
ICE: An Iterative Combinatorial Exchange

David C. Parkes∗ † Ruggiero Cavallo† Nick Elprin† Adam Juda† Sébastien Lahaie†

Benjamin Lubin† Loizos Michael† Jeffrey Shneidman† Hassan Sultan†

ABSTRACT
We present the first design for a fully expressive iterative
combinatorial exchange (ICE). The exchange incorporates
a tree-based bidding language that is concise and expres-
sive for CEs. Bidders specify lower and upper bounds on
their value for different trades. These bounds allow price
discovery and useful preference elicitation in early rounds,
and allow termination with an efficient trade despite partial
information on bidder valuations. All computation in the
exchange is carefully optimized to exploit the structure of
the bid-trees and to avoid enumerating trades. A proxied
interpretation of a revealed-preference activity rule ensures
progress across rounds. A VCG-based payment scheme that
has been shown to mitigate opportunities for bargaining and
strategic behavior is used to determine final payments. The
exchange is fully implemented and in a validation phase.

Categories and Subject Descriptors: I.2.11 [Artifi-
cial Intelligence]: Distributed Artificial Intelligence; J.4
[Computer Applications]: Social and Behavioral Sciences
—Economics

General Terms: Algorithms, Economics, Theory.

Keywords: Combinatorial exchange, Threshold payments,
VCG, Preference Elicitation.

1. INTRODUCTION
Combinatorial exchanges combine and generalize two dif-

ferent mechanisms: double auctions and combinatorial auc-
tions. In a double auction (DA), multiple buyers and sellers
trade units of an identical good [20]. In a combinatorial auc-
tion (CA), a single seller has multiple heterogeneous items
up for sale [11]. Buyers may have complementarities or sub-
stitutabilities between goods, and are provided with an ex-
pressive bidding language. A common goal in both market

∗Corresponding author. Remaining authors in alphabetical
order. parkes@eecs.harvard.edu
†Division of Engineering and Applied Sciences, Harvard
University, Cambridge MA 02138.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EC’05, June 5–8, 2005, Vancouver, British Columbia, Canada.
Copyright 2005 ACM 1-59593-049-3/05/0006 ...$5.00.

designs is to determine the efficient allocation, which is the
allocation that maximizes total value.

A combinatorial exchange (CE) [24] is a combinatorial
double auction that brings together multiple buyers and sell-
ers to trade multiple heterogeneous goods. For example, in
an exchange for wireless spectrum, a bidder may declare that
she is willing to pay $1 million for a trade where she obtains
licenses for New York City, Boston, and Philadelphia, and
loses her license for Washington DC. Thus, unlike a DA, a
CE allows all participants to express complex valuations via
expressive bids. Unlike a CA, a CE allows for fragmented
ownership, with multiple buyers and sellers and agents that
are both buying and selling.

CEs have received recent attention both in the context of
wireless spectrum allocation [18] and for airport takeoff and
landing slot allocation [3]. In both of these domains there
are incumbents with property rights, and it is important
to facilitate a complex multi-way reallocation of resources.
Another potential application domain for CEs is to resource
allocation in shared distributed systems, such as PlanetLab
[13]. The instantiation of our general purpose design to
specific domains is a compelling next step in our research.

This paper presents the first design for a fully expressive
iterative combinatorial exchange (ICE). The genesis of this
project was a class, CS 286r “Topics at the Interface between
Economics and Computer Science,” taught at Harvard Uni-
versity in Spring 2004.1 The entire class was dedicated to
the design and prototyping of an iterative CE.

The ICE design problem is multi-faceted and quite hard.
The main innovation in our design is an expressive yet con-
cise tree-based bidding language (which generalizes known
languages such as XOR/OR [23]), and the tight coupling
of this language with efficient algorithms for price-feedback
to guide bidding, winner-determination to determine trades,
and revealed-preference activity rules to ensure progress
across rounds. The exchange is iterative: bidders express
upper and lower valuations on trades by annotating their
bid-tree, and then tighten these bounds in response to price
feedback in each round. The Threshold payment rule, in-
troduced by Parkes et al. [24], is used to determine final
payments.

The exchange has a number of interesting theoretical prop-
erties. For instance, when there exist linear prices we estab-
lish soundness and completeness: for straightforward bid-
ders that adjust their bounds to meet activity rules while
keeping their true value within the bounds, the exchange
will terminate with the efficient allocation. In addition, the

1http://www.eecs.harvard.edu/∼parkes/cs286r/ice.html

Truth Agent Act Rule WD ACC

FAIR

BALClosing RuleVickreyThreshold
DONE

! DONE

2,2

+A

+10

+B

+10

BUYER

2,2

-A

-5

-B

-5

SELLER
2,2

+A

+15

+8

+B

+15

+8

BUYER

2,2

-A

-2

-6

-B

-2

-6

SELLER

BUYER, buy AB

SELLER, sell AB

12 < PA+PB < 16

PA+PB=14

PA=PB=7

PBUYER = 16 – (4-0) = 12

PSELLER = -12 – (4-0) = -16

PBUYER = 14

PSELLER = -14

Pes
si
m

is
tic

O
pt

im
is
tic

= 1

Figure 1: ICE System Flow of Control

efficient allocation can often be determined without bidders
revealing, or even knowing, their exact value for all trades.
This is essential in complex domains where the valuation
problem can itself be very challenging for a participant [28].
While we cannot claim that straightforward bidding is an
equilibrium of the exchange (and indeed, should not expect
to by the Myerson-Satterthwaite impossibility theorem [22]),
the Threshold payment rule minimizes the ex post incentive
to manipulate across all budget-balanced payment rules.

The exchange is implemented in Java and is currently in
validation. In describing the exchange we will first provide
an overview of the main components and introduce several
working examples. Then, we introduce the basic compo-
nents for a simple one-shot variation in which bidders state
their exact values for trades in a single round. We then
describe the full iterative exchange, with upper and lower
values, price-feedback, activity rules, and termination condi-
tions. We state some theoretical properties of the exchange,
and end with a discussion to motivate our main design de-
cisions, and suggest some next steps.

2. AN OVERVIEW OF THE ICE DESIGN
The design has four main components, which we will in-

troduce in order through the rest of the paper:

• Expressive and concise tree-based bidding language.
The language describes values for trades, such as “my value
for selling AB and buying C is $100,” or “my value for selling
ABC is -$50,” with negative values indicating that a bidder
must receive a payment for the trade to be acceptable. The
language allows bidders to express upper and lower bounds
on value, which can be tightened across rounds.
• Winner Determination. Winner-determination (WD)
is formulated as a mixed-integer program (MIP), with the
structure of the bid-trees captured explicitly in the formu-
lation. Comparing the solution at upper and lower values
allows for a determination to be made about termination,
with progress in intermediate rounds driven by an interme-
diate valuation and the lower values adopted on termination.
• Payments. Payments are computed using the Threshold
payment rule [24], with the intermediate valuations adopted
in early rounds and lower values adopted on termination.
• Price feedback. An approximate price is computed
for each item in the exchange in each round, in terms of
the intermediate valuations and the provisional trade. The
prices are optimized to approximate competitive equilibrium
prices, and further optimized to best approximate the cur-
rent Threshold payments with remaining ties broken to favor
prices that are balanced across different items. In computing

the prices, we adopt the methods of constraint-generation to
exploit the structure of the bidding language and avoid enu-
merating all feasible trades. The subproblem to generate
new constraints is a variation of the WD problem.
• Activity rule. A revealed-preference activity rule [1] en-
sures progress across rounds. In order to remain active, a
bidder must tighten bounds so that there is enough informa-
tion to define a trade that maximizes surplus at the current
prices. Another variation on the WD problem is formulated,
both to verify that the activity rule is met and also to pro-
vide feedback to a bidder to explain how to meet the rule.

