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The primary goal of a prediction market is to elicit and aggregate information about some future event
of interest. How well this goal is achieved depends on the behavior of self-interested market participants,
which are crucially influenced by not only their private information but also their knowledge of others’
private information, in other words, the information structure of market participants. In this paper, we
model a prediction market using the now-classic logarithmic market scoring rule (LMSR) market maker as
an extensive-form Bayesian game and aim to understand and characterize the game-theoretic equilibria of
the market for different information structures. Prior work has shown that when participants’ information
is independent conditioned on the realized outcome of the event, the only type of equilibria in this setting
has every participant race to honestly reveal their private information as soon as possible, which is the most
desirable outcome for the market’s goal of information aggregation. This paper considers the remaining two
classes of information structures: participants’ information being unconditionally independent (the I game)
and participants’ information being both conditionally and unconditionally dependent (the D game). We
characterize the unique family of equilibria for the I game with finite number of participants and finite
stages. At any equilibrium in this family, if player ¢’s last stage of participation in the market is after player
7’s, player i only reveals his information after player j’s last stage of participation. This suggests that players
race to delay revealing their information, which is probably the least desirable outcome for the market’s
goal. We consider a special case of the D game and cast insights on possible equilibria if one exists.

Categories and Subject Descriptors: J.4 [Social and Behavioral Sciences|: Economics
General Terms: Economics, Theory

Additional Key Words and Phrases: Information aggregation; strategic analysis; prediction market; market
scoring rule

1. INTRODUCTION

A prediction market for forecasting a random event allows market participants to express
their probability assessments for possible outcomes of the event, typically by trading finan-
cial securities, and to be compensated if their assessment is more accurate than the previous
market assessment. Participants thus have an economic incentive to improve the accuracy
of the market assessment, and hence reveal their information. Moreover, by observing ac-
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tivities of other participants, a rational participant can infer some information from their
activities and combine such information with his private information when trading in the
market. Prediction markets rely on the economic incentives provided by the mechanism and
the belief updating of participants to achieve their primary goal of eliciting and aggregating
information about uncertain events of interest.

To this end, arguably we desire that participants reveal their private information truthfully
and immediately in prediction markets. However, how well the information elicitation and
aggregation goal is achieved depends on the strategic behavior of the self-interested market
participants, which in turn is influenced by their private information and their knowledge
of others’ private information, what we formally call information structure of participants.
In this paper, we model a prediction market as an extensive-form Bayesian game where
each participant has a private signal and there is a joint distribution of the participants’
signals and the event outcome, which is common knowledge to all participants. This joint
distribution captures what participants know about each other’s private information and
is the information structure of the market game. The goal of this work is to understand
and characterize game-theoretic equilibria of this market game given different information
structures, with the hope to understand how and how quickly information is aggregated in
the market.

Our prediction market uses Hanson’s logarithmic market scoring rule (LMSR) [Hanson
2007], which is the de facto automated market maker mechanism for prediction markets.
Because participants interact with the market maker, which is the mechanism per se and
behaves deterministically, we only need to model the participants side of the market. This
makes the generally challenging equilibrium analysis for extensive-form Bayesian games
tractable for some information structures in our setting.

Prior work [Chen et al. 2007b, 2010] has shown that when participants’ information is
independent conditioned on the true outcome of the event, the only type of equilibria in
this setting has every participant race to truthfully reveal all their information as soon as
possible, which is the most desirable outcome for the market’s goal. This paper considers
the remaining two classes of information structures: participants’ information being uncon-
ditionally independent (the I game) and participants’ information being both conditionally
and unconditionally dependent (the D game).

Our technical contributions include: (1) We characterize the unique family of equilibria
for the I game with finite number of participants and finite stages. At any equilibrium in
this family, if player ¢’s last stage of participation in the market is after player j’s, player ¢
only reveals his information after player j’s last stage of participation and on or before his
own last stage of participation. This suggests that participants race to delay revealing their
information, which is probably the least desirable outcome for the market’s goal and is in
stark contrast to the equilibria when participants’ information is conditionally independent.
(2) While it is generally challenging to characterize equilibria of extensive-form Bayesian
games, we provide a systematic method for finding possible equilibrium strategies in a
restricted 3-stage market game. With this method, we examine a restricted D game, where
the information structure does not appear to have any characteristics that we can leverage,
and are able to cast insights on possible equilibria if one exists. We also show that there
exist D games that admit truthful equilibria.

Organization. The rest of the paper is organized as follows. We discuss related work in
Section 1.1. Section 2 introduces our formal model of a prediction market game. We focus on
a 3-stage market game with general information structures in Section 3, where we show how
to more succinctly describe an equilibrium of the market game and provide a systematic
method of finding possible equilibrium strategies of the game. Results in this section are
building blocks for our subsequent analysis. In Section 4, we characterize all equilibria of the
I game. Section 5 provides an exploration on possible equilibria of the D game if one exists
and demonstrates the existence of a truthful equilibrium for some information structures in
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this class. We conclude in Section 6. Due to lack of space, the omitted proofs are provided
in an appendix in the version of this paper available on the authors’ websites.

1.1. Related Work

We model a prediction market as an extensive-form Bayesian game as in prior work [Chen
et al. 2007b; Dimitrov and Sami 2007; Chen et al. 2010; Ostrovsky 2012]. Chen et al. [2010]
considered both a finite-stage, finite-player and an infinite-stage, finite-player market game.
They showed that when players’ information is independent conditioned on the true state
of the world, for both the finite- and infinite-stage games, there is a unique type of Perfect
Bayesian Equilibria (PBE), where players reveal their information truthfully and as soon as
they can. When players’ information is (unconditionally) independent, they proved that the
truthful play is not an equilibrium for both the finite- and infinite-stage games. An earlier
work [Nikolova and Sami 2007] also presented an instance in which the truthful strategy
is not optimal in an extensive-form game based on this market. However, whether a PBE
exists when players have independent information was left as an open question. In this
paper, we characterize all PBE of the finite-stage game with independent information and
explore a special case of the setting when players’ information is neither conditionally nor
unconditionally independent.

Instead of characterizing equilibria, Ostrovsky [2012] studied whether information is fully
aggregated in the limit at a PBE of an infinite-stage, finite-player market game with risk-
neutral players. He characterized a condition under which the market price of a security
converges to its expected value conditioned on all information with probability 1 at any
PBE. Iyer et al. [2010] extended the setting to risk-averse players and characterized the
condition for full information aggregation in the limit at any PBE. However, whether a
PBE exists in such market games remains an open question.

