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Abstract. We study a capacitated symmetric network design game,
where each of n agents wishes to construct a path from a network’s
source to its sink, and the cost of each edge is shared equally among its
agents. The uncapacitated version of this problem has been introduced
by Anshelevich et al. (2003) and has been extensively studied. We find
that the consideration of edge capacities entails a significant effect on the
quality of the obtained Nash equilibria (NE), under both the utilitarian
and the egalitarian objective functions, as well as on the convergence
rate to an equilibrium. The following results are established. First, we
provide bounds for the price of anarchy (PoA) and the price of stabil-
ity (PoS) measures with respect to the utilitarian (i.e., sum of costs)
and egalitarian (i.e., maximum cost) objective functions. Our main re-
sult here is that, unlike the uncapacitated version, the network topology
is a crucial factor in the quality of NE. Specifically, a network topology
has a bounded PoA if and only if it is series-parallel (SP). Second, we
show that the convergence rate of best-response dynamics (BRD) may
be super linear (in the number of agents). This is in contrast to the un-
capacitated version, where convergence is guaranteed within at most n
iterations.

1 Introduction

The construction of large networks by strategic agents has been widely studied
from a game-theoretic perspective in the last decade [3,8,9,25]. For a moti-
vating example, consider the construction and maintenance of large computer
networks by independent economic agents with different, and often competing,
self-interests. The game-theoretic perspective offers tools and insights that are
fundamental to the understanding and analysis of these settings.

In a symmetric network design game, a network is given, where each edge is
associated with some cost; and a set of n agents wish to buy some path from
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the network’s source (s) to its sink (¢). Every agent chooses an s-t path, and the
cost of every edge is divided equally among the agents who use it. This is often
called a fair cost-sharing method. The game theoretic twist is the assumption
that each agent chooses its path strategically, so as to minimize its cost. It is well
known that Nash equilibria of this game need not be efficient, where efficiency
is usually defined with respect to either the sum of the agents’ costs (referred to
as the wutilitarian or sum-cost objective) or to the maximum cost of any agent
(veferred to as the egalitarian or maz-cost objective).

The efficiency loss is commonly quantified using the price of anarchy (PoA)
[17,23] and price of stability (PoS) [3] measures; the former refers to the ratio
between the cost of the worst Nash equilibrium and the social optimum, whereas
the latter refers to the ratio between the cost of the best Nash equilibrium and
the social optimum. The network design game described above is fairly easy
to analyze. The PoA is known to be tightly bounded by n with respect to the
utilitarian objective function® [3]. It is not too difficult to see that the same
bound holds with respect to the egalitarian objective. In addition, the PoA
is independent of the network topology, as the worst case is obtained for two
parallel links. The PoS, in contrast, is always equal to 1 (with respect to both
objective functions), since in a symmetric network, the profile in which all agents
share the shortest path from s to ¢ is a Nash equilibrium. Finally, best-response
dynamics (i.e., dynamics in which agents sequentially apply their best-response
moves) exhibits a simple structure, where convergence to a NE is guaranteed
within at most n steps.

Interestingly, as we shall soon see, a lot of the aforementioned results should
be attributed to the assumption that the network edges are uncapacitated; i.e.,
it is assumed that edges may hold any number of agents. While this assumption
has been employed by most of the studies on strategic network formation games,
we claim that in real-life applications network links have a limit on the number
of agents they can serve. To reflect this observation, we introduce capacitated
network design games, in which every edge, in addition to its cost, is also asso-
ciated with a capacity that specifies the number of agents it can hold. We study
the quality of NE in these games (using both PoA and PoS measures) and the
convergence rate of best-response dynamics. We are particularly interested in
the effect of the topology of the underlying network on the obtained results.

In cases where edges are associated with capacities, a feasibility problem
arises (i.e., whether there exists a solution that accommodates all the agents).
However, as already hinted at by [3], if a feasible solution exists, the arguments
used in the uncapacitated version can be applied to show that a pure NE ex-
ists and, moreover, every best-response dynamics converges to a pure NE. This
observation motivates our study.

