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We consider the pricing problem faced by a seller who assigns a price to a good that confers its benefits
not only to its buyers, but also to other individuals around them. For example, a snow-blower is potentially
useful not only to the household that buys it, but also to others on the same street. Given that the seller is
constrained to selling such a (locally) public good via individual private sales, how should he set his prices
given the distribution of values held by the agents?

We study this problem as a two-stage game. In the first stage, the seller chooses and announces a price for
the product. In the second stage, the agents (each having a private value for the good) decide simultaneously
whether or not they will buy the product. In the resulting game, which can exhibit a multiplicity of equilibria,
agents must strategize about whether they will themselves purchase the good to receive its benefits.

In the case of a fully public good (where all agents benefit whenever any agent purchases), we describe a
pricing mechanism that is approximately revenue-optimal (up to a constant factor) when values are drawn
from a regular distribution. We then study settings in which the good is only “locally” public: agents are
arranged in a network and share benefits only with their neighbors. We describe a pricing method that
approximately maximizes revenue, in the worst case over equilibria of agent behavior, for any d-regular
network. Finally, we show that approximately optimal prices can be found for general networks in the
special case that private values are drawn from a uniform distribution. We also discuss some barriers to
extending these results to general networks and regular distributions.
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Economics

Additional Key Words and Phrases: Public Good; Pricing; Revenue Maximization; Externalities; Network

1. INTRODUCTION

Pricing products for sale is an important strategic decision for firms. Based on the demand
at different prices, an optimal price should maximize the number of items sold, times the
revenue per sold item. A long history of work in economics, and more recently in computer
science, studies the problem of finding an optimal price (or, more generally, selling mech-
anism), given a demand curve or estimate thereof [Myerson 1981; Milgrom 2004; Krishna
2009; Hartline 2012].

This view ignores the fact that products frequently exhibit externalities: if a consumer j
purchases the product, it may affect the utility of consumer i. These externalities naturally
differ in two dimensions: (1) whether they are positive or negative, and (2) whether they
affect other consumers when they purchase the product, or when they do not purchase it.

Some of the classical literature in economics [Jehiel and Moldovanu 2001, 2006; Jehiel
et al. 1996, 1999; Brocas 2003] focuses on negative externalities experienced by consumer ¢
as a result of j’s purchase, regardless of whether 7 himself purchases. Motivating examples
are weapons or powerful competitive technologies. If a competitor 7 has access to these
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technologies, it poses an often significant threat to ¢, and hence, 7« would be willing to pay
significant amounts of money to prevent j from acquiring the product. There has been a
recent focus on positive externalities between pairs 7, j when both purchase [Hartline et al.
2008; Arthur et al. 2009; Akhlaghpour et al. 2010; Anari et al. 2010; Haghpanah et al.
2011; Bhalgat et al. 2012]. This type of scenario arises, for instance, for implicit creation
of technology standards, where the use of a particular technology (such as an operating
system or cell phone plan) becomes more advantageous as others use the same technology.
In this context, the focus is often on finding the right “seeds” to create enough implicit peer
influence effects; de facto, some users are offered much lower prices to serve as seeds.

In the present paper, we investigate important domains of externalities, and the impact
they have on pricing decisions. Our main focus is on positive externalities from purchasers
on non-purchasers. In other words, when one customer purchases an item, others will derive
utility from it, even if they themselves do not purchase it. This is the case commonly known
as public goods in economics [Samuelson 1954; Bergstrom et al. 1986; Mas-Collel et al. 1995].
Public goods arise in many real-world scenarios:

(1) If one researcher acquires a useful piece of infrastructure (such as a poster printer),
other research groups in the same department profit as well.

(2) If one family purchases a useful and expensive gardening tool, its neighbors can borrow
the tool and use it as well.

(3) If a company finances useful infrastructure in a region, it also makes the region more
attractive for other companies. One concrete example is the Wi-Fi networks that Google
recently built in Chelsea and in Kansas City [McGeehan 2012], which are expected to
attract more talent to those areas.

Since the goods described above benefit an entire group of agents, one way of purchasing
them would be to gather as a group, purchase a single copy, and split its cost among
the group members. This is, however, not always possible due to various reasons: in case
(1), regulations might allow a researcher to pay for a printer from his grant budget, but
not to pay for it partially; in case (2), the family might consider it impolite to ask each
potential borrower of the gardening tool to contribute to it; and in case (3), the companies
that will benefit from the infrastructure being in place might be competitors and therefore
might be unwilling to cooperate. More fundamentally, it has been long known that rational
agents in these types of settings have incentives to misrepresent their true utilities (see,
e.g., [Samuelson 1954]), a phenomenon colloquially known as free-riding. Hence, it is very
common that, despite the public-good nature of these goods, purchases are made privately;
that is, one agent purchases the good, incurring the entire cost alone, while benefiting the
group as a whole. It is crucial for a seller who is offering the product for sale to take these
externality considerations into account.! Overall, we would expect the demand for such
items to be reduced given that the buyers, taken as a whole, will demand fewer copies.

We model the locally public nature of the good as follows. We consider a graph G that
captures the interactions between the buyers. Each buyer has a non-negative valuation
drawn independently from a distribution F' common to all buyers. If the buyer or one of
his neighbors purchases the good, he obtains his valuation as utility; if he was the one
purchasing it, then the good’s price (set by the seller) is subtracted from his utility. We
study the Nash Equilibria of the game described above and the problem faced by the seller
of setting a price (based on the graph and the valuation distribution) in order to optimize
the revenue at equilibrium.

1The examples listed above can be considered nearly pure public goods, in that the benefits from being
the purchaser and being a “neighbor” are very similar. A much larger number of products — such as most
entertainment technology — has a significant public component, but also a significant private component.
We discuss this interesting extension as a direction for future work in Section 5.
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In investigating this question, we are interested in understanding the influence of the
different parameters on the optimal pricing choice. For example, how does the optimal price
depend on the topology of the network G? Since it is usually hard for the seller to learn the
buyers’ social network, is it possible to find a price that will generate approximately optimal
revenue for any network; or, if not, a price that depends only on simple statistics about the
network, such as its average degree? We are also interested in investigating the power of
discriminatory vs. non-discriminatory pricing. Can the seller benefit from setting a different
price for each agent? Is there a non-discriminatory price that gives a good approximation
with respect to every discriminatory pricing policy?

