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Abstract. We study mechanisms for combinatorial auctions that are
simultaneously incentive compatible (IC), envy free (EF) and efficient in
settings with capacitated valuations — a subclass of subadditive valua-
tions introduced by Cohen et al. [4]. Capacitated agents have valuations
which are additive up to a publicly known capacity. The main result of
Cohen et al. [4] is the assertion that the Vickrey-Clarke-Groves mecha-
nism with Clarke pivot payments is EF (and clearly IC and efficient) in
the case of homogeneous capacities. The main open problem raised by
Cohen et al. [4] is whether the existence result extends beyond homo-
geneous capacities. We resolve the open problem, establishing that no
mechanism exists that is simultaneously IC, EF and efficient for capaci-
tated agents with heterogeneous capacities. In addition, we establish the
existence of IC, EF, and efficient mechanisms in the special cases of ca-
pacitated agents with heterogeneous capacities, where (i) there are only
two items; or (ii) the individual item values are binary. Finally, we show
that the last existence result does not extend to the stronger notion of
Walrasian mechanisms, i.e. mechanisms whose allocation and payments
correspond to a Walrasian equilibrium.

1 Introduction

A combinatorial auction mechanism takes as input agents’ valuations for bun-
dles of items and computes an allocation and payment for each agent. Incentive
compatibility (IC) and envy freeness (EF) are two desirable properties of combi-
natorial auction mechanisms. IC ensures that agents cannot gain by misreporting
their private information [11], while EF imposes a notion of fairness on the out-
come of the auction. Specifically, EF requires that no agent prefers the allocation
and payment of another agent to her own [5, 6, 13, 14, 18].

IC is desirable for various reasons. IC mechanisms create incentives for the
agents to report their true values, and as a result, the computed allocation
may better optimize the objective of the auctioneer. In addition, IC mechanisms
are considered fair in the sense that they do not advantage more sophisticated
agents. This is, however, a very weak notion of fairness, and it is well known
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that IC mechanisms may not adhere to very basic fairness requirements [1]. In
particular, IC mechanisms may produce outcomes which are not EF. This may
be problematic in certain settings, such as government run spectrum auctions,
since the participants, after observing the outcome, may question the fairness
of the auction, and perceive others as being favored by the mechanism. Recent
experiments show that people place extremely high value on fairness. For exam-
ple, Rafaeli et al. [17] show that people care about fairness in queues even more
than the actual delay they experience. If outcomes are EF, in contrast, then no
agent views other agents’ outcomes as preferable.

EF outcomes can be thought of as a relaxation of the outcomes of a Wal-
rasian equilibrium. In a Walrasian equilibrium, we have item prices such that
every agent receives a bundle that maximizes her utility (i.e., valuation for the
bundle minus the sum of the prices of the bundle’s items), and the market
clears (i.e., every unsold item has a price of zero).? If a Walrasian equilibrium
exists, then the corresponding outcome is efficient [2] and valuations that are
gross-substitutes (which is a subclass of subadditive valuations) always admit a
Walrasian equilribrium [9].

While every Walrasian equilibrium outcome is clearly EF, the other direction
does not hold. In contrast to a Walrasian equilibrium outcome, envy free out-
comes assign (arbitrary) bundle prices, which may not correspond to item prices.
If the allocation and payments of a mechanism correspond to a Walrasian equi-
librium outcome, we say that the mechanism is Walrasian.

In this paper, we focus on combinatorial auction mechanisms that are simul-
taneously IC, EF and efficient; i.e, maximize social welfare. We also consider
how our results are affected by replacing the EF requirement with the stronger
Walrasian requirement. Because we focus on efficient allocations, the problem
of finding IC+(EF or Walrasian) mechanisms reduces to finding payment rules
which are IC+(EF or Walrasian), except, possibly, for cases where there may be
multiple efficient allocations as in Section 4.

