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Abstract

In the last two decades, thanks to dramatic advances in artificial intelligence, computers

have approached or reached world-champion levels in a wide variety of strategic games,

including Checkers, Backgammon, and Chess. Such games have provided fertile ground for

developing and testing new algorithms in adversarial search, machine learning, and game

theory. Many games, such as Go and Poker, continue to challenge and drive a great deal of

research.

In this thesis, we focus on the game of Arimaa. Arimaa was invented in 2002 by the

computer engineer Omar Syed, with the goal of being both difficult for computers and fun

and easy for humans to play. So far, it has succeeded, and every year, human players have

defeated the top computer players in the annual “Arimaa Challenge” competition. With a

branching factor of 16000 possible moves per turn and many deep strategies that require

long-term foresight and judgment, Arimaa provides a challenging new domain in which to

test new algorithms and ideas.

The work presented here is the first major attempt to apply the tools of machine learning

to Arimaa, and makes two main contributions to the state-of-the-art in artificial intelligence

for this game. The first contribution is the development of a highly accurate expert move

predictor. Such a predictor can be used to prune moves from consideration, reducing the

effective branching factor and increasing the efficiency of search. The final system is capable

of predicting almost 90 percent of expert moves within only the top 5 percent of its choices,

and enables an improvement of more than 100 Elo rating points. The second contribution

is a comparison of several algorithms in reinforcement learning for learning a function to

evaluate the long-term value of a position. Using these algorithms, it is possible to au-

tomatically learn an evaluation function that comes close to the performance of a strong

hand-coded function, and the evidence presented shows that significant further improve-

ment is possible. In total, the work presented here demonstrates that machine learning can

be successful in Arimaa and lays a foundation for future innovation and research.
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Chapter 1

Introduction

Arimaa is a game that was invented in 2002 by Omar Syed, a computer engineer. According

to Syed, the original motivation for designing Arimaa came from the defeat of the world

champion Chess player, Gary Kasparov, in 1997 by IBM’s Deep Blue [31]. Syed wanted

to see if it was possible to design a game that could also be played using a Chess set that

would be as fun and interesting for human players, and yet be more difficult for computers.

The result was a fascinating new board game called Arimaa. By designing Arimaa, Syed

hoped to encourage new interest and research in artificial intelligence for strategic games

[31].

To this end, every year an event known as the “Arimaa Challenge” is held, in which

the current top computer program, running on common desktop hardware, plays a series of

matches against three different players chosen that year to “defend” the Challenge. Since the

beginning of the Challenge in 2004, human players have soundly defeated the top programs

in every match, with the exception of the most recent Challenge in 2010, where for the first

time the top program defeated one of the defending players, Patrick Dudek, in a match

with a score of 2-1 [28].

It appears there is still some distance to go to develop a computer program that can

stand against the best human players. This is not due to a lack of effort either, as the online

Arimaa community is fairly programmer-dense. Yet currently on the server at Arimaa.com,

the top computer programs appear to be around 300 Elo points weaker than the best

players.1And although the programs are steadily improving, due to the newness of the

game, the population of human players is still growing and improving as well. It is not

entirely clear how long human dominance in Arimaa will last, but for now, Arimaa joins

the increasingly small group of abstract strategy games that resist strong computer play.

1The Elo rating system is a common way to compare the relative skill levels of players in two player
games [11]. 300 Elo corresponds to a winning chance of around 85% under the Elo model.
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However, it is also true that many approaches have not been tried yet. As far as we

know, nobody has yet made a major effort to apply the wide range of tools in machine

learning to this difficult game. Therefore in this thesis, we investigate several machine-

learning algorithms for ranking moves and evaluating positions in Arimaa. Our goal is to

take the first step in exploring and applying these techniques, which we believe have great

potential for raising the level of computer play.

In the remainder of this chapter, we give an overview of the problem and our contribution.

We begin by explaining the rules of Arimaa in Section 1.1. In Section 1.2, we discuss the

properties that make Arimaa challenging. In the context of these properties, we describe

in Section 1.3 our approach and contribution to the field. Finally, in Section 1.4, we survey

the techniques currently being used by top programs and the alternatives that have been

tried so far.

In Chapter 2, we attack the problem of heuristic move ordering in Arimaa. We apply

an innovative method developed by Rémi Coulom [6] and later used also by Harrison [12]

to predict expert moves in Computer Go, and we achieve similar success with it in Arimaa.

Our resulting function is capable of high-quality move ordering and is good enough to be

used for direct pruning during a tree search. Indeed, we were able to use it to great success

in our own Arimaa program, Sharp, and as a result of this and other improvements, Sharp

recently won the 2011 Arimaa Computer Championship [30].

In Chapter 3, we turn to the problem of learning a strong evaluation function for Ari-

maa. We present a simple framework for evaluating board positions using weighted linear

combinations of features, and within that framework, we compare four different algorithms

for learning the appropriate feature weights. While none of the algorithms is quite able to

achieve the same level of performance as the hand-coded evaluation function we currently

use in our Arimaa-playing program, our best result comes close, and we believe that with

some improvements to the algorithms and the learning procedure, it should be possible to

match or surpass it.

1.1 Rules of Arimaa

Arimaa is a deterministic two-player abstract strategy game played on an 8 x 8 board. The

rows and columns on the board are labeled 1. . .8 and a. . .h, respectively, as shown in Figure

1.1. The two players are named Gold and Silver.
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1.1.1 Setup

Prior to normal play, Arimaa begins with a setup phase, where both players place their

pieces on an initially empty board. The players each begin with sixteen pieces of their

color: 1 Elephant, 1 Camel, 2 Horses, 2 Dogs, 2 Cats, and 8 Rabbits.

Both players may place their pieces in any desired arrangement within the two rows

closest to their side of the board. Gold places all gold pieces first, then Silver places all

silver pieces.

Figure 1.1: Example game position, just after the setup phase.

1.1.2 Play

Following the setup phase, play begins and the players alternately take turns, beginning

with Gold.

Movement

During a player’s turn, that player may make up to four steps. A step consists of selecting

a piece of one’s color and moving it to an empty adjacent square. Adjacent squares include

only the squares immediately left, right, forward, or backward. All pieces move the same

way, with one exception: rabbits may not move backward.
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Figure 1.2: A silver horse steps down, pulling a gold rabbit. A gold elephant pushes a silver
camel to the right.

Players may also use steps to push or pull their opponent’s pieces by using their own

pieces, as shown in Figure 1.2. A push consists of displacing an opposing piece to any

adjacent empty square, followed by moving a friendly piece into the square previously

occupied the opposing piece. A pull consists of moving a friendly piece into any adjacent

empty square, followed by moving an opposing piece into the square just vacated from any

square adjacent to the vacated square. In each case, if there are no adjacent empty squares,

then pushing or pulling is not possible. 2

Moreover, pieces are ordered by strength, and pieces may only push or pull pieces that are

strictly weaker than they are. From strongest to weakest, the order of strength is elephant,

camel, horse, dog, cat, rabbit.

Pushes and pulls count as two steps, since they involve moving both one’s own piece and

an opponent’s piece one step each. Pushing and pulling simultaneously with the same piece

is forbidden, but otherwise pushes and pulls can be made in any desired combination along

with regular steps, up to a limit of four steps per turn.

Capture

The squares c3, c6, f3, f6, are trap squares. Whenever a piece is on a trap square but is

not guarded by a player, it is captured and removed from the board. A piece or square is

2Note also that when pushing and pulling, the two pieces do not have move in the same direction. Any
adjacent empty square is legal.
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Figure 1.3: Examples of capturing and freezing.
Upper-left corner : If the gold elephant pushes the silver dog up or left, it captures the silver rabbit

on the trap at c6 because the dog was the only silver defender of that trap.
Upper-right corner : The silver horse on the f6 trap can capture the gold rabbit by stepping left or

right while pulling the gold rabbit north onto the trap.
Lower-left corner : The rabbit on a2 cannot move because it is frozen by the adjacent gold camel.
Lower-right corner : The g2 rabbit is not frozen by the gold dog because it is guarded by the silver

cat.

guarded or defended when there is a friendly adjacent piece, or defender.

The rule of capture is enforced continuously. In particular, it is enforced between steps

within the same turn, rather than just at the beginning or end of a turn. See Figure 1.3 for

examples.

Freezing

If a piece is adjacent to a stronger opposing piece and is not guarded, then it is frozen and

cannot move. That is, it cannot step, push, or pull, until the stronger opposing piece moves

away or is pushed or pulled away, or until a friendly piece moves adjacent. See Figure 1.3

for examples.
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Winning

A player scores a goal and wins the game when one of that player’s rabbits ends the turn

on the opponent’s back row, on the opposite side of the board. Alternatively, a player can

win by immobilization if the opponent is unable to make any legal move on their turn, or

by elimination if the all of the opponent’s rabbits are captured.

Repetition

Players must change the board position on their turn. This means they must make at least

one step, and may not make a sequence of steps that leaves the board unchanged. Addi-

tionally, players may not end their turn making a move that causes a third-time repetition,

where the same resulting board position with the same player to play next has occurred

twice before in the game.

1.1.3 An Example Position

Figure 1.4: Example game position, Gold to play.

In Figure 1.4, we show another example to further illustrate the game rules.

Currently, it is Gold’s turn, and Silver is threatening to capture the horse at g5. If Gold

does not do anything about it, then on the next turn, Silver can move his camel from g4 to

g5, pushing the gold horse to g6, and then move his camel from g5 to g6, pushing the gold
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horse into into the f6 trap. Since there are no other gold pieces guarding the f6 trap, the

gold horse would be captured. In total, this would also use all four steps of Silver’s turn.

Gold has a capture threat of his own: the gold camel on d4 can capture the silver horse

on c4 in by pushing it into the c3 trap. However, the camel is not immediately able to do

this, because it is frozen by the silver elephant on d5. Gold needs to spend one step first to

advance a rabbit from d2 to d3, guarding the camel and thereby unfreezing it and allowing

it then to push the horse. This accomplishes a capture in three steps.

A good move for Gold might be to capture the silver horse in this way, and then use the

fourth step of his turn to move the gold elephant from d6 to e6. This would prevent Silver

from capturing the g5 horse next turn, because the f6 trap would now have a gold defender,

namely the elephant now on e6. In standard Arimaa move notation, Gold’s move would be

Rd2n hc4s hc3x Md4w Ed6e.3

1.2 Why Is Arimaa Challenging?

Playing games has long been a topic of interest to computer AI research, and in the past few

decades, substantial progress has been made. Many games have been solved with explicit

optimal strategies found, including Checkers [26] and Go-moku [1]. Other games, such as

Chess, Backgammon, and Reversi, have not been solved, but top programs have surpassed

world-champion human players [17, 32, 5]. In still more games, such as Shogi and heads-up

limit Poker, computers are reaching or rapidly approaching champion-level play [21, 16].

Only a small number of classic games continue to resist expert-level computer play, including

Go, many other variants of Poker, and Bridge [22, 23, 3].

As a two-player adversarial game, Arimaa shares many properties with these previous

games. In particular, Arimaa is:

• Finite - Players have only a finite number of possible moves each turn. And since there

are a finite number of possible configurations of the 8x8 board, the rule prohibiting

three-fold repetition guarantees that eventually, any game must terminate.4

• Sequential - Players make moves alternately, rather than simultaneously.

• Perfect Information - Both players observe the complete game state, that is, the move

history, current board position, and the current player to move.

• Deterministic - Any move in a given state uniquely determines the subsequent state.

3See [29] for a description of the notation used to record positions and moves.



CHAPTER 1. INTRODUCTION 8

• Zero-Sum - Any winning outcome for one player is equally a losing outcome for the

other. Both players’ interests are exactly opposed.

Together, these properties make Arimaa trivial from a game-theoretic perspective. A

standard minimax argument proves that one player must have a deterministic winning

strategy, since there are no draws. However, this by no means indicates that Arimaa is easy

to play well. It may easily be infeasible to find the optimal strategy because the number

of states in the game might be extremely large. Therefore, we consider the state-space and

game-tree complexity of Arimaa next.

1.2.1 State-Space Complexity

The state-space complexity of a game is defined as the number of game states that can be

reached through legal play.5

The state-space complexity of Arimaa is approximately 1043 [8]. Since Arimaa can be

played using a standard Chess set, it is not surprising that this is comparable to that of

Chess, which has been estimated to be around 1047 [34]. It is slightly less than in Chess,

because there is no possibility for piece promotion in Arimaa.

A state-space complexity of 1043 is actually surprisingly small in that most popular

games with state-space complexity up to this size have seen at least world-class computer

play, including Chess itself. Those that continue to be challenging tend to have much larger

state spaces, most notably Go, with a state space complexity of 10172 [1]. Therefore, we

turn to the game-tree complexity next for an explanation of Arimaa’s difficulty.

1.2.2 Game-Tree Complexity

The game-tree complexity of a game is defined to be the number of nodes in shallowest full-

width game tree that proves the value of the initial position. For most popular games, this

is infeasible to compute, so it is very roughly approximated by taking the average branching

factor to the power of the length of the average game in practice.

4This is not actually a useful practical bound, since the number of configurations is huge. One can even
construct positions that force games of ridiculous length, ending only due to prohibition of repetition. But
in practice, Arimaa games do not seem to exhibit this problem! Despite the lack of a “fifty move rule” as
in Chess, serious problems of repetition have occurred in almost none of the thousands of games played by
people since Arimaa was invented.

5Depending on one’s definitions, the full game state might include not just the board position and the
side to move, but also the move history, because differences in the move history could affect what moves are
legal later due to prohibition of third-time repetitions. Usually, when computing the state-space complexity
of a board game, we ignore the move history.
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In Arimaa, the per-turn branching factor is extremely large, due to the combinatorial

possibilities produced by having four steps per turn. Given a board position in Arimaa, we

define the number of legal moves for a player to be all legal combinations of up to four steps

by that player (possibly including pushes and pulls), except that we identify moves as the

same if they produce the same resulting board position.

To estimate the average branching factor and average length of a game, we computed the

average of both over the collection of all rated games played on the server at Arimaa.com

[28] between January 2005 and December 2010 between players with a rating of at least

1800, ending in goal, elimination, or immobilization (and not by time or resignation). This

was a total of 14115 games.

On average there were about 16064 distinct legal moves per turn, and the average game

length was about 92 turns, or 41 complete turn alternations. This is in reasonably close

agreement with earlier studies on the branching factor of Arimaa [13]. We note that this

disagrees with the much larger branching factor of 276386 computed by Christ-Jan Cox in

[8]. This is because Cox considers different sequences of steps that lead to the same board

position to be distinct moves. In general, many of the possible permutations of the steps in

a given move will be legal and will produce the same outcome, giving a substantially higher

number if counted separately.

Since each player may arrange their pieces in the two rows on their side of the board in

any desired fashion during the setup phase, we multiply by the number of possible setups

for each player when computing the game-tree complexity. There are a total of 64864800

possible setups for each player, although we may reduce the number by a factor of 2 for the

first player due to symmetry. This gives a game tree complexity of approximately:

(648648002/2) ∗ 1606492 ≈ 1.8 ∗ 10402

The enormous branching factor of about 16000 and the game-tree complexity of about

10402 give a reason for Arimaa’s computational difficulty, for they are substantially larger

than in most other popular games. For instance, the average branching factor and game-

tree complexity in chess have been estimated to be around 35 and 10123, respectively [1].

