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ABSTRACT

Simultaneous item auctions are simple and practical proce-
dures for allocating items to bidders with potentially com-
plex preferences. In a simultaneous auction, every bidder
submits independent bids on all items simultaneously. The
allocation and prices are then resolved for each item sepa-
rately, based solely on the bids submitted on that item. We
study the efficiency of Bayes-Nash equilibrium (BNE) out-
comes of simultaneous first- and second-price auctions when
bidders have complement-free (a.k.a. subadditive) valua-
tions. While it is known that the social welfare of every
pure Nash equilibrium (NE) constitutes a constant fraction
of the optimal social welfare, a pure NE rarely exists, and
moreover, the full information assumption is often unreal-
istic. Therefore, quantifying the welfare loss in Bayes-Nash
equilibria is of particular interest. Previous work established
a logarithmic bound on the ratio between the social welfare
of a BNE and the expected optimal social welfare in both
first-price auctions (Hassidim et al. [11]) and second-price
auctions (Bhawalkar and Roughgarden |2]), leaving a large
gap between a constant and a logarithmic ratio. We intro-
duce a new proof technique and use it to resolve both of
these gaps in a unified way. Specifically, we show that the
expected social welfare of any BNE is at least 1/2 of the op-
timal social welfare in the case of first-price auctions, and at
least 1/4 in the case of second-price auctions.
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1. INTRODUCTION

The central problem in algorithmic mechanism design is
to determine how best to allocate resources among individ-
uals, while respecting both computational constraints and
the individual incentives of the participants. Much of the
theoretical work in this field to date has focused on solv-
ing such problems truthfully. In a truthful mechanism, the
participants reveal their preferences in full to a central or-
chestrator, who then distributes the resources in a way that
incentivizes truthful revelation. Such an approach has theo-
retical appeal, but truthful mechanisms tend to be complex
and are rarely used in practice. Instead, it is common to
forego truthfulness and use simpler mechanisms. Canon-
ical examples of such auctions are the generalized second
price (GSP) auctions for online advertising [1, [24], and the
ascending price auction for electromagnetic spectrum allo-
cation [18]. Given that such simple auctions are used in
practice, it is of crucial importance to determine how they
actually perform when used by rational agents.

Consider the problem of resolving a combinatorial auction.
In such a problem there is a large set M of m objects for
sale, and n potential buyers. Each buyer has a private value
function v; : 2M — R>o mapping sets of objects to their as-
sociated values. The goal of the market designer is to decide
how to allocate the objects among the buyers to maximize
the overall social efficiency. One approach would be to elicit
the valuation function from each bidder, then attempt to
solve the resulting optimization problem. However, the val-
uation function is an object of exponential size, and this ap-
proach leads inevitably to large communication and compu-
tation complexity overheads. It is not surprising, therefore,
that in existing online marketplaces such as eBay, buyers do
not express their (potentially complex) preferences directly;
rather, each item is auctioned independently, and a buyer is
forced to bid separately on individual items. This approach
is simple and natural, and relieves the burden of express-
ing a potentially complex valuation function. On the other
hand, this limited expressiveness could potentially lead to
inefficient outcomes. This begs the question: how well does
the outcome of simultaneous item auctions approximate the
socially optimal allocation?



In order to evaluate the performance of non-truthful mech-
anisms, we take the economic viewpoint that self-interested
agents will apply bidding strategies at equilibrium, so that
no agent can unilaterally improve his outcome by changing
his strategy. We apply a quantitative approach, and ask
how well the performance at equilibrium approximates the
socially optimal outcome. Since there may potentially be
multiple equilibria, we will bound the performance in the
worst case over equilibria. Put another way, our approach
is to use the price of anarchy as a performance measure for
the analysis of mechanisms.

The fact that equilibria of simultaneous auctions might
not be socially optimal was first observed by Bikhchandani
[4], who studied the complete information] setting. As he
states:

“Simultaneous sealed bid auctions are likely to be
inefficient under complete information and hence,
also under the more realistic assumption of in-
complete information about buyer reservation val-
ues.”

Our goal is to bound the extent of this inefficiency in the
incomplete information setting. To this end, we model in-
complete information using the standard Bayesian frame-
work. In this model, the buyers’ valuations are assumed to
be drawn independently from (not necessarily identical) dis-
tributions. This product distribution is commonly known
to all of the participants; we think of this as represent-
ing the public’s aggregate beliefs about the buyers in the
market. While the distributions are common knowledge,
each agent’s true valuation is private. This Bayesian model
generalizes the full-information model of Nash equilibrium,
which implicitly supposes that the type profile is known by
all participants. Note that while the agents are aware of the
type distribution, the mechanism (which applies simultane-
ous item auctions) is prior-free and hence agnostic to this
information.

Pricing and Efficiency in Simultaneous Auctions.