An outline of the ICE system flow of control is provided
in Figure 1. We will return to this example later in the pa-
per. For now, just observe in this two-agent example that
the agents state lower and upper bounds that are checked in
the activity rule, and then passed to winner-determination
(WD), and then through three stages of pricing (accuracy,
fairness, balance). On passing the closing rule (in which pa-
rameters αeff and αthresh are checked for convergence of the
trade and payments), the exchange goes to a last-and-final
round. At the end of this round, the trade and payments
are finally determined, based on the lower valuations.

2.1 Related Work
Many ascending-price one-sided CAs are known in the lit-

erature [10, 25, 30]. Direct elicitation approaches, in which
agents respond to explicit queries about their valuations,
have also been proposed for one-sided CAs [8, 14, 19] and
for CEs with restricted expressiveness [29]. A number of
ascending CAs are designed to work with simple prices on
items [12, 17]. The price generation methods that we use in
ICE generalize the methods in these earlier papers.

Parkes et al. [24] studied sealed-bid combinatorial ex-
changes and introduced the Threshold payment rule. Sub-
sequently, Krych [16] demonstrated experimentally that the
Threshold rule promotes efficient allocations. We are not
aware of any previous studies of iterative CEs. Dominant
strategy DAs are known for unit demand [20] and also for
single-minded agents [2]. No dominant strategy mechanisms
are known for the general CE problem.

ICE is a “hybrid” auction design, in that it couples sim-
ple item prices to drive bidding in early rounds with com-
binatorial WD and payments, a feature it shares with the
clock-proxy design of Ausubel et al. [1] for one-sided CAs.
We adopt a variation on the clock-proxy auctions’s revealed-
preference activity rule.

The bidding language shares some structural elements
with the LGB language of Boutilier and Hoos [7], but has
very different semantics. Rothkopf et al. [27] also describe a
restricted tree-based bidding language. In LGB , the seman-
tics are those of propositional logic, with the same items
in an allocation able to satisfy a tree in multiple places.
Although this can make LGB especially concise in some set-
tings, the semantics that we propose appear to provide use-
ful “locality,” so that the value of one component in a tree
can be understood independently from the rest of the tree.
The idea of capturing the structure of our bidding language
explicitly within a mixed-integer programming formulation
follows the developments in Boutilier [6].

Smith et al. [29] have previously studied iterative CEs, but
can handle only limited expressiveness and adopt a direct-
query based approach with an enumerative internal data
structure that scales poorly to many items. A novel feature

in their earlier design is item discovery, where the items
available to trade need not be known in advance.

3. PRELIMINARIES
In our model, we consider a set of goods, indexed {1, . . . ,

m} and a set of bidders, indexed {1, . . . , n}. The initial
allocation of goods is denoted x0 = (x0

1, . . . , x
0
n), with x0

i =
(x0

i1, . . . , x
0
im) and x0

ij ≥ 0 for good j indicating the number
of units of good j held by bidder i. A trade λ = (λ1, . . . , λn)
denotes the change in allocation, with λi = (λi1, . . . , λim)
where λij ∈ �

is the change in the number of units of item
j to bidder i. So, the final allocation is x1 = x0 + λ.

Each bidder has a value vi(λi) ∈ � for a trade λi. This
value can be positive or negative, and represents the change
in value between the final allocation x0

i +λi and the initial al-
location x0

i . Utility is quasi-linear, with ui(λi, p) = vi(λi)−p
for trade λi and payment p ∈ � . Price p can be negative,
indicating the bidder receives a payment for the trade. We
use the term payoff interchangeably with utility.

Our goal in the ICE design is to implement the efficient
trade. The efficient trade, λ∗, maximizes the total increase
in value across bidders.

Definition 1 (Efficient trade). The efficient trade
λ∗ solves

max
(λ1,...,λn)

�

i

vi(λi)

s.t. λij + x0
ij ≥ 0, ∀i, ∀j (1)

�

i

λij ≤ 0, ∀j (2)

λij ∈ �
(3)

Constraints (1) ensure that no agent sells more items than
it has in its initial allocation. Constraints (2) provide free
disposal, and allows feasible trades to sell more items than
are purchased (but not vice versa).

Later, we adopt Feas(x0) to denote the set of feasible
trades, given these constraints and given an initial alloca-
tion x0 = (x0

1, . . . , x
0
n).

3.1 Working Examples
In this section, we provide three simple examples of in-

stances that we will use to illustrate various components of
the exchange. All three examples have only one seller, but
this is purely illustrative.

Example 1. One seller and one buyer, two goods {A, B},
with the seller having an initial allocation of AB. Changes
in values for trades:

seller buyer
AND(−A,−B) AND(+A, +B)

-10 +20

The “AND” indicates that both the buyer and the seller
are only interested in trading both goods as a bundle. Here,
the efficient (value-maximizing) trade is for the seller to sell
AB to the buyer, denoted λ∗ = ([−1,−1], [+1, +1]).

Example 2. One seller and four buyers, four goods {A, B,
C, D}, with the seller having an initial allocation of ABCD.
Changes in values for trades:

seller buyer1 buyer 2 buyer 3 buyer 4
OR(−A,−B, AND(+A, XOR(+A, AND(+C, XOR(+C,

−C,−D) +B) +B) +D) +D)
0 +6 +4 +3 +2

2,2

+A

+10

+B

+10

BUYER

2,2

-A

-5

-B

-5

SELLER

Example 1: Example 3:

2,2

+C +D

BUYER 2

2,2

+A +B

BUYER 1

+11 +84,4

-B

SELLER

-A -C -D

Example 2:

1,1

+A +B

BUYER 2

2,2

+A +B

BUYER 1

+6 +40,4

-B

SELLER

-C -D-A

1,1

+C +D

BUYER 4

2,2

+C +D

+3 +2

BUYER 3

-18

Figure 2: Example Bid Trees.

The “OR” indicates that the seller is willing to sell any
number of goods. The “XOR” indicates that buyers 2 and
4 are willing to buy at most one of the two goods in which
they are interested. The efficient trade is for bundle AB
to go to buyer 1 and bundle CD to buyer 3, denoted λ∗ =
([−1,−1,−1,−1], [+1, +1, 0, 0], [0, 0, 0, 0], [0, 0, +1, +1],
[0, 0, 0, 0]).

Example 3. One seller and two buyers, four goods {A, B,
C, D}, with the seller having an initial allocation of ABCD.
Changes in values for trades:

seller buyer1 buyer 2
AND(−A,−B,−C,−D) AND(+A, +B) AND(+C, +D)

-18 +11 +8

The efficient trade is for bundle AB to go to buyer 1 and
bundle CD to go to buyer 2, denoted λ∗ = ([−1,−1,−1,−1],
[+1, +1, 0, 0], [0, 0, +1, +1]).

4. A ONE-SHOT EXCHANGE DESIGN
The description of ICE is broken down into two sections:

one-shot (sealed-bid) and iterative. In this section we ab-
stract away the iterative aspect and introduce a specializa-
tion of the tree-based language that supports only exact
values on nodes.

