
Crowdsourcing Education:

A Game-Theoretic Analysis of Contribution and Learning in

Peer to Peer Education Platforms

A thesis presented

by

Spencer de Mars

To

Applied Mathematics

in partial fulfillment of the honors requirements

for the degree of

Bachelor of Arts

Harvard College

Cambridge, Massachusetts

March 29th, 2013

1



Abstract

The Internet has provided a unique opportunity for many alternatives to the tradi-

tional classroom education, and one emerging example is the advent of online peer

to peer or crowdsourced education platforms. On such websites any user is free to

contribute courses in his or her area of expertise, and the platform aggregates these

crowd submissions. In this paper we model the contribution and learning behavior in

such a system, with the goal of determining the effect content presentation can have

on contribution incentives, the distribution of contributed material with respect to

difficulty level, and ultimately learning outcomes.

Our primary contribution in accomplishing this goal is the construction of a rich

game-theoretic model capturing the learning and contribution mechanics. The model

includes two populations, learners and potential contributors, in which each agent

from either population has a discrete skill level. The system evolves over a series

of discrete time steps which alternate between rounds of learning and contribution.

We represent contribution in each time step as a complete information simultaneous

game under a free-entry Nash Equilibrium, such that contributors may elect whether

to participate and conditional upon participating create a course and an associated

fee. Potential contributors are strategic in an impatient sense in that they seek to

maximize profit in the next round of learning.

To model the effect of content organization we introduce the notion of a mecha-

nism as the platform’s method of matching a learner to a course, which the learner

can enroll in or decline. As a baseline mechanism and simplification of unorganized

content we consider random course delivery. We show this mechanism can lead to

inefficiencies, including many redundant courses targeted at novices and a lack of ad-

vanced content. Next we introduce an alternative mechanism which breaks down the
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size of each contributed course and enforces a clear difficulty ordering among aggre-

gated content. We prove that under this alternative mechanism there is a desirable

contribution pattern in that more skilled contributors are guaranteed to create more

difficult courses. Additionally through simulation we show that this alternative mech-

anism can lead to better learning outcomes than random course delivery, facilitating

more than twice the increase in aggregate learning utility in randomized simulations.

These results suggest that enforcing a more transparent ordering of contributed con-

tent can lead to more complete contribution across difficulty levels and thus better

learning outcomes.
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1 Introduction

The Internet is already disrupting the traditional classroom educational model, and

all signs indicate its role will only grow more important. The web allows educational

content to scale far beyond the traditional classroom, eroding barriers and potentially

allowing multitudes of students unprecedented access to teachers and educational

content.

One manifestation of the online education movement is the appearance of crowd-

sourced education platforms, which seek to in a sense democratize education through

peer to peer teaching. The idea behind these platforms is to allow anyone to become a

teacher and create educational courses. The website then aggregates this content and

allows visitors to browse the courses and learn at their leisure. This emerging edu-

cational model is referenced by many names including crowdsourcing, user-generated

content, and peer to peer learning. The key to this model is relying not on a dedicated

staff of teachers for educational content but instead submissions from the user base

or crowd.

Many real-world companies and websites have been built around this idea of peer

to peer education. Some of the most popular examples include Udemy, Skillshare,

Peer to Peer University, and WizIq. For example Udemy, launched in 2010, now

offers more than 1500 courses in categories ranging from Music to Technology1, and

reportedly has enrolled over 600,000 students [12]. Teachers include famous successful

businesspeople such as Yahoo! CEO Marissa Mayer and Facebook CEO Mark Zucher-

berg. Furthermore, some courses have grossed millions of dollars in revenue2. The

strong traction Udemy has gained in such a short time, combined with the many other

11510 courses as of March 3, 2013
2For example, the course ”Microsoft Excel 2010 Course Beginners/Intermediate Training” costs

$99 and had 28022 students as for March 4, 2013, for a total revenue of over $2.7 million
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companies competing in this space, indicates a strong potential and real investment

in this type of learning platform.

The popularity and empirical demand for this platform indicates the practical

importance of understanding the behavior of these peer to peer education systems.

Furthermore it is clear that learning outcomes depend on the website and its content

structure in two important ways: Firstly the organization of content impacts the

learning experience directly, in that recommending or emphasizing certain courses

over others will drastically affect which courses students take and therefore how much

they learn. Secondly there is the indirect effect of considering what kind of content

contributors are incentivized to create, which shapes the distribution of the content

students can pick from. Broadly speaking the goal of this paper is to model and better

understand the effect of the content aggregation and presentation on contribution and

learning outcomes.

1.1 Contribution and Outline

We believe this paper is the first to employ the tools of game theory to model the

incentives and contribution behavior in the unique environment of a crowdsourced

education platform. To this end our primary contribution is a rich and complete

model capturing both learning and contribution mechanics within such a platform.

We focus on the unique factors which differentiate the education setting from other

applications of user-generated content. Learning in many subjects requires a depth

of understanding, and so in most education settings there is a natural progression of

interrelated topics of escalating difficulty. From our perspective the goal of such an

online platform is to facilitate this increase in the skill level of learners as they master

subjects. This creates a unique and complex audience for content, both because
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the learners are asymmetric with respect to skill and because those skill levels are

changing over time as learning takes place.

To represent this concept of learning we consider learners to each have a discrete

skill level. Learning takes place through a series of discrete time steps in which

learners attempt lessons and probabilistically increase their respective skill levels.

Learners are motivated by the utility gains from learning but also face an effort cost

of attempting lessons.

For contribution we assume a smaller pool of potential contributors, each of whom

also has an associated skill level. In each time step these contributors play a simul-

taneous complete information game, in which each contributor seeks to maximize

the profit generated in the next round of learning. These games are free-entry, such

that potential contributors choose whether to contribute and then conditional upon

contributing choose a course, or bundle of lessons, as well as a fee to charge for

that course. Contributors earn revenue from students paying their fee to enroll in

their courses, but also face an effort cost to creating a course, which depends on the

contributor’s skill level.

This Nash Equilibrium depends on the expected revenue of contributed courses,

and this is where the organizational structure of the platform plays its role. We

isolate the effect of content aggregation and presentation by modeling this content

structure as a mechanism by which the platform selects which course to present to a

given learner.

When presented with a course learners will myopically decide whether to enroll

by comparing the expected utility gain from the course to the cost of the course’s fee.

The behavior of the mechanism combined with the learners’ decision process defines

the expected revenue for each course in the contributors’ strategy space. This allows

us to calculate the Nash Equilibrium contribution in each round, yielding a dynamic
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system consisting of a series of simultaneous games alternating with enrollment and

learning on the part of the learners. Through this model we can study how the choice

of mechanism affects the evolution of the system in terms of the contribution and

learning process.

As a baseline mechanism we consider the independent course mechanism, in which

each learner is presented a random course. We prove that under this mechanism

there will initially be many courses targeted at novices, and demonstrate that the

mechanism can also lead to a host of inefficient learning outcomes including content

redundancy and a lack of advanced content for more skilled learners.

We next present an alternative mechanism, termed the ordered lesson mechanism,

which limits contributed courses to a single lesson and enforces an ordered structure

of escalating course difficulty when pairing learners with courses. We prove that

this mechanism guarantees the desirable property that under all circumstances more

skilled contributors will create more difficult lessons. Using visualizations and simula-

tions under both mechanisms we further argue that this alternative mechanism tends

to lead to a more complete distribution of content over various difficulties and thus

better learning outcomes, facilitating more than twice the aggregate learning utility

gain over the baseline mechanism in 100 randomized simulations.

The remainder of the paper is outlined as follows: Section 2 more closely exam-

ines real-world examples of peer to peer education websites and motivates this pa-

per by providing concrete examples of the contrast in content organization between

crowdsourced sites and other educational settings. Section 3 introduces the dynamic

learning and contribution model which is used for both mechanisms. Section 4 ana-

lyzes the independent course mechanism and provides the theoretical and simulated

results under this mechanism. Section 5 introduces and analyzes the ordered lesson

mechanism, proving the positive theoretical results of this mechanism. Section 6 con-
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trasts the two mechanisms, providing side by side simulation visualizations as well

as as aggregate learning metrics from a series of randomized simulations. Section 7

includes discussion and directions for future research.

1.2 Related Work

While we believe this is the first paper to take a game-theoretical approach to studying

crowdsourced education platforms, there has been some recent qualitative work in this

area. Weld et. al. [10] make the case for a variety of ways in which crowdsourcing

could improve education, and highlight the potential of using the crowd to both

create and organize educational content. John Seeley Brown and Richard P. Adler [2]

argue that Web 2.0 applications will allow education to become a more participatory

medium, allowing new collaboration and multiple modes of learning.

In terms of structure and methodology our paper is more closely related to work

employing game-theoretic analysis to study crowdsourced or user-generated content

in other settings.

There is a comparatively older and richer body of work analyzing crowdsourced

contests [1][5] [3]. In these settings a pool of agents exert effort to create competing

contributions, and rewards are distributed to those contributions judged to be best.

These papers seek to find a distribution of rewards to the top contributors which

encourages the the most effort and best submissions to be put forward by the crowd.

