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We study envy-free (EF) mechanisms for multi-unit auctions with budgeted agents that approximately
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1. INTRODUCTION
This paper deals with multi-unit auctions with budgets. I.e., selling multiple identical
items to a variety of bidders, each with their own valuation per item and budget. This
setting was studied by [Dobzinski et al. 2008] who gave a Pareto-optimal mechanism
for this problem that is incentive compatible with respect to valuations. A natural
example for this framework is online advertisement, where content pages (such as
Yahoo or CNN) attempt to maximize the revenue collected from advertisers.

Price discrimination [Carlton and Perloff 2005] refers to any nonuniform pricing
policy used by a firm with market power to maximize its profits. Price discrimination
is profitable because consumers who value the good more are willing to pay more.

Price discrimination may have some drawbacks:

(1) Customer resentment: In a 28 month study, covering 50,000 customers, [Anderson
and Simester 2010] found that customers who felt cheated due to price discrimi-
nation “. . . react by making fewer subsequent purchases from the firm. The effect
is largest among the firm’s most valuable customers: those whose prior purchases
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were most recent and at the highest prices.” Similar sentiment has been observed
in queues, where people prefer longer waits and no queue jumping over shorter,
but unfair, queues [Avi-Itzhak et al. 2007].

(2) It may violate price discrimination laws: The Robinson-Patman Act of 1936 is a US
federal law that prohibits certain forms of price discrimination by requiring that
the seller offer the same prices to customers at a given level of trade. The Euro-
pean Community Competition Law also forbids some forms of price discrimination
[Geradin and Petit 2006].

Unfortunately, the various auctions now in use, e.g., the VCG mechanism (not useful
in the context of budgets), or the Google Auction of TV Ads [Nisan et al. 2009] (simul-
taneous ascending auction), all produce “unfair” prices. By unfair we mean that the
same product gets sold at different prices. Moreover, if we insist on incentive compati-
ble multi-unit auctions (with respect to valuation), the “unfair” [Dobzinski et al. 2008]
auction is the only possibility.

Thus, we turn to multi-unit envy-free (EF) mechanisms that are not incentive com-
patible. Generally, envy-free pricing (with budgets) allows one to set arbitrary bundle
prices. One can define the following envy-free notions, ordered from the most accept-
able to the least acceptable in terms of “customer experience”:

(1) Envy free item pricing: given valuations and budgets, the mechanism sets a price
of p per item. An agent chooses whatever number of items she wants, at this price.
I.e., an agent with value v per item and budget b will purchase nothing if v < p,
will purchase bb/pc items if v > p, and will be indifferent to purchasing any 0 ≤ i ≤
bb/pc items if v = p.
Envy free item pricing must choose p so that there is no over demand. However,
envy free prices need not (and indeed, in some cases, cannot) clear the market, so
envy free pricing is not Walrasian pricing.

(2) Envy free item pricing with maximal quantity limits — (h, p) pricing: like envy
free item pricing, but no agent is allowed to purchase more than h items. I.e., with
valuation v per item and budget b an agent will choose to purchase no items if v < p
and will purchase min(h, bb/pc) items otherwise. If v = p (the utility for the agent
is zero), then the agent is indifferent between purchasing any 0 ≤ i ≤ bb/pc items.
Here, (h, p) need to be such that the auctioneer will never run short of items.

(3) Envy free item pricing with minimum and maximal quantity limits — (`, h, p)
pricing: The agent will purchase nothing if v < p or if b < ` · p, and will pur-
chase min(bb/pc, h) items otherwise. Agents with v = p are indifferent between
purchasing any 0 ≤ i ≤ bb/pc items. As before, (`, h, p∗) are such that there is no
over-demand.

(4) Envy-free bundle pricing: On sale is a set of “shrinkwrapped” bundles of items,
each with its own price tag. These bundle prices are envy-free in that every agent
with budget b and per item value v can be assigned a “best possible” bundle B
amongst bundles with price(B) ≤ b — maximizing (# items in B) · v − price(B) —
without agents fighting over bundles. Agents whose best possible bundle leaves
them with zero utility are indifferent between purchasing the bundle and not.
Envy-free bundle pricing is more general than envy-free item pricing or its vari-
ants above. Throughout the paper, envy-free (EF) without additional quantifiers
refers to envy-free bundle prices.

(5) Arbitrary pricing: The pricing of bundles is arbitrary, different agents may get
different prices for identical bundles. Agents can (and will) complain about unfair-
ness, as loudly as possible.



Item pricing, (h, p)-pricing and (`, h, p)-pricing are examples of proportional bundle
pricing. I.e., where price per unit does not depend on the quantity purchased by agents.
There are other more complicated examples of proportional pricing, e.g., when one can
purchase only a prime number of items.

We remark that proportional pricing does not fall into any of the categories of price
discrimination as defined in [Carlton and Perloff 2005] and as viewed under European
Community law [Geradin and Petit 2006] (1st, 2nd and 3rd degrees of price discrimi-
nation).

Pricing schemes 1 – 4 all produce envy-free allocations, but may produce different
revenue, and may not be equally acceptable to the consumer. Unfortunately, pricing
schemes that offer more revenue are less acceptable: item pricing is a special case of
(h, p) pricing, which is a special case of (`, h, p) pricing, which is itself a special case of
envy-free bundle pricing, which is (obviously) a special case of unfair pricing (arbitrary
prices). Let Rev(α) denote the maximal revenue attainable by pricing schemes of type
α, then we have:

Rev


EF
item
pricing

≤Rev
 (h, p)

pricing

≤Rev
 (`, h, p)

pricing

≤Rev


EF
bundle
pricing

≤Rev
 “unfair”

pricing

.
In Section 3, the above inequalities are shown to be strict. In particular, we show

examples where:

— Item pricing obtains no more than 1/m of the revenue of the best (h, p)-pricing.
— (h, p)-pricing obtains no revenue, whereas (`, h, p)-pricing gets revenue > 0.
— Proportional pricing obtains no more than 1/2 of the revenue of the best envy-free

bundle pricing.

