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We consider the problem of locating a public facility on a tree, where a set of n strategic agents report their
locations and a mechanism determines, either deterministically or randomly, the location of the facility. The
contribution of this paper is twofold.

First, we introduce, for the first time, a general and clean family of strategyproof (SP) mechanisms for
facility location on tree networks. Quite miraculously, all of the deterministic and randomized SP mecha-
nisms that have been previously proposed can be cast as special cases of this family. Thus, the proposed
mechanism unifies much of the existing literature on SP facility location problems, and simplifies its analysis.

Second, we demonstrate the strength of the proposed family of mechanisms by proving new bounds
on the approximation of the minimum sum of squares (miniSOS) objective on line and tree networks.
For lines, we devise a randomized mechanism that gives 1.5-approximation, and show, through a subtle
analysis, that no other randomized SP mechanism can provide a better approximation. For general trees,
we construct a randomized mechanism that gives 1.83-approximation. This result provides a separation
between deterministic and randomized mechanisms, as it is complemented by a lower bound of 2 for any
deterministic mechanism. We believe that the devised family of mechanisms will prove useful in studying
approximation bounds for additional objectives.

Categories and Subject Descriptors: J.4 [Social and behavioral sciences]: Economics; G.2.2 [Graph
Theory]: Trees

Additional Key Words and Phrases: approximate mechanism design without money, facility location, least
squares

1. INTRODUCTION

In facility location problems, a social planner has to determine the location of a public
facility that needs to serve a set of agents. Once the facility is located, each agent incurs
some cost that depends on the distance from her ideal location to the chosen location of
the facility. This class of problems is realized in many scenarios, including, for example,
locating a server in telecommunication networks or locating a library or a fire station in a
road network. Facility location problems arise not only in physical settings like the ones just
described, but also in more virtual settings where the agents’ opinions or preferences can
be represented as their locations, and a single outcome has to be chosen. As an example,
consider a set of students sitting in a classroom with an air conditioner, where every student
has her most preferred temperature, and a single temperature has to be chosen. In all of
these examples, one “location” has to be chosen, and every agent would like it to be as near
as possible to her most preferred location.
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What is the best method to settle the naturally conflicting preferences of the agents? In
other words, what is the best way to determine the location of the facility, given the agents’
locations? This question, and related ones, have been extensively studied in the literature,
from various conceptual and algorithmic perspectives; see, e.g., Marsh and Schilling [1994],
the book by Handler and Mirchandani [1979], and the body of literature concerning the per-
formance of a Condorcet point! [Bandelt 1985; Bandelt and Labbé 1986; Labbe 1985]. The
literature considers both deterministic mechanisms, in which the facility location is chosen
deterministically, and randomized mechanisms, which return a probability distribution over
locations.

Starting with the work of Moulin [1980], this problem was also studied from a game-
theoretic perspective, where the agents are assumed to be strategic, i.e., report their loca-
tions in a way that will minimize their individual costs. The game-theoretic perspective of
the facility location problem advanced in two main directions, as described below.

Sufficient and necessary conditions for strategyproofness. The first direction seeks to char-
acterize strategyproof (SP) mechanisms; i.e., mechanisms that induce truthful reporting as
a dominant strategy. This is a crucial attribute since in its absence, strategic agents may
misreport their locations. Moulin [1980] and later Schummer and Vohra [2002] provided
characterizations of deterministic SP mechanisms on line, tree, and cycle networks. While
the work of Moulin [1980] concentrated on general single-peaked? preferences [Black 1958],
Schummer and Vohra [2002] considered the special case in which the cost incurred by an
agent is the length of the shortest path from the facility to her location. These results were
later extended to various metric spaces (see, e.g., Border and Jordan [1983]). It should be
noted that the characterization of SP mechanisms for facility location settings has been
studied thus far mainly with respect to deterministic mechanisms. An exception is the work
by Ehlers et al. [2002], which characterizes randomized SP mechanisms, but is different
from our work in two respects. First, their characterization applies only to a line network,
while we are interested in the more general case of a tree. Second, they use a different no-
tion of preferences over probability distribution (in particular, preference over probability
distributions is defined in terms of first-order stochastic dominance), and, as a result, use
a different notion of strategyproofness. This difference has significance effects, for example,
on lower bound results for approximation.

Approximation. The second direction, advocated more recently by Procaccia and Tennen-
holtz [2009], studies the approximation ratio that can be obtained by an SP mechanism with
respect to a given objective function. This agenda, often termed “approximate mechanism
design without money”, has led to extensive work on several domains, including facility lo-
cation [Procaccia and Tennenholtz 2009; Alon et al. 2009, 2010; Lu et al. 2009, 2010; Fotakis
and Tzamos 2010], machine learning [Dekel et al. 2010], and matching [Ashlagi et al. 2010;
Dughmi and Ghosh 2010]. Unlike the traditional motivation for approximation, originating
from computational hardness, here, approximation is used to achieve strategyproofness.

The approximation ratio of a mechanism is defined with respect to a given objective
function, and the standard worst-case notion is being applied. The two objective functions
that have been prominently featured in the literature are the minisum (i.e., minimizing
the sum of agents’ costs) and minimax (i.e., minimizing the maximum cost of any agent)
functions. The approximation bounds of SP mechanisms clearly depend on the specified
objective function. For example, while it is well known that the optimal location on a tree
with respect to the minisum function can be obtained by an SP mechanism (in particular, by
the median), it has been shown by Procaccia and Tennenholtz [2009] that no deterministic

LA Condorcet point is a location that is preferred to any other location by more than half the agents.
2With single-peaked preferences, every agent is associated with an ideal location, considered to be her peak,
and the closer the facility is to an agent’s peak, the most preferred it is.



(respectively, randomized) SP mechanism on a line can achieve a better approximation than
2 (resp., 1.5) with respect to the minimax function.