Our paper is more closely related to recent work employing game-theoretic analysis

to study crowdsourcing from a human computation standpoint. Jain and Parkes [9]

argue for a large role of game theory in studying and designing human computation

systems such as games with a purpose. Additionally in [8] they employ game theory

to demonstrate positive equilibrium results in the image-labeling game ESP. In this

11



same vein Jain et. al. [7] analyze the effectiveness of the virtual point reward system

on Yahoo! answers, the popular question and answer forum. They find that while

the point system encourages optimal equilibrium behavior for some types of questions

it fails for certain question types, and further design point systems which encourage

optimal behavior for these question types. Our paper builds on these ideas in that it

also focuses on designing incentive structures to encourage the crowd to contribute

useful content, in our case in an educational context. One notable difference is that

in our model contributing agents are motivated by monetary profit, unlike in games

with a purpose or question and answer forums.

There has also been related work studying user-generated content in the context

of online communities. Ghosh et al.[6] [4] build a model of a generalized platform

consisting of potential contributors and content viewers, and use game theory to

evaluate the Nash Equilibrium outcomes for content contribution. This work assumes

viewers rate the content, and then defines the website’s mechanism as the way the

website uses these ratings to direct viewer attention to each piece of content. Gosh et

al. show that if the website uses the right mechanism to display higher-rated content

in a certain way, the contributors will be induced to create optimal quality content

as the number of viewers diverges.

Our work is analogous in that we study a website’s content delivery mechanism

and analyzing its effects on contribution. However instead of focusing on the quality of

contributions we focus on the difficulty distribution of the contributed material, a fea-

ture unique to the education setting. Furthermore our model becomes very different

and much more complex both because contributors and learners have associated skill

levels, which breaks much of the symmetry, and because our model evolves over time,

transforming the model into an evolutionary one and turning a single simultaneous

game into a series of multiple simultaneous games with changing payoffs.
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2 Empirical Motivation

We derive our motivation for this paper from a qualitative comparison of the con-

tent structures in existing crowdsourced and non-crowdsourced education settings.

While in non-crowdsourced settings learning is usually presented as a tree or track

of escalating difficulty, in current peer to peer platforms content is generally unor-

ganized with respect to difficulty. This clear distinction begs the question of how

these changes in organizational structure affect both the contribution incentives and

learning outcomes.

In many traditional education settings there is an emphasis on building up ex-

pertise in a skill through incremental steps. Unless a single learning experience can

guide a student from the beginner level to mastery, it is natural to think of different

concepts building on one another. For example figure 1 demonstrates a handout de-

tailing computer science classes at Harvard, in which classes are grouped by similar

difficulty level with some classes acting as pre-requisites for others.

This concept of learning in a given subject as navigating a tree of escalating

difficulty can be found in online settings as well. Consider Duolingo, a recently

launched website allowing users to learn a foreign language online. It breaks down

learning a language into many small lessons on vocabulary and grammar, allowing

users to progress through a tree of skills towards gaining fluency (figure 2).
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Figure 1: Guide to computer science classes at Harvard
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Figure 2: Duolingo language skill tree
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Codecademy is another example of structured ordered learning online. It has a

series of curated tracks on topics such as Javascript, Python, and APIs. Within

each track there is a clear ordering and linear progression through topics, implying

escalating difficulty and the layering of concepts as the student gains mastery (figure

3)

Figure 3: Codecademy Javascript track

Existing crowdsourced education platforms however almost all tend to use a less

structured approach for their content. Generally each course offered is listed inde-

pendently of the others, and so content creators are encouraged to make freestanding
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courses not directly related to each other. This more open structure features courses

that are organized by subject and searchable by title or teacher but do not include

information about course difficulty (figures 4-6).

Figure 4: Skillshare Technology courses
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Figure 5: Udemy Technology courses

Figure 6: P2PU school of webcraft courses
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Therefore none of these websites attempts to enforce ordering through a crowd-

sourced educational track, even though having a track or ordering is the dominant

structure outside of these peer-to-peer sites. We acknowledge there may be good prac-

tical explanations for why crowdsourced platforms choose this presentation format.

However this contrast justifies a closer examination of the ramifications of moving

from ordered content to unordered content, in terms of the teaching and learning

outcomes of the system. These two organizational schemes, ordered and unordered,

provide the intuition and motivation for our two content delivery mechanisms.

3 Learning and Contribution Model

3.1 Introduction and Terminology

Our agents will consist of two separate pools, a large group of learners L and a

smaller population of potential contributors C. Although any user of the website

is free to become a teacher and contribute educational material, in practice only a

small fraction of the community will have the interest and time to contribute. This

separation of learners and contributors may seem counter to the idea of peer to peer

education, but it has been shown in almost all peer production communities that a

small fraction of users create the majority of the content [11]. This separation allows

us to focus on the contributing agents in their role as contributors, as opposed to the

majority of users who elect to only consume content.

This model represents teaching and learning within a specific subject area. There-

fore we will represent skill or expertise as a discrete ordered skill level between 0

(novice) and n (mastery). Each agent, whether a learner or contributor, will have

some skill level in {0, 1, . . . , n}.
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We will use two terms to refer to educational content on the platform: A lesson

will refer to the smallest unit of material, one which we can consider too small to

meaningfully break up among multiple contributors and small enough that it is real-

istic to assume a learner will either take the entire lesson or none of it. Each lesson

will have an associated difficulty level d ∈ {1, . . . , n}. A course is a bundle of one or

more lessons along a contiguous block of difficulty levels. In our notation the course

[j, k] implies a set of lessons at difficulties [j, j + 1, . . . , k]. A course may consist of a

single lesson, denoted [j, j].

In our model the system will evolve over discrete time steps. In each time step

there will be a round of content creation followed by a round of learning. We first

focus on explaining the learning process, and then move on to introduce contribution.

3.2 Learning Mechanics

3.2.1 High Level Overview

A learner i ∈ L is associated with three important properties: skill level, state, and

utility pools. We use the notation si,t ∈ {0, 1, . . . n} to denote the skill of learner i at

time t, which represents how much mastery learner i has over the subject matter. We

use the notation δi,t ∈ {browsing, enrolled, discouraged} to denote the state of learner

i at time t, which represents whether the learner is currently looking for a course,

engaged in a course, or has left the website altogether. Each learner will have a course

utility pool Bi,t ∈ R as well as a platform utility pool Vi,t ∈ R, which represent how

learner i feels about the current course he or she is enrolled in and the platform as a

whole respectively. These will be explained in greater detail in section 3.2.3.

At a high level the learning process will take place in three phases:

1. Browsing and Enrollment Decision: All browsing learners will be presented
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courses and must choose whether to enroll or decline.

2. Learning: All enrolled learners will attempt the next lesson in their current

course, and update their skill level according to the result of this attempt.

3. Update: All browsing and enrolled learners will update the appropriate utility

pools according to the utility change experienced in this time step, and update

their state for the next time step as needed.

The decision process for whether a learner enrolls in a course requires an un-

derstanding of the learning mechanics, and therefore the steps are presented in the

following order: The learning step is presented first, followed by the update step, then

the browsing and enrollment specifics, and finally a detailed summary of the entire

process.

3.2.2 Learning Phase

Learners are motivated by the utility they derive from reaching higher skill levels. We

consider a population in which each learner has the identical concave utility function

u(s) over the learner’s skill level s. To improve in skill level a learner must attempt

and successfully complete a lesson at some higher difficulty level. If learner i with

skill si,t completes a lesson at level k > si,t, the learner will improve to level si,t+1 = k.

Note that the skill levels are ordered in that 0 < 1 < 2 · · · < n but it is possible for

k − si,t > 1, meaning that a learner can skip over intermediate levels up to a higher

skill level upon successful completion of the higher difficulty lesson.

Agents successfully complete lessons probabilistically upon attempting them, and

specifically learner i attempting a lesson at level k will succeed with probability

p(k− si,t). This probability function by assumption only depends on d = k− si,t, the
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difference between the lesson difficulty level and the learner skill level. Furthermore

p(d) is decreasing in d, in accordance with the intuition that it is less likely for a learner

to successfully jump up many skill levels in one step. Therefore upon attempting a

lesson at k, with probability p(k − si,t) the learner will pass and improve his or her

skill level to si,t+1 = k, and with probability 1 − p(k − si,t) the learner will fail and

remain at skill level si,t+1 = si,t.

To represent the time and effort required in the learner’s attempt of the lesson,

there is an effort cost e(k − si,t) learner i exerts when taking the lesson. This effort

cost is subtracted from the learner’s utility regardless of whether the attempt results

in a success or a failure. Like the probability function, the effort function depends

only on the difference between k and si,t. The effort function e(d) is an increasing

function of d such that it takes more and more effort to try and increase multiple skill

levels at once.

The table below summarizes these mechanics of learning, for learner i attempting

a lesson at k:

Outcome Probability New Skill (si,t+1) Utility Change

Success p(k − si,t) k u(k)− u(si,t)− e(k − si,t)

Failure 1− p(k − si,t) s −e(k − si,t)

Enrolled Learning Through a Course

Next we can consider courses and the process of learning through course enrollment.

Recall that the course [j, k] denotes a package of lessons at difficulties [j, j + 1, . . . k].