Notably, without the additional EF (or Walrasian) requirement, the family of
Vickrey-Clarke-Groves (VCG) mechanisms [3, 8] is known to be IC and efficient
for arbitrary valuations. Moreover, the classic results of Green and Laffont [7]
and Holmstrom [10] prove that for the efficient allocation and valuations that
are connected domains (which include the valuations studied in this paper), any
IC mechanism is a VCG mechanism. VCG mechanisms allocate according to
an efficient allocation, and determine the payment for each agent in a way that
reporting one’s true valuations is a dominant strategy. VCG mechanisms are
essentially a family of payment rules. The most common payment rule is known
as the Clarke pivot rule, in which an agent’s payment is the externality that the
agent imposes on the other agents.

Similarly, without the additional IC requirement, Mu’alem [15] shows that
the efficient allocation can always be supported by EF payments. In particular,

3 We differentiate between a Walrasian equilibrium and a Walrasian equilibrium out-
come since a Walrasian equilibrium requires specification of item prices while an
outcome simply states the bundle and payment of each agent.



an allocation has supporting EF payments iff it is locally efficient — a weaker
notion than global efficiency. Thus, an EF and efficient mechanism exists for
arbitrary valuation functions.

Therefore, every efficient allocation can be supported by IC payments and
can also be supported by EF payments. Unfortunately, it is not always the case
that the set of IC payment rules shares a non-empty intersection with the set
of EF payment rules, i.e., there may not be a payment rule that can simulta-
neously satisfy IC and EF. Most of the mechanism design literature focuses on
mechanisms that are either IC or EF, but not much attention has been given to
the combination of both properties.

One exception is the unit demand case, where each agent desires at most
one item. Under these preferences, it is known that VCG with Clarke pivot
payments is Walrasian [9, 12] (and is, therefore, clearly IC and EF). Another
more recent systematic treatment of the problem is the work of Cohen et al.
[4] which considers mechanisms that are IC, EF and efficient for various sub-
additive valuation classes. In particular, Cohen et al. [4] introduce the class of
capacitated valuations, which is a natural generalization of unit-demand. Agents
with capacitated valuations are associated with a publicly known capacity ¢ and
values for individual items. An agent’s value for a bundle of items is the sum
of the values for the ¢ most valued items in the bundle. We refer to the case
where all agents are capacitated and have the same capacity as homogeneous ca-
pacities and the general case where agents may have arbitrary capacities as the
heterogeneous capacities case. Because the capacities are publicly known, these
classes of valuations are connected and any IC and efficient mechanism must be
a VCG mechanism. The results of Cohen et al. [4] are summarized in Figure 1.

capacitated - capacitated -
heterogeneous homogeneous

NO [Cohen et al. [4]]
NO for binary valuations [new]

IC 4+ Walrasian|NO [derived by right column)]

NO [new: main result]
YES for n = 2 [Cohen et al. [4]]
YES for m = 2 [new]
YES for binary valuations [new]

IC + EF YES [Cohen et al. [4]]

Fig. 1: This table specifies the existence of a particular type of mechanism (rows)
for various families of valuation functions (columns). Efficiency is required in all
entries. The results are divided between those that are established by Cohen
et al. [4] and those that are established here, indicated as [new].

The main result is that the VCG mechanism with Clarke pivot payments is EF
for homogeneous capacities. For the broader class of heterogeneous capacities,
Cohen et al. [4] show that the VCG mechanism with Clarke pivot payments is
not EF, but it is left open whether there exists any mechanism that is simulta-



neously IC, EF, and efficient. This problem is the main open problem raised by
Cohen et al. [4]. For the special case in which there are only two agents (with
heterogeneous capacities), it is shown that a particular VCG mechanism (that
does not use Clarke pivot payments) is always EF. They also show that under
the additional requirement of no positive transfers (i.e., payments are weakly
positive), no IC, EF, and efficient mechanism exists, even for two agents and
two items.