In fact, the values for Arimaa are most comparable to those for Go, which has a branching

factor of around 250 and a game-tree complexity of around 10360 [1]. While the branching

factor of Go is smaller than Arimaa, Go games tend to last much longer, giving a game-tree

complexity nearly as large. These properties are summarized in Table 1.1.
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Game State Space Branching Factor Avg. Length Game-Tree Complexity

Chess 1047 35 80 10123

Go 10172 250 150 10360

Arimaa 1043 16064 92 10402

Table 1.1: Game complexities for Chess, Go, and Arimaa

1.2.3 The Branching Factor in Practice

The large branching factor in Arimaa is a serious impediment to game-tree search. Indeed,

under standard tournament time controls of 1-2 minutes per turn, current programs are

incapable of searching typical positions to deeper than 3 turns at full width. That is, any

branch of the search ends after player 1 makes a move, then player 2 responds, then player

1 responds. Without special extensions for captures and other critical moves, this is barely

enough to see some of the common tactics in the game.

Although human players are also strongly affected by the branching factor, they are able

to compensate by recognizing good patterns of piece movements. Moreover, human players

are much more capable of decomposing the problem by identifying the most important

subgoals. The top human players are so effective at identifying the best moves that they

are able to consistently play well even when considering only a bare handful of moves each

turn (even as few as 2-3), out of the tens of thousands possible. As a result, the large

branching factor in Arimaa favors humans over computers.

1.2.4 Strategic Properties

In addition to a huge branching factor, empirically, Arimaa also exhibits some specific

strategic properties that appear to benefit human players over computer players, compared

to other Chess-like games.

Most notably, capturing pieces and winning material is somewhat more difficult in Ari-

maa than in Chess. In Arimaa, a piece on one of the four trap squares is only captured when

there are no friendly adjacent pieces, or defenders. This is a moderately stringent condition,

since the opponent can often just add more defenders or just retreat the threatened piece

away from the trap. Moreover, the opponent can make a trap safe simply by placing his

elephant adjacent to it. Since no piece is stronger than the elephant, it cannot be pushed or

pulled away, so no piece can be captured in that trap until the elephant leaves on its own.
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Therefore, it is necessary to make multiple threats at the same time, which usually requires

first that a strong positional advantage to be obtained over many turns. This increases the

importance of long-term strategy over short-term tactics.

Additionally, since pieces of equal strength cannot push or pull one another, they can

deadlock in local fights. Such deadlocks frequently make it necessary to shift the global

distribution of one’s pieces to make progress, which again requires significant long-term

planning and judgment.

Altogether, this benefits human players over computers, since humans are often better

at making plans over long time horizons in large spaces and learning to evaluate uncertain

tradeoffs. And while Arimaa positions can easily be highly complicated and combinatorial,

overall the greater difficulty of capture and lessened importance of short-term combinations

make it slightly easier for experienced human players to avoid tactical mistakes.

It is worth noting cases where these observations fail in Arimaa, such as in many

endgames. Once numerous pieces have been exchanged and the board opens up, Arimaa

play usually becomes extremely wild and sharp due to multiple threats to score goal on

either side and a relative lack of pieces with which to defend traps. In fact, this is one area

of the game where current Arimaa programs frequently outperform the top human players,

unlike the midgame and opening.

1.2.5 Conclusion

Altogether, Arimaa does appear to be a challenging domain. The massive branching factor

and the long time-period over which moves exert their strategic effects make it difficult to

design a strong computer agent. Nonetheless, progress is still being made. Especially in

the last several years, the top computer programs have been improving significantly, with a

gain of a couple hundred rating points in total on the server at Arimaa.com [28]. While top

human players continue to be rated another several hundred rating points higher and are

still improving, it is our belief that steady continued innovations will be sufficient to bridge

the gap in the next one or two decades. We believe that such innovations will include the

types of learning algorithms described in this thesis, as well as incremental improvements

in existing algorithms for evaluation and search.
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1.3 Our Contribution

The two most significant challenges facing strong computer play in Arimaa are the massive

branching factor and the difficulty of accurate positional evaluation. We are the first to

make a major effort to apply the tools of machine learning to solve these problems, and

our primary contribution is an investigation and comparison of a variety of algorithms for

doing so. Our goal is to show how learning can be highly effective in Arimaa and to lay the

groundwork for future innovation and research.

In Chapter 2, we describe our investigation into the problem of learning a good move

ordering function for Arimaa. With tens of thousands of legal moves per position, any cur-

rent method of search will be rapidly overwhelmed by the possibilities, making it important

to find better ways to order, select, and prune moves. We apply an innovative method first

used by Rémi Coulom [6] in computer Go for learning to predict expert moves in games.

Our resulting function is capable of ordering the legal moves in a position in Arimaa well

enough such that almost 90 percent of the time, the actual move played by the expert

player in that position is within the top 5 percent of the ordering. We then demonstrate

that our ordering function is also effective at combating the branching factor in practice by

using it to prune moves in our Arimaa program. Even at levels of pruning as extreme as

95 percent, the strength of our program does not decline—indeed, it increases by over 100

Elo,6and using this function for pruning, our program recently won the 2011 Arimaa Com-

puter Championship [30]. In this way, we demonstrate how a high-quality move ordering

can be learned in Arimaa and then directly applied to increase the effectiveness of search.

In Chapter 3, we attack the challenge of accurate positional evaluation in Arimaa by

applying and comparing four different algorithms for learning evaluation functions. These

algorithms include the well-known TD(λ) algorithm and a variant of it developed by Baxter,

Tridgell, and Weaver [2], as well as two algorithms recently developed in 2009 by Veness,

Silver, Uther, and Blair [35] that learn directly using the results of a minimax or alpha-beta

search. We show that beginning only from material weights, it is possible to automatically

learn an evaluation function that comes fairly close to the performance of the hand-coded

evaluation we use in our Arimaa program, Sharp. While we unable to match the perfor-

mance of Sharp, our best learned agent comes close, winning 74 out of 200 games when

searching to an equal depth. Moreover, we give evidence that substantial improvements are

possible, potentially with only minor changes and improvements to our existing methods.

6Under the Elo rating model [11], 100 Elo corresponds to approximately to a winning chance of around
64%, and while not large, is a substantial gain.
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Overall, our contribution is one that opens several new avenues for research in Arimaa.

Our investigations push forward on the state-of-the-art in this new game and lay groundwork

for the development of new algorithms and techniques in the future. We believe that

techniques like the ones investigated here will play a major role in ultimate triumph of

computer play in Arimaa.

More broadly, we believe Arimaa has the potential to serve as a testbed for the devel-

opment of new game-playing and learning algorithms that perform well in the presence of

a high branching factor. As a tactical game in which deep search is almost impossible, and

yet one in which long-term evaluation is critical, Arimaa provides a unique and challenging

domain. There is substantial room for improvement on our results, and such improvements

may have the potential to uncover new ideas in search and evaluation.

1.4 Current Arimaa Programs

We give a survey of a few of the current techniques used by top computer Arimaa programs,

as well as some of the alternatives that have been tried.

Alpha-beta Search

Despite the difficulties with the large branching factor, all of the current best Arimaa

programs use iterative-deepening depth-limited alpha-beta search at their core, although they

incorporate varying degrees of additional pruning and other search enhancements [36, 9, 8].

Overall, this makes them very similar in structure to Chess programs.

Briefly, in alpha-beta search, one searches the game tree in a depth-first manner and

computes the minimax value of each node, while also tracking lower (alpha) and upper

(beta) bounds on the values of subtrees and pruning whenever a subtree provably cannot

affect the minimax value of the root node. Since it is impossible to search the entire

game tree, one imposes a depth limit, where one terminates the recursion and applies a

heuristic evaluation function to estimate the minimax value of the position. Additionally

by iterative-deepening, where one iteratively searches with an increasing depth limit until

some time limit is exceeded, one can also search for a specified amount of time rather than

to a fixed depth. To gain better alpha-beta pruning, a heuristic move-ordering function is

applied to sort the moves at each node in order of likely quality [24].

Evaluation functions for Arimaa can be very complex. Generally, they are based on

material advantage (which player has more/stronger pieces), but take into account a wide
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variety of positional features, such as control of traps, advancement of pieces, goal threats,

and various identified strategic configurations in Arimaa known as blockades, hostages, and

frames (see Appendix B).

Step-based Search

In Arimaa, due to the fact that multiple steps occur in a turn, there is a nontrivial choice

of how to perform a search. One can view Arimaa in a turn-based fashion, as we have so

far, where there are thousands of legal moves per turn composed of different combinations

of steps. But one can also view Arimaa in a step-based fashion, where there are only twenty

to forty legal “moves” per turn, namely the individual steps, pushes, and pulls, and where

the turn switches only every four “moves” of the game.

Although these two views are equivalent from a game-theoretic perspective, they have

practical differences for search. For instance, it can be faster in a search to generate and

handle lists of twenty to thirty moves in a step-based search, rather than lists of thousands

of moves. On the other hand, heuristic move ordering can sometimes be less effective in

a step-based search. This is because even when a move is good, making only part of the

steps of the move or making different steps at the end of the move could be very bad, and

a step-based recursion forces one to search moves together that share their initial steps.

Most strong Arimaa programs use some variant of the step-based search [36, 9]. Em-

pirically, the speedup afforded by step-based search seems to outweigh the disadvantages

in many cases. Moreover, it can enable more effective iterative deepening. For instance, if

there is not enough time to search 3 turns (12 steps) deep, but there is excess time after

searching 2 turns (8 steps) deep, it is often possible to do an intermediate search 9 or 10

steps deep, gaining a better evaluation than otherwise possible.

Hash Tables

In Arimaa, like in many games, many different sequences of moves can lead to the same

position. In Arimaa, this even occurs with different permutations of steps within a single

turn. By caching results in a hash table to avoid multiple searches of these repeated po-

sitions, one can achieve dramatic improvements in speed. Other data can also be cached

such as data about best moves in each subtree, which can be used to dynamically improve

the move ordering [19].
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Quiescence Search

Depth-limited alpha-beta search frequently suffers from the horizon effect, where threats

beyond the depth limit are ignored by the search, leading to very poor results. This fre-

quently manifests in Arimaa when a program is faced with the inevitable capture of a strong

piece, such as a horse. It will often respond by placing a weak piece as a defender next to

the relevant trap for the opponent to capture for free, simply because that delays the loss

of the horse one turn beyond the depth limit where the search can see it. In this way, the

horizon effect can cause a program to meaninglessly sacrifice pieces.

Quiescence search attempts to mitigate this problem by extending the search beyond the

depth limit when it appears likely that a position will be misevaluated [19]. For instance, if

pieces remain capturable when the depth limit is reached, a quiescence search might extend

the search to include additional capturing or defending moves for that piece, so that the

evaluation function can return a more accurate result.

Tree-Based Capture and Goal Detection

In Arimaa, due to the combinatorial possibilities of having four steps per turn, it is nontrivial

even to determine whether a piece can be captured or whether a rabbit can reach goal and

win the game on the current turn. Recursive search is costly and undesirable. Therefore,

most strong Arimaa programs use a decision tree generated by backwards induction to

answer such questions. Such decision trees can be applied very quickly and can allow

certain tactics to be discovered a full four steps earlier in the search [9].

1.4.1 Other Approaches

Various approaches other than alpha-beta search have been tried for Arimaa, although

generally with less success.

Monte-Carlo Tree Search

Recently, Kozelek [18] and Miller [20] both independently attempted to apply Monte-Carlo

tree search (MCTS) to Arimaa, a recent search paradigm that has resulted in major break-

throughs in computer Go [10]. In Monte-Carlo tree search, a game tree is expanded in

memory by repeated playouts from the root node. In each playout, moves are chosen at

each node according to a tree policy that favors moves that have previously performed the

best (exploitation), but chooses other moves at least some of the time (exploration). When
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a playout reaches the end of the tree, it is played pseudorandomly until a terminal position

is reached and the result, such as a win or loss, is used to update the statistics of the nodes

involved. High-performing leaves of the tree are expanded periodically, so that the tree

grows asymmetrically with strong bias towards the best moves.

Unfortunately, random playout turns out to be a poor way to evaluate positions in

Arimaa, even to the point of valuing an extra rabbit more than the elephant, because the

extra rabbit better improves the chances of randomly reaching the goal [18]! Because of

this, a straightforward implementation of MCTS is barely better than uniform random play

[20]. Kozelek attempted to solve this by using only a short random playout followed by a

deterministic, traditional evaluation function, but even so, the resulting agent was relatively

weak [18].

Our own observation is that Arimaa in general seems poorly suited to random playout.

There are a large number of moves in Arimaa that damage one’s own position greatly, such

as sacrificing one’s own pieces in traps or opening paths for opposing rabbits to reach goal.

These moves add a lot of noise and there is enough variety that it is extremely challenging to

classify and prune them. Moreover, it is frequently the case that maintaining one’s position

requires a piece not to move. A simple example is that an elephant may not want to move

because it is guarding a trap. This means that Arimaa positions are somewhat “unstable” in

that random movement will rapidly destroy the strategic features of the position. Because

of this, we believe that MCTS-based methods are unlikely to succeed.

Planning and Selective Search

In another alternative approach, Trippen [33] investigated a pattern-matching and plan-

based method for performing extremely selective search. Rather than doing a traditional

full-width search, the resulting playing algorithm examines only a small handful of moves

(as few as 5!) in each position, which are generated according to positional analysis that

suggests possible long-term plans. As proof of concept, the Trippen demonstrated a simple

plan based around a certain type of long-term threat in the opening that is capable of

defeating several weaker Arimaa programs.

However, a drawback of the system is that it requires plans to be manually specified and

implemented. Moreover, the limited way in which the planning system was tested makes

it difficult to evaluate its potential. And given that many midgame and endgame positions

in Arimaa are intensely combinatorial and do seem to require broad tactical search, it is

probable that this type of system could only be used as a component of a more general

playing algorithm.
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1.4.2 Conclusion

Unfortunately, barring a major breakthrough, we believe that the alpha-beta will continue

to be the most effective general method of search in Arimaa. While the high branching

factor is problematic for alpha-beta search, it is a similar problem for most other search

algorithms. Moreover, although obtaining an evaluation function capable of accurate long-

term evaluation is difficult, the current poor performance of methods involving playout

greatly limits the alternatives.



Chapter 2

Move Prediction and Ordering in Ari-

maa

In this chapter, we attack the problem of the immense branching factor in Arimaa by

investigating ways of learning a good move ordering. To do this, we draw from the very

closely related problem of expert move prediction.

In Section 2.1, we motivate and define the problem. In Section 2.2, we present a simple

feature-based learning approach to solve this problem. Following that, in Section 2.3, we

present two algorithms for learning to predict expert moves based on these features, the

first using a naive Bayesian model, and the second using a generalized Bradley-Terry model

[6]. In Section 2.4, we describe the actual features used. Finally, in Section 2.5, we present

our training method and experimental results.

2.1 The Problem of Move Ordering

It is well-known that in alpha-beta search, the order that moves are searched can drastically

affect the efficiency of the search. In particular, if at each node the optimal move is searched

first, then the minimax value of a game tree can be computed in O(bd/2) time, where b is

the branching factor and d is the depth of the tree, while if moves are searched in order from

worst-to-best, alpha-beta search degenerates down to full-width minimax search, running

in time O(bd) [24].