A state of δi,t = enrolled means that learner i is in in the process of progressing

through a course. In the learning phase of each time step all enrolled learners will

attempt a single lesson from their respective courses. We will use the notation [j, k]i,t

to refer to the difficulty range of whichever course learner i is enrolled in at time t.
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If learner i has just enrolled in [j, k]i,t in the earlier browsing and enrollment phase

of this time step, the learner will begin the course by attempting the appropriate

lesson:

• If si,t < j learner i will begin by attempting lesson j, which may involve at-

tempting to jump up several skill levels if j − si,t > 1

• If k > si,t ≥ j, learner i will begin by attempting lesson si,t+1 to avoid repeating

material.

If learner i was already enrolled in the course, the learner will continue to take

the course’s lessons in order. That is upon successfully completing the lesson at j′ at

time t the learner will automatically attempt the next lesson at j′ + 1 at time t+ 1.

Upon failing lesson j′ at time t the learner will retake lesson j′ at time t+ 1.

This process will continue until one of two things happen: Either the learner will

successfully complete the course, meaning that the learner passes the most difficult

lesson k, or the learner quits the course, meaning the learner stops taking lessons

from this course. The concept of quitting reflects the reality that users get frustrated,

especially after they have attempted a lesson and failed, possibly multiple times. This

frustration can cause them to quit the course entirely instead of continuing to attempt

lessons.

3.2.3 Update Phase

Course Pool Update and Quitting

To capture the mechanics of quitting there must be a way for the negative utility

experienced when failing lessons to accumulate and cause the learner to stop taking

lessons from that course. For this we introduce the idea of a course utility pool for

23



each enrolled learner. The utility pool Bi,t represents the goodwill or satisfaction

learner i feels towards the particular course i is enrolled in at time t.

When a learner first enrolls in a course he or she will begin with an identical

initial pool of B0, such that if i enrolls in [j, k] at time s, Bi,s = B0. This constant

is symmetric across learners and can be thought of as the patience or tolerance for

failure with which the learners approach each course. Intuitively this means that

learners approach each new course with the same initial goodwill, regardless of past

experience with other courses. Next any utility change resulting from an attempt of

a lesson, whether positive from passing a lesson or negative from failing one, is added

to the utility pool.

This update is shown in the table below, for learner i at si,t = j′ attempting lesson

j′ + 1 in course [j, k]i,t:

Outcome si,t+1 Bi,t+1

Success j′ + 1 Bi,t + u(j′ + 1)− u(j′)− e(1)

Failure j′ Bi,t − e(1)

If after the update Bi,t+1 < 0, then learner i will quit the course out of frustration,

meaning the learner is no longer enrolled and will stop taking lessons from this course.

The fact that Bi,t can both rise and fall captures the intuition that positive experiences

with a course give a learner more goodwill towards that course and thus greater

tolerance for future frustration before quitting.

Platform Utility and Discouragement

Just as a learner may get frustrated with a particular course, learners may also even-

tually get frustrated with the entire platform. Quitting courses takes a psychological

toll on the learner and involves wasted time with no gain in skill, and with enough of
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these bad experiences a learner may leave. If a learner leaves the platform altogether

we term the learner’s state as δi,t = discouraged. A discouraged learner is permanently

frozen in terms of skill level and will not browse or enroll in any new courses.

To model this process of discouragement we will use the same utility pool concept

as we did for courses, but using a separate pool to represent goodwill towards the

entire platform. The pool Vi,t represents the goodwill of i towards the entire platform

at time t. At time zero all learners will start with an identical utility pool V0 for the

website, that is Vi,0 = V0 ∀i ∈ L. V0 represents the learners’ initial patience for the

platform as a whole, or how many bad courses learners will tolerate before neglecting

to try any new courses and leaving the platform altogether.

The course utility pool Bi,t is updated according to the utility change of an at-

tempted lesson. Analogously, the platform utility pool Vi,t is updated after an experi-

ence with a course. This means when a learner completes or quits a course, the utility

change associated with the entire course experience will be added to that learner’s

platform pool Vi,t. Given that learner i quits or passes a course at time t, this utility

change is simply B0 −Bi,t+1 because Bi,t+1 has been updated each time step accord-

ing to the learner’s experience with each lesson in the course. If after completing or

quitting a course the updated utility pool Vi,t+1 is less than 0, then the learner will

become discouraged. If after completing or quitting a course Vi,t+1 ≥ 0, the learner

will return to a browsing state because the learner is willing to take a new course.

The relationship between quitting and becoming discouraged is outlined in the

table below:
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δi,t, Recent Action Bi,t+1 < 0? ∆V Vi,t+1 < 0? New State (δi,t+1)

Enrolled, Failed

Lesson

No n/a n/a Enrolled

Yes, Quit Bi,t+1 −B0

No Browsing

Yes Discouraged

Separating the learner’s utility into the separate pools Bi,t and Vi,t has two major

advantages, one theoretical and one practical. In a theoretical sense it enriches the

model by separating how the learner feels about their current course from how willing

the learner is to try new courses. In an open platform courses can vary greatly

according to the style of the instructor and so separating the goodwill towards a

particular course from willingness to try new courses makes sense and allows for a

more sophisticated specification of the learning psychology.

Practically this representation is immensely helpful because it means that the

utility a learner expects to receive upon taking a course does not depend on Vi,t, which

restores some symmetry across learners. This symmetry simplifies the contributor’s

decision making in determining which course to create and how to price that course,

making the model more tractable.

3.2.4 Browsing and Course Enrollment Phase

Course Valuation

We now turn to the initial browsing and enrollment phase of a learning time step.

A browsing learner will be presented by the website with a course and must decide

whether or not to enroll. In order to make that decision the browsing learner must

determine how much he or she values a given course. For this we assume that learners

are aware of the learning mechanics above, and so value a course according to the

utility they expect to receive from taking that course. Therefore given learner skill s
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and a course [j, k] we can define EU(s, [j, k]) to be the utility the learner expects to

receive upon enrolling in that course.

We can compute EU(s, [j, k]) by simulating the process of enrollment and learn-

ing. The learner begins at level s and upon attempting each lesson will either fail or

pass probabilistically. This creates a probability tree, in which each branch will ter-

minate with either the learner quitting or completing the course. If we sum from each

endpoint of this tree the utility change of the endpoint multiplied by the probability

of traveling along that branch, the aggregate sum will give us the expected utility of

the learner enrolling in the course.

For illustration a possible example tree for EU(1, [2, 3]) is given below. At each

node we list the skill level along with Bi,t. Each upward sloping branch is associ-

ated with passing the next lesson (with probability p(1)) and each downward sloping

branch is associated with failing the next lesson (with probability 1 − p(1)). Along

any path we eventually pass the course or quit.

1, B0

1, B0 − e(1)

1, B0 − 2e(1) < 0 - QUIT

2, B0 + u(2) −

u(1) − 2e(1)

2, B0 + u(2)− u(1)− 3e(1) < 0 - QUIT

3, B0 + u(2)−u(1)− 2e(1) - PASS

1− p(1)

2, B0 + (u(2) −

u(1)) − e(1)
2, B0 + u(2) −

u(1) − 2e(1)

3, B0 + (u(3)− u(1))− 2e(1) - PASS

p(1)

In this case we can sum over the four endpoints to compute the expected ending
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utility, and subtract the initial pool value B0 to compute the expected utility gain:

EU(1, [2, 3]) = (1− p(1))2(B0 − 2e(1))

+ 2p(1)(1− p(1))2(B0 − 2e(1))

+ 2p(1)2(1− p(1))(B0 + u(2)− u(1)− 2e(1))

+ p(1)2(B0 + (u(3)− u(1))− 2e(1))

−B0

Note that EU(1, [2, 3]) will not necessarily take this specific form because the number

of failures until Bi,t becomes negative depends on the relative proportions of B0 and

the utility and effort functions.

Because all learners start a course with patience B0, the value of course [j, k] to

a learner only depends on the learner skill level s, allowing us to define EU(s, [j, k])

as the value of [j, k] to all learners i ∈ L such that si,t = s. Also note that a course

below the level of the agent provides no utility, that is EU(s, [j, k]) = 0 for k ≤ s.

3.2.5 Presentation Mechanism and Enrollment Decision

Browsing users then myopically decide whether to enroll in courses according to

whether the expected utility gain from taking the course outweighs the cost of the

associated fee.

The organization of the educational content will be represented as the mechanism

by which learners are (generally probabilistically) directed to courses. In our model

a mechanism presents each browsing learner a single course in each time step. The

learner then chooses to either enroll or decline and remain browsing for the next

time step. While most real websites will typically present users with a list of courses
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instead of a single course, we can consider the mechanism of presenting a single

course as a simplified representation of the influence of displaying certain courses more

prominently. Considering content presentation as a mechanism of matching users to

a single item of content is also consistent with the modeling of user-generated content

in other settings [6] [4].

Therefore formally in the first phase of each learning time step a browsing learner

will be presented with some course [j, k] and an associated fee F (set by the contrib-

utor who created that course). The learner at skill si,t = s will then enroll in the

course if and only if:

EU(s, [j, k])− F ≥ 0

One could argue that this myopic decision making is not truly strategic, as learners

could pass on a course with a small utility gain in hopes of browsing a course with

a larger utility gain in the future. However we believe our decision reflects a genuine

uncertainty on the part of the learners about the other courses on the website, which

would make it difficult for them to make accurate predictions of expected utility gains

from browsing future courses. Additionally the model already captures some strategic

decision making on the part of the learners, and to extend this concept further would

add a lot of complexity for a relatively small gain in realism, especially when the

greater focus is the strategic decision-making of the contributors, not the learners.