Negative externalities and the Hipster Game. Our framework can also be used to study
other types of externalities. Consider a product that serves the role of a fashion statement
or status symbol. In that case, it may be essential to the purchaser to be the only one with
a copy. His utility is, therefore, his valuation if he has the product and no other agent in
his neighborhood has it. Otherwise, his utility is zero. We call this the Hipster Game. We
show that the pricing problem in the Hipster Game is analogous to the problem for public
goods, and the same algorithmic and analysis techniques yield essentially identical results.

1.1. Our Contribution

Globally public goods. We begin our study by focusing on the complete graph, i.e., the
case of globally public goods. We are interested in prices which will yield high revenue at
equilibrium. One immediate obstacle in this context is that the (Bayesian) purchasing game
played by the buyers may have (infinitely) many equilibria. We show that nonetheless, there
is a single price p which can be computed explicitly from the agents’ value distribution, and
which is approximately optimal in the following very strong sense: The revenue under the
worst-case equilibrium at price p is within a constant factor of the revenue of the best
equilibrium for the best general (not necessarily uniform) price vector. In other words, price
discrimination can improve revenue by at most a constant factor, even if one is optimistic
about the equilibrium that will be reached.

Our analysis draws a relation between our problem and the optimal (Myerson) revenue
of a single-item auction among n bidders. The main insight driving our result is that, at
equilibrium, the agents aim to make purchasing decisions so that only one agent will buy
the product, in expectation. This connection allows us to leverage the rich literature on
single-item auctions for our analysis; it also explicates the connection to the Hipster Game,
where positive utility can only be derived when exactly one agent obtains the good.

Locally public goods. With a solid understanding of globally public goods in place, we
next turn our attention to locally public goods, which are modeled by arbitrary networks
G. At this point, we cannot answer the question of finding optimal prices for arbitrary G.
However, we make significant progress on the question, as follows.

First, we consider the case of d-regular graphs G. Here, the results on globally public
goods carry over in spirit. However, technically, the assertion is weaker: we show how to
explicitly compute a uniform price p which, when offered to all the agents, is guaranteed
to obtain a constant fraction of the worst-case revenue for any fixed price p’. Remarkably,
this price depends only on the degree d and the distribution F', and is independent of the
actual graph structure. Notice that the guarantee is weaker than the one for globally public
goods in two respects: (1) it only provides guarantees compared to one fixed price, not a
price vector with discrimination, and (2) it compares only to the worst-case revenue for
these other prices p’ (instead of the best-case one). This weaker assertion is inevitable: we
show that there exist d-regular graphs in which the gap between the best worst-case revenue
and the best revenue in equilibrium is ©(d), and similarly, the gap between the worst-case
revenue of the best uniform price vector and the best discriminating prices is ©(d) as well.
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We next consider the case of general graphs. We present evidence that our previous
approaches will face inherent difficulties in handling general graphs. In particular, we give
an instance of a network such that, for every price, the gap between the best-case and worst-
case revenue is O(n). Therefore, approximate optimality of worst-case equilibria cannot
be established by bounding best-case revenues. At a minimum, this raises an equilibrium
selection problem: which is the right revenue to optimize, and to compare against?

For d-regular graphs, our solution concept is to bound worst-case revenue for the price
against the worst-case revenue at other prices p’. We show that for general graphs, this
approach faces a fundamental obstacle: approximating worst-case revenue to within a factor
n'~¢ for a given price is NP-hard, even if F is the uniform distribution. Thus, we do not
expect a concise or useful characterization of the approximate worst-case revenue.

Surprisingly, for the specific case of the uniform distribution F', one does not need to be
able to compute the objective function in order to optimize it: for the uniform distribution
F, simply offering a price of % guarantees worst-case revenue within a factor at most 4/e
of optimal. Unfortunately, the analysis techniques for this case rely very specifically on the
uniform distribution of valuations; it is an interesting open question whether they can be
extended beyond the uniform distribution.

Related Work

Externalities in general, and public goods in particular, have a rich and long history of
study in economics. The tension arising from private provisioning of public goods has been
realized since the early studies of public goods: Samuelson [1954] already noticed that pri-
vate provisioning will not necessarily achieve a social optimum. (See also the discussion in
Chapter 11 of [Mas-Collel et al. 1995].) Implicit in the study of markets for public goods
in this literature is the goal of setting the right price, taking into account production costs
and utility curves. Our model differs from the classic models in that purchase decisions are
binary, whereas traditional models allow agents to choose a continuous level x; at which
to purchase the public good. Each agent’s utility in the fully public setting is a function
of >, x;, whereas interpreting the x; as probabilities, the utilities in our setting are of the
form 1—]],(1—x;). Thus, the analysis techniques commonly used in the literature on public
goods do not apply directly in our setting.

The study of private sales of public goods is also present in the classic paper of Bergstrom,
Blume and Varian [1986] and in work by Allouch [2012]. The authors consider a model in
which agents need to split an initial endowment of public and private goods. The focus of
those papers is to prove existence and uniqueness of equilibria in such games.

In our work, we assume that the good to be allocated is fully public. There is a large
body of literature studying the effects of congestion, where a good’s value to an individual
decreases as others use it. Several works study allocation mechanisms to price such con-
gestion effects, going back to the original work of Pigou [1920]. For overviews of pricing
of congestion in public and club goods, see [Cornes and Sandler 1996; Jackson and Nicol4
2004]. In the present work, the good does not become congested; instead, a graph structure
specifies which individuals derive utility from the purchases made by others.

A study of locally public goods in the graph-theoretic sense considered here? has only
been begun much more recently, as part of the recent trend toward studying classic games in
a networked setting. (See [Galeotti et al. 2008] for a general overview.) Specifically, locally
public goods have been studied by Bramoullé and Kranton [2007] and Bramoullé, Kranton
and D’Amours [2010]. Bramoullé and Kranton [2007; 2010] study a setting in which agents
decide on a level of effort; an agent’s utility grows as a function of the cumulative efforts of

2Past work on “local public goods” used the term to describe public goods for a community such as a small
town. As such, the term corresponds to a fully public (though possibly congestible) good, when the set of
individuals under consideration is restricted.
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himself and all his neighbors in the network. In this sense, the model generalizes the classical
public goods model to networks; as we discussed above, in contrast, our model focuses
on probabilistic decisions to purchase or not to purchase. One main difference between
[Bramoullé and Kranton 2007] and our work is that, instead of merely taking the games
as given, we seek to engineer the network game by setting parameters (in our case: prices)
that will lead to more desirable equilibria (equilibria of higher revenue).