A special focus was given to the case of facility location problems on networks, where
the agents (as well as the facility) are located on various points of an underlying network
topology. Within this literature, the line and the tree networks received significant attention,
as natural topologies. The motivation for the study of line topologies arises naturally from
any one-dimensional decision that is made by aggregating agents’ preferences, such as the
air-conditioning example mentioned above. The tree topology is particularly motivated by
applications of communication networks, where a tree topology corresponds to hierarchi-
cal networks. Indeed, in computer networks, an agent can easily manipulate its perceived
network location by generating a false IP address, and therefore SP mechanisms are desired.

1.1. Our contribution

Focusing on tree and line networks, our work advances the literature in the two directions
mentioned above, as detailed below.

Sufficient condition for randomized SP mechanisms. The characterization of SP mecha-
nisms for facility location settings has been studied thus far mainly with respect to deter-
ministic mechanisms. In this work, we establish a sufficient condition for randomized SP
mechanisms on any tree network, which essentially provides a family of randomized SP
mechanisms, termed “parameterized boomerang” (PB). Quite miraculously, all of the mech-
anisms that have been devised recently within the facility location domain (and shown to
give tight approximation bounds with respect to various objective functions) can be for-
mulated as special cases of the PB family. Thus, the proposed mechanism unifies much of
the existing literature on SP approximation for facility location problems and simplifies
its analysis. The generality and strength of Mechanism PB is further illustrated through
the analysis of the least squares objective (see next paragraph), where various instances of
Mechanism PB are shown to achieve good approximation results on line and tree networks.
Thus, the sufficient condition provided here is not only interesting in itself but also equips
one with a large family of SP mechanisms, and can be served as a useful tool for studying
the approximation ratios with respect to various objectives. Mechanism PB is presented in
Section 3.

Approximation. In the approximation regime, we study the least squares objective func-
tion — minimizing the sum of squares of costs (hereafter miniSOS). The miniSOS function
is highly relevant in many economic settings, and is related to central notions in other dis-
ciplines, such as the centroid in geometry, or the center of mass in physics. Of particular
interest is the applicability of the miniSOS objective to regression learning settings. While
it is not immediately obvious, it can be verified that there is a one-to-one mapping be-
tween the problems of facility location on a line and regression learning, when restricted to
the class of constant functions®. Consequently, the prevalence of the miniSOS function in
regression learning motivates the study of this objective in our study. In addition, the min-
iSOS objective has been given a rigorous foundation by Holzman [1990] using an aziomatic
approach. In particular, Holzman formulated three axioms?* for locating a facility on a line

3Consider a regression learning problem, in which every data point is represented by a point (z;,%;) in the
plane, and the objective is to find the function that fits best the collection of the data points. Suppose one
needs to find the best function out of the class of constant functions c. In this case, the distance between
every point (z;,y;) to ¢ is |y; — c|, which is independent of ;. Therefore, The data points can be essentially
thought of as a collection of points {y;} (i.e., the projection of the data points on the y-axis), in which case
the problem of finding the best constant function reduces to the problem of facility location on the line
(where the line is the y-axis).

4The three axioms formulated by Holzman are (roughly speaking): (i) unanimity, stating that if all the agents
report the same location, then the reported location should be chosen, (ii) Lipschitz, which is a continuity



or a tree, regarded as sensible requirements, and showed that the unique objective function
that satisfies the three axioms is the miniSOS objective. Following the above motivation and
the axiomatic foundation laid by Holzman, it is only natural to study the approximation
that can be obtained by SP mechanisms with respect to the miniSOS function.

We provide approximation results with respect to the miniSOS objective, for line and
tree networks, and for deterministic and randomized mechanisms. Notably, all the mech-
anisms that are devised in this paper are special cases of Mechanism PB. As in other
settings [Procaccia and Tennenholtz 2009; Alon et al. 2010; Lu et al. 2010; Ashlagi et al.
2010], randomized mechanisms are shown to provide better bounds than deterministic ones.
Our results are as follows:

Line networks (Section 4). We show that the median gives a 2-approximation determin-
istic SP mechanism, and that no deterministic SP mechanism can achieve a better approx-
imation ratio. For randomized mechanisms, we present an SP mechanism that provides a
1.5-approximation; the mechanism chooses the average location with probability % and a

random dictator with probability % Through a novel technique and subtle analysis, we show
that this bound is tight. Interestingly, while the minimax and the miniSOS functions induce
different optimal solutions, and different optimal SP mechanisms, they admit the exact same
approximation bounds with respect to both deterministic and randomized mechanisms.

Tree networks (Section 5). First, we show that the median mechanism gives a 2-
approximation with respect to the miniSOS objective. This result is tight with respect
to deterministic mechanisms, following the lower bound established on the line. Our main
result in the approximation regime is the construction of a randomized SP mechanism that
gives a 1.83-approximation for any tree network. The significance of this result stems from
the fact that it establishes a separation between deterministic and randomized mechanisms
(recall the lower bound of 2 with respect to deterministic mechanisms, even on the line).
The proof of the upper bound requires quite complex analysis and various transformation,
and is perhaps the main technical contribution of this paper.

All of the missing proofs are deferred to the full version of the paper.

2. MODEL AND PRELIMINARIES

We use the model of Schummer and Vohra [2002], where the network is represented by a
graph G, formalized as follows. The graph is a closed, connected subset of Euclidean space
G C RF. The graph is composed of a finite number of closed curves of finite length, known
as the edges®. The extremities of the curves are known as vertices (or nodes). An important
class of graphs, which is the focus of this paper, is tree graphs — graphs that contain no
cycles.

The path between two points a,b € G is denoted by patha(a,b). The distance between
two points a,b € G, denoted dg(a,b), is the length of the (unique) path between a and
b. We extend the definition of distance between points to distance between a point and a
path as follows. Given a point ¢ € G and a path pathg(a,b), the distance between ¢ and
path(a,b), denoted dg(pathg(a,b),c), is the shortest distance between ¢ and any point on
path(a,b); i.e., da(pathg(a,b), c) = Minicpathg(a,p)da(l, ¢). When clear in context, we omit
the subscript G.