Our contribution. For the PoA, the lower bound of n trivially carries
over to the capacitated version; thus, one cannot expect for a bound better
than n. The upper bound of n, however, does not carry over. In particular, we

3 While [3] consider an underlying directed graph, this bound carries over to the
undirected case.



demonstrate that the PoA can be arbitrarily high. As it turns out, however, the
network topology plays a major role in the obtained PoA. A symmetric network
topology G is said to be PoA bounded if for every symmetric network design
game that is played on G, the PoA is bounded by n, independent of the edge
costs and capacities. Our main result here is a full characterization of PoA-
bounded network topologies. Specifically, we show that a symmetric network
topology is PoA bounded if and only if it is a series-parallel (SP) network; i.e.,
a network that is built inductively by series and parallel compositions of SP
networks. This result holds with respect to both the sum-cost and max-cost
objectives. Moreover, for parallel-link networks, we show that the PoA (with
respect to both the sum-cost and max-cost objectives) is essentially bounded by
the maximum edge capacity in the network, and this is tight.

This separation between the graph topology and the assignment of edge costs
and capacities reflects a separation between the underlying infrastructure and
the edge characteristics. While the infrastructure is often stable over time, the
edge characteristics may be modified over short time periods. A PoA bounded
topology ensures that, no matter how edge characteristics evolve, the cost of a
NE will never exceed n. Such topologies should be desired by network designers,
who wish to guarantee the efficiency in their network despite the fact they do
not control the actions of the individual users. Notably, within the class of SP
networks, the worst case is obtained already for parallel links.

In contrast to the PoA, the PoS with respect to the sum-cost objective is
not affected by the network topology. In particular, we provide a lower bound of
H(n) (i.e., the harmonic nth number) for the PoS on parallel-link graphs, and
show that for every symmetric network the PoS is upper bounded by H(n).

As for the max-cost objective function, for SP graphs the upper bound of n
that is established for the PoA trivially carries over to the PoS, and a matching
lower bound is established. For general graphs, we establish an upper bound
of nlogn. Closing the gap between n and logn for the PoS in general graphs
remains an open problem.

Most of our results for the PoA and PoS bounds are summarized in Table 1,
where they are also contrasted with the corresponding results in the uncapac-
itated version (specified in brackets). These results suggest that the departure
from the classic assumption of uncapacitated edges brings in significant differ-
ences in the quality of equilibria.

Additionally, we study the convergence rate of best-response dynamics (BRD)
to a NE. Here too, the consideration of capacities introduces additional com-
plexity that reveals itself through a slower conversion rate. While BRD in the
uncapacitated version is guaranteed to converge within at most n iterations, we
establish a lower bound of £2(n?/?) for convergence in capacitated games. More-
over, this lower bound is obtained already in the simplest graphs; i.e., graphs
that are composed of parallel links.

Finally, we note that while the feasibility problem in capacitated games is
equivalent to a maximum flow computation, and thus can be solved in polynomial
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Table 1. Summary of our results. The values in brackets correspond to the bounds
for uncapacitated games. All the results, except for the PoS w.r.t max-cost for general
networks are tight.

time, the optimization version of the problem is NP-complete (this can be easily
verified through a reduction from 0-1 knapsack [14]).

Related work. Various models of network design and formation games have
been extensively studied in the last decade from a game-theoretic perspective
[3-5,18,6,7], with a great emphasis on the PoA and PoS measures. The PoA in
network design games has been also studied with respect to the strong equilibrium
solution concept by Epstein et al. [8], Andelman et al. [2] and Albers [1].

The role that network topology plays in game-theoretic settings has been
studied in various models. In the model of network routing, it has been shown
by Roughgarden and Tardos [25] that the PoA is independent of the network
topology. In contrast, the network topology seems to matter a lot in other set-
tings. Some prominent examples include the following. Milchtaich [21] showed
that the Pareto efficiency of equilibria in network routing games (with a contin-
uum of agents) strongly depends on the network topology. In addition, topolog-
ical characterizations for symmetric network games have been also provided for
other equilibrium properties, including (Nash and strong) equilibrium existence
(see Milchtaich [20], Epstein et al. [8,9], and Holzman and Law-Yone [15,16]),
and equilibrium uniqueness (see Milchtaich [19]).

