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Symbols

Symbol Domain Value Description

s n/a n/a The seller

n N n/a Number of buyers

N n/a {1, 2, . . . , n} The set of buyers

i N n/a A single buyer

ui R n/a The utility of buyer i

vi R+ n/a The per-byte value of data derive by buyer i

ai N n/a The allocation (in bytes) received by buyer i.

di N n/a Buyer i’s maximum demand (in bytes).

pi R n/a Buyer i’s per-packet price.

bi [r,∞) n/a Buyer i’s bid.

r R+ n/a Reserve price set by s.

b T (b1, . . . , bn) The bid vector for all buyers in N .

T n/a [r,∞)n The domain of bids.

A(·) b→ Nn
+ n/a The allocation rule.

A n/a Nn The realized allocation vector.

Ã(·) n/a Nn The allocation rule transformed by Babaioff et

al.’s generic transformation.

O n/a {OFIFO,OSTRICT } The mechanism’s induced routing prioritization.

Pi(b) T → R+ n/a Buyer i’s payoff function (the payment rule).
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Abstract

Mobile internet connectivity is an increasingly scarce yet indispensable commodity for mod-

ern internet users. Our work suggests a method for providing mobile internet connectivity

to laptops, tablets, and other devices without wide-area network adapters. We present

RABID, an efficient mechanism for exchanging Internet bandwidth between untrusted, self-

interested agents. RABID addresses the unique challenges of bandwidth trading, including

the lack of buyer-seller accountability and the impossibility of computing counterfactual

bandwidth allocations. At the core of our mechanism are two procedures: a randomized

auction mechanism due to Babaioff, Kleinberg, and Slivkins [2], and a large-scale payment

redistribution method. We provide a theoretical analysis of RABID, and conduct detailed

simulations to investigate its behavior. Our simulation results indicate that RABID produces

more truthful, constrained-efficient outcomes than two alternative mechanisms.
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Chapter 1

Introduction

The proliferation of networked devices strains all levels of today’s network infrastructure. All

too often, modern internet users struggle to find reasonably-priced internet access for their

laptops, tablets, or other mobile internet devices. Wireless access points are ill-equipped to

handle the surge in demand for connectivity that accompanies large gatherings of internet

users. A recent piece in the New York Times [1] chronicles the difficulties faced by technol-

ogy journalists in obtaining connectivtity during press conferences. It is only a matter of

time before average internet users demand connectivity with the same insistence as today’s

tech press.

Congestion is only one of the barriers to connectivity faced by mobile device users. In

airports and hotels, network access is often unreasonably and inflexibly priced. A business

traveller seeking to check her email during a one-hour layover between flights might be

charged a few dollars for only a handful of bytes.

Mobile device users need a new mode of access to the internet.

Zemilianov et al. [17] show that spilling excess demand for local-area network bandwidth

onto a separate wide-area network can serve as an effective countermeasure to the spikes in

demand which cripple overloaded wireless access points. However, a naive implementation

of this type of load sharing requires all internet devices to provide adapaters for local- as

well as wide-area networks. A more cost-effective approach is to leverage a small number of

devices with both types of network adapters, such as smartphones, to provide connectivity

to laptops, tablets, and other devices which offer only local-area network adapters.

The problem of diverting excess local-area network demand onto the wide-area network

is then reduced to the problem of efficiently allocating smartphone users’ wide-area network

bandwidth. But a mechanism to allow strangers to offload bandwidth to each other could

2



CHAPTER 1. INTRODUCTION 3

have a number of other uses. We are specifically interested in the possibility of granting

internet access to mobile device users in the absence of a local area network. Using this

mechanism, smartphone users could create mobile wireless hotspots for laptop and tablet

users. How, then, does one design an efficient mechanism to allocate bandwidth in this

situation?

Since internet users would need to make agreements between themselves rather than

with a trusted wide-area network provider, this bandwidth allocation mechanism should

prevent manipulation by the parties involved. All participants in the mechanism should be

unwilling or unable to deviate from the intended protocol. Buyers of bandwidth (the laptop

and tablet users) should be incentivized to report their true value for bandwidth. In the

language of auction theory, we say that for buyers, the mechanism must be truthful.