On the other hand, the main result of the paper is a construction of an (`, h, p)-pricing
scheme that gives a 1/2-approximation to any envy-free pricing scheme. Since an
(`, h, p)-pricing scheme is, in particular, a proportional scheme, the last point above
implies that our main result is tight with respect to any proportional scheme. It is in-
teresting that within the broad class of proportional pricing schemes, the simple form
of (`, h, p)-pricing is sufficient to establish a tight bound.

Whereas item pricing is the most commonly used pricing scheme in supermarkets,
limits on the minimal and maximum quantities for sale are also frequent in brick
and mortar shops, and thus it seems that they should be acceptable to customers in
an online shop. Moreover, as the prices and limits magically ensure that there is no
shortage of goods, customers should find little reason to complain.

One may intuitively understand the limit of no more than h items as a form of
“wartime rationing”, there is not enough supply to meet all demand at the price chosen
(creating envy), so the upper limit of h items reduces demand. The lower bound of `
can be interpreted as follows: there is too much demand from the very poor, and any
envy free pricing will have too little revenue with them around. It is better (in terms of
revenue) to remove the poor from the picture but setting a minimal quantity for sale
— by definition, the poor cannot be envious (they cannot afford to purchase anything),
so they can be ignored and then prices set to maximize revenue amongst the “rich”.

Envy-free allocations were defined by [Foley 1967] (see also [Varian 1974]). A key
property of such allocations is that no one envies anyone else. Informally, no agent
wants to switch his allocation with another agent.

Unfortunately, some confusion now exists with respect to the definition of an envy-
free allocation. In recent literature concerned with revenue maximization of combi-
natorial auctions, envy-free pricing has been identified with item pricing ([Guruswami



et al. 2005] and much subsequent work). Identical items must be given a per item price,
and the allocation to an agent must be a set of (identical or not) items that maximize
the agent utility, given these item prices.

Envy-freeness can be viewed as a generalization of Walrasian equilibria. The differ-
ences are as follows: (i) Walrasian pricing is for individual items and bundle prices are
implicit, see discussion above for envy-free variants (ii) envy-free allocations do not in-
sist that the market clears, in the context of multi-unit auctions this means that there
may be unsold items.

For multi-unit auctions without budget constraints (the standard quasi-linear
model), it is trivial to give an envy-free allocation: give all m items to some agent
with maximal valuation, (say vi), set the price of these m items to be mvi. It is easy to
see that this is also the outcome that maximizes both social welfare and revenue.

The situation becomes significantly more difficult if agents have budget constraints.
Indeed, there are simple cases in which no envy-free auction can sell any item at all.

For example, consider the case of m + 1 identical bidders, each of which has budget
1 and valuation 2. As all bidders are identical, and there are only m items for m + 1
bidders, there must be some bidder that gets nothing and this bidder will be envious of
any other bidder that gets something. Ergo, the only envy-free allocation is to allocate
nothing and extract no revenue.

1.1. Our Contributions
The envy-free revenue maximization problem seeks to find the [bundle priced] envy-
free outcome that maximizes the seller’s revenue.

We show the following:

(1) We compute a price p so that selling at an [envy-free] item price of p gives revenue
no less than 1/2 the revenue of any item pricing (Section 4.1).

(2) If the number of items is ≥ the number of bidders, we compute h, p, so that the
[envy-free] (h, p)-pricing scheme produces revenue within a factor of 1/2 of any
envy-free bundle pricing (Section 5).

(3) If the number of items is less than the number of bidders, we compute `, h ,p, so
that the [envy-free] (`, h, p)-pricing scheme produces revenue within a factor of 1/2
of any envy-free bundle pricing (Section 4).

We also show that the envy-free revenue maximization problem is NP-hard. This
is in contrast to the same problem in a quasi-linear world, where finding the envy-
free revenue-maximizing outcome is trivial. Surprisingly, even without requiring com-
putational efficiency, this problem is far from being straightforward. We provide
an algorithm that solves this problem in doubly exponential time; in particular, in
O(poly(n)2n+m) time (where the input size is O(n+ log(m))).

1.2. Related Work
Most of the recent work on envy-free allocations, and many of the hardness results,
are in the context of item pricing [Guruswami et al. 2005; Demaine et al. 2006; Briest
and Krysta 2006; Cheung and Swamy 2008; Balcan et al. 2008].

Determining the pricing for revenue optimal item priced envy-free allocations is
hard for a wide variety of combinatorial auction settings, and there are various in-
approximability results as well as a variety of approximation algorithms. Revenue op-
timal bundle priced envy-free allocations can be computed in polynomial time in some
special cases (see [Fiat and Wingarten 2009]).

In many of the problems, one can distinguish between the limited supply [Gu-
ruswami et al. 2005; Cheung and Swamy 2008] setting (generally more difficult) and



the unlimited supply [Guruswami et al. 2005; Balcan et al. 2008; Demaine et al. 2006]
(typically, easier). We consider the limited supply setting.

Other recent work on envy-free allocations show a strong connection between envy-
freeness and incentive compatibility [Hartline and Yan 2011] in the context of auc-
tions. Other papers that consider the combination of incentive compatibility and envy-
freeness study capacitated agents (i.e., agents that cannot receive more than a limited
number of objects) [Cohen et al. 2011].

[Cohen et al. 2010] study the problem of makespan minimization in job scheduling
applications, and gave (an almost tight) logarithmic bounds (in the number of ma-
chines) on the approximation that can be achieved (even without considering compu-
tational issues).

Regarding multi-unit auctions with budgets, [Dobzinski et al. 2008] considered a
setting identical to ours, with a focus on incentive compatibility. They showed that
a variant of Ausubel’s clinching auction (in which the price gradually increases, and
whenever the combined demand of the other bidders decreases strictly below available
supply, then bidder i “clinches” the remaining quantity at the current price) is incen-
tive compatible and Pareto-optimal, if the budgets are public knowledge. However, no
incentive-compatible auction that always produces a Pareto-optimal allocation exists
for the setting in which budgets and values are private information. These results were
extended by [Fiat et al. 2011] to single-valued combinatorial auctions.