4.1 Tree-Based Bidding Language
The bidding language is designed to be expressive and

concise, entirely symmetric with respect to buyers and sell-
ers, and to extend to capture bids from mixed buyers and
sellers, ranging from simple swaps to highly complex trades.
Bids are expressed as annotated bid trees, and define a bid-
der’s value for all possible trades.

The language defines changes in values on trades, with
leaves annotated with traded items and nodes annotated
with changes in values (either positive or negative). The
main feature is that it has a general “interval-choose” log-
ical operator on internal nodes, and that it defines careful
semantics for propagating values within the tree. We illus-
trate the language on each of Examples 1–3 in Figure 2.

The language has a tree structure, with trades on items
defined on leaves and values annotated on nodes and leaves.
The nodes have zero values where no value is indicated.
Internal nodes are also labeled with interval-choose (IC)
ranges. Given a trade, the semantics of the language define
which nodes in the tree can be satisfied, or “switched-on.”
First, if a child is on then its parent must be on. Second, if

a parent node is on, then the number of children that are on
must be within the IC range on the parent node. Finally,
leaves in which the bidder is buying items can only be on if
the items are provided in the trade.

For instance, in Example 2 we can consider the efficient
trade, and observe that in this trade all nodes in the trees of
buyers 1 and 3 (and also the seller), but none of the nodes in
the trees of buyers 2 and 4, can be on. On the other hand, in
the trade in which A goes to buyer 2 and D to buyer 4, then
the root and appropriate leaf nodes can be on for buyers 2
and 4, but no nodes can be on for buyers 1 and 3. Given a
trade there is often a number of ways to choose the set of
satisfied nodes. The semantics of the language require that
the nodes that maximize the summed value across satisfied
nodes be activated.

Consider bid tree Ti from bidder i. This defines nodes β ∈
Ti, of which some are leaves, Leaf (i) ⊆ Ti. Let Child(β) ⊆
Ti denote the children of a node β (that is not itself a leaf).
All nodes except leaves are labeled with the interval-choose
operator [IC x

i (β), IC y
i (β)]. Every node is also labeled with a

value, viβ ∈ � . Each leaf β is labeled with a trade, qiβ ∈ � m

(i.e., leaves can define a bundled trade on more than one
type of item.)

Given a trade λi to bidder i, the interval-choose operators
and trades on leaves define which nodes can be satisfied.
There will often be a choice. Ties are broken to maximize
value. Let sat iβ ∈ {0, 1} denote whether node β is satisfied.
Solution sat i is valid given tree Ti and trade λi, written
sat i ∈ valid(Ti, λi), if and only if:

�

β∈Leaf (i)

qiβj · sat iβ ≤ λij , ∀i, ∀j (4)

ICx
i (β)sat iβ ≤

�

β′∈Child(β)

sat iβ′ ≤ IC y
i (β)sat iβ, ∀β /∈ Leaf (i) (5)

In words, a set of leaves can only be considered satisfied
given trade λi if the total increase in quantity summed across
all such leaves is covered by the trade, for all goods (Eq. 4).
This works for sellers as well as buyers: for sellers a trade
is negative and this requires that the total number of items
indicated sold in the tree is at least the total number sold as
defined in the trade. We also need “upwards-propagation”:
any time a node other than the root is satisfied then its par-
ent must be satisfied (by � β′∈Child(β) sat iβ′ ≤ IC y

i (β)sat iβ

in Eq. 5). Finally, we need “downwards-propagation”: any
time an internal node is satisfied then the appropriate num-
ber of children must also be satisfied (Eq. 5). The total
value of trade λi, given bid-tree Ti, is defined as:

vi(Ti, λi) = max
sat∈valid(Ti,λi)

�

β∈T

vβ · satβ (6)

The tree-based language generalizes existing languages.
For instance: IC (2, 2) on a node with 2 children is equivalent
to an AND operator; IC (1, 3) on a node with 3 children is
equivalent to an OR operator; and IC (1, 1) on a node with
2 children is equivalent to an XOR operator. Similarly, the
XOR/OR bidding languages can be directly expressed as a
bid tree in our language.2

2The OR* language is the OR language with dummy items
to provide additional structure. OR* is known to be expres-
sive and concise. However, it is not known whether OR*
dominates XOR/OR in terms of conciseness [23].

4.2 Winner Determination
This section defines the winner determination problem,

which is formulated as a MIP and solved in our implemen-
tation with a commercial solver.3 The solver uses branch-
and-bound search with dynamic cut generation and branch-
ing heuristics to solve large MIPs in economically feasible
run times.

In defining the MIP representation we are careful to avoid
an XOR-based enumeration of all bundles. A variation on
the WD problem is reused many times within the exchange,
e.g. for column generation in pricing and for checking re-
vealed preference.

Given bid trees T = (T1, . . . , Tn) and initial allocation x0,
the mixed-integer formulation for WD is:

WD(T, x0) : max
λ,sat

�

i

�

β∈Ti

viβ · sat iβ

s.t. (1), (2), sat iβ ∈ {0, 1}, λij ∈ �

sat i ∈ valid(Ti, λi), ∀i

Some goods may go unassigned because free disposal is
allowed within the clearing rules of winner determination.
These items can be allocated back to agents that sold the
items, i.e. for which λij < 0.

4.3 Computing Threshold Payments
The Threshold payment rule is based on the payments

in the Vickrey-Clarke-Groves (VCG) mechanism [15], which
itself is truthful and efficient but does not satisfy budget
balance. Budget-balance requires that the total payments
to the exchange are equal to the total payments made by
the exchange. In VCG, the payment paid by agent i is

pvcg,i = v̂(λ∗
i) − (V ∗ − V−i) (7)

where λ∗ is the efficient trade, V ∗ is the reported value of
this trade, and V−i is the reported value of the efficient
trade that would be implemented without bidder i. We
call ∆vcg,i = V ∗ − V−i the VCG discount. For instance,
in Example 1 pvcg,seller = −10 − (+10 − 0) = −20 and
pvcg,buyer = +20 − (+10 − 0) = 10, and the exchange would
run at a budget deficit of −20 + 10 = −10.

The Threshold payment rule [24] determines budget-
balanced payments to minimize the maximal error across all
agents to the VCG outcome.

Definition 2. The Threshold payment scheme implements
the efficient trade λ∗ given bids, and sets payments pthresh,i =
v̂i(λ

∗
i) − ∆i, where ∆ = (∆1, . . . , ∆n) is set to minimize

maxi(∆vcg,i − ∆i) subject to ∆i ≤ ∆vcg,i and � i ∆i ≤ V ∗

(this gives budget-balance).

Example 4. In Example 2, the VCG discounts are (9, 2,
0, 1, 0) to the seller and four buyers respectively, VCG pay-
ments are (−9, 4, 0, 2, 0) and the exchange runs at a deficit
of -3. In Threshold, the discounts are (8, 1, 0, 0, 0) and the
payments are (−8, 5, 0, 3, 0). This minimizes the worst-case
error to VCG discounts across all budget-balanced payment
schemes.

Threshold payments are designed to minimize the maxi-
mal ex post incentive to manipulate. Krych [16] confirmed
that Threshold promotes allocative efficiency in restricted
and approximate Bayes-Nash equilibrium.