We have a similar requirement for the smartphone users, who sell bandwidth. Since it

is up to sellers to allocate bandwidth according to a specific protocol, we require that the

mechanism be faithful for sellers. Faithfulness is a property formally defined by Shneidman

and Parkes [10]. Informally, faithfulness is the requirement that agents find it in their best

interests to follow the intended protocol established by the mechanism designers.

Buyers and sellers will only participate in a bandwidth auction if they can be confident

that they will not be harmed as a result of their participation. If we guarantee the safety

of our mechanism in this regard, we insist it be individually rational.

Finally, we cannot lose sight of the goal of efficiency. This means that our mechanism

will give bandwidth to the internet users who get the most value from it. We discuss the

properties just mentioned in greater detail in Chapter 3.

It is well known in auction theory that there exists a mechanism which is truthful for buy-

ers, individually rational for all, and optimally efficient1. This is the Vickrey-Clarke-Groves

(VCG) auction mechnaism. It is extraordinarily well studied and understood, versatile,

and powerful. But the bandwidth trading problem imposes a number of new constraints

that prove incompatible with VCG. First is the repeated nature of the mechanism. The

packet-level VCG auction proposed by Varian and MacKie-Mason [14] is not truthful in a

repeated setting [5]. For example, buyers might expect to get a better deal by bidding below

their true value. As a result, a buyer might wait a bit longer to transmit data, but pay

far less for it. This manipulability results from pricing every packet. Each time the seller

routes a packet, she implicitly conducts an auction. Under other circumstances, we could

extend the timeframe of this implicit auction to cover many packets. But this plan is foiled

by the need to compute counterfactual information. Specifically, this redesigned auction

1If the seller sets a reserve price, efficiency will be sub-optimal
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would need to compute the consumption of each group of n − 1 buyers as if the ith buyer

had been absent. Unfortunately, this task is impossible because of missing information! In

agent i’s absence, another agent j might have received an instant message from a friend

containing a hyperlink to a YouTube video. She would have clicked the link and greatly

increased her consumption of bandwidth. This example illustrates that it is not generally

possible to predict how agents other than i would behave in i’s absence, nor is it possible

to predict how much more value these agents would have received. In Section 3.3, we will

present an auction method which circumvents this difficulty.

The challenges faced by mechanism designers in the networking context do not end

with this loss of truthfulness. Mechanism design efforts in this context are handicapped

by the inability of buyers and sellers to verify that other agents have done their best to

keep their promises. For example, if a seller promises to download one megabyte from

http://example.com on behalf of some buyer and the seller fails to hold up her end of

the bargain, the buyer does not know whether there was a problem with the connection to

example.com or if the seller willfully broke her promise. Similarly, imagine that the router

reserves some amount of her routing capacity for a buyer. If this buyer does not use her

entire capacity, the seller does not know if there was an issue in the upstream network or if

the buyer intentionally used less than her allocation. The consequence of these uncertainties

is that multi-unit auction mechanisms, in which buyers report a quantity and a price to the

seller, will in general be quite easy to manipulate.

Our mechanism, RABID (“random auctions for bandwidth in internet devices”), seeks

to overcome these issues. Despite pricing packets over an extended timeframe, we show

that it is truthful in expectation for buyers. This property comes in addition to universal

individually rationality for sellers, individual rationality for buyers, and faithfulness for

sellers. Critically, RABID is approximately constrained-efficient, as we can place reasonable

lower bounds on the mechanism’s efficiency.

1.1 Main results

In this thesis, we present RABID, an auction mechanism for internet bandwidth. It is designed

to allow smartphone users to convert their phones into wireless hotspots and sell internet

bandwidth to nearby untrusted (and untrusting) mobile device users. We show that RABID

is...