We consider separately the case in which items are sold
via first-price auctions (in which the player who bids high-
est wins and pays his bid), and the case of second-price
auctiondd (in which the winning bidder pays the second-
highest bid). The differences between first and second-price
simultaneous auctions have received significant attention in
the recent literature. For example, a pure Nash equilibrium
of our mechanism with simultaneous first-price auctions is
equivalent to a Walrasian equilibrium [4, [11], and therefore
must obtain the optimal social welfare |16]. On the other
hand, every pure Nash equilibrium for simultaneous second-
price auctions is equivalent to a Conditional equilibrium,
and hence obtains at least half of the optimal social wel-
fare [9]. While these constant factor bounds are appealing,
their power is marred by the fact that pure equilibria do not
exist in general. In fact, based on the equivalence results
above, their existence is quite restrictive (e.g., for simul-
taneous first-price auctions, existence is guaranteed for an

Tn a complete (or full) information setting, it is assumed
that the bidders’ valuations are commonly known to all par-
ticipants

2Second-price item auctions are also known as Vickrey auc-
tions; we will use these terms interchangeably.

extremely restrictive family of valuations, called gross sub-
stitutes |10]). Moreover, pure Nash equilibria rely on the
very strong assumption of full information, which is rare in
practice.

Can we hope for such constant-factor bounds to hold for
general Bayes-Nash equilibria? For general valuations the
answer is no. Consider, for example, the case of a buyer
who has a very large value for the set of all objects for sale,
but no value for any strict subset. In this case, any posi-
tive bid carries great risk: the buyer might win some items
but not others, leaving him with negative utility. It there-
fore seems that complements do not synergize well with item
bidding, and indeed it has been shown by Hassidim et al. [11]
that the price of anarchy (with respect to mixed equilibria)
in a first-price auction can be as high as Q(y/m) when bid-
ders’ valuations exhibit complementarities. The same lower
bound can be easily extended to the case of second-price
auctions 3

Our main result is that the presence of complements is the
only barrier to a constant price of anarchy. We show that
when buyer valuations are complement-free (a.k.a. subaddi-
tive), the (Bayesian) price of anarchy of the simultaneous
item auction mechanism is at most a constant, in both the
first- and second-price auctions.

For first-price auctions, we show that any Bayes-Nash
equilibrium yields at least half of the optimal social wel-
fare. This improves upon the previously best-known bound
of O(logn) due to Hassidim et al. [11], where n is the number
of bidders.

REsSULT 1: [BPoA< 2 in simultaneous first-price
auctions.] When buyers have subadditive valuations, the
Bayesian price of anarchy of the simultaneous first-price
item auction mechanism is at most 2.

For simultaneous Vickrey auctions, it is not possible to
bound the worst-case performance at equilibrium, even when
there is only a single object for sale. This impossibility
is due to arguably unnatural equilibria in which certain
players grossly overreport their values, prompting others
to bid nothing. To circumvent this issue one must im-
pose an assumption that agents avoid such “overbidding”
strategies. In the strong no-overbidding assumption, used
by Christodoulou et al. [] and Bhawalkar and Roughgar-
den [2], it is assumed that each agent i chooses bids so that,
for every set of objects S, the sum of the bids on S is at most
v;(S). We show that under this assumption, the Bayesian
price of anarchy for simultaneous Vickrey auctions is at most
4. This improves upon the previously best-known bound of
O(log n) due to Bhawalkar and Roughgarden |2].

RESULT 2: [BPoA< 4 in simultaneous second-price
auctions.] When buyers have subadditive valuations, the
Bayesian price of anarchy of the simultaneous Vickrey auc-
tion mechanism is at most 4, under the strong no-overbidding
assumption.

The strong no-overbidding assumption is quite strong, as
it must hold for every set of items. A somewhat weaker as-

3As explained in the sequel, to obtain meaningful results
in second-price auctions one needs to impose no-overbidding
assumptions on the bidding strategies, defined formally in
Section 23] The Q(y/m) lower bound extends to the case
of second-price auctions under the weak no-overbidding as-
sumption. The alternative strong no-overbidding assump-
tion is meaningless in the case of complements, as it pre-
cludes item bidding altogether.



sumption, referred to as weak no-overbidding, requires that
the no overbidding condition holds only in expectation over
the distribution of sets won by a player at equilibrium. That
is, agents are said to be weakly no-overbidding if they apply
strategies such that expected value of each agent’s winnings
is at least the expected sum of his winning bids [9]. Roughly
speaking, weak no-overbidding supposes that agents are gen-
erally averse to winning sets with bids that are higher than
their true values. However, unlike strong no-overbidding, it
does not preclude strategies in which an agent overbids on
sets that he does not expect to win, i.e. in order to more
accurately express his willingness to pay for other sets. For
an expanded discussion of the no-overbidding assumptions,
see [Section 6l

Notably, the BNE outcomes under the two no-overbidding
assumptions are incomparable; while the weak assumption is
more permissive, and thus enables a richer set of behaviors in
equilibrium, it also introduces new ways to deviate from the
prescribed equilibrium. Therefore, a constant bound on the
Bayesian PoA under the weakly no-overbidding assumption
does not follow directly. Nevertheless, we show that the
bound of 4 on the Bayesian PoA extends also to the case of
weakly no-overbidding agents.

Bhawalkar and Roughgarden |2] showed that, under the
strong no-overbidding assumption, the Bayesian PoA of the
simultaneous Vickrey auction is strictly greater than 2, and
furthermore the price of anarchy is Q(nl/ *) when agent val-
ues are allowed to be correlated. In the full version of the
paper we show that similar results hold also under the weak
no-overbidding assumption, proving bounds strictly greater
than 2 and Q(n'/%), respectively.