In this paper, we resolve open problems raised in Cohen et al. [4], and es-
tablish several additional results for additional natural special cases. Our results
are summarized in Figure 1, marked by [new]. Our main results are:

— We prove that for heterogeneous capacities, there is no mechanism that is IC,
EF and efficient, even if no other requirement (such as no positive transfers)
is imposed. To establish this impossibility, we take a computational approach
which frames the problem of finding satisfactory VCG payments as a linear
program. This result shows that homogeneous capacities is a maximal class
that admits an IC, EF, and efficient mechanism. If the capacities are not
homogeneous, then IC, EF, and efficient mechanisms no longer exist.

— We devise an IC, EF, and efficient mechanism for heterogeneous capacities
in the special case of two items. This result complements the positive result
of Cohen et al. [4] which establishes existence for the special case of two
agents. Interestingly, the Clarke pivot payment is not EF in either of these
cases. Moreover, the two cases rely on different payment rules.

— We then restrict attention to the interesting special case in which agents’
valuations for individual items are binary; i.e., in {0,1}. We refer to this
class as the binary valuations class. This is a natural setting where each agent
likes a subset of the items but still has a capacity. In this case, there exists a
mechanism for heterogeneous capacities that is simultaneously IC, EF, and
efficient. In particular, we show that that VCG with Clarke pivot payments
is EF if ties in the efficient allocation are broken based on a lexicographic
order that favors higher-capacity agents. The tie breaking method is shown
to be critical; VCG with Clarke pivot payments is not EF if ties are broken
arbitrarily (see Section 4). The proof involves viewing allocations as flows
on a particular graph and using augmenting paths and flow decomposition.
Similar techniques were used to prove the main result of Cohen et al. [4].

— Finally, we consider mechanisms that are IC, Walrasian, and efficient. We
find that, while IC, EF and efficient mechanisms exist for binary valuations
and heterogeneous capacities, this result does not extend to IC, Walrasian,
and efficienct mechanisms. In particular, we show that there is no IC, Wal-
rasian, and efficient mechanism even for binary valuations and homogeneous
capacities.

2 Model and Preliminaries

Suppose we have a set N = {1,...,n} of agents and a set G = {1,...,m} of
goods. We will index agents by ¢ and j and goods by k. Each agent i is associated



with a valuation function v; : 2¢ — R>( that maps each bundle of goods to the
agent’s value for that bundle. A valuation profile v = (vy,...,v,) consists of
a valuation function for each agent. We will often adopt the view of agent i
and write a valuation profile as (v;,v_;), where v_; denotes the valuations of
all agents other than 7. An allocation a € A assigns a bundle of goods to each
agent such that no good is given to more than one agent. Let a; denote the
bundle of items allocated to agent 7 under allocation a. We use the shorthand
v(a) to denote the social welfare of allocation a, i.e. Y1 ; v;(a;). An allocation
is efficient if it maximizes social welfare amongst all allocations.

An allocation rule g maps a valuation profile to an allocation, and a payment
rule p maps a valuation profile to a payment for each agent, with g;(v) and p;(v)
denoting the bundle and payment of agent ¢, respectively. We assume quasi-
linear utilities, i.e., the utility of agent ¢ who receives bundle a; and pays p; is
vi(a;) — p;- A mechanism M = (g, p) consists of an allocation rule and payment
rule. The following properties of mechanisms are central to our study.

Definition 1. A mechanism (g,p) is efficient if g(v) is an efficient allocation
for all v.

Definition 2. A mechanism (g,p) is incentive-compatible (IC) if there is no
benefit to mis-reporting, i.e., for every agent i and every valuation profile (v;,v_;),
vi(9i(vi, v—3)) — pi(vi,v—i) > vi(gi (v}, v—i)) — Pi(v},v—i).

