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We initiate the study of incentives in a general machine learning framework. We focus
on a game-theoretic regression learning setting where private information is elicited from
multiple agents with different, possibly conflicting, views on how to label the points of an
input space. This conflict potentially gives rise to untruthfulness on the part of the agents.
In the restricted but important case when every agent cares about a single point, and under
mild assumptions, we show that agents are motivated to tell the truth. In a more general
setting, we study the power and limitations of mechanisms without payments. We finally
establish that, in the general setting, the VCG mechanism goes a long way in guaranteeing
truthfulness and economic efficiency.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Machine learning is the area of computer science concerned with the design and analysis of algorithms that can learn
from experience. A supervised learning algorithm observes a training set of labeled examples, and attempts to learn a rule
that accurately predicts the labels of new examples. Following the rise of the Internet as a computational platform, machine
learning problems have become increasingly dispersed, in the sense that different parts of the training set may be controlled
by different computational or economic entities.

1.1. Motivation

Consider an Internet search company trying to improve the performance of their search engine by learning a ranking
function from examples. The ranking function is the heart of a modern search engine, and can be thought of as a mapping
that assigns a real-valued score to every pair of a query and a URL. Some of the large Internet search companies currently
hire Internet users, whom we hereinafter refer to as “experts”, to manually rank such pairs. These rankings are then pooled
and used to train a ranking function. Moreover, the experts are chosen in a way such that averaging over the experts’
opinions and interests presumably pleases the average Internet user.

However, different experts may have different interests and a different idea of the results a good search engine should
return. For instance, take the ambiguous query “Jaguar”, which has become folklore in search engine designer circles. The top
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answer given by most search engines for this query is the website of the luxury car manufacturer. Knowing this, an animal-
loving expert may decide to give this pair a disproportionately low score, hoping to improve the relative rank of websites
dedicated to the Panthera Onca. An expert who is an automobile enthusiast may counter this measure by giving automotive
websites a much higher score than is appropriate. From the search company’s perspective, this type of strategic manipulation
introduces an undesired bias in the training set.

As a second motivating example, consider the distribution process of a large retail chain, like Spanish fashion company
Zara. Store managers typically report their predicted demand to the central warehouses, where global shipments of inven-
tory are optimized. In recent years Zara has reengineered its distribution process using models from operations research
[1,2]. In particular, regression learning is now employed to predict the upcoming weekly demand. The prediction is based
on past sales data, but also on requests by store managers. This introduces incentives for the store managers, whose salaries
depend largely on the sales in their own stores. Caro et al. [2] believe that “this caused store managers to frequently re-
quest quantities exceeding their true needs, particularly when they suspected that the warehouse might not hold enough
inventory of a top-selling article to satisfy all stores. [. . . ] Zara might in time consider introducing formal incentives for store
managers to provide accurate forecasts, adding to its more traditional sales-related incentives.” [2, p. 74].

1.2. Setting and goals

Our problem setting falls within the general boundaries of statistical regression learning. Regression learning is the task
of constructing a real-valued function f based on a training set of examples, where each example consists of an input to
the function and its corresponding output. In particular, the example (x, y) suggests that f (x) should be equal to y. The
accuracy of a function f on a given input–output pair (x, y) is defined using a loss function �. Popular choices of the loss
function are the squared loss, �( f (x), y) = ( f (x) − y)2, or the absolute loss, �( f (x), y) = | f (x) − y|. We typically assume
that the training set is obtained by sampling i.i.d. from an underlying distribution over the product space of inputs and
outputs. The overall quality of the function constructed by the learning algorithm is defined to be its expected loss, with
respect to the same distribution.

We augment this well-studied setting by introducing a set of strategic agents. Each agent holds as private information an
individual distribution over the input space and values for the points in the support of this distribution, and measures the
quality of a regression function with respect to this data. The global goal, on the other hand, is to do well with respect to
the average of the individual points of view. A training set is obtained by eliciting private information from the agents, who
may reveal this information untruthfully in order to favorably influence the result of the learning process.

Mechanism design is a subfield of economics that is concerned with the question of how to incentivize agents to truthfully
report their private information, also known as their type. Given potentially non-truthful reports from the agents, a mecha-
nism determines a global solution, and possibly additional monetary transfers to and from the agents. A mechanism is said
to be incentive compatible if it is always in the agents’ best interest to report their true types, and efficient if the solution
maximizes social welfare (i.e., minimizes the overall loss). Our goal in this paper will be to design and analyze incentive
compatible and efficient mechanisms for the regression learning setting. It should be noted that incentive compatibility is
essential for obtaining any learning theoretic bounds. Otherwise, all agents might reveal untruthful information at the same
time, in a coordinated or uncoordinated way, causing the learning problem itself to be ill-defined.

1.3. Results

We begin our investigation by considering a restricted setting where each agent is only interested in a single point
of the input space. Quite surprisingly, it turns out that a specific choice of �, namely the absolute loss function, leads to
excellent game-theoretic properties: an algorithm which simply finds an empirical risk minimizer on the training set is
group strategyproof, meaning that no coalition of agents is motivated to lie. Like in all of our incentive compatibility results,
truthfulness holds with respect to dominant strategies, i.e., regardless of the other agents’ actions. In a sense, this is the
strongest incentive property that could possibly be obtained. We also show that even much weaker truthfulness results
cannot be obtained for a wide range of other loss functions, including the popular squared loss.

In the more general case where agents are interested in non-degenerate distributions, achieving incentive compatibility
requires more sophisticated mechanisms. We show that the well-known VCG mechanism does very well: with probabil-
ity 1 − δ, no agent can gain more than ε by lying, where both ε and δ can be made arbitrarily small by increasing the size
of the training set. This result holds for any choice of loss function �.

We also study what happens when payments are disallowed. In this setting, we obtain limited positive results for the
absolute loss function and for restricted yet interesting function classes. In particular, we present a mechanism which is
approximately group strategyproof as above and 3-efficient in the sense that the solution provides a 3-approximation to
optimal social welfare. We complement these results with a matching lower bound and provide strong evidence that no
approximately incentive compatible and approximately efficient mechanism exists for more expressive functions classes.

1.4. Related work

To the best of our knowledge, this paper is the first to study incentives in a general machine learning framework. Previous
work in machine learning has investigated the related problem of learning in the presence of inconsistent and noisy training
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data, where the noise can be either random [3,4] or adversarial [5,6]. Barreno et al. [7] consider a specific situation where
machine learning is used as a component of a computer security system, and account for the possibility that the training
data is subject to a strategic attack intended to infiltrate the secured system. In contrast to these approaches, we do not
attempt to design algorithms that can tolerate noise, but instead focus on designing algorithms that discourage the strategic
addition of noise.

Most closely related to our work is that of Perote and Perote-Peña [8]. The authors essentially study the setting where
each agent controls one point of the input space, in a framework that is not learning-theoretic. In addition, they only
consider linear regression, and the input space is restricted to be the real line. For that setting, the authors put forward a
class of truthful estimators. Rather than looking at the approximation properties of said estimators, they are instead shown
to be Pareto-optimal, i.e., there exist no regression lines that are weakly better for all agents, and strictly better for at least
one agent.

Our work is also related to the area of algorithmic mechanism design, introduced in the seminal work of Nisan and
Ronen [9]. Algorithmic mechanism design studies algorithmic problems in a game-theoretic setting where the different
participants cannot be assumed to follow the algorithm but rather act in a selfish way. It has turned out that the main
challenge of algorithmic mechanism design is the inherent incompatibility of generic truthful mechanisms with approxima-
tion schemes for hard algorithmic problems. As a consequence, most of the current work in algorithmic mechanism design
focuses on dedicated mechanisms for hard problems (see, e.g., [10,11]). What distinguishes our setting from that of algorith-
mic mechanism design is the need for generalization to achieve globally satisfactory results on the basis of a small number
of samples. Due to the dynamic and uncertain nature of the domain, inputs are usually assumed to be drawn from some
underlying fixed distribution. The goal then is to design algorithms that, with high probability, perform well on samples
drawn from the same distribution.

More distantly related to our work is research which applies machine learning techniques in game theory and mechanism
design. Balcan et al. [12], for instance, use techniques from sample complexity to reduce mechanism design problems to
standard algorithmic problems. Another line of research puts forward that machine learning can be used to predict consumer
behavior, or find a concise description for collective decision making. Work along this line includes the learnability of choice
functions and choice correspondences [13,14].

1.5. Structure of the paper

In the following section, we introduce the necessary concepts from mechanism design. In Section 3, we give a general
exposition of regression learning and introduce our model of regression learning with multiple agents. We then examine
three settings of increasing generality: in Section 4, we consider the case where the distribution of each agent puts all of the
weight on a single point of the input space; in Section 5, we then move to the more general setting where the distribution
of each agent is a discrete distribution supported on a finite set of points; we finally investigate arbitrary distributions in
Section 6, leveraging the results of the previous sections. In Section 7, we discuss our results and give some directions for
future research.

2. Preliminaries

A mechanism design problem (see, e.g., [15]) is given by a set N = {1,2, . . . ,n} of agents that interact to select one
element from a set A of alternatives. Agent i ∈ N is associated with a type θi from a set Θi of possible types, corresponding
to the private information held by this agent. We write θ = (θ1, θ2, . . . , θn) for a profile of types for the different agents
and Θ = ∏

i∈N Θi for the set of possible type profiles. θ−i ∈ Θ−i is used to denote a profile of types for all agents but i.
Furthermore, agent i ∈ N employs preferences over A, represented by a real-valued valuation function vi : A ×Θi → R. In this
paper, we only consider settings of private values where an agent’s preferences depend exclusively on his type.

A social choice function is a function f : Θ → A. One desirable property of social choice functions is efficiency. A social
choice function f is called α-efficient if for all θ ∈ Θ ,

α ·
∑
i∈N

vi
(

f (θ), θi
)
� max

a∈A

∑
i∈N

vi(a, θi).