Let N = {1,...,n} be a set of agents. We sometime use [n] to denote the set of agents
N. Each agent ¢ € N has an (ideal) location z; € G (agents can be located anywhere on
G). The collection x = (z1,...,2,) € G™ is referred to as the location profile.

requirement; and (iii) invariance, stating that an agent who moves to a location that is equidistant from
the outcome from the same direction will not affect the chosen outcome.

5Note that while this model is expanding upon the notion of an interval, it is not analyzing full-dimensional,
convex subsets of Euclidean space. Rather, travel is restricted to a road network, where convex combinations
of locations are typically not feasible.



A deterministic mechanism is a function f : G™ — G that maps the agents’ reported
locations to the location of a facility (which can be located anywhere on G). If the facility
is located at y € G, the cost of agent ¢ is the distance between z; and y; i.e., cost(y, x;) =

A randomized mechanism is a function f : G™ — A(G), which maps location profiles
to probability distributions over G (which randomly designate the facility location). Let
P € A(G) be a probability distribution over G. If f(z) = P, then the cost of agent ¢ is
the expected distance of the facility location from x;; i.e., cost(P,x;) = Ey~p|cost(y, z;)].
When clear in the context, we write y ~ f(x) for ease of presentation.

A mechanism is called strategyproof (SP), or truthful, if no agent can benefit from mis-
reporting her location, regardless of the reports of the other agents. Formally, in our sce-
nario, this means that for all x € G, for all ¢ € N, and for all z; € G, it holds that
cost(f(x),x;) < cost(f(x},x_;),x;), where Xx_; = (z1,...,%i—1,Tit+1,--.,Tyn) is the profile
of all locations, excluding agent i’s location.

We next consider deviations by coalitions (i.e., subsets of agents, as opposed to unilateral
deviations). A coalitional deviation is said to be beneficial if none of the agents in the
coalition incurs a higher cost and at least one agent strictly benefits from the deviation.
A mechanism is called group strategyproof (GSP) if no subset of agents has a beneficial
deviation. Formally, this means that for all x € G", for all S C N, and for all x € G,
either cost(f(x),z;) < cost(f(x,x_g), ;) for every i € S, or there exists an agent i € S
such that cost(f(x),x;) < cost(f(xg,x_g),x;), where xg (respectively, x_g) is the profile
of the locations of the agents in S (resp., the agents not in 5).

The quality of a facility location is usually evaluated with respect to some target social
function. Given a location profile x = (z1,...,x,) and a facility location y, the social cost
of y with respect to x is given by a function sc(y,x). The social cost of a distribution P
with respect to x is sc(P,x) = E,p[sc(y,x)].

Given a social cost function, location y € G is said to be optimal with respect to a profile
x if sc(y,x) = miny casc(y’, x). An optimal location is denoted by Opt(G,x). When clear
in the context, we simply write Opt. In addition, we often abuse notation and use Opt to
refer to the social cost of an optimal location.

A mechanism f is said to provide a-approximation with respect to a social cost function
sc if for every graph G and every location profile x, sc(f(x),x)/sc(Opt,x) < «; that is, the
mechanism always returns a solution that is an « factor of the optimal solution.

In this paper we are interested in optimizing the sum of squared distances (SOS) function;
that is, sc(y,x) = ;o n d(y, x;)?. This objective function is extremely important from both
normative and positive perspectives, as discussed in the introduction.

Given a profile x, the median of x in a tree G, denoted by u(G,x), is defined as follows.
We start from an arbitrary node (induced by G) as a root. Then, as long as the current
location has a subtree that contains more than half of the agents, we smoothly move down
this subtree. Finally, when we reach a point where it is not possible to move closer to more
than half the agents by continuing downwards, we stop and return the current location.

We continue with several graph theoretic definitions and lemmas. At this point, it is
necessary to emphasis the difference between a location profile, which was defined earlier
and is tightly coupled with a set of agents, and a location vector, which is a set of locations
in the graph.

Definition 2.1. Given a tree G and a point x € G, let T(G,x) be the set of subtrees
defined as follows. If 2 is a tree node (with degree d,), then T(G,z) = {T1,...,Tjq,}
where T; is the subtree of descendant ¢ rooted at z. If z is not a node (i.e., it is a point
on an edge), then T(G,z) = {T1,T2}, where T1 and T, are the respective left and right
subtrees rooted at x.



Definition 2.2. Let G be a tree, y € G™ be a location vector, and w be a probabil-
ity vector of size m. The weighted average location with respect to G,y and w, denoted
wAvg(G,y,w), is a point in G which minimizes the weighted sum of squared distances from
the locations in y; i.e., wAvg € argminiec 3 e (m) w;d(l,y;)%

The following lemmas will be required in the sequel.

LEMMA 2.3. Lety € G™ be a location vector, and w a probability vector of size m. It
holds that a = wAvg(G,y,w) if and only if for every T; € T(G, a),

Yo wid(yi,a) <Y wid(yi,a).

i€[m]:y; €T i€[ml:y; ¢T;

COROLLARY 2.4. Lety € G™ be a location vector, and w a probability vector of size
m. The weighted average location with respect to G,y and w is unique.

LEMMA 2.5. Lety,y € G™ be location vectors, and w be a probability vector of size
m. For every i € [m], let 6; = d(y;,y}) . Let a = wAvg(G,y,w) and o' = wAvg(G,y’,w).
It holds that d(a,a’) < 3 ;¢ () widi-

3. RANDOMIZED SP MECHANISMS ON A TREE

In this section we introduce a family of randomized SP mechanism for locating a facility on
a tree. Unless otherwise stated, the graph G in this section is assumed to be a tree.

6

The following notion of a boomerang mechanism® is a key concept in our construction.

Definition 3.1. A deterministic mechanism f is said to be a boomerang mechanism
if for every location profile x, agent 4, and point zj, cost(f(x'),z;) — cost(f(x),z;) =
d(f(x'), f(x)), where X' = (2}, %_).