The 3-stage version of our prediction market model resembles the ones studied by Dim-
itrov and Sami [2010] and Chen et al. [2011]: they both study 2-player games and the first
player has another chance of participation after the second player’s turn in the game. How-
ever, both Dimitrov and Sami [2010] and Chen et al. [2011] consider that the first player
has utility for some event outside of the current market and the price in the current market
influences the outcome of this event. In this paper, players only derive utilities from their
trades in the market.

Jian and Sami [2010] studied market scoring rule prediction markets in a laboratory
setting. In their experiment, participants may have conditionally or unconditionally inde-
pendent information and the trading sequence may or may not be structured (a trading
sequence is structured if it is pre-specified and is common knowledge to all participants).
They confirmed previous theoretical predictions of the strategic behavior by Chen et al.
[2010] when the trading sequence is structured. This study suggests that the behavior of
participants in a prediction market critically depends on whether they reason about the
other participants’ private information. Moreover, there are some experimental and empir-
ical studies on price manipulation in prediction markets using double auction mechanisms.
The results are mixed, some giving evidence for the success of price manipulation [Hansen
et al. 2004] and others showing the robustness of prediction markets to price manipula-
tion [Camerer 1998; Hanson et al. 2007; Rhode and Strumpf 2004, 2007]. In the literature
on financial markets, participants have been shown to manipulate market prices [Allen and
Gale 1992; Chakraborty and Yilmaz 2004; Kumar and Seppi 1992].

2. MODEL OF THE MARKET GAME

We model a prediction market using an automated market maker mechanism as a Bayesian
extensive-form game. Our setting is similar to that of these prior work [Chen et al. 2010,
2007b; Dimitrov and Sami 2007; Ostrovsky 2012].
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The prediction market generates forecasts for a binary event with an outcome space
Q ={Y,N}. Let w € Q denote the realized outcome of this event. Many real-world prediction
markets focus on such binary events, for example “whether the UK economy will go into
recession in 2013”7, “whether the movie Lincoln will win the Academy Award for Best
Picture”, and “whether a Democrat will win the US Presidential election in 2016”.

2.1. Logarithmic Market Scoring Rule

The prediction market operates using a logarithmic market scoring rule (LMSR) [Hanson
2007], which is arguably the de facto automated market maker mechanism for prediction
markets. In practice, an LMSR market often offers one contract for each outcome that pays
off $1 if the corresponding outcome happens. The market maker (i.e. the mechanism) dy-
namically adjusts the contracts’ prices as traders buy and/or sell the contracts. However,
it is well known that this implementation is equivalent to a more abstract model where,
instead of trading contracts and changing market prices, traders simply report probability
estimates of event outcomes to the mechanism. In fact, Hanson [2007] introduced LMSR
using this abstract model. In what follows, we will describe LMSR for our setting as a
mechanism for changing probability estimates. Abstracting away the contracts makes sub-
sequent analyses more tractable. We refer interested readers to Chen and Pennock [2007]
and Abernethy et al. [2013] for more information on the equivalence of the two models.

An LMSR prediction market starts with some initial probability estimate r° for event
outcome Y. (For a binary event, the probability of outcome N is implicitly 1 — %, and
such logic holds in the rest of the paper.) Players participate in the market in sequence
and each player can change the current probability estimate to a new one of his choice.
The market closes at a predefined time. After that, the realized outcome w is observed and
players receive their payoffs.

If a player reports estimate r* when the current market estimate is !, his payoff for this
report 7t is the scoring rule difference, s(w,r!) — s(w,7t™1), where s(w,r) is the logarithmic
scoring rule

s(w,r) = {blog(r), fw=Y

blog(l—r), ifw=N,

and b is a parameter. A player may participate in the market multiple times. If T; denotes
the set of stages where player ¢ participates, then player ¢’s total payoff is the sum of the
payoff for each of his reports, 3,1 (s(w,r") — s(w,r*")). We assume b = 1 without loss
of generality, since b scales each player’s payoff and does not have any effect on the players’
strategic behavior in our setting.

The logarithmic scoring rule is one of many strictly proper scoring rules. All strictly proper
scoring rules share a nice incentive property: ¢ = argmax,(¢s(Y,r) 4+ (1 — q) s(N,r)). If a
player is paid by a strictly proper scoring rule, then his expected score is uniquely maximized
by honestly reporting his probability estimate. As a result, for a single report r!, a risk-
neutral player can maximize his expected payoff in an LMSR market by honestly reporting
his probability estimate, because r‘~! is fixed for this player. However, if the player can
participate multiple times, to maximize his total payoff, he may misreport his estimate in
order to mislead other players and capitalize on their mistakes later on.

2.2. The Finite-Stage Market Game

The market game we study is an LMSR market with n stages and m < n players. The players
participates in one or more stages of the market game, following a pre-defined sequence,
which is common knowledge'.

11t is an interesting future direction to consider a model where players endogenously choose when to par-
ticipate. However, our equilibrium results for the D game with a pre-defined participation order imply that



Proceedings Article

Each player ¢ has private information about the event given by a private signal s; € S;
with signal space S; and |S;| = n;. Each signal is only observed by the intended player.
The prior distribution of the event outcomes and the players’ private signals, denoted by
P:QxS8 x- - xS, = [0,1], is common knowledge. Before the market starts, nature
draws the realized event outcome and the private signals of the players according to P.

The players are risk-neutral Bayesian agents. That is, the belief of the player participating
in stage t can depend on the reported estimates in the first ¢t — 1 stages as well as on his
own private signal.

The 3-Stage Market Game. The simplest version of the market game that admits non-
trivial strategic play is a 2-player 3-stage game. The two players are Alice and Bob, and the
sequence of participation is Alice, Bob, and then Alice. We denote the signal spaces of Alice
and Bobas Sa ={a; : 0<i<ng—1ns€Z}and Sp={b; : 0<j<np—1,nge€Zt}
respectively. The analysis of this 3-stage market game will serve as building blocks for our
analysis of the finite-stage market game.

2.3. Information Structure

The prior distribution P is a critical component of each instance of the market game. It
encodes the relationship between the players’ private signals and the event outcome, and it
enables players with private signals to reason about other players’ signals and the realized
event outcome. We refer to P alternatively as the “information structure” of the market
game. The primary goal of this paper is to characterize the strategic play in a market game
in terms of its information structure.

2.3.1. Three Classes of Information Structures. There are three classes of information struc-
tures: conditionally independent (CI game), unconditionally independent (I game), and
neither conditionally independent nor unconditionally independent (D game). These three
classes are mutually exclusive and exhaustive. The first two types impose natural inde-
pendence assumptions on the prior distribution P, and they were first separately studied
by Chen et al. [2007a] and Dimitrov and Sami [2007], and later in their joint work [Chen
et al. 2010].