We say that a social choice function is efficient if it is 1-efficient and approximately efficient if it is α-efficient for some α.
Agents’ types, and thus the input to f , are private, and agents may strategically report information that does not agree

with their true type in order to increase their payoff at the expense of social welfare. The goal of mechanism design is
to provide incentives to the agents to report their true types and enable the computation of a socially optimal solution.
In order to achieve this, it may sometimes be necessary to tax or subsidize the different agents based on their revealed
type. This is done by means of a payment function p : Θ → R

n . Intuitively, pi(θ) represents a payment from agent i to the
mechanism if the revealed types are θ .

As this definition indicates, we will restrict our attention to the class of direct revelation mechanisms, where all agents
simultaneously announce their types within a single round. We will see momentarily that this does not imply a restriction in
expressiveness with respect to the problems studied in this paper. Formally, a (direct revelation) mechanism is a pair ( f , p)

of a social choice function f and a payment function p. A mechanism ( f , p) will be called α-efficient if f is α-efficient.
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Game-theoretic reasoning, more specifically a model of strict incomplete information games, is used to analyze how
agents interact with a mechanism, a desirable criterion being stability according to some game-theoretic solution concept.
Each agent i ∈ N has a true type θi ∈ Θi , and reveals some type θ̂i ∈ Θi . Agents have no information, not even distributional,
about the types of the other agents. A strategy is a function mapping true types to revealed types, and an outcome is chosen
according to the profile of revealed types. The payoff of an agent thus depends on his true type and the revealed types of
all the agents.

Let ε � 0. A mechanism f is said to be ε-group strategyproof (in dominant strategy equilibrium) if for any coalition
C ⊆ N of the agents, the only way that all members of C can gain at least ε by jointly deviating from the profile θ of true
types is for all of them to gain exactly ε . More formally, consider θ̂ ∈ Θ such that θ̂ j = θ j whenever j /∈ C . Then, ε-group
strategyproofness requires that if for all i ∈ C ,

vi
(

f (θ̂), θi
) − pi(θ̂) � vi

(
f (θ), θi

) − pi(θ) + ε,

then for all i ∈ C ,

vi
(

f (θ̂), θi
) − pi(θ̂) = vi

(
f (θ), θi

) − pi(θ) + ε.

A mechanism is called ε-strategyproof if the above is satisfied for any C ⊆ N such that |C | = 1. We then say that a mecha-
nism is (group) strategyproof if it is 0-(group) strategyproof. In other words, group strategyproofness requires that if some
member of an arbitrary coalition of agents strictly gains from a joint deviation by the coalition, then some other member
must strictly lose. A social choice function will sometimes be referred to as a mechanism (without payments) if the distinc-
tion is obvious from the context. A social choice function f is then called (group) strategyproof if the mechanism ( f , p0) is
(group) strategyproof, where p0 is the constant zero function.

Strategyproofness is sometimes defined in a way that includes individual rationality, and the term incentive compat-
ibility is then reserved for the above property that agents cannot gain by revealing their types untruthfully. We do not
make such a distinction in this paper but rather use the terms incentive compatibility, truthfulness, and strategyproofness
interchangeably. We note two things, however. First, individual rationality is trivially satisfied in our case by any mechanism
without payments, as will become apparent later. Secondly, it is not immediately clear how to achieve individual rationality
for mechanisms with payments.

If we say that a mechanism is not strategyproof, we mean it is not strategyproof in the weaker solution concept of
(ex-post) Nash equilibrium, i.e., there exists a strategy profile under which some agent can gain from untruthful revelation,
even if all other agents are assumed to reveal their types truthfully. Due to the well-known revelation principle, only direct
mechanisms need to be considered in order to answer the question of whether there exists a mechanism that is incentive
compatible in dominant strategy or Nash equilibrium.

We conclude this section with a general mechanism due to Vickrey [16], Clarke [17], and Groves [18]. This mechanism
starts from an efficient social choice function f and computes each agent’s payment according to the social welfare of the
other agents, thus aligning his interests with that of society. Formally, a mechanism ( f , p) is called Vickrey–Clarke–Groves
(VCG) mechanism if f is efficient and there exist functions hi : Θ−i → R such that

pi(θ) = hi(θ−i) −
∑
j �=i

v j
(

f (θ), θ j
)
.

VCG mechanisms are strategyproof [18] but in general not group strategyproof. The latter is due to the fact that in
some cases the members of a coalition can influence each others’ payments such that all of them gain. Interestingly, all
mechanisms with unrestricted type spaces that are efficient and strategyproof (in dominant strategy equilibrium) are VCG
mechanisms.

3. The model

In this section we formalize the regression learning problem described in the introduction and cast it in the framework of
game theory. Some of the definitions are illustrated by relating them to the Internet search example presented in Section 1.

We focus on the task of learning a real-valued function over an input space X . In the Internet search example, X would
be the set of all query-URL pairs, and our task would be to learn the ranking function of a search engine. Let N = {1, . . . ,n}
be a set of agents, which in our running example would be the set of all experts. For each agent i ∈ N , let oi be a function
from X to R and let ρi be a probability distribution over X . Intuitively, oi is what agent i thinks to be the correct real-
valued function, while ρi captures the relative importance that agent i assigns to different parts of X . In the Internet search
example, oi would be the optimal ranking function according to agent i, and ρi would be a distribution over query-URL
pairs that assigns higher weight to queries from that agent’s areas of interest.

Let F be a class of functions, where every f ∈ F is a function from X to the real line. We call F the hypothesis space
of our problem, and restrict the output of the learning algorithm to functions in F . We evaluate the accuracy of each
f ∈ F using a loss function � : R × R → R+ . For a particular input–output pair (x, y), we interpret �( f (x), y) as the penalty
associated with predicting the output value f (x) when the true output is known to be y. As mentioned in the introduction,
Please cite this article in press as: O. Dekel et al., Incentive compatible regression learning, J. Comput. System Sci. (2010), doi:10.1016/j.jcss.2010.03.003
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common choices of � are the squared loss, �(α,β) = (α − β)2, and the absolute loss, �(α,β) = |α − β|. The accuracy of a
hypothesis f ∈ F is defined to be the average loss of f over the entire input space. Formally, define the risk associated by
agent i with the function f as

Ri( f ) = Ex∼ρi

[
�
(

f (x),oi(x)
)]

.

Clearly, this subjective definition of hypothesis accuracy allows for different agents to have significantly different valuations
of different functions in F , and it is quite possible that we will not be able to please all of the agents simultaneously.
Instead, our goal is to satisfy the agents in N on average. Define J to be a random variable distributed uniformly over the
elements of N . Now define the global risk of a function f to be the average risk with respect to all of the agents, namely

RN( f ) = E
[

R J ( f )
]
.

We are now ready to state our learning-theoretic goal formally: we would like to find a hypothesis in F that attains a
global risk as close as possible to inf f ∈F RN (F ).

Even if N is small, we still have no explicit way of calculating RN ( f ). Instead, we use an empirical estimate of the risk as
a proxy to the risk itself. For each i ∈ N , we randomly sample m points independently from the distribution ρi and request
their respective labels from agent i. In this way, we obtain the labeled training set S̃ i = {(xi, j, ỹi, j)}m

j=1. Agent i may label

the points in S̃ i however he sees fit, and we therefore say that agent i controls (the labels of) these points. We usually
denote agent i’s “true” training set by Si = {(xi j, yij)}m

j=1, where yij = oi(xij). After receiving labels from all agents in N , we

define the global training set to be the multiset S̃ = ⊎
i∈N S̃i .

The elicited training set S̃ is presented to a regression learning algorithm, which in return constructs a hypothesis f̃ ∈ F .
Each agent can influence f̃ by modifying the labels he controls. This observation brings us to the game-theoretic aspect
of our setting. For all i ∈ N , agent i’s private information, or type, is a vector of true labels yij = oi(xij), j = 1, . . . ,m. The
sampled points xi j , j = 1, . . . ,m, are exogenously given and assumed to be common knowledge. The strategy space of each
agent then consists of all possible values for the labels he controls. In other words, agent i reports a labeled training set S̃ i .
We sometimes use S̃−i as a shorthand for S̃ \ S̃ i , the strategy profile of all agents except agent i. The space of possible
outcomes is the hypothesis space F , and the utility of agent i for an outcome f̃ is determined by his risk Ri( f̃ ). More
precisely, agent i chooses ỹi1, . . . , ỹim so as to minimize Ri( f ). We follow the usual game-theoretic assumption that he
does this with full knowledge of the inner workings of our regression learning algorithm, and name the resulting game the
learning game.

Notice that under the above formalism, a regression learning algorithm is in fact a social choice function, which maps
the types of the agents to a hypothesis. One of the simplest and most popular regression learning techniques is empirical
risk minimization (ERM). The empirical risk associated with a hypothesis f , with respect to a sample S , is denoted by R̂( f , S)

and defined to be the average loss attained by f on the examples in S , i.e.,

R̂( f , S) = 1

|S|
∑

(x,y)∈S

�
(

f (x), y
)
.

An ERM algorithm finds the empirical risk minimizer f̂ within F . More formally,

f̂ = arg min
f ∈F

R̂( f , S).

A large part of this paper will be dedicated to ERM algorithms. For some choices of loss function and hypothesis class, it
may occur that the global minimizer of the empirical risk is not unique, and we must define an appropriate tie-breaking
mechanism.

