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Abstract. We study the model of resource allocation games with con-
flicting congestion effects introduced by Feldman and Tamir (2012). In
this model, an agent’s cost consists of its resource’s load (which increases
with congestion) and its share in the resource’s activation cost (which de-
creases with congestion). The current work studies the convergence rate
of best-response dynamics (BRD) in the case of homogeneous agents.
Even within this simple setting, interesting phenomena arise. We show
that, in contrast to standard congestion games with identical jobs and
resources, the convergence rate of BRD under conflicting congestion ef-
fects might be super-linear in the number of jobs. Nevertheless, a specific
form of BRD is proposed, which is guaranteed to converge in linear time.

1 Introduction

Resource allocation is considered to be a fundamental problem in algorithmic
game theory, and has naturally been the subject of intensive research within
this field. Most of the game-theoretic literature on resource allocation settings
emphasizes either the negative or the positive congestion effects on the individual
cost of an agent. The former approach assumes that the cost of a resource is some
non-decreasing function of its load. This literature includes job scheduling and
routing models [11, 20]. In these cases an individual user will attempt to avoid
sharing its resource with others as much as possible. The second approach, in
stark contrast, assumes that a resource’s cost is a decreasing function of its load.
This is the case, for example, in network design and cost sharing connection
games, in which each resource has some activation cost, which should be covered
by its users [2, 6]. In these cases, an individual user wishes to share its resource
with as many other users as possible in attempt to decrease its share in the cost.

In reality, most applications have cost functions that exhibit both negative
and positive congestion effects. Accordingly, more practical models that integrate
the two congestion effects into a unified cost function have been considered [1, 9,
15]. The present paper studies the resource allocation setting that is introduced
by Feldman and Tamir [9], in which the individual cost of an agent is composed
of two components, one that exhibits positive externalities, and the other that
exhibits negative externalities. More specifically, every resource has some acti-
vation cost, that is shared among all the agents using it. The individual cost of



an agent is the sum of its chosen resource’s load (reflecting the negative exter-
nalities) and its share in the resource’s activation cost (reflecting the positive
externalities). This model is applicable to a large set of applications, including
job scheduling, network routing, and network design settings.

The induced game, unlike its two “parent games,” is not a potential game3

when played by heterogeneous agents. Indeed, it has been shown in [9] that
best-response dynamics (BRD) do not necessarily converge in this setting. Yet,
in the special case where agents are identical, the induced game is a potential
game; consequently, any BRD is guaranteed to converge to a Nash equilibrium
[9]. The rate of the convergence, however, has been overlooked thus far. It is
argued that the convergence rate is crucial for the Nash equilibrium hypothesis
to hold; that is, it is more plausible that a Nash equilibrium will be reached if
natural dynamics lead to such an outcome within a small number of moves.

In this paper, we study the convergence rate of BRD in a job scheduling
game with conflicting congestion effects and identical agents.

1.1 Our results

It is fairly easy to see that for unit-size jobs, convergence to a Nash equilibrium is
linear in the number of jobs in both of the “parent” models; namely, if the the cost
function equals the resource’s load or if it equals the job’s share in the resource’s
activation cost. We find that if the cost function takes both components into
consideration, the convergence rate might be super-linear. We then introduce a
specific form of BRD, referred as max-cost, where the job that incurs the highest
cost is the one to perform its best move. The motivation behind this BRD is
clear: the job that incurs the highest cost has the strongest incentive to improve
its state. For max-cost-BRD, linear convergence rate is guaranteed. Due to space
constraints, we defer some proofs to the full version [10].

1.2 Related work

A lot of research has been conducted in the analysis of job-scheduling applica-
tions using a game-theoretic approach, where the jobs are owned by players who
choose the machine to run on. The questions that are commonly analyzed under
this approach are Nash equilibrium existence, the convergence of best-response
dynamics to a Nash equilibrium, and the inefficiency of Nash equilibria (quanti-
fied mainly by the price of anarchy [16, 18] and price of stability [2] measures).