In a CI game, players’ signals are independent conditioned on the realized event outcome.
Prior work [Chen et al. 2007b, 2010] showed that there is a unique type of perfect Bayesian
equilibria (PBE) for the CI game where players honestly report their estimates as early as
possible. Thus, in this work, we focus on analyzing the I and D games.

For I games, players’ signals are unconditionally independent from one another, but they
are not independent of and may stochastically influence the event outcome. Formally, the
prior distribution P for an I game must satisfy: Pr(s;)Pr(s;) = Pr(s;, s;),Vs; € S;,s; € S
for any two players ¢ and j. Dimitrov and Sami [2007] and Chen et al. [2010] showed that
the I game does not have a truthful PBE where every player honestly reports his estimate
as early as he can, but they left the existence of PBE as an open question.

To illustrate the I information structure, consider a stylized setting where each player
independently observes a coin flip. The event to be predicted is some aggregate information
about all of the independent coin flips, for example, whether more than 1/3 of the coin flips
are heads. In this example, the players’ signals are independent because the coin flips are
independent events. A more realistic example involves a political election prediction market.
Each voter independently obtains some private information about the election and decides
on a vote, which is arguably independent from each other. The event we are interested in
is the election outcome, which is determined by all of the votes. Finally, for an abstract

players will delay revealing their information as much as possible in the D game even with endogenously
chosen participation order. We discuss these implications in section 4 after our equilibrium results.
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example, each player’s private information can be thought of as a single piece of a jigsaw
puzzle, and the event being forecasted is related to the completed picture.

Even though the CI and I information structures capture events in some natural settings,
they impose strong independence assumptions on the relationship between the players’
private signals. Ideally, we would like to understand the players’ strategic behavior in the
market game without restricting to a particular information structure. For this reason,
we study the D information structure consisting of signals that are neither conditionally
independent nor unconditionally independent. In other words, the signals in a D game are
both conditionally dependent and unconditionally dependent. Formally, a prior distribution
P in a D game satisfies: Is; € S;,s; € Sj, s.t. Pr(s;)Pr(s;) # Pr(s;, s;) for two players i
and j and 3s; € 55,85 € Sj,w € Q, s.t. Pr(sy, sj/|w) # Pr(sy|w)Pr(s;|w) for two players
7 and j’. It would be interesting to explore whether the D information structure could be
further divided up into smaller classes with intuitive properties.

2.3.2. The Distinguishability Condition. To avoid degenerate cases in our analysis, we assume
that the prior distribution P satisfies the following distinguishability condition, consisting
of two parts.

Definition 2.1. The prior distribution P satisfies the distinguishability condition if for
all 7 it satisfies inequality (1)

Pr(Yls—_i,si) # Pr(Y|s_;, s}),Vs_; € S_;,Vs;, s; € S; U{o},s: # s (1)

where s; = ¢ means player ¢’s private signal is not observed, and S_; = {S; U{¢}} x --- x
{Sic1 U{o}t} x {Six1 U{d}} x - x {Sn U {¢}}, and inequality (2)

Y P Pr(Ylsis) # Y by, Pr(Ylsi,s) (2)

s;€S; 5;€85;

where s # s’ are any two different vectors of realized signals of any subset of players
excluding 4, and the vector (ps,)s,cs, is any probability distribution over S;.

Inequality (1) generalizes the general informativeness condition by Chen et al. [2010].
The inequality is satisfied if different signal realizations of player i always lead to different
posterior probabilities of w = Y, for any vector of realized signals for any subset of the other
players (including unobserved signals). In other words, a player’s signal always contains some
information. Inequality (2) is similar to the distinguishability assumption used by Dimitrov
and Sami [2010]. It requires that for any two realizations of signals of a subset of players,
they lead to different estimates for outcome Y given any belief about player i’s signal. This
condition allows other players to infer the signals of the subset of players whenever they
reveal their information truthfully.

While the distinguishability condition may be a nontrivial technical restriction, it al-
lows us to focus on interesting strategic decisions in the game play without encountering
degenerated cases.

2.4. Solution Concept

We use the perfect Bayesian equilibrium (PBE), which is informally a subgame perfect
refinement of the Bayesian Nash equilibrium, as our solution concept. A PBE requires
specifying each player’s strategy given a realized signal at each stage of the game as well
as the player’s belief about the signals of players participating in all of the previous stages.
The strategies and the beliefs of the players form a PBE of the market game if and only if,
for each player, his strategy at every stage is optimal given the beliefs, and the beliefs are
derived from the strategies using Bayes’ rule whenever possible.
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2.5. Terminologies for Players’ Strategies

By properties of the logarithmic scoring rule, at a player’s last chance to participate in
the market, the player has the strictly dominant strategy of truthfully revealing his private
information. So at any PBE, all private information is fully incorporated into the market
estimate at the end of the market game. Thus, the focus of our analysis is on how quickly
information gets incorporated into the market estimate throughout the game. In the fol-
lowing paragraphs, we distinguish between truthful and non-truthful strategies for a player
in terms of when the player’s private information is first revealed in the market game.

We use the term truthful strategy (also called truthful betting) to refer to the strategy
where at a player’s first chance to participate in the market, the player changes the market
estimate to his posterior probability of Y given his signal and his belief about other players’
signals. The truthful strategy fully reveals a player’s private information as early as possible.

In contrast to the truthful strategy, a player may choose to misreport his information
and manipulate the market estimate. For instance, a player can play a mixed strategy and
reveal a noisy version of his signal to the subsequent players in the game. Alternatively, a
player may try to withhold his private information from the other players by not chang-
ing the market estimate at all. Such non-truthful strategies hurt information aggregation
in the market by causing the market estimate to contain inaccurate information at least
temporarily.

3. THE 3-STAGE MARKET GAME WITH ANY INFORMATION STRUCTURE

Before diving into the PBE analysis of the finite-stage market game, we describe some pre-
liminary analysis of the 3-stage market game with any information structure. In section 3.1,
we justify that, in order to describe a PBE of the 3-stage market game, it suffices to describe
Alice’s strategy in the first stage and Bob’s belief in the second stage. This allows us to
greatly simplify our exposition in later analyses. Next, we prove a theorem in section 3.2,
which allows us to systematic identify candidate PBE strategies for the players. This theo-
rem gives us a useful method to make educated guesses about the possible PBE strategies
in order to tackle the PBE existence question and to construct a PBE if one exists for the
3-stage market game with a given prior distribution. Finally, in section 3.3, we describe
a consistency condition, which must be satisfied by a player’s strategy in any PBE of the
3-stage game.

