9 7.5 9 9

Round 4, Modified Master:
MP?: max 63
st. 02 < 96" +180% 4+ 180" + 1807
0* <96V + 160~ + 160" + 1107
0* < 96" +11.50% 4 16.50" + 16.507
0* < 96" +16.50% + 11507 + 16.507
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with solution #* = 11.5, which is equal to D(c%), so the final solution is the assignment
from the dual in Round 4.

7.7 Third Example of the Benders on LP2, Using ”Best”
Dual Cuts

In this example we’ll try to use the "best” solution possible, i.e. the one that adds the most
binding dual constraint to the modified master problem MP?. As suggested in Section 7.5.1,
this is often the seller-optimal one with respect to bundles in the partition ¢ (i.e. minimize

>_; ;) and the one with the minimal prices possible for S ¢ o.

We can implement this solution mathematically by first solving for D(o), then solving

a modified version, the ”second dual”:

min g mj
J

st. p(S)+m >vi(S), VjeENVSCM (7.7)
> mi+ > p(S) = D(o) (78)
J Seo

W],p(S) 207 VJ,VS

Constraints (7.7) are identical to the original dual, constraint (7.8) guarantees that the
solution will be an optimal dual solution, and the choice of objective guarantees that the

optimal solution chosen will be that with the highest seller payoff.

Alternately it is plausible that some methods of solving the assignment problem will

directly yield buyer-optimal prices.

In this example there are three agents, Agents 1, 2, and 3, and three goods, A, B, and

C. The valuations are:

S |o {A {B} {¢} {A,B} {40} {B,C} {ABC0)}
nS) o 2 3 4 9 7 6 11
wS) |0 4 5 6 7 9 7 10
vs(S)| 0 5 2 3 6 5 8 8

There are five possible partitions in this example. Call them:

oV = {{A}v {B}7{C}}? o = {{A7B7C}7®7®}7 oX = {{Aa B}v {C},@} oV =
{{Aa C}a {B}7®}> o7 = {{Ba C}v {A},@}

For Round 1, let’s fix 0! = ¢V = {{A, B,C}, 2, @}.
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Round 1, Dual: Having fixed o', solving the assignment problem under that partition
would assign {A4, B,C} to Agent 1, @ to Agents 2 and 3, and give D(c') = 11.

The "best” solution as we’ve defined it gives m; = m9 = w3 = 0 and:

S |eo {4 {B} {¢} {A B} {AC} {B,C} {4,B0)}
pS$)ylo 5 5 6 9 9 8 11

Remark. As a quick aside, consider briefly the solution if it had been Agent 2 instead of
Agent 1 with the highest value for the bundle S’ = {A, B,C}. Say for example va({A, B,C}) =
12, so the seller-optimal solution (call it (7,p)) would have w3 = 0 and p({A, B,C}) = 12.
Now the same situation as described in the counterexample of Section 7.5.3, where in fact
this cut is not Pareto optimal. It is dominated by the cut which is identical except for
72 =1, 5({A, B,C}) = 11, p({A,C}) = 8, and p({B}) = 4.

It can be quickly ascertained that the new cut (7,p) is valid, and that for the partition

oV = {{Aa C}v {B}, ®}7

V(7 po")=4+8+1=13
V(#,p,0Y)=5+9+0=14

and therefore V(7,p,0Y) < V(#,p,0Y) and (7,p) dominates (%,p), so (&,p) could not be

Pareto optimal if this were the case.

In this case, however, the seller-optimal solution is indeed Pareto optimal. We’ll use the

p(S) as above to add a constraint to the modified master.

Round 1, Modified Master: With our dual solution, we’ll add to create MP! the

following constraint, given first in the general form and then in this instance:

0<> 25 (Zp(S)) +>

oell Seo JEN
0 < zov % (54+546) + z,w * (11 4+040) + z,x * (9+6+0)
+ 2,y % (94+54+0)+2,2%(8+5+0)+0+0+0

Solving MP? gives us the values #' = 16, z,v = 1, all other z, = 0.

Round 2, Dual: Solving the assignment problem under o', the center gives {C} to
Agent 1, {B} to Agent 2, and {C} to Agent 3. D(0?) =14, mp =2, m; = 73 = 0.