It is well known that every congestion game is a potential game [19, 17],
and therefore admits a pure Nash equilibrium, and every best-response dynam-
ics converges to a pure Nash equilibrium. However, the convergence time may,
in general, be exponentially long [1, 8, 21]. This observation has led to a large
amount of work that identified special classes of congestion games, where best-
response dynamics converge to a Nash equilibrium in polynomial time or even
linear time. This agenda has been the focus of [7, 12] in a setting with negative
congestion effects, and was also studied in a setting of positive congestion effects
[2]. In particular, it has been shown that it takes at most n steps (where n is the

3 Potential games have been introduced by [17].



number of users) to converge to a Nash equilibrium if the network is composed
of parallel links [7], and this result has been later extended to extension-parallel
networks [12]. For resource selection games (i.e., where feasible strategies are
composed of singletons), it has been shown in [14] that better-response dynam-
ics converge within at most mn2 steps for general cost functions (where m and
n are the number of resources and users, respectively). In addition to standard
better- and best-response dynamics, a few variants have been explored. One
example is the study of the convergence rate of α-Nash dynamics to an approx-
imate Nash equilibrium [5] and to an approximate optimal solutions [3]. Also,
the robustness of best-response convergence to altruistic agents has been studied
in [13], where it has been shown that BRD may cycle as a result of altruism.

In this paper we study the congestion models with conflicting congestion
effects introduced in [9] and studied also in [4]. This model can also be seen as
a special case of the model introduced in [2], where the network is composed of
parallel links and the setup cost is determined through the cost-sharing rule.

2 Model and Preliminaries

We consider a job-scheduling setting with identical machines and identical (unit-
size) jobs. There is a set of machines M = {M1,M2, . . .} of unlimited size,4 each
associated with an activation cost, B. An instance of our problem is given as
a tuple (n,B), where n denotes the number of jobs. An assignment method
produces an assignment s = (s1, . . . , sn) of jobs into machines, where sj ∈ M
denotes the machine to which job j is assigned. We use the terms assignment,
schedule, and profile interchangeably. The load of a machine Mi in a schedule s,
denoted Li(s), is the number of jobs assigned to Mi in s.

Given a job-scheduling setting and an activation cost B, a job-scheduling
game is induced where the set of players is the set of jobs, and the action space
of each player is the set of machines. The cost function of job j in a given
schedule is the sum of two components: the load on j’s machine and j’s share in
the machine’s activation cost. It is assumed that the activation cost B is shared
equally between all the jobs that use a particular machine. That is, given a profile
s in which sj = Mi, the cost of job j is cj(s) = Li(s)+

B
Li(s)

. We denote the cost

of a job that is assigned to a machine with load x by c(x), where c(x) = x+ B
x .

It can be easily verified that the cost function exhibits the following structure.

Observation 1 The function c(x) = x+B/x for x > 0 attains its minimum at
x =

√
B, is decreasing for x ∈ (0,

√
B), and increasing for x >

√
B.

Practically, the input to the cost function is an integral value. If B is a perfect
square, then the integral load achieving the minimal cost is exactly

√
B. For

example, if B = 100, then being assigned to a machine with load 10 is optimal.
In general, however, the optimal integral load (i.e., the load that minimizes

the cost function) may be either
⌊√

B
⌋
or

⌈√
B
⌉
, and for some values of B it

may be both. For example, if B = 12 then both 3 and 4 are optimal loads, as

4 In any instance, though, the number of machines will clearly be less than n.



c(3) = c(4) = 12. We denote an optimal load by ℓ∗ = ℓ∗(B). Assuming a unique
integral optimal load, it is easy to verify that the cost function is decreasing for
x ∈ [1, ℓ∗] and increasing for x ≥ ℓ∗. For two optimal integral loads, ℓ∗ − 1 and
ℓ∗, the cost function is decreasing for x ∈ [1, ℓ∗ − 1] and increasing for x ≥ ℓ∗.