That is, a boomerang mechanism is one in which a deviating agent fully absorbs the effect
of her deviation on the facility location.

Clearly, every boomerang mechanism is SP. Moreover, every boomerang mechanism is
GSP, as established by the following proposition.

PROPOSITION 3.2. Ewery boomerang mechanism is GSP on a tree.

PROOF. Let f(x) be a boomerang mechanism, and assume toward contradiction that
there exists a coalition of agents S C N, such that deviating from xg to x) is beneficial.
Let Ts be the subtree induced by the true locations of S, i.e., for each location ¢ € T, there
exist 4,j € S such that ¢ € path(x;,z;). If f(x) is located on Ts, then f(x,x_g) must
be more costly with respect to at least one agent in S, contradicting that the deviation is
beneficial. Therefore, f(x) must reside outside of T's. Now consider the agents in S deviating
from xg to x5, one by one. It is easy to verify that by Definition 3.1 in every such iteration,
the facility location cannot get closer to T's. Thus, the final location f(x),x_g) is at least
as far from Tg as f(x), which contradicts the beneficial deviation. O

Several examples of boomerang mechanisms follow: (The proof is left as an exercise to the
reader.) (i) dictatorship; i.e., where there exists ¢ € N such that for every x, f(x) = ;. (ii)
median (on a tree). (iii) k th-location (on a line); also known as generalized median [Moulin
1980].

We are now ready to introduce the family of randomized SP mechanisms for tree networks.
This family is presented as a parameterized mechanism, called “parameterized boomerang”.

6This notion is closely related to the notion of an “uncompromising mechanism” defined in [Border and
Jordan 1983].



Mechanism “parameterized boomerang” (PB). Let f = (f1,..., fm) be a collection of
boomerang mechanisms. For every ¢ € [m], let y; = fi(x), and let y = (y1,...,Ym). Let
w be a probability distribution supported on m elements, and let a« = wAvg(G,y,w). The
facility location is chosen according to the following probability distribution:

— for every i € [m], choose f;(x) with probability Jw;.
— choose a with probability %

We refer to the two components of the probability distribution as the boomerang component
and average component, respectively. Note that every boomerang mechanism is a special
case of PB, with m = 1.

The following theorem establishes the strategyproofness of Mechanism PB.

THEOREM 3.3. Mechanism PB is SP.

PRrOOF. Assume by way of contradiction that there exists an agent ¢ that can benefit
by misreporting her location as z}, inducing a location profile x' = (x},x_;). We quantify
the effect of the deviation on the boomerang component and the average component of
Mechanism PB. We begin with the boomerang component. For every j € [m], let §; =
d(f;(x'),z;) — d(f;(x), ;) be the additional cost incurred by ¢ due to the deviation, when
f; is chosen. Since f; is a boomerang mechanism, it holds that d(f;(x’), z;) —d(f;(x),z;) =
d(f;(x'), f;(x)) > 0. Therefore, the additional cost incurred by ¢ due to the boomerang com-
ponent is » - wid; = D e wid(f;(x'), fj(x)). By Lemma 2.5, the average component
reduces agent i's cost by at most » .1, w;d(f;(x'), f;(x)). The assertion of the theorem
follows. O

The following assertion is an immediate corollary.
COROLLARY 3.4. FEvery fized probability distribution over PB mechanisms is SP.

Interestingly, unlike deterministic boomerang mechanisms that are GSP for every tree
network, Mechanism PB is not GSP, even on the line. This is established in the following
example.

Ezample 3.5. Let f(x) be the PB mechanism that chooses a random dictator with
probability %, and the average of the reported locations with probability % Suppose there
are 3 agents that are located at points 0,1 and 3 on the line, and consider the deviation in
which the agents located at 0 and 1 report the false locations —% and %7 respectively. As a
result of the false reports, the average component moved from 1% to 1%. Consequently, the
expected cost of the agent located at 0 decreased, while that of the agent located at 1 was
not affected. Therefore, this mechanism is not GSP.

In recent years, various SP mechanisms have been proposed in the literature for the facility
location problem on the line with the objective of approximating different social objectives,
such as the minisum and the minimax functions. The following proposition shows that all
of the mechanisms that have been proposed in this context are special cases of Mechanism
PB (or a probability distribution over PB mechanisms).

PROPOSITION 3.6. The following mechanisms on the line are special cases of Mechanism
PB (or a probability distribution over PB mechanisms).

(1) k-location. Exzamples of this mechanism are the median mechanism, which is known to
minimize the sum of distances, and the leftmost agent mechanism, which provides a
2-approzimation for the minimax objective [Procaccia and Tennenholtz 2009] (which is
tight with respect to deterministic mechanisms).



(2) left-right-middle (LRM ) [Procaccia and Tennenholtz 2009]. LRM chooses the leftmost
agent with pmbabzlzty 1, the rightmost agent with probability 1 1, and their middle point

with pmbabzhty 5. It provides a (tight) 1.5-approzimation for the minimaz ob]ectwe

(3) random dictator (RD). RD chooses every agent with probability . It provides a 2 —
approzimation for the minisum objective [Alon et al. 2009]. We wzll later establish that
RD gives a 2-approxzimation for the miniSOS objective (see Theorem 4.5).

While it is evident from the last proposition that Mechanism PB is very powerful, it im-
poses a sufficient condition for strategyproofness, but not a necessary one. This is established
by the following example.

Example 3.7. Consider the following mechanism on a line. Choose each of the leftmost
and rightmost agents with probability ﬁ, and the center of every two consecutive loca-
tions with probability % It is easy to verify that this is an SP mechanism, yet it cannot
be formulated as a special case of Mechanism PB or a probability distribution over PB
mechanisms.