Also closely related to our model is the work of Candogan, Bimpikis and Ozdaglar [2012].
This work considers a monopolist who sets prices for agents that are embedded in a network
and exhibit positive externalities. Their model differs from ours in three main respects. First,
as with the work of Bramoullé et al., the level of consumption in their model is continuous
rather than binary. Second, their externality model is different in that an agent’s utility is
additive over the purchases made by his neighbors, whereas in our case, purchases of neigh-
bors are substitutes. Third, they adopt a full-information model, in which the auctioneer
knows the demands of the agents, whereas in our model, the agents’ values are drawn from
a known distribution.

We focus our attention on mechanisms that allocate a (globally or locally) public good
by way of posted prices. Posted price mechanisms have received significant recent attention
in the context of auctions with multiple objects for sale [Chawla et al. 2007, 2010] where it
has been shown that, in various settings, approximately optimal revenue can be extracted
by offering a vector of take-it-or-leave-it prices to each buyer in sequence. Our analysis
shares similarities with this line of work: like [Chawla et al. 2007], we relate our pricing
problem to a corresponding single-item auction problem. However, unlike [Chawla et al.
2007], setting a posted price in an auction for a public good can lead to multiple equilibria
of buyer behavior, with different equilibria generating substantially different revenues.

2. MODELS AND PRELIMINARIES

We write [n] = {1,2,...,n}. Throughout, vectors are denoted by bold face. The buyers
form the vertices V' = [n] of an undirected graph G = ([n], E). The neighbors of a node
i € V are denoted by N(i) = {j | (4,4) € E}, with the convention that ¢ ¢ N(i). For an
event £, we write {&} for the function whose value is 1 when € happens and 0 otherwise.

We are interested in locally public goods: goods that let a player derive utility either
from being allocated the good, or from having a neighbor who is allocated the good. More
formally, we define utilities as follows: Each agent i has a private valuation v; for the good,
drawn independently from a common and commonly known atomless distribution F.? Since
we assume that F' is atomless, for every ¢ € [0, 1], there is at least one value of p for which
F(p) = g. We write F~'(q) = min{p|F(p) = q}.

If S is the set of agents allocated the good, and 7; the payment of agent i, then agent ¢’s
utility is

(S, m) = {Ui—ﬂ'i ifi e Slor SNN®)#0
—TT; otherwise.

A natural question arises regarding whether agents i ¢ S should have non-zero payments,
given that they may profit from the allocation to their neighbors. In the present work, we
focus on the private sale of the good via posted prices, i.e., the seller determines the price of
the good, and an agent is only charged when purchasing the good. This is the most widely
used mechanism for selling goods, public or private.

We remark that since our setting is a single-parameter setting, Myerson’s theory of op-
timal auctions [Myerson 1981] would yield a revenue-optimal mechanism. However, the

3Some of our preliminary results carry over to the case when buyers have different distributions Fj.
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mechanism does not correspond to private sales since it charges not only the buyers, but
also their neighbors who derive benefit from the item.

2.1. Equilibria in the posted-prices game

The pricing decisions can be modeled as a two-stage game. In the first stage, the seller sets
a price vector p to offer the buyers. For most of the paper, and unless specified otherwise,
all agents will be offered the same price p. Subsequently, the buyers play a simultaneous
Bayesian game. The seller’s goal is to choose p so as to maximize revenue.

We assume that the agents maximize their expected utility. Given a price p;, a player @
will buy if his utility from buying, v; — p;, exceeds the expected utility from not buying, v; -

(1 —[je N (i) P[j does not buy]). At equality, ¢ could randomize between the two strategies,
but since we assumed the distribution F' to be atomless, equality is an event of probability
0. Thus, each agent will employ a threshold strategy: buy if and only if
Pi
- ngN ;) P[j does not buy]

7

Because all other players j also employ threshold strategies, we can write
P[j does not buy] = Plv; < T};] = F(T};). Thus, the Nash Equilibria are exactly the thresh-
old vectors T = (T1,...,T,) satisfying the following condition:

T;- [ F(T;)=pi, forallieV. (1)
JEN(3)

Given a price vector p, we use Ny to denote the set of Nash Equilibria T = (T4, ...,T),)
of the posted prices game with prices p. We prove below that M, # (. Given a Nash
Equilibrium T € N}, the corresponding expected revenue is R(p, ) > pi- (1= F(Ty)).

2.1.1. Existence of (possibly multiple) Equilibria. To prove the existence of at least one equi-
librium, define

P1 x | ps D2 Pn
HjeN(l) F(pj) HjeN(Q) F(pj) H_jeN(n) F(pj)
and consider the best-response function ¥ : B — R, defined as W;(T) = p;/ [ ;e ;) F(15)-
We claim that U(T) € B for all T € B.

First, notice that for any T, we have U;(T) > p;. Intuitively, this captures that, regardless

of the other players’ strategies, no player will ever buy the good for more than his value.
On the other hand, because T; > p; for T € B, we also get that

Di < Di
HjeN(i) F(Ty) — HjeN(i)F(pj)

Thus, ¥ : B — B is a continuous function from B to B. So long as the prices are such
that F'(p;) > 0 for all 4, B is compact, and the existence of a fixed point (and thus an
equilibrium of the game) follows from Brouwer’s Fixed Point Theorem.

If there is one or more agent ¢ with F(p;) = 0, then the following construction proves
the existence of an equilibrium. For each agent ¢ with F(p;) = 0, set T; = p;, and for
all neighbors of i, set T; = oco. In other words, i deterministically buys the good, and ’s
neighbors never buy the good. It follows directly from the definition of ¥ that the best
response for all these agents will be ¥,;(T) = T;. Since the agents with T; = oo contribute
a term F(00) = 1 to their neighbors’ product, the remaining problem remains unchanged
if we remove all these agents completely, and focus on the restriction of ¥ to the remaining
agents. For those, the previous compactness argument applies.

B = |p1,

¥;(T) =
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Remark 2.1. In general, there could be many equilibria of the game. Even for the special
case of G = K,, and F(z) = « for z € [0,1], any threshold vector T with [[,T; = p is a
Nash Equilibrium of the posted-prices game with uniform prices p. Thus, there is in general
a continuum of equilibria.