An assignment s ∈ S is a pure Nash equilibrium (NE) if no job j ∈ N can
benefit from unilaterally deviating from its machine to another machine (possibly
a new machine). In our game, this implies that for every job j assigned to Mi

and every i′ ̸= i, it holds that c(Li(s)) ≤ min(c(1), c(Li′(s) + 1)).

3 Convergence of Best-Response Dynamics

Best-Response Dynamics (BRD) is a local search method where in each step
some player plays its best-response, given the strategies of the others. In systems
where the agents always reach a Nash equilibrium after repeatedly performing
improvement steps, the notion of a pure Nash equilibrium is well justified. This
section explores the convergence rate of best-response dynamics into a pure NE.

In the general case, in which jobs have arbitrary lengths and the activation
cost of a machine is shared by the jobs proportionally to their length, BRD is
not guaranteed to converge to a NE [9]. In contrast, if the jobs are identical, then
the induced game is equivalent to a congestion game with n resources [19]. One
can easily verify that the function Φ(s) =

∑
i

(
B ·Hℓi +

1
2ℓ

2
i

)
, where ℓi denotes

the number of jobs on machine i, H0 = 0, and Hk = 1 + 1/2 + . . . + 1/k, is a
potential function for the game. Convergence to a NE is guaranteed in potential
games, but the convergence time might be exponential.

Here, we study the convergence time of BRD of unit-length jobs. We show
that the convergence in general might take Ω(n log n

B ) moves, and propose a spe-
cific BRD that ensures convergence within a linear number of moves. Specifically,

Max-cost BRD: At every time step, a job that incurs the highest cost
among those who can benefit from migration, is chosen to perform its
best-response move (where ties are broken arbitrarily).

The analysis of the convergence rate of BRD and max-cost BRD (MC-BRD
hereafter) is quite complicated and requires several preparations and terminol-
ogy. Recall that all jobs assigned to a machine with load x incur the same cost
c(x) = x+B/x. We denote by ℓ∗ a load achieving minimal cost. By Observation

1, ℓ∗ may be either
⌊√

B
⌋
or

⌈√
B
⌉
, and for some values of B it may be both.

For simplicity, throughout this section we assume a unique optimal load. All the
results hold also for the case of two optimal loads, where minor straightforward
modifications are required in the proofs.

We denote by ℓti the load of machine Mi at time t, i.e., before the migration
of iteration t takes place. A machine that has load at least (respectively, smaller
than) ℓ∗ is said to be a high (low) machine.

We observe that if at some iteration a job migrates to a low machine, then in
subsequent iterations that machine will attract more jobs up to load at least ℓ∗.
Indeed, since c(ℓ + 1) < c(ℓ) for ℓ < ℓ∗, a low best-response machine continues
to be a best response until it is filled up to load at least ℓ∗. Formally,



Observation 2 If at some iteration t there is a migration to a low machine Mi

such that ℓti = ℓ∗ − x for some x > 0, then the following x − 1 iterations will
involve migrations to Mi.

5

Properties of MC-BRD: By the design of the MC-BRD process and as a direct
corollary of Observation 1, every migration in the MC-BRD process is from either
the lowest or the highest machine into either the lowest-high or the highest-low
machine (see Figure 3).

l*

Low machines High machines

Fig. 1. MC-BRD process. Every migration is from one of the extreme machines into
one of the middle grey machines.

Since all jobs on a particular machine share the same cost, the MC-BRD
process can be described as if it acts on machines rather than on jobs. Specifically,
in every iteration t, one job migrates from machine Mi to machine Mk, k ̸= i,
where (i) c(ℓtk + 1) is minimal, (ii) c(ℓtk + 1) < c(ℓti), and (iii) c(ℓti) is maximal
among all the machines from which a beneficial migration exists. While the MC-
BRD process does not specify which job is migrating from Mi, for simplicity we
will assume a LIFO (last in first out) job selection rule. Specifically, the job that
entered Mi last is the one to migrate. If all jobs on Mi were assigned to it in the
initial configuration, then an arbitrary job is selected. Since the BRD-process
can be characterized by the load-vector of the machines in every time step, the
number of iterations is independent of the job-selection rule. Consequently, our
analysis of the convergence rate of MC-BRD applied with a LIFO job-selection
rule is valid for any MC-BRD process.