Our constant bounds hold for subadditive bidders, whereas
constant bounds on Bayesian price of anarchy were previ-
ously known only for the subclass of fractionally subadditive
(i.e. XOS) valuations [6]. Previous work that attempted to
bound the BPoA for subadditive valuations |2, 11] provided
constant bounds for XOS valuations, then used the logarith-
mic factor separation between XOS and subadditive valua-
tions to establish a logarithmic upper bound on the BPoA
for subadditive valuations. While it seems plausible to use
the close relation between XOS and subadditive valuations,
any analysis that follows this trajectory would encounter
this inevitable logarithmic gap. The challenge, therefore, is
in developing a new proof technique for subadditive valua-
tions, which does not go through XOS valuations. This is
the approach taken in this work.

It should be noted that subadditive valuations are more
expressive than their XOS counterparts, and obtaining price
of anarchy bounds for subadditive valuations is significantly
more challenging. In particular, for XOS valuations, a player
who aims to win a certain set S has a natural choice of
bid: the additive valuation that determines his value for set
S. For subadditive valuations, there is no such notion of a
natural bid aimed at representing one’s value for a particular
set, and hence even determining how best to bid on a certain
set of interest is a non-trivial task.

Related Work.

Combinatorial auctions is a canonical subject of study in
algorithmic mechanism design (see 19 and references therein
for the large body of literature on this subject). While most
previous work focuses on the design of truthful mechanisms,

we follow the more recent literature on the analysis of simple
and practical (albeit not truthful) auctions.

Following the rich literature on the price of anarchy (PoA)
[see, e.g., 12,122, for references|, Christodoulou et al. |6] pi-
oneered the study of the Bayesian price of anarchy (BPoA)
and applied it to item-bidding auctions. They bounded the
BPoA by 2 in simultaneous second-price auctions with XOS
valuations, which are equivalent to fractionally subadditive
functions [&]. The same bound was extended to the more
general class of subadditive valuations by Bhawalkar and
Roughgarden |2], and later to general valuations by Fu et al.
19], albeit only with respect to pure equilibria (when they
exist). The price of anarchy was studies also in simultane-
ous first-price auctions by Hassidim et al. [11], who showed a
pure PoA of 1 for general v:aLlu:aLtionsH7 and a constant BPoA
for XOS valuations. The effect of the underlying single-item
auction on the PoA was further studied by Bhawalkar and
Roughgarden [3].

For both first- and second-price simultaneous auctions,
the BPoA for subadditive valuations was not previously known
to be better than O(logn). Previous techniques applied the
constant bounds for XOS valuations, using the O(logn) sep-
aration between XOS and subadditive valuations [see e.g. [2].

Studies on PoA and BPoA have provided insights into
other settings, e.g. auctions employing greedy algorithms
|14], Generalized Second Price Auctions |20, 15, 5], uniform-
price multi-unit auctions |17], and network formation set-
tings [1].

The smoothness technique for Bayesian games, developed
by Roughgarden [21] and Syrgkanis [23], provides a method
for extending bounds on pure PoA to Bayesian PoA. How-
ever, to the best of our knowledge, our approach does not
fall within this framework. Roughly speaking, the smooth-
ness framework requires that each player can find a good
“default” strategy given his type, which is independent of
the opponents’ strategy selections. However, subadditive
valuations do not seem to admit such bidsE and indeed the
strategies we consider in our analysis depend heavily on the
distribution of strategies applied by all players at equilib-
rium.

Organization of the paper.

We introduce the necessary background and notation in
Our analysis then proceeds in two parts. In
the first part, Section 3, we consider a single-player game
in which the player, a subadditive buyer, must determine
how best to bid on a set of objects against a distribution
over price vectors. We show that, for every distribution for
which the expected sum of prices is not too large, the buyer
has a bidding strategy that guarantees a high expected util-
ity (compared to the player’s value for the set of all objects).

In the second part of our analysis for the first-price (Section 4l
and Vickrey (Section 5)) auctions, we show that every Bayes-
Nash equilibrium must have high expected social welfare.
We do this by considering deviations in which an agent uses
the bidding strategy from the single-player game described

4Pure Nash equilibria rarely exist in this case though, as
they are shown to be equivalent to Walrasian equilibria of
the corresponding two-sided market.

5We note that one can apply the technique on XOS valua-
tions, but because of the O(logn) separation between XOS
and subadditive valuations [see e.g.[2] this gives only a log-
arithmic bound.



in [Section 3] applied to some subset of the objects. This
subset of objects is chosen randomly: agent i draws a new
profile of types for his opponents from the type distribution,
then considers bidding for the set he would be allocated
under this “virtual” type profile. At a BNE, agent ¢ can-
not benefit from such a randomized deviation; we show that
this implies that the social welfare at equilibrium is at least
a constant times the optimal welfare.

2. PRELIMINARIES
2.1 Auctions and Equilibria

Combinatorial Auctions.