With a good move ordering heuristic, it may even be possible to prune beyond alpha-beta

by discarding moves that come late in the ordering. If the ordering heuristic is good enough,

these moves will very likely be worse than the earlier moves in the ordering and therefore

will not affect the minimax value. In this case, the increased search depth resulting from

18
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the time saved by discarding the moves can more than compensate for the occasional errors

introduced.

Move ordering is useful in other search paradigms as well, such as the more recent

family of Monte-Carlo tree search (MCTS) algorithms. Ordering heuristics have been used

successfully in computer Go for progressive widening of the MCTS tree, as well as for biasing

moves in the random component of the playout to enable more accurate estimation of the

value of positions [22].

How might we learn a good move ordering? Informally, given a board position and a set

of legal moves, the task is to find an ordering of the moves that maximizes the likelihood

that the best move is near the front of the ordering.

More formally, consider a finite two player deterministic zero-sum game.

• Let S be the state space of the game.

• Let M be the set of all possible moves that could be made at any point in the game.

• Let M(s) ⊂M be the set of legal moves in state s ∈ S.

• Let m∗(s) ∈M(s) be the optimal move in state s ∈ S.1

• Define an ordering function to be a function O : S ×M → R.

• Given an ordering function O, for any state s ∈ S, define the induced ordering >O,s

on the legal moves M(s) by m >O,s m
′ iff O(s,m) > O(s,m′).

Typically we are not interested in the particular values of O so much as we are interested

in the relative ordering of values, as given by the induced ordering.

The task is to learn the best possible ordering function according to some evaluation

metric. In general, we want to rank the optimal move as highly as possible, although the

specific metric is open to choice. For instance, we might be interested in the frequency that

the ordering ranks the optimal move first:

1

|S|
∑
s∈S

χ (∀m ∈M(s) s.t m 6= m∗(s), m∗(s) >O,s m)

Or we might be interested in the average rank of the optimal move:

1

|S|
∑
s∈S
|{m ∈M(s) : m <O,s m

∗(s)}|

1For notational simplicity, we assume the optimal move is unique.
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We may also be interested in how the ordering ranks “good” moves that aren’t necessarily

optimal, so that in cases where the optimal move isn’t ranked first, the top few moves might

still be strong. And of course, in practice we may also not care too much how it performs on

arbitrary game states, so long as it performs well on all the states that could “reasonably”

occur in real games.

Unfortunately, it is infeasible to find the optimal move m∗(s) in general. However, we

can substitute the moves played by expert human players in recorded games, since game

records are readily available. In Arimaa, expert human play will probably be stronger than

anything we can achieve with a static learned heuristic, and therefore from our point of

view, a fine replacement for optimal.

This transforms the problem into one of expert move prediction. Rather than learning an

ordering function that tries to rank the optimal move highly, we instead learn an ordering

function that tries to rank the expert move highly. Equivalently, we are trying to learn a

function that given a game state, will attempt to predict the move that the expert will play

and order the legal moves by how likely they are to be the expert move.

By attacking this problem, we hope to obtain a good move ordering function that ap-

proximates the optimal ordering, which will then allow us to prune much more effectively

within a game-tree search.

2.2 Using Features to Generalize

Since the number of state-move pairs is very large, the space of possible ordering functions

is also enormous, and it would be infeasible to learn such a function without some sort of

inductive bias or ability to generalize. After the first few moves in a game of Arimaa, it

is likely that every board position thereafter will be unique, having never occurred in any

other game yet played, so the ability to generalize between positions is essential.

However, a major challenge for generalization is that the space of game states is highly

discontinuous with respect to what moves are good and bad. For example, in Figure 2.1

we see that in one position, a particular move by Gold captures Silver’s camel, making it a

very good move, whereas with a slight change in the position, the move no longer captures,

and is in fact relatively pointless. The tiny change in the position has caused a drastic shift

in how good a move is.

Therefore, rather than train on the state-move pairs themselves, we instead map them

into a feature space composed of various identified features that correlate more strongly

with how good a move is likely to be than the raw position or move, such as whether a
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Figure 2.1: On the left, Gold can capture Silver’s camel on c6 in four steps by moving his elephant
from e6 to d7 and then pulling the c7 cat to d7, removing the only silver defender of the trap. On
the right, Silver’s b7 dog has been moved a single space. Gold’s move no longer captures the camel,
since the trap has one more defender.

move captures a piece, or how many resulting defenders will be next to a given trap square.

This allows us to distinguish cases where superficially similar moves behave very differently,

since the two moves can differ greatly in the resulting feature space. Moreover, this lets

us effectively generalize between different positions by allowing us to learn trends that are

exhibited across many positions, such as the fact that capturing opposing pieces is generally

good.

In our particular case, given a state s ∈ S, for each possible legal move m ∈ M(s), we

compute a binary feature vector v(s,m) ∈ {0, 1}n, where the value of any binary entry

indicates the presence or absence of a particular feature.

Then, given a training instance (s, w) where s is the game state and w indicates that

out of all the legal moves m1, ...,mj , mw was the one played by the expert, the input to the

learning algorithm is ((v1, ..., vj), w) where vk = v(s,mk). We take our ordering function O

to be of the form O(s,m) = h(v(s,m)) where h : {0, 1}n → R is an ordering function on

feature vectors, rather than state-move pairs.

Our task is now as follows: Given training instances (V1, w1), ..., (Vn, wn) where each Vj

is a list of feature vectors (vj1, ..., vjm), find a function h with induced ordering >h, such

that given any new list of feature vectors for moves in an Arimaa position, h orders or ranks
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the vector corresponding to the expert move as highly as possible.

2.3 Algorithms

We implemented and tested two learning algorithms for solving this task. We describe them

in the following sections.

2.3.1 Naive Bayes

As a baseline, we implemented a Naive Bayesian classifier, using a standard conditional

independence assumption to try to distinguish between expert and non-expert moves. Al-

though Naive Bayes is often an overly simplistic model, it is easy to implement and fast to

train, and is known in a variety of settings to give results that are surprisingly not too bad.

Consider the task of trying to learn a binary classification C : {0, 1}n → {0, 1}. Given

a feature vector v ∈ {0, 1}n with feature values f1(v) = a1, ..., fn(v) = an, the probability

that C(v) = 1 can be expanded using Bayes’s theorem:

P [C(v) = 1 | f1(v) = a1, ..., fn(v) = an]

=
P [C(v) = 1] P [f1(v) = a1, ..., fn(v) = an | C(v)=1]

P [f1(v) = a1, ..., fn(v) = an]

=
P [C(v) = 1] P [f1(v) = a1, ..., fn(v) = an | C(v)=1]∑1
c=0 P [C(v) = c] P [f1(v) = a1, ..., fn(v) = an | C(v) = c]

If we assume that all of the vj are conditionally independent given C(v), then we have:

=
P [C(v) = 1]

∏n
j=1 P [fj(v) = aj | C(v) = 1]∑1

c=0 P [C(v) = c]
∏n
j=1 P [fj(v) = aj | C(v) = c]

From here, all of the component probabilities can be estimated directly by counting their

frequency in the training data.

To apply this to our problem of expert move prediction, we classify C(v) = 1 if v is

the feature vector for an expert move and C(v) = 0 if not. For each training instance

((v1, ..., vj), w), we provide the expert move vector vw as an input with C(vw) = 1, and for

every other i 6= w, we provide vi as an input with C(vi) = 0.

Note that since we are interested in a move ordering rather than the classification of any

particular move alone, we do not use the Naive Bayes classifier the typical way. Typically,
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one receives a single vector v at a time, and returns the most probable class:

argmaxc P [C(v) = c | f1(v) = a1, ..., fn(v) = an]

In our case, we instead order all the possible legal moves in a game state by the independent

probability that they are in the class of expert moves. Our ordering function h is:

h(v) = P [C(v) = 1 | f1(v) = a1, ..., fn(v) = an]

2.3.2 Bradley-Terry Model

Our other learning algorithm for Arimaa is based on a generalized Bradley-Terry model, a

simple model for associating the skill level of agents in a competition with the probability

that any particular agent will win the competition [15].

Such a model was first used in computer Go by Coulom [6] to predict expert move

choices using the innovative idea of treating them as outcomes of competitions between

moves. Each move, viewed as a team whose members are its features, competes to be the

expert move. The moves with the best features are the most likely to “win” the competition

and be chosen by the expert. By optimizing the model over a set of expert game records,

we can learn how good or bad each feature is in order to predict moves in future games.

Model

In a Bradley-Terry model [15], each agent i ∈ [1, ..., N ] in a series of competitions is assigned

a certain strength γi ∈ (0,∞). In any single competition, there is exactly one winner, and

we model the probability that an agent wins so that each agent wins with probability

proportional to its strength. For instance, in a pairwise competition between two agents i

and j, the probability that i wins is:

P [i wins] =
γi

γi + γj

In a generalized Bradley-Terry model, we consider competitions between teams of agents as

well as between multiple teams at once. Given a team T ⊂ [1, ..., N ], we define the strength

of the team by:

γ(T ) =
∏
i∈T

γi

Then, in a competition between teams T1, ..., Tn, the probability that Tj wins is:

P [Tj wins] =
γ(Tj)∑n
i=1 γ(Ti)
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We apply this model to the problem of expert move prediction by considering each individual

feature vi to be an agent with a certain unknown strength γi. Each binary feature vector

v is a team of its component features, with strength equal to the product of its features’

strengths:

γ(v) =
∏

i:fi(v)=1

γi

Each training instance ((v1, ..., vj), w) is modeled as the result of a team competition be-

tween the binary feature vectors, where the feature vector vw corresponding to the expert

move is the winner of the competition. Our training consists of a standard maximum likeli-

hood estimation, where we use Bayesian inference to find the most likely model parameters

γ1, ..., γn given the observed data.

To predict the expert move in a new game state, we simply order each legal move

mi ∈M(s) by the probability that its associated feature vector vi wins the competition:

h(vi) = P [vi wins] =
γ(vi)∑|M(s)|

i=1 γ(vi)

Since the normalizing factor in the denominator is the same for any feature vector for this

state, we can omit it. Therefore, our final ordering function is:

h(vi) = γ(vi)

Performing the Maximum Likelihood Estimation

We use the same optimization procedure described by Coulom for computer Go [6].

To perform the maximum likelihood estimation, we wish to optimize the model parame-

ters to maximize the probability of the observed results given those parameters. Formally,

let γ ∈ (0,∞)n be a vector of all the model parameters γi and let R be a collection of all the

observed results R1, ..., Rn. Then, we wish to maximize P [γ |R], which by Bayes Theorem

is:

P [γ |R] =
P [R | γ]P [γ]

P [R]

The normalizing constant P [R] can be ignored for the purposes of maximization since it does

not depend on γ. Additionally we can choose a prior P [γ] that is of the same form as that

produced by the model itself. That is, we may choose a prior of the form P [γ] = P [R′ | γ]

where R′ are a set of virtual competition results. A natural choice is to give every feature n

wins and n losses against a virtual opponent. A prior of this form has the advantage that:

P [R | γ]P [γ] = P [R,R′ | γ]
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and therefore we may simply focus on maximizing P [R,R′ | γ].

We assume that all the results Rk ∈ R are independent of one another. This is not

actually true, since we are extracting a result from every state in each game, and features

of many legal moves will be very similar between successive states in a game. Moreover,

human players typically do not consider each situation in a game independently, but will

rather cache and update their evaluation of the board position based on their evaluations in

previous turns. However, independence is a fair assumption to impose, given that the game

state itself should still by far be the most important factor in the expert’s move choice.

The effects of short runs of correlations between positions from the same game should be

washed out over a data set of hundreds or thousands of games.

To perform the maximization of P [R,R′ | γ], we initialize all γi to the initial values 1.0,

and then perform successive iterations of updates. Each iteration, we sequentially update

each feature by the following update rule (see Appendix A for a detailed derivation):

γi ←
Wj∑N
j=1

Cij
Ej

Cij is the total strength of the other features on all teams that feature i is a member of,

Ej is the total strength of all participants (given the current value of γi), and Wj is the

number of times feature i is on the winning team. We continue iterating until convergence.

In practice, on the type of data generated for our expert move training, convergence is rapid

and consistent, requiring only a few tens of iterations.

Note that if we fix the values Ej , the denominator in the update rule has a natural

interpretation, namely the expected number of wins that would be scored by the teammates

of feature i without the help of feature i, over all the competitions. Thus, our update rule

simply consists of setting γi to be the ratio of the number of wins with feature i to the

expected number of wins without feature i.

2.4 Features Implemented

In the following section, we describe the actual features used by our learning algorithms.

The features were chosen according to expert knowledge about what types of properties of

a move might make it more or less good, as well as by examining the results of preliminary

tests for systematic mispredictions that suggested additional useful features to add.

All features describe the results of the full move of a given turn, as opposed to one of

the four possible steps of a turn in Arimaa. All features are binary.
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Symmetry

Since the rules are preserved by left-right symmetry and also by the symmetry of simul-

taneously swapping the two players and vertically reflecting the board, all features are

normalized accordingly by the player to move, and where relevant, mirroring locations on

the board are considered equivalent (giving only 32 locations, rather than 64).

Piece Type

In many of the following features, it is important to distinguish how strong a piece is.

However, the strength of a piece is only relative to other pieces. For instance, if both

players have 1 elephant, 2 horses, and 2 rabbits, this is exactly the same as the case where

both players have 1 elephant, 2 dogs, and 2 rabbits.

Therefore, we do not consider the absolute type of a piece such as “horse” or “dog”, but

rather we count the number of opposing pieces stronger than it, and whether or not it is a

rabbit (because rabbits cannot move backwards). The piece types we used are as follows:

Type 0: Non-rabbit, 0 opponent pieces stronger

Type 1: Non-rabbit, 1 opponent piece stronger

Type 2: Non-rabbit, 2 opponent pieces stronger

Type 3: Non-rabbit, 3-4 opponent pieces stronger

Type 4: Non-rabbit, 5-6 opponent pieces stronger

Type 5: Rabbit, 7-8 opponent pieces stronger

Type 6: Rabbit, 5-6 opponent pieces stronger

Type 7: Rabbit, 0-4 opponent pieces stronger

Position and Movement

Different pieces in Arimaa tend to work most effectively in certain key areas of the board,

such as squares adjacent to trap squares. However, the best location for different pieces

varies significantly with the type of piece. Moreover, the importance of pushing and pulling

opponent pieces depends strongly on its type and location. Therefore, we add the following

features:

SRC(p,type,loc): Piece owned by player p (0-1) of type type (0-7) moved from location loc

(0-31). (512 features)

DEST(p,type,loc): Piece owned by player p (0-1) of type type (0-7) moved to location loc

(0-32), where location 32 indicates captured. (528 features)



CHAPTER 2. MOVE PREDICTION AND ORDERING IN ARIMAA 27

Trap Status

The number of defending pieces (0-4) next to each trap in Arimaa is critical in considering

what possible tactics are available. We also distinguish whether or not the elephant is next

to the trap or not, except in the case of four pieces next to a trap, since the presence of

an elephant as a defender is very important for considering how strongly that trap is held.

This gives 8 possible statuses for the defense of a trap.

TRAP STATUS(p,trap,status0,status1 ): Trap trap (0-3) from perspective of player p (0-3)

changed from status0 (0-7) to status1 (0-7). (512 features)

Capture Threats and Defense

Threatening and defending the capture of a piece plays a key role in many tactics.