Most closely related to our work is the work by [Kempe et al. 2009] who defined
the notion of budget friendly allocations. These are item prices, but with the following
twist: agents can only be charged a payment that is strictly smaller than their budget;
thus agent 1 cannot be considered to envy agent 2 if the price paid by agent 2 is equal
to agent 1’s budget, irrespective of the valuation. For this notion, [Kempe et al. 2009]
have shown how to compute maximum prices for fixed allocation.

2. PRELIMINARIES
A Multi-unit auction with budgeted bidders A is formally depicted by the four-tuple

A = 〈n,m,b,v〉 ,

where n ∈ Z>0 stands for the number of bidders, m ∈ Z>0 stands for the number of
identical indivisible goods, b ∈ Rn is a vector b = (b1, . . . , bn) of bidders’ budgets, and
v ∈ Rn is a vector v = (v1, . . . , vn) of bidders’ per-item values. Throughout the paper,
we use the notation [n] to denote the set {1, . . . , n}. We also denote the set of bidders
by N .

A mechanism returns an outcome for every instance A. Specifically, an outcome is
depicted by a tuple 〈k,p〉, where k = (k1, . . . , kn) is an allocation vector, specifying for
every bidder i ∈ [n] the number of items, ki, allocated to bidder i, and p = (p1, . . . , pn)
is a payment vector, specifying for every bidder i ∈ [n] her payment.

Bidders are assumed to have additive valuations up to their budget. Thus, given a
multi-unit auction A, and an outcome 〈k,p〉, the utility of bidder i is given by

ui(ki, pi) =

{
vi · ki − pi if pi ≤ bi
−∞ otherwise

A notion that will be used extensively in the sequel is the notion of a bidder’s de-
mand. Given a multi-unit auction A, we define two closely related notions of demand,
as follows.



p1 = 1.5

budget

vi = p1

(a) Demand under p1 = 1.5.

p2 = 1

vi = p2

(b) Demand under p2 = 1.

Fig. 1. An illustration of a multi-unit auction with 7 bidders. The x-axis represents the agents and the y-
axis represents the agents’ budget. The gray area is the (scaled by p) agent’s demand (Di(p)), the horizontal
line pattern above represents the (scaled by p) agent’s “demand-plus” (D+

i (p)), and the dotted area is the
(scaled by p) demand of value-limited agents (i.e., agents with vi = p).

Di[p,m, b] =

{
min{m, bbi/pc} if p ≤ vi
0 if p > vi

(1)

D+
i [p,m, b] = lim

ε→0+
Di[p+ ε,m, b]. (2)

Essentially, Di[p,m, b] is equal to the number of items that bidder i wishes to purchase,
and D+

i [p,m, b] is equal to the number of items bidder i would have wished to purchase
if the price were increases by an infitesimally small amount.

Given a price p, a bidder is said to be value limited (resp. non-value limited) if vi > p
(resp. vi 6= p).

Observe that D+
i [p,m, b] ≤ Di[p,m, b] for every bidder i ∈ [n]. For every non-value

limited bidder i ∈ [n] such that bi = cp for some c ∈ Z, we have D+
i (p) = Di(p) − 1,

whereas for non-value limited bidders such that bi 6= cp (for every c ∈ Z), we have
D+
i (p) = Di(p).
The demands Di and D+

i for value-limited and non value-limited agents, as a func-
tion of the price p, are illustrated in Figure 1.

The following definitions will be used in the analysis of the algorithms. Given a price
p and an integer k ∈ Z, let Ak(p) be the set defined as Ak(p) = {i|bi > kp and vi > p},
and let Bk(p) be the set defined as Bk(p) = {i|bi ≥ kp and vi > p}. When clear in the
context, we simply write Ak and Bk.

Given a multi-unit auction A, an outcome is said to be envy-free bundle pricing (or
simply EF) if for every pair of bidders i, j ∈ [n], it holds that ui(ki, pi) ≥ ui(kj , pj); that
is, no bidder wishes to switch her outcome with that of another.

An outcome is said to be envy-free item pricing if items are given item prices, and
every bidder receives a bundle that maximizes her utility (given the prices). In the
case of multi-unit auctions, this means that all items have the same per-item price p,
and every bidder receives exactly Di(p) items.

The following observation can be easily verified.

PROPOSITION 2.1. Given a price p, if all items are sold at a per-item price of p,
then: (i) a bidder i who receives Di(p) items does not envy any other bidder, and (ii) a
value-limited bidder does not envy any other bidder.

Given an outcome 〈k,p〉, the revenue of the auctioneer is given by the total payments
of the bidders; i.e.,

∑
i∈[n] pi.



This raises the revenue-maximization problem: given a multi-unit auction A, con-
struct an EF outcome 〈k,p〉 that maximizes the auctioneer’s revenue (among all EF
outcomes).

A related optimization problem is the following: given a multi-unit auction A and an
allocation k = (k1, . . . , kn), construct a payment vector p = (p1, . . . , pn) that maximizes
the auctioneer’s revenue, under the constraint that the outcome 〈k,p〉 is EF. If no such
payment vector exists, report infeasibility.

3. SEPARATION EXAMPLES
In this section we demonstrate the limitations and strengths of the different pricing
schemes.

PROPOSITION 3.1. For any ε > 0, there exist bidders for which the best item pricing
achieves no more than an ε fraction of the best (h, p) pricing.

PROOF. Given ε, consider a multi-unit auction with m items and n = m agents, such
that m > 4/ε. Let m− 1 agents have valuation 1.5 and budget 1, and let the last agent
have valuation 2 and budget 4.

For this auction the optimal (h, p)-pricing is to set h = 1 and p = 1, extracting
revenue m.

Any item pricing has to set the price per item to be > 1 — otherwise demand exceeds
supply. However, this means that agents with budget equal to 1 cannot buy anything
so the total revenue is ≤ 4.

As 4/m < ε, we’re done.

PROPOSITION 3.2. For any ε > 0, there exist bidders for which the best (h, p) pricing
achieves no more than an ε fraction of the best (`, h, p) pricing.