• nearly efficient, with reasonable lower bounds on efficiency,
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• truthful in expectation for buyers over extended time frames,

• faithful for sellers,

• ex-post individually rational for buyers,

• individually rational in expectation for sellers, and

• strongly budget balanced in expectation for the market infrastructure.

Our innovation is to mediate the interaction between buyers and sellers so as to de-

couple buyers’ bids from sellers’ revenues. This allows us to separately incentivize buyer

truthfulness and seller faithfulness. Buyers and sellers are given the illusion of interacting

with entirely different mechanisms. Buyers bid truthfully because they have the illusion of

participating in a second-price-like auction, while sellers will behave faithfully because of

the illusion of participating in a first-price auction.

Rather than directly exchanging payment, the buyer and seller rely on a market server

to act as an intermediary. Buyers and sellers periodically communicate with the market

server to report information critical to pricing, such as buyers’ bids or the amount of data

transmitted in a certain period of time. The privacy and authenticity of messages is guar-

anteed by public-key cryptography. However, the role of cryptography in RABID ends here.

We address further challenges through careful crafting of our mechanism’s incentives.

In order to circumvent the need for computing counterfactual allocations, described

above, we rely on a randomized auction mechanism developed by Babaioff, Kleinberg, and

Slivkins [2]. We give a detailed summary of this work in Section 3.3.

We complement our theoretical analysis with detailed simulations. Our simulator pro-

vides a way to examine RABID’s theoretical properties in action, and allows us to compare

it against a pair of alternatives: FIXED and VMM.

FIXED is, as its name implies, a fixed-price allocation mechanism in which all buyers

bidding above some minimum price receive service. Packets are routed on a first-come,

first-served basis. VMM is an adaptation of the packet-level VCG auction described by Varian

and MacKie-Mason in [14]. We discuss these alternative mechanisms in greater detail in

Section 5.1.

Simulations show that RABID produces more efficient outcomes than FIXED, and unlike

VMM, incentivizes truthful behavior. Furthermore, comparison using simulation between our

protocol and a naive application of Babaioff et al.’s mechanism to bandwidth allocation

reveals that our protocol drastically reduces the variability in expected seller revenue.
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In summary, we contribute

1. a description and theoretical analysis of RABID, an auction mechanism for internet

bandwidth, and

2. detailed simulation results which validate RABID’s theoretical properties and contrast

its performance with several alternative mechanisms.

1.2 Prior work

RABID addresses a problem in algorithmic mechanism design, a discipline concerned with

constraining and incentivizing self-interested agents to adhere to a designer’s protocol. In a

2004 paper [11], and in several related papers ( [12], [10]), Shneidman and Parkes introduce

and illustate the concept of faithfulness. This property concerns agents’ externally visible

actions. Since the internal workings of an agent cannot be observed, and therefore cannot

be regulated, the mechanism designer must be concerned with incentivizing and constrain-

ing agents’ external actions. We can think of internal actions such as computations and

deliberations, while external actions produce signals observable to other agents. External

actions inlcude submitting bids, allocating goods, and disbursing payment. A mechanism is

faithful if the seller’s only rational course of action is to follow the protocol established by

the mechanism designer. Shneidman and Parkes provide a set of tools for formally estab-

lishing (or disproving) mechanisms’ faithfulness. While proving seller faithfulness in RABID

does not require these proof techniques, we will nonetheless make heavy use of the concept

of faithfulness itself.

Computer scientists first faced the problem of overwhelming network congestion in the

early 1990’s when the National Science Foundation announced it would stop funding the

embryonic internet’s backbone. Not long thereafter, Mackie-Mason et al. proposed a packet-

level VCG auction to allocate access to the network [15]. They observe that “If the network

is not saturated the incremental cost of sending additional packets is essentially zero.”2. This

cost rises once the network cannot simultaneously accomodate the needs of all of its users.

The VCG auction proposed by MacKie-Mason et. al would achieve this condition while

allowing the buyers of network bandwidth to bid truthfully. However, it is also vulnerable

to manipulation, as the repeated pricing of packets encourages buyers to under-bid [5].