3.1. Describing PBE of the 3-Stage Market Game

We present a preliminary analysis of the 3-stage market game and introduce some notations
for our later analyses.

In the 3-stage game, Alice and Bob observe their realized signals a; and b; respectively
at the beginning of the market. In the first stage, Alice changes the market estimate for
outcome Y from the initial market estimate 7° to r4 of her choice. In the second stage, Bob
observes Alice’s first-stage report r4 and changes the market estimate to rg. In the third
stage, upon observing Bob’s second-stage report rg, Alice changes the market estimate from
rp to v/, and then the market closes.

Alice’s first-stage strategy is a mapping o : S4 — A([0,1]) where A([0,1]) is the set
of probability distributions over [0, 1]. For clarity of analysis and presentation, we assume
that the support of Alice’s first-stage strategy is finite. The results in this paper however
hold even if the support of Alice’s first-stage strategy is infinite. Let o,,(r4) denote the
probability that Alice reports r4 in the first stage after observing the signal a; according
to the strategy o.

In the second stage, when Bob observes Alice’s first-stage report 74, he forms a belief
about Alice’s signals. Bob’s belief specifies the likelihood that Alice received signal a; when
Alice reported r4 and Bob received signal b; for any 7 and j. Let p,, s, (a;) denote the
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probability that Bob’s belief assigns for Alice’s a; signal when Alice reported r4 and Bob
received signal bj. pu,, 5, (a;) is defined for any r4 € [0,1]. At any PBE, we need to describe
Bob’s belief both on and off the equilibrium path. When 74 is in the support of Alice’s
first-stage PBE strategy, the game is on the equilibrium path and p,., 3, (a;) is derived from
Alice’s strategy using Bayes’ rule according to the PBE definition. However, when 7 4 is not
in the support of Alice’s equilibrium strategy, that is, the game is off the equilibrium path,
fra b, (a;) is still important for a PBE because the belief needs to ensure that Alice does
not find it profitable to deviate from her PBE strategy. Off the equilibrium path, there are
often more than one set of Bob’s beliefs that can satisfy this requirement.

Bob only participates once, in the second stage of this game. By properties of strictly
proper scoring rules, Bob has a strictly dominant strategy to report his posterior probability
estimate of the event truthfully, given his belief. Thus, at any PBE, Bob must be using a
pure strategy, which is fully determined by his belief, his signal, and Alice’s first-stage
report. Let a3, (r4) denote Bob’s optimal report given his signal b; and Alice’s first-stage
report 74. At any PBE, Bob’s optimal report x;,(r4) can be determined from his belief as
follows:

wp,(ra) = Zﬂm,bj (ai)Pr(Ylai,bj), Vb;,0<j<npg—1,rasec][0,1].

In the third stage, Alice observes Bob’s report and may change the market estimate again.
At any PBE, knowing Bob’s PBE strategy, Alice’s belief on the equilibrium path can be
derived from Bob’s strategy using Bayes’ rule. This is Alice’s last stage of participation.
Thus, by properties of strictly proper scoring rules, Alice has a strictly dominant strategy
to report her probability estimate truthfully. Similar to Bob’s strategy, Alice’s third-stage
strategy must be a pure strategy and it is fully determined by her belief, her signal, and
Bob’s report. We note that Alice’s belief off the equilibrium path in the third stage is not
important, because Bob has a dominant strategy in the second stage and will not deviate
from it no matter what belief Alice has.

The above analysis shows that, to describe a PBE of the 3-stage market game, it suffices
to specify Alice’s strategy in the first stage and Bob’s belief in the second stage. The rest
of the strategic play is completely determined given them.

Moreover, for clarity in our analysis, we specify Bob’s strategy rather than Bob’s be-
lief at a PBE. We can easily derive a belief of Bob such that Bob’s strategy is opti-
mal given it, shown as follows. First, Bob’s strategy is valid if and only if zy, (ra) €
[min; {Pr(Yla;, b;) }, max;{Pr(Y |a;,b;)}] for any b;, because for any possible belief for Bob,
his posterior probability should always fall into this interval. When r 4 is in the support of
Alice’s PBE strategy, Bob’s belief is derived from Alice’s PBE strategy using Bayes’ rule.
When 74 is not in the support of Alice’s PBE strategy, the PBE definition requires that
Bob’s belief be derived from a possible strategy for Alice using Bayes’ rule. For such an
74 and for any b;, we know that min,, Pr(Y|a;,b;) < xp,(ra) < max,, Pr(Y|a;,b;) holds
and one of the two inequalities must be strict due to the distinguishability assumption.
For a given b, let a; and a;» be Alice’s signal in min,, Pr(Ya;, b;) and max,, Pr(Y|a;, b;)
respectively. Then consider a possible strategy satisfying o4, (ra) = p, 0a,, (ra) = 1—p and

Pr(a;n|b;)(@—Pr(Y|am,b;))
Pr(a;[b;)(Pr(Ya,b;)—2)+Pr(a;n[b;)(@—Pr(Yla;m,b;))
This strategy for Alice is valid, and thus we can derive Bob’s off the equilibrium path belief
for r4 from this strategy using Bayes’ rule.

0a;(ra) = 0 for any other a;, where p =

3.2. Systematically Identify Candidate PBE Strategies

To tackle the PBE existence problem and construct a PBE if one exists, it is essential that we
make an educated guess of the players’ possible PBE strategies. Theorem 3.1 below allows
us to pinpoint a possible PBE strategy for Alice in the 3-stage game with any information
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structure, by comparing Alice’s ex-ante expected total payoff (of both the first and the third
stages) when using different first-stage strategies assuming that Bob knows and conditions
on Alice’s strategy.

For Theorem 3.1 below, for any of Alice’s strategy o1, let ma(o1,01) be Alice’s ex-ante
expected payoff when Alice uses strategy o in the first stage, Bob knows Alice’s first-stage
strategy o7 and conditions his belief on this strategy. This means that, for any r in the
support of Alice’s first-stage strategy o1, Bob’s belief is derived from strategy oy by using
Bayes’ rule. For any other r, there is no restriction on Bob’s belief as long as it is valid.

In the proof of Theorem 3.1, we make an important distinction between a player’s ex-ante
and ex-interim expected payoff. A player’s ex-ante expected payoff is his expected payoff
without observing his signal, whereas his ex-interim expected payoff is his expected payoff
given his signal.