PROOF. Consider a multi-unit auction with four agents and two items, where three
agents have value v = 1 and budget b = 0.9, and one agent has value v = 0.9 and
budget b = 1.8. In this case the optimal (`, h, p)-pricing is to set ` = 2, h = ∞ and
p = 0.9, extracting a revenue of 1.8. On the other hand, there exists no (h, p)-pricing
that can extract any revenue, because for p ≤ 0.9 the total demand is always higher
then 2, whereas for p > 0.9, it is equal to zero.

Finally, we show that one cannot approximate a general envy-free pricing to within
a factor better than 1/2 by any proportional pricing. In this sense, our pricing schemes
are the best possible.

PROPOSITION 3.3. There exists no proportional pricing that approximates the
revenue-maximizing envy-free bundle pricing to within a factor > 1/2.

PROOF. Consider a multi-unit auction with m items and n = m − 1 agents, where
valuations and budgets are as follows:

— Let A be a set of m− 2 agents with valuation and budget equal to 1, and
— Let the last agent, agent m− 1, have valuation and budget equal to m.

In this case the optimal envy-free allocation can extract revenue of 2m − 2 by selling
one item to each agent in A at a price of 1, and two items to agent m − 1 at a price of
m.

On the other hand, any proportional pricing scheme can collect revenue of at most
m: either by (a) selling one item at a price of 1 to each of the agents in A, and selling
agent i 2 items at a (bundle) price of 2, or by (b) selling 2 items to agent i at a total
price of m, and selling nothing to the agents in A.



p∗

budget

vi = p

(a) E.g., m = 10, R1 > R2.

vi = p

(b) E.g., m = 12,
R2 > R1, and the
value of R2 is set in
line 10 of Algorithm 1.

vi = p

r = 2

(c) E.g., m = 9, R2 > R1,
and the value of R2 is set in
line 13 of Algorithm 1.

Fig. 2. Various possible outcomes of Algorithm 1, for a multi-unit auction with 7 agents. The envy-free
allocation is represented by the thick border.

Hence, there exists no proportional price auction approximating the best envy free
revenue to within a factor ≥

(
1
2 + 1

m

)
.

4. 1
2
-APPROXIMATE ALGORITHM FOR THE CASE OF MANY ITEMS (m ≥ n)

In this section, we construct a 1
2 -approximate algorithm for the problem of revenue-

maximizing envy-free multi-unit auction, for the case where m ≥ n. Algorithm 1 com-
putes values h and p, the envy-free multi unit auction will be to use (h, p)-pricing: the
per item price is p, but bidders may not purchase more than h items.

At the heart of this algorithm lies the price p∗, defined as

p∗ = min

{
p ≥ 0

∣∣∣∣∣
n∑
i=1

D+
i (p) ≤ m

}
.

That is, p∗ is the minimal price p such that the total D+
i (p) does not exceed supply. It

follows that
∑
i∈[n]Di(p

∗) > m and
∑
i∈[n]D

+
i (p
∗) ≤ m.

The algorithm computes two values, R1 and R2, and chooses the larger of the two,
obtaining revenue max(R1, R2). The pricing and allocation are done as follows:

—R1 (set in line 6) is the revenue that is obtained by selling Di(p
∗+ε∗) items to bidder

i, at a price of p∗ + ε∗ per item.
Note that this is equivalent to setting a (h = ∞, p = p∗ + ε∗) pricing scheme. See
Figure 2(a) for an illustration.

—R2 can be one of two values, depending on the if statement in line 9 of the algorithm:
— if

∑
j≥1 tj ≤ m, then R2 is set in line 10, and the revenue R2 is obtained by the al-

location that sells all items at a price of p∗ per item, as follows: non-value limited
bidders get sold their complete demand (Di(p

∗)), and any left-over item is sold at
a price of p∗ to (arbitrary) value-limited bidders.
Note that this is a (h =∞, p = p∗) pricing scheme. See Figure 2(b) for an illustra-
tion.

— if
∑
j≥1 tj > m, R2 is set in line 13, and the revenue R2 is the result of the allo-

cation that sells min(Di(p
∗), r) items to non-value limited bidders at a price of p∗

per item, where r is set in line 12.
Note here that this is equivalent to using a (h = r, p = p∗) pricing scheme. See
Figure 2(c) for an illustration.



Algorithm 1 Multi-Unit Auction with Budgets (m ≥ n)
1: procedure MULTI-UNIT AUCTION WITH BUDGETS(v, b,m)

. Input: A = 〈n,m,b,v〉. Output: h, p for (h, p) pricing scheme.
2: Let

p∗ = min

{
p ≥ 0

∣∣∣∣∣
n∑
i=1

D+
i (p) ≤ m

}
.

3: Set R1 = 0, R2 = 0.
4: if

∑n
i=1D

+
i (p
∗) > 0 then . See Figure 2(a).

5: Let

ε∗ = max

{
ε > 0

∣∣∣∣∣
n∑
i=1

D+
i (p
∗) =

n∑
i=1

Di(p
∗ + ε)

}
.

6: Set
R1 = (p∗ + ε∗) ·

n∑
i=1

D+
i (p
∗).

. Revenue R1 is obtained setting an item price of p∗ + ε∗ . — equivalently by a
(h =∞, p = p∗ + ε∗) pricing scheme.

7: end if
8: Let

tj = |{i | Di(p
∗) ≥ j, vi 6= p∗}| .

9: if
∑
j≥1 tj ≤ m then

. See Figure2(b), In total we will sell exactly m items using a (h = ∞, p =
p∗) pricing scheme.

10: Set
R2 = m · p∗.

11: else
12: Let r = max{`|t` > 0,

∑`
j=1 tj ≤ m}.

. this is an (h = r, p = p∗) pricing scheme. See Figure2(c)
13: Set

R2 = p∗ ·
r∑
j=1

tj .

14: end if
15: end procedure

The main result of this section is stated in both Theorem 4.1 that establishes the
envy-freeness of the allocation, and in Theorem 4.2 that gives the approximation ratio.

THEOREM 4.1. The allocation computed by Algorithm 1 is envy-free with (h, p∗)
pricing.