If the learner elects to pass and continue browsing, then that learner will pay a

small browsing cost b for the effort of deciding on that course. This cost will be

deducted from the platform utility pool such that Vi,t+1 = Vi,t − b.
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3.2.6 Learning Summary

In summation, each learner begins the learning time step in one of three states:

discouraged, enrolled, or browsing. In the first phase browsing learners are each

presented a course and elect either to enroll or to decline. Next all enrolled learners,

including those who just became enrolled, will attempt the next lesson in whichever

course they are currently enrolled.

Finally for all enrolled learners, upon successfully completing or failing a lesson,

the learner’s skill will be updated and the net change in utility resulting from the

lesson outcome will be added to the course utility pool. Only if the user has passed

the last lesson in the course or the updated utility pool is less than zero will the user

leave the course upon completion or quitting respectively and the net change in the

course utility pool will be added to the platform utility pool. Upon an update to the

platform utility pool only if this pool is below zero will the learner become discouraged

and leave the entire website, otherwise the learner will return to a browsing state for

the next time period.

Note that a discouraged learner will do nothing during this process as they are no

longer active in the system.

The entire learning process is presented formally and concisely according to these

three steps in the following tables. In a slight abuse of notation we introduce the

state δ′i,t to denote the updated state after the browsing and enrollment phase but

before the learning phase. This allows us to capture the fact that browsing learners

can both enroll and then attempt a lesson in the different phases of the same time

step. Also note that ∆B is shorthand for the update rule Bi,t+1 = Bi,t + ∆B and

similarly for ∆V .

1. First, each browsing learner will be presented by the website mechanism with
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a course the learner may enroll in:

δi,t Option EU(si,t, [j, k]) ≥ F? ∆V Vi,t+1 < 0? δ′i,t

Browsing
Presented

Course

Yes: Enroll 0 n/a Enrolled

No: Decline -b
No Browsing

Yes Discouraged

Enrolled n/a n/a n/a n/a Enrolled

Discouraged n/a n/a n/a n/a Discouraged

Note that if a browsing learner i does enroll then that will set Bi,t = B0 and

[j, k]i,t = [j, k].

2. Next, any enrolled learners will attempt the next lesson in their course:

δ′i,t Action Outcome si,t+1 ∆B

Enrolled
Attempt next

Lesson at j′

Success j′ u(j′) − u(si,t) −

e(j′ − si,t)

Failure si,t −e(j′ − si,t)

Browsing n/a n/a n/a n/a

Discouraged n/a n/a n/a n/a

3. Finally learners will quit or become discouraged if their respective utility pools

have gone below 0:

δ′i,t, Result of (2) Bi,t+1 < 0? ∆V Vi,t+1 < 0? δi,t+1

Enrolled, Failed Lesson

No n/a n/a Enrolled

Yes, Quit Bi,t+1 −B0

No Browsing

Yes Discouraged

31



δ′i,t, Result of (2) Passed course?

(si,t+1 = k?)

∆V Vi,t+1 < 0? δi,t+1

Enrolled, Passed

Lesson

No n/a n/a Enrolled

Yes Bi,t+1 −B0

No Browsing

Yes Discouraged

Browsing, n/a n/a n/a n/a Browsing

Discouraged, n/a n/a n/a n/a Discouraged

3.3 Contribution

In addition to learning, each time step importantly consists of a round of contribution.

In the contribution stage of each time step the following simultaneous game is played:

The agents consist of the constant pool of potential contributors C. Let sc ∈

{1, 2, . . . n} be the skill of contributor c ∈ C. This reflects the fact that not all

teachers are necessarily experts on the subject, and teachers who are not experts are

still capable of creating course at lower difficulties. We assume the contributors’ skill

levels are fixed and therefore that contributors do not seek to learn. Also we assume

that there are no potential contributors at skill 0, who would be unable to contribute

anything because of their novice skill level.

Each potential contributor has the same constant set of actions: the contributor

decides whether to participate, and conditional upon participating chooses a course

[j, k] to create along with an associated fee F .

Contributors are taken to be profit-maximizing, and specifically seek to maximize

profit from the very next round of learning. Here we assume bounded rationality

in that the contributors myopically seek the optimal strategy for the payoff in the

next round but do not anticipate or influence future rounds. This intuitively reflects
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some combination of two assumptions about the contributors: Firstly that they are

generally impatient and so value profit in the next round very highly, and secondly

that solving for future revenue requires anticipating the behavior of other agents in

all future rounds, which is too complex for the contributors to realistically account

for.

The cost component of a contributor’s profit represents the effort of course cre-

ation. The cost for a contributor to create a lesson is determined by a cost function

c(d). A contributor at skill level sc who makes a lesson at k will undergo a cost of

c(sc−k), such that the cost depends only on the difference between the contributor’s

skill level and the lesson difficulty level. There two restrictions on the cost function:

1. c(sc − k) =∞ for all k > sc. This ensures no contributor can make a lesson to

teach concepts above his or her own skill level, which would be nonsensical.

2. c(d) is strictly decreasing in d, meaning that creation of a given lesson requires

less effort from a more skilled contributor.

The cost to a contributor to create a course is simply the sum of the cost of creating

each lesson in that course.

The benefit to a contributor is the expected revenue generated by the course in

the next time step. This is the product of the fee F and the expected number of

students who enroll in the next round of learning, which will depend on the platform

mechanism. The objective profit is thus this expected revenue minus the cost of

course creation. We will formalize the revenue, cost, and profit functions in section 4

and 5 in the context of each mechanism.

In determining equilibrium we consider free-entry Nash Equilibria, such that each

contributor decides to create a course if and only if there is a non-negative expected
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profit (at an expected profit of zero a contributor is indifferent between creating a

course and not participating).

We also assume this simultaneous game takes place under complete information.

This means in each round all potential contributors know the platform mechanism, the

previously contributed courses, the distribution of learners across each skill level (how

many learners at each level s are discouraged, browsing, and enrolled), all parameters

of the learning model (u, p, e, B0, V0), and the number of other potential contributors

at each skill level.

There are different ways this complete information assumption can be interpreted

in a real setting. We can assume that the potential contributors can infer the platform

mechanism by exploring the website and its organizational scheme. Knowledge of

previously submitted courses is also straightforward in that potential contributors

can browse the existing courses at any time and so will notice which new courses are

published on the platform each time step. Knowledge of the learning mechanics is

consistent with learners knowing their own learning mechanics.

As far as knowing the distribution of current learners, Udemy already makes public

the number of students in every course and the courses taken by every student,

and other online education sites such as Codecademy encourage the posting and

sharing of course completions or milestones. One could therefore imagine potential

contributors directly viewing or calculating aggregate statistics about enrollment in

other courses along with traffic, therefore gathering at least a reasonable estimate

of the distribution of browsing and enrolled students. Or, given knowledge or an

estimate of the initial time zero population distribution, contributors at time t can

analyze the courses submitted at 0, 1, . . . t− 1 and calculate in expectation the time

t learner distribution. Also note we do not assume that contributors know the exact

utilities Bi,t and Vi,t of each learner, only how many learners at each level are browsing,
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enrolled, or discouraged, which we believe is a little less restrictive.

Knowing the number and skill distribution of fellow potential contributors can

similarly be interpreted as having an estimate of this distribution, at least for the

first round. For t > 1 the difficulty distribution of published courses in the first

t−1 rounds could then allow potential contributors to refine this estimate of the skill

distribution of other contributors.

This conception of the contribution system as multiple rounds of simultaneous

decision-making corresponds intuitively to the uncertainty faced by a real contributor:

A given contributor can see courses that are already on the platform when the agent

starts making his or her course, in our model represented by courses created in a

previous time steps. However creating a course requires time investment and may

involve a process of review and publishing on the part of the website. Therefore a

contributor operates under considerable uncertainty regarding courses made by other

contributors at about that same time, which is reflected in the simultaneous entry for

contribution in a given time step.

4 Independent Course Mechanism

4.1 Overview

In order to solve for equilibrium contribution behavior we now turn to the mechanism

for presenting courses to browsing learners. This captures the role of the platform’s

method of organizing content and represents the effect on the system we wish to

isolate.

The first mechanism will simply be that each browsing learner is delivered a ran-

dom course from the bank of previously submitted courses. This represents the in-
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tuition that if courses are presented independently and no explicit information about

course difficulty or ordering with respect to other courses is provided, it is up to the

user to view courses individually and determine whether to enroll. Therefore this

mechanism captures to a first approximation the system in place at most existing

crowdsourced education platforms.

As a clarification we note that while these platforms do perform ordering with

respect to estimates of quality and popularity they do not order with respect to

difficulty, which is the specific factor we focus on in this paper. Furthermore recall

that our model is situated within a given subject: A user is not presented a random

course from the entire content base on the website but instead a random course in the

subject of that user’s interest, which one could imagine might be based on a category

or search query.

We next formally solve for equilibrium under the independent course mechanism,

and show that while this mechanism is sufficient to achieve moderate contribution

and partial learning, it can be inefficient in a number of ways.

4.2 Fee, Revenue, and Profit

Consider a single time step of contribution under the independent course mechanism.

Let Ct be the number of potential contributors who choose to contribute at time t

under our Nash Equilibrium. Define Kt as the number of existing courses on the

website before contribution at time t. This means that as the system evolves under

equilibrium Kt =
∑t−1

s=0Cs. Because each learner is presented a course at random, in

expectation each course will be delivered to 1
Kt+Ct

of the total browsing learners in

the following learning time step.

