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Abstract. We study dynamic matching without money
when one side of the market is dynamic with arrivals and de-
partures and the other is static and agents have strict prefer-
ences over agents on the other side of the market. In enabling
stability properties, so that no pair of agents can usefully devi-
ate from the match, we consider the use of a fall-back option
where the dynamic agents can be matched, if needed, with
a limited number of agents from a separate “reserve” pool.
We introduce the GSODAS mechanism, which is truthful for
agents on the static side of the market and stable. In simula-
tions, we establish that GSODAS dominates in rank-efficiency
a pair of randomized mechanisms that operate without the
use of a fall-back option. In addition, we demonstrate good
rank-efficiency in comparison to a non-truthful mechanism
that employs online stochastic optimization.

1 Introduction
For motivation, we can consider the campus recruitment job
market. Companies visit colleges in various time slots during
the year, while students are seeking a position throughout the
year. In our terms, this is a two-sided matching problem in
which the companies are “dynamic” with arrival and depar-
ture times while the students are “static” and always present
in the market, although perhaps already matched.

Further suppose that students may seek to obtain a bet-
ter match by strategic misreporting of their preferences over
companies, while companies report true preference rankings
on students. We can assume this because, it is generally known
what skill sets companies want (e.g., which grades, in which
kinds of classes, etc.) Student preferences on companies may
be predetermined or determined dynamically as companies
arrive, as long as preference orderings over earlier companies
are not changed by subsequent arrivals. For companies, it is
probably easiest to think that their preferences over students
are determined upon arrival.

Each company seeks to match with a single student, and a
match (if any) must be assigned by the mechanism by the end
of the company’s time slot. We assume, however, that each
company has the opportunity to adopt a “fall-back” option,
selected from its own reserve pool of students and providing
(if necessary) a match for the company that is just as good as
that from the primary matching market. This option can be
exercised by the company if a matched student subsequently
becomes unavailable because the mechanism later decommits
and rematches the student to another company. But the re-
serve pool should be used in a limited way— we assume that
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it is more costly, and therefore less desirable for the firm.
Within AI, this work is situated in the subfield of multi-

agent resource allocation, and for example motivated by an
interest in developing AI for crowdsourcing and tasksourcing
markets [9, 11]. For the present model, we have workers on
one side that seek a match with a new task (e.g., every week
a match is formed for the subsequent week) and an uncer-
tain and dynamic supply of tasks, each with preferences over
workers and requiring a match to be assigned for the next
week by its own deadline.

For expositional purposes only, we refer to the static and
strategic side of the market as Men and the dynamic and
truthful side of the market as Women. A constraint imposed
by the dynamics of the problem is that the match to a woman
must be made before her departure (although with a chance
to decommit from this and use a fall back option.) Each man
insists on receiving a match only by the final time period,
beyond which no additional women will arrive.

We introduce the GSODAS (Generalized Online Deferred
Acceptance with Substitutes) mechanism, which makes use
of the fall-back option, also referred to as substitute agents.
GSODAS is dominant-strategy truthful for static agents and
also stable, such that no man-woman pair would prefer to
deviate from their respective matches and re-match between
themselves. Such a man-woman pair is a blocking pair. The
blocking pairs includes a man-woman pair where the woman
has matched with a fall-back option and insists that for any
such pair, that the woman prefers the fall-back option (as-
sumed equivalent in rank-preference to her original match)
or the man prefers his match. The number of fall-back op-
tions required by GSODAS is worst-case optimal across online
mechanisms that provide stability.

We compare the match quality from GSODAS with two
randomized, truthful matching mechanisms that operate
without using a fall-back option. For match quality, we con-
sider both the stability (measuring the average number of men
that are in at least one blocking pair) and the rank-efficiency
of the mechanisms. The rank efficiency measures the average
preference rank order achieved by agents in the match, with
a rank-order of 1 for most-preferred and n for least-preferred,
where there are n agents on each side of the market. For this,
we interpret the rank-order for a woman matched with a sub-
stitute as equivalent to that for the man with which she was
first matched, but ignore the substitute himself in determin-
ing rank efficiency. In addition, the preference of any man that
goes unmatched is accounted as a rank of n + 1.