Definition 3. A mechanism (g,p) is envy-free (EF) if no agent prefers the
allocation and payment of another agent to her own, i.e., for every i, for every
(vi, v—;), for every j # i, vi(gi(vi, v—i)) —Pi(vi, v—i) = vi(g;(vi, v—i))—p;(vi, V).
Definition 4. A mechanism (g,p) is Walrasian if the allocation and payments

correspond to a Walrasian equilibrium outcome. In other words, there exists a
price vector (qi, . ..,qm) such that:

9i(v) € argmax ('Ui(S) - Qk> (1)

kesS
pi(v)= > (2)
kegi(v)
qr =0 if k is unallocated in g(v) (3)

It is easy to verify that a Walrasian mechanism is also EF due to the first
condition of Walrasian equilibrium, which stipulates that agents are allocated
bundles which maximize their utility given the Walrasian item prices.

In this paper, we study mechanisms where g is an efficient allocation rule.
Because we will be considering efficient allocations, it is convenient to introduce
the following notation. Given a valuation profile v, Opt refers to an efficient
allocation when all agents are considered. There may be multiple efficient allo-
cations due to ties, but we point out where this distinction is important (e.g.,
in Section 4). Elsewhere, we assume that Opt is any efficient allocation. Opt™*
refers to an efficient allocation when agent i is excluded. Since Opt and Opt ™" are
allocations, Opt; and Optj_i give the allocation of agent j in these allocations.



2.1 Characterization of IC and EF mechanisms

When g is an efficient allocation, IC mechanisms are guaranteed to exist. In
particular, Vickrey-Clarke-Groves mechanisms are IC.

Definition 5. A Vickrey-Clarke-Groves (VCG) mechanism is a mechanism (g, p),
where g(v) is an efficient allocation and p(v) takes on the following form,

pi(v) = hi(v_i) = > v;(Opt;),

J#i
where h; can be any function of v_;.

One of the most common choices of the h; function is the Clarke pivot pay-

ment rule, given by
hi(v_) = v (Opt; ). (4)
J#i

The obtained payment is then p;(v) = 3>_, vj(Optj_i) — 22, v;(Opt;), which
can be interpreted as the externality that agent ¢ imposes on the other agents.

It is well known that VCG mechanisms are IC from the classic results of
Clarke [3] and Groves [8]. When the possible valuations of each agent form a
connected domain (i.e., there is a path between any two possible valuations that
stays within the set of possible valuations), VCG mechanisms are the only IC
and efficient mechanisms [7, 10]. Therefore, when considering IC and efficient
mechanisms for connected domains, the only flexibility one has is in the choice
of the function h;(v_;).

If we consider VCG mechanisms, EF is equivalent to imposing a simple con-
dition on the h;(v_;) functions. When clear in the context, we will often drop
the input v_; and simply refer to h;(v_;) using h,.

Theorem 1. [16] A VCG mechanism with efficient allocation Opt is EF iff for
every valuation profile v and for every pair of agents i,j:

hi(v-i) = hj(v—;) < v;(Opt;) — vi(Opt;). ()

Note that if there are multiple efficient allocations, then EF may depend
on which efficient allocations are chosen by the mechanism. This turns out to
be the case when we study binary valuations in Section 4. When the choice of
efficient allocations is unimportant or when the efficient allocations are unique,
the problem of finding IC, EF, and efficient mechanisms for connected domains
reduces to finding h; functions which satisty (5).

2.2 Restricted classes of valuations

Following Cohen et al. [4], we consider the following classes of valuations. A
valuation function is superadditive if for any sets S,T C G, v;(S) + v;(T) <
v;(SUT). A valuation function v; is subadditive if for any sets S, T C G, v;(S) +



vi(T) > v;(SUT). Pépai [16] proves that if valuations are superadditive, then
VCG with Clarke pivot payments is EF (and trivially IC and efficient). In this
paper, we focus on a subset of subadditive valuations. A valuation function is
capacitated with capacity c if it is additive over items up to the capacity c. For
sets of items with cardinality greater than c¢, the value is the sum of the ¢ most
valued items. In other words, if we let top(v;, S) denote the ¢ most valued items
in S with top(v;, S) = S if |S| < ¢, then

W= S wdk)

ketop(vs,S)

We refer to the case where all agents have the same capacity as the homogeneous
capacities case, and the more general where capacities can differ as the hetero-
geneous capacities case. We assume that agent capacities are publicly known so
that our valuations form a connected domain and VCG mechanisms are the only
IC mechanisms.