In a combinatorial auction, m items are sold to n bid-
ders. Each bidder has a private combinatorial valuation
captured by a set function v : 2™ — R, over different
bundles S C [m]. Throughout the paper we assume the val-
uations are monotone, i.e. for every subset S C T C [m] it
holds that v(S) < v(T"). In a Bayesian (partial-information)
setting, the bidders’ valuation profile v is drawn from a com-
monly known product distributiorﬁ F = F1 X - X Fn.
The outcome of an auction consists of an allocation X =
(X1, ,Xn) € Q[m]X"7 where X; is the bundle of items
allocated to bidder i, and payments made by each bidder.
The social welfare of an allocation is Zie[n] vi(X;). For any
given valuation profile v, we let (OPTY,...,OPT}) denote
the welfare-maximizing assignment for profile v.

Simultaneous Item-Bidding Auctions.

In a simultaneous item-bidding auction, each bidder si-
multaneously submits a vector of bids, one for each item.
The outcome of the auction is then determined item by item
according to the bids placed on each item. In this paper we
study two forms of such auctions: simultaneous first price
auctions and simultaneous second price auctions!] In both
auctions, each item is allocated to the bidder who has placed
the highest bid on it (breaking ties arbitrarily but consis-
tently). In a (simultaneous) first price auction, the winner
of each item pays his bid on that item, while in a (simulta-
neous) second price auction, the winner of each item pays
the second highest bid on that item. We now give a more
formal description of this process.

We generally write b;(j) to denote the bid of player i on
item j, and b for the vector of bids placed by bidder i.

Alternatively, we may think of agent i’s bid b; as an additive
function bi(S) = ;.5 bi(j) that correspondd] to the bid-

vector b;. Given a sequence of bid profiles b = (b1,...,bn),
we write W;(b) for the set of items won by bidder 4, and
pi € R the vector of payments made by bidder ¢ on the
items. In this notation, the first- and second-price auctions

SWhenever an expectation is taken with respect to valua-
tions, it will be assumed that they are drawn from these
corresponding distributions.

"The word “simultaneous” is often omitted, as we study only
simultaneous (in contrast to sequential) auctions.

8There is an easy equivalence between an additive func-
tion a(S) = ;. s a({s}) and its concise vector description
d= (a({1}),...,a({m})). We will use functional and vector
representations interchangeably as the situation demands.

can be summarized as follows:

First-price |
won set:
Wi(b) = {j € [m] | bi(j) > bu(), ¥k # i}
payment:
pi(j) =
{ bi(j), j € Wi(b) max bi(j), J € Wi(b)
0, J & Wi(b) 0, j & Wi(b)
We assume bidders have quasi-linear utilities, i.e. the utility

of bidder ¢ for a given bid profile b is given by u;(b) =
vi(Wi(b)) — pi(Wi(b)).

Vickrey

A Single Bidder’s Perspective on Bidding.

In both first- and second-price auctions, the set of items
won by a bidder ¢ bidding b; is determined solely by a
coordinate-wise comparison between b; and the largest bid
placed by the other bidders. Let ¢;(b-;) be the vector whose
j-th component is maxy; b (). It is often convenient to
write W (bs, b.;) as W (bs,p) where p' = ¢i(b-;). We think
of P as the vector of prices perceived by bidder : in the
second price auction, the bidder pays the price on an item if
his bid exceeds it; and in the first price auction the bidder
pays his own bid on such an item, and p is the minimum
such winning bid. It is in this light that we often write
wi(b.;) as prices p when this causes no confusion. We will
also shorten the notation v(W (b, p)) to v(b, p), meaning the
value obtained when bidding b against perceived prices p.

Strategies and Equilibria.

Buyers select their bids strategically in order to maximize
utility. The bidding behavior of a buyer given its valuation is
described by a strategy. A strategy s; maps each valuation v;
to a distribution over bid vectors; we interpret s;(v;) as the
(possibly randomized) set of bids placed by bidder ¢ when
his type is v;.

Definition 1. (Bayes-Nash Equilibrium) A profile of
strategies s = (s1(v1),...,8n(vn)) is in Bayes-Nash equilib-
rium (BNE) for distribution F if, for every buyer 4, type v;,
and bidding strategy s;,

EV . E U4 bi, b_i 2 EV-i E |:u7, Zi,b_i :|
iy B i )] besbts) ( )
bi~s;(vi) bi~E;

Given Fubini’s Theorem, we can shorten the condition
as follows (such shorthand forms are used throughout the

paper):
Eu st [06B)] 2 By sy, B B20)] - (1)

Definition 2. (Bayesian Price of Anarchy) Given an
auction type (either first- or second-price), the Bayesian
price of anarchy (BPoA) is the worst-case ratio between the
expected optimal welfare and the expected welfare at a BNE
and is given by

e Ev[>2, vi(OPTY)]
(F, s): Ev,bws(v) [ZZ vl(Wl(b))] .

s a BNE for F

For second price auctions we will consider BPoA under nat-
ural restrictions on the strategies used by the bidders. In



such cases, the maximum in [Definition 2] is taken with re-
spect to BNE under that restricted class of strategies. We
note that a BNE is guaranteed to exist as long as the space
of valuations and potential bids is discretized, say with all
values expressed as increments of some € > 0. A more de-
tailed discussion of BNE existence appears in the full version
of the paper.