PROOF. Let us first consider the case when R1 ≥ R2. The revenue R1 (set in line 6)
is obtained by selling Di(p

∗ + ε∗) items to bidder i, at a fixed price of p∗ + ε∗ per item,
where the demand of all bidders is saturated. Based on Observation 2.1, the outcome
is envy-free without quantity limits.

If R2 > R1, then the allocation depends on the if statement in line 9 of Algorithm 1.



If the condition in line 9 is met, then the revenue R2 is obtained by selling all items
at a price of p∗. Non-value limited bidders (i.e., vi > p∗) get their complete demand
(Di(p

∗)), and any left-over item is sold at a price of p∗ to (arbitrary) value-limited bid-
ders. Based on Observation 2.1, the outcome is envy-free and does not require quantity
limits.

If the condition in line 9 is not met (i.e., it holds that
∑
j≥1 tj > m), then R2 is set

in line 13 of Algorithm 1. The revenue R2 is is obtained by selling min(Di(p
∗), r) items

to non-value limited bidders at a price of p∗ per item, where r is set in line 12 —
equivalently, we sell using a (h = r, p∗) pricing scheme. In this case, the only way an
agent i can get less items than another agent j is if agent i cannot afford the price that
agent j is charged, therefore there is no envy.

We now turn to establish the desired approximation ratio,

THEOREM 4.2. The outcome computed by Algorithm 1 is a 1
2 -approximation to the

optimal envy-free revenue.

PROOF.
Let OPT be an optimal envy-free outcome. Recall that Ak = {i|bi > kp∗ and vi > p∗},

and Bk = {i|bi ≥ kp∗ and vi > p∗}. We distinguish between the following two cases:

case (a): OPT allocates items only to bidders such that bi > p∗ and vi > p∗. Recall that
this set is exactly the set A1. First, by the definition of R1 we get:

R1 > p∗ ·
∑
i∈[n]

D+
i (p
∗). (3)

Now, observe that for every agent i ∈ A1 we have

D+
i (p
∗) ≥ 1. (4)

We get:

OPT ≤
∑
i∈A1

bi
[by case (a)]
≤

∑
i∈A1

p∗ · (D+
i (p
∗) + 1)

[by Equation 4]
≤

∑
i∈A1

p∗ · 2D+
i (p
∗)

[by Equation 3]
< 2R1 ≤ 2ALG,

as required.

case (b): The optimal envy-free auction allocates at least one item to a bidder i such
thati 6∈ A1; i.e., min{bi, vi} ≤ p∗. Recall that Bk is defined as Bk = {i|bi ≥ kp∗ and vi >
p∗}, and that tk = |Bk|.

In order to obtain a bound on R2 we first claim that

R2 ≥ (m− t2) · p∗. (5)

To prove this, consider two cases.
If
∑
j≥1 tj > m, then from the definition of r it follows that

∑
j≤r tj + tr+1 > m. We

get
∑
j≤r tj > m− tr+1 ≥ m− t2, where the last inequality follows since for every j ≥ 2,

it holds that tj ≤ t2. It follows that R2 ≥ (m− t2) · p∗, as required.



If
∑
j≥1 tj ≤ m, all m items are sold at a price of p∗, thus we get R2 = m · p∗ ≥

(m− t2) · p∗, as desired.
We next consider the structure of the optimal allocation in case (b); i.e., where at

least one item is sold to a bidder such that min{bi, vi} ≤ p∗. The price of this item
cannot exceed p∗. Hence, any other bidder that is charged more than p∗ must receive
at least two items (otherwise, he is envious).

We consider that the maximum revenue that OPT can collect from agents in the
different sets is as follows:

— For every i ∈ A1/B1, OPT can collect from i at most p∗ by selling to i a single item.
— For every i ∈ B1/B2, OPT can collect from i at most 2p∗ by selling to i two items, or

at most p∗ by selling to i a single item.
— For every i ∈ B2, OPT can collect from i at least 2p∗ by selling to i two items, but no

more than p∗(D+
i (p
∗) + 1).

It is easy to verify that the optimal allocation is never worse off by selling two items
to every agent in B2 first, then selling two items to every agent in B1/B2. Hence, an
upper bound on OPT is the sum of the revenue obtained by selling two items to each
agent in B2 (amounting to

∑
i∈B2

p∗ · (D+
i (p
∗)+ 1)) and the revenue obtained by selling

the remaining items, at a price of p∗ per item (amounting to (m − 2t2) · p∗). It follows
that
OPT ≤

∑
i∈B2

p∗ · (D+
i (p
∗) + 1) + (m− 2t2) · p∗ =

∑
i∈B2

p∗ ·D+
i (p
∗) + t2p

∗ + (m− 2t2) · p∗

=
∑
i∈B2

p∗ ·D+
i (p
∗) + (m− t2) · p∗ < R1 +R2,

where the last inequality follows from Equations (3) and (5).
Since our algorithm chooses the maximum of R1 and R2, it follows that ALG =

max(R1, R2) ≥ R1+R2

2 > OPT/2, and the 1
2 -approximation follows.

4.1. Approximating Optimal Item-Pricing
The algorithm above produces an allocation that achieves revenue at least 1/2 of any
bundle-priced envy-free allocation. As expected, the allocation produced is not an item-
priced allocation. The problem is the scenario where the high budget agents will not
get their full demand.

This is not a problem for (bundle-priced) envy-freeness, there is no one to envy, but
it is a problem for item-priced envy-free allocations, in which agents must get an allo-
cation that maximizes their utility.

A slight modification of this algorithm will give us an item-priced envy-free alloca-
tion that approximates the best revenue amongst such allocation to within a factor of
1/2, irrespective of n vs. m.

In the context of item-priced allocations, it is obvious that no such allocation can
set a price less that p∗ (since the demand is too high). The only scenario in which
the mechanism above does not produce an item-priced envy-free allocation is when∑
j tj > m. The modification to the algorithm would be that in this case, we will sell at

an item price of p∗ + ε, in which case
∑
D+
i (p
∗) items will be sold. Note that we have

enough items to do so.
This will no longer be a good approximation to the optimal (bundle-priced) envy-

free allocation, but it will be a 1/2-approximation to the optimal item-priced envy-free
allocation.