Best-response dynamics (BRD) and its convergence rate has been the subject
of intensive research recently. Since every congestion game is a potential game
[24,22], BRD always converge to a pure NE. However, they may in general take
exponential number of steps depending on the number of agents, as established
by Fabrikant et al. [11]. Anshelevich et al. [3] established that BRD may take
exponential number of steps to converge in network design games, but is poly-
nomial for the special case of two agents. Notably, as shall be discussed in Sect.
5, the exponential convergence rate does not apply in our setting. BRD conver-
gence has been also studied in scheduling and routing games (see Even-Dar et
al. [10], Fotakis [13], and Feldman and Tamir [12]).



2 Model and Preliminaries

2.1 Capacitated symmetric cost sharing games

A capacitated, symmetric cost-sharing connection (CCS) game (also known as
single commodity) is a tuple

A= <nv G = (Vvv E)a S, tv {pe}eGE’a {ce}e€E>v

where n is the number of agents and G = (V, E) is an undirected graph, with
s,t € V as its source and sink nodes, respectively. Every edge e € E is associated
with a cost p. € RZ? and a capacity ¢, € N, where an edge capacity specifies
the maximum number of agents that can use it. The set of agents {1,...,n} is
also denoted by [n]. Every agent i wishes to construct an s-t path in G. The
strategy space of an agent i, denoted X, is the set of s — ¢ paths in G, and a
strategy of an agent i is denoted by S; € X;. Since this is a symmetric game, all
agents have the same strategy space. The joint action space is denoted by ..

We consider the fair cost-sharing game, where an edge’s cost is shared equally
by all the agents that use it in their path. Given a strategy profile S = (51, ..., Sn),
we denote by z.(S) the number of agents that use edge e in their path; i.e.,
ze(S) = |{i : e € S;}|. A profile S is said to be feasible if for every e € E,
2e(S) < ¢e. The cost of agent ¢ in a profile S is defined as

pi(S) = {Zeesi iy S Ss fea&ble 1)
o0 , otherwise

A profile S is said to be a Nash equilibrium if no agent can improve its cost
by a unilateral deviation; i.e., for every i,5, € X;,S_; € X_;, it holds that
p:i(S) < pi(S],S_;), where S_; denotes the joint action of all agents except i.

Given a game A, let 7(A) denote the set of all feasible profiles in A. A CCS
game A is said to be feasible if it admits a feasible profile; i.e., T7(A) # 0.

We consider two social cost functions. The sum-cost of a profile S' is the total
cost of the agents in S (and also equals the total cost of the purchased edges in
S), and is given by

, otherwise

sca(S) = {g pi(S) , if S is feasible

The max-cost of a profile S is the maximum cost of any agent in S, and is given
by
mea(S) = max;e(, pi(S) ,if Sis feasible
o0 , otherwise

We denote by OPT.(A) and OPT,,.(A) the optimal profiles with respect to
the sum-cost and max-cost objectives, respectively. When clear in the context,
we omit A, and also abuse notation and use OPT,.(A) and OPT,,.(A) to denote
the cost of the respective optimal solutions.

In the figures of the paper, every edge is associated with a tuple (ce,pe),
denoting its capacity and cost, respectively.



2.2 Nash equilibrium existence

An uncapacitated fair cost sharing game is known to be a potential game [3].
Every potential game admits a pure NE [22]. Moreover, BRD (where agents
sequentially apply their best-response moves) always converge to a pure NE.
Capacitated versions are not guaranteed to admit a feasible solution; however,
if a feasible solution exists, then so does a pure NE.

Observation 1. [3] Let A be a CCS game s.t. T(A) # 0. Then, A admits a
pure NE and every best response dynamics convergence to a NFE.