3CPLEX, www.ilog.com

5. THE ICE DESIGN
We are now ready to introduce the iterative combinato-

rial exchange (ICE) design. Several new components are
introduced, relative to the design for the one-shot exchange.
Rather than provide precise valuations, bidders can provide
lower and upper valuations and revise this bid information
across rounds. The exchange provides price-based feedback
to guide bidders in this process, and terminates with an
efficient (or approximately-efficient) trade with respect to
reported valuations.

In each round t ∈ {0, 1, . . .} the current lower and upper
bounds, vt and vt, are used to define a provisional valua-
tion profile vα (the α-valuation), together with a provisional
trade λt and provisional prices pt = (pt

1, . . . , p
t
m) on items.

The α-valuation is a linear combination of the current up-
per and lower valuations, with αEFF ∈ [0, 1] chosen endoge-
nously based on the “closeness” of the optimistic trade (at
v) and the pessimistic trade (at v). Prices pt are used to in-
form an activity rule, and drive progress towards an efficient
trade.

5.1 Upper and Lower Valuations
The bidding language is extended to allow a bidder i to re-

port a lower and upper value (viβ , viβ) on each node. These
take the place of the exact value viβ defined in Section 4.1.
Based on these labels, we can define the valuation functions
vi(Ti, λi) and vi(Ti, λi), using the exact same semantics as
in Eq. (6). We say that such a bid-tree is well-formed if
viβ ≤ viβ for all nodes. The following lemma is useful:

Lemma 1. Given a well-formed tree, T , then vi(Ti, λi) ≤
vi(Ti, λi) for all trades.

Proof. Suppose there is some λi for which vi(Ti, λi) >
vi(Ti, λi). Then, maxsat∈valid(Ti,λi) � β∈Ti

viβ · satβ >

maxsat∈valid(Ti,λi) � β∈Ti
viβ · satβ. But, this is a contra-

diction because the trade λ′ that defines vi(Ti, λi) is still
feasible with upper bounds vi, and viβ ≥ viβ for all nodes
β in a well-formed tree.

5.2 Price Feedback
In each round, approximate competitive-equilibrium (CE)

prices, pt = (pt
1, . . . , p

t
m), are determined. Given these pro-

visional prices, the price on trade λi for bidder i is pt(λi) =
� j≤m pt

j · λij .

Definition 3 (CE prices). Prices p∗ are competitive
equilibrium prices if the efficient trade λ∗ is supported at
prices p∗, so that for each bidder:

λ∗
i ∈ arg max

λ∈Feas(x0)
{vi(λi) − p∗(λi)} (8)

CE prices will not always exist and we will often need to
compute approximate prices [5]. We extend ideas due to
Rassenti et al. [26], Kwasnica et al. [17] and Dunford et al.
[12], and select approximate prices as follows:

I: Accuracy. First, we compute prices that minimize the
maximal error in the best-response constraints across
all bidders.

II: Fairness. Second, we break ties to prefer prices that
minimize the maximal deviation from Threshold pay-
ments across all bidders.

III: Balance. Third, we break ties to prefer prices that
minimize the maximal price across all items.

Taken together, these steps are designed to promote the
informativeness of the prices in driving progress across rounds.

In computing prices, we explain how to compute approxi-
mate (or otherwise) prices for structured bidding languages,
and without enumerating all possible trades. For this, we
adopt constraint generation to efficient handle an exponen-
tial number of constraints. Each step is described in detail
below.
I: Accuracy. We adopt a definition of price accuracy that
generalizes the notions adopted in previous papers for un-
structured bidding languages. Let λt denote the current
provisional trade and suppose the provisional valuation is
vα. To compute accurate CE prices, we consider:

min
p,δ

δ (9)

s.t. vα
i (λ) − p(λ) ≤ vα

i (λt
i) − p(λt

i) + δ, ∀i, ∀λ (10)

δ ≥ 0,pj ≥ 0, ∀j.

This linear program (LP) is designed to find prices that
minimize the worst-case error across all agents.

From the definition of CE prices, it follows that CE prices
would have δ = 0 as a solution to (9), at which point trade
λt

i would be in the best-response set of every agent (with
λt

i = ∅, i.e. no trade, for all agents with no surplus for trade
at the prices.)

Example 5. We can illustrate the formulation (9) on Ex-
ample 2, assuming for simplicity that vα = v (i.e. truth).
The efficient trade allocates AB to buyer 1 and CD to buyer
3. Accuracy will seek prices p(A), p(B), p(C) and p(D) to
minimize the δ ≥ 0 required to satisfy constraints:

p(A) + p(B) + p(C) + p(D) ≥ 0 (seller)

p(A) + p(B) ≤ 6 + δ (buyer 1)

p(A) + δ ≥ 4, p(B) + δ ≥ 4 (buyer 2)

p(C) + p(D) ≤ 3 (buyer 3)

p(C) + δ ≥ 2, p(D) + δ ≥ 2 (buyer 4)

An optimal solution requires p(A) = p(B) = 10/3, with
δ = 2/3, with p(C) and p(D) taking values such as p(C) =
p(D) = 3/2.

But, (9) has an exponential number of constraints (Eq. 10).
Rather than solve it explicitly we use constraint genera-
tion [4] and dynamically generate a sufficient subset of con-
straints. Let � i denote a manageable subset of all possible
feasible trades to bidder i. Then, a relaxed version of (9)
(written ACC) is formulated by substituting (10) with

vα
i (λ) − p(λ) ≤ vα

i (λt
i) − p(λt

i) + δ, ∀i, ∀λ ∈ � i , (11)

where � i is a set of trades that are feasible for bidder i
given the other bids. Fixing the prices p∗, we then solve n
subproblems (one for each bidder),

max
λ

vα
i (λi) − p∗(λi) [R-WD(i)]

s.t. λ ∈ Feas(x0), (12)

to check whether solution (p∗, δ∗) to ACC is feasible in prob-
lem (9). In R-WD(i) the objective is to determine a most

preferred trade for each bidder at these prices. Let λ̂i denote

the solution to R-WD(i). Check condition:

vα
i (λ̂i) − p∗(λ̂) ≤ vα

i (λt
i) − p∗(λt

i) + δ∗, (13)

and if this condition holds for all bidders i, then solution
(p∗, δ∗) is optimal for problem (9). Otherwise, trade λ̂i is
added to � i for all bidders i for which this constraint is
violated and we re-solve the LP with the new set of con-
straints.4

II: Fairness. Second, we break remaining ties to prefer fair
prices: choosing prices that minimize the worst-case error
with respect to Threshold payoffs (i.e. utility to bidders with
Threshold payments), but without choosing prices that are
less accurate.5

Example 6. For example, accuracy in Example 1 (de-
picted in Figure 1) requires 12 ≤ pA +pB ≤ 16 (for vα = v).
At these valuations the Threshold payoffs would be 2 to both
the seller and the buyer. This can be exactly achieved in
pricing with pA + pB = 14.