2.1.2. Symmetric Equilibria for d-Regular Graphs. When the graph G is d-regular, and the prices
offered to the buyers are the same, i.e., p; = p for all 4, then we can show that ¥ also has
a symmetric equilibrium. Notice that if T = T - 1, then ¥(T) = p/F(T)? - 1, so the best
responses will be symmetric. It therefore suffices to study the function ¥(7T) = p/F(T)?,
and show that it has a fixed point. To see this, observe that the condition for the existence of
a symmetric equilibrium is the existence of a threshold T such that T'- F(T)?% = p. Because
¥(p) = p/F(p)? and ¥ (p/F(p)?) < p/F(p)?, the existence of a fixed point in the interval
[p, p/F(p)?] follows by the intermediate value theorem.

2.2. Hipster Game

In this section, we consider the following variation of the game. In the Hipster Game, each
agent strives to be unique among his friends, so upon acquiring a good, he only derives value
from it if he is the only person in his social network who has this good. More precisely, if S
is the set of allocated agents, and 7 is the vector of payments, then:

{vim ifie Sand SNN(i) =0

—TT; otherwise.

Ui(S,Wi) =

Notice that this definition of utilities seems to give us a game which is the complete opposite
of the Public Goods Game. While the Public Goods Game was an example of positive
externalities, the Hipster Game is an example of negative externalities. In fact, this game
can be described as a congestion game: the graph nodes are congestable resources, and
the resources requested by a player are exactly all nodes in his neighborhood. While the
Hipster Game is characterized by negative externalities, it exhibits a very similar equilibrium
structure to the Public Goods Game. Player ¢ decides to purchase the good for price p; if

v; - P[no agent in N () buys] — p; > 0.

Therefore, the set of equilibria for this game is composed of threshold strategies for all
agents such that the thesholds satisfy p; =T} - [[ ¢ v ;) £/(T}) for all .

Thus, the Public Goods Game and the Hipster Game have the same set of equilibria
and also the same revenue. (However, they are not isomorphic, since the payoff structure
is not the same.) We can use this observation to get a crude upper bound on the expected
revenue of the Public Goods Game for arbitrary graphs. We note that it is equal to the
expected revenue of the Hipster Game, which in turn is at most the expected welfare of
the Hipster Game, as each agent must derive non-negative expected utility at equilibrium.
The expected welfare of the Hipster Game is at most the expected weight of the maximum
weighted independent set with weights v; drawn i.i.d. from F. Thus, we conclude:

LEMMA 2.2. The expected revenue from the Public Goods Game is at most the expected
weight of the mazimum weighted independent set of G with node weights v; drawn i.i.d. from
F.

2.3. Regularity, Myerson’s Lemma and the Prophet Inequality

Much of our analysis will be based on Myerson’s Lemma about the optimal selling mecha-
nism, combined with the prophet inequality. We briefly review these concepts here. A more
comprehensive exposition can be found in Hartline’s lecture notes [Hartline 2012].

Definition 2.3 (Virtual values and regularity). Let F be the cumulative distribution
function of an atomless distribution on an interval [a,b], and let f be its corresponding
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density function. The virtual value function associated with distribution F' is defined as
o(x) =x — 1}2(;6). The distribution F' is regular if ¢(zx) is non-decreasing.

Consider a single-agent scenario in which an agent with value v, drawn from F', is made
a take-it-or-leave-it offer at price p. The agent will accept the offer iff his value exceeds p,
which happens with probability 1 — F(p) =: q. Therefore, the revenue obtained by posting
a price p is p - (1 — F(p)), which can be also written in terms of the guantile space as
q- F~1(1 — ¢). This motivates the following definition:

Definition 2.4 (Revenue curve). The revenue curve corresponding to the cumulative dis-
tribution function F is a function R : [0,1] — R, defined by R(q) = q¢- F~1(1 — q). It
specifies the revenue as a function of the ez ante probability of sale.

The derivative of the revenue curve with respect to ¢ is %(q) = F1(1-9¢q) —

Ty #(F~1(1 — q)). Since F~! is monotone non-decreasing, a distribution is

regular iff its corresponding revenue curve is concave.

2.3.1. Single-item auctions and Myerson’s Lemma. We draw repeatedly on the scenario in which
a single item is sold to n agents with valuations drawn i.i.d. from a regular distribution F'.
A mechanism receives a vector of bids b = (by1,...,b,) and returns an allocation vector
x(b) = (@1,...,2,) € R} such that >, x; < 1, and a payment vector m(b) € R’. The
mechanism is incentive compatible if no bidder can benefit from reporting a value other
than his true value, i.e., if bidding b; = v; is a weakly dominant strategy for each agent 3.
Myerson [1981] established the following lemma, which relates the payments of an incentive
compatible mechanism to the expected virtual values:

LEMMA 2.5 (MYERSON [1981]). For any incentive compatible mechanism, and any bid-
der i, Ey[m;(v)] = Ev[zi(Vv) - o(v;)].

In particular, it follows from Lemma 2.5 that the revenue-maximizing incentive compat-
ible mechanism allocates the item entirely to an agent with highest non-negative virtual
value. The n-agent Myerson Revenue is the optimal revenue that can be obtained in a
setting with a single item and n agents, and is given by RM = E[max; ¢(v;)T], where
2T = max(0, z). When clear from the context, we drop the subscript n.

Lemma 2.5 also implies that the optimal mechanism for selling an item to a single agent
is a posted price mechanism with price 7 = ¢~1(0), known as the Myerson Reserve Price.
It follows that the n-agent Myerson Revenue can be bounded as follows:

Ry = Emax(v;)] < B[} o(v)] = n-r- (1= F()).

2.3.2. Posted-Price Mechanisms and the Prophet Inequality. A natural mechanism for selling a
good is the sequential posted prices mechanism. In round 4, if the good has not been sold
previously, the mechanism offers the good to agent i at a price of p;. The revenue obtained
by this mechanism is > | p; - Plv; > p; and v; < p; for all j <i] =>""  p;- (1 — F(p;)) -
Hj <i F(p;). Because the sequential posted-price mechanism is incentive compatible, and
RM is defined as the optimum expected revenue for any incentive compatible mechanism,
we obtain that for any price vector (p1,...,pn):

n

Y opi-(1=Fp))-[[Foy) <R

i=1 j<i

The result known as the Prophet Inequality guarantees the existence of a price p* (called
the prophet price) such that a sequential posted-price mechanism with uniform price p*
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(i.e., where p; = p* for all i) generates at least half of the optimal revenue. In other words:

n

* * *\2—1 1
dopT (L= F) Fpr) ™' > oRy.

i=1

The Prophet Inequality (and its variants) is a powerful tool in optimal stopping theory; it
was introduced and applied in algorithmic mechanism design by Hajiaghayi, Kleinberg and
Sandholm [2007]. See [Alaei 2011] and [Kleinberg and Weinberg 2012] for recent develop-
ments of the topic.