This proof relies on the existence of a potential function, @(S) =

Y oecE Zf;(ls) 2‘,‘:)(65)’ that emulates the cost of an agent when deviating from

a feasible solution to another.

2.3 Efficiency loss

To quantify the efficiency loss due to strategic behavior, we use the PoA and
PoS measures. The PoA is the ratio of the worst Nash equilibrium and the so-

cial optimum, and is given by PoA.(A) = maxsg%?if()j;“s) and PoA;,.(4) =

: A(S) . .
nnxsg’;;;(m(zgﬂ ) with respect to the sum-cost and max-cost objectives, re-

spectively, where NE(A) denotes the set of NE of A, and it is assumed
that NE(A) # (). Similarly, the PoS of sum-cost and max-cost are given by

PoSs.(A) = —minsgj}f,’;(é()gc)ﬂs) and PoSp,.(A) = minsg"’PETm?(nAq;A(s), respectively.

2.4 Graph theoretic preliminaries

In this section we provide some preliminaries regarding network topologies. A
symmetric network is an undirected graph G along with two distinguished nodes,
a source s and a sink ¢t. When clear in the context, we refer to G as the sym-
metric network. A CCS game is symmetric (also called single-commodity) if its
underlying network is symmetric with source s and sink ¢, and nodes s and ¢
are the respective source and sink of all the agents.A symmetric network G is
embedded in a symmetric network G’ if G’ is isomorphic to G or to a network
derived from G by applying the following operations any number of times in any
order: (i) Subdivision of an edge (i.e., its replacement by a path of edges), (ii)
Addition of a new edge joining two existing nodes, (iii) Extension of the source
or the sink (i.e., addition of a new edge joining s or ¢ with a new node, which
becomes the new source or sink, respectively).

Next, we define the following operations on symmetric networks:
Identification: The identification operation is the collapse of two nodes into
one. More formally, given a graph G = (V, E) we define the identification of
nodes v; € V and vy € V forming a new edge v € V as creating a new graph
G' = (V',E'") where V! = V \ {v1,v2} U {v} and E’ includes the edges of F
where the edges of v; and vs are now connected to v.



Parallel composition: Given two symmetric networks, G; = (Vi, Ey) and
Gy = (Vi, Es), with sources s1 € V; and sy € V5 and sinks ¢1 € V) and ¢y € Vs,
respectively, we define a new symmetric network G = G1||G2 as follows. Let
G' = (V4 U V4, Ey U E5) be the union of network. To generate G = G1||G2 we
identify the sources s; and s, forming a new source node s, and identify the the
sinks ¢ and to, forming a new sink .

Series composition: Given two symmetric networks, Gy = (V1, E1) and Gs =
(Va, E2), with sources sy € V7 and s € Vi and sinks ¢; € V4 and ¢ty € Vo,
respectively, we define a new symmetric network G = G; — G2 as follows. Let
G' = (V1 UV,, Ey U Es) be the union network. To generate G = G; — G5 from
G’ we identify the vertices ¢; and sg, forming a new vertex u. The network G
has a source s = s; and a sink ¢ = ¢s.

A series-parallel (SP) network is a symmetric network that is constructed
inductively from two SP networks by either a series composition or a parallel
composition, where a single edge serves as the base of the induction. That is,
a symmetric network consisting of a single edge is an SP network. In addition,
given two SP networks, G and G3, the networks G = G1||G2 and G = G — Gs
are SP networks.

3 The sum-cost objective function

3.1 Price of anarchy (PoA)

Throughout this section, we write PoA to denote PoAg. for simplicity. In unca-
pacitated cost sharing games, the PoA is n (tightly). This is, however, not the
case in capacitated games, as demonstrated by the following proposition.

Proposition 1. The price of anarchy with respect to the sum-cost function in
CCS games can be arbitrarily high.