4. SP MECHANISMS ON A LINE

In this section, we study how well SP mechanisms can approximate the miniSOS objective
— minimizing the sum of squared distanced — on a line. In the deterministic case, we
present a mechanism that provides 2-approximation, and show that no SP deterministic
mechanism can achieve a better ratio. In the randomized case, we construct a mechanism
that provides 1.5-approximation, and show that this result is tight.

In this section, the graph is essentially the real line, R. It is easy to verify that an optimal
location in this case is simply the average.

CLaM 4.1.  Given a location profile x, the optimal facility location with respect to the
miniSOS objective is the average location; i.e., Opt = argminysc(y,x) = ZETNI

The following lemma proves extremely useful in establishing the lower bounds throughout
this section. In particular, it helps us relate joint deviations (i.e., coordinated deviations by
a subset of agents) to unilateral deviations (i.e., deviations by a single agent). We note that
this lemma is a special case of lemma 2.1 from Lu et al. [2010]; it is presented and proved

here for completeness.

LEMMA 4.2. Let a,b,c € R be three locations such that a < b < ¢, with at least one
strict inequality, and for every m € [n], let X° (respectively, x™) be a location profile in
which n — m agents are located at a, and m agents are located at ¢ (resp., b). Let f be
a randomized mechanism. If f is an SP mechanism, then E[lc — 4°|] < E[lc — y™|] and

E[lb—y™[] < E[lb—y°l], where y° ~ f(x°) and y™ ~ f(x™).

4.1. Deterministic mechanisms

THEOREM 4.3. Given a location profile x, the mechanism that chooses the median lo-
cation in x is an SP 2-approzimation mechanism for the miniSOS objective.

PRrROOF. Let p be a median location in x. It is well known that the median mechanism
on a line is truthful (see, e.g., [Procaccia and Tennenholtz 2009]). Therefore, it remains to
show that it provides a 2-approximation to the miniSOS objective; formally, we need to

show that
Z|%-M|2 SQZ\OP??—%F- (1)
ieN iEN

Assume without loss of generality that z; < x5 < ... < x,. Assume additionally that
@ < Opt (the proof works analogously for the case in which u > Opt). It is easy to verify



that

Dz =l =" |(x: — Opt) + (Opt — )|

iEN iEN
Opt
= Z ( — Opt)? +2(Opt — p) (s — p2+u)) .
i€EN

Therefore, by subtracting >, [Opt — 7;|? from both sides, it remains to prove that

) t+
Z 2(0pt — p)(x; — e ,u Z |Opt — )2,

i€EN iEN

which is equivalent to showing that

Opt + Opt +
Z 2(Opt — ) <(ﬂfz - %) + (Tng1-i — p2u)> <

i<[n/2]
Z |Opt — 4] + |Opt — xpy1_i]>
i<[n/2]
We next show that the last inequality holds piecewise; i.e., for every ¢ < [n/2], it holds that

Opt +
2009~ 1) (o1 = ZP5EE) 4 (o -

For every i < [n/2], it holds that z; < p < Opt; thus (Opt — p)? < (Opt — x;)?, and it
suffices to show that

Opt + Opt +
2(Opt — p) (u - % + Tpg1-i — p2”)> < (Opt — p)* + (Opt — wnp1-4)°

Opt + i

2 >> < (Opt —x:)* + (Opt — pi1-3)°.

It can be easily verified that the above inequality holds if and only if (20pt — pu—p,11-4)? >
0; the assertion of the theorem follows. O

Notably, this mechanism is a special case of Mechanism PB.
The following theorem shows that factor 2 is tight with respect to deterministic SP
mechanisms.

THEOREM 4.4. Any deterministic truthful mechanism has an approximation ratio of at
least 2 for the miniSOS objective.

PRrROOF. Assume by way of contradiction that there exists a deterministic SP mechanism
f which yields a better approximation than 2. Consider a location profile x, in which %
agents are located at 0, and 5 agents are located at 2, and let f(x) = p. Simple calculations
show that to achieve a better approximation than 2, it must hold that p € (0,2) (note that
the optimal location is 1, which obtains an SOS cost of n, while the locations 0 or 2 obtains
each an SOS cost of 2n). Now consider a different location profile, denoted x?, in which
5 agents are located at 0, and T agents are located at p. Following the same argument,
it must hold that f(x?) € (0,p), and thus |p — f(xP)| > 0. Since f(x) = p, we get that

lp — f(xP)| > |p — f(x)|, which implies, by Lemma 4.2, that f is not SP. DO

4.2. Randomized mechanisms

A natural candidate of a randomized mechanism to be considered in our context is the
random dictator (RD) mechanism, which chooses each agent’s location with probability - L

This mechanism is SP and is known to provide a (2 — 7) -approximation with respect to



the minisum objective function (See [Alon et al. 2009] and [Alon et al. 2010]). The follow-
ing theorem shows that the RD mechanism provides a 2-approximation for the miniSOS
objective. More precisely, for every location profile, the RD mechanism yields an SOS cost
that is exactly twice the cost of the optimal location. This is established in the following
theorem.

THEOREM 4.5. For every location profile, the RD mechanism yields an SOS cost that
is ezactly twice the optimal SOS cost.

As shown in Proposition 3.6, the RD mechanism is a probability distribution over PB
mechanisms.

Apparently, the RD mechanism does not perform better than the deterministic median
mechanism. Yet, this mechanism turns out to be useful when integrated within a more
sophisticated mechanism, as shown below.

MECHANISM 1. Given x € R™, choose the average point with probability %, and apply

the RD mechanism with probability % (i.e., for every i € N, x; is chosen with probability
1
% .

The following theorem establishes the strategyproofness and the approximation ratio
provided by Mechanism 1. Note that the PB mechanism formulation allows a straightforward
proof of the SP component.

THEOREM 4.6. Mechanism 1 is an SP 1.5-approximation for the SOS objective.

PROOF. We first prove the approximation factor. Let g(x) denote mechanism 1, and let
avg(x) denote the average point. By Observation 4.1, the optimal location with respect to
miniSOS is avg(x). We get

sc(g(x),x) _ 1RD(x) + avg(x) s
Opt avg(x) o

where the last equation follows by Theorem 4.5.