0! > D(0?), so we iterate another round. The ”best” prices are:
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S |o {4} {B} {¢} {AB} {AC} {B.C} {A4B0C)}
p$)ylo 5 3 4 9 7 8 11

Round 2, Modified Master: With the new constraint from (72, p?), MP? is:

MP2: max 62
st. 02 <160Y +116%W 4+ 150X + 140Y + 1367
02 < 120" + 116" + 130X +100Y + 1307 +2
Sa<
ocll
62 >0, z,€{0,1}, Voell

with solution 62 = 15, z,x = 1, all other z, = 0. .

Round 3, Dual: Solving the assignment problem under o, the center gives {A, B} to
Agent 1, and {C} to Agent 2. D(0?) =15, mp = 2, 7 = 73 = 0.

Now 62 = D(c?), so we have converged and 0% is an optimal partition. For prices we
use the prices from the final dual round, which are p({4, B}) =9 and p({C}) = 4.

Summary: Using the "best” solution as described here - seller optimal in the case of
the partition under consideration, and minimal supporting prices on all other bundles -
speeds convergence in this example and may across most cases. However, it is important to
recognize that this is considerably more difficult than just solving the assignment problem
and generating the other prices in a simplistic manner. The information passed from agents
to center is of the same size as a complete valuation over all ”interesting” bundles in each

round.

7.8 Computing Vickrey Payments

In order for bidding agents’ compliance with the Benders auction to be in ex post Nash
Equilibrium, we must ensure that the ultimate outcome corresponds with that of a Gener-
alized Vickrey Auction. The Benders auction as we have already described it will allocate
the goods in the optimal manner (assuming agents are truthful), but we also must compute
Vickrey payments - the set of prices at which the auction terminates do not necessarily

follow the second-price principle.

As in the Dantzig-Wolfe auction, two approaches to computing Vickrey prices imme-

diately come to mind. The first is to solve each marginal economy En_; and compute
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the Vickrey payments accordingly. The second is to try to extrapolate the correct prices
from the core of pricing information that the center has accumulated over the course of
the auction. These approaches are discussed with respect to Dantzig-Wolfe in Sections
4.3.5-4.3.7.

The first approach, in more detail, is to use a Benders auction to solve each marginal
economy En_; (the allocation problem excluding agent j), determine each value V(N/j),
and compute the Vickrey payments accordingly. This entails solving n problems of similar
complexity to the main problem. With the Dantzig-Wolfe auction, the allocation for Ep
provides an advanced starting point for the master problem from which to solve En_j.
Starting with an allocation that is close to the optimum is less helpful to the Benders
algorithm, however, since the center must obtain sufficient pricing information to rule out
all other partitions, even if the optimal partition has already been considered. Thus, in re-
solving for the marginal economies Fx_;, Benders must start almost entirely from scratch.
This makes this approach comparatively less attractive than it is in the Dantzig-Wolfe case,
but it is still a useful approach - it will yield the correct answer, just at high computational

cost.

The other approach, that of extrapolating correct Vickrey prices from the information
already accumulated, is more elegant than solving each marginal economy directly, but
more difficult realize concretely. The idea would be to sift through the mountain of prices
contained in the central constraints and find prices that are feasible solutions to the dual
of each Ey_j, and thus support the optimal allocation for that marginal economy. Un-
fortunately, as in Dantzig-Wolfe, we have no theoretical guarantees at this point that all
of the information necessary to produce Vickrey prices gets submitted to the center over
the course of the auction. It is possible that the majority of such prices are, and the rest
could be obtained with quick, direct queries rather than indirectly through another auction,
but this may also be wishful thinking. A deeper understanding of the behavior of prices
is needed to make stronger claims about the efficacy of the price extrapolation method;
however, attention is deserved because it could provide a much more elegant way to obtain
Vickrey prices, avoiding the heavy computational burden of solving each of the n marginal

economies directly.

7.9 Summary of Benders on LP2

To summarize this chapter, applying Benders decomposition to Bikhchandani and Ostroy’s
LP2 formulation of the CAP has yielded a promising framework for implementing a com-
binatorial auction. LP2 is not useful for Dantzig-Wolfe because it does not guarantee
integrality by itself, but Benders decomposition enables us to transform it into a mixed
integer program which has provably integral optimal solution. The problem is decomposed

into integral partition variables and continuous bundle-agent assignment variables. The
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former are fixed by the master problem, the Benders subproblem (the dual) is solved to
generate an appropriate dual cut, and this cut is added to the modified master problem.
This process is repeated until the modified master problem is sufficiently constrained to
yield an optimal solution to the complete master problem. (The complete master problem,

however, is never enumerated).