3 General capacitated valuations

Cohen et al. [4] provide VCG payment rules which are EF for case of two capac-
itated agents and any number of items. We devise a mechanism for the comple-
mentary case, where there are two items and any number of capacitated agents.
We also provide a negative result that shows that it is not possible to move
beyond these special cases.

Theorem 2. There exists an IC, EF, and efficient mechanism for two items
and any number of capacitated agents.

Theorem 3. For capacitated valuations, where the number of items and the
number of agents are both at least 3, there is no mechanism that is IC, EF, and
efficient.

The valuations in the proof of Theorem 3 involve agents with capacities 1 and
2, so it is not possible to further generalize the positive result for two items to
any number of items but restricted capacities.

4 Binary preferences

Up until now we assumed that agents’ valuations for individual items are real
numbers. In many real-life settings, however, bidders’ preference structure is
much simpler. In particular, consider a case where every agent has a set of
desired items, which are items she is interested in getting. For example, a traveler
who needs to express her preferred seats in an airplane would usually have in
mind a set of desired seats (e.g., aisle seats). Such a preference structure can
be represented by binary valuations, where an agent’s valuation for every item
is either 0 or 1. Moreover, in many situations agents simply do not know their



valuations for items. In such cases, the binary valuation structure may serve as
a good model, since agents, even if they cannot calculate their exact value for
various items, can usually tell whether or not they want some item.

These examples motivate the study of IC, EF, and efficient mechanisms under
this restricted preference structure. In particular, we ask whether the impossibil-
ity result from the previous section can be circumvented by considering the class
of binary valuations (still under capacitated agents). This question is answered
in the affirmative. Interestingly, in this case ties among efficient allocations can-
not be broken arbitrarily. Only by breaking ties in a very certain way (which we
will specify soon) can the desired result be achieved.

The last positive result, however, does not extend to IC, Walrasian, and
efficient mechanisms, as even in the more restricted setting — that of agents
with homogeneous capacities — there are simple examples that admit no IC,
Walrasian, and efficient mechanism.

Theorem 4. For capacitated agents, where v;({k}) € {0,1} for every i, k, there
exists an IC, EF, and efficient mechanism.

Before proceeding with the proof of Theorem 4, we establish some concepts
and propositions that are needed in the proof. It will be useful to have in mind
the following simple example.

Example 1. Suppose there are three agents, with agents 1 and 2 having capac-
ity 1 and agent 3 having capacity 2. Agents 1 and 3 desire items b, ¢ while agent
2 desires item a.

Because agent values are either 0 or 1, there may be many efficient allo-
cations, and the particular efficient allocation chosen affects the envy-freeness
of the resulting mechanism. We consider a lexicographically-mazimal efficient
allocation, where the sorting is done based on the agents’ capacities. First, or-
der the agents in a non-increasing order of capacities, arbitrarily breaking ties
among agents with the same capacity. Next, compute an efficient allocation that
is lexicographically-maximal (among all efficient allocations), according to the
order above. i.e., find an efficient allocation such that there is no other efficient
allocation that gives an agent with a lower index (i.e. higher capacity) greater
value. We only consider allocations in which no agent receives more items than
her capacity. This aids in obtaining EF yet is without loss with respect to ef-
ficiency because giving an agent more items than her capacity cannot increase
welfare. In example 1, a lexicographically-maximal allocation gives agent 3 pri-
ority over agents 1 and 2 (since agent 3 has higher capacity). As a result, any
lexicographically-maximal efficient allocation must give b, ¢ to agent 3 and «a to
agent 2.