In order to show the strategyproofness of the mechanism, it suffices to prove that it is an
instance of Mechanism PB. Indeed, one can easily verify that this is a special case in which
m = n, w is the uniform distribution over [n], and for every i € [n], fi(x) = z; (i.e., f; is
dictatorship with agent ¢ as the dictator). O

Notably, while approximation in its usual sense looks at the worst-case ratio between the
expected cost of the mechanisms solution and the cost of the optimal solution, in this case
the 1.5-approximation applies not only in the worst-case notion; rather, this is the exact
approximation achieved for every location profile.

Surprisingly, Mechanism 1 provides the best possible approximation; that is, no SP mech-
anism, randomized or not, can achieve a better approximation ratio than 1.5. This bound
is established in the next theorem.

THEOREM 4.7. Any randomized SP mechanism has an approzimation ratio of at least
1.5 for the miniSOS objective.

PROOF. Assume on the contrary that there exists an SP mechanism f(x) and € > 0 such
that f(x) yields an approximation ratio of 1.5 — ¢, and let y ~ f(z) (i.e., y is a random
variable that is distributed according to f(x)). We shall use the following lemma in the
proof.

LEMMA 4.8. There exists some a € R and a location profile x in which 5 agents are
located at a and % agents are located at a+4, such that Elly—(a+1)|4|y—(a+3)|] > 3—2e.



ProoF. Consider a location profile x°, in which 5 agents are located at 0 and 3 agents
are located at 4, and let y° ~ f(x°). If E[|y° — 3| + |y° — 1|] > 3 — 2¢, then we are done.
Otherwise, either E[|y® — 1|]] < 1.5 — € or E[|y° — 3|]] < 1.5 — ¢. Assume w.l.o.g. that the
latter holds, and consider a location profile X°, in which 5 agents are located at 0 and the
rest are located at 3. Let ° ~ f(X"). By Lemma 4.2, to preserve truthfulness, it must hold
that E[|7° — 3]] < 1.5 — ¢, which implies that E[|7° — 0[] > 1.5 + €.

Consider next a location profile x!, in which 5 agents are located at —1 and the rest are
located at 3, and let y' ~ f(x!). By Lemma 4.2, to preserve truthfulness, it must hold that
Ellyt —0]] > 1.5+¢. If E[|y' — 2|+ |y* —0]] > 3—2¢, then we are done. Otherwise, it follows
that E[jy! —2[] < 1.5 — 3e.

We continue iterating such that in iteration j = 1,2,..., a profile x7 is considered, in
which half the agents are located at —j and half are located at 4 — j, and for every profile
x/, we denote by y/ the random variable distributed according to f(x7). We show that
there exists some j for which E[|y7 — (1 — j)| + |y’ — (3 —j)|] > 3 — 2¢; the assertion of the
lemma then follows by substituting @ = —j. It remains to prove the last inequality. Indeed,
by repeatedly applying Lemma 4.2 for every j, we get that

if B[y’ — (1= )+ 1y’ = (=)l <3—2¢ then Elly’ — (3 - /)] <1.5—€(2j +1). (2)

But since for j > 2:3=¢ it holds that 1.5—¢(2j+1) < 0, it must hold that E[|y — (3—j)|] >

1.5 — €(2j + 1), which, by Equation 2 implies that E[|y? — (1 —7)[+ |3/ — (3 —j)[] > 3 — 2.
It follows that the profile x7 satisfies the conditions of the lemma, and the proof follows. O

With this lemma, we are ready to prove the theorem. Let x be a location profile that
satisfies the conditions of Lemma 4.8, and assume w.l.o.g. that x is a profile in which half
the agents are located at 0 and half at 4. By the last lemma, it holds that

Elly = 1]+ |y — 3[]] > 3 — 2¢, (3)

where y ~ f(x). For ease of presentation, let p = Pr(Jy — 2| < 1) and let z = E[|ly — 2| :
|y — 2| > 1]. It holds that

Elly=1+ly=3[l=FElly—1+y—3]:|ly—2[>1](1-p)
+E[ly—1+ly—=3:ly—2[<1]p
=2z(1—-p)+ 2p.

Therefore, by Equation (3), it follows that 2z(1 —p)+2p > 3 —2¢. Since z > 1 by definition,
it follows that

(4)

We now turn to calculate the SOS cost of the profile x induced by the mechanism f(x).
It holds that

Elsc(y,x)] = Elsc(y,x) : ly — 2| < 1p+ E[sc(y,x) : |y — 2| > 1](1 —p)
> sc(Ely: |y — 2| < 1],x)p + Elsc(y,x) : [y —2[ > 1](1 - p), (5)

where the last inequality follows from Jensen’s inequality. Since 2 is the optimal location in
the profile x, it holds that

sc(Ely : |y — 2| < 1],x) > sc(2,x) = 4n. (6)
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Fig. 1. An illustration of the iterative process described in the proof of Theorem 5.1. The transformed
graph is illustrated on the right, where the dashed line represents the new edge.

We also have that

Else(y.x) : ly—2| > 1] = E[G(* + (y =49 : [y =2 > 1]
= Z(8+2E[y -2 ly -2/ > 1)

> g(8+2E2[Iy—2I Hy =21 >1])
= D8 +222), (7)

where the last inequality follows from Jensen’s inequality. By Substituting (6) and (7) in
(5), we get that E[sc(y,x)] > 2(8 + 22% — 22?p). It, therefore, follows by (4) that

1—2¢ nz?(1 — 2¢)
5 o) Tt 5 5 (8)

It is easy to verify that this function attains its minimum at z = 2, with a value of 6n —4ne.
Thus, E[sc(y,x)] > 6n—4ne. The optimal solution is to locate the facility at 2, which yields
an SOS cost of 4n. We get that E[Sg(;;x)] > dndne — 1 5—¢, and a contradiction is reached.
The assertion of the theorem follows. O

El[sc(y,x)] > 2(8 + 222 — 222(1 —

5. SP MECHANISMS ON A TREE

In this section, we study the miniSOS objective with respect to locating the facility on a tree.
In the deterministic case, we show that the median of a tree provides a 2-approximation
for the miniSOS objective, and show that no SP deterministic mechanism can achieve a
better ratio with respect to miniSOS. In the randomized case, we construct an instance of
Mechanism PB, which obtains a 1.83-approximation.