The auction interpretation of this is that the center fixes and announces a partition, and
the agents respond with pricing information relevant to that partition. This information is
incorporated by the center and a new partition is announced. This process is repeated until

the center has enough pricing information to guarantee the optimality of an allocation.

The most challenging part of implementing this algorithm is decentralizing the Benders
subproblem. Unlike Dantzig-Wolfe, Benders is not readily adaptable to taking advantage
of additional block structure within a coefficient matrix after the initial decomposition.
The most promising approach at this point seems to be solving the problem of allocating
the partition as an assignment problem, then constructing a complete dual cut from the
prices generated by the optimal assignment. Within this approach there are many possible
avenues to explore. It seems at this point that aiming for Pareto optimal dual cuts is too
ambitious a goal, given computational constraints. We can predict that the tension between
the quality of dual cuts and the amount of computational effort we are willing to expend
on them will likely characterize future efforts to implement this auction algorithm. The
possibility of an extremely efficient method of determining Pareto optimal cuts seems slim,

yet plausible; the potential rewards make it well worth investigating.

Like the Dantzig-Wolfe auction, the central agent in the Benders auction over LP2 con-
tinually improves its information over time, until it is finally able to announce an optimal
allocation. Unlike Dantzig-Wolfe, the termination of the Benders algorithm is not marked
by the bidding agents no longer responding with best-response bundles. Instead, the center
determines when the auction is over on the basis of the information it has aggregated in

the master problem, combined with the latest subproblem (dual) solutions.

Solving the modified master problem at each round is not trivial - it involves an expo-
nential number of 0-1 variables z,. This could be mitigated somewhat by converting the

formulation to bundle-specific decision variables z:(S) as mentioned in Section 7.3.

A potential disadvantage of the Benders auction is that structurally, every partition must
be actively ruled out, as compared to Dantzig-Wolfe where they are implicitly ruled out
as prices rise and agents choose not to request them. In many small examples with non-
optimal dual cuts, the partitions were nearly or completely enumerated before the modified
master problem was sufficiently constrained to guarantee an optimal overall allocation. This
a a large concern, as the number of partitions is exponential - it would be very interesting
examine the behavior of the algorithm experimentally on larger test cases to see if this is

indeed an issue.
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This chapter is just a beginning - there are myriad theoretical and practical issues left to
address with regard to the Benders auction. Nevertheless, it seems to be a promising auction
framework and deserves further consideration to explore its advantages and disadvantages

and better understand what it has to offer.



Chapter 8

Benders on LP3 and LP4

Having gone into great depth on the Benders auction on LP2, this Chapter will briefly
examine the problem structures resulting when the Benders decomposition is applied to the
stronger LP3 and LP4 formulations. Since these linear program formulations are already
guaranteed to be integral, there is no need to take advantage of the Benders decomposi-
tion’s ability to mesh integral and continuous variables. One could hypothesize that the
computational cost of the additional density in the problem formulations would make these
options less attractive than LP2, which is not strong enough to guarantee integrality as a

linear program but can as a Benders mixed integer program.

8.1 Mapping the Benders Decomposition to LP3

Recall that the LP3 formulation is stronger than LP2, guaranteeing an integral solution
even if all variables are allowed to be continuous. LP3 differs from LP2 in that instead of
anonymous partitions o € Il and associated variables z,, LP3 uses non-anonymous parti-
tions 1 € I' and associated variables 6,,. A non-anonymous partition not only specifies which
bundles are available, but also which agents they are assigned to. The LP3 formulation is

given once again below:

76
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V(N)=max ) > 0;(S)y(S, )

JEN SCM
st y(S,j) <1, VjEN
SCM
y(S.5) <Y b ViENVSCM
u>SI
d o<1
pel

y(S,j)>0 VSCM\VjeN

Unfortunately, this formulation does not work well with Benders - if we fix the J,, in the
first step, analogous to fixing z, for LP2, we have implicitly fixed all of the y(.S, j) variables
as well, leaving basically no work for the second half (the agent half) of the decomposition
procedure. A tight, minimal-priced dual solution will lead to fast convergence, but this is
basically indistinguishable from the center soliciting a complete valuation from each bidding

agent and solving the entire allocation problem itself in one go.