THEOREM 3.1. For the 3-stage market game, if two different first-stage strategies oy
and oy for Alice satisfy inequality (3), then strateqy oo cannot be part of any PBE of this
game.

wa(o1,01) > ma(o2,02) (3)

PRrROOF. We prove this by contradiction. Suppose that two different first-stage strategies
o1 and oy for Alice satisfy inequality (3), and Alice’s first-stage strategy oo is part of a
PBE of the 3-stage market game. Let up denote Bob’s belief at this PBE. up specifies a
distribution over Alice’s signals for every possible first-stage report r € [0,1] and any of
Bob’s signals b;. Alice’s ex-ante expected payoff at this PBE is m4(02, 02). This proof holds
for any valid belief for Bob at this PBE.

Suppose that Alice deviates from this PBE to play the strategy o in the first stage and
Bob has the same belief ;5 as before. Let m4(01,02) denote Alice’s total ex-ante expected
payoff in the game at this deviation. The expression 74 (o1, 02) is well defined since Alice
knows Bob’s belief and strategy at the original PBE. Similarly, let 75(c1,02) denote Bob’s
ex-ante expected payoff in the second stage at this deviation.

At any PBE of this game, in the third stage, Alice can always infer Bob’s signal given Bob’s
report by the distinguishability condition. So Alice always changes the market estimate to
Pr(Y|a;,b;) in the third stage given Alice’s signal a; and Bob’s signal b;. Thus, the total
expected payoff that Alice and Bob can get at any PBE of the 3-stage market game is

Pr(Yla;, b; Pr(Nla;, b;
TAB = Z Pr(Y, ai,bj)Ing JrPr(N’ai’bj)IOgr(1—|a7“0])}
ai,b]‘

which is fixed given the initial probability 7 and the prior distribution P. Note that the
above result holds not only at a PBE but whenever Bob reveals all of his information and
Alice knowing his strategy maximizes her expected payoff. Therefore, by definition of 745,
we must have
TaB = mA(01,02) + Tp(01,02), Vo1, 00 (4)
Inequality (3) is satisfied by assumption, so we have

wa(o1,01) > wa(o2,09)
=7ap — Ta(01,01) < Tap — Ta(02,09) (5)
=npg(o1,01) < mp(02,02) (6)
where equation (5) is due to equation (4).

For a fixed first-stage strategy of Alice and for any belief of Bob, Bob’s ex-ante expected
payoff is maximized when his belief is derived from Alice’s first-stage strategy using Bayes’
rule. This can be proven as follows. When Bob’s belief is derived from Alice’s first-stage
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strategy by using Bayes’ rule, then in the second stage, Bob changes the market estimate to
xp,(ra) when Alice reports 74 in the first stage and Bob receives the b; signal. Recall that
by definition, zy,(ra) = Pr(Y|ra,b;) = >_, Pr(ai|lra,b;)Pr(Y]a;,b;). In this case, Bob’s
expected payoff in the second stage is

Ty (TA)

Z Pr(bj,ra) {mbj (r4)log JT + (1 =y, (ra))log W} '

(7)

bj,ra

When Bob has another belief, let & denote Bob’s optimal report with this belief. Then Bob’s
expected payoff in the second stage is

> Pr(bj,ra) {xb]. (r4)log LA (1 —ap,(ra))log 11 — 4 } . (8)

TA —TA

bj,ra

The difference in Bob’s ex-ante expected payoff for the two different beliefs for Bob is (7) -

(8):

Z Pr(bj,ra) {xbj (ra) log% + (1 = xp,(ra))log

bj,ra

1—ap,(ra)
1—z
which is nonnegative by properties of the relative entropy.
Therefore, for any two first-stage strategies o1 and oo for Alice, we have shown that

75(01,02) < wp(01,01) 9)
Combining inequalities (6) and (9), we have

mg(o1,02) < mp(02,02)
=7maB —Ta(01,02) < Tap — TA(02,02)
=7a(01,02) > ma(02,02). (10)

According to inequality (10), if Alice uses the first-stage strategy oo at a PBE, then she
can improve her ex-ante expected payoff by deviating to using the strategy oq. Then there
must exist at least one realized signal for Alice, say a;, such that Alice’s ex-interim expected
payoff after receiving the a; signal is higher when she deviates to the strategy o; than
when she follows the strategy o2. (Otherwise, if Alice’s ex-interim expected payoff for every
realized signal is lower when she deviates to using the strategy o; than when she follows the
strategy os, then her ex-ante expected payoff must also be lower when she deviates to using
the strategy o1 than when she follows the strategy oo, contradicting inequality (10).) As
a result, when Alice receives the a; signal, she can improve her ex-interim expected payoff
by deviating to using the strategy o, and this contradicts with our assumption that Alice’s
first-stage strategy o is part of a PBE of the 3-stage market game. O

According to Theorem 3.1, to find Alice’s possible PBE strategies for the 3-stage market
game, it suffices to compare Alice’s ex-ante expected payoffs for all possible first-stage
strategies assuming Bob knows Alice’s strategy, and only the strategies maximizing Alice’s
ex-ante expected payoff can possible be Alice’s PBE strategy. This gives us a systematic
way to identify possible PBE strategies without worrying about constructing Bob’s off-
equilibrium path beliefs.

3.3. The Consistency Condition

Our analyses of the 3-stage game frequently make use of a consistency condition described
in Theorem 2 by Chen et al. [2010]. For completeness, we re-state this condition as a lemma
below. The consistency condition requires that, at a PBE of the 3-stage game, for any 74
in the support of Alice’s first-stage strategy o, the posterior probability of Y given o and
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r4 should be equal to r4. Intuitively, this requires that, Alice’s first-stage strategy must
not leave free payoff for Bob to claim in the second stage. If Alice’s first-stage strategy does
not satisfy the consistency condition, then Bob can get positive expected payoff simply by
changing the market estimate to a value satisfying the consistency condition, and Bob can
claim this positive expected payoff without having any private information about the event
being predicted. This is contrary to Alice’s goal of minimizing Bob’s expected payoff since
the 3-stage market game is a constant-sum game in expectation at any PBE.

LEMMA 3.2 (CONSISTENCY CONDITION FOR 3-STAGE MARKET GAME). At a PBE of
the 3-stage market game, if o is Alice’s first-stage strategy and ra is in the support of
strategy o (i.e. 3a;,04,(ra) > 0), then o must satisfy the following consistency condition:

Pr(Ylo,ra) =ra

4. PBE OF THE FINITE-STAGE | GAME

We characterize all PBE of the finite-stage I game in this section. Our analysis begins
with the 3-stage I game. Alice participates twice in the game, so she may have incentives to
manipulate the market estimate in the first stage. We first identify a unique candidate PBE
strategy for Alice by showing that if a PBE exists for the 3-stage I game, then Alice’s first-
stage strategy must be changing the market estimate to the prior probability of the event.
This is equivalent to Alice delaying her participation until the third stage if the market
starts with the prior probability of the event. We refer to this strategy as Alice’s delaying
strategy for the 3-stage I game. Alice’s delaying strategy reveals absolutely no information
to Bob about her signal. Next, we explicitly construct a PBE of the 3-stage I game in which
Alice uses the delaying strategy in the first stage. These two results together imply that, the
delaying PBE is unique for this game, in the sense that Alice must use the delaying strategy
in every PBE of this game, even though Bob’s belief can be different off the equilibrium
path.