3. PRICING GLOBALLY PUBLIC GOODS

In this section, we focus on the case of a globally public good. That is, the underlying
network is a clique, G = K,. We assume that the common value distribution F' of the
agents is atomless and regular. Our main result is the following:

THEOREM 3.1. In the globally public good setting, let p = F~1(1—1/n)- (1 —1/n)"" L.
Then, if the price p is offered to all agents, the worst-case revenue among the equilibria
T € N, is at least a constant fraction of the revenue of the best equilibrium for the best
(possibly non-uniform) price vector to offer the agents.

The main insight driving Theorem 3.1 is that, at equilibrium, the agents aim to make
purchasing decisions in such a way that only one agent will buy the product, in expectation.
With this in mind, we draw a relationship between the public good pricing problem and a
single item auction that attempts to sell a single item to n bidders with value distributions F'.
We relate the revenue at different price vectors and equilibria in the public good mechanism
to the optimal (Myerson) revenue in the single item auction. We can then apply the theory of
optimal auctions to guide our choice of pricing in the public good mechanism. We note that
similar techniques have been applied in the context of sequential posted pricing for multi-
item auctions [Chawla et al. 2007]. However, a novel difficulty that we must overcome is the
existence of multiple equilibria of bidder behavior for any given price; we must therefore
find a price for which all equilibria generate a good approximation to the optimal revenue.

First, in Proposition 3.2, we show that the revenue of any equilibrium of any mechanism
is upper-bounded by RM. Next, Lemma 3.3 shows that for the price vector p = p - 1,
where p is the price specified in the assertion of Theorem 3.1, the symmetric equilibrium
is guaranteed to achieve at least a constant fraction of the Myerson Revenue. Finally, in
Lemma 3.4, we show that in every equilibrium for this price vector p, the revenue is at least
a constant fraction of that of the symmetric equilibrium for this price vector.

A corollary of this analysis is that the ability to price-discriminate does not substantially
influence revenue: a uniform price vector can extract a constant fraction of the optimal
revenue attainable by any mechanism, and hence any (non-uniform) vector of prices.

We note that while our analysis makes use of a connection to the Myerson optimal auction,
offering the Myerson Reserve Price does not necessarily extract a constant fraction of the
optimal revenue, even when F is regular. In the full version of the paper, we provide an
example illustrating this revenue gap at the Myerson Reserve Price.

PROPOSITION 3.2. Letp = (p1,...,pn) be any price vector, and T = (Ty,...,T,,) € Np
be an arbitrary equilibrium of the public goods selling game with prices p. Then, R(p, T) <
RM

n °

Proof. Using that p; = T; - [];,; F'(T;) by Equation (1), we can bound the revenue as

R(p,T) =3 Ti- (1= F(T)- ][ F(Ty) < 3} T (0= F(T) - [TF(Ty) < R

ji j<i
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In the last inequality, we used that the sum expresses the expected revenue of the sequential
posted price mechanism in which the i*" player is offered a price of Tj; therefore, the sum is
upper-bounded by the expected revenue of the optimal mechanism for selling a single item.

|

For the remainder of this section, we fix T such that F(T) =1—1 andp =T -F(T)" ' =

n’

T-(1—1/n)" ! Let p=p- 1 be the vector in which all agents are offered p.

LEMMA 3.3. Let T =T -1 be the symmetric equilibrium corresponding to p. Then,
1
R(p,T)=n-T-(1—-F(T))-F(T)"* > 1 -RM,

Proof. We use a variant of an argument by Chawla, Hartline and Kleinberg [Chawla et al.
2007]. We distinguish between two cases, based on the relation of the Myerson Reserve Price
r= ¢ 1(0) with T.

(1) f T > r, we let v = ¢(T") > 0. We can bound the Myerson Revenue as follows:
RM — E[mlax o(v;) - {max ¢(v;) > 0}]
< v-P0< max o(v;) < v] + E[lmax ¢(v;) - {max $(v;) > v}.
We bound each term separately. For the first term, we have that v = ¢(T) < T, and
Pl0 < mlaxqﬁ(vi) <yl < IP’[mZaxvi <T] =FT)" = (1-1/n)" < 1/e.
For the second term, we have that

Efmax ¢(v;) - {maxg(vi) = v} SB[} o(v:) {(vi) = v}

By Lemma 2.5, E[¢(v;) {¢(v;) > v}] is the revenue of the single-agent mechanism that
makes agent i a take-it-or-leave-it offer at price T'; therefore,

B[S 6(ui) {9(v) 2 )] =Y TPl >T) = T3 (1= F(T)) = T.

by definition of 7. Combining the bound on the two terms, we get that RM < T - (1 +
1/e). On the other hand, for the symmetric prices and symmetric equilibrium, we have
that R(p,T)=n-T-(1—F(T))- F(T)"' =T -(1—1/n)""! > T/e. Therefore,

1/e M 1 M M
R(p,T) > RS = —RS ~ 0.27-R.".
(p, )—1+1/e " 14e ™ "

(2) When T < r, we upper-bound R as follows:
RM = E[max é(v;) - {max p(v;) > 0}] < ]E[Z o(vi) - {p(vi) > 0}]

=n-r-(1-F(r)),
where the final equality follows from the same argument about a single buyer as above.
Let ¢™ =1 — F(r) be the probability that the valuation of an agent with distribution
F is above the Myerson reserve price r. Because F' is regular, as argued in Section 2.3,
the revenue curve R(q) is a concave function. By the definition of the Myerson Reserve
Price as the maximizer of expected revenue, R is maximized at ¢ = ¢ . Because we
are in the case that 7' < r, we get that ¢ =1— F(r) <1— F(T) = 1 < 1. We can
1
therefore write L as a convex combination £ = X-¢™ + (1 —\)-1, with A = 11_7’1{4. The
1—1

concavity of R, together with R(1) = 0, now implies that R(L) > i R(¢M). On the
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other hand, R(1) =T - (1 — F(T)); by combining these, we obtain
1-1 1
(1 — - > n_ . My > N I )
T-(1-F(T))=R(1/n) = T R(¢™) = (1 n) r-(1=F(r)). (2

We can therefore bound the posted price revenue as
R(p.T)=n-T-(1-F(T)-F(I)"* = n-T-(1-F(T))-(1—1/n)""

> nor- (L= F(r)(1—1/n)" > iRnM

The first inequality follows by Equation (2); for the second inequality, we bound (1 —
1/n)" > %, and use that the optimal revenue from selling a single item to n agents
is at most n times the optimal revenue from selling a single item to one agent at the
Myerson Reserve Price. ]

Having shown that the symmetric equilibrium has revenue within a constant factor of the
Myerson Revenue for a single item, it remains to analyze the asymmetric equilibria. (Recall
that p="T - F(T)"~*, where T is such that F(T) =1—1.)