The fairness tie-breaking method is formulated as the fol-
lowing LP:

min
p,π

π [FAIR]

s.t. vα
i (λ) − p(λ) ≤ vα

i (λt
i) − p(λt

i) + δ∗i , ∀i, ∀λ ∈ � i (14)

π ≥ πvcg,i − (vα
i (λt

i) − p(λt
i)), ∀i (15)

π ≥ 0,pj ≥ 0, ∀j,

where δ∗ represents the error in the optimal solution, from
ACC. The objective here is the same as in the Threshold
payment rule (see Section 4.3): minimize the maximal er-
ror between bidder payoff (at vα) for the provisional trade
and the VCG payoff (at vα). Problem FAIR is also solved
through constraint generation, using R-WD(i) to add addi-
tional violated constraints as necessary.
III: Balance. Third, we break remaining ties to prefer bal-
anced prices: choosing prices that minimize the maximal
price across all items. Returning again to Example 1, de-
picted in Figure 1, we see that accuracy and fairness require
p(A) + p(B) = 14. Finally, balance sets p(A) = p(B) = 7.
Balance is justified when, all else being equal, items are
more likely to have similar than dissimilar values.6 The LP
for balance is formulated as follows:

min
p,Y

Y [BAL]

s.t. vα
i (λ) − p(λ) ≤ vα

i (λt
i) − p(λt

i) + δ∗i , ∀i, ∀λ ∈ � i (16)

π∗
i ≥ πvcg,i − (vα

i (λt
i) − p(λt

i)), ∀i, (17)

Y ≥ pj , ∀j (18)

Y ≥ 0, pj ≥ 0, ∀j,

4Problem R-WD(i) is a specialization of the WD problem,
in which the objective is to maximize the payoff of a single
bidder, rather than the total value across all bidders. It is
solved as a MIP, by rewriting the objective in WD(T, x0)
as max{viβ · sat iβ − � j p∗

j · λij} for agent i. Thus, the
structure of the bid-tree language is exploited in generating
new constraints, because this is solved as a concise MIP.
The other bidders are kept around in the MIP (but do not
appear in the objective), and are used to define the space of
feasible trades.
5The methods of Dunford et al. [12], that use a nucleolus
approach, are also closely related.
6The use of balance was advocated by Kwasnica et al. [17].
Dunford et al. [12] prefer to smooth prices across rounds.

where δ∗ represents the error in the optimal solution from
ACC and π∗ represents the error in the optimal solution
from FAIR. Constraint generation is also used to solve BAL,
generating new trades for � i as necessary.
Comment 1: Lexicographical Refinement. For all
three sub-problems we also perform lexicographical refine-
ment (with respect to bidders in ACC and FAIR, and with
respect to goods in BAL). For instance, in ACC we succes-
sively minimize the maximal error across all bidders. Given
an initial solution we first “pin down” the error on all bid-
ders for whom a constraint (11) is binding. For such a bidder
i, the constraint is replaced with

vα
i (λ) − p(λ) ≤ vα

i (λt
i) − p(λt

i) + δ∗i , ∀λ ∈ � i , (19)

and the error to bidder i no longer appears explicitly in
the objective. ACC is then re-solved, and makes progress
by further minimizing the maximal error across all bidders
yet to be pinned down. This continues, pinning down any
new bidders for whom one of constraints (11) is binding,
until the error is lexicographically optimized for all bid-
ders.7 The exact same process is repeated for FAIR and
BAL, with bidders pinned down and constraints (15) re-
placed with π∗

i ≥ πvcg,i − (vα
i (λt

i) − p(λt
i)), ∀λ ∈ � i , (where

π∗
i is the current objective) in FAIR, and items pinned down

and constraints (18) replaced with p∗
j ≥ pj (where p∗

j rep-
resents the target for the maximal price on that item) in
BAL.
Comment 2: Computation. All constraints in � i are
retained, and this set grows across all stages and across all
rounds of the exchange. Thus, the computational effort in
constraint generation is re-used. In implementation we are
careful to address a number of “ε-issues” that arise due to
floating-point issues. We prefer to err on the side of being
conservative in determining whether or not to add another
constraint in performing check (13). This avoids later infea-
sibility issues. In addition, when pinning-down bidders for
the purpose of lexicographical refinement we relax the asso-
ciated bidder-constraints with a small ε > 0 on the right-
hand side.

5.3 Revealed-Preference Activity Rules
The role of activity rules in the auction is to ensure both

consistency and progress across rounds [21]. Consistency in
our exchange requires that bidders tighten bounds as the
exchange progresses. Activity rules ensure that bidders are
active during early rounds, and promote useful elicitation
throughout the exchange.

We adopt a simple revealed-preference (RP) activity rule.
The idea is loosely based around the RP-rule in Ausubel et
al. [1], where it is used for one-sided CAs. The motivation
is to require more than simply consistency: we need bidders
to provide enough information for the system to be able to
to prove that an allocation is (approximately) efficient.

It is helpful to think about the bidders interacting with
“proxy agents” that will act on their behalf in responding
to provisional prices pt−1 determined at the end of round
t − 1. The only knowledge that such a proxy has of the

7For example, applying this to accuracy on Example 2 we
solve once and find bidders 1 and 2 are binding, for error
δ∗ = 2/3. We pin these down and then minimize the error
to bidders 3 and 4. Finally, this gives p(A) = p(B) = 10/3
and p(C) = p(D) = 5/3, with accuracy 2/3 to bidders 1 and
2 and 1/3 to bidders 3 and 4.

valuation of a bidder is through the bid-tree. Suppose a
proxy was queried by the exchange and asked which trade
the bidder was most interested in at the provisional prices.
The RP rule says the following: the proxy must have enough
information to be able to determine this surplus-maximizing
trade at current prices. Consider the following examples:

Example 7. A bidder has XOR(+A, +B) and a value of
+5 on the leaf +A and a value range of [5,10] on leaf +B.
Suppose prices are currently 3 for each of A and B. The RP
rule is satisfied because the proxy knows that however the
remaining value uncertainty on +B is resolved the bidder
will always (weakly) prefer +B to +A.

Example 8. A bidder has XOR(+A, +B) and value
bounds [5, 10] on the root node and a value of 1 on leaf +A.
Suppose prices are currently 3 for each of A and B. The RP
rule is satisfied because the bidder will always prefer +A to
+B at equal prices, whichever way the uncertain value on
the root node is ultimately resolved.

Overloading notation, let vi ∈ Ti denote a valuation that
is consistent with lower and upper valuations in bid tree Ti.

Definition 4. Bid tree Ti satisfies RP at prices pt−1 if
and only if there exists some feasible trade L∗ for which,

vi(L
∗
i) − pt−1(L∗

i) ≥ max
λ∈Feas(x0)

vi(λi) − pt−1(λi), ∀vi ∈ Ti.

(20)

To make this determination for bidder i we solve a se-
quence of problems, each of which is a variation on the WD
problem. First, we construct a candidate lower-bound trade,
which is a feasible trade that solves:

max
λ

vi(λi) − pt−1(λi) [RP1(i)]

s.t. λ ∈ Feas(x0), (21)

The solution π∗
l to RP1(i) represents the maximal payoff

that bidder i can achieve across all feasible trades, given its
pessimistic valuation.

Second, we break ties to find a trade with maximal value
uncertainty across all possible solutions to RP1(i):

max
λ

vi(λi) − vi(λi) [RP2(i)]

s.t. λ ∈ Feas(x0) (22)

vi(λi) − pt−1(λi) ≥ π∗
l (23)

We adopt solution L∗
i as our candidate for the trade that

may satisfy RP. To understand the importance of this tie-
breaking rule consider Example 7. The proxy can prove +B
but not +A is a best-response for all vi ∈ Ti, and should
choose +B as its candidate. Notice that +B is a counterex-
ample to +A, but not the other way round.

Now, we construct a modified valuation ṽi, by setting

ṽiβ =

�
viβ , if β ∈ sat(L∗

i)
viβ , otherwise.