Because RABID’s design places heavy emphasis on overcoming this issue, we illustrate with

an example the lack of truthfulness in repetition of Varian and MacKie-Mason’s mechanism.

2 [15], pg. 5.
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Imagine two buyers. The first demands eleven packets, and has a value of four cents per

packet. The second buyer only demands ten packets, but has a value of five cents per packet.

Both buyers bid truthfully. Now imagine that the seller can only route twenty packets at

a time without dropping a packet. That is, packets arrive over a short period of time, and

the seller keeps the twenty most valuable. Then, it instantly routes all twenty packets. The

price charged for every packet is equal to the highest bid of any buyer whose packets were

dropped. Under this model, one of the first buyer’s packets will be dropped! As a result

the second buyer, who has the higher value per packet, will pay four cents per packet rather

than zero (or the reserve price if one exists). The second buyer would have been better off

bidding three cents per packet, receiving one less packet, but paying much less overall. We

discuss additional issues with VCG-based mechanisms in Section 2.2.3.

Buyer configuration

Buyer Demand Value

1 11 4

2 10 5

Outcomes for Buyer 2

Bid Truthful? Packets ¢/packet Utility

3 No 9 0 45

5 Yes 10 4 10

Figure 1.1: Allocation and payment for two buyers under the VCG mechanism for network
traffic proposed by Varian and MacKie-Mason [15]. The seller has a capacity of 20 and
must drop a packet. Buyer 1 achieves higher utility by manipulating.

Zhong et al. illustrate the difficulties in engineering incentive-compatible networking

protocols [18]. The authors present a protocol, called SPRITE, for routing packets between

self-interested nodes in an ad-hoc network. The nodes must be incentivized through cleverly

designed payment rules to adhere to the network protocol. Zhong et al.’s protocol describes

several concepts which we employ in RABID. SPRITE requires a non-strategic agent to manage

payment between nodes. Zhong et al. refer to this as a “credit clearance service,” or CCS.

RABID employs a similar concept, which we call a market server. Additionally, SPRITE’s

receipts, which are cryptographically signed acknowledgements of data transfer, appear in

almost identical form in this thesis.

In their proof of correctness, Zhong et al. address a number of attacks on simpler

protocols, and show how SPRITE eliminates these vulnerabilities. Because we consider

only a very specific family of network topologies, in which the bandwidth seller is directly

connected each buyer, we avoid many of the difficulties described by Zhong et al. However,

we must engage in a similar, systematic analysis of the vulnerabilities of our protocol to

buyer and seller manipulations. While SPRITE is a valuable inspiration for RABID, it is

not a directly applicable solution to the bandwidth trading problem because it relies on

knowledge of the self-interested nodes costs for transmitting data. SPRITE is in a sense a

fixed-price mechanism, whereas RABID must necessarily allow flexible pricing in order to
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allocate bandwidth efficiently.

Biczok et al. [4] and Mazloumian et al. [7] demonstrate how internet users can effectively

cooperate to provide internet access points. Biczok et al. focus on sharing internet connec-

tivity through immobile wireless routers attached to wired networks, rather than on mobile

devices. However, these papers bring to light the tension which can arise between individual

internet users who provide connectivity to others, and telecom providers who compete with

them. The authors examine the incentives on users and telecom providers when users have

the possibility of providing others with access to the internet. They show that the interplay

of these incentives can be quite rich. While in this thesis we do not consider the relationship

between users and telecom providers, in future work it may be important to consider how

we can align the interests of both parties to enable efficient access to the network.

In a 2010 paper [3], Bachrach investigates two collusion schemes in VCG auctions which

enable buyers to greatly increase their utility at the expense of seller revenue. These

schemes, while not immediately applicable to RABID, serve as warning that collusion could

be devastating for seller revenue. Interestingly the allocation resulting from collusion would

remain efficient, and the mechanism would still be individually rational for all agents. Even

though these properties are maintained in the face of collusion, there is something unsettling

about the prospect of buyers cheating a seller. Thankfully, Bachrach’s collusion schemes

require trust between the colluders. Our analysis of RABID assumes that collusion does not

occur due to lack of trust and technical difficulty. We will revisit this assumption in the

discussion.