Proof. Consider a CCS game with two agents and an underlying graph as de-
picted in Fig. 3.1(a), and suppose that y is arbitrarily larger than x. The optimal
profile is where one agent uses the path s-a-t and the other uses the path s-b-t,
resulting in a total cost of 4z. However, there is a NE in which one agent uses
the path s-a-b-t and the other uses the path s-b-a-t, resulting in a total cost of

4x 4 y. Therefore, PoA.(A) = 421'9, which can be arbitrarily high.

Our goal is to characterize network topologies in which such a “bad” example
cannot occur; i.e., topologies in which the PoA is always bounded, independent
of the specific edge costs and capacities. The lower bound of n for a network
with two parallel links motivates the following definition.

Definition 1. A symmetric network G = (V, E) with source s and sink t is PoA
bounded for a family of symmetric CCS games F if for every symmetric CCS
game A € F on the symmetric network G, it holds that PoA(A) < n.

Our main result is a full characterization of PoA bounded network topologies.
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Fig. 1. (a) An example where the PoA can be arbitrarily high. (b) A Braess Graph.

Theorem 1. For symmetric CCS games, a symmetric network topology G is
PoA bounded w.r.t. sum-cost if and only if G is a series-parallel (SP) network.

The proof of our characterization is composed of two parts. First, we show
that for every symmetric CCS game that is played on an SP network PoA,. < n.
This is the content of Theorem 2. Second, we show that for every symmetric
network topology G that is not an SP network, there exists a game that is
played on G for which the PoA can be arbitrarily high. This part is the content
of Theorem 2.

Theorem 2. Let A be a feasible CCS game with an underlying graph G. If G
is an SP graph then PoAs.(A) < n.

In order to complete the characterization it remains to show that for ev-
ery non-SP network G, there exists a symmetric CCS game on G that has an
unbounded price of anarchy.

Theorem 3. Let G be a non-SP symmetric network. Then, there exists a sym-
metric CCS game on G for which the price of anarchy is arbitrarily high.

In order to prove the last theorem, we use the following result, established
by Milchtaich [21].

Lemma 1. [21] A symmetric network G is an SP network if and only if the
symmetric network in Fig. 3.1(b) is not embedded in G.

The network topology in the last lemma is precisely the network topology
with the unbounded PoA that motivated our study. The last lemma asserts that
this graph topology is embedded in every non-SP network. Thus, in order to
establish the assertion of Theorem 1, it remains to show that the unbounded
PoA given in Proposition 1 can be extended to every network topology that
embeds it. This is established in the following lemma.

Lemma 2. Let G be a symmetric network that is not PoA bounded with respect
to sum-cost for a family of symmetric CCS games F, and suppose G is embedded
n a symmetric network G'. Then, G’ is not PoA bounded with respect to sum-
cost for the family F either.



For the case of parallel-edge networks, we show that the PoA cannot exceed
the maximum edge capacity in the network.

Theorem 4. Let A be a feasible CCS game with an underlying graph G that
consists of parallel edge. Let C,, denote the mazximum capacity of any edge in
G. It holds that PoAs.(A) < Cy,.

3.2 Price of stability (PoS)

As mentioned above, for uncapacitated symmetric games, PoS = 1. In capaci-
tated game, however, the PoS need not be optimal. Moreover, suboptimality is
obtained already in parallel-link networks.

Theorem 5. There exists a symmetric CCS game in which the PoS with respect
to sum-cost is H(n).

Proof. Consider a CCS game with n agents played on a graph that consists of
n + 1 parallel links, ey,...,e,4+1, such that for i € [n], p; = 1/i and ¢; = 1;
and p,11 = 1+ € and ¢, 11 = n. It is easy to verify that the optimal solution
is achieved when all the agents share edge e, 1. However, this profile is not a
NE since a single agent can benefit by deviating to edge e,, incurring a cost of
1/n instead of (1 + €)/n. Following similar reasonings, agents will continue to
deviate, one by one, until reaching the profile in which for every agent i € [n],
agent 7 uses edge e;. The cost of this profile is H(n); the assertion follows.