2.2 Subadditive Valuations

We focus on valuations that are complement-free in the
following general sense:

Definition 8. A set function v : 2™ — R is subadditive
if, for any subsets S1,52 C [m],

’U(S1) + U(SQ) > ’U(S1 U SQ)

The class of subadditive functions strictly includes a hier-
archy of more restrictive complement-free functions such as
submodular and gross substitute functions (see [13 for defi-
nitions and discussions). Among these, the XOS functions,
as defined below, have a particular kinship with subadditive
functions. XOS literally means XOR (taking the maximum)
of OR’s (taking sums), and this class of valuations is known
to be equivalent to the class of fractionally subadditive func-
tions [§].

Definition 4. A function v : 2™ — Ry is said to be XOS
if there exists a collection of additive functions a1 (-), ..., ar(-)
(that is, ai(S) = 3" g ai({j}) for every set S C [m]), such
that for each S C [m], v(S) := maxi<i<k ai(9).

One of the characterizations of XOS functions uses the
following definition.

Definition 5. A function f(-) is said to be dominated by
a set function ¢(-) if for any subset S C [m], f(S) < g(9).
We say that a vector @ = (a1, ..., am) is dominated by a set
function v(-), if as an additive function a(-) is dominated by

v(-).

It is not too difficult to observe that v(-) is XOS if and
only if for every set T C [m] there is an additive function
a(-) dominated by v(-) such that a(T) = v(T).

For a general subadditive function v(-), it can be the
case that any additive function a(-) dominated by v(-) has
Q(log(m)) gap from v([m]), i.e. Q(log(m))a([m]) < v([m]),
(See |2 for such an example) and a logarithmic factor is also
an upper bound. Previous work that attempted to bound
the BPoA for subadditive valuations |2, [11] provided con-
stant bounds for XOS valuations, then used the logarithmic
factor separation between XOS and subadditive valuations
to establish a logarithmic upper bound on the BPoA for sub-
additive valuations. In order to establish a constant bound
for subadditive valuations, we turn to a different technique.

2.3 Overbidding

It is well known that in second price auctions, even with
only a single item, the price of anarchy can be infinite when
bidders are not restricted in their bidsﬂ To exclude such

9A canonical example is two bidders who value the item at
0 and a large number h, respectively, but the first bidder
bids h + 1 and the second bidder bids 0.

pathological cases, previous literature [e.g. |6, 2] has made
the following no-overbidding assumption standard

Definition 6. A bidder is strongly no-overbidding if his bid
b(-) is dominated by his valuation v(-).

In other words, a bidder is guaranteed to derive non-
negative utility, no matter what are the prices in the mar-
ket. Thus strong no overbidding is a strong risk-aversion
assumption on the buyers. One may also consider less risk
concerned bidders—in the following we generalize a weaker
assumption of no-overbidding introduced by Fu et al. [9].

Definition 7. Given a price distribution D, a bidder is said
to be weakly no-overbidding if his bid vector b satisfies
E, p[v(W(b,p))] > Epp[b(W(b,p))], where W (b,p) de-
notes the subset of items he wins when he bids b at price p,
Le., W(b,p) = {j € [m] | b(j) = p(4)}.

We will bound BPoA under both weakly and strongly no-
overbidding assumptions for simultaneous second price auc-
tions (note that these sets are incomparable).

3. BIDDING UNDER UNCERTAIN PRICES

As discussed in [Section 2] a bidder in a simultaneous auc-
tion faces the problem of maximizing his utility in presence
of uncertain prices (which are the largest bids placed by
other bidders). While this maximization problem is intri-
cate, we show in this section particular bidding strategies
that result in utilities comparable with the bidder’s value of
the whole bundle minus the expected total prices. In other
words, given a price distribution D, it is desired to have a
bidding strategy b such that

Ep~p [v(b,p)] = b([m]) = av([m]) — Ep~o [p([m])],  (2)

for some constant a. Such bidding strategies are key ingre-
dients of the BPoA proofs in later sections, and may also be
of independent interest.

For fixed prices, achieving (@) is trivial, even for o = 1;
indeed, given a price vector p, by bidding according to b = p,
a bidder obtains v(b, p) — b([m]) = v([m]) —p([m]). The case
in which prices are drawn at random is more intricate, and
is the subject of the remainder of this section.

LeEmMMA 1 (Bidding against a price distribution) For
any distribution D of prices p and any subadditive valuation
v(-) there exists a bid by such that

By [o(bo, )] — bo([m]) > So(fm]) ~ By p([m])] . (3)

PrROOF. We show a random bidding strategy that guar-
antees the desired inequality in expectation, and infer the
existence of a bid, drawn from the suggested distribution,
that achieves the same inequality. Consider a bid that is
drawn according to the exact same distribution as the prices.
It holds that

Eyop [Ep~p [v(b; p)]] = Epnp [Evnp [v(b, p)]]

% EbND [EPND [v(b,p) + U(p7 b)”

Y

% Epwp [Ep~p [v([m])]]

1

= 5o(m)),

10We note that such no-overbidding assumptions were also
made in other contexts [e.g. [14, 20].




where the inequality follows from subadditivity (which guar-
antees that v(b, p)+v(p,b) > v([m]) for every p and b). Using

the last inequality, it follows that

Eyup [Ep~o [0(b, p)] — b([m])] = %’U([m]) — Epp [b([m])]

1
= 5u([m]) = Ep~p [p([m])].