RABID relies on the work of Babaioff, Slivkins, and Kleinberg, presented in a 2010 paper

[2], to compute buyers’ payments. This work, on which we elaborate substantially in Section

3.3, is originally analyzed in the context of the multi-armed bandit problem, which is itself

a theoretical model for online display advertising. In this context, an online advertiser

(for example, a media company such as the New York Times) sells banner advertisements

to its advertising customers on a per-click basis. Babaioff et al. use their mechanism

transformation to apply high-performance algorithms for selecting which ads to show while

simultaneously incentivizing advertising customers to bid truthfully. In this thesis, we will

show that the authors’ mechanism transformation has an equally powerful application to

bandwidth trading problem.
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1.3 Outline

In Chapter 2, we provide further motivation for RABID by describing a user scenario. We

then discuss in detail the unique challenges addressed by RABID.

Chapter 3 provides background in preparation for our formal description of RABID. It

defines key properties and terms used throughout the rest of the thesis, and introduces the

randomized procedure for computing payments which is integral to RABID.

In Chapter 4, we give a formal description of RABID.

Chapter 5 contains our theoretical analysis of RABID.

Chapter 6 describes our simulator, and presents simulation results in support of the

theoretical properties proven in Chapter 5.

We conclude this thesis in Chapter 7 with a discussion of issues raised by RABID and

opportunities for future work.



Chapter 2

Challenges

Before exploring the details of RABID, we must first situate it in the context of the problem it

addresses. In this chapter, we give an informal yet thorough view of the context for which

we have designed RABID. This context is riddled with challenges against which existing

mechanisms prove inadequate.

We will begin this chapter with a user scenario describing how users could employ our

mechanism to access the internet. Then, we will describe the most potent challenges our

mechanism seeks to overcome, and attempt to convey why providing this internet access is

a difficult problem.

2.1 User scenario

Consider a scenario in which a business traveller, Alice, finds herself waiting at the gate

for her flight from LaGuardia to San Francsico International. She checks her Blackberry

and notices that her colleague has asked her to comment on a slide deck for a presentation

he is planning to give in the next hour. Since this computing task is too complex for her

phone, Alice opens up her laptop. She attempts to connect to the internet to download her

colleague’s message, but is stunned to discover that LaGuardia charges several dollars for

wifi connectivity. In order to send and receive just a few kilobytes, she would be charged

several orders of magnitude more than for transmitting the same amount of data on a mobile

data network.1

1According to airportwifiguide.com, 24 hours of wifi access at LaGuardia costs $6.95. http://www.

airportwifiguide.com/lga-laguardia-airport/, accessed March 29, 2011.
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Appalled, Alice opens an application called NetMarket2. This application allows her to

find nearby users offering to sell internet bandwidth through their phones.

Meanwhile, Bob, another traveller, is sitting nearby with his Android-powered phone in

his pocket. This phone runs a version of NetMarket for Android that can route wifi traffic

through the phone’s wide-area network adapter. The phone presents itself as a wifi hotspot,

allowing Alice to connect to the phone and, through it, the internet.

Because Alice and Bob do not know each other, and much less trust each other, Alice

must rely on NetMarket to safely mediate the interaction. This is where we begin to

encounter the difficulties addressed by RABID. In Section 2.2, we’ll examine the mechanism

design challenges inherent in facilitating this interaction between Alice and Bob.

2.2 Bandwidth trading challenges

2.2.1 Secure payment

Alice must pay for the bandwidth she obtains from Bob. If she were transacting directly with

him, payment could be achieved with an anonymous payment method such as BitCoin [9].

But as we will see later, our mechanism requires that we decouple buyer and seller payments.

In RABID, payment is instead rendered indirectly with the help of an independent, trusted

entity known as the market server. In order to pay the seller for bandwidth, a buyer sends

a message to the market server to notify it that the seller has provided her with a certain

amount of bandwidth. We call this message a receipt. Over time, the market server can

aggregate receipts and compute the payment owed by the buyer.