Given the delaying PBE of the 3-stage I game, we construct a family of PBE for the
finite-stage I game using backward induction. Suppose that the players in the finite-stage
I game are ordered by their last stages of participation. Then at every PBE of the finite-
stage I game, each player ¢ withholds his private information until after player i — 1 finishes
participating in the game, and then player ¢ may truthfully reveal his private information in
any of the subsequent stages in which he participates. In particular, there exists a particular
PBE in this family where each player does not reveal any private information until his last
stage of participation, and this is arguably the worst PBE of this game for the goal of
information aggregation.

4.1. Delaying PBE of 3-stage | Game

We argue below that the delaying strategy is the only candidate PBE strategy for Alice in
the 3-stage I game. Theorem 4.1 essentially proves that the delaying PBE of the 3-stage I
game is unique with respect to Alice’s strategy, if a PBE exists for this game. Part of the
proof of Theorem 4.1 uses the argument in the proof of Theorem 2 in Chen et al. [2010].

THEOREM 4.1. If the 3-stage I game has a PBE, then Alice’s strategy at the PBE must
be the delaying strategy, i.e. changing the market estimate to the prior probability of the
event in the first stage.

PRrOOF SKETCH. We first argue that if a PBE exists for the 3-stage I game, then Alice’s
first-stage strategy at this PBE must be a deterministic strategy. We show this by contra-
diction by assuming that there are at least two points in the support of Alice’s first-stage
PBE strategy. Then we construct another first-stage strategy achieving a better expected
payoff for Alice, which means that the original strategy cannot be a PBE strategy by Theo-
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rem 3.1. By the consistency condition, if Alice’s first-stage strategy is deterministic, it must
be the strategy of changing the market estimate to the prior probability of the event. DO

While the delaying strategy is the only possible PBE strategy for the 3-stage I game,
we still don’t know whether a PBE exists. In order for a PBE to exist, there must exist a
belief of Bob to ensure that Alice does not find it profitable to deviate from the delaying
strategy to any other strategy. Identifying such a belief for Bob can be challenging because
essentially we need to specify what Bob will do upon observing every possible report of
Alice in [0,1]. In Theorem 4.2, we give an explicit construction of a PBE of the 3-stage
I game in which Alice uses the delaying strategy in the first stage. At this PBE, Alice’s
first-stage strategy reveals no information to Bob about her private signal, and Bob’s belief
makes this delaying strategy the optimal choice for Alice.

THEOREM 4.2. There exists a PBE of the 3-stage I game where Alice’s first-stage strat-
eqy 1s
0a;(Pr(Y)) =1, Yi=0,...,n4—1
and Bob’s second-stage strategy is

filed™), ra€[0,05m)
zp,(ra) = 4 fi(ra), T4 € [af" o], Vj=0,...,np—1
[i(af™), ra € (o™, 1]

where

Filr) = Pr(Y|bj)Pr(N)r4
AT PHY ) Pr(Nb;) + (Pr(Y |b;) — Pr(Y))ra
g = min{Pr(Y a5, b)), 57 = max{ Pr(Y la,.b,)}

min __ pg—1/ pmin max __ p—1/pmax
a; _fj (5J )aaj = fj (ﬁj )

PROOF SKETCH. We describe the first part of the proof below showing that Bob’s strat-
egy is a valid PBE strategy.

First, Bob’s belief on the equilibrium path is derived from Alice’s first-stage strategy us-
ing Bayes’ rule since x, (Pr(Y')) = Pr(Y'[b;). Moreover, for Bob’s strategy to be a valid PBE
strategy, it must satisfy wp,(r4) € [ming {Pr(Y]a;, bj)}, maxq {Pr(Ylas, b5)}],Vbj,ra €
[0,1]. To show this, note that by definition, ﬁ;nin < B, oz;“in < o™ and fj(ra) is
monotonically increasing in r4 € [0, 1] since

dfy(ra) _ Pr(Y)(1 = Pr(Y))Pr(Y]b;)(1 — Pr(Y1[b;))
dra {Pr(Y)Pr(N|b;) + (Pr(Y]b;) — Pr(Y))ra}’
Hence the domain of x,(r4) is well-defined. In addition, we have

B = fi(af™) <y, (ra) < fi(af™) = B, Vra € [0,1].

Thus, Bob’s strategy is valid. The rest of the proof then proves that Alice’s delaying strategy
is a best response to Bob’s strategy. O

Based on Theorems 4.1 and 4.2 above, we have established both the existence and the
uniqueness (with respect to Alice’s first-stage strategy) of the PBE for the 3-stage I game.

4.2. A Family of PBE for the Finite-Stage | Game

We are ready to characterize the PBE of the finite-stage I game. By using backward induc-
tion and the delaying PBE of the 3-stage I game, we characterize a family of PBE of the
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finite-stage I game in Theorem 4.5. At any PBE in this family, players delay revealing their
private information as much as possible.

We first generalize the consistency condition for the 3-stage game to the finite-stage
game in Lemma 4.3. This consistency condition dictates that, for any stage k, the posterior
probability of w =Y given the participants’ strategies and reports in the first k stages must
be equal to the report of the participant in stage k£ at any PBE of this game.

LEMMA 4.3 (CONSISTENCY CONDITION FOR FINITE-STAGE MARKET GAME). At a
PBE of the finite-stage I game, suppose that o® and v* are the strategy and the report
for the participant of stage k respectively, then for every k, the participants’ strategies and
reports must satisfy equation (11).

Pr(Y|rt, ... r* ot of) =0k (11)

In Lemma 4.4 below, we analyze the tail of the finite-stage I game starting from the
second-to-last stage of participation for the last player to the last stage of the game. The
theorem shows that, in terms of strategic play, this portion of the finite-stage I game es-
sentially reduces to a 3-stage I game. Thus, at any PBE, the last player chooses to not
participate in the game in his second-to-last stage of participation. This key argument will
be used repeatedly in the proof of the PBE of the finite-stage I game.