(24)

where sat(L∗
i) is the set of nodes that are satisfied in the

lower-bound tree for trade L∗
i . Given this modified valua-

tion, we find U∗ to solve:

max
λ

ṽi(λi) − pt−1(λi) [RP3(i)]

s.t. λ ∈ Feas(x0) (25)

Let π∗
u denote the payoff from this optimal trade at modified

values ṽ. We call trade U∗
i the witness trade. We show in

Proposition 1 that the RP rule is satisfied if and only if
π∗

l ≥ π∗
u.

Constructing the modified valuation as ṽi recognizes that
there is “shared uncertainty” across trades that satisfy the
same nodes in a bid tree. Example 8 helps to illustrate this.
Just using vi in RP3(i), we would find L∗

i is “buy A” with
payoff π∗

l = 3 but then find U∗
i is “buy B” with π∗

u = 7 and
fail RP. We must recognize that however the uncertainty on
the root node is resolved it will affect +A and +B in exactly
the same way. For this reason, we set ṽiβ = viβ = 5 on the
root node, which is exactly the same value that was adopted
in determining π∗

l . Then, RP3(i) applied to U∗
i gives “buy

A” and the RP test is judged to be passed.

Proposition 1. Bid tree Ti satisfies RP given prices pt−1

if and only if any lower-bound trade L∗
i that solves RP1(i)

and RP2(i) satisfies:

vi(Ti, L
∗
i) − pt−1(L∗

i) ≥ ṽi(Ti, U
∗
i) − pt−1(U∗

i), (26)

where ṽi is the modified valuation in Eq. (24).

Proof. For sufficiency, notice that the difference in pay-
off between trade L∗

i and another trade λi is unaffected by
the way uncertainty is resolved on any node that is satisfied
in both L∗

i and λi. Fixing the values in ṽi on nodes satisfied
in L∗

i has the effect of removing this consideration when a
trade U∗

i is selected that satisfies one of these nodes. On
the other hand, fixing the values on these nodes has no ef-
fect on trades considered in RP3(i) that do not share a node
with L∗

i . For the necessary direction, we first show that any
trade that satisfies RP must solve RP1(i). Suppose other-
wise, that some λi with payoff greater than π∗

l satisfies RP.
But, valuation vi ∈ Ti together with L∗

i presents a coun-
terexample to RP (Eq. 20). Now, suppose (for contradic-
tion) that some λi with maximal payoff π∗

l but uncertainty
less than L∗

i satisfies RP. Proceed by case analysis. Case
a): only one solution to RP1(i) has uncertain value and so
λi has certain value. But, this cannot satisfy RP because
L∗

i with uncertain value would be a counterexample to RP
(Eq. 20). Case b): two or more solutions to RP1(i) have un-
certain value. Here, we first argue that one of these trades
must satisfy a (weak) superset of all the nodes with uncer-
tain value that are satisfied by all other trades in this set.
This is by RP. Without this, then for any choice of trade
that solves RP1(i), there is another trade with a disjoint set
of uncertain but satisfied nodes that provides a counterex-
ample to RP (Eq. 20). Now, consider the case that some
trade contains a superset of all the uncertain satisfied nodes
of the other trades. Clearly RP2(i) will choose this trade,
L∗

i , and λi must satisfy a subset of these nodes (by assump-
tion). But, we now see that λi cannot satisfy RP because
L∗

i would be a counterexample to RP.

Failure to meet the activity rule must have some conse-
quence. In the current rules, the default action we choose
is to set the upper bounds in valuations down to the maxi-
mal value of the provisional price on a node8 and the lower-

8The provisional price on a node is defined as the minimal
total price across all feasible trades for which the subtree
rooted at the tree is satisfied.

bound value on that node.9 Such a bidder can remain active
within the exchange, but only with valuations that are con-
sistent with these new bounds.

5.4 Bidder Feedback
In each round, our default design provides every bidder

with the provisional trade and also with the current provi-
sional prices. See 7 for an additional discussion. We also
provide guidance to help a bidder meet the RP rule. Let
sat(L∗

i) and sat (U∗
i) denote the nodes that are satisfied in

trades L∗
i and U∗

i , as computed in RP1–RP3.

Lemma 2. When RP fails, a bidder must increase a lower
bound on at least one node in sat(L∗

i) \ sat(U∗
i) or decrease

an upper bound on at least one node in sat(U ∗
i) \ sat(L∗

i) in
order to meet the activity rule.

Proof. Changing the upper- or lower- values on nodes
that are not satisfied by either trade does not change L∗

i or
U∗

i , and does not change the payoff from these trades. Thus,
the RP condition will continue to fail. Similarly, changing
the bounds on nodes that are satisfied in both trades has
no effect on revealed preference. A change to a lower bound
on a shared node affects both L∗

i and U∗
i identically because

of the use of the modified valuation to determine U∗
i . A

change to an upper bound on a shared node has no effect in
determining either L∗

i or U∗
i .

Note that when sat(U∗
i) = sat(L∗

i) then condition (26) is
always trivially satisfied, and so the guidance in the lemma
is always well-defined when RP fails. This is an elegant
feedback mechanism because it is adaptive. Once a bidder
makes some changes on some subset of these nodes, the bid-
der can query the exchange. The exchange can then respond
“yes,” or can revise the set of nodes sat(λ∗

l) and sat(λ∗
u) as

necessary.

5.5 Termination Conditions
Once each bidder has committed its new bids (and either

met the RP rule or suffered the penalty) then round t closes.
At this point, the task is to determine the new α-valuation,
and in turn the provisional allocation λt and provisional
prices pt. A termination condition is also checked, to de-
termine whether to move the exchange to a last-and-final
round. To define the α-valuation we compute the following
two quantities:

Pessimistic at Pessimistic (PP) Determine an efficient
trade, λ∗

l , at pessimistic values, i.e. to solve
maxλ � i vi(λi), and set PP= � i vi(λ

∗
li).

Pessimistic at Optimistic (PO) Determine an efficient
trade, λ∗

u, at optimistic values, i.e. to solve
maxλ � i vi(λi), and set PO= � i vi(λ

∗
ui).

First, note that PP ≥ PO and PP ≥ 0 by definition,
for all bid-trees, although PO can be negative (because the
“right” trade at v is not currently a useful trade at v). Rec-
ognizing this, define

γeff(PP, PO) = 1 +
PP − PO

PP
, (27)

9This is entirely analogous to when a bidder in an ascending
clock auction stops bidding at a price: she is not permitted
to bid at a higher price again in future rounds.

when PP > 0, and observe that γeff(PP, PO) ≥ 1 when
this is defined, and that γeff(PP, PO) will start large and
then trend towards 1 as the optimistic allocation converges
towards the pessimistic allocation. In each round, we define
αeff ∈ [0, 1] as:

αeff =

�
0 when PP is 0
1/γeff otherwise

(28)

which is 0 while PP is 0 and then trends towards 1 once
PP> 0 in some round. This is used to define α-valuation

vα
i = αeffvi + (1 − αeff)vi, ∀i, (29)

which is used to define the provisional allocation and provi-
sional prices. The effect is to endogenously define a sched-
ule for moving from optimistic to pessimistic values across
rounds, based on how “close” the trades are to one another.
Termination Condition. In moving to the last-and-final
round, and finally closing, we also care about the conver-
gence of payments, in addition to the convergence towards
an efficient trade. For this we introduce another parameter,
αthresh ∈ [0, 1], that trends from 0 to 1 as the Threshold
payments at lower and upper valuations converge. Consider
the following parameter:

γthresh = 1 +
||pthresh(v) − pthresh(v)||2

(PP/Nactive)
, (30)

which is defined for PP > 0, where pthresh(v) denotes the
Threshold payments at valuation profile v, Nactive is the
number of bidders that are actively engaged in trade in the
PP trade, and || · ||2 is the L2-norm. Note that γthresh is
defined for payments and not payoffs. This is appropriate
because it is the accuracy of the outcome of the exchange
that matters: i.e. the trade and the payments. Given this,
we define

αthresh =

�
0 when PP is 0
1/γthresh otherwise

(31)

which is 0 while PP is 0 and then trends towards 1 as
progress is made.