As established in [3], the potential function method can be used to show
that the last bound is tight. The proof uses the potential function @(S) =

YoecE Ef;(ls) xp("‘s) , and follows the same reasoning as in the uncapacitated case.

Theorem 6. [3] For every feasible symmetric CCS game, it holds that PoSs. <

4 The max-cost objective function

In this section we study the max-cost objective function.

4.1 Price of anarchy (PoA)

We first observe that the PoA can be arbitrarily high also with respect to the
max-cost function.

Proposition 2. The PoA with respect to maz-cost in CCS games can be arbi-
trarily high.

As in the sum-cost case, we wish to characterize network topologies in which
the PoA cannot exceed n. Interestingly, we obtain the exact same characteriza-
tion as in the sum-cost case.



Theorem 7. A symmetric network topology G is PoA bounded w.r.t. max-cost
if and only if G is an SP network.

For the case of parallel-edge networks, we show that the PoA cannot exceed
the maximum edge capacity in the network.

Theorem 8. Let A be a feasible CCS game with an underlying graph G that
consists of parallel edge. Let C,, denote the mazimum cost of any edge in G. It
holds that PoA,.(A) < C,,.

4.2 Price of stability (PoS)

For SP graphs, it follows directly from Theorem 7 that the PoS is bounded by
n (since PoS is always bounded by PoA). This bound is tight, as follows from
the example given in the proof of Theorem 5 . In this example, the unique NE is
one in which every agent uses a distinct path, and the maximal cost incurred by
any agent is 1, compared to 1/n in the optimal solution. For general networks,
we establish the following bound.

Theorem 9. For every CCS game A, it holds that PoSp.(A) is bounded by
nH(n).

Proof. Consider the function (S) =3 . Zf;(ls) ;pf(eS)' It is shown by [3] that
this is an exact potential function for the game; i.e., it emulates the change in
the cost of a deviating agent. It is easy to verify that for every profile T,

se(T) < ®(T) < H(n) - se(T). (2)

Let S* be an optimal solution with respect to max-cost, and consider a NE S
that is obtained by running best-response dynamics with an initial profile $*. We
get that me(S) < se(S) < @(S) < H(S*) < H(n)sc(S*) < nH(n)me(S*), where
the second and fourth inequalities follow from Equation 2, the third inequality
follows from the fact that @ is a potential function and S is obtained from S*
through best-response steps, and the last inequality follows from the definition
of max-cost. It follows that mc(S)/me(S*) < nH(n), as promised.

5 Convergence rate of BRD

In this section we study the convergence rate of best-response dynamics (BRD)
to a NE. While BRD may in general take exponential number of steps depending
on the number of agents to converge [3], the following proposition establishes
that in the case of a symmetric, undirected graph, BRD converges to a pure
NE within at most n steps, and this is tight. The intuition for this observation
is that, in the uncapacitated version, after an agent deviates to some path P
(as its best-response), the cost incurred by an agent using this path in the next
iteration can only decrease; therefore, P remains a best-response move until all
agents converge to the same path.



Observation 2. For every uncapacitated cost-sharing game, every BRD con-
verges to a NE within at most n steps, independent of the initial profile.

In contrast, the following proposition shows that the convergence process of
a capacitated game may be longer. In particular, we establish a lower bound of
2(n?/?), even for parallel-link graphs.

Proposition 3. There exists a symmetric CCS game and a best-response dy-
namics with convergence time of 2(n3/?).

6 Discussion

In this work we introduce a model of capacitated network design games, and
study the implications of edge capacities on the existence and quality of Nash
equilibria with respect to different objective functions, as well as on the con-
vergence rate of best-response dynamics. We find that the consideration of edge
capacities has a significant effect on all the above properties. Our main con-
tribution is a full characterization of network topologies that have a bounded
price of anarchy, independent of the edge capacities and costs. Our results sug-
gest many avenues for future research. A few obvious directions include closing
the gap of the PoS with respect to the max-cost objective for general networks,
the consideration of non-symmetric networks and a better understanding of the
convergence rate of best-response dynamics.
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