For Lemma 4.4 and Theorem 4.5, let the m players of the finite-stage I game be ordered
by their last stages of participation. That is, for any 1 < i < m, let ¢; denote player i’s last
stage of participation, such that ¢; < t; for any 1 <7 < j < m. Without loss of generality,
we assume that player m has more than one stages of participations.

LEMMA 4.4. Let stage k be the second to last stage of participation for player m (k <
tm). At any PBE of the finite-stage I game, player m does not change the market estimate
i stage k.

Finally, in Theorem 4.5, we prove the existence of a family of PBE of the finite-stage I
game.

THEOREM 4.5. At any PBE of the finite-stage I game, the players use the following
strategies:

— From stage 1 to stage t1 — 1, player 1 uses any strateqy that satisfies the consistency
condition. In stage t1, player 1 truthfully reveals his signal.

—For any 2 < i < m — 1, from stage 1 to stage t;_1 — 1, player i does not participate in
the game. From stage t;_1 + 1 to stage t; — 1, player i uses any strategy that satisfies the
consistency condition. In stage t;, player i truthfully reveals his signal.

— From stage 1 to stage t,, — 1, player m does not participate in the game. In stage t,,,
player m truthfully reveals his signal.

PROOF SKETCH. We describe the argument for player m and m — 1 here.

By properties of LMSR, player m truthfully reveals his signal in stage t,,, which is the
last stage of the game. If stage t* denotes the second to last stage of participation for player
m, then the game from stage t* to t,, can be reduced to a 3-stage I game (where player
m is Alice and other players participating between ¢* and t,, are a composite Bob). By
Lemma 4.4, player m does not participate in stage t*. Now remove this stage and let t* be
the new second to last stage of participation for player m, and the game from stage t* to
t, again reduces to a 3-stage I game. Applying Lemma 4.4 again, we know that player m
does not participate in stage t* either. Inferring recursively, player m does not participate
in any stage from 1 to ¢, — 1.

For player m — 1, he truthfully reveals his signal in stage t,,—1 by properties of LMSR.
From stage t,,,_> + 1 to t,,_1 — 1, player m — 1 is the only participant because players 1
to m — 2 already finished participating and player m does not participate by our earlier
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argument. Thus, player m — 1 uses any strategy satisfying the consistency condition from
stage t;y,—2 + 1 to t,,—1 — 1. We combine the stages from ¢,,—2+1 to t,,—1 — 1 (denoted t**)
as the new last stage for player m — 1. Let ¢* be the new second to last stage of participation
for player m — 1, and note that t* < ¢,,_2. Again, the game from stage t* to t** reduces
to a 3-stage I game (where player m — 1 is Alice). By Lemma 4.4, player m — 1 does not
participate in stage t*. Inferring recursively, player m — 1 does not participate in any stage
from1tot,_o—1. O

To understand Theorem 4.5, consider dividing the finite-stage I game into m segments
with player ¢ being the owner of the segment from stage t;_; + 1 to stage t;. At any PBE,
each player does not participate in any stage before his segment, uses a strategy satisfying
the consistency condition within his segment, and truthfully reveals his private signal at
the last stage of his segment.

Figure 1 illustrates a particular PBE of a finite-stage I game. The letters A, B, and C
denote the three players and their sequence of participation. A black letter means that the
player truthfully reveals his signal in that stage. If the letter is gray, then the player uses
a strategy satisfying the consistency condition. Note that the strategy of not changing the
market estimate satisfies the consistency condition. A white letter means that the player is
scheduled to participate but does not change the market estimate in that stage. The thick
vertical bars mark the boundaries of the players’ segments in the game.

AlB|CIAlIEBE|[C|B]C

Fig. 1. A PBE of a Finite-Stage I Game with 3 players

The multiple PBE of the finite-stage I game differ by how early each player chooses to
truthfully reveal his signal within his segment of the game. For the purpose of information
aggregation, the best case is when every player chooses to truthfully reveal his signal in the
first stage of his own segment. However, there exists a PBE where every player waits until
the last stage of his segment to truthfully reveal his information, and this is arguably the
worst PBE for the goal of information aggregation.

Although our model assumes a pre-specified participation order, our results still provide
useful insights for the I game if the players endogenously choose when to participate in the
game. Consider the I game with n stages and m < n players where each player endogenously
chooses in which stage to participate in the game. Our results for the I game suggest
that, at any PBE all players will choose to delay their participation and no information is
reveal in the first n — m stages. The exact characterization of PBE would critically depend
on how multiple trades submitted in the same stage are executed. This dependency is
generally undesirable. Our assumption of pre-specified participation order circumvents this
dependency and we believe our results still provide useful insights for players’ behavior in
this setting.

When comparing the PBE of the finite-stage I game with the truthful PBE of the finite-
stage CI game [Chen et al. 2010], it is interesting to note how two different information
structures can induce equilibrium behavior at the opposite ends of the spectrum: The players
in the CI game race to reveal their private information as early as possible, whereas the
players in the I game delay as much as possible to reveal their private information.

This difference is spiritually consistent with the concepts of complementarity and sub-
stitution of private signals defined by Chen et al. [2010]. Consider the ex ante expected
payoffs of players. In the I games, players’ private signals can be intuitively considered as
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complements. When the current market prediction is the prior probability, the sum of play-
ers’ expected payoffs when each player reports a posterior probability conditioned only on
his own private signal is strictly less than the total expected payoff that can be earned by
reporting a posterior probability conditioned on all of the available private signals in any
I game. This means that, every player in the I game prefers to wait for other players to
make their reports first since observing more reports and thus inferring more signals im-
prove the player’s expected payoff. In contrast, in the CI games, players’ private signals are
substitutes. For any current market prediction, the sum of players’ expected payoffs when
each player reports a posterior probability conditioned only on his own private signal is
strictly greater than the total expected payoff that can be earned by reporting a posterior
probability conditioned on all of the available private signals. Thus, players prefer to race
to capitalize on their private information early in the game.

5. THE 3-STAGE D GAME

The CI and I games admit two families of PBE that seem to lie at the two extremes of
the spectrum: players race to reveal information early in the CI game, but race to withhold
information in the I game. It is interesting to ask whether some instances of the D game
may give rise to one of these two types of equilibria too. Yet, it is challenging to perform
equilibrium analysis for the D game, because the dependency among the players’ signals
does not provide precise mathematical conditions that we can leverage.

Our goal in this section is moderate. We would like to explore a restricted 3-stage D game
and obtain insights on what the players’ PBE strategies may look like for this game if a
PBE exists. We do not prove the existence of a PBE for this class. Nevertheless, we provide
a sufficient condition for the prior distribution, which guarantees the existence of a truthful
PBE for the D game. We also provide an example distribution that satisfies this condition.