THREATENS CAP(type,s,trap): Threatens capture of opposing piece of type type (0-7) in s

(1-4) steps , in trap trap (0-3). (128 features)

INVITES CAP MOVED(type,s,trap): Moves own piece of type type (0-7) so that it can be

captured by opponent in s (1-4) steps , in trap trap (0-3). (128 features)

INVITES CAP UNMOVED(type,s,trap): Own piece of type type (0-7) can now be captured

by opponent in s (1-4) steps, in trap trap (0-3), but it was not itself moved. (128 features)

PREVENTS CAP(type,loc): Removes the threat of capture from own piece of type type (0-7)

at location loc (0-31). (256 features)

The way in which one defends the capture of a piece is also important.

CAP DEF ELE(trap,s): Defends own piece otherwise capturable in s (1-4) steps in trap trap

(0-3) by using the elephant as a trap defender. (16 features)

CAP DEF OTHER(trap,s): Defends own piece otherwise capturable in s (1-4) steps in trap

trap (0-3) by using a non-elephant piece as a trap defender. (16 features)

CAP DEF RUNAWAY(trap,s): Defends own piece otherwise capturable in s (1-4) steps in

trap trap (0-3) by making the threatened piece run away. (16 features)

CAP DEF INTERFERE(trap,s): Defends own piece otherwise capturable in s (1-4) steps in

trap trap (0-3) by freezing or blocking the threatening piece. (16 features)

Goal Threats

Making and defending against threats to goal (which wins the game) is also very important.
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THREATENS GOAL(s): Threatens goal in s (0-4) steps. (5 features)

ALLOWS GOAL: Allows opponent to goal next turn. (1 feature)

Piece Advancement and Threats

Choosing when to advance pieces is important, given the balance of strength in that area.

We use a measure of “influence” in a region to determine this.

Influence is determined by a simple heuristic calculation. The square under each piece

is assigned a value in {75, 55, 50, 45, 40, 35, 30, 25, 15} according to the number of opposing

pieces stronger than that piece, using negative values for the opponent and zero for empty

squares. The values are then diffused four times, where for each adjacent square, a diffusion

transfers 0.16 of the value of that square. The final value is scaled down into a range (0-8).

RABBIT ADVANCE(y,inf ): Moves own rabbit to row y (0-7) with the area around the goal

directly in front of the rabbit having influence inf (0-8). (72 features)

PIECE ADVANCE(type,inf ): Advances piece of type type (0-7) with the opponent’s nearest

trap on the opponent’s side having influence inf (0-8). (72 features)

PIECE RETREAT(type,inf ): Retreats piece of type type (0-7) with the opponent’s nearest

trap on the opponent’s side having influence inf (0-8). (72 features)

For the last two of the previous three classes of features, we average the influence of the

opponent’s traps when the piece ends on either of the two central columns of the board.

Additionally, we do not consider movements just in the far or near side of the board to be

advancements and retreats—pieces must cross through one of the middle four rows.

We also consider movements of pieces relative to the nearest piece stronger than them.

That is, the nearest dominating piece.

ESCAPE DOMINATOR(type,inf,dist): Piece of type type (0-7) moved away from nearest

dominating piece, with source influence inf (0-8), ending at manhattan distance dist (1-4)

from the dominating piece. (288 features)

APPROACH DOMINATOR(type,inf,dist): Piece of type type (0-7) moved closer to nearest

dominating piece, with source influence inf (0-8), ending at manhattan distance dist (1-4)

from the dominating piece. (288 features)

DOMINATES ADJ(type,inf ): Moves own dominating piece adjacent to opponent’s piece of

type y (0-7) with the opponent’s nearest trap on the opponent’s side having influence inf

(0-8). (72 features)
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Stepping On Traps

Voluntarily stepping on a trap square can be dangerous when the trap has too few defenders.

However, it can also be good to place a piece on a trap square because it allows that piece

in the future to access any of the four surrounding squares for defending that trap, and a

piece on a trap is hard to push away.

We heuristically define a “safe” trap for a player as one that is guarded either by two

defenders of that player, or the elephant. Otherwise, the trap is “unsafe”.

UNSAFE STEP ON TRAP(trap,type): Piece of type type (0-7) stepped on unsafe trap trap

(0-3). (32 features)

SAFE STEP ON TRAP(trap,type): Piece of type type (0-7) stepped on safe trap trap (0-3).

(32 features)

Freezing

Freezing the opponent’s pieces is beneficial for restricting their possible moves, while having

one’s own pieces frozen is detrimental.

FREEZE TYPE(p,type,f ): Piece owned by player p (0-1) of type type (0-7) had its frozen/unfrozen

status changed to f (0-1). (32 features)

FREEZE LOC(p,loc,f ): Piece owned by player p (0-1) at location loc (0-31) had its frozen/unfrozen

status changed to f (0-1). (128 features)

Blocking

A number of important tactics in Arimaa involve using pieces to block the opponent’s piece

from entering or leaving a certain square, such as a trap square, a square adjacent to a

trap square, or the goal line. Either a piece of greater or equal strength can be used, or a

phalanx formation composed of weaker pieces (see Appendix B for an illustration).

BLOCK TYPE(type,b,isphalanx ): The blocked/unblocked status of an opposing piece of type

type (0-7) in some adjacent square changed to b (0-1), and isphalanx (0-1) indicates whether

a single piece or a phalanx was used. (32 features)

BLOCK LOC(loc,dir,b,isphalanx ): The blocked/unblocked status of a piece at location loc

(0-31) in the direciton dir (0-2) changed to b (0-1), and isphalanx (0-1) indicates whether a

single piece or a phalanx was used. (96 features)
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Previous Moves

The location of the previous move and the move before the previous move are moderately

correlated with the position of the next move, so we can use these to aid our prediction.

For both the previous move and the move before the previous move, we compute a score

indicating how close in location the current move is. Letting s1, ..., s4 and t1, ..., t4 be the

four steps of two given moves, the closeness score of those moves is computed as:∑
i

∑
j

max(0, 4−M(s1, t1))

where M(s, t) is the manhattan distance between the square that step s moved from and

the square that step t moved from. This gives a value bounded in the range [0, 63], where

higher values indicate that more of the steps of the two different moves took place closer

together. We add the following features:

LAST CLOSENESS(c): The closeness score of the current move to the previous move is c

(0-63). (64 features)

LAST LAST CLOSENESS(c): The closeness score of the current move to the previous pre-

vious move is c (0-63). (64 features)

Dependency Structure

Lastly, we include a very interesting feature first proposed and used by Zhong [36] in one

of the earliest Arimaa programs. This is the dependency structure of the different steps

within a move. Although one can make four independent steps in a turn, often some of the

steps will depend on others, and may not be arbitrarily permuted. For example, this occurs

when moving the same piece twice, or pushing or pulling, or using one piece to unfreeze

another. It turns out that by far the vast majority of moves played by expert players are

not composed of four independent steps, even though a plurality of the legal moves are, and

in general, the number and type of the dependencies is correlated with expert move choice.

For our features, we approximately count the number of independent components in the

steps in a move by considering one step to be dependent on another if their sources or

their destinations are adjacent, or if they both involve the adjacent squares of the same

trap (because the trap square mechanic can cause dependencies between steps that aren’t

immediately adjacent).

Additionally, the number of steps in a move itself is a useful feature. Usually, it is bad

to use fewer than four steps, so we add features that distinguish this as well.
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MOVE STRUCTURE(s,c): A total of s (1-4) steps were made, with c (1-4) independent

components. (16 features)

2.5 Experimental Results

2.5.1 Data

We gathered all games played from January 2005 to March 2010 on the online server at

Arimaa.com by human players and certain selected bots, with the restriction that both

players had a rating on the server of at least 1800. Note that we included sufficiently strong

bots in our testing data rather than only human players, because many moves made by

strong bots are still reasonably strong moves, and still well-beyond what we could hope to

achieve with a static heuristic.

Since the number of games involving bots was somewhat higher than the number of

human-versus-human games, (due to the relatively small human population online at any

given time and the continuous availability of a variety of bots), we added a mild bias towards

human-played games in that we randomly excluded a game with probability 0.3 for each

bot player in the game.

This left a set of 4560 games. Approximately 10 percent of these games were randomly

selected to be used as a testing set and the remaining 90 percent were used as the training

set. This gave a training set of 4121 games and a testing set of 439 games, on which we

trained and tested both the Naive Bayes and Bradley-Terry predictors.

We attempted to do some filtering of the games for “bad moves” to try to reduce some

of the noise in the data. Arimaa players will sometimes make self-damaging moves, such as

self-capturing their pieces near the end of the game when they have no way to avoid losing

in the next few turns, as a way of indicating concession. Additionally, players occasionally

self-capture their own pieces at the beginning of the game to begin with fewer pieces, as a

way of playing a handicap game against a weaker opponent. We crudely attempted to filter

these moves out by excluding any sequence of consecutive self-capturing moves contiguous

with the beginning of the game, as well as any self-capturing move made in the last two

turns of the game by the player who lost.
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2.5.2 Implementation and Training

Naive Bayes

The Naive Bayesian classifier was trained with a straightforward single pass over the train-

ing games, counting the number of observations of each feature among expert moves and

the number of observations among non-expert moves to estimate the conditional class prob-

abilities.

Additionally, to handle features that never occurred in the training games, letting the

background frequency of expert moves be p, we added fractional virtual observations of

weight p of the feature occurring and not occurring with an expert move, and fractional

virtual observations of weight (1 − p) of the feature occurring and not occurring with a

non-expert move.

Training took a little more than 14 hours, the vast majority of which was spent generating

the features for each move. The memory usage was negligible.

Bradley-Terry

The Bradley-Terry model was trained by repeatedly iterating over the feature data to

perform the necessary updates. A total of 20 iterations of updates were performed. This

was plenty to achieve convergence, as most features appeared to reach within a small range

of their final values after only 5 to 10 iterations.

We chose our prior to be an observation of 1 win and 1 loss for each feature against a

virtual opponent of strength γ = 1.

One major drawback of the training process is that we were forced to hold all the feature

data in memory. This is because the process for computing Ej and Cij in the update

procedure requires a pass over all of the data, iterating over each competition, team, and

feature to compute the appropriate sums of products of γs. Since these values change

after every update, this requires that the features for each move either be kept around or

regenerated every update. However, given that generating the features takes more than 12

hours and tens of thousands of updates are required, it was not possible to regenerate them

each update, so we were forced to store them in memory.

Unfortunately, even with a sparse vector representation, this meant that memory limi-

tations made it impossible to store even a small fraction of the training set in memory. We

estimate that the memory required for storing the full training set would have been on the

order of 1 terabyte, which was much more than we had available.
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Therefore, we took the radical approach of discarding almost all of the non-expert moves

in each position. In each position, we randomly permuted all the legal moves that weren’t

chosen by the expert, then randomly discarded all but 0.5 percent of them beyond the

first twenty.2Additionally, to further reduce the memory requirements, we also randomly

discarded all but one third of the training instances. However, these training instances were

still chosen from all 4121 games, to retain the diversity of game states and provide better

independence between training instances.

Of course, a scheme like this loses a substantial amount of information. However, one

would intuitively expect the correlations between features and expert moves to remain

strong—features that correlate positively with expert moves will continue to do so in the

reduced data, and features that correlate negatively with expert moves will do so by virtue of

showing up more frequently in remaining random moves than in the expert move. As such,

one might plausibly expect the Bradley-Terry model to still produce good feature weights,

and this appears to be empirically supported by our results. Moreover, in informal testing,

this approach appeared to give better results than the alternatives, such as discarding no

data but only training on a few thousand instances (the equivalent of only 20-40 games).

There may be other ways around the problem of memory, and we propose a few in Section

2.5.5 where we discuss possibilities for future work. However, here we did not pursue them.

Unlike memory, computation time was much less of an issue, especially after reducing

the data. On the reduced data, the training took around 70 minutes, 25 of which were

spent computing the features themselves. Training used about 1.5 gigabytes of memory.

For comparison, running Naive Bayes on the reduced data takes 30 to 35 minutes in total

with almost no memory usage.

2.5.3 Prediction Accuracy

For both algorithms, we used the ordering function learned by the algorithm to order the

legal moves in each position in our testing set of 439 games. For different values of X, we

counted the proportion of times the top X moves contained the expert move. For X = 1,

this is the proportion of times that the ordering actually ranked the expert’s move first. We

also did the same for X equal to a percentage of the legal moves in a position, rather than

an absolute number. Our results are summarized in Tables 2.1 and 2.2.

Both algorithms performed very well at predicting expert moves. More than 85 percent

of the time for Naive Bayes, and almost 95 percent of the time for Bradley Terry, the expert

2Keeping at least twenty moves ensures that we have a reasonable number of moves remaining in the rare
case that there are actually very few legal moves in a position.
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Top X Moves 1 2 5 10 50 100 500 1000

Naive Bayes 4.4 7.0 12.8 18.7 38.0 49.3 75.4 84.8

Bradley Terry 12.0 18.1 28.9 38.0 61.0 70.7 88.6 93.6

Table 2.1: Percentage of expert moves falling within the top X moves of the ordering, for
different values of X. Average branching factor was 16567.

Top X Percent 5% 10% 20% 40% 60% 80%

Naive Bayes 76.5 85.7 92.7 97.5 99.2 99.7

Bradley Terry 89.4 94.3 97.7 99.3 99.7 99.9

Table 2.2: Percentage of expert moves falling within the top X percent of moves of the
ordering, for different values of X.

move was within the top 10 percent of the ordering. A substantial fraction of the time,

the expert move was within the first 5 to 10 actual moves, and the Bradley-Terry predictor

managed to predict the exact move 12 percent of the time. This is surprising, considering the

branching factor of around 16000. These results indicate that our feature-based approach

is highly effective, and that our feature set contains many features that correlate well with

expert move choices.

The Bradley-Terry predictor clearly outperformed Naive Bayes, despite being trained

on only about 1/600 of the data (because of the memory constraints). This is because

even with much less data, Bradley-Terry is able to adjust for correlations between different

features that violate the conditional independence assumption in Naive Bayes.

For instance, in the current feature set, there are strong correlations between features

such as altering the number of defenders at a trap and moving to a destination square

adjacent to a trap, or making a goal threat and advancing a rabbit forward. The Bradley-

Terry predictor is able to handle such correlations because the degree to which a choice

of move reflects on the strength of a feature of that move depends on the strengths of the

other features of the same move.

This is especially important for some good moves that include some very bad features.

For instance, to allow a rabbit to reach the goal and win the game, it is sometimes necessary

to sacrifice a piece by leaving it on the trap square while the rabbit, the only defending

piece, moves away. The Bradley-Terry predictor would score this move very well despite the

negative feature of the piece sacrifice. This is because such piece sacrifices often occur during
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goaling in expert games, which causes the evaluation of reaching goal to be correspondingly

higher in the maximum likelihood estimate to “explain away” the fact that this type of

move is frequently played.

It is interesting to note that the ordering function for both predictors is essentially the

same, a linear function, after an appropriate transformation. Both predictors can be written

in a form with only a single real parameter for each feature, where the ordering function is

simply the sum of the parameter values corresponding to the features that occur in a move.

This is obvious for Bradley-Terry when one takes the logarithm of the feature strengths

γi, and becomes apparent for Naive Bayes when one takes the logarithm of the “odds-

likelihood” formulation of Bayes’s Rule. The only difference is that the model backing the

linear weights in the Bradley-Terry predictor is more effective.

The only downside is that the Bradley-Terry predictor is significantly more costly to

train on the same amount of data, with the primary limiting resource being the memory

needed to store all of the feature vectors for all training instances. But even though we were

forced to discard vast amounts of data to reduce the memory usage enough to train the

Bradley-Terry predictor, it proved to be very good at learning to predict the expert moves

anyways.