5.1. Deterministic mechanisms

It is well known that the mechanism that chooses a median of a tree is SP (see, e.g., Alon
et al. [2009]). The following theorem establishes that a median also gives a 2-approximation
for the miniSOS objective, which is tight, according to Theorem 4.4.

THEOREM 5.1. The median of a tree is an SP 2-approximation mechanism for the
miniSOS objective.

A sketch of the proof follows.

PROOF SKETCH. Given an instance (G,x), we iteratively transform it, in a way that
can only make the approximation ratio obtained by the median worse, and eventually prove



the desired approximation ratio on the final instance. Let p and Opt denote the respective
median and optimal location in the original profile. The iterative process proceeds as follows.
As long as there exists an agent j such that x;’s subtree is rooted at the open interval
path(u, Opt), pick such an agent j, create a new edge of length d(x;, Opt), rooted at Opt,
and locate x; at its tip (see illustration in Figure 1). It can be proved that the median and
the optimal location did not change as a result of this transformation, and that the optimal
cost did not change either. The cost of the median, however, can only increase. Therefore,
the approximation ratio can only get worse by each transformation. Upon termination of
this process, we prove the desired approximation ratio on the final instance by reducing it
to the deterministic scenario on a line and applying Theorem 4.3. O

5.2. Randomized mechanisms

In this section we present an instance of Mechanism PB, which obtains 1.83-approximation
for trees, with respect to the miniSOS objective. Our randomized mechanism uses the
following deterministic mechanism as a building block.

Mechanism dictatorial-generalized-median (DGM). Mechanism DGM receives as param-
eters an index ¢ € [n], and a fraction ¢ € (1/2,1]. The facility location is chosen determinis-
tically, with respect to ¢ and g, as follows. Fix the point x; as the root of the tree, and denote
the current location a. Then, as long as there exists a subtree in T'(G, a) that contains at
least fraction ¢ of the agents (this is well defined, since ¢ > 1/2), smoothly move down this
subtree. Finally, when we reach a point where it is not possible to move closer to at least
fraction q of the agents by continuing downwards, stop and return the current location.

As an illustration, consider Mechanism DGM applied on the line with ¢ = %. Let ¢ be the
agent that is positioned [%] agents from the left, and r be the agent that is positioned [7%]
agents from the right. Mechanism DGM with ¢ = % operates as follows: If the agent ¢ (that
is specified as part of the mechanism) is located to the left of ¢, the mechanism proceeds to
the right up to the location of agent ¢ (where it can no longer proceeds toward more than
q= % of the agents), and locate the facility at ¢. Similarly, if the agent 7 is located to the
right of r, the mechanism proceeds to the left up to the location of agent r. For any other
agent ¢ (i.e., ¢ such that x; € [¢,r]), the mechanism cannot proceed to any direction and
therefore locates the facility at x;.

This mechanism is a boomerang mechanism, as asserted by the following proposition”.

PROPOSITION 5.2.  Mechanism DGM is a boomerang mechanism.
With this we are ready to introduce our randomized mechanism.

Mechanism randomized DGM. Mechanism randomized DGM receives as a parameter a
fraction ¢ € (1/2,2/3], and applies Mechanism PB with the following parameters: m = n,
and for every i € [n], w; = 1/n and f;(x) is Mechanism DGM with parameters 4 and g.

The following lemma establishes an important property of mechanism randomized DGM
that will be used in its analysis.

LEMMA 5.3. For every tree G, the points f1(x),..., fn(X), calculated by Mechanism
randomized DGM, are located on a single path.

With Lemma 5.3 at hand, it is easy to describe mechanism randomized DGM more intu-
itively: Given a fraction ¢ € (1/2,2/3], for each agent ¢, let y; denote the location chosen by
Mechanism DGM with index ¢. Mechanism randomized DGM then chooses a random dicta-
tor among y1,¥yo, ..., Yy, With probability %, and their average location with probability %
(where the average is well defined by Lemma 5.3.

"Note that Mechanism DGM is not a boomerang mechanism for ¢ < 1/2, as a beneficial misreport can exist,
depending on the tie-breaking rule.



In the remainder of this section, we shall use the notation suggested above, i.e., for every
i € [n], let y; = fi(x). In addition, we assume that w.l.o.g, y1 and y,, are located on the edges
of the path created by y, and we let avg(y) denote the average location on path(yi, yy).

The main result of this section establishes that Mechanism randomized DGM, with ¢ =
2/3, obtains an approximation ratio of 1.83 for any tree network.

THEOREM 5.4. Let G and x be a tree and a location profile, respectively. Mechanism
randomized DGM with q¢ = 2/3 obtains an approzimation ratio of 1.83 with respect to the
miniSOS objective.

Before presenting the proof sketch of the theorem, we observe that it can be assumed
w.l.o.g that y1 # y,, due to the following lemma.

LEMMA 5.5. Ify; =ys = ... = yp, then the approzimation ratio obtained by Mechanism
randomized DGM is at most 1.5.

We are now ready to present an overview of the proof of Theorem 5.4. The proof of this
theorem proceeds through several lemmata, which correspond to various transformations
that are performed in order to establish the desired approximation ratio. Due to space
limitation, only a sketch of the proof is provided, along with some graphical illustrations.
The full proof, including all the required lemmata, is deferred to the full version.

ProOOF SKETCH. Following Lemma 5.5, we assume that y; # y,,. Additionally, we scale
the graph so that d(y1,y,) = 1, and let Opt denote the closest location on path(y1,yn,) to
Opt, i.e., Opt = argminicpath(y, y.)d(ODt,1).