Next consider a given contributor considering creating a specific course [j, k]. In
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order to determine the revenue of this course the contributor must decide what to

charge for the fee. To more easily analyze the fee and revenue for a course we will

introduce the idea of a support, denoted S([j, k], F ). This represents the set of skill

levels such that learners at a skill level s ∈ S would be willing to pay F for the course

[j, k]. Formally then:

S([j, k], F ) =
⋃

s such that EU(s, [j, k]) ≥ F

This allows us to more easily define a revenue for a course [j, k] and associated fee F

in terms of this support.

For ease of notation let Lt(s) denote the number of browsing learners with skill

level s at time t:

Lt(s) =
∑
i∈L

I(si,t = s)I(δi,t = browsing)

Then the revenue for a course [j, k] and fee F is:

Rt([j, k], F ) =
1

Kt + Ct

∑
s∈S([j,k],F )

Lt(s) ∗ F

Next consider that for any course [j, k] there is some optimal fee F ∗t which maximizes

the revenue from that course. If the contributor charges a very low fee, near F = 0,

the support will be maximized but the revenue, being proportional to the fee itself,

will go to zero. Additionally if the fee grows large enough no user will be willing to

pay the price, and so both the support and revenue will go to zero. Therefore there is

some moderate F ∗t which brings in the maximal amount of revenue for course [j, k]:

F ∗t ([j, k]) = arg max
F

Rt([j, k], F )
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Also note this optimal fee does not depend on the contributor skill level, since that

affects the cost of course creation but not the revenue of a given course. Therefore any

profit maximizing contributor who creates course [j, k] will surely charge F ∗, allowing

us to define an optimal revenue of any course.

Rt([j, k]) = Rt([j, k], F ∗t ([j, k]))

Next consider the decision of a particular potential contributor at skill s. We have

already calculated the revenue for creating a particular course. The cost of a course

[j, k] is simply the sum of the cost of creating each individual lesson according to the

cost function. We can therefore extend the cost function to the creation of courses in

a straightforward way:

c(s, [j, k]) =
∑
l∈[j,k]

c(s− l)

This allows us to define a profit function π denoting the profit a contributor with

skill s expects from creating course [j, k]:

πt(s, [j, k]) = Rt([j, k])− c(s, [j, k])

Then any contributor will choose to create the course which yields the highest ex-

pected profit. This allows us to define an optimal profit function π∗ in terms of

contributor skill level:

π∗t (s) = max
[j,k]

πt(s, [j, k])

Additionally all contributors at skill level s will have some profit-maximizing course

[j, k]st :

[j, k]st = arg max
[j,k]

πt(s, [j, k])
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4.2.1 Equilibrium Condition

We will next formally define equilibrium under this mechanism. Let C(s) represent

the total number of potential contributors at each skill level s, as this does not change

through time. Then define Ct(s) to be the number of potential contributors at skill

s who choose to participate and contribute a course in time t.

This means that Ct, which we earlier defined to be the total number of contribu-

tions at time t, is simply the sum of participating contributors from each level:

Ct =
∑

s∈[1,n]

Ct(s)

The free entry condition yields the following characterization of a free-entry equilib-

rium:

Definition 4.1: Under the independent course mechanism, the contribution Nash Equi-

librium is characterized by Ct(s) such that:

• If π∗t (s) < 0, Ct(s) = 0. No agents will wish to contribute at negative profits.

• If π∗t (s) = 0, 0 ≤ Ct(s) ≤ C(s). Agents are indifferent between contributing and

not contributing at zero profit.

• If π∗t (s) > 0, Ct(s) = C(s). All agents wish to contribute at positive profits.

4.3 Theoretical Results

Without any further assumptions we can prove that there will be some threshold skill

level above which contributors elect to participate:

Theorem 4.1: Under the independent course mechanism, if there is any contribution
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at time t, there will be some skill level s∗t such that:

• Agents with s < s∗t will not contribute: π∗t (s) < 0, Ct(s) = 0.

• Agents with s = s∗t , will contribute (probabilistically): π∗t (s∗t ) ≥ 0, 0 < Ct(s
∗
t ) ≤

C(s∗t ).

• Agents with skill s > s∗t will all contribute: π∗t (s) > 0, Ct(s) = C(s).

• More skilled agents will generate higher profits: π∗t (s∗t ) < π∗t (s∗t + 1) < · · · <

π∗t (n)

Proof: We assumed at least one contribution, so we know a skill s∗t with a con-

tributing agent exists. Next consider that for any s < t, π∗(s) < π∗(t). To see this

define [j, k]s as the optimal course for s, such that π(s, [j, k]s) = π∗(s). Then we

know π∗(t) ≥ π(t, [j, k]s) > π(s, [j, k]s) = π∗(s) because R([j, k]) does not depend on

the skill of the contributor and c(t, [j, k]) < c(s, [j, k]) because for each lesson built

c(t − i) < c(s − i). Therefore the agent at t can do strictly better in terms of profit

just by building the same course [j, k]s. Thus if we define s∗t to be the smallest s such

that π∗(s∗t ) ≥ 0, we are guaranteed that for all s > s∗t , π
∗(s) > 0 and all agents at

those skill levels will contribute at equilibrium.

This indicates that there is some threshold potential contributor skill level above

which all agents contribute courses and below which none do. It also shows that

among those who do contribute, agents with higher skill levels will earn higher profits,

which stems from their lower lesson creation costs.

Next we turn to the form of the actual contribution. In general the distribution of

contributed courses and relationship between contributor skill level s and the optimal
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course [j, k]ts are highly sensitive to the parameters of the model. However we can

show more about the first round of contribution, at time zero. At time zero we assume

that the initial population of learners (who are all browsing), L0(i), is a decreasing

function of i, capturing the intuition that initially there are more novices who wish

to learn than intermediate or advanced learners.

The initial round of contribution is important because there will likely be more

contribution at this first time step than any future round. This is evident from two

factors: Initially the entire population of learners is browsing, and none have enrolled

or become discouraged. Therefore the browsing population will never be any larger

than it is in the first round. In addition the number of existing courses on the site is

initially zero, which means that the first round of course contributions will not have to

compete with any existing courses, increasing profits substantially. The combination

of these effects can lead to a very big influence of the first round of contribution on

the contribution and learning outcomes for the system.

In this first round we show that all contributors will “target” complete novices

with their courses. This means all contributors who contribute will create a course

that a learner at skill level 0 would choose to take. We can formalize this in terms of

the support of the course:

Theorem 4.2: Under the independent course mechanism, for any course [j, k] con-

tributed at t = 0, 0 ∈ S([j, k], F ∗0 ([j, k]))

Proof: Let S([j, k]) = S([j, k], F ∗0 ([j, k])), since we know any contributor will

charge F ∗. For contradiction assume that some contributor finds it optimal to make

a course [j, k] such that smin = mins S([j, k]) > 0. The support of the course must

be non-empty if the contributor maximizes profit at this course. Then consider the
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course [j − smin, k − smin] with the same fee F = F ∗([j, k]). We are guaranteed that

smin ≤ j because it is impossible for t > j to be in S([j, k]) but j not to be in S,

given that EU(j, [j, k]) > EU(t, [j, k]). Therefore [j − smin, k − smin] will be a valid

course. Next we can see that for any s ∈ S([j, k]), s−smin ∈ S([j−smin, k−smin], F ).

This is true because EU(s, [j, k]) ≤ EU(s− smin, [j − smin, k− smin]) by the assump-

tion that the utility function u is concave, which guarantees that the utility gain

associated with completing course [j − smin, k − smin] for a learner at s − smin is at

least as large as the utility gain for completing course [j, k] for a learner at s. Thus

the total population within the support of [j − smin, k − smin] must be at least as

big as the total population of the support of [j, k], because for every s ∈ S([j, k])

there is some s− smin ∈ S([j − smin, k − smin], F ) and L0(s) ≤ L0(s− smin). There-

fore R([j − smin, k − smin]) ≥ R([j − smin, k − smin], F ) ≥ R([j, k]). Furthermore

c(t, [j−smin, k−smin]) < c(t, [j, k]) for any contributor skill level t because it is strictly

cheaper to make easier lessons. This means π(t, [j − smin, k − smin]) > π(t, [j, k]) for

any contributor and creating course [j, k] was not optimal.

Therefore initially there will be a flood of easy courses aimed at the beginning

end of the skill spectrum. Note that while the support of the courses will include

complete novices at level 0, this does not necessarily imply the courses themselves

will start at level 1.

For future rounds of contribution, the model is flexible enough that there is no

definite relationship between contributor skill level and the difficulty of the course

that contributor makes. To demonstrate the various contribution outcomes that can

occur under different parameters of the model we will make use of simulation.
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4.4 Simulation Results

There is an enormous amount of potential variability in the functional forms of our

parameters given the general assumptions of the model. The simulations presented

below therefore are not intended as an exhaustive demonstration of contribution out-

comes. Rather they are intended as examples of various contribution patterns, as

well as to provide concrete examples and intuition for the inefficiencies that can re-

sult under the independent course mechanism.