In our user scenario, Alice downloads the slide deck from her coworker. During the

download, she notifies the market server every ten seconds that Bob has provided her with

several hundred kilobytes. Once the download is complete and she busies herself with editing

the slide deck, she informs the market server that she has not recently received any data.

In no case does she actually pay Bob directly or ask the market server to pay Bob a certain

amount of money. That is up to the market server to decide.

Without imposing any additional restrictions, this payment scheme is highly vulnerable

to manipulation. This is because buyers and sellers are not constrained or incentivized to

cooperate in reporting the true amount of bandwidth provided by the seller to the buyers.

Consider that Alice relies on Bob to forward her messages to the market server. This makes

2This application is fictional, but is meant to demonstrate how an implementation of RABID might operate
in practice.
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it very easy for Bob to spoof packets which appear to come from Alice. He can claim to

have provided tremendous amounts of data to Alice, all without Alice’s knowledge.

Cryptography offers an elegant solution to this issue. Under RABID, buyers maintain

a public-private key pair, and register their public keys with the market server. To keep

Bob from forging receipts, Alice cryptographically signs her receipts with her private key.

She then forwards her receipts to Bob, who examines them and verifies that the amount

of bandwidth he provided to Alice is in fact the amount of bandwidth she claims to have

received. Finally, Bob forwards the receipt to the market server.

If Bob notices that Alice claims to receive less bandwidth than the amount he has

provided to her, he terminates his connection with Alice. We assume this threat is credible.

Unfortunately, this may not be a strong enough disincentive to Alice to keep her from

cheating. Imagine that receipts are forwarded to the market server only once an hour. If

Alice only needs access to the network for five minutes to check her email, she could be

part way to San Francisco before she is due to report payment to the market server. As a

result, Bob would never be compensated for the bandwidth he provided to Alice.

Rapidly generating receipts is critical to ensuring the functionality of RABID. We recom-

mend that receipts be exchanged regularly enough to bound the seller’s loss of revenue at

some safe level, such as a penny, a dime, or a dollar.

We will assume that these modifications allow buyers to safely and reliably send indirect

payment. However, we will see that this is not enough to guarantee a bandwidth auction

which is truthful for buyers and a faithful for sellers. Achieving these two goals is the main

of focus of this thesis.

2.2.2 Lack of accountability

In many auction mechanisms, buyers specify a quantity of goods or a number of items they

would like to obtain. The seller can then allocate a fixed amount of these goods to buyers.

Consider an auction for a commodity, such as grain. The seller may already have possession

of the grain (say, ten bushels), or may be able to guarantee its delivery. Imagine that two

buyers participate in the auction. The first buyer offers to buy seven bushels at twenty

cents per bushel. The second buyer offers to buy ten bushels at five cents per bushel. The

first buyer gets his seven bushels, and the second buyer gets the remaining three. There is

no question that the seller can provide the grain, nor that the buyer can take delivery of

the grain. What if we were to apply this idea to bandwidth? Buyers could submit to the

seller a number of packets demanded and a price per packet. The seller could then carve
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up her available bandwidth between the buyers.

Unfortunately, bandwidth and grain cannot be auctioned in the same way. If Bob offers

to sell Alice ten megabytes of bandwidth, he is making a promise he may not be able to

keep. Bandwidth is not a tangible good that can be stockpiled. Its delivery cannot be

guaranteed. Imagine that Alice is trying to read her email. Unknown to her, the system

administrator at her office brought a cup of coffee into the machine room and spilled it on

the mail exchange server. Bob will contact Alice’s mail server and get no response. The ten

megabytes of email attachments he promised Alice will not be delivered. Alice’s email server

could be unreachable for an infinite number of reasons unknowable to either Bob or Alice.

For this reason, Bob cannot be sure that he can keep his promises to deliver bandwidth to

Alice.