In this section, we consider the 3-stage D game where Alice’s private signal has only 2
realizations (na = 2).

5.1. An Expression for Alice’s Ex-Interim Expected Payoff

We derive an expression for Alice’s ex-interim expected payoff at any PBE of the 3-stage
market game (denoted ug, (1)), for a given signal a; and a particular first-stage report r.
The purpose of discussing this expression is two fold. First, given u,, (r), Alice’s ex-ante
expected payoff by using a particular strategy can be easily calculated and used to identify
Alice’s candidate PBE strategies by Theorem 3.1. Second, to construct a PBE of the market
game, it suffices to check that the requirements of a PBE are satisfied using u,, (). Thus
our discussion of this expression prepares us for developing the results in the followmg two
subsections.

When deriving the expression of u,, (1), we assume that Alice’s first-stage payoff satisfies
the consistency condition, Alice and Bob know each other’s strategies and beliefs, and
mostly importantly Bob’s belief for any Alice’s report r is derived as if the belief is on
the equilibrium path for any given r. That is, for any Alice’s report r, Bob’s belief for r
is derived from Alice’s strategy using Bayes’ rule as if the report r is in the support of
Alice’s first-stage strategy. The expression of u,, (1) is given below. The complete derivation
is included in the Appendix.

1—1r
(Y) —Pr(Y)
+ Y {Pr(Y, bylas) log M + Pr(N, bylas) log Pr(N'”’ff;)} (12)

- xp,(7) 1 —ay,(

Ug, (1) Pr(Y\aZ)log +Pr(N|al)log
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where xp, (1) is

_ Pr(Y,bjlao)(Pr(Yla1) — r) + Pr(Y, bjlar ) (r — Pr(Y|ao))
Pr(bjlao)(Pr(Yl]a1) — r) + Pr(bjlar)(r — Pr(Y|ao))

xp,(7)

5.2. Three Candidate PBE Strategies for Alice

We identify three candidate PBE strategies for Alice in the 3-stage D game. These three
strategies are the truthful strategy, the delaying strategy, and a mixed strategy in which
Alice makes a deterministic report r for one realized signal and she mixes between reporting
r and reporting her true posterior probability estimate for the other realized signal.

THEOREM 5.1. If there exists a PBE of the 3-stage D game, then Alice must play one
of the following three strategies at the PBE 2:

— the truthful strategy: oq;(Pr(Y]a;)) =1,Vi =0,1
— the delaying strategy: cq,(Pr(Y)) =1,Vi=0,1
— the mized strategy:
Jai(PT‘(Y‘ai)) =1-p, O-ai,(r) =b aal—i(r) =1 (13)
where p = PT(;:(;:;E;(};(Z!T;)")) and uq;(Pr(Yl|a;)) = wua;(r) is satisfied for some r €
(min; Pr(Y|a;), Pr(Y)) U (Pr(Y'), max; Pr(Yla;)), Vi =0, 1.

5.3. A Sufficient Condition for the Truthful PBE

When the information structure of a 3-stage D game satisfies a monotonicity condition, we
show in Theorem 5.2 that there is a truthful PBE of this game. This monotonicity condition
requires that, for a fixed ¢ = 0,1, Alice’s ex-interim expected payoff u,, (r) is monotonically
decreasing as the value of r changes from Pr(Y|a;) to Pr(Y|ai_;).

THEOREM 5.2. If for any i = 0,1, ug,(r) is monotonically decreasing as the value of r
changes from Pr(Y |a;) to Pr(Y|a1—;), then there exists a PBE of the 3-stage D game where
Alice’s first-stage strategy is

0a;(Pr(Yla;)) =1,Vi=0,1
and Bob’s second-stage strategy is

_ Pr(Y,bjlag)(Pr(Y|a1) —r) + Pr(Y, bjla1)(r — Pr(Yao))
Pr(bjlao)(Pr(Yla1) —r) + Pr(bj|a1)(r — Pr(Y|ao))

p, (1) Vi =0,..,np—1 (14)

Next, we give an example of a D information structure satisfying the monotonicity con-
dition above.

Example 5.3. Consider an instance of the 3-stage D game where the prior distribution
P is given by the following table. In Table I below, each cell gives the value of Pr(w, s4, $p)
for the corresponding realizations of w, s4, and sp. This prior distribution satisfies the
monotonicity condition specified in Theorem 5.2 because, as r increases from Pr(Ylag) to
Pr(Ylay), ua,(r) decreases and u,, (r) increases.

2Technically, Alice’s PBE strategy could be of the form oq;,(Pr(Yla;)) = 1 — p,oq,(r) =
p,0a,_;(Pr(Yl|ai—;)) = 1—gq,04,_,(r) = g, for some p,q € [0,1], r € [ming; Pr(Y|a;), max,; Pr(Yla;)].
However, if there exists a PBE of a 3-stage D game where Alice plays this mixed strategy, then there also
exists a truthful PBE for this game. So we include this strategy as a special case when the 3-stage D game
has a truthful PBE.
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Table I. An example prior distribution.
w=Y w=N

ao ay ao ai
bo | 0.15 | 0.2 | bo 0.2 | 0.05
by | 0.05 | 0.05 | by | 0.25 | 0.05

6. CONCLUSION AND FUTURE WORK

We analyze how the dependency among the participants’ private information affect their
strategic behavior when trading in a prediction market. We model the logarithmic market
scoring rule prediction market as an extensive-form Bayesian game, and characterize PBE
of this game for different information structures of the market participants. When the
participants have unconditionally independent private information (I game), we show that
there exists a family of PBE for the market game with a finite number of players and a
finite number of stages. At any PBE in this family, assuming that the players are ordered
by their last stages of participation, each player does not participate in the game before
the previous player’s last stage of participation. There exists a PBE where every player
waits until their last stage of participation to truthful reveal their information, and this
is arguably the worst outcome with respect to information aggregation. A future research
question is to determine whether a PBE exists for the I game with a finite number of players
but an infinite number of stages.

We also study a restricted version of the market game with 2 players and 3 stages when
the players’ private information is neither conditionally independent nor unconditionally in-
dependent (D game). Our result narrows down the possible PBE strategies to three simple
strategies if a PBE exists. We conjecture that, for any instance of the D game, there exists
a PBE where the first participant plays one of these three strategies. For future work, we
are interested in proving the existence of the PBE of the D game for any prior distribution,
characterizing sufficient and necessary conditions for each type of PBE to exist, and explor-
ing whether the PBE of the 3-stage game extends to the game with a finite or an infinite
number of stages.
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