Definition 5 (termination). ICE transitions to a last-
and-final round when one of the following holds:

1. αeff ≥ CUTOFF eff and αthresh ≥ CUTOFF thresh,

2. there is no trade at the optimistic values,

where CUTOFF eff ,CUTOFF thresh ∈ (0, 1] determine the
accuracy required for termination.

At the end of the last-and-final round vα = v is used to
define the final trade and the final Threshold payments.

Example 9. Consider again Example 1, and consider the
upper and lower bounds as depicted in Figure 1. First, if the
seller’s bounds were [−20,−4] then there is an optimistic
trade but no pessimistic trade, and PO = −4 and PP = 0,
and αeff = 0. At the bounds depicted, both the optimistic
and the pessimistic trades occur and PO = PP = 4 and
αeff = 1. However, we can see the Threshold payments are
(17,−17) at v but (14,−14) at v. Evaluating γthresh, we

have γthresh = 1 +

√
1/2(32+32)

(4/2)
= 5/2, and αthresh = 2/5.

For CUTOFF thresh < 2/5 the exchange would remain open.
On the other hand, if the buyer’s value for +AB was be-
tween [18, 24] and the seller’s value for −AB was between
[−12,−6], the Threshold payments are (15,−15) at both up-
per and lower bounds, and αthresh = 1.

Component Purpose Lines
Agent. Captures strategic behavior and information revelation decisions 762
Model Support Provides XML support to load goods and valuations into world 200
World Keeps track of all agent, good, and valuation details 998
Exchange Driver & Communication Controls exchange, and coordinates remote agent behavior 585
Bidding Language Implements the tree-based bidding language 1119
Activity Rule Engine Implements the revealed preference rule with range support 203
Closing Rule Engine Checks if auction termination condition reached 137
WD Engine Provides WD-related logic 377
Pricing Engine Provides Pricing-related logic 460
MIP Builders Translates logic used by engines into our general optimizer formulation 346
Pricing Builders Used by three pricing stages 256
Winner Determination Builders Used by WD, activity rule, closing rule, and pricing constraint generation 365
Framework Support code; eases modular replacement of above components 510

Table 1: Exchange Component and Code Breakdown.

6. SYSTEMS INFRASTRUCTURE
ICE is approximately 6502 lines of Java code, broken up

into the functional packages described in Table 1.10

The prototype is modular so that researchers may easily
replace components for experimentation. In addition to the
core exchange discussed in this paper, we have developed
an agent component that allows a user to simulate the be-
havior and knowledge of other players in the system, better
allowing a user to formulate their strategy in advance of
actual play. A user specifies a valuation model in an XML-
interpretation of our bidding language, which is revealed to
the exchange via the agent’s strategy.

Major exchange tasks are handled by “engines” that dic-
tate the non-optimizer specific logic. These engines drive
the appropriate MIP/LP “builders”. We realized that all of
our optimization formulations boil down to two classes of
optimization problem. The first, used by winner determi-
nation, activity rule, closing rule, and constraint generation
in pricing, is a MIP that finds trades that maximize value,
holding prices and slacks constant. The second, used by the
three pricing stages, is an LP that holds trades constant,
seeking to minimize slack, profit, or prices. We take advan-
tage of the commonality of these problems by using common
LP/MIP builders that differ only by a few functional hooks
to provide the correct variables for optimization.

We have generalized our back-end optimization solver in-
terface11 (we currently support CPLEX and the LGPL- li-
censed LPSolve), and can take advantage of the load-balancing
and parallel MIP/LP solving capability that this library pro-
vides.

7. DISCUSSION
The bidding language was defined to allow for perfect sym-

metry between buyers and sellers and provide expressiveness
in an exchange domain, for instance for mixed bidders in-
terested in executing trades such as swaps. This proved
especially challenging. The breakthrough came when we fo-
cused on changes in value for trades rather than providing
absolute values for allocations. For simplicity, we require the
same tree structure for both the upper and lower valuations.

10Code size is measured in physical source line of code
(SLOC), as generated using David A. Wheeler’s SLOC
Count. The total of 6502 includes 184 for instrumentation
(not shown in the table). The JOpt solver interface is an-
other 1964 lines, and Castor automatically generates around
5200 lines of code for XML file manipulation.

11http://econcs.eecs.harvard.edu/jopt

This allows the language itself to ensure consistency (with
the upper value at least the lower value on all trades) and
enforce monotonic tightening of these bounds for all trades
across rounds. It also provides for an efficient method to
check the RP activity rule, because it makes it simple to
reason about “shared uncertainty” between trades.

The decision to adopt a “direct and proxied” approach
in which bidders express their upper and lower values to a
trusted proxy agent that interacts with the exchange was
made early in the design process. In many ways this is
the clearest and most immediate way to generalize the de-
sign in Parkes et al. [24] and make it iterative. In addition,
this removes much opportunity for strategic manipulation:
bidders are restricted to making (incremental) statements
about their valuations. Another advantage is that it makes
the activity rule easy to explain: bidders can always meet
the activity rule by tightening bounds such that their true
value remains in the support.12 Perhaps most importantly,
having explicit information on upper and lower values per-
mits progress in early rounds, even while there is no efficient
trade at pessimistic values.

Upper and lower bound information also provides guid-
ance about when to terminate. Note that taken by itself,
PP = PO does not imply that the current provisional trade
is efficient with respect to all values consistent with current
value information. The difference in values between differ-
ent trades, aggregated across all bidders, could be similar at
lower and upper bounds but quite different at intermediate
values (including truth). Nevertheless, we conjecture that
PP = PO will prove an excellent indicator of efficiency in
practical settings where the “shape” of the upper and lower
valuations does convey useful information. This is worthy of
experimental investigation. Moreover, the use of price and
RP activity provides additional guarantees.

We adopted linear prices (prices on individual items) rather
than non-linear prices (with prices on a trade not equal to
the sum of the prices on the component items) early in the
design process. The conciseness of this price representation
is very important for computational tractability within the
exchange and also to promote simplicity and transparency
for bidders. The RP activity rule was adopted later, and is
a good choice because of its excellent theoretical properties
when coupled with CE prices. The following can be easily
established: given exact CE prices pt−1 for provisional trade

12This is in contrast to indirect price-based approaches, such
as clock-proxy [1], in which bidders must be able to reason
about the RP-constraints implied by bids in each round.

λt−1 at valuations vα, then if the upper and lower values at
the start of round t already satisfy the RP rule (and without
the need for any tie-breaking), the provisional trade is effi-
cient for all valuations consistent with the current bid trees.
When linear CE prices exist, this provides for a soundness
and completeness statement: if PP = PO, linear CE prices
exist, and the RP rule is satisfied, the provisional trade is
efficient (soundness); if prices are exact CE prices for the
provisional trade at vα, but the trade is inefficient with re-
spect to some valuation profile consistent with the current
bid trees, then at least one bidder must fail RP with her
current bid tree and progress will be made (completeness).
Future work must study convergence experimentally, and
extend this theory to allow for approximate prices.