2.5.4 Testing in Play

We tested the Bradley-Terry move predictor in play in our computer Arimaa program,

Sharp, to evaluate its effectiveness as a move ordering function. We hypothesized that by

using the learned function to order moves at the root node of each search, we could increase

the effectiveness of alpha-beta pruning, thereby allowing the search to reach deeper given

the same amount of search time and increasing its strength. Moreover, with the high levels

of prediction accuracy we observed for expert moves, we hypothesized that we could in fact

use it to prune moves outright and speed up the search further without losing too many

good moves, so we tested various degrees of root-level pruning.

Briefly, Sharp is a standard alpha-beta searcher using most of the search enhancements

described earlier in Section 1.4, including a limited quiescence search and a hand-coded

evaluation function. Prior to our testing, Sharp performed no root-level ordering except for

the simple improvement in iterative deepening of searching the best move of the previous

iteration first during the next iteration. We also continued to do this during the testing of

Bradley-Terry, but aside from this, no other ordering or pruning was done at the root. For

some additional details about Sharp, see Section 3.4.2 in Chapter 3.
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We played five versions of Sharp using various levels of ordering and pruning in a round-

robin tournament at a time control of 5 seconds per move, totaling 1600 games in all. One

version did not use the learned ordering at all, one version used it only to order but not

prune at the root node of each alpha-beta search, and three other versions used it to prune

all but 30, 10, and 5 percent of the legal moves at the root node. The tournament results

are summarized in Table 2.3.

Base BTOrder BTPruneTo30 BTPruneTo10 BTPruneTo5

Base - 80-80 69-91 48-112 49-111

BTOrder 80-80 - 55-105 66-94 42-118

BTPruneTo30 91-69 105-55 - 76-84 70-90

BTPruneTo10 112-48 94-66 84-76 - 69-91

BTPruneTo5 111-49 118-42 90-70 91-69 -

Table 2.3: Pairwise results of tournament between versions of Sharp, playing using 5 seconds
per move, with 160 games played per pair. Each entry is of the form “x-y” where x is the
number of wins by the row player, and y is the number of wins by the column player. The
Base version did not use the learned ordering, BTOrder used it to order moves at the root
but not prune, and BTPruneToX used it to order moves and prune all but X% of moves
after the first ten.

The results in Table 2.3 are a strong confirmation of our hypothesis that the learned

ordering function could be used effectively to prune moves. We see a progression where

the versions using increasing degrees of pruning generally won increasing numbers of games

against versions that pruned fewer moves, or that did not prune. Against the non-pruning

base version of Sharp, increasing the level of pruning from none to 95 percent raised the

number of games won out of 160 from 80 up to 111 or 112. Moreover, in every direct

comparison between a version that used greater pruning with one that used fewer, the one

that used greater pruning won the majority of games.

However, the results from ordering alone ran contrary to our expectations. We hypothe-

sized that the learned ordering function would improve performance even without pruning,

yet when comparing the base version of Sharp and the version using the learned ordering,

it does not appear that one is clearly better than the other. Of the 160 games they played

directly against one another, both won 80, and their results against the other versions are

mixed, with one sometimes winning more games and sometimes the other.

To lend additional support to this observation, we computed the strength ratings of

each of these versions that would be implied by their match results under the Elo rating
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model.3We obtained the results in Table 2.4.

None BTOrder BTPruneTo30 BTPruneTo10 BTPruneTo5

Elo rating −66± 23 −69± 23 20± 22 35± 22 81± 23

Table 2.4: Relative Elo ratings implied by the tournament results in Table 2.3, 95% confi-
dence intervals (note: each individual confidence interval was calculated assuming all other
ratings were accurate)

Indeed, surprisingly, there was no statistically significant difference between the playing

strength of the base version and the version using the Bradley-Terry ordering without

pruning.

There are a few possible reasons why we failed to observe any improvement in strength

using only ordering without pruning, even though the earlier results for expert move pre-

diction accuracy indicate that the ordering function is very good. One possibility is that

the limited form of ordering that we do already in the base version of Sharp (searching the

previous iteration’s move first during iterative deepening) catches the best move frequently

enough that the additional gain in alpha-beta pruning from ordering alone isn’t very large.

Another possibility is perhaps that the gain from ordering consistently fails to allow the

search to complete the next iteration of depth. This could occur if the 5 seconds of search

time we used happens to be a time limit that consistently allows the search to reach a

certain depth and such that reaching the next depth consistently requires more than the

gain from ordering alone.

However, the fact that we were able to use our learned ordering function to achieve gains

in performance even with extreme pruning demonstrates that it is effective at pruning and

filtering moves in actual search. If this were not the case, one would expect to see gradually

worsening performance as the pruning became more and more severe and lost more and

more good moves. We confirmed this by running a second round-robin tournament using

versions of Sharp that performed the same degrees of pruning, but without using the learned

ordering. The results are displayed in Tables 2.5 and 2.6.

As expected, we observed a catastrophic decrease in playing strength when we pruned

moves without the ordering. This is a sharp contrast to the rise in strength with the

ordering. Drawing from the earlier data on expert move prediction accuracy in Table 2.2,

where 89.4 percent of expert moves were caught within the top 5 percent of ordered moves

3Using the free program BayesElo [7], with a prior of one win and one loss against a virtual opponent of
Elo 0.
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Base PruneTo30 PruneTo10 PruneTo5

Base - 33-7 39-1 40-0

PruneTo30 7-33 - 30-10 36-4

PruneTo10 1-39 10-30 - 31-9

PruneTo5 0-40 4-36 9-31 -

Table 2.5: Pairwise results of tournament between versions of Sharp, playing using 5 seconds
per move, with 40 games played per pair. Each entry is of the form “x-y” where x is the
number of wins by the row player, and y is the number of wins by the column player. The
versions labeled PruneToX prune all but X% of moves after the first ten, without using the
learned ordering.

None PruneTo30 PruneTo10 PruneTo5

Elo rating 359± 100 73± 63 −118± 62 −314± 81

Table 2.6: Relative Elo ratings implied by the tournament results in Table 2.5, 95% confi-
dence intervals (note: each individual confidence interval was calculated assuming all other
ratings were accurate)

and 10.6 percent were lost, it is likely that at the most extreme level of pruning tested here,

we are losing the best move about once every 10 turns. However, the increased search depth

more than makes up for this.

One must take some care in interpreting these results. For one, 5 seconds per move is a

relatively short search time, and it is possible that the improvement from pruning will be

lessened for longer search times due to diminishing returns. In the extreme case, if we had

enough time to search the entire game tree and compute the precise minimax value, then

obviously performing such pruning at the root would give no improvement, and could only

hurt the result. Additionally, testing by self-play can sometimes be misleading.

Despite these concerns, the sheer degree of pruning enabled by the learned ordering func-

tion and the clear performance gains it provides give a strong affirmation of its effectiveness

in practical search. In fact, using a slightly more conservative version method of pruning

(where “pruned” moves are still searched, but to a lesser depth), our program Sharp re-

cently won the 2011 Arimaa World Computer Championship [30], and the efficiency gains

from this method of ordering and pruning were one of the major improvements that allowed

it to do so.
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2.5.5 Conclusion and Future Research

In summary, we demonstrated a highly effective method for expert move prediction and

move ordering in Arimaa. Using a simple feature-based framework with a generalized

Bradley-Terry model, we were able to capture almost 90 percent of all expert moves within

only the top 5 percent of our learned ordering. Moreover, in an actual search, we were able

to prune up to levels as extreme as discarding 95 percent of all moves while observing a clear

gain in playing strength. By showing that machine learning can be successfully applied to

the task of ordering and pruning moves in Arimaa, we believe we have opened a door for the

exploration of further techniques for handling the explosive branching factor and improving

the effectiveness of search.

Additionally, we believe our current algorithm can still be improved, and we offer a few

possible ways for doing so.

While the actual application of the ordering function is extremely fast, computing the

features themselves is moderately expensive. Currently, ordering the typical 16000 moves

or so at the root takes roughly 1/10 to 1/5 of a second, which is too slow to be applied

within a search tree unless the search time is extremely large. However, if one could train

a faster version of the ordering function using a reduced feature set, one might be able to

order and prune within the search tree as well. Finding a way to prune within the tree,

rather than just the root, could be a huge additional gain.

Additionally, one could investigate ways to parallelize the Bradley-Terry training process

or ways of circumventing the memory limitation. While it is not possible to regenerate the

feature data every update, it may be possible to compute it once and store it on disk,

where the estimated terabyte of required space becomes easily possible. Assuming there is

no overhead for reading the data from disk each time, we estimate that the the training

process would take between a few weeks and a month on the complete training set. This is

certainly feasible, especially if the training could be parallelized. Training on the complete

data would have the potential to improve the learned feature values further, particularly

for the features that occur less commonly.

Lastly, one could investigate the addition of other feature types, such as pattern-based

features. Pattern-based features were notably absent from our feature set, because in in-

formal testing, we found that a straightforward addition of radius-two patterns did not

improve the prediction at all! Yet there is the possibility that larger or alternative types

of patterns or other new classes of features could increase the performance. A study of the

moves currently mispredicted could help lead to the discovery of these new features.



Chapter 3

Evaluation Functions in Arimaa

Whereas in Chapter 2, we examined ways to combat the extreme branching factor by

learning to order and predict moves, in this chapter, we attempt to solve the other main

challenge facing search in Arimaa, that of finding a good evaluation function.

To do so, we apply the tools of reinforcement learning and investigate whether it might

be possible to automatically learn a good evaluation function. In Section 3.1, we give

some background and explain our approach. In Section 3.2, we describe four algorithms

for learning evaluation functions, two of them using temporal differences and two of them

learning directly from a minimax search. In Section 3.3, we describe the features used

for evaluation, and in Sections 3.4 and 3.5, we discuss the details of our implementation,

training and results.

3.1 The Problem of Evaluation

Since it is impossible to search the game tree to any significant depth, any method of search

in Arimaa requires some way to evaluate the board position and estimate the minimax

value of positions well before the end of the game. As discussed in Chapter 1, playout-

based methods are unlikely to work. Therefore, we need a heuristic evaluation function

that can estimate how much of an advantage one player or another has in a given game

state. For this task, we apply the framework of reinforcement learning, which has been used

successfully in many other games to learn effective evaluation functions [32, 2].

We consider the problem of reinforcement learning and reward estimation as applied to

two player adversarial games. As before, let S be the state space of the game, let M be

the set of all possible moves that could be made at any point in the game, let M(s) ⊂ M

be the set of legal moves in state s, and let m∗(s) ∈ M(s) be the optimal move in state s.

Then, additionally:

40
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• Let T (s,m) be the state resulting from making move m ∈M(s) in state s ∈ S.

• Let V (s) be the minimax value of state s ∈ S.

Our goal is to find some heuristic evaluation function H : S → R that approximates V

as well as possible, yet that is feasible to compute. We do this by selecting H from some

class of functions parametrized by some values θ ∈ Rk. For instance, we could consider the

class of linear evaluation functions (over some particular feature set or representation of the

board), where θ would be the weights of the linear components. Or, we could consider the

class of functions representable by a neural network with a certain structure, where θ would

be the weights of all the connections between each node in the network.

We consider the case of a learning agent playing a large number of games, possibly

against itself, or possibly against one or more other opponents. In each game, the agent

plays according to some policy and observes a sequence of states s0, s1, ..., sn, where each

subsequent state depends on the agent’s choice and the response of the opponent. The final

state sn gives a reward V (sn) equal to the outcome of the game, such ±1 for a win or loss.

Following the observation of a state or a game, the agent may perform an update

Hθ(s) �θ ∗, changing the value of θ so that the evaluation Hθ more closely agrees with

some target value on the state s. This update could be a single step of gradient descent

or backpropagation on the parameters θ. Then, by varying when and how to perform

this update, we can obtain any of several different algorithms. We describe some of these

algorithms in the next section.

3.2 Algorithms

We tested four different algorithms for performing the appropriate updates, each of which

we present below. Each of these algorithms has previously been successful for learning

evaluation functions in other games, and we will briefly mention these results as we proceed.

3.2.1 TD-Root

Given an opponent that plays according to some policy π, we want Hθ(s) to estimate

the optimal expected return V π(s), obtained by maximizing at nodes where it is the agent’s

turn, and taking the expectation over the opponent’s choice of move according to π at nodes

where it is the opponent’s turn. If the game is stochastic, we also take the expectation over

the state transition probabilities of the moves of the game.
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In the case where opponent’s policy π is optimal and the game is deterministic, V π is

simply the minimax value V , so that we update Hθ to approximate the optimal value of

the game, as desired.

In temporal difference (TD) learning [27], we perform updates by considering the tem-

poral differences between the estimated expected values at each time step:

δi = Hθ(si)−Hθ(si−1)

Specifically, the agent plays a game against the opponent with policy π, and chooses the

action with greatest expected return according to Hθ on each turn. Then, at the end of

each game, having observed the sequence of states in the game s0, s1, ..., sn, we attempt to

update the value of each state to match the value of future states, under the assumption

that the evaluations of states closer to the end of the game are more accurate than that of

the current state.

In the simplest form of temporal-difference learning, for each observed state si, we per-

form the update:

Hθ(si) �θ
Hθ(si) + δi+1 = Hθ(si+1)

That is, we adjust the parameters to move the current evaluation towards the evaluation of

the immediate next state.

We may also consider the other extreme, that of the Monte-Carlo update, where we

adjust the evaluation towards the final value1:

Hθ(si) �θ
Hθ(si) +

∑
j>i

δj = Hθ(sn)

The algorithm TD(λ) interpolates between these two behaviors according to a parameter

λ ∈ [0, 1] by performing the update:

Hθ(si) �θ
Hθ(si) +

∑
j>i

λj−iδj

Or equivalently:

Hθ(si) �θ
n−1∑
j=i+1

(1− λ)λj−i(Hθ(sj)−Hθ(si)) + λn−i(Hθ(sj)−Hθ(si))

Intuitively, TD(λ) works by assigning an ever-decreasing proportion of the “blame” for

results further and further into the future. The algorithm attributes an unexpected change

1For simplicity of notation, we assume always that Hθ(s) = V (s) if s is a terminal state of the game.
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in the estimated value mostly to the moves immediately preceding the change in value,

and exponentially less to more distant moves, which are presumed not to have been the

“cause” of the change in value. As such, one might expect TD(λ) to perform best when λ is

set to match as closely as possible the distribution of times over which a mistake becomes

“evident” and starts being reflected in later scores.

Most notably, TD(λ) was used successfully by Tesauro in the early 1990s to create the

world-class Backgammon player TD-Gammon [32]. However, succeeding with temporal

difference learning has been much more difficult in more tactical games [2, 4].

One additional modification to the algorithm that is sometimes used in adversarial games

when training against fallible opponents is to train only on the negative temporal differences

[2]. This is because a positive temporal difference δi = Hθ(si) − Hθ(si−1) indicates that

the agent’s estimation of the value unexpectedly rose, which could easily have occurred

because the opponent made a mistake and not because the agent misevaluated the position.

By contrast, an unexpected drop in the estimated value of a position indicates a clear

misevaluation by the agent.

Just as done by Veness et al. [35], we call this version of the TD(λ) algorithm TD-Root

to emphasize that the update is performed using the actual game positions, which are the

root nodes of the minimax searches that one might perform in order to play the game. This

is to distinguish it from the next algorithm.