Since our strategy is to use R̂( f , S̃) as a surrogate for RN ( f ), we need R̂( f , S̃) to be an unbiased estimator of RN ( f ).
A particular situation in which this can be achieved is when all agents i ∈ N truthfully report ỹi j = oi(xi j) for all j. It is
important to note that truthfulness need not come at the expense of the overall solution quality. This can be seen by a
variation of the well-known revelation principle already mentioned in Section 2. Assume that for a given mechanism and
given true inputs there is an equilibrium in which some agents report their inputs untruthfully, and which leads to an
outcome that is strictly better than any outcome achievable by an incentive compatible mechanism. Then we can design a
new mechanism that, given the true inputs, simulates the agents’ lies and yields the exact same output in equilibrium.

4. Degenerate distributions

We begin our study by focusing on a special case, where each agent is only interested in a single point of the input
space. Even this simple setting has interesting applications. Consider for example the problem of allocating tasks among
service providers, e.g., messages to routers, jobs to remote processors, or reservations of bandwidth to Internet providers.
Machine learning techniques are used to obtain a global picture of the capacities, which in turn are private information of
the respective providers. Regression learning provides an appropriate model in this context, as each provider is interested
Please cite this article in press as: O. Dekel et al., Incentive compatible regression learning, J. Comput. System Sci. (2010), doi:10.1016/j.jcss.2010.03.003
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in an allocation that is as close as possible to its capacity: more tasks mean more revenue, but an overload is clearly
undesirable.

A concrete economic motivation for this setting is given by Perote and Perote-Peña [8]. The authors consider a monopolist
trade union in some sector that has to set a common hourly wage for its members. The union collects information about
the hours of work in each firm versus the firm’s expected profitability, and accordingly sets a single sectorial wage per hour.
The hours of work are public information, but the expected profitability is private. Workers that are more profitable might
have an incentive to exaggerate their profitability in order to increase the hourly common wage.

More formally, the distribution ρi of agent i is now assumed to be degenerate, and the sample Si becomes a singleton.
Let S = {(xi, yi)}n

i=1 denote the set of true input–output pairs, where now yi = oi(xi), and Si = {(xi, yi)} is the single
example controlled by agent i. Each agent selects an output value ỹi , and the reported (possibly untruthful) training set
S̃ = {(xi, ỹi)}n

i=1 is presented to a regression learning algorithm. The algorithm constructs a hypothesis f̃ and agent i’s cost
is the loss

Ri( f̃ ) = Ex∼ρi

[
�
(

f̃ (x),oi(x)
)] = �

(
f̃ (xi), yi

)
on the point he controls, where � is a predefined loss function. Within this setting, we examine the game-theoretic proper-
ties of ERM.

As noted above, an ERM algorithm takes as input a loss function � and a training set S , and outputs the hypothesis
that minimizes the empirical risk on S according to �. Throughout this section, we write f̂ = ERM(F , �, S) as shorthand for
arg min f ∈F R̂( f , �, S). We restrict our discussion to loss functions of the form �(α,β) = μ(|α − β|), where μ : R+ → R is a
monotonically increasing convex function, and to the case where F is a convex set of functions. These assumptions enable
us to cast ERM as a convex optimization problem, which are typically tractable. Most choices of � and F that do not satisfy
the above constraints may not allow for computationally efficient learning, and are therefore less interesting.

We prove two main theorems: if μ is a linear function, then ERM is group strategyproof; if on the other hand μ grows
faster than any linear function, and given minimal conditions on F , ERM is not strategyproof.

4.1. ERM with the absolute loss

In this section, we focus on the absolute loss function. Indeed, let � denote the absolute loss, �(a,b) = |a − b|, and
let F be a convex hypothesis class. Because � is only weakly convex, there may be multiple hypotheses in F that globally
minimize the empirical risk and we must add a tie-breaking step to our ERM algorithm. Concretely, consider the following
two-step procedure:

1. Empirical risk minimization: calculate

r = min
f ∈F

R̂( f , S).

2. Tie-breaking: return

f̃ = arg min
f ∈F : R̂( f ,S)=r

‖ f ‖,

where ‖ f ‖2 = ∫
f 2(x)dx.

Our assumption that F is a convex set implies that the set of empirical risk minimizers { f ∈ F : R̂( f , S) = r} is also convex.
The function ‖ f ‖ is a strictly convex function and therefore the output of the tie-breaking step is uniquely defined.

For example, imagine that X is the unit ball in R
n and that F is the set of homogeneous linear functions, of the form

f (x) = 〈w,x〉, where w ∈ R
n . In this case, Step 1 above can be restated as the following linear program:

min
ξ∈Rm,w∈Rn

1

m

m∑
i=1

ξi s.t. ∀i 〈w,xi〉 − yi � ξi and yi − 〈w,xi〉 � ξi .

The tie-breaking step can then be written as the following quadratic program with linear constraints:

arg min
ξ∈Rm,w∈Rn

‖w‖2 s.t.
m∑

i=1

ξi = r and ∀i 〈w,xi〉 − yi � ξi and yi − 〈w,xi〉 � ξi .

In our analysis, we only use the fact that ‖ f ‖ is a strictly convex function of f . Any other strictly convex function can be
used in its place in the tie-breaking step.

The following theorem states that ERM using the absolute loss function has excellent game-theoretic properties. More
precisely, it is group strategyproof: if a member of an arbitrary coalition of agents strictly gains from a joint deviation by
the coalition, then some other member must strictly lose. It should also be noted that in our case any mechanism without
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payments satisfies individual rationality: if some agent does not provide values for his part of the sample, then ERM will
simply return the best fit for the points of the other agents, so no agent can gain by not taking part in the mechanism.

Theorem 4.1. Let N be a set of agents, S = ⊎
i∈N Si a training set such that Si = {xi, yi} for all i ∈ N, and let ρi be degenerate at xi .

Let � denote the absolute loss, �(a,b) = |a − b|, and let F be a convex hypothesis class. Then, ERM minimizing � over F with respect
to S is group strategyproof.

We prove this theorem below, as a corollary of the following more explicit result.

Proposition 4.2. Let Ŝ = {(xi, ŷi)}m
i=1 and S̃ = {(xi, ỹi)}m

i=1 be two training sets on the same set of points, and let f̂ = ERM(F , �, Ŝ)

and f̃ = ERM(F , �, S̃). If f̂ �= f̃ then there exists i ∈ N such that ŷi �= ỹi and �( f̂ (xi), ŷi) < �( f̃ (xi), ŷi).

Proof. Let U be the set of indices on which Ŝ and S̃ disagree, i.e., U = {i: ŷi �= ỹi}. We prove the claim by proving its
counter-positive, i.e., we assume that �( f̃ (xi), ŷi) � �( f̂ (xi), ŷi) for all i ∈ U , and prove that f̂ ≡ f̃ . We begin by considering
functions of the form fα(x) = α f̃ (x) + (1 − α) f̂ (x) and proving that there exists α ∈ (0,1] for which

R̂( f̂ , S̃) − R̂( f̂ , Ŝ) = R̂( fα, S̃) − R̂( fα, Ŝ). (1)

For every i ∈ U , our assumption that �( f̃ (xi), ŷi) � �( f̂ (xi), ŷi) implies that one of the following four inequalities holds:

f̃ (xi) � ŷi < f̂ (xi), f̃ (xi) � ŷi > f̂ (xi), (2)

ŷi � f̃ (xi) � f̂ (xi), ŷi � f̃ (xi) � f̂ (xi). (3)

Furthermore, we assume without loss of generality that ỹi = f̃ (xi) for all i ∈ U . Otherwise, we could simply change ỹi to
equal f̃ (xi) for all i ∈ U without changing the output of the learning algorithm. If one of the two inequalities in (2) holds,
we set

αi = ŷi − f̂ (xi)

f̃ (xi) − f̂ (xi)
,

and note that αi ∈ (0,1] and fαi (xi) = ŷi . Therefore, for every α ∈ (0,αi] it holds that either

ỹi � ŷi � fα(xi) < f̂ (xi) or ỹi � ŷi � fα(xi) > f̂ (xi).

Setting ci = | ŷi − ỹi |, we conclude that for all α in (0,αi],

�
(

f̂ (xi), ỹi
) − �

(
f̂ (xi), ŷi

) = ci and �
(

fα(xi), ỹi
) − �

(
fα(xi), ŷi

) = ci . (4)

Alternatively, if one of the inequalities in (3) holds, we have that either

ŷi � ỹi � fα(xi) � f̂ (xi) or ŷi � ỹi � fα(xi) � f̂ (xi).

Setting αi = 1 and ci = −| ỹi − ŷi|, we once again have that (4) holds for all α in (0,αi]. Moreover, if we choose α =
mini∈U αi , (4) holds simultaneously for all i ∈ U . (4) also holds trivially for all i /∈ U with ci = 0. (1) can now be obtained by
summing both of the equalities in (4) over all i.