For a rank-efficiency baseline, we also consider the per-
formance of a non-truthful algorithm, namely, Consensus,
that employs online stochastic optimization in determining



dynamic matches. This provides a strong, baseline target for
rank-efficiency. In simulation, we demonstrate that GSODAS
has rank-efficiency better than the randomized mechanisms
but dominated by Consensus, while the randomized mecha-
nisms and also Consensus also suffer from poor stability and
many blocking pairs. GSODAS requires on average around
20% of the women to be matched with fall-back options for
two period problems, increasing to an average of 30% of the
men for longer 12-period problems (in which the women are
present in the market for around 3-4 periods.) The most com-
pelling direction for future work is to find an appropriate re-
laxation of stability for dynamic problems, and look to see
whether this can provide a significant reduction in the use of
substitutes.

Related Work. The classic matching algorithm is the de-
ferred acceptance algorithm [4]. This algorithm is strate-
gyproof for one-side of the market and produces a stable
match with respect to reported preferences. Moreover, there
does not exist a stable matching mechanism that is strate-
gyproof for all agents [8]. We are only aware of one other pa-
per on dynamic matching with incentive and stability consid-
erations: Compte and Jehiel [3] consider a different dynamic
matching problem to the one studied here, with a static pop-
ulation but agents that experience a preference shock, and
impose an individual-rationality constraint across periods so
that no agent becomes worse off as the match changes in re-
sponse to a shock. The authors demonstrate how to modify
the deferred acceptance algorithm to their problem. For more
background on the matching literature, readers are referred
to a survey by Sönmez and Ünver [10]. Within computer sci-
ence, Karp et al. [6] consider the algorithmic problem of on-
line matching, but without strategic considerations. Awasthi
and Sandholm [1] consider a dynamic kidney exchange prob-
lem, but for a satisficing (rather than strict preference) model
and without consideration of incentive or stability constraints.
Parkes [7] provides a survey of dynamic auction mechanisms
with money.

2 Preliminaries
Consider a market with n men (set M) and n women (set
W ). The men are static and the women are dynamic, with
woman i ∈W having arrival ai and departure di, with ai, di ∈
{1, . . . , T} where T is the number of time periods. Each agent
has a strict preference profile �i on agents on the other side of
the market, and prefers to be matched than unmatched. We
write w1 �m w2 to indicate a strict preference by man m for
woman w1 over woman w2. A match to a man can be made
in any of the T periods, and preferences may be determined
dynamically as women arrive as long as the preference rank on
earlier arrivals is unchanged. Similarly, we write m1 �w m2

to denote a preference by woman w for man m1 over m2. For
a woman, a match (if any) must be made between ai and di

and preferences must be well-defined upon arrival.
Let M(t) and W (t) denote the set of men and women avail-

able for matching in period t. Let AW (t) denote the set of
women to arrive in t, DW (t) the set of women to depart in
t, and W ′(t) the set of women yet to arrive. Let µ denote
a match, with µ(m) ∈ W ∪ {φ} the match to man m and
µ(w) ∈ M ∪ {φ} the match to woman w, with µ(i) = φ to
indicate that agent i is unmatched. A woman is available for
matching while present, and a match µ(w) 6= φ to a woman

must be finalized by period di. Upon the departure of woman
w with µ(w) 6= φ, then the matched man µ(w) ∈M ordinar-
ily becomes unavailable for matching and M(t) is updated.
On the other hand, when we allow for a fall-back option the
mechanism may decommit from the match µ(w) and allow a
man to re-match.

For static settings, Gale-Shapley’s deferred-acceptance
(DA) algorithm yields a stable matching. In this paper we
adopt the man-proposing DA algorithm as a building block:

Definition 1. Man-proposing DA. Each man proposes to his
most preferred woman. Each woman keeps the best match
and rejects other men. All rejected men then propose to their
next preferred woman. The procedure continues until there
are no more rejections.

We denote DA(M, W ) as male proposing DA with set of
men M and set of women W . The DA algorithm terminates
in a finite number of steps because every man proposes to a
finite number of women.