Some strategic aspects of our ICE design deserve com-
ment, and further study. First, we do not claim that truth-
fully responding to the RP rule is an ex post equilibrium.13

However, the exchange is designed to mimic the Threshold
rule in its payment scheme, which is known to have use-
ful incentive properties [16]. We must be careful, though.
For instance we do not suggest to provide αeff to bidders,
because as αeff approaches 1 it would inform bidders that
bid values are becoming irrelevant to determining the trade
but merely used to determine payments (and bidders would
become increasingly reluctant to increase their lower valua-
tions). Also, no consideration has been given in this work
to collusion by bidders. This is an issue that deserves some
attention in future work.

8. CONCLUSIONS
In this work we designed and prototyped a scalable and

highly-expressive iterative combinatorial exchange. The de-
sign includes many interesting features, including: a new
bid-tree language for exchanges, a new method to construct
approximate linear prices from expressive languages, and a
proxied elicitation method with optimistic and pessimistic
valuations with a new method to evaluate a revealed- pref-
erence activity rule. The exchange is fully implemented in
Java and is in a validation phase.

The next steps for our work are to allow bidders to refine
the structure of the bid tree in addition to values on the
tree. We intend to study the elicitation properties of the
exchange and we have put together a test suite of exchange
problem instances. In addition, we are beginning to engage
in collaborations to apply the design to airline takeoff and
landing slot scheduling and to resource allocation in wide-
area network distributed computational systems.

Acknowledgments
We would like to dedicate this paper to all of the participants
in CS 286r at Harvard University in Spring 2004. This work
is supported in part by NSF grant IIS-0238147.

9. REFERENCES
[1] L. Ausubel, P. Cramton, and P. Milgrom. The clock-proxy

auction: A practical combinatorial auction design. In Cramton
et al. [9], chapter 5.

[2] M. Babaioff, N. Nisan, and E. Pavlov. Mechanisms for a
spatially distributed market. In Proc. 5th ACM Conf. on
Electronic Commerce, pages 9–20, 2001.

[3] M. Ball, G. Donohue, and K. Hoffman. Auctions for the safe,
efficient, and equitable allocation of airspace system resources.
In S. Cramton, Shoham, editor, Combinatorial Auctions.
2004. Forthcoming.

13Given the Myerson-Satterthwaite impossibility theo-
rem [22] and the method by which we determine the trade
we should not expect this.

[4] D. Bertsimas and J. Tsitsiklis. Introduction to Linear
Optimization. Athena Scientific, 1997.

[5] S. Bikhchandani and J. M. Ostroy. The package assignment
model. Journal of Economic Theory, 107(2):377–406, 2002.

[6] C. Boutilier. Solving concisely expressed combinatorial auction
problems. In Proc. 18th National Conference on Artificial
Intelligence (AAAI-02), July 2002.

[7] C. Boutilier and H. Hoos. Bidding languages for combinatorial
auctions. In Proc. 17th International Joint Conference on
Artificial Intelligence (IJCAI-01), 2001.

[8] W. Conen and T. Sandholm. Preference elicitation in
combinatorial auctions. In Proc. 3rd ACM Conf. on
Electronic Commerce (EC-01), pages 256–259, 2001.

[9] P. Cramton, Y. Shoham, and R. Steinberg, editors. MIT Press,
2004.

[10] S. de Vries, J. Schummer, and R. V. Vohra. On ascending
Vickrey auctions for heterogeneous objects. Technical report,
MEDS, Kellogg School, Northwestern University, 2003.

[11] S. de Vries and R. V. Vohra. Combinatorial auctions: A
survey. Informs Journal on Computing, 15(3):284–309, 2003.

[12] M. Dunford, K. Hoffman, D. Menon, R. Sultana, and
T. Wilson. Testing linear pricing algorithms for use in
ascending combinatorial auctions. Technical report, SEOR,
George Mason University, 2003.

[13] Y. Fu, J. Chase, B. Chun, S. Schwab, and A. Vahdat. SHARP:
an architecture for secure resource peering. In Proceedings of
the nineteenth ACM symposium on Operating systems
principles, pages 133–148, 2003.

[14] B. Hudson and T. Sandholm. Effectiveness of query types and
policies for preference elicitation in combinatorial auctions. In
Proc. 3rd Int. Joint. Conf. on Autonomous Agents and Multi
Agent Systems, pages 386–393, 2004.

[15] V. Krishna. Auction Theory. Academic Press, 2002.

[16] D. Krych. Calculation and analysis of Nash equilibria of
Vickrey-based payment rules for combinatorial exchanges,
April 2003.

[17] A. M. Kwasnica, J. O. Ledyard, D. Porter, and C. DeMartini.
A new and improved design for multi-object iterative auctions.
Management Science, 2004. To appear.

[18] E. Kwerel and J. Williams. A proposal for a rapid transition to
market allocation of spectrum. Technical report, FCC Office of
Plans and Policy, Nov 2002.

[19] S. M. Lahaie and D. C. Parkes. Applying learning algorithms
to preference elicitation. In Proc. ACM Conf. on Electronic
Commerce, pages 180–188, 2004.

[20] R. P. McAfee. A dominant strategy double auction. J. of
Economic Theory, 56:434–450, 1992.

[21] P. Milgrom. Putting auction theory to work: The simultaneous
ascending auction. Journal of Political Economy,
108:245–272, 2000.

[22] R. B. Myerson and M. A. Satterthwaite. Efficient mechanisms
for bilateral trading. Journal of Economic Theory,
28:265–281, 1983.

[23] N. Nisan. Bidding and allocation in combinatorial auctions. In
Proc. 2nd ACM Conf. on Electronic Commerce (EC-00),
pages 1–12, 2000.

[24] D. C. Parkes, J. R. Kalagnanam, and M. Eso. Achieving
budget-balance with Vickrey-based payment schemes in
exchanges. In Proc. 17th International Joint Conference on
Artificial Intelligence (IJCAI-01), pages 1161–1168, 2001.

[25] D. C. Parkes and L. H. Ungar. Iterative combinatorial
auctions: Theory and practice. In Proc. 17th National
Conference on Artificial Intelligence (AAAI-00), pages
74–81, July 2000.

[26] S. J. Rassenti, V. L. Smith, and R. L. Bulfin. A combinatorial
mechanism for airport time slot allocation. Bell Journal of
Economics, 13:402–417, 1982.

[27] M. H. Rothkopf, A. Pekeč, and R. M. Harstad.
Computationally manageable combinatorial auctions.
Management Science, 44(8):1131–1147, 1998.

[28] T. Sandholm and C. Boutilier. Preference elicitation in
combinatorial auctions. In Cramton et al. [9], chapter 10.

[29] T. Smith, T. Sandholm, and R. Simmons. Constructing and
clearing combinatorial exchanges using preference elicitation.
In AAAI-02 workshop on Preferences in AI and CP:
Symbolic Approaches, 2002.

[30] P. R. Wurman and M. P. Wellman. AkBA: A progressive,
anonymous-price combinatorial auction. In Second ACM
Conference on Electronic Commerce, pages 21–29, 2000.