3.2.2 TD-Leaf

The TD-Leaf algorithm is a variation of TD-Root that was developed and used successfully

in Chess by Baxter, Tridgell, and Weaver [2]. It is essentially the same as TD-Root, except

that the algorithm is applied to the leaf nodes of the principal variations of a depth D

minimax search from each of the game states. The principal variation is the branch of the

search tree resulting when both players choose the optimal move at each node, where the

optimal move is determined according to the (depth-limited) minimax values computed by

the search for each node.

Specifically, let HD
θ (s) be the minimax value of a depth D search starting at state s,

using θ as the evaluation function. Let TD(s) be the state at the leaf node of the principal

variation the search, so that Hθ(TD(s)) = HD
θ (s). Then, TD-Leaf updates using the rule:

Hθ(TD(si)) �θ
Hθ(TD(si)) +

∑
j>i

λj−iδj
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where

δi = Hθ(TD(si))−Hθ(TD(si−1))

The motivation for using TD-Leaf rather than standard TD(λ) derives from the difficulty

of obtaining an accurate evaluation without any lookahead. Unlike in Backgammon, it is

extremely difficult to obtain an accurate static evaluation in games such as Arimaa, Chess,

or Othello, due to the sharp variations in evaluation produced by short-term combinatorial

tactics. In practice, such tactics are always resolved with extensive search [2].

This means that we can instead focus on making the minimax value Hθ(TD(si)) of a

search match the expected value of the game, rather making the value Hθ(s) of the current

state match the future value of the game. Since the minimax value HD
θ (s) is the value

of the leaf node of the principal variation Hθ(TD(si)),
2and the derivative of the minimax

value d
dθH

D
θ (s) is (usually) the same as d

dθHθ(TD(si)), we can adjust the minimax value by

adjusting the value of the leaf.

Note that the derivatives may not agree in the case where a change in θ causes the

principal variation itself to change. In that case, the derivative of the value of the search

with respect to θ can be discontinuous, and we lose any theoretical guarantee of convergence.

This can occur even with an arbitrarily small change in θ, if another node along the principal

variation has precisely same minimax value. However, in practice, even if we ignore these

problems, it is still possible to obtain good results [2].

Intuitively, the advantage of performing updates using the leaf nodes is that the values

between successive positions will be more stable or accurate, because we are performing a

minimax search at each step to resolve the short-term tactics. This partially relieves the

learning algorithm from the difficult task of having to accurately predict the result given

the noise introduced by the immediate tactics in a position.

3.2.3 Rootstrap

Unfortunately, as discussed by Veness, Silver, Uther, and Blair [35], there are some potential

drawbacks to the temporal-difference algorithms. One such drawback is that they depend

heavily on the actual sequence of positions in a game, and in particular, on the opponent.

That is, for any fixed opponent policy π, TD(λ) optimizes against π by attempting to

estimate V π, rather than estimating the true minimax value V . In theory, this is not

necessarily an obstacle if the algorithm trains against an improving opponent, such as

itself, but in practice, training by self play can be unreliable.

2This requires that the game be deterministic.
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Another drawback they point out is that the distribution of positions observed in actual

games is likely to differ greatly from the distribution of positions observed within the search

tree. This could lead to inaccurate evaluations for types of positions that are rare in play

but common in search. Additionally, none of these algorithms takes advantage of the large

amount of data in the search tree resulting from a minimax search, only performing updates

using the root positions, or in the case of TD-Leaf, only the principal leaf.

Therefore, the authors present two new algorithms to address these issues, called Root-

strap and Treestrap.

In the Rootstrap [35] algorithm, upon observing any state s, we perform the update:

Hθ(s) �θ
HD
θ (s)

That is, we simply adjust the value of the current state to better correspond to the

minimax value of a search from the current state. This gives a simple for learning that

removes the dependence on the opponent.

3.2.4 Treestrap

In the Treestrap algorithm [35], upon observing any state s, we perform a depth D minimax

search and perform a update for every state in the search tree. Let T be the set of non-leaf

states occurring in the search tree, and let d(s′) be the depth of state s′ in the tree. Then,

in the process of performing the search, for all s′ ∈ T , we will have computed H
D−d(s′)
θ (s′),

so for every s′ ∈ T , we perform the update:

Hθ(s
′) �θ

H
D−d(s′)
θ (s′)

In practice, rather than perform a full-width minimax search, we may wish to use alpha-

beta pruning. In this case, many of the values computed for interior nodes in the search tree

will be upper or lower bounds rather than exact values. Let αDθ,s(s
′) be the upper bound

computed for s′ in a depth D alpha-beta search starting from the root s using the evaluation

function Hθ, and let βDθ,s(s
′) be the lower bound, so that βDθ,s(s

′) ≤ HD−d(s′)
θ (s′) ≤ αDθ,s(s′).

For any particular node, only one bound will be relevant - in the case of an alpha cutoff,

we have βDθ,s(s
′) = −∞, and in a beta cutoff, we have αDθ,s(s

′) = ∞, and for exact nodes,

both are equal to H
D−d(s′)
θ (s′).

Then we instead perform the updates:

Hθ(s
′) �θ

αDθ,s(s
′) if Hθ(s

′) > αDθ,s(s
′)
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Hθ(s
′) �θ

βDθ,s(s
′) if Hθ(s

′) < βDθ,s(s
′)

By performing updates using nodes in the search tree, we obtain many more training

instances, potentially allowing for much faster learning. Moreover, we also train on a

distribution much closer to the one that the evaluation function will be applied on, namely

the positions occurring within a search tree. In Chess, both the minimax and alpha-beta

versions of the Treestrap algorithm were shown to greatly outperform Rootstrap and the

temporal difference algorithms, both in in speed of learning and the final quality of the

evaluation function [35].

3.3 Performing Updates using Features

Just as for move ordering, we apply all of the above algorithms in Arimaa in a feature space

of various strategic and tactical features of the board, since learning to evaluate from the

raw board representation is likely to be extremely difficult. By mapping into a feature space,

we can extract out the otherwise discontinuous and hard-to-learn properties of the game

and expose them for direct evaluation, greatly increasing the smoothness of the function

that we wish to learn.

Because it is important that the evaluation function be computable extremely efficiently

to be usable in a tree search, we chose our evaluation functions to be linear functions over

the feature space, where θ is the vector of weights for each feature. Evaluation functions of

this form are simple to optimize and have been successful for other games [35]. Formally,

given a state s, we compute a feature vector φ(s) ∈ Rn and then we define:

Hθ = θTφ(s)

Then, given a learning rate α, we perform an update Hθ(s) �θ
K by gradient descent:

θ := θ + α(K −Hθ(s))
dHθ

dθ
(s)

3.3.1 Features Implemented

Many of the features we use for evaluation are similar to the ones we used for move ordering.

However, for evaluation, we use features that are real-valued, rather than binary. This is

because in evaluating the whole board, we are interested in the number of occurrences

of different features across the board, whereas for ordering moves, we were more often

interested in whether a move had some certain property or not. While some of the features
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we specify below are still effectively binary, they are converted into real values by setting

them to 0 if not active, and 1 if active.

As with our move ordering features, locations are normalized according to left-right

symmetry where relevant, and according to the player to move.

To evaluate a position, features are always computed twice, once from the perspective of

each player. Then, the feature vector for the opponent is negated and added to the feature

value of the current player. This allows a symmetric evaluation, and is also a natural way to

evaluate a position. For instance, if having a certain strategic formation is worth a certain

value to the current player, then it should be just as valuable to an opponent if held by the

opponent, and therefore of negative value to the current player in this case.

Since the various components of the raw feature vector can differ greatly in magnitude

and in rarity, for each feature, we computed its sample variance over every position in the

4121 games of the training set we used for move ordering in Chapter 2, and for the purposes

of the gradient descent, we normalized the magnitude of each feature so that it had a sample

variance of 1. To handle the small number of features that never occurred in the training

set and therefore had sample variance zero, we added a small value of 0.01 to the computed

variance of each component prior to performing the normalization. Additionally, at the start

of training, we initialized the feature vector to begin with reasonable values for material

features, set according to current expert judgment.

Piece Type

Just as in the move ordering features, it is important to distinguish how strong a piece

is relative to other pieces. However, for the purposes of evaluation, it is more important

to make finer distinctions between the precise strength of a piece, since while pieces with

similar but distinct strengths may generally prefer to move in and be in the same areas of

the board, the long-term value of having such pieces could differ greatly. We distinguish 12

different types, rather than only the 8 types earlier, as follows:

Type 0: Non-rabbit, 0 opponent pieces stronger

Type 1: Non-rabbit, 1 opponent pieces stronger

Type 2: Non-rabbit, 2 opponent pieces stronger

Type 3: Non-rabbit, 3 opponent pieces stronger

Type 4: Non-rabbit, 4 opponent pieces stronger

Type 5: Non-rabbit, 5 opponent pieces stronger

Type 6: Non-rabbit, 6 opponent pieces stronger

Type 7: Rabbit, 24-22 opponent pieces plus opponent non-rabbit pieces

Type 8: Rabbit, 21-19 opponent pieces plus opponent non-rabbit pieces
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Type 9: Rabbit, 18-16 opponent pieces plus opponent non-rabbit pieces

Type 10: Rabbit, 15-12 opponent pieces plus opponent non-rabbit pieces

Type 11: Rabbit, 11-0 opponent pieces plus opponent non-rabbit pieces

Material

As in Chess, the most significant factor in Arimaa evaluation is the amount of material each

player has.

Unfortunately, using static values for different types of pieces does not work well in

Arimaa, because aside from rabbits, pieces are only differentiated by their strength relative

to one another. In practice, the value of a piece increases greatly as pieces stronger than it

are captured, and increases somewhat when equally strong pieces are captured. Moreover,

the value of rabbits increases the fewer pieces total the opponent has, because they are

much more able to threaten goal. Therefore, the following material features depend only

on relative quantities, rather than absolute piece types:

MAT PIECE(s,e): Number of non-rabbit pieces with s (0-6) stronger opponent pieces and e

(0-2) equal opponent pieces.

MAT RABBIT(s,e): Number of rabbit pieces with s (0-8) stronger opponent pieces and e

(0-8) opposing rabbits.

Additionally, the relative value of rabbits increases as the number of rabbits becomes very

few, as losing all rabbits means losing the game by elimination. However, this change in

value appears to be nonlinear, being unnoticeable when there are many rabbits, and highly

noticeable when there are just one or two left. So we add the features:

RABBIT COUNT(c): Number of rabbits is c (0-8). (binary)

We also add in a heuristic material evaluation known as “HarLog” which is used by some

top bots, including our own. While the formula itself is arbitrary with no theoretical

justification, it was chosen and tuned by its developer in order to produce values that

reasonably closely agree with expert opinion on material values. The HarLog score for a

single player is computed as follows:

• Let Q = 1.447530126 and let G = 0.6314442034

• For each friendly non-rabbit piece with zero stronger opponent pieces, add 2/Q.

• For each friendly non-rabbit piece with n stronger opponent pieces, add 1/(Q+ n).

• Let r be the number of friendly rabbits and t the total number of friendly pieces.
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• Add G(log r + log t).

We add in the HarLog score as a feature as well.

HARLOG: The HarLog score of the player.

Piece-Square Tables

Different pieces are better or worse in different areas of the board. For example, elephants

tend to be strongest in the center, where they can reach and fight for any trap, whereas

rabbits and weak pieces are usually best remaining near the edges of the board. Additionally,

the squares adjacent to traps are often more valuable.

PIECE SQUARE(s,loc): There is a friendly non-rabbit piece on location loc (0-31) with s

(0-6) opponent pieces stronger than it. (binary)

RABBIT SQUARE(t,loc): There is a friendly rabbit on location loc (0-31), and the number

of opponent pieces plus the number of opponent non-rabbit pieces is t (0-24). (binary)

Trap Control

Maintaining “control” of traps is very important, and usually taking over one of the oppo-

nent’s traps is a large advantage. As in our feature set for move ordering, we distinguish 8

different statuses of defense around a trap, based on the number of defending pieces (0-4)

whether or not the elephant is next to the trap. Additionally, we distinguish whether the

trap is on our own side of the board or the opponent’s.

TRAP STATUS(s,ownside): Number of traps with status s (0-7) that are on own side of

board if ownside (0-1) is true, or opponent’s side if it is false.

We also include a heuristic calculation that estimates the current player’s control of a trap,

taking into account not just the pieces immediately defending the trap, but the other nearby

pieces as well.

The trap control heuristic is relatively complex. Its dominant component is computed

by iterating over all pieces within a manhattan distance of four from the trap. Each piece

is assigned a strength value in {32, 22, 17, 13, 11, 10, 9, 9, 9} according to the number of

opponent pieces stronger than it. This strength value is multiplied by a distance value

in {18, 20, 13, 5, 2} depending on that piece’s manhattan distance. The resulting values

for all friendly pieces are added together, and the resulting values for all opposing pieces
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are subtracted. Some additional corrections are added depending on whether pieces are

immediately threatened or frozen, for control of key squares around the trap (the squares

near the edge of the board are typically safer to hold), and for weak pieces standing directly

on the trap (which is good when the trap is threatened by the opponent, since that piece

can easily step off to become another defender, but is bad when the trap is already strongly

held, since it interferes with one’s own ability to capture).

The final value is included as a feature for the traps on the opponent’s side only, since

the traps on one’s own side will be accounted for when all of the features are computed

separately from the opponent’s perspective.

In practice, trap control appears to behave in a nonlinear fashion, in that increasing one’s

control of a trap that is under question is more important than increasing one’s control of

a trap that is already very strongly controlled, or very weakly controlled. Therefore, we

also include the same value with a logistic transform L(x) = 1/(1 + e−x) applied. For the

logistic transform, the values are scaled so that roughly the full range of trap control goes

from x = −5 to x = 5.

TRAP CONTROL LINEAR: The sum of the trap control heuristics for the opponent’s traps.

TRAP CONTROL LOGISTIC: The sum of the logistic-transformed trap control heuristics

for the opponent’s traps.

Piece Advancement

We include some features that take into account the advancement of different pieces as well

as the different amounts of “influence” in their area.

Influence is determined by the same calculation as in the move ordering features. The

square under each piece is assigned a value in {75, 55, 50, 45, 40, 35, 30, 25, 15} according

to the number of opposing pieces stronger than that piece, using negative values for the

opponent and zero for empty squares, and then values are diffused four times, where for

each adjacent square, a diffusion transfers 0.16 of the value of that square.

ADVANCED BASE(type,y): The number of pieces of type type (0-11) at row y.

ADVANCED INFL(type,y): The total influence of pieces of type type (0-11) at row y.

Goal Threats

Rabbits are more valuable if they are threatening to reach goal soon. For each friendly

rabbit, we compute an approximation of the number of steps that it would take for that
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rabbit to reach goal if the current player were allowed to make any number of steps in a

row, without being limited to just four steps per turn. These steps including possibly using

other friendly pieces to push opposing pieces out of the way or unfreeze the rabbit.

GOAL THREAT(s): The number of rabbits threatening to reach goal in approximately s

(0-9) steps.

Capture Threats

For each piece, we compute an estimate of the number of steps it would take the opponent

to capture that piece, as well as the number of steps it would take for the opponent to

“attack” it by placing a stronger piece adjacent to it.