Let � = (�i)i∈M∪W . We also write �= (�i,�−i), where
�−i denote the preferences of all the agents except i. Let ρ =
{(ai, di) : i ∈ W} denote the arrival and departure periods
of the women. An online matching mechanism f selects a
matching µ = f(�, ρ). To be feasible, we require that f(�, ρ)
is invariant to information about later arrivals, so that µ(w) is
invariant to preferences of men about women w′ to arrive after
w departs or to the preferences, arrival or departure times of
later arrivals w′. In particular, µ(w) must be determined by
period di at which a woman departs.

Definition 2. Online mechanism f is truthful (or strate-
gyproof) for men if for each man m, for all arrival-departure
schedules ρ, and for all preferences ≺−m except m,

µ′(m) � µ(m),

where µ′ = f(�′
m,�−m, ρ).

In evaluating the performance of a mechanism, we follow
Budish and Cantillon [2] and assume risk neutral agents with
a constant difference in utility across the matches that are
adjacent in their preference list. The rank of an agent i for a
matching µ, written rank i(µ), is the rank order of the agent
with whom he or she is matched. A match by i with the
most-preferred agent in �i receives rank order 1 and with the
least-preferred receives rank order n. If µ(i) = φ then the
rank-order is n + 1. Based on this, the rank of a matching µ
is rank(µ) = 1

2n

P

i∈M∪W rank i(µ).
To define the rank-efficiency of a mechanism we assume a

distribution function Φ on (�, ρ) and compute the expected
rank over the induced distribution on matches:

Definition 3. The rank-efficiency of an online mechanism f ,
given distribution function Φ, is

rankf = E(�,ρ)∼Φ[rank(f(�, ρ))].

To gain some intuition for the dynamic matching problem,
we can consider simply running a man-proposing DA on un-
matched men and women in the system whenever one or more
women departs. As well as fixing the match for any such de-
parting woman, it also sets the match for any man matched to
a departing woman. The set of men still available for matching
in the future is updated.



Example 2.1. Consider M = {m1, m2, m3} and W =
{w1, w2, w3}. Suppose the preferences and arrival/departure
periods are as follows:

m1 : w3 �m1 w1 �m1 w2

m2 : w2 �m2 w1 �m2 w3

m3 : w1 �m3 w2 �m3 w3

w1 : m1 �w1 m2 �w1 m3, aw1 = 1, dw1 = 1

w2 : m1 �w2 m2 �w2 m3, aw2 = 1, dw2 = 2

w3 : m1 �w3 m2 �w3 m3, aw3 = 2, dw3 = 2

If the agents are truthful, the mechanism will match m1

with w1, m2 with w2 and m3 with w3. However, m1 can report
his preference as w2 �′

m1 w1. With this manipulation, he will
get matched with w2 in period 1, and remain available to
match in period 2 with w3, his most preferred woman. Thus,
this greedy DA mechanism is manipulable.

3 Introducing a Fall-Back Option
A fall-back option allows a mechanism to decommit from a
match made in an earlier period to a departed woman because
the woman is assumed to have access to a fall-back option or
substitute. Such a substitute is assumed to be at least as
preferred as the match provided by the mechanism. On the
other hand, substitutes are assumed to be costly to use and
thus a woman would prefer to receive her match from the
matching market.

Let R denote the set of substitutes. We now allow for a
matching µ to allocate µ(m) ∈W ∪ {φ} and µ(w) ∈M ∪R∪
{φ}. For each substitute r ∈ R, we say that r is equivalent to
man m ∈ M for woman w ∈ W , if m′ �w m ⇔ m′ �w r for
all m′ ∈ M \ {m}; i.e., as long as r is equivalent in terms of
preference rank to m for woman w. In extending the notion of
rank efficiency, the rank order to a woman for a substitute is
that of the man m replaced by the substitute while the rank
of the substitute himself is not included in rank(µ).

Definition 4. Matching µ is stable if there does not exist a
blocking pair (m, w), where (m, w) is a blocking pair for µ if
either:

(1) w �m µ(m) and m �w µ(w), or
(2) if w receives a substitute r that is equivalent to man

m′, then, w �m µ(m) and m �w m′.

When m is part of any blocking pair, we say m is unstable.
Else we say m is stable.