LEMMA 3.4. Let T =T-1 be the symmetric equilibrium with threshold T, and T" € N
be an arbitrary equilibrium. Then, R(p,T) > Q(1) - R(p, T).

Proof. We express the revenue of the symmetric equilibrium as R(p,T) = p->_,(1 —
F(T)) = p. By the Union Bound, the revenue at the equilbrium T’ is lower-bounded by
R(p,T') =>,p- (1 - F(T)) >p- (1 -1, F(T})). We will prove that [[, F(T}) < (1 —
1/n)"~1 < 1 which will imply that R(p,T’) > ip = L1R(p, T). For contradiction, assume
that [, F(T}) > (1 —1/n)" L.

Using that p =T - F(T)"~' =T - (1 — 1/n)""!, applying the equilibrium condition (1)
to T', and using our contradiction assumption, we get that for all 7,

T-(1—-1/n)" 1t 1—1/n)" ! 1—1/n)"1
PSS TN C o V1) P s VPO V1
Hi;éj F(T}) Hi;ﬁj F(T}) IL F(T7) (1-1/n)
Thus, T} < T for all j, implying that F/(T}) < F(T) as well. But this contradicts that
T; - iy F(T}) =p =T -Il;4; F(T), completing the proof. ]

4. PRICING LOCALLY PUBLIC GOODS

In this section, we turn to scenarios in which the good is not completely public. That is, the
graph G is not necessarily complete; rather, G is an arbitrary network, and agents share
benefits only with neighbors in G. We refer to such a good as locally public.

We first analyze the case when G is d-regular, for some arbitrary d > 1. For such graphs,
we describe how to explicitly calculate prices that are approximately revenue-optimal, in
the worst case over equilibria of agent behavior. We then consider the case of general
networks. We present evidence that the pricing problem for general graphs is substantially
more difficult, and that the approaches used in previous cases cannot be extended to handle
the general case, even for uniform distributions. Nevertheless, we show that approximately
optimal prices can be found in the special case that agent values are drawn from the uniform
distribution.

4.1. d-Regular Graphs

We consider the problem of pricing locally public goods when the underlying graph is d-
regular; i.e., [N (i)| = d for every i € [n]. As before, we assume that the value distribution
F of the agents is atomless and regular.
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Recall that in the case of globally public goods (Section 3), we showed how to compute a
price for which the revenue at the worst equilibrium is a good approximation to the revenue
at the best equilibrium for any price vector. In other words, p is such that

1 . > . .
TnélAr}pR(p 1,T) = Q(1) mgXTrg%R(p,T)

One might hope for a similar result for locally public goods. Unfortunately, we show that
this is not possible even for d-regular networks: in Example 4.4, we give an instance of
a d-regular graph for which the gap in revenue between different equilibria is linear in d.
The same example also shows that for d-regular graphs, we cannot find a single price that
is competitive against non-uniform price vectors. Thus, unlike for globally public goods,
a constant-factor revenue approximation for d-regular graphs must specifically compare
revenue-minimizing equilibria at given price vectors.

We establish the existence of a price p that depends only on the degree d and the dis-
tribution F', but not on the particular structure of G, such that when p is offered to all
the agents, the seller obtains a constant fraction of the worst-case revenue at any price. In
other words, we establish the existence of a price p = p(d, F') such that

. . /
Join R(p-1,T) > Q(1) max iy R(p'-1,7T).

We emphasize that the key aspect here is that p is independent of the actual network
structure of G, and that it can be computed efficiently from F' and d.

THEOREM 4.1. In the locally public good setting with d-reqular graphs, let p = F~1(1 —
1/d)- (1 —1/d)%. Then, if the price p is offered to all agents, the worst-case revenue among
the equilibria T € N, is at least a constant fraction of the revenue of the worst equilibrium
for the best network-specific uniform price to offer the agents.

Our approach to proving Theorem 4.1 is the following. We first study the symmetric
equilibria of the game. We know from Section 2 that every uniform price vector p-1 admits
a symmetric equilibrium. We consider a price p for which, in the corresponding symmetric
equilibrium, each player buys with probability é In Lemma 4.2, we show that the revenue
of this symmetric equilibrium is a constant fraction of the revenue of any other symmet-
ric equilibrium (across all potential prices). In particular, this implies that the worst-case
revenue at any other price is at most a constant factor larger than the revenue of the sym-
metric equilibrium at price p. Then, in Lemma 4.3, we show that for this particular price
p, every equilibrium generates at least a constant fraction of the revenue of the symmetric
equilibrium.

For the remainder of this section, we fix 7" such that F(T) =1— %, and p =T F(T)* =
T-(1—1/d). Let p=p-1 be the vector in which all agents are offered p.

LEMMA 4.2. Consider a locally public goods problem in which the underlying network
1s a d-reqular graph and agents have valuations drawn i.i.d. from a regular distribution F'.
Let T be the symmetric equilibrium with threshold T'. Then,

for all prices p’ and threshold vectors T' -1 corresponding to the symmetric equilibrium with
- /
price p'.