8.2 Mapping the Benders Decomposition to LP4

Unlike LP3, the LP4 formulation of Bikhchandani et al. [2001] guarantees integrality without
the use of non-anonymous partitions, thus making it a more attractive candidate for the

Benders approach. The LP4 formulation is:

V(N)=max Y > > v;(S)y(S.4)

o€ll jeN SCM

st. Y y7(8,§) <z, VjENVoell
Seo

S y7(8,4) < 7. VS €0 Vol

JEN
Zzg <1

oell

YD W(S,5) <1, VieEN

o€ll Seo
y(S,7) >0 ¥SCM,\VjeN

N is the set of agents, M is the set of goods. v;(S) is agent j’s value for bundle S, and
y? (S, j) equals 1 or 0 depending on whether agent j is allocated bundle S in partition o.

We also have a variable z, for each possible partition o € II. II is the set of all possible

partitions.
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8.2.1 Logical Benders Decomposition of LP4

As in LP2, the logical decomposition is to fix the z, and leave the y?(S,j) to vary. We
then solve the dual with the z, fixed and use the solution to generate constraints in our
modified master problem MP2 (a.k.a. MP? in Round ¢). This process is iterated until MP2
is sufficiently constrained to yield a feasible optimum. We’ll know this when the objective
values of the dual and of MP2 coincide (D(o') = 6).

Since LP4 is proven to be integral even with all variables continuous [Bikhchandani et al.,

2001], there is no need to prove its integrality after we constrain z, € {0, 1}.

8.2.2 Primal and Dual of LP4 with 2z, fixed

Recall that we have fixed the z, and chosen a partition ¢. Similarly to LP2, we can write

the following programs for dual, D(o).

D(a):minij+ng«+Z,u;’

JEN S€o JEN
st mi+u] +wd>v(S) VjieSvVSeo

M?awgaﬂj7ﬂszo Vj,S,O'

The seller’s surplus 7, is equivalent to ) g wg + Zje N HG- LP4 provides payments in

the form of a non-anonymous component p and a non-linear component wg.

We can obtain bundle- and agent-specific prices by defining:

pi(S) = pf +w§
and perhaps anonymous prices by saying
S) = max(p; (S
p(S) = max(p;(5))
There are a tremendous number of variables in this dual problem, and we also need

additional computation to generate bundle prices from the variable settings in the solution.

Hopefully we can just take the prices from the fixed o, and generate the others analogous

to the method used in our decomposition of LP2.

8.2.3 The Modified Master Problem, MP*

The modified master problem MP? is initiated as:
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MP!: max 6
Z 2o <1
o€ell

Having solved the dual and received back a set of prices that supports the given partition

o over all bundles S C M, we formulate a new constraint of the form

D ERY) SRS SRS 3
ocll Seo jEN JEN

Solving this version of MP2 will give us a new setting for the z,, which will dictate a

new partition ¢ to fix, and we’ll repeat the Bender’s process.

The structure we see here is very similar to that of the Benders auction on LP2, but
with more redundancy in both variables and constraints that are artifacts from the original
LP4 formulation, which required them to guarantee integrality as a pure linear program.
Since this formulation is integral even as a pure LP, we could solve the master problem
MP? as a LP rather than a MIP, which would be faster in practice. However, it is unclear
that the benefit derived from this would outweigh the computational cost of maintaining
so much redundancy over the leaner LP2 formulation. Further exploration of the idea of
designing a Benders auction by applying the decomposition to LP4 may be warranted, but
at the present we conclude that the auction based on LP2 appears to be considerably more

promising.



Chapter 9

Conclusion

This thesis proposes several new and specific frameworks to implement a Generalized Vick-
rey Auction in a distributed fashion. Each framework was generated by casting the CAP as
a linear program and solving the problem using a decomposition method, which moves much
of the computation from the central agent to the bidding agents. To ensure that agents do
not attempt to manipulate the system, each framework implements a GVA outcome, which
puts the entire mechanism in ex post Nash Equilibrium. Each framework thus succeeds in
implementing a Vickrey-Clarke-Groves mechanism that incorporates self-interested agents
into the computation, without sacrificing the quality of the solution. The agents cooperate
and each contribute toward the socially optimal solution because it is in each of their own

best interests.

We began by outlining the main ideas of distributed mechanism design and establish-
ing the goal of designing an incentive-compatible, distributed auction based on applying
decomposition methods to linear programming formulations of the CAP. The main body
of the paper was divided into two major parts, the first devoted to the Dantzig-Wolfe de-
composition and the second devoted to the Benders decomposition. Each part began by
introducing the decomposition method in a general setting, then moved on to applying the
decomposition to linear program formulations of the CAP and attempting to interpret the

results in a meaningful way as an iterative auction.