3.1 GSODAS
Recall that W (t) is the set of women present in period t. The
GSODAS algorithm works as follows, where maxm(w1, w2)
denotes the woman of {w1, w2}most preferred by man m:

• For periods t ∈ {1, . . . , T}, maintain provisional match
µt(m) ∈W ∪ {φ}, for every m ∈M . Initialize µ0(m) = φ.

• Maintain a committed match µ∗(m) for every m ∈ M ,
initialized to µ∗(m) = φ for all m.

• In every period t in which at least one woman departs,

(i) run DA(M, W (t)), and let µ′ denote this match

(ii) update µt(m) := maxm(µt−1(m), µ′(m)) for every m

(iii) if the assignment changes in µt(m) from µt−1(m) for
man m, where µ∗(m) 6= φ then woman µ∗(m) is matched

with a substitute for m and µ∗(m)← φ with m no longer
committed.

(iv) µ∗(m) := µt(m) if woman µt(m) departs in the cur-
rent period.

• The final match µG has men matched as in µ∗(m) (along
with corresponding µ(w) for matched women w), and with
any other woman who received a substitute in step (iii)
matched to this substitute, or otherwise unmatched.

GSODAS maintains a sequence of provisional matches µt

in each period t, but that matches are only committed (and
may even be subsequently decommitted) as women depart. A
match is valid when no man is matched to multiple women
and no woman is matched to multiple men.

Claim 3.1. The GSODAS algorithm is strategyproof for men
and generates a valid match.

Proof. Fix man m. Strategyproofness follows immediately
from the strategyproofness of man-proposing DA when one
notices that the preferences reported by other agents in
DA(M, W (t)) in period t are independent of the report of man
m ∈ M . Moreover, man m receives the woman that is most
preferred across all runs of the man-proposing DA, across all
periods.

To establish that the final match is valid, suppose for con-
tradiction that there is some woman w = µG(m1) = µG(m2)
for m1 6= m2. Suppose that w is matched with m1 at t1 and
m2 at t2. Assume first that m1 �w m2. At t2, w is matched
with m2, which implies that m1 did not propose to her and
received a better match at t2 than w. But then we would not
have w = µG(m1) because this is the best match across all
periods for m1. Similarly, if m2 �w m1 then at t1, when w
is matched with m1, m2 must have received a better match
than w and we again have a contradiction.

GSODAS matches every woman, either with a man m ∈M
or with a substitute. Because |M | = |W | and some women
receive a substitute, the number of unmatched men equals
the number of substitutes adopted in the mechanism.

3.2 Stability
Stability requires that there is no blocking pair, i.e., no man-
woman pair that would both prefer to match with each other
than their match from the mechanism.

Claim 3.2. The GSODAS algorithm is stable.

Proof. We prove the claim by a contradiction. Suppose a
pair, (m, w) blocks the final match µG yielded by GSO-
DAS. For each man, the final match is a woman most pre-
ferred among all his provisional matches (perhaps φ). Because
w �m µG(m), then m was never matched with w in a provi-
sional match. Let a be the arrival time of w and d the depar-
ture time. Let M(w) = {ma, ma+1, . . . , md} denote the set of
men with whom w is matched (if any) in the provisional match
in each period t ∈ {a, . . . , d}. Because the match generated
in each period is stable, then m′ �w m for all m′ ∈ M(w).
In particular, we have md �w m and µG(w) �w m (including
the case where w later receives a substitute), and (m, w) is
not a blocking pair.

Claim 3.3. The worst case substitute requirement in GSO-
DAS for a T period problem, with n = αT men and women,
for α ∈ {1, 2, . . .}, is α(T − 1).



m1 (T, . . . , 2, 1, w) w1 (1, 2, . . . , T, m), a = d = 1
m2 (T, . . . , 2, 1, w) w2 (µ(w1), 1, 2, . . . , T, m), a = d = 2
...
mT (T, . . . , 2, 1, w) wT (µ(wT−1), 1, 2, . . . , T, m), a = d = T

mT+1 (2T, . . . , T + 2, T + 1, w) wT+1 (T + 1, T + 2, . . . , 2T, m), a = d = 1
mT+2 (2T, . . . , T + 2, T + 1, w) wT+2 (µ(wT+1), T + 1, . . . , 2T, m), a = d = 2
...
m2T (2T, . . . , T + 2, T + 1, w) w2T (µ(w2T−1), T + 1, . . . , 2T, m), a = d = T
...