Next, we recall that F is a convex set and therefore fα ∈ F . Since f̂ minimizes the empirical risk with respect to Ŝ
over F , we specifically have that

R̂( f̂ , Ŝ) � R̂( fα, Ŝ). (5)

Combining this inequality with (1) results in

R̂( f̂ , S̃) � R̂( fα, S̃). (6)

Since the empirical risk function is convex in its first argument, we have that

R̂( fα, S̃) � α R̂( f̃ , S̃) + (1 − α)R̂( f̂ , S̃). (7)

Replacing the left-hand side above with its lower bound in (6) yields R̂( f̂ , S̃) � R̂( f̃ , S̃). On the other hand, we know that f̃
minimizes the empirical risk with respect to S̃ , and specifically R̂( f̃ , S̃) � R̂( f̂ , S̃). Overall, we have shown that

R̂( f̂ , S̃) = R̂( f̃ , S̃) = min R̂( f , S̃). (8)
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Next, we turn our attention to ‖ f̂ ‖ and ‖ f̃ ‖. We start by combining (8) with (7) to get R̂( fα, S̃) � R̂( f̂ , S̃). Recalling (1),
we have that R̂( fα, Ŝ) � R̂( f̂ , Ŝ). Once again using (5), we conclude that R̂( fα, Ŝ) = R̂( f̂ , Ŝ). Although f̂ and fα both
minimize the empirical risk with respect to Ŝ , we know that f̂ was chosen as the output of the algorithm, and therefore it
must hold that

‖ f̂ ‖ � ‖ fα‖. (9)

Using convexity of the norm, we have ‖ fα‖ � α‖ f̃ ‖ + (1 − α)‖ f̂ ‖. Combining this inequality with (9), we get ‖ f̂ ‖ � ‖ f̃ ‖.
On the other hand, (8) tells us that both f̂ and f̃ minimize the empirical risk with respect to S̃ , whereas f̃ is chosen as
the algorithm output, so ‖ f̃ ‖ � ‖ f̂ ‖. Overall, we have shown that

‖ f̂ ‖ = ‖ f̃ ‖ = min
f ∈F : R̂( f , S̃)=R̂( f̃ , S̃)

‖ f ‖. (10)

In summary, in (8) we showed that both f̂ and f̃ minimize the empirical risk with respect to S̃ , and therefore both move
on to the tie breaking step of the algorithm. Then, in (10) we showed that both functions attain the minimum norm over
all empirical risk minimizers. Since the norm is strictly convex, its minimum is unique, and therefore f̂ ≡ f̃ . �

To understand the intuition behind Proposition 4.2, as well as its relation to Theorem 4.1, assume that Ŝ represents the
true preferences of the agents, and that S̃ represents the values revealed by the agents and used to train the regression
function. Moreover, assume that Ŝ �= S̃ . Proposition 4.2 states that one of two things can happen. Either f̂ ≡ f̃ , i.e., revealing
the values in S̃ instead of the true values in Ŝ does not affect the result of the learning process. In this case, the agents
might as well have told the truth. Or, f̂ and f̃ are different hypotheses, and Proposition 4.2 tells us that there must exist
an agent i who lied about his true value and is strictly worse off due to his lie. Clearly, agent i has no incentive to actually
participate in such a lie. This said, we can now proceed to prove the theorem.

Proof of Theorem 4.1. Let S = {(xi, yi)}m
i=1 be a training set that represents the true private information of a set N of agents

and let S̃ = {(xi, ỹi)}m
i=1 be the information revealed by the agents and used to train the regression function. Let C ⊆ N be

an arbitrary coalition of agents that have conspired to decrease some of their respective losses by lying about their values.
Now define the hybrid set of values where

for all i ∈ N, ŷi =
{

yi if i ∈ C,

ỹi otherwise,

and let Ŝ = {(xi, ŷi)}m
i=1. Finally, let f̂ = ERM(F , �, Ŝ) and f̃ = ERM(F , �, S̃).

If f̂ ≡ f̃ then the members of C gain nothing from being untruthful. Otherwise, Proposition 4.2 states that there exists
an agent i ∈ N such that ŷi �= ỹi and �( f̂ (xi), ŷi) < �( f̃ (xi), ŷi). From ŷi �= ỹi we conclude that this agent is a member
of C . Therefore, ŷi = yi and �( f̂ (xi), yi) < �( f̃ (xi), yi). This contradicts our assumption that no member of C loses from
revealing S̃ instead of Ŝ . We emphasize that the proof holds regardless of the values revealed by the agents that are not
members of C , and we therefore have group strategyproofness. �
4.2. ERM with other convex loss functions

We have seen that performing ERM with the absolute loss is strategyproof. We now show that the same is not true for
most other convex loss functions. Specifically, we examine loss functions of the form �(α,β) = μ(|α − β|), where μ : R+ →
R is a monotonically increasing strictly convex function with unbounded subderivatives. Unbounded subderivatives mean
that μ cannot be bounded from above by any linear function.

For example, μ can be the function μ(α) = αd , where d is a real number strictly greater than 1. A popular choice is
d = 2, which induces the squared loss, �(α,β) = (α − β)2. The following example demonstrates that ERM with the squared
loss is not strategyproof.

Example 4.3. Let � be the squared loss function, X = R, and F the class of constant functions over X . Further let S1 =
{(x1,2)} and S2 = {(x2,0)}. On S , ERM outputs the constant function f̂ (x) ≡ 1, and agent 1 suffers loss 1. However, if
agent 1 reports his value to be 4, ERM outputs f̂ (x) ≡ 2, with loss of 0 for agent 1.

For every x ∈ X , let F (x) denote the set of feasible values at x, formally defined as F (x) = { f (x): f ∈ F }. Since F is a
convex set, it follows that F (x) is either an interval on the real line, a ray, or the entire real line. Similarly, for a multiset
X = {x1, . . . ,xn} ∈ X n , denote

F (X) = {〈
f (x1), . . . , f (xn)

〉
: f ∈ F

} ⊆ R
n.
Please cite this article in press as: O. Dekel et al., Incentive compatible regression learning, J. Comput. System Sci. (2010), doi:10.1016/j.jcss.2010.03.003



ARTICLE IN PRESS YJCSS:2409

JID:YJCSS AID:2409 /FLA [m3G; v 1.36; Prn:20/03/2010; 9:43] P.9 (1-19)

O. Dekel et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 9
We then say that F is full on a multiset X = {x1, . . . ,xn} ∈ X n if F (X) = F (x1) × · · · × F (xn). Clearly, requiring that F is
not full on X is a necessary condition for the existence of a training set with points X where one of the agents gains by
lying. Otherwise, ERM will fit any set of values for the points with an error of zero. For an example of a function class that
is not full, consider any function class F on X , |F | � 2, and observe that there have to exist f1, f2 ∈ F and a point x0 ∈ X
such that f1(x0) �= f2(x0). In this case, F is not full on any multiset X that contains two copies of x0.

In addition, if |F | = 1, then any algorithm would trivially be strategyproof irrespective of the loss function. In the
following theorem we therefore consider hypothesis classes F of size at least two which are not full on the set X of points
of the training set.

Theorem 4.4. Let μ : R+ → R be a monotonically increasing strictly convex function with unbounded subderivatives, and define the
loss function �(α,β) = μ(|α −β|). Let F be a convex hypothesis class that contains at least two functions, and let X = {x1, . . . ,xn} ∈
X n be a multiset such that F is not full on X. Then there exist y1, . . . , yn ∈ R such that, if S = ⊎

i∈N Si with Si = {(xi, yi)}, ρi is
degenerate at xi , and ERM is used, there is an agent who has an incentive to lie.

An example for a function not covered by this theorem is given by ν(α) = ln(1 + exp(α)), which is both monotonic and
strictly convex, but has a derivative bounded from above by 1. We use the subderivatives of μ, rather than its derivatives,
since we do not require μ to be differentiable.

As before, we actually prove a slightly stronger and more explicit claim about the behavior of the ERM algorithm. The
formal proof of Theorem 4.4 follows as a corollary below.

Proposition 4.5. Let μ and � be as defined in Theorem 4.4 and let F be a convex hypothesis class. Let Ŝ = {(xi, ŷi)}m
i=1 be a training

set, where ŷi ∈ F (xi) for all i, and define f̂ = ERM(F , �, Ŝ). For each i ∈ N, one of the following conditions holds:

1. f̂ (xi) = ŷi .
2. There exists ỹi ∈ R such that, if we define S̃ = Ŝ−i ∪ {(xi, ỹi)} and f̃ = ERM(F , �, S̃), �( f̃ (xi), ŷi) < �( f̂ (xi), ŷi).

To prove the above, we first require a few technical results, which we state in the form of three lemmas. The first lemma
takes the perspective of agent i and considers the case where truth-telling results in a function f̂ such that f̂ (xi) > ŷi , i.e.,
agent i would like the ERM hypothesis to map xi to a somewhat lower value. The second lemma then states that there
exists a lie that achieves this goal. The gap between the claim of this lemma and the claim of Theorem 4.5 is a subtle one:
merely lowering the value of the ERM hypothesis does not necessarily imply a lowering of the loss incurred by agent i.
It could be the case that the lie told by agent i caused f̂ (xi) to become too low, essentially overshooting the desired target
value and increasing the loss of agent i. This point is resolved by the third lemma.

Lemma 4.6. Let �, F , Ŝ and f̂ be as defined in Theorem 4.5 and let i ∈ N be such that f̂ (xi) > ŷi . Then for all f ∈ F for which
f (xi) � f̂ (xi), and for all y ∈ R such that y � ŷi , the dataset S̃ = Ŝ−i ∪ {(xi, y)} satisfies R̂( f , S̃) � R̂( f̂ , S̃).

Proof. Let f ∈ F be such that f (xi) � f̂ (xi), let y ∈ R be such that y � ŷi , and define S̃ = Ŝ−i ∪{(xi, y)}. We now have that

R̂( f , S̃) = R̂( f , S̃−i) + �
(

f (xi), ỹi
)

= R̂( f , Ŝ) − �
(

f (xi), ŷi
) + �

(
f (xi), ỹi

)
= R̂( f , Ŝ) − μ

(
f (xi) − ŷi

) + μ
(

f (xi) − ỹi
)
. (11)

Using the fact that f̂ is the empirical risk minimizer with respect to Ŝ , we can get a lower bound for the above and obtain

R̂( f , S̃) � R̂( f̂ , Ŝ) − μ
(

f (xi) − ŷi
) + μ

(
f (xi) − ỹi

)
.

The term R̂( f̂ , Ŝ) on the right-hand side can again be rewritten using (11), resulting in

R̂( f , S̃) � R̂( f̂ , S̃) + μ
(

f̂ (xi) − ŷi
) − μ

(
f̂ (xi) − ỹi

) − μ
(

f (xi) − ŷi
) + μ

(
f (xi) − ỹi

)
.