Note thatMi, the machine from which a job is selected to migrate in iteration
t, is not necessarily the machine for which c(ℓti) is maximal. For example, suppose
that B = 100 and there are two active machines, a low one with load 3, and a
high one with load 33. It is easy to verify that c(4) < c(33) < c(3) < c(34). In
this case, c(3) is the maximal cost, but jobs on the low machine have no beneficial
move (since c(34) > c(3)). On the other hand, jobs on the high machine wish to
migrate to the low one (since c(4) < c(33)). Thus, the high machine is the one
selected by MC-BRD to perform a migration, although the low machine is the
one incurring max-cost. Clearly, such a case can only occur if the machine that
incurs the max-cost is itself the best-response machines, as summarized in the
following observation.
5 It is possible that the system reaches a NE and the BRD process terminates before
x− 1 iterations are performed.



Observation 3 If at time t the machine Mi that incurs max-cost is not the
one from which a job is selected to migrate in MC-BRD, then c(ℓti + 1) is the
best-response, in particular, this implies that Mi is low.

We next observe that in MC-BRD, if at some iteration a job leaves some low
machine, then in the following iterations all the jobs assigned to that machine
leave it one by one until the machine empties out. To see this, note that c(ℓ−1) >
c(ℓ) for ℓ < ℓ∗; thus, if a low machine incurs the highest cost, it continues to incur
the highest cost after its load decreases. It remains to show that if a beneficial
move out of Mi exists when it has load ℓ < ℓ∗, then it is also beneficial to leave
Mi when it has load ℓ − 1. This is ensured by Observation 3. Specifically, if it
is not beneficial, then c(ℓ) is the cost of the best-response machine. But this is
impossible since c(ℓ) was the max-cost in the previous iteration.

Observation 4 If at some iteration t there is a migration from a low machine
Mi such that ℓti = ℓ∗ −x for some x > 0, then the following ℓ∗ −x− 1 iterations
will involve migrations from Mi.

We are now ready to state the bound on the convergence rate of MC-BRD. As
shown in the full version [10], the following bound is almost tight.
Theorem 1. For every job scheduling game with identical jobs, every MC-BRD
process converges to a NE within at most max{ 3n

2 − 3, n− 1} steps.

In contrast to MC-BRD, the convergence time of arbitrary BRD, might not
be linear in n.
Theorem 2. There exists a job scheduling game with identical jobs and a BRD
process such that the convergence time to a NE is Ω(n log n

B ).

While the convergence rate of general BRD is super-linear, the following
theorem establishes an upper bound of n2. Closing the gap remains open.

Theorem 3. For every job scheduling game with identical jobs, every BRD pro-
cess converges to a NE within at most n2 steps.

It is interesting to compare our results to those established for the standard
model that considers only the negative congestion effects (i.e., where a job’s cost
is simply the load of its chosen machine). It has been shown by [7] that if the
order of the jobs performing their best-response moves is determined according
to their lengths (i.e., longer job first), then best-response dynamics reaches a
pure Nash equilibrium within at most n improvement steps. In contrast, if the
jobs move in an arbitrary order, then convergence to a Nash equilibrium might
take an exponential number of steps. These results imply that for the special
case of equal-length jobs, convergence occurs within at most n steps. Our results
provide evidence that when there are conflicting congestion effects, it might take
longer to reach a Nash equilibrium. Nevertheless, for the special case of max-cost
BRD, the consideration of positive congestion effects (through activation costs)
does not lead to a longer convergence time.
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