The Dantzig-Wolfe auction was first introduced on the simple domain of the assignment
problem, a.k.a. the special case of unit demand. This auction is based on linear relaxations
of the integer program representation of the problem, which is then solved via the Dantzig-
Wolfe decomposition algorithm. This process has a very natural auction interpretation,
with the shadow prices from the dual in each round representing bundle prices. In theory,
prices will rise over time on bundles containing over-demanded goods and fall on bundles
containing under-demanded goods, until an equilibrium between prices and agent demand
is reached. It was hypothesized that prices may be purely ascending - this is a very inter-

esting possibility and we would eagerly anticipate the results of experimentation to further
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understand the behavior of these prices.

The Dantzig-Wolfe auction was then further described for the full domain of the com-
binatorial allocation problem, although this involves more sophisticated linear relaxations,
LP3 and LP4, that do not conform as easily to the Dantzig-Wolfe structure. This formu-
lation is theoretically valid - the biggest concern is the exponential number of variables,
which may make the process very difficult computationally and perhaps unworkable for
large examples, which would be unfortunate. We speculated on some steps that might help
take the Dantzig-Wolfe auction from theory to efficient practice, among them generating
partition variables in the master problem only as needed and exploiting the similar structure

of consecutive master problems.

The Benders auction was first introduced on LP2, an intermediate linear programming
formulation of the CAP which is not useful to Dantzig-Wolfe, but the structure of the
problem matches well with the ability of the Benders decomposition to mesh integral and
continuous variables. Benders was also applied to LP3 and LP4, but LP2 remained the

most promising.

Benders decomposition does not have as natural an auction interpretation as does Dantzig-
Wolfe, but nevertheless a meaningful interpretation was extracted and several examples of
the working process of the auction were presented on a small scale. The key challenge aris-
ing in the Benders auction is the manner in which the dual subproblem is decentralized and
solved. This subproblem bears some resemblance to the assignment problem, a similarity
which can hopefully be exploited. We observed tension between the desire to generate the
most binding (Pareto optimal) dual cuts and the desire to solve the subproblem without
solving the entire dual. Generating Pareto optimal cuts seems quite impractical; on the
other hand, without very strong cuts, we are concerned that all, or at least a majority, of
the exponential number of possible partitions would have to be directly explored, which
is unsatisfactory. While convergence of the Benders auction is guaranteed in theory, in
practice we are concerned that it may take an unreasonable amount of time under some

circumstances.

9.1 Future Work: Towards a Distributed VCG Implementa-

tion

Unfortunately, due to time considerations it was not feasible to implement either of the
auctions proposed in this thesis. A strong next step would be to code up one or both of the
auctions, assemble an appropriate suite of test cases, run the auction on the test cases and
analyze the results. The optimality and eventual convergence of both auction algorithms is

guaranteed theoretically; however, it would be very interesting to see how they behave in
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practice. In particular, the movement of the shadow prices across rounds in the Dantzig-
Wolfe auction has already been pointed out as an area that merits experimentation and
deeper understanding. Also, the convergence behavior of both algorithms is an issue of
concern, particularly with the Benders, which could prove impracticable if the number of
iterations needed to sufficiently constrain the master problem is too high. Finally, empirical
work would us to better grasp the magnitude of the computational challenge presented by
these algorithms, how much it restricts us, and to what extent improvements to improve
efficiency are necessary to use the Dantzig-Wolfe and/or Benders auctions in large-scale

real-world applications.

The biggest area for further exploration is how to translate the Dantzig-Wolfe and Ben-
ders auctions into versions that are manageable from a computational standpoint. Other

interesting and related issues include

e The best way to solve the marginal economies E_; and compute Vickrey payments
in both Dantzig-Wolfe and Benders

e The similar structure of the iterated master program in Dantzig-Wolfe
e The multiplicity of dual solutions in Dantzig-Wolfe
e The behavior of Dantzig-Wolfe prices - will they always be ascending?

e The structure of the Benders modified master problem, and potential alternate rep-

resentations (”one-constraint,” bundle decision variables, price-updating scheme)

e Strong and Pareto optimal dual cuts in Benders, and the tradeoff between ease of

obtaining the cuts and their quality
e Convergence behavior of both algorithms, particularly Benders

e The possibility of decentralizing the master problem itself, in order to obtain a com-

pletely decentralized mechanism

Both the Dantzig-Wolfe auction and the Benders auction have exciting potential to
develop into a formidable distributed implementation of the VCG mechanism. We hope

that this thesis inspires interest and future research in this area.
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