But the internet is generally reliable. System administrators rarely spill coffee on expen-

sive machines. If Bob promises Alice to deliver her email, Alice should feel fairly confident

that Bob is likely to be able to succeed. Why not simply expect Bob to do his best, and

accept his failure to deliver promised bandwidth as an unavoidable failure somewhere up-

stream? Unfortunately, Alice must expect Bob to behave rationally. Since she has no means

of distinguishing a network failure from Bob’s intentional choice not to retrieve her data,

Bob will have an incentive to cheat. He can promise to deliver an amount of bandwidth

beyond his capacity to Alice and a number of other buyers, collect payment from these

buyers, and then attribute his failure to deliver to a network failure.

Now imagine that instead of paying up front, buyers pay per packet delivered, but

still demand a certain quantity of bandwidth. Perhaps Alice is unsure of the size of her

coworker’s slide deck. Under this scheme, she has an incentive to ask Bob for a large amount

of bandwidth (for example, ten megabytes) even if the true size of the slide deck is only a

few hundred kilobytes. Bob must then reserve this capacity for Alice, even though she will

never use it. If he had been able to allocate this capacity to another buyer, Bob could have

achieved greater revenue. This is a lack of buyer accountability. The seller has no way to

determine if the buyer knew she would not use all of her reserved bandwidth, or if upstream

network issues prevented her from doing so.

Because neither party can hold the other accountable for delivering or using a certain

amount of bandwidth, we must pursue an approach which does not allocate bandwidth a

priori and instead allocates traffic on a packet-by-packet basis. We show that allocating

packets based on priority rather than based on reservations can achieve this goal.
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2.2.3 Impossibility of computing counterfactuals

In Section 1.2, we referred to work by Varian and MacKie-Mason which performs allocation

based on priority, as discussed at the end of Section 2.2.2. As we have mentioned, this mech-

anism does not provide strong enough truthfulness properties for our bandwidth exchange

problem. In Section 1.2, we demonstrated how Varian and MacKie-Mason’s mechanism

could be gained. We will now discuss a natural response to this issue, and explain why this

response also fails to address the challenges we face.

The mechanism proposed by Varian and MacKie-Mason fails because it repeatedly prices

individual packets, leading to a loss of truthfulness. It is well known that VCG is not truthful

in repeated settings [5]. Why not price many packets instead of just one? VCG dictates that

the cost for a bundle of packets would be a function of the reported value denied to other

buyers in the course of routing that bundle. At first glance, it seems simple to compute

this value. All we need to do is look at the amount of value each other buyer would have

received if that bundle of packets never existed. Then we just take the difference between

these counterfactual values and the realized buyer values to determine the correct VCG

payment.

The critical problem with the approach described above is that these values are coun-

terfactual – they are answers to the question “what if?” Multiunit VCG mechanisms, in

which buyers bid a quantity demanded and a per-unit price, allow mechanism designers

to answer this question easily. But as discussed in Section 2.2.2, we need to allocate on

a packet-by-packet basis. In order to answer this “what if?” question, we would need to

rewind time and re-run the allocation mechanism while ignoring the bundle of packets we

seek to price. We alluded to this issue in Chapter 1, with the example of YouTube video

that a certain buyer would have downloaded if only a single additional packet could have

been allocated to her. Another way to think about the impossibility of computer counter-

factuals is that the seller has no idea when packets will arrive, nor does she know how many

packets to expect. She only knows what to do once she has a packet to route. To the seller,

the processes generating packets are inscrutable.

For this reason, RABID must never need to compute counterfactual allocations. In order

to satisfy this constraint, we leverage work by Babaioff, Kleinberg, and Slivkins, described

in Section 3.3.
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Problem Affects
fixed
price?

Affects
Packet
VCG?

Affects
Multi-
packet
VCG?

Affects
Mul-
tiunit
VCG?

Affects
RABID?

Agents cannot hold each other
accountable to deliver on
promises

No No No Yes No

Not truthful in bandwidth
setting

No Yes No No No

Computing counterfactuals is
impossible

No No Yes No No

Buyers can collude against the
seller

No Yes Yes Yes Yes

Not efficient Yes No No No No

Figure 2.1: Challenge summary. This table compares the vulnerability of candidate mech-
anisms to various issues.