...

m(α−1)T+1 (αT, . . . , (α− 1)T + 2, (α− 1)T + 1, w) w(α−1)T+1 (µ(w(α−1)T+1), . . . , αT, m), a = d = 1
...

...

Table 1. Construction of Agent Preferences Used for Worst-case Substitutes Requirement in Online Matching Mechanisms

Proof. Let k denote the number of matches between men and
women, so that n−k is the number of matches between women
and substitutes. For k matches with (non-substitutes) men,
we can have at most (T − 1)k substitutes, occurring when
a better match is found for each of the k matched men in
each round. We require k plus the total number of substitutes
to be at least n, since all women will always receive some
match. Therefore k + (T − 1)k ≥ n, and k ≥ n/T . From this,
the maximum number of substitutes, n − k ≤ n − n/T =
(T−1)

T
n = α(T − 1).

To see that this bound is tight, consider the following ex-
ample. Consider an instance in which in every period ex-
actly α women arrive and the jth woman in that period in-
dicates mj to be her best match. Each woman departs im-
mediately. That is, in period 1, women w1, w2, . . . , wα arrive
and depart. In period i, w(i−1)α+1, . . . , wiα arrive and depart.
w1, wα+1, w2α+1, . . . , w(T−1)α+1 indicate m1 as the most pre-
ferred match. w2, wα+2, w2α+2, . . . , w(T−1)α+2 indicate m2 as
the most preferred match, and so forth. Each mj has pref-
erence as (w(T−1)α+j , . . . , wα+j , wj , w), where w is a place-
holder for all other women (in arbitrary sequence). Each mj ,
j = 1, 2, . . . , α invokes the need for a substitute at every time
t = 2, 3, . . . , T , and therefore the total number of substitutes
are α(T − 1).

Thus, GSODAS has a large worst-case cost in terms of the
number of substitutes required. We will evaluate an average-
case cost in simulation. Comparing GSODAS with other algo-
rithms, we establish a worst-case tradeoff between the number
of substitutes and the number of men that can be part of a
blocking pair. For this, define for matching µ the quantity,

S(µ) =
˛

˛unstable men in µ
˛

˛ +
˛

˛substitutes used
˛

˛,

where an unstable man is part of at least one blocking pair.

Proposition 3.1. For any online matching algorithm, for
every problem with T periods, n = αT men and women, and
α ∈ {1, 2, . . .}, there exists an instance in which S(µ) ≥ α(T−
1). For GSODAS, we have S(µ) ≤ α(T − 1), with S(µ) =
α(T − 1) in the worst case.

Proof. Consider agent preferences in Table 1. The preference
profile of a man m is denoted by the indices of women in
decreasing order of preference; e.g., preference profile w2 �m

w4 �m w1 � w will be denoted as (2, 4, 1, w). The w at the
end of the list indicates all other women in some arbitrary

order. A similar convention is adopted for the preferences of
women. The agents are grouped into α blocks, each consisting
of T men and women. In each period, one woman from each
block arrives and departs immediately. The groups are defined
so that the men in each group prefer the women in the same
group more than any woman in any other group. The same
is true for the women, except that for any woman, wiT+j for
i ∈ {0, . . . , α−1} and j ∈ {2, . . . , T}, her most-preferred man
is set to be the match µ(wiT+j−1) to the preceding woman in
the block when this woman receives a match, and this match
is not a substitute.