The proof is established as follows. Given a graph G and a location profile x, we per-
form various transformations, in such a way that the approximation ratio obtained by the
mechanism could only get worse with every transformation. Eventually, we prove that the
mechanism provides a 1.83-approximation ratio on the final graph and location profile,
which implies the same upper bound on the original instance.

More specifically, given an instance (G, x), we proceed as follows:

We denote by p the location of opt in the original (G, x), and we fix it throughout the
process, i.e., p shall stay fixed even when opt moves due to a transformation. In the first
stage, we transform the graph repeatedly in the following way. For each agent i such that
y; is on the open path(yi,y,) but z; is not, we introduce two alternative transformations
to the graph in which only i is relocated, while preserving her distance from opt. We then
prove that in at least one of them the approximation ratio gets worse. Assuming that y; is
between y; and opt (the proof works analogously for the case in which y; is between opt
and y, ), the alternatives are either to locate ¢ at the tip of a new edge, rooted at opt ; or to
locate ¢ on a path that coincides with path(y1, opt) (if it exceeds d(y1, opt), we create a new
edge rooted at 1, to continue path(yi,opt) as necessary). We apply this lemma repeatedly
until all of the agents that are not located on path(y:,ys,) are rooted at either y1, yy,, or
Opt, with respect to path(yi,y,) (see Figure 2).

In the second stage, we deal with the agents that are rooted at y; and y,,, with respect
to path(yi,yn). We assume that avg(y) is on path(y:, Opt) (the proof follows analogously
if avg(y) is on path(Opt,y,)). We show that relocating the agents that are rooted at y; to
y1 (see Figure 3) would only worsen the approximation ratio. We then show that relocating
all of the agents rooted at y,, except for those that are in the same subtree as Opt (i.e., all
agents ¢ such that y; = yy,, except for agents i such that path(Opt,y,) N path(z;, yn) # yn),
on their own edges, equally distanced from y,, at a distance of their average distance from
Yn (see Figure 4), would only worsen the approximation ratio.

At this point, if Opt is rooted at y,, (with respect to path(y1,y»)), and p is not at y,,, we
repeat the first two stages. We note that the assumption of avg(y) being on path(y;, Opt)
would still hold, as Opt would stay at y,. We also note that this action would result in a
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Fig. 2. The first stage assures that all the agents that are not located on path(y1,y») are rooted at either

Y1, Yn, or Opt.
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Fig. 3. The second stage - assuring that all agents that are rooted at y; are in fact located at yj.
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Fig. 4. The second stage - averaging the distance of the agents that are rooted at yy,.

graph in which opt is located at y,,, at least |N|/3 agents are located at y;, and all of the
other agents are either on path(y1,yn), or rooted at y,.
We now distinguish between three cases:

—If Opt is located at y,, it can be shown that all of the agents are either at y;, scattered
on path(y1,yn), or rooted at y,, equidistant from y,, and on different edges. In this case
we establish a 1%—approximation.

— If Opt is located at y,,, but Opt is not located at y,, (i.e., opt is in a subtree rooted at
Yn), we transform the graph in the following way. Consider the agents that are rooted
at y, and are in the same subtree of y,, as Opt. Let o be their average distance from y,,.
Create a new edge of length o, rooted at y,, and place all of them at its tip. We show
that the transformation could only worsen the ratio, and we then show an approximation
ratio of 1.83 on the obtained graph.

— Otherwise (meaning Opt is on the open interval path(y1, yn), and so is p), we transform
the graph as follows. Consider the agents that are rooted at p, and let o be their average
distance from p. Locate them on the tip of a new edge of length o, rooted at p (see
Figure 5). We show again that this transformation can only worsen the ratio, and an
approximation ratio of 1.83 is obtained in the resulting graph.
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Fig. 5. Averaging the distance of the agents that are rooted at p, while locating them on the same edge.

Finally, by observing that Opt cannot be located at y;, we conclude that these three cases
exhaust all the possibilities for Opt’s location. In conclusion, since all the transformations
are shown to only worsen the approximation ratio, the 1.83-approximation that is obtained
with respect to the final instance, imposes the same upper bound on the original one, and
the assertion of the theorem follows.

O

6. DISCUSSION AND OPEN PROBLEMS

We study the problem of strategyproof facility location on tree networks. Our two main
contributions are (i) the introduction of a sufficient condition for strategyproofness, which
essentially provides a broad family of randomized SP mechanisms, and (ii) an analysis of
the approximation ratio that can be obtained by an SP mechanism with respect to the
miniSOS objective function.

Our study leaves many questions for future research. We believe that the foundations laid
by our study can be used in exploring these directions. Some of the most intriguing open
problems are the following:

— Providing a full characterization for SP randomized mechanisms on a tree. The sufficient
condition presented in this paper might be a good starting point for the characteriza-
tion, although it is possible that a different avenue should be taken with respect to full
characterization.

— Closing the approximation gap (between 1.83 and 1.5) for randomized SP mechanisms
on a tree with respect to the miniSOS objective.

— Analyzing the approximation ratios with respect to the miniSOS function for additional
network topologies (such as a cycle) and, more ambitiously, for general networks.

— Extending this study to additional individual cost functions. For example, in applications
in which agents are more sensitive to distances within the range of high distances, a
convex cost function seems plausible (a possible example might be the sensitivity of
users to the speed of an Internet connection).

— Finally, the three different social functions that have been studied thus far can be con-
sidered as special cases of the ¢-norm distance, with minisum, miniSOS, and minimax
corresponding to the 1-norm, 2-norm, and co-norm, respectively. It is apparent that while
for the minisum function, the optimal location can be obtained in an SP mechanism, this
is not feasible for either 2- or co-norms, and the same approximation bounds apply in
both cases. Generalizing this result to any ¢-norm is an additional stimulating direction.
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