4.4.1 Functional Forms

The functional forms used in the model are given below, along with the associated

constant influencing the specific shape of each function. Recall that many learning

functions depend on the distance between the learner skill level and the lesson level,

for example the effort function e. In the table we denote d to represent this distance

argument, such that a learner at s attempting a lesson at k would face a distance

d = k − s and therefore pay effort e(d).

Description Parameter Functional form Restrictions

Effort function e(d) dea ea > 0, increasing

Learning Success

Probability

p(d) (1− d
n
)pa pa > 0, decreasing

Learning Utility u(s) sua ua ≤ 1, concave

Initial Learner Dis-

tribution

L0(s) e−s∗la la ≥ 0, weakly decreasing

Building cost c(d) (n− d)ca ca > 0, decreasing

These functions were chosen to be as simple as possible while still allowing for
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easy manipulation of the relative concavity or convexity of each function through a

constant. The restrictions on the constants stem from earlier assumptions about the

functions.

Constants

In order to isolate the effects of the function shapes listed above and somewhat restrict

the degrees of freedom of the model we chose to set some of the constants to the

same values for all simulations. The following parameters and their values were held

constant for all simulations in the remainder of the paper:

Description Parameter Value

Number of skill levels n 10

Learner Population L0 300

Contributor Population C0 50

Contributor Distribution Ct(s) C0/n for n ≥ 1

Course utility pool B0 0.5

Platform utility pool V0 1.0

Browsing effort b 0.15

The constants for the total populations were chosen to induce a moderate amount

of contribution for best illustrative purposes. The utility pool and browsing cost con-

stants were chosen relative to a effort cost scaled such that e(1) = 1. This means

the utility pool constants can be thought of as the number of small failures tolerated

before any success, and the browsing cost can be thought of as the effort required

in browsing a course relative to taking a single lesson. We chose a uniform distri-

bution for contributor skill over {1, . . . n} for simplicity and to ensure at least some

contributors at every skill level in order to best demonstrate relationships between
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contributor skill level and courses produced.

4.4.2 System Evolution Visualization

We first show a visualization of a “typical” system evolution under the independent

course mechanism. In this context typical means that this example has enough con-

tribution to be illustrative and the overall patterns discussed hold true over a range

of moderate values of our parameter constants. Therefore this example provides in-

tuition for what the independent course mechanism does well and why it performs

poorly in certain cases.

Below are the constants chosen for this simulation:

Description Functional form Simulation value

Effort function e(d) = dea ea = 2.0

Learning Success

Probability

p(d) = (1− d
n
)pa pa = 2.5

Learning Utility u(s) = sua ua = .8

Initial Learner Dis-

tribution

L0(s) = e−s∗la la = .5

Building cost c(d) = (n− d)ca ca = 2.0

Also note that the effort, probability, and cost functions are convex. Although

this assumption is not required for any of our proofs we believe this is more realistic

in all three cases: As a learner tries to jump multiple skill levels it seems natural

that the probability of success would fall sharply and the effort required should rise

sharply, even with only a moderate gap in skill level. This reflects the intuition

that, for example, moving from a gap of 1 to a gap of 2 involves a larger change

in probability and effort than moving from a gap of 3 to a gap of 4. Similarly the
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cost of creating easier lessons should fall more quickly at first, because there is a big

difference between trying to teach something you barely know and something you

are more comfortable with, and then more slowly, because there is not too much of

a difference between teaching something relatively easy for you and something very

easy for you. Therefore in future simulations we will continue to assume the convexity

of these functions.

Contribution Visualization

The contribution in each time step is shown as a bar graph. The x axis represents

the contributor skill level. The blue bar above contributor skill s represents visually

the maximum profit course created by contributors at s, or [j, k]st . A course [j, k] is

drawn from [j− .5, k+ .5] on the graph to make clear which levels it includes. The red

line adjacent to the blue line represents the support of the given course, or S([j, k]st).

This support represents the set of levels from which learners are willing to pay to

enroll in course [j, k]st . If there is no blue bar for a given contributor skill level this

means all contributors at that skill level elect not to participate. As an example the

contribution at time zero is given below:
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Thus in the above contribution graph the blue bar drawn over s = 7 from .5 to 2.5

indicates that in the first round of contribution, all contributors with sc = 7 choose

to submit the course [j, k]70 = [1, 2]. This also shows that s∗0 = 6 because s = 6 is the

lowest skill level from which potential contributors elect to participate.

Learning Visualization

Alternated with these contribution plots are plots displaying the distribution of learn-

ers at each time step. In each learning plot:

• Red area indicates discouraged learners

• Green area indicates enrolled learners

• Blue area indicates browsing learners

The learning distribution at t = 2 is provided as an example:

Here we can see that there are a small number of discouraged learners, around 10,

at skill levels 0 and 1. There is a much larger number of enrolled learners, with

around 45 enrolled learners at skill 2. And there are even more browsing learners,

with L2(2) ≈ 80 browsing learners at skill level 2.
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4.4.3 Visualization Results

Alternating between contribution and learning graphs in each time step provides

a visualization for the evolution of the system. The evolution for our illustrative

example is shown below:
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After t = 3 there is no longer any contribution, and so learning continues with the

previously submitted courses.

Eventually all learners are either experts or discouraged, and the final distribution is

given below:
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There are two key patterns which consistently result from the independent course

mechanism:

• There is a lot of redundancy, especially in the initial round of contribution.

Because most learners start out at the extreme novice end of the spectrum

and the courses are delivered randomly, all contributors seek to make courses

tailored for these novices in accordance with theorem 4.2. This is inefficient

in the sense that redundant content does not directly enhance learning. The

effect of this redundancy in the first round of contribution is made even more

significant due to the fact that more than half of all courses submitted were

submitted in the first time step.

• After many time steps there is a large population of learners at intermediate skill

levels (here s = 3, 4, 5), yet contributors do not create more advanced courses.

Because of the random course delivery, once there is already a large number of

courses on the platform a newly created course will be delivered to only a small

fraction of the learner population in each time step. This heavily reduces the

expected revenue and thus incentive of contributors to create advanced courses,

and leads to a lack of these more difficult courses.
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While the distribution of course creation depends heavily on the choice of param-

eters, there are some cases where the contribution outcomes are even less desirable

from a learning standpoint. While we have proven that all contributors target novices

in the first round of contribution, these created courses do not necessarily start at

level 1, the easiest level. For example we see below that contributors under these

parameters choose to start their courses at level 2:

Parameter Value

ea 1.5

pa 1.5

ua 0.9

La 0.1

ca 2.0

This leads to inefficient learning outcomes because the large population of learners

at s = 0 must attempt the first lesson at k = 2, which will cause the learners to have

a higher rate of failure and therefore a higher rate of quitting and discouragement.

Thus while this mechanism does achieve partial learning there are some major

drawbacks. Firstly we are guaranteed that all contributors will create courses targeted

towards novices in the first round of contribution, which initially floods the platform

with novice courses. Secondly courses at [j, k] may include in their support learners

at s < j − 1. This causes those learners to have to jump a bigger gap when first

enrolling, and so causes a higher failure rate. Thirdly and most prominently, because

courses are delivered randomly and so contributors are unable to specifically target
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advanced students, there can be a complete lack of advanced courses. This causes

all learners to stall at an intermediate skill level and prevents them from reaching

mastery.

5 Ordered Lesson Mechanism

5.1 Overview

We now present an alternative mechanism which we term the ordered lesson mecha-

nism. This mechanism is inspired by the examples of online and offline non-crowdsourced

educational settings outlined in section 2, in which content is presented in a clear or-

der of difficulty. The salient features in this mechanism are a reduction in the size

of each crowdsourced course and an ordering of those courses for better delivery to

learners.

Formally this mechanism features two important differences from that of indepen-

dent courses:

• Firstly, no contributor is permitted to create a course consisting of greater

than one lesson. To enforce this we can imagine that the platform requires

contributors to enter a single difficulty when submitting a piece of content and

possibly even caps the maximum size or length of a submitted course.

• Secondly, a browsing learner will not get a random lesson from among the

total set of freestanding lessons on the platform, but will instead be delivered a

random lesson from among the set of lessons at the nearest difficulty above that

browser’s skill level. Specifically a browsing learner at level s will be delivered

a random lesson at s + 1 if at least one lesson at s + 1 exists. If there are no

52



lessons at s + 1 the learner will be delivered a lesson from s + 2 instead, or if

none exist there, s + 3, etc. If there are no lessons at any level t > s then the

learner will pay the browsing cost b and view no lesson at all (which is the same

outcome as if the learner were delivered a course below the learner’s skill level).

In all other respects the model is the same. To clarify this means once a lesson is

delivered to a learner the learner will behave as if it were delivered a course consisting

of a single lesson. That is the learner can still choose to enroll or not enroll based on

whether EU [s, (s+1, s+1)] ≥ F , where F is the fee associated with that freestanding

lesson set by the contributor of the lesson.

As with the independent course mechanism this represents a simplification of

the effect the presentation and ordering of content has on the lessons browsed by

a learner. There are two different intuitive explanations for how such a mechanism

could be implemented on a real platform:

One explanation is that the the site owner really does know the skill level of each

learner to deliver a lesson from the next highest difficulty. For example we can imagine

the website requests a survey or quiz from learners initially to gain knowledge of their

starting skill level. Then the website could track the progress of learners through

lessons to maintain knowledge of each learner’s current skill level, recommending the

next lesson as the learner progresses.