Since a bid drawn from D satisfies (3) in expectation, there
must exist a bid by satisfying @). O

Safe Bidding Under Uncertainty

As noted in [Section 2.3 in order to obtain any meaning-
ful bound on BPoA for second price auctions, one needs
to assume that bidders are not overbidding. Unfortunately,
[Cemma 1l is not concerned with such requirements. This
problem is addressed in [Cemma 3| where it is shown that
a strongly no-overbidding strategy analogous to that in
[Cemma 1l always exists.

Notably, when the no-overbidding requirement is imposed,
the existence of a bid satisfying (2]) is nontrivial even for the
case in which the prices are fixed. The following lemma,
rephrased from |2, establishes its existence:

LEMMA 2 (follows from Lemma 3.3 in [2) For a given
price vector p and any subadditive valuation v(-) there exists
a bid b dominated by v(-) such that

v(b,p) — b([m]) > v([m]) — p([m]).
We now turn to analyze the case of random prices.

LeEMMA 3 (No Overbidding Against Price Distribu-
tions) For any distribution D of prices p and any subaddi-
tive valuation v(-) there exists a bid by dominated by v(-)
such that

By [v(b0, p)] — bo(lm]) > 3o((m]) — Epu [p(im))] - (4)

PRrROOF. Let ¢ be any price vector in the support of the
distribution D. Let T' C [m] be a maximal set such that
v(T) < q(T). We consider a truncated price vector ¢, which
is set to 0 on the coordinates corresponding to 7', and coin-
cides with ¢ on the coordinates corresponding to [m]\ 7.

We first observe that ¢ is dominated by v(-). Indeed,
for any set R C [m]\ T it holds that v(R) > ¢(R), since
otherwise

W(RUT) < v(R) +v(T) < g(R) + q(T) = q(RUT),

in contradiction to the fact that T is a maximal set satisfying
v(T) < q(T).
We next establish that for any bid b, it holds that

v(b, q) + q([m]) = v(b, q) + q([m]). (4)

Indeed, we have W (b,q) C W (b, q)UT'. Therefore, v(b,q) <
v(b, q) + v(T') due to subadditivity of v(-). Now (&) follows
by observing that ¢([m]) — q([m]) = q(T) > v(T).

We next define the distribution D := {§ | ¢ ~ D}, which
consists of truncated prices drawn from D. Equation (B
now extends for any bid b to

Epp [v(b,p) +p([m])] > E; 5 [v(b,p) + P([m])] . (6)

Recall that each ¢ ~ D is dominated by wv(-), therefore,

bidding any b drawn from D satisfies the strongly no over-
bidding requirement. Furthermore, by applying (€) to each

b~ D we get

E_[Byp .) +p((m])] 2 E_[By_p (. 5) + F([m)]

=E, 5 [Eyup 00, D] + B, 5 [b([m))]
> Sollm]) + By b(m]),

where the last inequality follows in a manner similar to the
proof of [Lemma 1l The assertion of the lemma follows. []

4. BPOA OF FIRST PRICE AUCTIONS

In this section we apply the bidding strategy from[Lemma. 1l
to bound the Bayesian price of anarchy of simultaneous first-
price auctions.

THEOREM 4. In a simultaneous first-price auction with
subadditive bidders, the Bayesian price of anarchy is at most 2.

PRrROOF. We begin with a brief outline of the proof. Our
plan is to fix a Bayes-Nash equilibrium and then consider,
for each agent, a potential deviating strategy. This devia-
tion will use the bidding strategy from [Lemma 1] applied
to some subset of the objects. To determine which subset
to bid upon, each agent ¢ will do the following: given her
own value v;, she will draw a “virtual” type profile v’; for
the other agents from distribution F, and then bid upon
the set that she would be assigned in the optimal alloca-
tion for (vs, vY). To determine how to bid upon this set,
she draws a second type profile for the other agents, v.;,
as dictated by [Lemma 1l At BNE, agent i cannot benefit
from such a randomized deviation; this implies a bound on
the expected utility of each agent at equilibrium (inequality
@®)). By taking a sum over all agents and using linearity of
expectation to disentangle the random variables v and v'*,
we show that this implies the social welfare at equilibrium
is at least a constant times the optimal welfare.

We now proceed with the details, beginning with notation.
Fix type distributions 7 =[]} | F; and let s be a BNE for
F. Fix an agent ¢ and an arbitrary subadditive valuation v;.
Fix an arbitrary v.;, and let v = (v;, v;). Fix an arbitrary
vY, and let v* = (v, v7). Recall that (OPT‘{*, R OPTX*)
is the welfare-optimal allocation for v*.