We show that a lexicographically-maximal efficient allocation, when com-
bined with the Clarke-pivot rule, is IC and EF. Theorem 3.2 from Cohen et al.
[4] shows that Clarke-pivot, when used with any efficient allocation, yields a
payment rule where agents with higher capacity do not envy agents with lower



Fig.2: (a) The graph G(v) for the valuations in Example 1. (b) A graph repre-
senting the differences between Opt and D3 for Example 1 (used in the proof
of Theorem 4). Edges from agents to items indicate items an agent receives in
Opt but not in D~3. Edges from items to agents indicate items an agent receives
in D3 but not Opt. Here we assume that Opt allocates a to agent 2 and b, ¢ to
agent 3 while D~3 allocates a to agent 2 and b to agent 1.

capacity. As a result, to prove that our mechanism is EF, it remains to show that
under a lexicographically-maximal efficient allocation and Clarke-pivot, agents
with lower capacity do not envy agents with higher capacity.

For a given instance of valuations v, it will be useful to consider a directed
graph G(v) similar to Cohen et al. [4]. G(v) contains a source, a node for each
agent, a node for each item, and a sink. If an agent desires an item, G(v) contains
a directed edge from the agent to the item with capacity 1 (note not to confuse
edge capacities in the graph representation with agents’ capacities). The source
is connected to each agent with a directed edge with capacity equal to the agent’s
capacity. Each item is connected to the sink with capacity 1. Figure 2(a) depicts
this graph for Example 1. An allocation then corresponds to a feasible flow in
G(v) by connecting each agent to the items it is allocated and appropriately
saturating the edges from the source to the agents and the items to the sink.
Any integral flow also corresponds naturally to a feasible allocation.

Consider agents ¢ and j, with agent ¢ having strictly lower capacity than agent
j. We wish to show that agent ¢ will not envy agent j. A sufficient condition
for this is h; — h; < v;(Opt;) — v;(Opt;). In the remainder of this section, Opt
refers to a lexicographically-maximal efficient allocation and Opt ™" refers to a
lexicographically-maximal efficient allocation that excludes agent . Consider the
following procedure. Start with the lexicographically-maximal efficient allocation
Opt. Remove agent ¢ from this allocation by deallocating agent ¢ (make all of the
items allocated to agent i available). Call this allocation C~*. C~* necessarily has
weakly less welfare than Opt ™" as it is a feasible allocation to the agents other
than i. Consider G(v_;), the directed graph that excludes agent i, and the flow
on G(v_;) corresponding to C~*. We can find an allocation D~* with v(D~%) =
v(Opt™") by adding augmenting paths to the flow on G(v_;) corresponding to
C~%. Since all edge capacities are integer, it is without loss of generality to
consider augmenting paths with net flow of 1. It is also without loss of generality



to assume that each augmenting path only visits the sink once since any path
that visits the sink multiple times contains a smaller augmenting path which
visits the sink only once. The following propositions establish properties of these
augmenting paths.

Proposition 1. After each augmenting path, the total set of allocated items
increases by exactly one item.

Proposition 2. The second to last node (i.e., the node prior to the sink) in
each augmenting path is one of the items agent i was originally allocated in Opt.

Proposition 3. After adding an augmenting path, every agent other than i re-
ceives at least as many items as it did in Opt. Additionally, agent j will receive
the same number of items as it did in Opt.

We are now ready to prove Theorem 4.

Proof. Let Opt be a lexicographically-maximal efficient allocation, and let D~*
be the allocation formed by removing agent i and then adding augmenting paths
to G(v—;). Consider the following bipartite graph Gy and corresponding flow f
that relates Opt and D~*. The left hand side has nodes representing agents, and
the right hand side has nodes representing items. There is an edge from an agent
node to an item node if the agent receives the item in Opt but not in D~%. There
is an edge from an item node to an agent if the agent receives the item in D~*
but not in Opt. Let there be a flow of 1 on each edge in this graph. Figure 2(b)
illustrates Gy and f for Example 1.