Proof. Let R3! be the revenue obtained by Myerson’s mechanism for selling one item to
d players with i.i.d. valuations drawn according to F'. The Prophet Inequality (Section 2.3)
guarantees that there exists a price T such that a sequential posted-prices mechanism with
price T* offered to all agents guarantees at least half of the Myerson Revenue R3!. On
the other hand, the Myerson Revenue is optimal, and therefore clearly serves as an upper



Proceedings Article

bound on the revenue that can be obtained by any price T" of the sequential posted prices
mechanism. In summary, there exists a T such that

d d
;T*(I—F(T*))F(T*)z;l > %'Rfi\/f > % (;T/(l—F(T/))F(T’)il), for all T 3)

We distinguish between two cases, based on the relation of T with T'.
(1) If T'> T*, then given any price p’ and corresponding symmetric equilibrium 77,

R -1,T-1)=n-T -(1-F(T))-F(T)? = % (d-T"-(1—F(T) - F(T")%)

d
n .
<" (- (T -FT”‘l).
<= (; (1- F(T") - F(T")
Using both sides of Equation (3), we get:

n

R -1,T"-1) < y

d
2n )
M < 2. * _ * x«\1—1 < 2. *.
RY < = (1§_1T (1— F(T*)F(T) ) < o
Next, we establish a lower bound on R(p, T).
1
R(p,T)=n-T-(1— F(T)) F(T)* = %(1— 1/d)*-T > % Tz 2 R(YLT 1),

For the first inequality, we bound (1 — é)d > i, and use that T' > T, by the assumption

of case (1); the second inequality follows from Inequality (4).
(2) T <T*, thenlet ¢* =1—F(T*) < 1— F(T) = §. Similar to the proof of Lemma 3.3,
we use the concavity of the revenue function R(q) = ¢- F~1(1 — q) to derive that
T (1— F(T) > (1-1/d) - T - (1 - F(T"). (5)
It follows that
Rp,T)=n-T-(1-F(T))-F(T)* = n-(1-1/d)*-T-(1 - F(T))

>n(l—1/d)™ T (1= F(T*))

d
n

> (1= 1/ 2 (;T*(l - F(T*))F(T*Y‘l)

n

d
> (;T'u — F(T)F(T')"")

n 1
> 71 — Y . nd _— | /. 1),
> ST (1= F(T) F(T) = o RO -1,T 1)

The first inequality follows by Inequality (5); the second inequality holds because
F(T*)=1 < 1 for every i; the third inequality follows by Inequality (3), and by bounding
(1 —1/d)*™*! > 1; and for the final inequality, we use that i < d for every i.

The assertion of the lemma follows. [ ]

Having shown that the symmetric equilibrium associated with price p generates a good
approximation to the optimal revenue attainable at symmetric equilibria, we now show that
there are no other (asymmetric) equilibria associated with price p that generate significantly
less revenue.

T -1 be the symmetric threshold vector associated with price p.

LEMMA 4.3. Let T =
(1) - R(p,T) for any threshold vector T' € Np.

Then, R(p, T') > Q
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Proof. For any equilibrium T/ € Np,

RO =300 - FI) =330 3 (- P =33 (1= I F)

i JEN(i) JEN(i)

where the last inequality follows by applying the union bound. By the equilibrium con-

ditions, T} - [[jeny F(Tj) = p = T - F(T)? for all 4; therefore, 1 — [en F(T)) =

1—T-F(T)*/T]. We get that R(p,T") > £, ( %(,T)d) From the last inequality

and the equality R(p, T") = >, p(1 — F(T, )) we can bound R(p, T') as follows:

R(p, T Zp;g - ra)+ g (1—TFT(T))]

Focus on one term ¢ of the sum. The first term in brackets is decreasing in 77, while the
second is increasing in 7. Consequently, we distinguish between two cases: (i) If T} < T,
then 1 — F(T}) > 1— F(T) = L. (ii) If T/ > T, then

;<1—T'/_1;§T)d>2;(1—(1—1/d)d)z(11-<1—i>.

Thus, summing over all 3, R(p,T') >p->_, % (é . (1 — l)), implying that

R T) 20305 (30 1/0) =00 - =0) Rip.T). m

We now show that comparing against the best worst-case revenue, rather than the best
revenue in equilibrium, is a necessity rather than an artifact of our analysis.

Ezample 4.4 (Revenue gap). Consider an instance with n players whose valuations are
drawn i.i.d. from the uniform distribution with support [0,1]. Let the underlying network
be a d-regular bipartite graph with § nodes on each side. We showed in Lemma 4.2 that
the best worst-case revenue is upper bounded by & - ’RM < % (where Ré\/[ is the revenue
obtained by Myerson’s mechanism for selling one item to d players).

Now, consider the following equilibrium T € N; /2 in the bipartite graph: the nodes on one
side buy whenever their value exceeds the price, while the nodes on the other side always
free-ride. That is, T; = % for each player i on the left, and T; = 2%~ > 1 for each player i

on the right. This equilibrium generates a revenue of % - % (11— %) = ¢. The gap between
the best worst-case revenue and the best revenue can therefore be as large as g (7)” 1= d

Notice that the same instance also shows a gap between the worst-case revenue of the
best uniform price vector and the best discriminating prices. The seller can offer all nodes

on the right a price of 1 and the left a price of %; in the unique equilibrium, the bidders on
the right never buy and the bidders on the left choose a threshold of %

4.2. Hardness of Bounding Revenue for General Graphs

We would like to extend the results from the previous sections beyond complete and d-
regular graphs, and find a method to compute prices that approximately optimize revenue
for arbitrary networks. Recall the nature of our analysis for Theorem 3.1 and Theorem 4.1:
in each case, we constructed a price p and then bounded the revenue of the worst-case
equilibrium T € N, with respect to either an upper bound on the revenue of any equilibrium
for any price vector (in the case of Theorem 3.1) or the worst-case revenue for any uniform
price vector (for Theorem 4.1). Can we hope to extend these methods to general networks?

In this section, we show that there are inherent difficulties in extending these approaches
to handle general networks. In the full version of this paper, we give an instance of a



Proceedings Article

network such that, for every price, the gap between the best-case and worst-case revenues
is 2(n). (The complete bipartite graph K, /5 ,, /2, generalizing Example 4.4, shows the same
for carefully chosen prices, but not all prices.)

One might instead hope to analyze worst-case revenues directly, as in Theorem 4.1. How-
ever, we again find that this poses a difficulty in general networks. Theorem 4.5 (whose
proof is given in the full version due to space constraints) shows that it is NP-hard to
approximate the worst-case revenue for a given p, over all equilibria T € N, to within a
factor of n'~¢, even when F is the uniform distribution.

THEOREM 4.5. Assume that all agents’ valuations are drawn i.i.d. from the uniform
distribution on [0,1]. Given a graph G with n nodes and a uniform price vector p =p- 1,
it is NP-hard to approzimate the worst-case revenue to within a factor n'=¢.

4.3. General Graphs, Uniform Distribution

Motivated by the gap between best-case and worst-case revenue, and the approximation
hardness, we explore an alternative approach. While Theorem 4.5 demonstrates that we
cannot hope to compute the revenue generated by any given price, we show that for i.i.d. uni-
form distributions of agent valuations, the impact of the equilibrium and of the price choice
can be decoupled, so that an approximately optimum price can be set even without knowl-
edge of the network. It turns out that a price of % gives a constant-factor approximation.