Recall that each bid profile b.; induces a price vector
wi(b.;) on bidder i. Let p be equal to ¢;(b.;) on OPT}’*
and 0 elsewhere. Let D be the distribution over these price
vectors p = p(b.;), where b ~ s(v). That is, D is pre-
cisely the distribution over the maximum bids on the items
in OPT;’*, excluding the bid of player i. Note that v*,
which is different from v, was used only to determine the
set OP‘T}’*7 whereas v determines the distribution of prices
over the items in OPT;’*. Much of the following proof in-
volves handling and, to some extent, disentangling the two.
By replacing [m] by OPTE* in [Cemma 1l there exists a bid
vector b;" over the objects in OPT}’* such that, thinking now
of p as an additive function,

Epp [vi(bi', p)] — b/ (OPT} ")

> S0(OPTY) ~ By [p(OPTY )| (7



Since s forms a BNE, we have that

E [u(b)> E

Vi,

[ui (bil, b_l)]

b~s(v) b~7sl(’v)
= E [vi(bi’, 05 (b.3))] — E [b:' (Wi (bi', b.:))]
b~s(v) brs(v)

> Epp [vi(bi',p)] — b/ (OPTY ),

where the last inequality follows from the definition of D

and the fact that W;(b;’,b.;) C OPT;’* for all b.;. Applying
(@ and the definition of p ~ D, we conclude that
E [u(b) (8)
b~s(v)
1
>gu(OPTY) = B | 3 maxh(

b.i~s_i(v.i) | jeOPTY"

Taking the sum over all ¢ and expectations over all v; ~ F;
and v’ ~ F_;, we conclude that

S B [wb)z3> B

vV, vV
b~s(v)

[wi(oPTY)] ©)

— Z E Z maxbk

© bims_i(v.) |J€OPTY”

Let us consider each of the three terms of (@) in turn. The
LHS is equal to Ey ps(v)[2_; %i(b)], as vZ; does not appear
inside the expectation. The first term on the RHS is equal
to 3 Ev[>, vi(OPTY)], by relabeling v’; by v_;. For the final
term on the RHS of (@), we note that

Z E Z max b (j

b_; NSﬂ(v ;) jeorTy”

< Z Z ml?xbk(j)

‘ b~s<v1,vl) JEOPTY”
E maxb;c },

where the first inequality follows due to the fact we take
a maximum over a larger set, and the last equality follows
from the fact that OPTY  imposes a partition over [m], and
by relabeling. We note a subtlety: in the first line we select a
bid vector b with respect to (v;, v.;), rather than (v;, v;), so
that b is independent of the partition (OPT‘{* ,...,OPTY" ).
Applying these simplifications to the terms of (@), we con-
clude that

1
Ev,bfvs(v) |:Z Us (b):| 5 Z 'U'L OPT
—Ey bosv) |:Z max bk (j):| .
J

v b~s(v)

(10)

Since we are in a first-price auction setting, it holds that
Ev,bws(v) |:Z ul(b) = EV,bNS(V) |:Z U@(Wl(b)):|

- Ev,bfvs(v) |:Z ml?x bk (.]):| .
J

Equation (I0) therefore implies that

Ev,bws(v) [Z:vz(wz(b))] > %Ev zz:vz(OPT;/)

which yields the desired result. [

Remark: In the full version of the paper we show that
the upper bound does not carry over to the case where the
bidders’ valuations are correlated. Specifically, a polynomial
lower bound of Q(nl/ﬁ) is given on the Bayesian price of
anarchy for this case. The construction is based on a lower
bound due to Bhawalkar and Roughgarden [2] for second-
price auctions.

S. BPOA OF SECOND PRICE AUCTIONS

We now turn to the case of simultaneous second-price auc-
tions. We show that the Bayesian price of anarchy of such
an auction is always at most 4 for subadditive bidders, as-
suming that bidders’ valuations are independent and bid-
ders select strategies that satisfy either the strong or weak
no-overbidding assumption.

THEOREM 5. In simultaneous second-price auctions where
bidders have subadditive valuations, and every bidder is ei-
ther strongly or weakly no-overbidding, the Bayesian price
of anarchy is at most 4.

Proor. Fix type distributions F and let s be a BNE for
F. We can then derive inequality (I0) in precisely the same

way as in the proof of [Theorem 4] (using now [Lemma 3| in-
stead of [Lemma 1l); we then have that

Ev,bfvs(v) |:Z uz(b):| > = sz(OPTy)
Zml?xbk(j):| .

Note that Ev,b~s(v) [Zl Vg (Wl(b))] 2 Evbes(v) [Zl ul(b)]
Also, since each agent i is assumed to be strongly or weakly
no overbidding, it holds that

= EV,bNS(V) Z Z b; (])

i jeW;(b)

< EV,bNS(V) |:Z vl(Wl(b)):| .

Equation (II) therefore implies that

E; bsv) [sz(W'L(b))] > = Zvi(OPT}’)

- Ev,bws(v) |:Z vl(Wl(b)):| ’

(11)

- EV,bNS(V)

EV,bNS(V) |:Z m}?«X bk (])
J

as required. []



Bhawalkar and Roughgarden |2] showed that the Bayesian
price of anarchy of second price auctions can be strictly
worse than the pure price of anarchy when bidders are
strongly no overbidding. In what follows we give an ex-
ample showing that such a gap exists also when bidders are
weakly no overbidding. We note that this gap is not implied
by the example given by IBhawalkar and Roughgarden since
the strategy profile in their example is not a BNE under
the weaker no overbidding notion (as can be easily verified).
The full analysis of the example appears in the full version
of the paper; the following is a sketch.