The reason is that no item-priced allocation can sell at a price of less than or equal
to p∗ (due to too high demand). Hence, any item priced allocation must give up on all



the agents for which D+
i (p
∗) = 0. When we compare our revenue to the budget of those

agents for which D+
i (p
∗) > 0, we get at least 1/2 of their budget.

5. 1
2
-APPROXIMATE ALGORITHM FOR THE CASE OF MANY AGENTS (n > m)

In the case when m ≥ n we observed that t1 ≤ m and so the value of R2 was non-
zero. In the general case, however, the value of R2 in Algorithm 1 might be zero, and
this might be a problem for the approximation ratio. This happens exactly for the
example given in Proposition 3.2. One can easily verify that in this case, Algorithm
1 collects no revenue at all (in particular, p∗ = 0.9, t1 = 3, and consequently R1 =
R2 = 0), whereas the optimal EF outcome earns revenue 1.8 by assigning two items
to the unique agent at a total price of 1.8. In order to overcome this problem, a more
sophisticated algorithm is in place.

Algorithm Multi-Unit-EF: At the heart of the algorithm is Algorithm 2, which is a
generalization of Algorithm 1, where items are sold but in bundles of size at least k. In
particular, our algorithm runs Algorithm 2 m times, for k = 1, . . . ,m, and returns the
maximum revenue achieved in any iteration.

In a given iteration k, the values of Rk1 and Rk2 are obtained from the following out-
comes:

— The revenue Rk1 (set in line 6) is obtained by selling D+
i (p
∗) items to bidders i for

which D+
i (p
∗) ≥ k, at a price of p∗1 + ε∗ per item. This is an (` = k, h =∞, p = p∗+ ε∗)

pricing scheme.
—Rk2 can be one of two values, depending on the if statement in line 9 of the algorithm:

— if k · tk +
∑
j≥k+1 tj ≤ m, then Rk2 is set in line 14, where the revenue is obtained

by the allocation that sells all items at a price of p∗ per item, as follows: non-
value limited bidders, with demand Di(p

∗) ≥ k, get sold their complete demand
(Di(p

∗)), and the left-over items are sold to value-limited bidders, who can afford
k or more items, up to their budget, for a per-item price of p∗. One can easily
verify that, by the definition of p∗, at the end of this process there are at most
k − 1 unallocated items. This is equivalent to an (` = k, h = ∞, p = p∗) pricing
scheme.

— if
∑
j≥1 tj > m, then Rk2 is set in line 17, where the revenue is the result of

the allocation that sells min(Di(p
∗), r) items to non-value limited bidders with

Di(p
∗) ≥ k at a price of p∗ per item, where r is set in line 16. This is equivalent to

a (` = k, h = r, p = p∗) pricing scheme.

One may notice that Algorithm 1 is essentially a special case of Algorithm 2 with
k = 1.

We now prove the following.

THEOREM 5.1. The allocation computed by Algorithm Multi-Unit-EF is envy-free
with (`, h, p∗) pricing.

PROOF. In order to prove that the algorithm is EF, we show that the outcome of
the procedure is EF for every k. For simplicity of exposition, we omit the superscript
k and write simply R1 and R2. Let us first consider the case where R1 ≥ R2. In this
case, every agent with D+

i (p
∗) ≥ k gets her complete demand at a price of p∗ + ε∗ per

item. On the one hand, no agent envies any other agent who gets less items, since all
items are priced the same. On the other hand, no agent envies any other agent who
gets more items, because this exceeds her budget affordable by the agent.

Assume now that R2 > R1. Then, the allocation we choose depends on the if state-
ment in line 9 of Algorithm 2.



Algorithm 2 Multi-Unit Auction with Budgets (General case)
1: procedure MULTI-UNIT AUCTION WITH BUDGETS (GENERAL CASE)(v, b,m, k)
2: Let

p∗ = min

p ≥ 0

∣∣∣∣∣∣
∑

i s. t. D+
i (p)≥k

D+
i (p) ≤ m

 .

3: Set R1 = 0, R2 = 0.
4: if

∑
i s.t. D+

i (p∗)≥kD
+
i (p
∗) > 0 then

5: Let

ε∗ = max

ε > 0

∣∣∣∣∣∣
∑

i s.t. D+
i (p∗)≥k

D+
i (p
∗) =

∑
i s.t. D+

i (p∗)≥k

Di(p
∗ + ε)

 .

6: Set
Rk1 =

∑
i s. t. D+

i (p∗)≥k

(p∗ + ε∗) ·D+
i (p
∗).

7: end if
8: Let

tj = |{i | Di(p
∗) ≥ j, vi 6= p∗}| .

9: if k · tk +
∑
j≥k+1 tj ≤ m then

10: Let e = k · tk +
∑
j≥k+1 tj

11: Define iq to be the q’th index such that Diq (p
∗) ≥ k, viq = p∗.

12: Let qmax be the number of indices for which this holds.
13: Let q∗ be the minimal index in 0, . . . , qmax for which∑

q=1,...,q∗

Diq (p
∗) > m− e− k.

14: Set

Rk2 = p∗ ·min

(
m, e+

∑
q=1,...,q∗

Diq (p
∗)

)
.

15: else
16: Let r = max{`|t` > 0, k · tk +

∑`
j=k+1 tj ≤ m}.

17: Set

Rk2 = p∗ ·

k · tk + r∑
j=k+1

tj

 .

18: end if
19: end procedure

If the condition in line 9 is true, then the revenue R2 is obtained by selling all items
at a price of p∗ per item. Every non-value limited bidder i such that Di(p

∗) ≥ k receives
her complete demand, Di(p

∗); in this way, e = k · tk +
∑
j≥k+1 tj items are sold. Next,

we sell the remaining m− e items to value-limited agents with demand Di(p
∗) ≥ k one

by one. However, we need to sell in bundles of at least k items, so when the number of



items left is less then k we cannot assign these items to the next value-limited agents.
In this case at most k − 1 items are left unsold.