Denoting a = f̂ (xi) − ŷi , b = f̂ (xi) − ỹi , c = f (xi) − ŷi , and d = f (xi) − ỹi , we can rewrite the above as

R̂( f , S̃) � R̂( f̂ , S̃) + μ(a) − μ(b) − μ(c) + μ(d). (12)
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Noting that b, c, and d are all greater than a, and that b + c − 2a = d − a, we use convexity of μ to obtain

μ(a) + μ(d) =
(

b − a

d − a
μ(a) + c − a

d − a
μ(d)

)
+

(
c − a

d − a
μ(a) + b − a

d − a
μ(d)

)

� μ

(
(b − a)a + (c − a)d

d − a

)
+ μ

(
(c − a)a + (b − a)d

d − a

)

= μ

(
(b + c − 2a)a + (c − a)(d − a)

d − a

)
+ μ

(
(c + b − 2a)a + (b − a)(d − a)

d − a

)
= μ(c) + μ(b).

Combining this inequality with (12) concludes the proof. �
Lemma 4.7. Let �, F , Ŝ and f̂ be as defined in Theorem 4.5 and let i ∈ N be such that f̂ (xi) > ŷi . Then there exists ỹi ∈ R such that if
we define S̃ = Ŝ−i ∪ {(xi, ỹi)} and f̃ = ERM(F , �, S̃), then f̃ (xi) < f̂ (xi).

Proof. Let i be such that f̂ (xi) �= ŷi and assume without loss of generality that f̂ (xi) > ŷi . Since ŷi ∈ F (xi), there exists a
function f ′ ∈ F such that f ′(xi) = ŷi . Now define

φ = R̂( f ′, Ŝ−i) − R̂( f̂ , Ŝ−i) + 1

f̂ (xi) − f ′(xi)
. (13)

It holds, by definition, that R̂( f ′, Ŝ) > R̂( f̂ , Ŝ) and that �( f ′(xi), ŷi) < �( f̂ (xi), ŷi), and therefore the numerator of (13) is
positive. Furthermore, our assumption implies that the denominator of (13) is also positive, so φ is positive as well.

Since μ has unbounded subderivatives, there exists ψ > 0 large enough such that the subderivative of μ at ψ is greater
than φ. By the definition of the subderivative, we have that

for all α � ψ, μ(ψ) + (α − ψ)φ � μ(α). (14)

Defining ỹi = f ′(xi) − ψ and S̃ = Ŝ−i ∪ {(xi, ỹi)}, we have that

�
(

f ′(xi), ỹi
) = μ

(
f ′(xi) − ỹi

) = μ(ψ),

and therefore

R̂
(

f ′, S̃
) = R̂

(
f ′, S̃−i

) + �
(

f ′(xi), ỹi
) = R̂

(
f ′, S̃−i

) + μ(ψ). (15)

We further have that

�
(

f̂ (xi), ỹi
) = μ

(
f̂ (xi) − ỹi

) = μ
(

f̂ (xi) − f ′(xi) + ψ
)
.

Combining (14) with the fact that f̂ (xi) − f ′(xi) > 0, we get μ(ψ) + ( f̂ (xi) − f ′(xi))φ as a lower bound for the above.
Plugging in the definition of φ from (13), we obtain

�
(

f̂ (xi), ỹi
)
� μ(ψ) + R̂

(
f ′, Ŝ−i

) − R̂( f̂ , Ŝ−i) + 1,

and therefore,

R̂( f̂ , S̃) = R̂( f̂ , S̃−i) + �
(

f̂ (xi), ỹi
)
� μ(ψ) + R̂

(
f ′, Ŝ−i

) + 1.

Comparing the above with (15), we get

R̂( f̂ , S̃) > R̂
(

f ′, S̃
)
.

We now use Lemma 4.6 to extend the above to every f ∈ F for which f (xi) � f̂ (xi), namely, we now have that any such f
satisfies R̂( f , S̃) > R̂( f ′, S̃). We conclude that the empirical risk minimizer f̃ must satisfy f̃ (xi) < f̂ (xi). �
Lemma 4.8. Let � and F be as defined in Theorem 4.5, let S = {(xi, ŷi)}m

i=1 be a dataset, and let i ∈ N be an arbitrary index. Then the
function g( ỹ) = f (xi), where f = ERM(F , �, S−i ∪ {(xi, ỹ)}), is continuous.
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Proof. We first restate ERM as a minimization problem over vectors in R
m . Define the set of feasible values for the points

x1, . . . ,xm to be

G = {(
f (x1), . . . , f (xm)

)
: f ∈ F

}
.

Our assumption that F is a convex set implies that G is a convex set as well. Now, define the function

L(v, ỹ) = �(vi, ỹ) +
∑
j �=i

�(v j, ŷ j), where v = (v1, . . . , vm).

Finding f ∈ F that minimizes the empirical risk with respect to the dataset S−i ∪ {(xi, ỹ)} is equivalent to calculating
minv∈G L(v, ỹ). Moreover, g( ỹ) can be equivalently defined as the value of the i’th coordinate of the vector in G that
minimizes L(v, ỹ).

To prove that g is continuous at an arbitrary point ỹ ∈ R, we show that for every ε > 0 there exists δ > 0 such that if
y ∈ [ ỹ − δ, ỹ + δ] then g(y) ∈ [g( ỹ) − ε, g( ỹ) + ε]. For this, let ỹ and ε > 0 be arbitrary real numbers, and define

u = arg min
v∈G

L(v, ỹ).

Since � is strictly convex in its first argument, so is L. Consequently, u is the unique global minimizer of L. Also define

Gε = {
v ∈ G: |vi − ui| � ε

}
.

Assume that ε is small enough that Gε is not empty (if no such ε exists, the lemma holds trivially). Note that u /∈ Gε for
any value of ε > 0. Define Ḡε to be the closure of Gε and let

ν = inf
v∈Ḡε

L(v, ỹ) − L(u, ỹ).

Since μ is strictly convex and has unbounded subderivatives, the level-sets of L(v, ỹ), as a function of v, are all bounded.
Therefore, there exists w ∈ Ḡε that attains the infimum above. More precisely, w is such that L(w, ỹ) − L(u, ỹ) = ν . Using
uniqueness of the minimizer u, as well as the fact that w �= u, we conclude that ν > 0. We have proven that if v ∈ F is
such that

L(v, ỹ) < L(u, ỹ) + ν, (16)

then |vi − ui | < ε . It therefore suffices to show that there exists δ > 0 such that if y ∈ [ ỹ − δ, ỹ + δ] then the vector v ∈ G
that minimizes L(v, y) satisfies the condition in (16).

Since � is convex in its second argument, � is also continuous in its second argument. Thus, there exists δ > 0 such that
for all y ∈ [ ỹ − δ, ỹ + δ] it holds that both

�(ui, ỹ) < �(ui, y) + ν/2 and �(wi, y) < �(wi, ỹ) + ν/2,

where w = arg minv∈G L(v, y). Therefore,

L(u, ỹ) < L(u, y) + ν/2 and L(w, ỹ) < L(w, y) + ν/2.

Finally, since w minimizes L(v, y), we have L(w, y) � L(u, y). Combining these three inequalities yields the condition
in (16). �

We are now ready to prove Proposition 4.5, and then Theorem 4.4.

Proof of Proposition 4.5. If f̂ (xi) = ŷi for all i ∈ N , we are done. Otherwise let i be an index for which f̂ (xi) �= ŷi and
assume without loss of generality that f̂ (xi) > ŷi . Using Lemma 4.7, we know that there exists ỹi ∈ R such that if we
define S̃ = Ŝ−i ∪ {(xi, ỹi)} and f ′ = ERM(F , �, S̃), then f ′ satisfies f̂ (xi) > f ′(xi).

We consider the two possible cases: either f̂ (xi) > f ′(xi) � ŷi , and therefore �( f̂ (xi), ŷi) > �( f ′(xi), ŷi) as re-
quired. Otherwise, f̂ (xi) > ŷi > f ′(xi). Using Lemma 4.8, we know that f (xi) changes continuously with ỹi , where
f = ERM(F , �, S−i ∪ {(xi, ỹi)}). Relying on the elementary Intermediate Value Theorem, we conclude that for some y ∈ [ ŷi, ỹi]
it holds that f , the empirical risk minimizer with respect to the dataset S−i ∪ {(xi, y)}, satisfies f (xi) = ŷi . Once again we
have �( f̂ (xi), ŷi) > �( f (xi), ŷi). �
Proof of Theorem 4.4. Since F is not full on X , there are y∗

1, . . . , y∗
n such that y∗

i ∈ F (xi) for all i, and 〈y∗
1, . . . , y∗

n〉 /∈ F (X).
Defining S = {(xi, y∗

i )}n
i=1, there exists some agent i which isn’t satisfied by the output of the ERM algorithm on S . Using

Proposition 4.5 we conclude that this agent has an incentive to lie. �
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It is natural to ask what happens for loss functions that are sublinear in the sense that they cannot be bounded from
below by any linear function with strictly positive derivative. A property of such loss functions, and the reason why they
are rarely used in practice, is that the set of empirical risk minimizers need no longer be convex. It is thus unclear how tie-
breaking should be defined in order to find a unique empirical risk minimizer. Furthermore, the following example provides
a negative answer to the question of general strategyproofness of ERM with sublinear loss.

Example 4.9. We demonstrate that ERM is not strategyproof if �(a,b) = √|a − b| and F is the class of constant functions
over R. Let S = {(x1,1), (x2,2), (x3,4), (x4,6)} and S̃ = {(x1,1), (x2,2), (x3,4), (x4,4)}. Clearly, the local minima of R̂( f , S)

and R̂( f , S̃) have the form f (x) ≡ y where (xi, y) ∈ S or (xi, y) ∈ S̃ , respectively, for some i ∈ {1,2,3,4}. The empirical risk
minimizer for S is the constant function f1(x) ≡ 2, while that for S̃ is f2(x) ≡ 4. Thus, agent 4 can declare his value to be 4
instead of 6 to decrease his loss from 2 to

√
2.