CAPTURE THREAT(type,s,thisturn): Number of pieces of type type (0-11) threatened with

capture in s (0-6) steps, where thisturn indicates whether or not it is actually the current

player’s turn and the capture can be performed immediately.

ATTACK THREAT(type,s): Number of pieces of type type (0-11) such that the opponent is

threatening to place an stronger piece next to it in s (0-6) steps.

ATTACK THREAT ROW(type,s,y): Number of pieces of type type (0-11) such that the op-

ponent is threatening to place an stronger piece next to it in s (0-6) steps, where the piece is

on row y.

Blocking

Just as in move-ordering, we compute features for pieces that are blocked from entering or

leaving each square, either by a single sufficiently strong piece, or by a phalanx of multiple

weak pieces.

BLOCKED(type,dir,isphalanx ): Number of pieces of type type (0-11) blocked in direction dir

(0-2), where isphalanx (0-1) indicates whether a single piece or a phalanx was used.

Frames

There are several important long-term strategic configurations that can occur in Arimaa

that can have very high value, even comparable to the material value of a strong piece. One

such type of configuration is called a frame (see Appendix B for an illustration). In a frame,

a piece is stuck on a trap square with only one defender and is unable to step or push its

way off that trap square. This means that the single defending piece, usually the elephant,
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is unable to move without sacrificing that piece. In this way, the holder of the frame can

pin down the opposing elephant using only weaker pieces, leaving his own elephant as the

strongest free piece.

Not all frames are advantageous, however. In particular, if maintaining the frame requires

the elephant as well, then the holder of the frame does not always gain the strongest free

piece. Therefore, we compute a heuristic value that attempts to estimate whether a frame

provides an advantage, given the current material balance on both sides. This is roughly

done by pairing off the remaining pieces against the opponent’s pieces, adding or subtracting

values in {500,140,50,20,10,5,2,1} for each pairing depending who has the strongest piece

in that pairing, with some minor corrections and adjustments depending on the details of

the frame.

In general, the opponent’s only option against such a frame, aside from sacrificing the

framed piece, is to attempt to break the frame by moving other strong pieces to push or

pull away the pieces that are keeping the framed piece stuck on the trap. Therefore, it is

important to consider also how many steps the opponent is away from breaking the frame

when assessing its value. To enable better generalization, since frames are relatively rare,

we include redundant features below that apply regardless of the number of steps to break

the frame.

FRAME BASE(type): Number of pieces of type type (0-11) framed.

FRAME VALUE(type): Heuristic value of framed pieces of pieces of type type (0-11).

FRAME BASE BREAK(type,s): Number of pieces of type type (0-11) framed, breakable in s

(1-8) steps.

FRAME VALUE BREAK(type,s): Heuristic value of framed pieces of type type (0-11), break-

able in s (1-8) steps.

Hostages

Another important long-term strategic configuration is called the hostage (see Appendix B

for an illustration). In a hostage situation, a stronger piece can holds a weaker opposing

piece hostage near a trap square so that it cannot escape and so that it is threatened with

capture so long as the trap is not defended. Such a situation can also give the strongest

free piece. For instance, in a camel hostage, the elephant holds the opposing camel hostage,

forcing the opposing elephant to defend. This effectively takes both elephants and the

opposing camel out of play from the rest of the board, leaving the friendly camel as the

strongest free piece.
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Not all hostages are profitable, however. In the same manner as for frames, we also

compute a heuristic value for hostages to try to estimate whether holding the hostage gives

a long term advantage, such as, most notably, having the strongest free piece.

HOSTAGE BASE(heldtype,holdertype): Number of instances of piece of type holdertype (0-6)

holding opponent piece of type heldtype (0-11) hostage.

HOSTAGE VALUE(heldtype,holdertype): Heuristic value of piece of type holdertype (0-6)

holding opponent piece of type heldtype (0-11) hostage.

Elephant Blockades

Another important long-term strategic configuration is called the elephant blockade (see

Appendix B for an illustration). It is possible for a large number of weak pieces to surround

the opposing elephant near the edge of the board and prevent it from moving. This is often

massively advantageous for the side holding the blockade.

Again, not all blockades are valuable, particularly if the elephant itself is required to hold

the blockade. Just as with frames and hostages, we compute a heuristic estimate that tries

to determine if holding the blockade leads to an advantage by estimating to what degree it

provides the strongest free piece.

The position of a blockade matters greatly, because on the edge, they require many fewer

pieces to hold, and on the opponent’s side of the board, the opponent’s own pieces can be

used to help the blockade. Additionally, partial blockades can also be profitable, but to a

lesser extent. Therefore, we add a heuristic parameter called “tightness”, where 0 indicates

that the elephant can’t move at all, 1 indicates that the elephant can move, but not very

usefully, and 2 indicates that the elephant can move and free itself, but could take some

time to do so.

As with frames, the opponent’s only recourse is often to try to break the blockade, by

advancing other strong pieces to push or pull away the numerous weak pieces that form the

blockade. Therefore, as with frames, we compute an estimate of the number of steps that

the opponent is away from breaking the blockade.

To enable better generalization, we separate out many of these features into separate

classes.

EBLOCKADE CENTRAL(d,t): Elephant blockaded at manhattan distance d (0-6) from the

center four squares of the board, and the blockade has a tightness of t (0-2). (binary)

EBLOCKADE ROW(y,t): Elephant blockaded on row y (0-7), and the blockade has a tight-

ness of t(0-2). (binary)
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EBLOCKADE CENTRAL VALUE(d,t): Heuristic value of elephant blockaded at manhattan

distance d (0-6) from the center four squares of the board, and the blockade has a tightness

of t(0-2).

EBLOCKADE ROW VALUE(y,t): Heuristic value of elephant blockaded on row y (0-7), and

the blockade has a tightness of t(0-2).

EBLOCKADE CENTRAL BREAK(d,s): Elephant blockaded at manhattan distance d (0-6)

from the center four squares of the board, and the blockade can be broken in s (1-8) steps.

(binary)

EBLOCKADE ROW BREAK(y,s): Elephant blockaded on row y (0-7), and the blockade can

be broken in s (1-8) steps. (binary)

EBLOCKADE CENTRAL BREAK VALUE(d,s): Heuristic value of elephant blockaded at

manhattan distance d (0-6) from the center four squares of the board, and the blockade can

be broken in s (1-8) steps.

EBLOCKADE ROW BREAK VALUE(y,s): Heuristic value of elephant blockaded on row y

(0-7), and the blockade can be broken in s (1-8) steps.

Elephant Mobility

In general, the ability of the elephant to move quickly around the board is critical, since it

is the strongest piece. This motivates some additional features, measuring various aspects

of the mobility of the elephant.

EMOBILITY 3(d,n): The elephant is at a manhattan distance d (0-6) from the center of the

board and can reach n (0-31) different squares on the board by making 3 steps, including

pushes/pulls. (binary)

EMOBILITY 4(d,n): The elephant is at a manhattan distance d (0-6) from the center of the

board and can reach n (0-31) different squares on the board by making 4 steps, including

pushes/pulls. (binary)

E TRAP DIST(d,t): The elephant is at a manhattan distance of d (0-5) from trap t (0-3).

3.4 Implementation and Training

3.4.1 Algorithm Parameters and Implementation

We implemented all four algorithms, TD-Root, TD-Leaf, Rootstrap, Treestrap, using the

above feature set with a linear evaluation function, updating weights by gradient descent.
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A series of preliminary experiments were performed to determine reasonable learning rates.

For each algorithm, we settled on a learning rate of α = 10−6 (surprisingly, the same for

each algorithm). For each algorithm, we found that this was roughly the highest rate that

gave relatively consistent results. Higher rates tended to give unreliable results, sometimes

giving moderately higher rates of improvement but also frequent unlearning and occasional

divergence of weights.

For both of the temporal difference algorithms, we set λ = 0.7, a value that has been

used successfully by in reinforcement learning in Chess [2]. It seems plausible that a similar

value might work as well in Arimaa, given that the total game length in turns is comparable

and that the time-scale in turns over which various tactics “pay off” is not too different.

However, we did not attempt to tune the value of λ.

TD-Root and TD-Leaf only performed updates only at the ends of games, and ad-

ditionally, both algorithms used the modification of only training on negative temporal

differences, which appeared to perform at least as well, and possibly slightly better during

informal testing.

Treestrap was implemented using an alpha-beta search, and the alpha-beta version of the

algorithm was used for training. Additionally, a step-based search was used, as described

in Chapter 1. This means that the internal nodes of the tree used for updates include

numerous positions where only part of the steps of the current turn have been made. From

the perspective of achieving a good distribution of training instances, this is desirable,

because in performing a step-based search, the evaluation function is frequently called on

positions with only part of the steps made.

Unlike the temporal-difference methods, both Rootstrap and Treestrap performed up-

dates on every position. Since they do not depend directly on the temporal sequence of

positions within a game, the updates were also performed at the end of each move, rather

than at the end of each game.

For Treestrap, although all the interior nodes of the tree were used for updates, this

was not done until the end of search, so as not to change the evaluation function while the

alpha-beta search was ongoing. Nodes within a quiescence search (described below) were

not used for updates, although the results of quiescence searches were used. Additionally,

the learning rates for updates within the tree were normalized by the number of nodes in

the tree, as we found that without doing so, the learned weights behaved erratically, even

sometimes diverging.
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3.4.2 Playing Algorithm

For each of the algorithms, we played a learning agent using that algorithm against our

hand-coded program Sharp over a series of 2000 games. We then evaluated the learned

weights by playing a non-learning agent using those weights in a series of 100 games against

Sharp running at various depths, as well as an older 2010 version of Sharp. Draws were

counted as half of a win.3

The search algorithm used for the learning agents was the same search algorithm as

used by Sharp. This is an iterative-deepening alpha-beta search that incorporates the

standard enhancements described earlier in Section 1.4 of Chapter 1, namely hash tables

and quiescence search. In addition to pruning repeated positions, the hash table also caches

the best moves in each subtree, which are used for move ordering on subsequent iterations.

The remaining moves are sorted by the history heuristic [25]. Additionally, the Bradley-

Terry ordering developed in Chapter 2 was used to order (but not prune) the moves at the

root node of the search.

The quiescence search extends critical lines of the search involving captures to improve

the tactical evaluation. It is allowed to perform up to 3 steps in a single turn that capture

pieces or defend against possible captures by the opponent. These 3 steps are followed by

up to 4 steps of just captures, without any capture defenses, for a maximum 7 steps of

quiescence search.

Additionally a static decision tree is applied at each node in the search for detecting

whether a goal by any rabbit is possible within four steps. Whenever the player to move

can goal, the branch of the search is terminated immediately with the appropriate winning

score returned. Otherwise, if the opponent can goal, the move generator is restricted to

only a subset of moves within a certain radius of the goaling rabbit, a radius for which it is

provable that any more distant move cannot be relevant to stopping the rabbit. These goal

defense moves are also added to the quiescence search when goals are threatened during the

quiescence search.

3The Arimaa rules actually have no provision for draws because draw-like situations essentially never
happen in human games. In computer games, they can sometimes occur when both programs reach a
simultaneous local maximum in their evaluations and remain in it for a very long time, permuting pieces
slightly to avoid third-time repetitions. To handle this, we consider a game a draw if it lasts more than 500
moves.
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3.4.3 Opponents

Our primary opponent for both testing and training was Sharp. Although Sharp uses the

same search algorithm as the learning agents, its uses a hand-coded evaluation function,

rather than a learned one. Some of the heuristic components used in the function are similar

to the features in our feature set above, most notably much of the trap control heuristic, but

the evaluation overall is different, and is in fact somewhat more complex than our feature

set above.

The 2010 version of Sharp from a year ago was also used as a testing opponent. It differs

enough from the current version that it is not too unreasonable to consider it a different

program entirely. Most of its evaluation function is fundamentally different, as is its method

of quiescence search. Additionally, its playing style is more defensive and “home-oriented”,

whereas the current version plays a very aggressive “attack-oriented” style. Having the 2010

version as a testing opponent helps confirm that any differences in playing strength among

the learning agents are general, as opposed to exploitative of a single opponent or playing

style. Sharp 2010 is slightly stronger than the current Sharp when searching to equal depth,

but the current version is stronger when searching for the same amount of time.

3.4.4 Search Depth

Despite the speedup of alpha-beta pruning and the use of good move ordering and hash

tables, it remains extremely difficult to search deeply in Arimaa. In order to run enough

games, we were only able to perform searches to a depth of 5 steps during training. This is

a lookahead of only one turn, followed by one step of the opponent’s turn. However, in lines

of the search involving capture or goal threats, the quiescence search extends this up to a

maximum of 12 steps, or three turns of lookahead. This is still very limited, but enough to

see many of the basic tactics in the game.

Games for testing the weights were performed with Sharp searching at depths of 4, 6,

and 7 steps, and the agent using the learned weights searching at a depth of 6 steps.

3.4.5 Ensuring Randomness

One thing we strongly wish to avoid in both training and testing is for identical or nearly

identical games to be played over and over due to a lack of randomness by the players.

We avoid this in a few ways. Firstly, Sharp varies its moves sometimes. This is done by

adding a small random value to its evaluation of each position, drawn from an approximately
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Gaussian distribution, with standard deviation scaled to around 1/40th of the value of a

rabbit. This causes Sharp to sometimes choose different moves in the same position if those

moves lead to positions that it judges to be very close in value. Additionally, we gain some

amount of variation during training games simply as a result of the learned weights changing

over time, although not during testing. Finally, a significant amount of randomness comes

from our procedure for the setup phase, as described below.

3.4.6 Setup Phase

One thing we have neglected to address so far is the process of setting up the board. Up

until now, we have only considered algorithms and methods for making moves on the board.

However, as explained in the rules, Arimaa actually begins with a setup phase where both

players place their pieces within their two home rows.

Fortunately, as long as a setup is used that is not too bad, it does not matter too much,

since the actual fighting and maneuvering in the middle of the game during normal play

is much more important in determining the outcome of the game, especially with the very

low depth limits used in our training and testing games. Therefore, we are relatively free

to vary the setup, allowing it to become a tool for us to introduce additional randomness

into the game.

We use a randomized method that generates numerous random setups and keeps the one

with the best score according to a scoring method. Setups with stronger pieces in front,

rabbits on the sides and back, and the elephant near the center are given higher scores and

are significantly more likely to be chosen. Manual inspection indicates that while many of

the setups produced by this method may not be great, they are mostly reasonable and not

too disadvantageous. At the same time, there is enough random variation that nearly every

setup during the course of training and testing is unique.

3.5 Experimental Results

3.5.1 Comparison of Algorithms

We tested all four algorithms as described above, training against our program Sharp for

2000 games, with both the learning agent and Sharp searching to a fixed depth of 5 steps.

Each run took approximately a week. At various points, we evaluated each agent against

both the current and the 2010 versions of Sharp searching to various fixed depths. For the

testing games played to determine the Elo ratings, the learned agents searched to a fixed
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Figure 3.1: Elo ratings over the course of training with 95% confidence intervals. For all
algorithms, α = 10−6, and for TD-Root and TD-Leaf, λ = 0.7. Training opponent was
Sharp, training searches were done to depth 5, testing at depth 6.
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Sharp Version & Depth D4 D6 D7 2010D4 2010D6 2010D7

Untrained 70 10 3 46 9 3

TD-Root 132 45 28 128 47 27

TD-Leaf 130 48 22 118 46 40

Rootstrap 137 51 34 135 45 40

Treestrap 132 29 16 106 27 25

Table 3.1: Evaluation of the final agents produced by each algorithm, searching to depth
6 against both current and 2010 versions of Sharp searching to various depths. Each box
indicates the number of games won by that agent against Sharp out of 200 games.

depth of 6 steps. The results are displayed in Figure 3.1 and in Table 3.1.