A second explanation is that the operator of the website does not actually know

the skill of each learner. Instead the platform aggregates the content by clearly laying

out a spectrum of lessons along difficulty levels. In this case the learners, knowing

their own skill level, would choose to browse a lesson at the next highest difficulty level

because such lessons would be optimal to enroll in from the standpoint of expected

utility. This requires the additional constraint that EU(s, [s+1, s+1]) > EU(s, [k, k])
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for any k > s+ 1. This is reasonable however because intuitively people tend to learn

most effectively when progressing through content of escalating difficulty gradually

rather than “skipping” ahead to more difficult content. In this case the mechanism

still makes sense even though the platform is not actually specifically presenting the

next lesson.

We will show that this mechanism has a desirable theoretical property that allo-

cates contribution in an efficient way, in that more skilled contributors make more

advanced lessons in every round of contribution. Furthermore this mechanism is far

better at delivering advanced lessons to learners, because these lessons can be tar-

geted towards the relevant learners. This allows for much better learning outcomes

than the independent course model, as we show through simulation.

5.2 Theoretical setup

We will reuse much of the same theoretical framework and notation from section 4

for analyzing contribution equilibrium under the ordered lesson mechanism. Instead

of evaluating possible courses [j, k] contributors will consider courses composed of a

single freestanding lesson. For ease of notation we will denote a freestanding lesson

as [j], but it should be understood that the learners will evaluate and learn from this

as if it were the course [j, j].

In the independent course mechanism the revenue of a given course [j, k] only de-

pended on Kt, the number of existing courses, and Ct, the total number of contributed

courses at time t. In the ordered lesson model however the revenue is dependent on

the distribution of Ct and Kt across lessons.

Therefore let Kj
t and Cj

t represent the total existing and current equilibrium con-

tribution of freestanding lessons at level [j]. As the system evolves under equilibrium
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Kj
t will represent the total number of previously submitted lessons at [j]:

Kj
t =

t−1∑
s=0

Cj
s

The notion of support for a given lesson will also change under this mechanism.

In the independent course mechanism any learner could potentially be delivered a

given course, so any learner willing to pay for that course was considered part of the

support. In this mechanism, however, a learner at s will not be delivered [s + 2] if

there are lessons at s + 1. This means that even though the learner at s may have

been willing to pay for [s + 2], that learner is no longer part of the support in the

sense that there is no expected revenue to be made by lesson [s+ 2] from learners at

s, who will never even be presented with the course.

We will then redefine support in the context, yielding:

S([j], F ) =
⋃

s such that

EU(s, [j, j]) ≥ F and Ci
t = Ki

t = 0 for i ∈ [s+ 1, . . . j − 1]

This indicates that the support consists of learners who are both willing to pay for

lesson [j] and will actually be delivered [j]. The ordered lesson mechanism also means

a slight modification to the revenue formula in terms of the support:

Rt([j], F ) =
1

Kj
t + Cj

t

∑
s∈S([j,k],F )

Lt(s) ∗ F

This is because all of the learners in the support for lesson [j] will be matched to

lessons at [j], in which case the revenue will only be divided between lessons at that

difficulty level.
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It is still the case that there is some optimal fee F ∗t which maximizes the revenue

from [j].

F ∗t ([j]) = arg max
F

Rt([j], F )

This yields revenue directly in terms of a lesson assuming contributors will charge the

optimal price

Rt([j]) = Rt([j], F
∗
t ([j]))

This yields a similar profit function:

πt(s, [j]) = Rt([j])− c(s, j)

However because the revenue from contributing at a given level is so dependent on

the number of other contributors also creating at that level, the equilibrium for this

mechanism takes a different form than than that of the independent course mecha-

nism. Under the course mechanism, given all contributors at C(s) contribute, there

was some single course [j, k]st which maximized profit. Even if there was somehow an

exact tie between two courses [j, k] and [j′, k′] the contributors would be indifferent

between them and the profits of the contributors would not depend on how many

chose [j, k] versus [j′, k′].

In the ordered lesson model, the profits from [j] depend on how many other

contributors are creating at [j]. This means that while [j] might seem to yield the

highest profit if there were only one contributor at s, once all contributors at s decide

to create lessons at [j] this may bring the profit below that of some other level [j′]. In

this case at equilibrium contributors of skill s must contribute across both [j] and [j′],

but only if the proportions of contribution to these levels are such that the expected

profits are the same.
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To capture these details let Cj
t (s) be the number of contributors of skill s who

contribute to difficulty level j at time t. Note that this is consistent with our other

notation whether we sum over difficulty levels j or contributor skill level s:

∑
j

Cj
t (s) = Ct(s)

As introduced section 4 Ct(s) represents all contributors at skill s who contribute at

time t. ∑
s

Cj
t (s) = Cj

t

As stated earlier this represents all contributions to level [j] at time t.

Next let Js
t be the set of difficulty levels contributors at s contribute to, defined

as:

Js
t =

⋃
j such that Cj

t (s) > 0

This Js
t could consist of multiple levels, one level, or be empty, in the case that

contributors from s do not contribute at all.

5.3 Equilibrium Results

We can characterize the free-entry Nash Equilibrium in terms of this contribution

range Js
t .

Definition 5.1: Under the ordered lesson mechanism, the contribution Nash Equilib-

rium is characterized by Js
t such that:

• If Js
t is non-empty, there must exist some π∗t (s) ≥ 0 such that

∀j ∈ Js
t , πt(s, [j]) = π∗t (s) , and ∀j′ /∈ Js

t , πt(s, [j
′]) ≤ π∗t (s)

57



• If Js
t is empty then πt(s, [j]) ≤ 0 for all j ∈ [1, n].

This emphasizes that for any level in Js
t contributors must be making non-negative

profit, and that profit must be greater than the profit from contributing to some level

outside of Js
t . Furthermore if Js

t contains more than one level, then the profit from

contributing to any j ∈ Js
t must be the same, or the equilibrium would not be stable

because contributors would prefer to switch from contributing to some j ∈ J to

another j′ ∈ J with higher profits.

We have defined our notation such that Theorem 4.1 holds identically for this

mechanism as well under a virtually identical proof. This theorem is restated below

for the ordered lesson mechanism:

Theorem 4.1b: Under the ordered lesson mechanism, if there is any contribution

at all, there will be some threshold skill level s∗ such that:

• Agents with s < s∗t will not contribute: π∗t (s) < 0, Ct(s) = 0, J t
s = ∅

• Agents with s = s∗t , will contribute (probabilistically): π∗t (s∗t ) ≥ 0, 0 < Ct(s
∗
t ) ≤

C(s∗t ), |Js∗t
t | ≥ 1

• Agents with skill s > s∗t will all contribute: π∗t (s) > 0, Ct(s) = C(s), |J t
s| ≥ 1

• More skilled agents will generate higher profits: π∗t (s∗t ) < π∗t (s∗t + 1) < · · · <

π∗t (n)

Therefore just as in the independent course mechanism there will be some thresh-

old skill level s∗ below which no potential contributors contribute and above which

all contributors contribute. Furthermore profits will increase with the skill level of

the contributor.
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5.3.1 Distribution of Content

One advantage of the ordered lesson model is that we are guaranteed a desirable re-

lationship between s and Js
t under the general assumptions of our model. Specifically

the following theorem shows that more skilled contributors will always tend to create

more difficult content:

Theorem 5.1: Let r,s be two differing skill levels such that r < s, Ct(r) > 0, and thus

Ct(s) > 0. Then letting jmax(r) = max Jr
t and jmin(s) = min Js

t , jmax(r) ≤ jmin(s)

Proof: Let jmin(s) = min Js
t and jmax(s) = max Js

t . For contradiction, assume

jmax(r) > jmin(s). Then because s > r we know the agent at skill s can make any

lesson in Jr
t including jmax(r). Because jmin(s) ∈ Js

t :

π(s, [jmin(s)]) ≥ π(s, [jmax(r)])

Thus R([jmax(s)])− c(s, [jmax(s)]) ≥ R([jmin(r)])− c(s, [jmin(r))]) which implies:

c(s, [jmin(r)])− c(s, [jmax(s)]) ≥ R([jmin(r)])−R([jmax(s)])

But the agent at r weakly prefers jmax(r) to jmin(s), implying

R([jmin(r)])− c(r, [jmin(r))]) ≥ R([jmax(s)])− c(r, [jmax(s)]) and therefore:

R([jmin(r)])−R([jmax(s)]) ≥ c(r, [jmin(r))])− c(r, [jmax(s)])

Combining these two statements yields:

c(r, [jmin(r))])−c(r, [jmax(s)]) ≤ R([jmin(r)])−R([jmax(s)]) ≤ c(s, [jmin(r)])−c(s, [jmax(s)])

and therefore

c(r, [jmin(r))])− c(r, [jmax(s)]) ≤ c(s, [jmin(r)])− c(s, [jmax(s)])

But contradicts the fact that:

c(r, [jmin(r)])− c(r, [jmax(s)]) > c(s, [jmin(r)])− c(s, [jmax(s)])

because the cost function c(d) is strictly decreasing in d, meaning that the difference in

cost between the two lessons must be less for s than for r, given that s is more skilled.
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This theorem guarantees that there will never be an instance of a more skilled

contributor making a less difficult course than a less skilled contributor under the

ordered lesson mechanism. This is advantageous for two reasons: Although this

paper does not study quality directly, it is intuitive that more skilled contributors are

better suited to make more advanced content and less skilled contributors are better

suited to make less difficult content, so this outcome seems more efficient in that

sense and more likely to lead to high quality contributions. Secondly, as supported in

the following section with simulation, this property is associated with contribution of

content distributed over a wide range of difficulty levels, including advanced content.