ExaMPLE 1 (Bayesian price of anarchy can be strictly
larger than 2 when bidders are weakly no overbid-
ding and have subadditive valuations) Consider an in-
stance with 2 bidders and 6 items, where the set of items
is divided into two sets, of 3 items each, denoted S; and
S2. Throughout, we shall present the example with param-
eters a and b for ease of presentation. The lower bound is
obtained by substituting a = 0.06 and b = 0.85. In what fol-
lows, we describe the valuation function of bidder 1; bidder
2’s valuation is symmetric w.r.t. the sets S1 and S2. Bidder
1’s valuation over the items in S; is additive with respective
values (over the 3 items) of (a,a,b), (b,a,a) or (a,b,a), each
with probability 1/3. Bidder 1’s valuation over the items in
So is 2 if she gets all three items, and 1 for any non-empty
strict subset of S2. Bidder 1’s valuation for an arbitrary
subset 7' the maximum of her value for 77N S1 and her value
for T'N S2. One can verify that this is indeed a subadditive
valuation function.

We claim that the profile in which each bidder i bids her
true (additive) valuation on S; and 0 on all other items is a
Bayes-Nash equilibrium with weakly no overbidding bidders
for the specified parameter values. The full proof is deferred
to the full version of the paper, where it is shown that the
only beneficial deviations break the weakly no-overbidding
assumption. Under this bidding profile, each bidder de-
rives a utility of 2a + b, amounting to a social welfare of
2(2a+b) = 1.94. In contrast, if bidder 1 is allocated Sz and
bidder 2 is allocated Si, then each bidder derives a utility
of 2, amounting to a social welfare of 4. Consequently, the
Bayesian price of anarchy is 4/1.94 > 2.061.

6. NO OVERBIDDING: A DISCUSSION

In our analysis of the BPoA of second-price auctions we
have adopted either the strong version or the weak version of
the no-overbidding assumption. A few conceptual remarks
are in order.

We can think of no-overbidding assumptions as represent-
ing a form of risk aversion. The strong no-overbidding as-
sumption guarantees to the bidder a non-negative utility,
independent of the behavior of the other players; i.e., even
if the other players behave in an arbitrary way. The weak
no-overbidding assumption, in contrast, guarantees to the
bidder a non-negative utility only if the other bidders be-
have “as expected”. However, when the other bidders behave
as expected, the bidder is guaranteed a non-negative utility
even if the auction changes, ex-post, from a second-price
auction to a first-price auction.

Let us give an example to illustrate the difference between
the two assumptions. Consider an instance of a simultaneous
second-price auction with two bidders and two items, say
{a,b}. The first bidder is unit-demand; with probability

1 his valuation is such that he has value 1 for any non-
empty subset of the items. The second bidder’s valuation
is additive, and distributed as follows: with probability 1/2
she values a for 0.9 and b for 1.1, and with the remaining
probability 1/2 she values a for 1.1 and b for 0.9. In this
instance, since the second bidder’s valuation is additive it is a
dominant strategy for her to bid her true value on each item.
The best response for the first bidder is then to bid between
0.9 and 1 on each item: this guarantees that he wins one of
the items and pays 0.9. This profile of strategies then forms
a BNE for this instance. This bidding strategy of player 1
does not satisfy the strong no-overbidding assumption: it
requires that he indicate a value of at least 1.8 for the set
{a, b}, which is larger than his true value 1. However, it
does satisfy the weak no-overbidding assumption given the
behavior of bidder 2, since bidder 1 expects to win only one
item (of value 1) with a bid of 0.9.

The above example illustrates a situation in which the best
response of a player is permitted by weak no-overbidding
but excluded by strong no-overbidding. There also exist
cases in which a best response is excluded by the weak no-
overbidding assumption as well. [Ex1l is one such case:
the players can improve their utilities, but only by apply-
ing strategies that violate weak no-overbidding. A direction
for future research would be to determine whether there is
a weaker restriction on strategies that never excludes best-
responses, yet still guarantees a constant price of anarchy
bound.

An additional subtle point is in order. The use of no-
overbidding assumptions in Vickrey auctions and GSP auc-
tions |20, [15] was justified by the fact that overbidding is
weakly dominated: any overbidding strategy can be con-
verted to a no-overbidding strategy that performs at least
as well, regardless of the behavior of the other agents. For
the case of simultaneous item auctions, our no-overbidding
assumption cannot be relaxed to the assumption that bid-
ders avoid such dominated strategies. In particular, there ex-
ists an instance of a second-price auction with a Bayes-Nash
equilibrium in which all bidders play undominated strate-
gies, and the Bayesian price of anarchy is {2(n). For exam-
ple, consider an instance with n unit-demand bidders and

n items, where every bidder ¢ = 1,...,n — 1 values each of
item ¢ and item n at 1 — e (for some € > 0), and bidder n
values all items 1,...,n — 1 at 1 (and has no value for item

n). One can easily verify that, for bidder n, to bid 1 on
all the first n — 1 items is an undominated strategy (while
it obviously breaks the strong no overbidding requirement).
Consider the strategy profile in which bidder n bids accord-
ing to this strategy, and each of bidders i =1,...,n—1 bids
0 on item ¢ and 1 — € on item n. This is a Bayes-Nash equi-
librium in undominated strategies in a second-price auction,
which gives social welfare 2 — ¢, compared to the optimal
social welfare, which is roughly n.
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