It follows from Observation 2.1 and from the indifference of the value limited agents
that no one is envious. In addition, since every agent that receives any quantity > 0
gets at least k items, agents i such that Di(p

∗) < k cannot envy anybody.
If the condition in line 9 does not hold; i.e.,

∑
j≥1 tj > m, then R2 is set in line 13 of

Algorithm 1. The revenue R2 is obtained by selling min(Di(p
∗), r) items to non-value

limited bidders with Di(p
∗) ≥ k at a price of p∗ per item, where r is set in line 16. In

this case, the only way agent i can get less items than agent j is if agent i cannot afford
the price that agent j is charged, therefore there is no envy.

Observe that this allocation is equivalent to a (` = k, h = r, p = p∗) pricing.

We next establish the desired approximation ratio.

THEOREM 5.2. The outcome computed by Algorithm Multi-Unit-EF achieves a 1
2 -

approximation to the optimal envy-free revenue.

PROOF. Let OPT be an optimal envy-free outcome, and let k∗ be the minimum num-
ber of items sold to any bidder in OPT. We claim that the outcome computed in phase
k∗ of our algorithm (i.e., for k = k∗) extracts at least 1/2 of the revenue collected by
OPT. Once again, for simplicity of presentation, we omit the superscript k∗ and write
R1 and R2 instead of Rk

∗

1 and Rk
∗

2 , respectively. We distinguish between two cases.

case (a): OPT allocates items only to bidders such that bi > k∗p∗ and vi > p∗; i.e., to
agents in Ak∗ . In this case OPT ≤

∑
i∈Ak∗

bi, and by the definition of R1 we get:

R1 > p∗ ·
n∑
i=1

D+
i (p
∗). (6)

Observe that for every agent i in Ak∗ , we have D+
i (p
∗) ≥ 1, so we get:

OPT ≤
∑
i∈Ak∗

bi
[by def. of D+

i ]
≤

∑
i∈Ak∗

p∗
(
D+
i (p
∗) + 1

)
[by D+

i (p∗) ≥ 1]
≤

∑
i∈Ak∗

2p∗D+
i (p
∗)

[by (6)]
≤ 2R1 ≤ 2ALG.

The 1/2-approximation follows.

case (b): OPT allocates items to a bidder i such that bi ≤ k∗p∗ or vi ≤ p∗. Note that,
based on the definition of k∗, this means that bidder i receives at least k∗ items in OPT.

In what follows, we make a few observations regarding the structure of the optimal
allocation. Since k∗ items are allocated to an agent i such that bi ≤ k∗p∗ or vi ≤ p∗, the
price of this set of items cannot exceed k∗p∗. Hence, in order for OPT to collect more
revenue than k∗p∗ from any other bidder j 6= i, agent j must be allocated at least k∗+1
items (otherwise, agent j will envy agent i). The maximal revenue OPT can collect
from an agent i, depending on its type, is as follows:

— if i ∈ N/Bk∗ , then OPT can get at most k∗p∗ from i by selling her k∗ items.
— if i ∈ Bk∗/Bk∗+1, then OPT can get at most (k∗ + 1)p∗ from i by selling her k∗ + 1

items, or at most k∗p∗ by selling her k∗ items.



— if i ∈ Bk∗+1, then OPT can get from i no more than p∗(D+
i (p
∗) + 1).

Based on the last observation, OPT cannot be worse off by selling k∗+1 items to every
agent in Bk∗+1 before selling k∗ + 1 items to any agent in Bk∗/Bk∗+1. This is because
any agent that gets k∗ + 1 items should be charged the same. However, one can get at
least as much from agents in Bk∗+1 as from agents in Bk∗ , because p∗(D+

i (p
∗) + 1) ≥

(k∗+1)p∗. Hence, we can assume without loss of generality that OPT sells k∗+1 items
to each agent in Bk∗+1, and sells the remaining items to other agents, collecting at
most p∗ per item. Consequently, we get:

OPT ≤
∑

i∈Bk∗+1

p∗ · (D+
i (p
∗) + 1) + (m− (k∗ + 1)tk∗+1) · p∗. (7)

We distinguish between two cases (depending on the if statement in line 9). Again,
we write R1 (resp., R2) instead of Rk

∗

1 (resp., Rk
∗

2 ) for simplicity.

case (b1): It holds that k · tk +
∑
j≥k+1 tj ≤ m. In this case it is easy to verify the

following two lower bounds on R2:

R2 ≥ p∗ ·
∑
i∈Ak∗

Di(p
∗); R2 ≥ (m+ 1− k∗) · p∗.

Again, we distinguish between two cases.
If tk∗+1 ≥ 1, then we get:

OPT ≤
∑

i∈Bk∗+1

p∗ ·D+
i (p
∗) + p∗tk∗+1 + (m− (k∗ + 1)tk∗+1) · p∗

=
∑

i∈Bk∗+1

p∗ ·D+
i (p
∗) + (m− k∗tk∗+1) · p∗ ≤ 2R2,

where the first inequality follows by substituting
∑
i∈Bk∗+1

1 = tk∗+1 into (7), and the
last inequality follows by the two lower bounds onR2 developed above and substituting
tk∗+1 ≥ 1.

Now assume that tk∗+1 = 0. If m < 2k∗, then our algorithm collects at least k∗p∗
from one agent, whereas OPT can collect at most (k∗ + 1)p∗ from one agent.

On the other hand, when m ≥ 2k∗, OPT sells items to at most bmk∗ c agents, extracting
at most (k∗ + 1)p∗ from each one of them; we get:

OPT ≤
⌊m
k∗

⌋
(k∗ + 1) · p∗ ≤

⌊
m(k∗ + 1)

k∗

⌋
· p∗ =

⌊
m+

1

k∗

⌋
· p∗

≤ (m+ 1) · p∗
[by m ≥ 2k∗]
≤ (2m− 2k∗ + 1) · p∗ < 2R2,

where the last inequality follow form the second lower bound on R2. The 1/2-
approximation follows.

case (b2): It holds that k ·tk+
∑
j≥k+1 tj > m. Recall that we are in the case where OPT

sells k∗ items to an agent i such that bi ≤ k∗p∗ or vi ≤ p∗. Observe that when agent
i gets k∗ items, all agents in Bk∗ have to get k∗ items as well; otherwise, some agent
in Bk∗ would envy i. Hence, there are more items than k∗ multiplied by the number of
agents in Bk∗ ; i.e., m ≥ k∗ · tk∗ . This implies that the value of r computed in line 16 is
at least 1. On the other hand, for j ≥ k∗ + 1, we know that tj ≤ tk∗+1. It follows that



R2 ≥ (m− tk∗+1) · p∗. (8)

For integral D+
i (p
∗) we have:

D+
i (p
∗) + 1 ≤ k∗ ·

(⌊
D+
i (p
∗)

k∗

⌋
+ 1

)
.