5. Uniform distributions over the sample

We now turn to settings where a single agent holds a (possibly) non-degenerate distribution over the input space.
However, we still do not move to the full level of generality. Rather, we concentrate on a setting where for each agent i,
ρi is the uniform distribution over the sample points xij , j = 1, . . . ,m. While this setting is equivalent to curve fitting with
multiple agents and may be interesting in its own right, we primarily engage in this sort of analysis as a stepping stone
in our quest to understand the learning game. The results in this section will function as building blocks for the results of
Section 6.

Since each agent i ∈ N now holds a uniform distribution over his sample, we can simply assume that his cost is his
average empirical loss on the sample, R̂( f̃ , Si) = (1/m) · ∑m

j=1 �( f̃ (xi j), yij). The mechanism’s goal is to minimize R̂( f̃ , S).
We stress at this point that the results in this section also hold if the agents’ samples differ in size. This is of course true
for the negative results, but also holds for the positive ones. As we move to this more general setting, truthfulness of ERM
immediately becomes a thorny issue even under absolute loss. Indeed, the next example indicates that more sophisticated
mechanisms must be used to achieve strategyproofness.

Example 5.1. Let F be the class of constant functions over R
k , N = {1,2}, and assume the absolute loss function is used. Let

S1 = {(1,1), (2,1), (3,0)} and S2 = {(4,0), (5,0), (6,1)}. The global empirical risk minimizer (according to our tie-breaking
rule) is the constant function f1(x) ≡ 0 with R̂( f1, S1) = 2/3. However, if agent 1 declares S̃1 = {(1,1), (2,1), (3,1)}, then
the empirical risk minimizer becomes f2(x) ≡ 1, which is the optimal fit for agent 1 with R̂( f2, S1) = 1/3.

5.1. Mechanisms with payments

One possibility to overcome the issue that became manifest in Example 5.1 is to consider mechanisms that not only
return an allocation, but can also transfer payments to and from the agents based on the inputs they provide. A famous
example for such a payment rule is the Vickrey–Clarke–Groves (VCG) mechanism [16–18]. This mechanism, which has been
described in detail in Section 2, starts from an efficient allocation and computes each agent’s payment according to the
utility of the other agents, thus aligning the individual interests of each agent with that of society.

In our setting, where social welfare equals the total empirical risk, ERM generates a function, or outcome, that maximizes
social welfare and can therefore be directly augmented with VCG payments. Given an outcome f̂ , each agent i has to pay
an amount of R̂( f̂ , S̃−i). In turn, the agent can receive some amount hi( S̃−i) that does not depend on the values he has
reported, but possibly on the values reported by the other agents. It is well known [18], and also easily verified, that this
family of mechanisms is strategyproof: no agent is motivated to lie regardless of the other agents’ actions. Furthermore, this
result holds for any loss function, and may thus be an excellent solution for some settings.

In many other settings, however, especially in the world of the Internet, transferring payments to and from users can
pose serious problems, up to the extent that it might become completely infeasible. The practicality of VCG payments in
particular has recently also been disputed for various other reasons [19]. Perhaps most relevant to our work is the fact that
VCG mechanisms are in general susceptible to manipulation by coalitions of agents and thus not group strategyproof. It is
therefore worthwhile to explore which results can be obtained when payments are disallowed. This will be the subject of
the following section.

5.2. Mechanisms without payments

In this section, we restrict ourselves to the absolute loss function. When ERM is used, and for the special case covered
in Section 4, this function was shown to possess incentive properties far superior to any other loss function. This fuels
hope that similar incentive compatibility results can be obtained with uniform distributions over the samples, even when
payments are disallowed. This does not necessarily mean that good mechanisms without payments cannot be designed for
other loss functions, even in the more general setting of this section. We leave the study of such mechanisms for future
work.
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ERM is efficient, i.e., it minimizes the overall loss and maximizes social welfare. In light of Example 5.1, we shall now
sacrifice efficiency for incentive compatibility. More precisely, we seek strategyproof or group strategyproof mechanisms
which are at the same time approximately efficient. We should stress that the reason we resort to approximation is not to
make the mechanism computationally tractable, but to achieve incentive compatibility without payments, like we had in
Section 4.

Example 5.1, despite its simplicity, is surprisingly robust against many conceivably truthful mechanisms. The reader may
have noticed, however, that the values of the agents in this example are not “individually realizable”: in particular, there is
no constant function which realizes agent 1’s values, i.e., fits them with a loss of zero. In fact, agent 1 benefits from revealing
values which are consistent with his individual empirical risk minimizer. This insight leads us to design the following simple
but useful mechanism, which we will term “project-and-fit”:

Input: A hypothesis class F and a sample S = ⊎
Si , Si ⊆ X × R.

Output: A function f ∈ F .
Mechanism:

1. For each i ∈ N , let f i = ERM(F , Si).
2. Define S̃ i = {(xi1, f i(xi1)), . . . , (xim, f i(xim))}.
3. Return f = ERM( S̃), where S̃ = ⊎n

i=1 S̃ i .

In other words, the mechanism calculates the individual empirical risk minimizer for each agent and uses it to relabel
the agent’s sample. Then, the relabeled samples are combined, and ERM is performed. It is immediately evident that this
mechanism achieves group strategyproofness at least with respect to Example 5.1.

More generally, it can be shown that the mechanism is group strategyproof when F is the class of constant functions
over R

k . Indeed, it is natural to view our setting through the eyes of social choice theory (see, e.g., [20]): agents entertain
(weak) preferences over a set of alternatives, i.e., the functions in F . In the case of constant functions, agents’ preferences
are what is known as single-plateau [21]: each agent has an interval of ideal points minimizing his individual empirical
risk, and moving away from this plateau in either direction strictly decreases the agent’s utility. More formally, let a1,a2 be
constants such that the constant function f (x) ≡ a minimizes an agent’s empirical risk if and only if a ∈ [a1,a2]. If a3 and a4
satisfy a3 < a4 � a1 or a3 > a4 � a2, then the agent strictly prefers the constant function a4 to the constant function a3.
As such, single-plateau preferences generalize the class of single-peaked preferences. For dealing with single-plateau pref-
erences, Moulin [21] defines the class of generalized Condorcet winner choice functions, and shows that these are group
strategyproof.

When F is the class of constant functions and � is the absolute loss, the constant function equal to a median value in
a sample S minimizes the empirical risk with respect to S . This is because there must be at least as many values below
the median value as are above, and thus moving the fit upward (or downward) must monotonically increase the sum of
distances to the values. Via tie-breaking, project-and-fit essentially turns the single-plateau preferences into single-peaked
ones, and then chooses the median peak. Once again, group strategyproofness follows from the fact that an agent can only
change the mechanism’s output by increasing its distance from his own empirical risk minimizer.

Quite surprisingly, project-and-fit is not only truthful but also provides a constant approximation ratio when F is the
class of constant functions or the class of homogeneous linear functions over R, i.e., functions of the form f (x) = a · x. The
class of homogeneous linear functions, in particular, is important in machine learning, for instance in the context of Support
Vector Machines [22].

Theorem 5.2. Assume that F is the class of constant functions over R
k, k ∈ N or the class of homogeneous linear functions over R.

Then project-and-fit is group strategyproof and 3-efficient.

Proof. We shall first prove the theorem for the case when F is the class of constant functions over R
k (Steps 1 and 2), and

then extend the result to homogeneous linear functions over R (Step 3). We have already shown truthfulness, and therefore
directly turn to approximate efficiency. In the following, we denote the empirical risk minimizer by f ∗(x) ≡ a∗ , and the
function returned by project-and-fit by f (x) ≡ a.

Step 1: |{yij: yij � a}| � 1
4 nm and |{yij: yij � a}| � 1

4 nm. Let ỹi j denote the projected values of agent i. As noted above,
when F is the class of constant functions, the mechanism in fact returns the median of the values ỹi j , and thus

∣∣{ ỹi j: ỹi j � a}∣∣ � 1

2
nm. (17)

Furthermore, since for all j, ỹi j is the median of the original values yij of agent i, it must hold that at least half of these
values are smaller than their corresponding original value, i.e.,∣∣{yij: yij � a}∣∣ � 1

2

∣∣{ ỹi j: ỹi j � a}∣∣. (18)

Combining (17) and (18), we obtain |{yij: yij � a}| � 1 nm. By symmetrical arguments, we get that |{yij: yij � a}| � 1 nm.
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Step 2: 3-efficiency for constant functions. Denote d = |a − a∗|, and assume without loss of generality that a < a∗ . We
now have that

R̂( f , S) = 1

nm

∑
i, j

|yij − a|

= 1

nm

( ∑
i, j: yi j�a

(a − yij) +
∑

i, j: a<yi j�a∗
(yij − a) +

∑
i, j: yi j>a∗

(yij − a)

)

� 1

nm

( ∑
i, j: yi j�a

(a − yij) +
∑

i, j: a<yi j�a∗
d +

∑
i, j: yi j>a∗

(
d + (

yij − a∗)))

= 1

nm

( ∑
i, j: yi j�a

(a − yij) +
∑

i, j: yi j>a∗

(
yij − a∗) + ∣∣{i, j: yij > a}∣∣ · d

)
.

We now bound the last expression above by replacing |{i, j: yij > a}| with its upper bound 3
4 nm derived in Step 1 and

obtain

R̂( f , S) � 1

nm

( ∑
i, j: yi j�a

(a − yij) +
∑

i, j: yi j>a∗

(
yij − a∗) + 3

4
nm · d

)
.

Similarly,

R̂
(

f ∗, S
)
� 1

nm

( ∑
i, j: yi j�a

(
d + (a − yij)

) +
∑

i, j: yi j>a∗

(
yij − a∗)),

and using Step 1,

R̂
(

f ∗, S
)
� 1

nm

( ∑
i, j: yi j�a

(a − yij) +
∑

i, j: yi j>a∗

(
yij − a∗) + 1

4
nm · d

)
.