Out of all the algorithms, Rootstrap performed the best, and in particular, outperformed

the Treestrap algorithm. This is surprising, because it is opposite to the results obtained by

Veness et al. [35], where the Treestrap algorithm outperformed the Rootstrap algorithm by

a large margin in Chess. One would intuitively expect Treestrap to outperform Rootstrap

because it is essentially the same algorithm performing the same updates, except that it

uses the intermediate results in the search tree to perform additional updates and thereby

learn faster.

This was not quite the case for our implementation, since we always normalized by the

number of nodes in the search tree. However, we found that even at higher learning rates,

Treestrap continued to underperform, and like the other algorithms, became unstable and

likely to unlearn or diverge.

We believe the poor performance of Treestrap occurred because the search depths were

too shallow. As discussed earlier, due to computational limits, we were only able to search

5 steps deep for each move, which is barely greater than 1 turn (although this was extended

by the quiescence search at many nodes). As a result, it appears that the additional

updates performed by Treestrap using the interior nodes did not add any significant useful

information for learning, because they were always from very similar positions, and rather

merely acted as a source of additional noise. Moreover, because they were searched to an

even shallower depth than the root, the resulting updates would be of much lower quality.

Both of the temporal difference algorithms performed very well, almost at the level of

Rootstrap, and it is easily conceivable that as parameter settings and the precise training

methods are varied, Rootstrap and the temporal difference algorithms could easily alter-

nately overtake one another. We suspect that a reason for the strong performance of the
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temporal difference methods relative to Rootstrap is the relatively low search depth, making

learning from minimax search not as effective. Furthermore, it is possible that they were

more effective at learning longer-term strategic features. Given this, it is not surprising that

they did well, even in a moderately tactical game. Also notable is the fact that both TD-

Leaf and TD-Root performed very similarly, and again, we attribute this to the relatively

shallow depth of the search tree.

Unfortunately, while significant learning did occur with all algorithms, none of them

were quite able to meet the performance of our hand-coded evaluation in Sharp, and the

most games any agent won against Sharp at an equal search depth of 6 was the Rootstrap

agent’s 51 wins out of 200. However, as seen in the next section, it is possible to achieve

even better results with a higher learning rate, although not consistently.

3.5.2 Higher Learning Rates

As we mentioned earlier, our learning rate of α = 10−6 was chosen because it was the

highest learning rate that appeared to give relatively consistent results for each algorithm.

At higher learning rates, all algorithms exhibited much less stability, frequently unlearn-

ing good results and plummeting in performance due to the weights diverging or wandering

to poor values due to noise. However, they also occasionally achieved results that were

significantly better than the versions with lower learning rates.

Our best result was achieved by one particularly spectacular run using Rootstrap with

a significantly higher learning rate of α = 10−5 rather than α = 10−6, and is depicted in

Figure 3.2.

Sharp Version & Depth D4 D6 D7 2010D4 2010D6 2010D7

Rootstrap, α = 10−5 165 74 59 144 63 54

Rootstrap, α = 10−6 137 51 34 135 45 40

Table 3.2: Evaluation of the agents in 3.2 at their respective peaks. Each box indicates the
number of games won by that agent against Sharp out of 200 games.

What is exciting about this result is that, as seen in Table 3.2, the performance of the

agent using the higher learning rate, at its peak, was not too far from the performance of

our hand-coded evaluation in Sharp. At an equal search depth of 6, the agent won 74 games

out of 200 against Sharp, indicating that it was indeed not much weaker than Sharp. We

find these results strongly encouraging.
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Figure 3.2: Elo ratings over the course of training, with 95% confidence intervals. A learning
rate of α = 10−5 performs very well, until a sudden drop after 2000 games!

This and one or two similar results in our testing indicate that there exist much stronger

evaluation functions over the current feature set that are not yet being found. Furthermore,

they suggest that all it may take to achieve them are improvements in the training process,

such as a larger number of training games, adaptive learning rates, and deeper search depths

during training.

The only limitation so far has been time, since playing thousands of games to test

various parameters is costly, as is increasing the search depth or the number of training

games. Because of this, we have not yet had the time to fully pursue such alternatives

after our initial testing and tuning of the learning rates and our obtaining of these results.

However, we believe that with additional work, we have every chance to surpass the current

performance.

3.5.3 Future Directions

We offer some additional directions by which we might be able to surpass our hand-coded

evaluation and improve the state of evaluation in Arimaa.

Even though Rootstrap performed the best in our testing, it only did so by a small
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margin, and even among just these four algorithms, it is not clear yet which will prove to be

the most effective for Arimaa. In particular, we believe that there is substantial potential

for the Treestrap algorithm and variants of it still to succeed, particularly if we increase

the search depth. Even with the relatively shallow search depths, we believe there is much

information in the search not being exploited optimally yet. It is also possible that there

is a bug in our current implementation, and if so, we might observe substantially better

performance if it were fixed.

Moreover, we believe there is potential for considering a hybrid algorithm that uses both

temporal difference methods and direct backups from the search tree as in Rootstrap and

Treestrap. Under the hypothesis that direct backups using minimax values from the tree are

more effective detecting short-term tactics and learning weights for features that correlate

with them, and under the hypothesis that temporal difference updates are more effective

at weighting strategic features that lead to long-term losses or gains in the future, perhaps

a hybrid algorithm would be able to get the best of both worlds.

Thirdly, we believe that improvements to the current feature set may help significantly.

Currently, there are a number of straightforward tactical and strategic features that we are

missing, such as frozen pieces, specific features for goal threats and defenses, and combined

features for trap control and advancement. One might also try the addition of pattern-based

features, or look at methods for automatic detection of potential features.

Finally, given the relative success of these algorithms at learning when initialized with

only raw material weights, one wonders how much better they might do if used to optimize

an existing evaluation function. Granted, there are additional challenges associated with

tuning some of the nonlinear components of evaluation functions like the one currently used

by Sharp. However, we believe that there are many possibilities here, and this is something

we hope to try with Sharp’s evaluation in the near future.



Chapter 4

Conclusion

In Chapter 2, we showed that using a generalized Bradley-Terry model, it is possible to learn

a highly accurate move-ordering function for Arimaa, and moreover that such a function

can be used effectively for pruning to speed up search and improve the level of play. Our

move ordering function succeeds almost 90 percent of the time in ranking the expert move

within the top 5 percent of the ordering, and we have used it to great success in our current

program Sharp to prune moves and improve the efficiency of the search, increasing the

strength of the program by around 140 Elo at short time controls.

In Chapter 3, we showed that any of several algorithms is capable of substantial auto-

mated learning in Arimaa, beginning with only raw material weights. While none of them

were able to achieve the same level of performance as our hand-coded evaluation, our best

result came quite close, winning 74 out of 200 games against our bot Sharp at equal search

depths. Additionally, there is evidence that significant improvement is possible, and that

with future work, it will be possible to use such techniques to surpass the best current

methods for evaluation in Arimaa.

In both move ordering and evaluation, we gave several possible avenues by which our

results might be improved further. For move ordering, there is a possibility for massive

improvement in finding a way to compute the move ordering more efficiently so as to use

it to prune within the tree as well. There is also the potential to improve the prediction

accuracy by resolving the memory usage of the Bradley-Terry model optimization to allow

the full data set to be used. For learning an evaluation function, it is almost certainly the

case that our current training procedure can be improved, and we believe also that there is

the potential for improvements in the algorithms themselves. And in both of these areas,

we believe that there are gains to be made by adding new types of features to the feature

sets we used. All of these have the potential to further the results we have achieved so far.

Overall, we believe our work is a vindication for the ability of machine learning to improve

64
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the state-of-the-art in Arimaa. We have demonstrated that there is much potential for

algorithms and techniques in ranking, classification, and reinforcement learning to raise the

level of computer play, and there remains much to be explored and tried. We believe through

a combination of such techniques and continued improvements in search and evaluation, it

will be possible to achieve world-class-level play in Arimaa, perhaps even within the next

decade.
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Appendix A

Derivation of the Bradley-Terry Up-

date Rule

We reproduce the analysis and optimization procedure described in [6].

In summary, in our generalized Bradley-Terry model, we consider competitions between

teams of agents where agent i has strength γi. The strength of a team T ⊂ [1, ..., N ] is

γ(T ) =
∏
i∈T γi, and in a competition between teams T1, ..., Tn, the probability that Tj wins

is:

P [Tj wins] =
γ(Tj)∑n
i=1 γ(Ti)

Given a series of results Rj of competitions and the winners of those competitions, we seek

the strengths γ = (γ1, γ2, ..., γm) that optimize the likelihood:

P [R|γ]

Assuming independence of the results:

P [R|γ] =
∏
Rj∈R

P [Rj |γ]

Then, by the model, every individual P [Rj |γ] is of the form:

γ(Tw)∑n
k=1 γ(Tk)

=

∏
i∈Tw γi∑n

k=1

∏
i∈Tk γi

where w is the index of the winning team.

Focusing on a single γi that we wish to update, and fixing the values of all other param-

eters in γ as constants, we may write this as:

γ(Tw)∑n
k=1 γ(Tk)

=
Aijγi +Bij
Cijγi +Dij
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where Aij , Bij , Cij , Dij are constants and either Aij = 0 or Bij = 0. In particular Aij 6= 0

iff the winning team contains feature i.

For example, if we have have three teams T1 = {1, 2, 3}, T2 = {2, 4}, T3 = {1, 5, 6, 7},
and T1 is the winner, then:

P [Rj |γ]

=
γ1γ2γ3

γ1γ2γ3 + γ2γ4 + γ1γ5γ6γ7

=
(γ2γ3)γ1 + 0

(γ2γ3 + γ5γ6γ7)γ1 + γ2γ4

so that Aij = γ2γ3, Bij = 0, Cij = γ2γ3 + γ5γ6γ7 and Dij = γ2γ4.

Then, we use minorization-maximization on the log probability to update γi. We have:

logP [R|γ]

= log

N∏
j=1

Aijγi +Bij
Cijγi +Dij

=
N∑
j=1

log(Aijγi +Bij)−
N∑
j=1

log(Cijγi +Dij)

Since for every j either Aij = 0 or Bij = 0, for the left sum, we obtain terms of the form

logBij or logAij + log γi. In each case, we may drop all the constants logAij and logBij

since they do not affect the maximization, and letting Wj be the number of times Aij 6= 0,

we may maximize:

Wj log x−
N∑
j=1

log(Cijx+Dij)

where currently x = γi. We minorize the right sum by taking the tangents to the logarithms

at x = γi, and after simplification, the expression to be maximized becomes:

Wj log x−
N∑
j=1

Cijx

Cijγi +Dij

Letting Ej = Cijγi + Dij be the total strength of all participants in competition j, the

maximum is achieved at:
Wj∑N
j=1

Cij
Ej
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And therefore, our update rule for a single γi is:

γi ←
Wj∑N
j=1

Cij
Ej

We do not prove any theoretical results here for the convergence of our generalization of the

Bradley-Terry model. For a discussion on the general convergence properties of this type

of minorization-maximization on Bradley-Terry models, see [15], as well as [14].



Appendix B

Strategic Formations in Arimaa

There are several strategic formations in Arimaa that can be very valuable over the long-

term. Most of them involve various ways of limiting the mobility of stronger opposing pieces

using weaker pieces, so that one’s own pieces become the strongest on the remainder of the

board. We describe a few such formations here.

Phalanxes

Figure B.1: Both Gold and Silver have formed phalanx formations to block the movement
of opposing pieces.

A large number of strategic formations in Arimaa use subformations called phalanxes in

order to block pieces from reaching certain squares. In a phalanx, a cluster of weak pieces
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blocks every available space around a certain piece. This prevents a stronger opposing piece

from pushing into that square, simply because there is no empty square for the pushed piece

to be displaced to. Such formations are created very frequently during the game.

For example, in Figure B.1, the highlighted cluster of gold rabbits around g2 blocks the

silver camel at g3 from pushing its way south, because there is no adjacent empty space

where the gold rabbit at g2 could be pushed to. This greatly delays the threat of silver’s h3

rabbit, because if the camel could push its way south, it would not be long before it could

push enough pieces out of the way to allow the silver rabbit to reach goal.

Similarly, there is a gold phalanx at d5, preventing the silver elephant from going west

to defend the c6 trap. This guarantees that gold will be able to start capturing silver pieces

in that trap.

Silver has his own phalanxes at e6 and d7 preventing the gold elephant from moving

into those squares, but unfortunately, they are not helpful, since Gold’s elephant is happy

to remain where it is, capturing pieces in the c6 trap. This illustrates that sometimes

phalanxes may not be so useful. Nonetheless, they are an important component of tactics

in Arimaa, and form key pieces of some of the subsequent formations.

Frames

Figure B.2: The silver elephant on d3 cannot move without sacrificing the horse framed on
c3.
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Figure B.2 illustrates a the strategic formation in Arimaa known as a frame. In this

position, the silver horse cannot push its way off of the c3 trap square because it is framed

by the two gold horses and a phalanx of weaker pieces to the south. This means that the

silver elephant cannot move either, because it is the only defender of the horse, and moving

would cause the horse to be captured. Therefore, Gold’s elephant is now the strongest free

piece on the remainder of the board, giving Gold a large advantage. Silver’s only options

are to try to break the frame by bringing his camel to remove the gold horses, or to sacrifice

his horse, accepting a major material loss to regain the mobility of his elephant.

Hostages

Figure B.3: The silver elephant holds the gold camel hostage next to the f6 trap, forcing
the gold elephant to defend.

Figure B.3 depicts another common strategic formation in Arimaa, known as the hostage.

The gold camel on g7 is frozen by the silver elephant and is continually threatened with

capture in the f6 trap. This prevents the gold elephant from moving away from that trap,

since otherwise Gold would lose one of his most valuable pieces. Therefore, Silver’s camel

becomes the strongest free piece on the rest of the board. Moreover, Silver’s horses can

attack freely, since the only pieces that could threaten them, the gold elephant and camel,

are occupied.

Possibly Gold’s best option is to advance a large number of pieces to try to defend the

f6 trap with multiple weaker pieces and free his elephant again, before the silver horses
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and camel cause too much damage. If that does not work, Gold can only settle for moving

his elephant away to attack one of Silver’s horses, accepting an unfavorable horse-for-camel

trade.

Figure B.4: The gold horse on g3 holds a silver cat hostage. The silver horse on b6 holds a
gold rabbit hostage.

Other types of hostages are also common, such as in Figure B.4, where gold holds a cat

hostage on h3 using his horse. Silver also holds a rabbit hostage on a6 using his own horse,

but not for much longer, since the gold elephant and camel are about to pull the horse away.

Elephant Blockades

A particularly devastating formation in Arimaa is the elephant blockade. In Figure B.5,

Gold’s elephant is blocked on three sides by silver phalanxes, and the only remaining di-

rection it can step is into a trap, where it would immediately be captured. With Gold’s

elephant unable to move, Silver’s elephant dominates the board. Gold’s only hope is to try

to free his elephant by using his horses and camel to break the blockade, but with both

the silver elephant and camel active in the center, Silver will almost surely be able to win

something in the meantime.
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Figure B.5: The gold elephant is blockaded.