The key to our analysis is to show that, for the case of the uniform distribution, there is
an underlying structure to each equilibrium that does not depend on the price chosen by the
seller. Even further, it is possible to express revenue as the product of two terms, the first
determined by the chosen price and the second by the structure of the equilibrium selected
by the agents. This allows us to optimize the price term independently of the equilibrium
structure.

THEOREM 4.6. Let G be an arbitrary network, and assume that the agents’ valuations
are drawn i.i.d. from the uniform distribution on [0,1]. Then, the worst-case revenue ob-
tained from offering a uniform price of% is at least an ¢ fraction of the worst-case revenue
for the optimum (network-specific) price. Formally:

e
min R(1-1,T) > = max min R(p,T).
TEN, 2 (3 ) 2 4 p=plTEN, (p.T)

Proof. Given a price vector p = p - 1, an equilibrium T € N, is a vector such that
T; - HjeN(i) F(T;) = p, where F(T;) = min{1,T;} for the uniform distribution on [0, 1].
Note that a threshold T; > 1 is “behaviorally” equivalent to a threshold 7; = 1, since the

support of the valuations is [0, 1]. Applying this definition of the distribution function, the
equilibrium condition becomes

(i) T; € [p,1]; @ J[ T<w i) J[] ZTi<p= Ti=1L
JEN(i)U{i} JEN(i)U{i}

The worst-case equilibrium for the price vector p can therefore be expressed as the fol-
lowing mathematical program:

Minimizeren, R(p-1,T) = p->,(1-1T;)

subject to HjeN(i)U{i} T; <p for all Z
JEN@G)UL} T, <p = T;=1 forall i
p<T; <1 for all 7.
We use the transformation x; = % (and thus T; = p®) in order to bring the

program into a form in which the constraints carry only information about the graph and
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are independent of the price p. In addition, as a result, the objective function depends only
on the price and not on the graph structure. This decouples the two aspects of the problem:

Minimizeren, R(p-1,T) = p-> (1 —exp(—z; -log(1/p)))

subject to ZjeN(i)U{i} z;>1 - for all z (©)
]GN(’L)U{Z} QTJ > 1 — €Tr; = O fOI" all 1
0<z; <1 for all 7.

For the range y € [0,log(1/p)], elementary facts about the exponential function imply

the following bounds: 10(;(7171))) cy<1l—e ¥ < y. Writing X for the set of vectors x that

are feasible for the program (6), we apply the bound on the exponential function to the
program (6), obtaining that

xeX 4=
K3

(1-p) mi ; < mi 1,T) < p-log(1/p) - mi
p-(l—p)-min} 2 < mip R(p-1,T) < p-log(L/p) gggz;x

Thus, we have upper and lower bounds on the value of the worst-case revenue for each
price p. Notice that the upper bound is maximized for p = 1/e, so

1
max min R(p,T) < —- miani.

p=p-1 TEN, e xeX
On the other hand, setting p = % maximizes the lower-bound, giving us that
i 7%(11T)>1 i > C in R(p,T). m
min —-1,T)> - -min » z; > - max min ,T).
TeN, ), 2 4 xex ! 1 pepiTen, P

The analysis above was based on choosing the Myerson Price for the uniform distribution,
in order to maximize the “price component” of the product; the “equilibrium component”
factored out, and contributed at most a constant-factor loss in revenue. One might suspect
that the Myerson Price would provide a constant approximation for all (regular) distribu-
tions. However, in the full version, we provide an example which shows that this is not the
case, even for the complete network.

5. CONCLUDING REMARKS

In this paper, we initiated the study of revenue-maximal pricing for locally public goods.
We conclude by discussing potential extensions and questions left open by our work.

Simultaneous vs. Sequential purchases. In our model, all agents simultaneously observe
the price of the good and decide whether to purchase. In an alternative scenario, the seller
sequentially offers the good to each agent in turn, who can then decide whether to buy given
the choices of those who came before. This leads to a pricing problem that is similar to the
one studied here, except that the natural solution concept for the pricing game becomes the
subgame perfect equilibrium rather then Nash Equilibrium. Does the increased possibility
of coordination in sequential sales unambiguously help or harm revenue?

Imperfect public goods. We consider scenarios where the good is a perfect public good:
the benefit of owning it and having a neighbor that owns it are the same. Most goods,
however, have both public and private components. The purchase of a big-screen television
provides some benefit to the purchaser’s friends, who can visit and watch/play, but the
greatest benefit goes to the purchaser himself. One can consider a utility model where
ui(vi,S) =v; —p;ifi €S, (1 —e)v; if i ¢ S but N(i)NS # 0, and u;(v;, S) = 0 otherwise.
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Strength of social ties. We assumed that all links of the social network are homogeneous.
One could also consider the case in which network links are weighted. The weights might
correspond to the extent to which benefits are shared along a link. In such a case, one
can assume that the network is represented by a matrix w;; where w;; = 1, wy; = 0 for
J ¢ N(i)U{i} and w;; € [0, 1] otherwise. Then, the utility of agent ¢ for an outcome S is
given by u;(v;, S) = v; - maxjesw;; — p; - {i € S}. An even further generalization is to
consider a submodular function f; : 20"} — R, for each agent such that his utility is given
by u; = v; - f1<S) — P {Z S S}

Other applications and objectives. We believe that our model and techniques can be useful
for additional related settings. Consider, for example, the following snow-shoveling setting.
Suppose that a landlord of an apartment building wants to make sure that snow is shoveled
from the sidewalk in front of his building. Thereto, he imposes a fine on each tenant in the
case that the sidewalk is not shoveled. The tenants now face a problem that is similar in
spirit to purchasing a public good. Each tenant incurs a personal cost from snow shoveling,
drawn from some distribution, and needs to decide whether to exert effort (and incur the
associated cost), or else pay the fine if none of the other tenants shoveled. The landlord, in
determining the fine, must balance between different objectives, such as getting the snow
shoveled, his own revenue, and the social welfare of the tenants. This is an example of a
broader class of problems in which a policy maker must decide on mechanisms that are only
applicable to individuals in order to encourage group behaviors. This example illustrates
the appeal of this problem with objectives other then revenue. We believe that this problem
has a structure similar to public goods, and that our techniques might be useful there.
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