Therefore instead of all contributors targeting novices in the first round of con-

tribution, there is evidence that under this mechanism contributions are more likely

to be spread out over various skill levels in all rounds, with more skilled contributors

creating more difficult lessons.

6 Mechanism Comparison

6.1 Ordered Lesson Mechanism Visualization

To illustrate the different patterns that are displayed in the ordered lesson mechanism

and contrast it to the independent course mechanism, we simulate the ordered lesson

mechanism with the same constants used in our visualization of the course mechanism.

For the contributor plots under the ordered lesson mechanism we plot Js
t over skill

level s. This means, for example, that a bar from .5 to 2.5 over s = 9 implies that

C1
t (9) > 0 and C2

t (9) > 0, or that some contributors at skill 9 create [1] while others

create [2] under equilibrium.
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The visualization for the ordered lesson mechanism is given below. Note in this

case there is never a body of enrolled learners because all courses consist of a single

lesson, and B0 is small enough that a learner will quit after a single failure of that

lesson.
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In time steps 6-10 there is no contribution, and learning continues with the existing

lessons:
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In time steps 11 and 12 there are two more rounds of non-zero contribution:
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After the first 11 time steps there is no longer contribution, but learning continues

with the existing courses:

Eventually all learners will become experts or discouraged. The final distribution of

learners under the ordered lesson mechanism is given below:
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The process and final result of the learning process is vastly different between the

two mechanisms, and we highlight the important differences in contribution patterns

under the two mechanisms:

• There is a different relationship between contributor skill and the difficulty of the

lessons created. This is best shown by comparing the first round of contribution

in each mechanism:

In accordance with Theorem 5.1 the more skilled contributors tend to make

more difficult lessons in the ordered lesson mechanism. Furthermore the ordered

lesson mechanism immediately provides lessons for students as skilled as s = 3,

represented by the highest red line in the first contribution graph, while the

course mechanism only targets enrollment from students as skilled as s = 1.
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This demonstrates that in the course mechanism all contributors rush to target

novices initially, while in the ordered course mechanism skilled contributors are

induced to target more skilled students from the very beginning.

• Most importantly for affecting the final learning distribution the ordered lesson

mechanism incentivizes the contribution of many more advanced lessons than

the independent course mechanism. The final distributions under the two mech-

anisms are presented side by side for comparison:

This advanced content allows learners to progress all the way to s = 10 or ex-

pert level, while those learners under the independent course mechanism cannot

progress past s = 5. The ordered lesson mechanism facilitates the creation of

advanced content because it allows contributors to create an advanced lesson

with the knowledge that it will be delivered to all advanced students. Under

the independent course mechanism contributors realize that only a small frac-

tion of advanced students will be delivered an advanced course, because there

are so many existing novice courses and courses are delivered randomly. This

reduces the incentive to contribute advanced courses under the independent

course mechanism.

We can also compare the first round contribution in the simulation case where the
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course mechanism led to courses which targeted novices but started at level 2. Here

the ordered lesson mechanism is shown on the left and the independent course mech-

anism on the right:

In this case the ordered lesson mechanism does deliver lessons starting at level 1,

meaning the novice learners will not have to attempt to jump from level 0 to level 2.

Furthermore it induces contribution of many more advanced lessons as well, allowing

skilled learners to immediately begin learning.

6.2 Repeated Simulation

The simulations above demonstrate in a few cases that the ordered lesson mechanism

can outperform the independent course mechanism and offer intuition for how that

might generalize. To more quantitatively investigate the comparison of mechanisms

under a wider range of circumstances we perform a series of random simulations under

both mechanisms to compare learning outcomes.

6.2.1 Methodology

To gain a better sample within the parameter space we perform 100 trials picking

parameters at random from certain ranges. The parameters were picked according to
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uniform distributions in the following ranges:

Description Functional form Simulation value

Effort function e(d) = dea ea = [1.0, 4.0]

Learning Success

Probability

p(d) = (1− d
n
)pa pa = [1.0, 4.0]

Learning Utility u(s) = sua ua = [.1, 1]

Initial Learner Dis-

tribution

L0(s) = e−s∗la la = [.05, 1.0]

Building cost c(d) = (n− d)ca ca = [1.0, 4.0]

These ranges were picked as moderate values which conformed to the desired

convexity and concavity behavior of each function.

6.2.2 Aggregate Learning Utility

To evaluate a given learning outcome let the metric aggregate learning utility be the

sum across the distribution of learners of the utility level of each learner as measured

by our utility function u. Measured at the final time f , after all learners have either

reached expert level or become discouraged, the final aggregate learning utility is

then:

AUf =
∑
i∈L

u(si,f )

One logical metric for determining how much learning took place in the system over

the evolution of the platform is to compare this final aggregate utility with the initial

aggregate utility and compute the difference:

∆AU = AUf − AU0 =
∑
i∈L

u(si,f )− u(si,0)
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Note that this is not the sum of experienced utility of all learners. Rather it is a

metric of the total learning that took place, in which we see how many skill levels

each learner has gained and weight that increase in skill level according to the utility

function u.

6.2.3 Random Simulation Results

Over the 100 trials, we calculated the following average aggregate utility changes

(rounded to nearest tenth):

Mechanism ∆AU Standard Deviation

Independent Course 4478.5 2127.6

Ordered Lesson 10584.0 4478.5

While the absolute magnitudes are meaningless because the utility function along

with all of the other parameters can be scaled arbitrarily, the relative magnitudes

demonstrate a sharp contrast between the two mechanisms. On average the ordered

lesson mechanism induced more than twice the gain in learning utility each trial when

compared to the independent course mechanism.

Furthermore, the large standard deviations indicate that these parameters did

generate wildly different system equilibriums. In some cases the change in aggregate

learning utility was an order of magnitude more than in others. This gives us con-

fidence that our parameters did explore an interesting and varied space, and we did

not simply randomly pick from among a space of very similar outcomes.

Because of the flexibility of this model and the vastness of the parameter space it

is difficult to sample over the entire space or generalize these results. However this

quantitative comparison in combination with the intuition and visualization in the

previous section gives us confidence that the ordered lesson mechanism does tend to

69



produce better learning outcomes, at least in the space of moderate parameters that

we find most realistic.

7 Discussion

We view this paper as having an exploratory role in furthering our understanding of

the recent phenomena of crowdsourced education systems. We believe it is the first to

employ the tools of game-theoretic analysis to model the incentives and contribution

behavior in these open education platforms.

To accomplish this we build a rich model which captures both the learning and con-

tribution mechanics in an evolving system of discrete time steps in which learners gain

mastery through discrete increases in skill level. We assume strategic but impatient

decision-making on the part of the contributors, and thus each round of contribution

is represented as a complete information simultaneous game with a free-entry Nash

Equilibrium. This allows us to model contribution as a series of simultaneous games

in which the payoffs evolve as the learners increase in skill.

To isolate the effect of content presentation we introduce two mechanisms by

which a website can deliver submitted content to potential learners. In our baseline

mechanism, representing a simplification of unorganized content, courses are delivered

randomly to learners. We prove that under this mechanism there will initially be

many courses targeted at novices, and further demonstrate other inefficiencies that

can result. These inefficiencies include courses which target learners more than 1 level

below the first lesson of the course, and most importantly a lack of advanced content,

which can have a large adverse effect on learning outcomes.

We introduce an alternative mechanism in which contributors create courses con-

sisting of a single lesson, and learners are presented the next most difficult lesson.
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We prove that this mechanism guarantees that more skilled contributors will create

more difficult lessons, which is desirable in the sense that more skilled contributors

are likely better suited to create more difficult content. Through simulation we argue

this mechanism tends to lead to a more complete distribution of content and there-

fore better learning outcomes, facilitating more than twice the gain in learning utility

under randomized simulations.

These theoretical results suggest that existing platforms may be able to positively

influence contributed content distribution and learning outcomes by encouraging con-

tributors to include information about difficulty and making that information more

transparent to browsing learners.

7.1 Future Work

We believe that these crowdsourced education platforms represent an exciting new

kind of peer to peer community, with many avenues of potential study. Theoretically

there are many ways to modify our model to study other phenomena associated with

peer to peer education. One interesting modification would be to make contribution

truly endogenous, such that any learner in the community could choose to be a

contributor. A more extensive possibility is to revisit the notion of content quality

and study the interplay between quality and difficulty.

Another realm of future work involves analyzing how more complex content orga-

nization and delivery mechanisms could be feasibly implemented. One challenge of

the ordered lesson mechanism is determining the difficulty of lessons if these difficul-

ties are not provided by the contributors or the contributors are not honest. It would

be interesting to enlist the crowd in creating these orderings, by having people submit

their own custom courses or tracks that they believe escalate in difficulty coherently.
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Or one could use an artificial intelligence algorithm to determine ordering based on

user behavior and failure rates.

As this new crowdsourced model of education continues to grow in popularity,

research on these systems will be important in determining how best to structure

platforms to incentivize desirable educational content and achieve optimal learning

outcomes.
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