We argue that each of wiT+j in groups i ∈ {0, . . . , α − 1}
for j ∈ {1, . . . , T − 1} contributes a count of 1 to S(µ). If
such a woman receives a substitute, then she contributes 1
to this sum. Similarly, for every woman unmatched, at least
one additional man is unmatched and part of a blocking pair
(e.g., with the unmatched woman.) Now suppose that wiT+j is
matched with man mi′T+j′ where i′ 6= i. There must be some
wi′T+k for k ∈ {1, . . . , T} not matched with a man in the i′th
group. But then (mi′T+j′ , wi′T+k) is a blocking pair because
the man prefers any woman in i′ to woman wiT+j and woman
wi′T+k prefers a man in group i′ over a match from any other
group, noting that for k > 1 she cannot be matched to her
most-preferred man for µ(wi′T+k−1) 6= φ because this man is
matched with the preceding woman in the group. In the other
case, when i′ = i, then (mi′T+j′ , wiT+j+1) is a blocking pair.
This is because every man in group i prefers a later woman
in the group over an earlier woman, and woman wiT+j+1 has
mi′T+j′ as her most-preferred match. Noting that for each
such woman, wiT+j , the blocking pair involves the man with
whom she is matched, then we add 1 to S(µ).

In GSODAS, the number of unstable men = 0. And by
Claim 3.2 the number of substitutes ≤ α(T − 1) and hence
for GSODAS, S(µ) ≤ α(T − 1).

We see that there is a tradeoff, in the worst-case, between
the stability of an online algorithm and the number of sub-
stitutes. There exist instances where every substitute below
α(T − 1) leads to one additional man part of a blocking pair.
For stability, then in the worst-case there is a need for at least
as many substitutes as in GSODAS. An online algorithm that
does not use substitutes will, in the worst-case, have a shrink-
ing fraction α/n = 1/T of men that are not part of blocking
pairs as T increases.



Figure 1. The number of substitutes required for men in
GSODAS as n increases, fixing T = 2.

Figure 2. The number of substitutes required for men in
GSODAS as T increases, fixing n = 20.

3.3 Randomized Online Matchings
In this section, we introduce two additional mechanisms, that
are truthful for men but without using the fall-back option.
These are Random Online Matching Algorithms (ROMA). In
the first variation, ROMA1, every woman is matched with
some man from the set M while in the second variation,
ROMA2, not all the women are matched. The algorithms
make different trade-offs between stability and rank-efficiency.

For ROMA1, in every period t, if there are departing women
then select |DW (t)| men at random and run man-proposing
DA using these men and DW (t). Commit to this match. In
periods without departing women, then with probability p >
0 run man-proposing DA with W (t) women and |W (t)| men
selected at random. Commit to this match. Any match is final
and these men and women are not considered for matching
in future periods. For ROMA2, we define a threshold τ ≥ 1,
and whenever the number of women present is |W (t)| ≥ τ
then select |W (t)| men at random and run man-proposing
DA. Commit to this match.

Claim 3.4. ROMA1 and ROMA2 are strategyproof for men.

Proof. Men are randomly matched into a single instance of
the man-proposing DA algorithm and cannot affect which in-
stance they match to through misreports of preferences, and
because the man-proposing DA is strategyproof for men.

ROMA1 and ROMA2 have an advantage over GSODAS in
that they do not require the use of substitutes. On the other
hand, they may well lead a lot of blocking pairs and worse
rank-efficiency because each man only participates in a single
instance of DA.

3.4 Stochastic Optimization
To obtain a baseline performance for rank-efficiency we adopt
an online sample-based stochastic optimization algorithm,
based on the Consensus approach of Van Hentenryck and
Bent [5]. The algorithm is not truthful, but provides good
rank-efficiency.

The Consensus approach adopts a generative model of the
future to sample random future arrivals of agents on the dy-
namic side of the market, and uses these samples to guide
match decisions for agents in the market. In every period
in which at least one woman departs, Consensus samples

multiple possible future arrivals and matches each depart-
ing woman with the man with which she is most frequently
matched when running a man-proposing DA on each sample:

For any period t in which at least one woman departs,
(i) generate K samples of the preferences for n− ` women,

where ` women have already arrived,
(ii) for each sample Wk, for k ∈ K, run man-proposing

DA(M(t), W (t) ∪Wk)
(iii) for each woman w ∈ W (t), let L(w) denote the man

most frequently matched with her in the result of running DA
on each of the K samples, breaking ties at random,

(iv) run man-proposing DA on the set of women, W (t),
and men in the set {L(w)|w ∈ W (t)}. Commit the matches
in this DA that involve departing women, updating M(t) ac-
cordingly.