Substituting the last inequality into (7) we obtain:

OPT ≤
∑

i∈Bk∗+1

p∗ · k∗ ·
(⌊

D+
i (p)

k∗

⌋
+ 1

)
+ (m− (k∗ + 1)tk∗+1) · p∗

[by
∑

i∈Bk∗+1
1 = tk∗+1]

≤
∑

i∈Bk∗+1

p∗ · k∗ ·
⌊
D+
i (p
∗)

k∗

⌋
+ tk∗+1k

∗p∗ + (m− (k∗ + 1)tk∗+1) · p∗

=
∑

i∈Bk∗+1

p∗ · k∗ ·
⌊
D+
i (p
∗)

k∗

⌋
+ (m− tk∗+1) · p∗ < R1 +R2,

where the last inequality follows from (6) and (8). The 1/2-approximation follows.

6. REVENUE MAXIMIZING ENVY-FREE MULTI-UNIT ALLOCATIONS
In this section we consider the problem of computing revenue-maximizing envy-free
pricing, given an allocation of items to agents. We show that this can be done in poly-
nomial time.

THEOREM 6.1. For every multi-unit auction, given an allocation, the problem of
finding the revenue-maximizing envy-free payments can be solved in O(n2) time.

PROOF. This result follows from a result due to [Kempe et al. 2009], as follows. The
paper by Kempe et al. considers the case of a unit-demand auction over heterogeneous
items (i.e., where agents have different valuations for different items). They also con-
sider the “budget friendly” scenario where agent 1 cannot envy agent 2 unless the
budget for agent 1 is strictly larger than the payment made by agent 2. Fortunately,
is is easy to adapt their algorithm to the envy-free setting, where one does not insist
upon “strictly larger”, as above, but only upon “greater than or equal to”.

Once the allocation is fixed, we can restate the allocation as being an allocation
of heterogenous items, two allocations of a different number of items are viewed as
distinct item types.

The Bellman-Ford like (but poly time) algorithm of [Kempe et al. 2009] allows us to
compute a vector p ∈ <n, of maximal payments, in O(n2) time. I.e., pi (the payment by
agent i) is an upper bound on the payment by agent i in any envy-free allocation. Such
prices clearly maximize revenue.

With Theorem 6.1 at hand, one can compute the revenue-maximizing outcome (i.e.,
both allocation and payment), by trying out all possible allocations, as summarized in
the following theorem (whose proof is deferred to the full version of the paper):

THEOREM 6.2. Given a multi-unit auction, the problem of finding the revenue-
maximizing envy-free outcome can be solved in doubly exponential1 O(poly(n)2n+m)
time.

1Since the input size is O(n+ log(m)), 2m is doubly exponential in the input.



Note that the optimal pricing computed by the above procedure need not be propor-
tional pricing.

7. NP-HARDNESS
In this section we establish the NP-hardness of the revenue-maximizing envy-free auc-
tion problem. Due to lack of space, we only outline the proof; the full proof is deferred
to the full version.

THEOREM 7.1. The problem of finding the revenue-maximizing envy-free auction in
multi-unit auctions is NP-hard.

The idea of the proof is to reduce the k-subset sum problem to the revenue max-
imizing envy-free allocation for multi-unit auction. In the k-subset sum problem we
are given a multiset X = {x1, . . . , xl} of positive integers and an integer s, and we are
asked to find a k-element subset of X that sums up to s. We say that the k-subset sum
problem is uniform if s

k+1 < xi <
s

k−1 , and xi ≥ 5, for i = 1, . . . , l. By scaling, one can
show that the uniform k-subset sum problem is NP-hard as well.

Given a uniform instance of k-subset sum, we build an instance of the auction in
the following way. For i = 1, . . . , l, let us define s0 = 0 and si =

∑i
j=1 xi. The instance

has n = (8k + 1)k agents. Let ε be some arbitrary, but very small, real number. For
i = 1, . . . , k, we construct the following agent types:

type A. one agent Ai with budget bAi = si and valuation vAi = 1 + ε,
type B. 4k agents Bi with budget bBi = (si − 1)(1 + ε) and valuation vBi =∞,
type C. 4k agents Ci with budget bCi = si(1 + ε) and valuation vCi = 1 + ε.

Finally, we set the number of items to m = (8k + 1)
(∑k

i=1 si

)
− 8ksk + k + s. One can

show that there exists an envy-free allocation that extracts a revenue of at least m
if and only if the uniform k-subset sum problem has a solution. One can essentially
show that due to envy-freeness the players of type A can be assigned either si − xi or
si items, whereas the other agents need to get in total (8k + 1)

(∑k
i=1 si

)
− 8ksk + k

items. Hence, one needs to chose type A agents in such a way that the corresponding
xi’s sum up to s.

8. CONCLUSIONS AND OPEN PROBLEMS
In this paper we have studied the problem of envy-free pricing in multi-unit auctions.
We have defined an hierarchy of envy-free pricing schemes, and studied the revenue
that can be extracted by the different schemes. Our main result is an (`, h, p)-pricing
scheme that always extracts at least 1/2 of the revenue that can be extracted by any
general (bundle-pricing) envy-free scheme. We also show that this is tight with respect
to proportional pricing schemes. Our analysis and results suggest some interesting
directions for future research:

— Does the revenue-maximization envy-free pricing problem admit a PTAS?
— Does the revenue-maximization problem remain hard also with respect to propor-

tional pricing schemes?
— Can we achieve similar approximation results for more complicated combinatorial

auction structures?
— What other forms of interesting envy-free pricing schemes should be considered?
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