Proposition 3 establishes that the only source (node with greater outflow
than inflow) is agent 4, and that agent j has equal indegree and outdegree since
it receives the same number of items in Opt and D~%. Using flow decomposition,
we can decompose f into paths and cycles. Each of the paths starts at agent
1, with one path for each item agent i was allocated in Opt. By executing a
path or cycle, we mean that for every agent to item edge we modify the current
allocation by giving the item to the agent, and for every item to agent edge, we
remove the item from the agent.

We now construct allocation E~7, which will not allocate any items to agent
j, starting from allocation D~%. The items j receives in D~ can be split into
two sets. The first set consists of items it also received in Opt, and the second
set consists of items it did not receive in Opt. Items in the second set will show
up as an item to agent edge in Gy. The sum of the number of items in these
two sets will be v;(Opt;) (Proposition 3). For every item given to agent j in
both Opt and D%, give the item to agent 3. The remaining items that agent j
receives in D~ are part of either a cycle or a path in the flow decomposition
of f. For every cycle that contains agent j, execute the cycle, and give the item
agent j receives to agent 7. This results in agent ¢ receiving some item in Opt;.
For every path that contains agent j, execute the path, stopping at agent j. This
results in agent ¢ receiving an item that it desires.

After this process, every agent other than ¢, j receives the same exact number
of items as in D¢, Agent i receives v;(Opt;) items, some of which are in Opt;



and possibly undesired by agent i (the items j received in both Opt and D~*
and the items that were a part of cycles including agent j) and others which are
desired by agent ¢ (the items that were part of the paths starting with agent ¢ and
ending in agent j). Therefore, agent i receives a bundle that is Opt;, with some
items replaced by items the agent surely desires. As a result, v;(E~7) > v;(Opt;).
To complete the proof, we note that v(E~7) is a lower bound on v(Opt~7) = h;
and verify the EF condition for agent i.

Example 1 demonstrates that the tie-breaking rule among efficient allocations
is crucial, as some choices of efficient allocations do not yield EF Clarke pivot
payments. The restriction to values in {0, 1} is tight in sense that if agents have
values in {r, s} with r, s > 0, then VCG with Clarke pivot and lexicographically
maximal allocations may no longer be EF. Our final result examines whether this
positive result can be extended beyond EF to the stronger notion of Walrasian
mechanisms. Notably, for the class of unit-demand valuations (homogeneously
capacitated agents with capacity 1), VCG with Clarke pivot payments is Wal-
rasian (even for real valuations) [9, 12]. We find that these results cannot be
extended, even if we consider homogeneous capacities and binary valuations.

Theorem 5. There exists no IC, Walrasian, and efficient mechanism for the
class of homogeneously capacitated, binary valuations.

5 Discussion and Open Problems

This work settles the main open question posed by Cohen et al. [4] regarding
the existence of an IC, EF and efficient mechanism for valuation classes beyond
homogeneous capacities. While there always exists an efficient IC mechanism,
and similarly an efficient EF mechanism, there exists no mechanism that simul-
taneously satisfies both requirements when agents’ capacities are heterogeneous.
This result eliminates the hope for the existence of IC and EF mechanisms in the
more general classes of submodular or subadditive valuations. The impossibility
result is accompanied by two positive results, showing that existence of an IC
and EF mechanism can be restored if either agents’ valuations for individual
items are binary or if there are only two items. The former result, however, does
not extend to the stronger notion of a Walrasian mechanism, even if valuations
are capacitated and binary. The natural future direction, given the impossibility
result, is to resort to near-optimal outcomes. What is the best approximation to
social welfare that can be achieved by a mechanism that is simultaneously EF
and IC, for different valuation classes?
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