Since two of the expressions in the upper bound for R̂( f , S) and the lower bound for R̂( f ∗, S) are identical, it is now
self-evident that R̂( f , S)/R̂( f ∗, S) � 3.

Step 3: Extension to homogeneous linear functions over R. We describe a reduction from the case of homogeneous
functions over R to the case of constant functions over R. Given a sample S , we create a sample S ′ by mapping each
example (x, y) ∈ S to |x| copies of the example (x, y/x).4 Let f1 be the homogeneous linear function defined by f1(x) = a · x,
and let f2 be the constant function defined by f2(x) = a. It is now straightforward to show that R̂( f1, S) = R̂( f2, S ′), and
that project-and-fit chooses f1 when given the class of homogeneous linear functions and S if and only if it chooses f2
when given the class of constant functions and S ′ . �

A simple example shows that the 3-efficiency analysis given in the proof is tight. We generalize this observation by
proving that, for the class of constant or homogeneous linear functions and irrespective of the dimension of X , no truthful
mechanism without payments can achieve an efficiency ratio better than 3. It should be noted that this lower bound holds
for any choice of points xij .

Theorem 5.3. Let F be the class of constant functions over R
k or the class of homogeneous linear functions over R

k, k ∈ N. Then there
exists no strategyproof mechanism without payments that is (3 − ε)-efficient for any ε > 0, even when |N| = 2.

We first require a technical result. For this, assume that F is the class of constant functions over R
k , let N = {1,2}, and

fix some truthful mechanism M .

Lemma 5.4. Let q, t ∈ N, and define m = 2t − 1. Then there exists a sample S defined by

S1 = {
(x11, y), (x12, y), . . . , (x1m, y)

}
and S2 = {(

x21, y′), (x22, y′), . . . , (x2m, y′)},
such that y − y′ = 2q and M(S) � y − 1

2 or M(S) � y′ + 1
2 .

4 Here we assume that the values x are integers, but it is possible to deal with noninteger values by assigning weights.
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Proof. We perform an induction on q. For q = 0, we simply set y = 1 and y′ = 0. Now, let S be a sample as in the
formulation of the lemma, and let a = M(S), i.e., a is the constant function returned by M given S . We distinguish two
different cases.

Case 1: If a � y − 1/2, let S ′ such that S ′
1 = S1 and

S ′
2 = {(

x21,2y′ − y
)
, . . . ,

(
x2m,2y′ − y

)}
.

Notice that y −(2y′ − y) = 2(y − y′), so the distance between the values has doubled. Denote a′ = M(S ′). Due to truthfulness
of M , it must hold that �(a′, y′) � �(a, y′) � 2q − 1

2 . Otherwise, if agent 2’s true type was S2, he would benefit by saying
that his type is in fact S ′

2. Therefore, a′ � y − 1
2 or a′ � y′ − (2q + 1

2 ) = 2y′ − y + 1
2 .

Case 2: If a � y′ + 1
2 , let S ′ such that S ′

2 = S2 and

S ′
1 = {(

x11,2y − y′), . . . , (x1m,2y − y′)}.
Analogously to Case 1, the induction step follows from truthfulness of M with respect to agent 1. �
Proof of Theorem 5.3. Consider the sample S as in the statement of the lemma, and assume without loss of generality that
M(S) = a � y − 1

2 . Otherwise, symmetrical arguments apply. We first observe that if M is approximately efficient, it cannot
be the case that M(S) > y. Otherwise, let S ′ be the sample such that S ′

1 = S1 and

S ′
2 = {

(x21, y), . . . , (x2m, y)
}
,

and denote a′ = M(S ′). Then, by truthfulness with respect to agent 2, �(a′, y′) � �(a, y′). It follows that a′ �= y, and therefore
R̂(a′, S ′) > 0. Since R̂(y, S ′) = 0, the efficiency ratio is not bounded.

Now let S ′′ be such that S ′′
2 = S2, and

S ′′
1 = {

(x11, y), (x12, y), . . . , (x1t, y),
(
x1,t+1, y′), . . . , (x1m, y′)},

i.e., agent 1 has t points at y and t − 1 points at y′ . Let a′′ = M(S ′′). Due to truthfulness, it must hold that �(a′′, y) = �(a, y),
since agent 1’s empirical risk minimizer with respect to both S and S ′′ is y. Since we already know that y − 1

2 � a � y, we

get that a′′ � y − 1
2 , and thus R̂(a′′, S ′′) � (3t−2)

(4t−2)
(2q − 1

2 ). On the other hand, the empirical risk minimizer on S ′′ is y′ , and

R̂(y′, S ′′) � t
4t−2 2q . The efficiency ratio R̂(a′′, S ′′)/R̂(y′, S ′′) tends to 3 as t and q tend to infinity.

We will now explain how this result can be extended to homogeneous linear functions over R
k . For this, define the

sample S by

S1 = {(〈t − 1,0, . . . ,0〉, (t − 1)y
)
,
(〈t,0, . . . ,0〉, ty

)}
and

S2 = {(〈t − 1,0, . . . ,0〉, (t − 1)y′), (〈t,0, . . . ,0〉, ty′)}.
As with constant functions, a homogeneous linear function defined by a satisfies R̂(a, S1) = |a1 − y|, and R̂(a, S2) = |a1 − y′|.
Therefore, we can use similar arguments to the ones above to show that there exists a sample S with y − y′ = 2q ,
and if a = M(S) for some truthful mechanism M , then y − 1

2 � a1 � y or y′ � a1 � y′ + 1
2 . As before, we complete

the proof by splitting the points controlled by agent 1, i.e., by considering the sample S ′ where S ′
1 = {(〈t − 1,0, . . . ,0〉,

(t − 1)y′), (〈t,0, . . . ,0〉, ty)}. �
Let us recapitulate. We have found a group strategyproof and 3-efficient mechanism for the class of constant functions

over R
k and for the class of homogeneous linear functions over R. A matching lower bound, which also applies to multi-

dimensional homogeneous linear functions, shows that this result cannot be improved upon for these classes. It is natural
to ask at this point if project-and-fit remains strategyproof when considering more complex hypothesis classes, such as
homogeneous linear functions over R

k , k � 2, or linear functions. An example serves to answer this question in the nega-
tive.

Example 5.5. We demonstrate that project-and-fit is not strategyproof when F is the class of linear functions over R. Let
S1 = {(0,0), (4,1)} and S2 = {(1,1), (2,0)}. Since S1 and S2 are individually realizable, the mechanism simply returns the
empirical risk minimizer, which is f (x) = x/4 (this can be determined by solving a linear program). It further holds that
R̂( f , S2) = 5/8. If, however, one considers S̃2 = {(1,1), (2,1)} and the same S1, then the mechanism returns f̃ (x) = 1.
Agent 2 benefits from this lie as R̂( f̃ , S2) = 1/2.

It is also possible to extend this example to the case of homogeneous linear functions over R
2 by fixing the second

coordinate of all points at 1, i.e., mapping each x ∈ R to x′ = (x,1) ∈ R
2. Indeed, the value of a homogeneous linear function

f (x) = 〈a,b〉 · x on the point (x,1) is ax + b.
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Is there some other mechanism which deals with more complex hypothesis classes and provides a truthful approxima-
tion? In order to tackle this question, it will be instructive to once again view the hypothesis class F as a set of alternatives.
The agents’ types induce a preference order over this set of alternatives. Explicitly, agent i weakly prefers function f1 to
function f2 if and only if R̂( f1, Si) � R̂( f2, Si). A mechanism without payments is a social choice function from the agents’
preferences over F to F .

The celebrated Gibbard–Satterthwaite Theorem [23,24] asserts that every truthful social choice function from the set of
all linear preferences over some set A of alternatives to A must be dictatorial, in the sense that there is some agent d such
that the social outcome is always the one most preferred by d. Observe that this theorem does not directly apply in our
case, since voters’ preferences are restricted to a strict subset of all possible preference relations over F .

For the time being, let us focus on homogeneous linear functions f over R
k , k � 2. This class is isomorphic to R

k , as
every such function can be represented by a vector a ∈ R

k such that f (x) = a · x. Let R be a weak preference relation
over R

k , and let P be the asymmetric part of R (i.e., aP a′ if and only if aRa′ and not a′Ra). R is called star-shaped if there
is a unique point a∗ ∈ R

k such that for all a ∈ R
k and λ ∈ (0,1), a∗ P (λa∗ + (1 − λ)a)P a. In our case preferences are clearly

star-shaped, as for any a,a′ ∈ R
k and any sample S , R̂((λa + (1 − λ)a′), S) = λR̂(a, S) + (1 − λ)R̂(a′, S).

A preference relation R over R
m is called separable if for every j, 1 � j � m, all x, y ∈ R

m , and all a j,b j ∈ R,

〈x− j,a j〉R〈x− j,b j〉 if and only if 〈y− j,a j〉R〈y− j,b j〉,
where 〈x− j,a j〉 = 〈x1, . . . , x j−1,a j, x j+1, . . . , xm〉. The following example establishes that in our setting preferences are not
separable.

Example 5.6. Let F be the class of homogeneous linear functions over R, and define S1 = {(〈1,1〉,0)}. Then agent 1 prefers
〈−1,1〉 to 〈−1,2〉, but also prefers 〈−2,2〉 to 〈−2,1〉.

Border and Jordan [25] investigate a setting where the set of alternatives is R
k . They give possibility results for the

case when preferences are star-shaped and separable. On the other hand, when k � 2 and the separability criterion is
slightly relaxed, in a way which we will not elaborate on here, then any truthful social choice function must necessarily be
dictatorial.