Note that it is possible that L(w1) = L(w2) for some w1 6=
w2, so that there are less men than women in step (iv) and
some women may depart without a match.

4 Experimental Results
We compare the rank-efficiency and stability of GSODAS,
ROMA1, ROMA2 and Consensus (which is not truthful).
In all simulations, we generate preference profiles uniformly
at random for all men and women. In ROMA1 the value of
parameter p is set to be 0.3, which was found experimentally
to provide good rank-efficiency for T = 2 and T = 4 for
varying n. The threshold parameter τ in ROMA2 is similarly
tuned to achieve the best performance for rank-efficiency, and
we adopt τ = max{0.375 n

T
, 1}

We first investigate the number of substitutes required in
GSODAS. For this we consider a problem with two time pe-
riods, increasing the number of agents on each side of the
market from n = 2 to 24. For each woman i, ai is either 1 or
2, both with equal probability and di ∈ {1, 2} uniformly at
random if ai = 1, else di = 2. We also increase the number of
periods T from 2 to 12, holding n = 20, and generating the
arrival time, ai, for a woman uniformly between [1, T ], with
departure time di uniformly between [ai, ai + T/3], with di

also capped at a maximum value of T . In both experiments
we determine worst-case and average case performance over



Figure 3. The rank-efficiency (x-axis) vs. the number of
unstable men (y-axis) for n = 10 and T = 2.

Figure 4. The rank-efficiency (x-axis) vs. the number of
unstable men (y-axis) for n = 20 and T = 4.

20,000 random instances.
The results are illustrated in Figures 1 and 2. For a problem

with two time periods, we find that an average of ≈ 20% of
the number of men are required as substitutes, increasing to
around 30% for T = 12. For two period problems, in the
worst case we need a substitute for as many as 1 in every 2
men in the market when n ≤ 10; this fraction drops to 37%
for n = 24. For n = 20, T = 12, then as many as 55% of the
number of men are required as substitutes in the worst case.

We turn now to comparing rank-efficiency and stability
in each of the mechanisms. For this, we determine the av-
erage rank-efficiency and average number of unstable men
(i.e., number of men m for whom there exists a woman w
such that (m, w) is a blocking pair). The results are again
averaged over 20,000 instances. Figures 3 and 4 plot the av-
erage rank-efficiency (x-axis) against the average number of
unstable men (y-axis) for n = 10, T = 2 and n = 20, T = 4,
respectively. Recall that Consensus is not strategyproof, and
that rank-efficiency assigns a rank of (n + 1) to unmatched
agents and ignores the rank preference of substitute agents.
The results are encouraging for the GSODAS mechanism. We
see that it dominates ROMA1 and ROMA2 in rank-efficiency
while achieving perfect stability. This is even though we count
n + 1 rank for the unmatched men in GSODAS, the number
of which can be quite large due to to the use of substitutes.
Comparing with Consensus, we see that GSODAS has worse
rank-efficiency, achieving a rank-efficiency that is situated be-
tween that of Consensus and the ROMA mechanisms.

5 Conclusions
In this paper, we have initiated a study into dynamic match-
ing problems in two-sided markets without money. One side of
the market is static while the other side is dynamic, and we re-
quire truthfulness on the static side of the market. We achieve
stability, and truthfulness on the static side, by allowing for
the possibility of a fall-back option, so that the mechanism
can decommit from some matches made to already departed
agents, at which point a substitute is adopted. The GSODAS
mechanism has better rank-efficiency than simpler methods
that do not use substitutes, although with less rank-efficiency
non-truthful stochastic optimization approach.

Still, the use of substitutes in GSODAS is quite high, with

30% on average as the number of agents and time periods
increases (for uniform preferences) and as many as 55% re-
quired in the worst-case experimental instances. This is likely
unacceptable in many practical domains, yet we prove that
better worst-case properties are unavailable if full stability
is required. The most interesting future direction, then, will
look to relax the requirement of offline stability. This pre-
cludes blocking pairs, irrespective of the timing of the agents
that comprise a blocking pair in system and the information
available at the time of a match. Perhaps by relaxing this
requirement, then mechanisms with good rank-efficiency, ac-
ceptable stability, but less need for exercising the fall-back
option can be developed.
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