Border and Jordan’s results also require surjectivity: the social choice function has to be onto R
k .5 While this is a severe

restriction in general, it is in fact very natural in our context. If all agents have values consistent with some function f ,
then the mechanism can have a bounded efficiency ratio only if its output is the function f (indeed, f has loss 0, while
any other function has strictly positive loss). Therefore, any approximately efficient mechanism must be surjective.

The above discussion leads us to believe that there is no truthful approximation mechanism for homogeneous linear
functions over R

k for any k � 2. The following conjecture formalizes this statement.

Conjecture 5.7. Let F be the class of homogeneous linear functions over R
k, k � 2, and assume that m = |Si | � 3. Then any mechanism

that is strategyproof (in ex-post Nash equilibrium) and surjective must be a dictatorship.

Conceivably, dictatorship would be an acceptable solution if it could guarantee approximate efficiency. A simple example
shows that unfortunately this is not the case.

Example 5.8. Consider the class of homogeneous linear functions over R
2, N = {1,2}. Let S1 = {(〈0,1〉,0), (〈0 + ε,1〉,0)}

and S2 = {(〈1,1〉,1), (〈1 + ε,1〉,1)} for some ε > 0. Any dictatorship has an empirical risk of 1/2. On the other hand, the
function f (x1, x2) = x1 has empirical risk ε/2. The efficiency ratio increases arbitrarily as ε decreases.

6. Arbitrary distributions over the sample

In Section 5 we established several positive results in the setting where each agent cares about a uniform distribution on
his portion of a global training set. In this section we extend these results to the general regression learning setting defined
in Section 3. More formally, the extent to which agent i ∈ N cares about each point in X will now be determined by the
distribution function ρi , and agent i controls the labels of a finite set of points sampled according to ρi . Our strategy in this
section will consist of two steps. First, we want to show that under standard assumptions on the hypothesis class F and
the number m of samples, each agent’s empirical risk on the training set Si estimates his real risk according to ρi . Second,
we intend to establish that, as a consequence, our incentive compatibility results are not significantly weakened when we
move to the general setting.

5 Border and Jordan [25] originally required unanimity, but their theorems can be reformulated using surjectivity [26].
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Abstractly, let D be a probability distribution on X and let G be a class of real-valued functions from X to [0, C]. We
would like to prove that for any ε > 0 and δ > 0 there exists m ∈ N such that, if X1, . . . , Xm are sampled i.i.d. according
to D,

Pr

(
for all g ∈ G,

∣∣∣∣∣EX∼D
[

g(X)
] − 1

m

m∑
i=1

g(Xi)

∣∣∣∣∣ � ε

)
� 1 − δ. (19)

To establish this bound, we use standard uniform convergence arguments. A specific technique is to show that the hy-
pothesis class G has bounded complexity. The complexity of G can be measured in various different ways, for example
using the pseudo-dimension [27,28], an extension of the well-known VC-dimension to real-valued hypothesis classes, or the
Rademacher complexity [29]. If the pseudo-dimension of G is bounded by a constant, or if the Rademacher complexity of G
with respect to an m-point sample is O (

√
m ), then there indeed exists m such that (19) holds.

More formally, assume that the hypothesis class F has bounded complexity, choose ε > 0, δ > 0, and consider a sam-
ple Si of size m = Θ(log(1/δ)/ε2) drawn i.i.d. from the distribution ρi of any agent i ∈ N . Then we have that

Pr
(
for all f ∈ F ,

∣∣Ri( f ) − R̂( f , Si)
∣∣ � ε

)
� 1 − δ. (20)

In particular, we want the events in (20) to hold simultaneously for all i ∈ N , i.e.,

for all f ∈ F ,
∣∣RN( f ) − R̂( f , S)

∣∣ � ε. (21)

Using the union bound, this is the case with probability at least 1 − nδ.
We now turn to incentive compatibility. The following theorem implies that mechanisms which do well in the setting

of Section 5 are also good, but slightly less so, when arbitrary distributions are allowed. Specifically, given a training set
satisfying (20) for all agents, a mechanism that is strategyproof in the setting of Section 5 becomes ε-strategyproof, i.e., no
agent can gain more than ε by lying, no matter what the other agents do. Analogously, a group strategyproof mechanism
for the setting of Section 5 becomes ε-group strategyproof, i.e., there exists an agent in the coalition that gains less than ε .
Furthermore, efficiency is preserved up to an additive factor of ε . We wish to point out that ε-equilibrium is a well-
established solution concept, the underlying assumption being that agents would not bother to lie if they were to gain an
amount as small as ε . This concept is particularly appealing when one recalls that ε can be chosen to be arbitrarily small.

Theorem 6.1. Let F be a hypothesis class, � some loss function, and S = ⊎
Si a training set such that for all f ∈ F and i ∈ N,

|Ri( f ) − R̂( f , Si)| � ε/2, and |RN ( f ) − R̂( f , S)| � ε/2. Let M be a mechanism with or without payments.

1. If M is (group) strategyproof under the assumption that each agent’s cost is R̂( f̃ , Si), then M is ε-(group) strategyproof in the
general regression setting.

2. If M is α-efficient under the assumption that the mechanism’s goal is to minimize R̂( f̃ , S), M(S) = f̃ , then RN ( f̃ ) � α ·
arg min f ∈F RN ( f ) + ε .

Proof. We will only prove the first part of the theorem, and only for (individual) strategyproofness. Group strategyproofness
as well as the second part of the theorem follow from similar arguments.

Let i ∈ N , and let ũi( S̃ i) be the utility of agent i when S̃ is reported and assuming a uniform distribution over Si .
Denoting by f̃ the function returned by M given S̃ , we have

ũi( S̃) = −R̂( f̃ , Si) + pi( S̃),

where Si is the training data of agent i with the true labels set by oi . If M is a mechanism without payments, pi is the
constant zero function. Since M is strategyproof for the uniform distribution, ũi(Si, S̃−i) � ũi( Ŝ i, S̃−i) holds for all Ŝ i .

On the other hand, let ui denote agent i’s utility function with respect to distribution ρi , i.e.,

ui( S̃) = −Ri( f̃ ) + pi( S̃),

where f̃ is as above. Then, |ui( S̃) − ũi( S̃)| = |Ri( f̃ ) − R̂( f̃ , Si)|. By assumption, this expression is bounded by ε/2. Similarly,
with respect to i’s true values Si , if M(Si, S̃−i) = f̂ , then∣∣ui(Si, S̃−i) − ũi(Si, S̃−i)

∣∣ = ∣∣Ri( f̂ ) − R̂( f̂ , Si)
∣∣ � ε/2.

It follows that for any S̃ ,

ui( S̃) − ui(Si, S̃−i) �
(

ũi( S̃) + ε
)

−
(

ũi(Si, S̃−i) − ε
)

� ε. �
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As discussed above, the conditions of Theorem 6.1 are satisfied with probability 1 − δ when F has bounded dimension
and m = Θ(log(1/δ)/ε2). As the latter expression depends logarithmically on 1/δ, the sample size only needs to be increased
by an additive factor of Θ(log(n)/ε2) to achieve the stronger requirement of (21).

Let us examine how Theorem 6.1 applies to our positive results. Since ERM with VCG payments is strategyproof and
efficient under uniform distributions over the samples, we obtain ε-strategyproofness and efficiency up to an additive factor
of ε when it is used in the general learning game, i.e., with arbitrary distributions. This holds for any loss function �. The
project-and-fit mechanism is ε-group strategyproof in the learning game when F is the class of constant functions or of
homogeneous linear functions over R, and 3-efficient up to an additive factor of ε . This is true only for the absolute loss
function.

7. Discussion

In this paper, we have studied mechanisms for a general regression learning framework involving multiple strategic
agents. In the case where each agent controls one point, we have obtained a strong and surprising characterization of the
truthfulness of ERM. When the absolute loss function is used, ERM is group strategyproof. On the other hand, ERM is not
strategyproof for any loss function that is superlinear in a certain well-defined way. This particularly holds for the popu-
lar squared loss function. In the general learning setting, we have established the following result: For any ε, δ > 0, given
a large enough training set, and with probability 1 − δ, ERM with VCG payments is efficient up to an additive factor of ε ,
and ε-strategyproof. We have also obtained limited positive results for the case when payments are disallowed, namely an
algorithm that is ε-group strategyproof and 3-efficient up to an additive factor of ε for constant functions over R

k , k ∈ N,
and for homogeneous linear functions over R. We gave a matching lower bound, which also applies to multi-dimensional
homogeneous linear functions. The number of samples required by the aforementioned algorithms depends on the combina-
torial richness of the hypothesis space F , but differs only by an additive factor of Θ(log(n)/ε2) from that in the traditional
regression learning setting without strategic agents. Since F can be assumed to be learnable in general, this factor is not
very significant.

At the moment there is virtually no other work on incentives in machine learning, many exciting directions for future
work exist. While regression learning constitutes an important area of machine learning with numerous applications, adapt-
ing our framework for studying incentives in classification or in unsupervised settings will certainly prove interesting as
well. In classification, each point of the input space is assigned one of two labels, either +1 or −1. ERM is trivially incentive
compatible in classification when each agent controls only a single point. The situation again becomes complicated when
agents control multiple points. In addition, we have not considered settings where ERM is computationally intractable. Just
like in general algorithmic mechanism design, VCG is bound to fail in this case. It is an open question whether one can
simultaneously achieve tractability, approximate efficiency, and (approximate) incentive compatibility.

Several interesting questions follow directly from our work. The one we are most interested in is settling Conjecture 5.7:
are there incentive compatible and approximately efficient mechanisms without payments for homogeneous linear func-
tions? Do such mechanisms exist for other interesting hypothesis classes? These questions are closely related to general
questions about the existence of incentive compatible and non-dictatorial mechanisms, and have implications way beyond
the scope of machine learning and computer science.
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