2.2.4 Collusion

In many auctions, buyers can improve their individual and collective utilities by banding

together and colluding against the seller. In Section 1.2, we alluded to work by Bachrach

which describes several powerful collusion schemes to which RABID is vulnerable. Addition-

ally, we have devised new collusion schemes which specifically target our own mechanism.

The issue of collusion is a thorny one. As mentioned in Section 1.2, there are barriers to

collusion, such as trust and communication, that make it somewhat difficult. We rely on

this rationale for assuming that agents will not collude. We return to this issue in Section

7.2.



Chapter 3

Background

In Chapter 2, we motivated the problem of bandwidth exchange in a realistic user scenario.

Yet we also discovered that VCG, even with the assistance of cryptography, is unsuitable

in this context.

In this chapter, we will present some preliminary concepts and additional motiviation

for our mechanism. We will begin by examining the desirable properties we wish to achieve

in RABID. Then in Section 3.2, we will discuss several concepts that will be central to the

discussion of our mechanism. Finally in Section 3.3, we will introduces the work of Babaioff,

Kleinberg, and Slivkins in building truthful mechanisms from allocation rules. This method

allows us to achieve truthful pricing of data in RABID.

3.1 Desirable properties of auctions

Fundamentally, we are interested in an efficient mechanism, by which we mean that the

total utility of the mechanism’s participants is maximized, or at least improved compared

to reasonable alternatives. However, we will be willing to sacrifice some efficiency in order

to allow the seller to achieve greater revenue. In order to allow for this trade-off, we let

sellers set a reserve price. In order to precisely define the property we would like to achieve,

we introduce the concept of constrained efficiency:

Definition 3.1.1. A mechanism is constrained-efficient if there exists a reserve price such

that the mechanism is efficient at this reserve price.

Remark 3.1.1. For most mechanisms (including RABID), r = 0 is the reserve price which

maximizes efficiency.

16
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Next, the mechanism should be individually rational, meaning that no participant re-

ceives negative utility from participating. Individual rationality will have different impli-

cations for buyers and sellers, and in fact, buyers and sellers will have different guarantees

of individual rationality. For this reason, we will be concerned with two slightly different

properties. The first is universal ex-post individual rationality:

Definition 3.1.2. A mechanism is universal ex-post individually rational with respect to

some agent if the mechanism guarantees this agent that it will achieve non-negative utility

by participating in the mechanism.

Remark 3.1.2. In RABID, universal ex-post individual rationality for buyers guarantees that

all buyers achieve non-negative utility for all bid vectors and across all randomness in the

mechanism.

We are also interested in a weaker type of individual rationality, which holds only in

expectation.

Definition 3.1.3. A mechanism which is individually rational in expectation for some agent

yields a non-negative expected utility to this agent. This expectation is over all randomness

affecting the mechanism.

We show in the sequel that (given assumptions about seller behavior), buyers under

RABID achieve universal ex-post individual rationality, while sellers achieve individual ra-

tionality in expectation.

We would prefer to have all payments flow between buyers and sellers, rather than have

to remove or inject money into the system.

Definition 3.1.4. A mechanism is strongly budget balanced if the sum of payments made

by all agents is equal to the sum of all payments received by all agents. No money is added

to or removed from the mechanism.

We say that a mechanism is only weakly budget balanced if cash is allowed to flow out

of the system. We note that it is possible for either of these concepts of budget balance to

hold only in expectation.

RABID relies on sellers following a specific protocol. Deviation from this protocol would

lead to undesirable behavior. Sellers should therefore be incentivized to follow this protocol.

Definition 3.1.5. A faithful mechanism (with respect to some agent) maximizes the utility

of this agent when her externally observable actions correspond to those specified by the

mechanism designer’s intended protocol for this agent.



CHAPTER 3. BACKGROUND 18

While faithfulness captures our notion of adherence to protocol in sellers, we will be

interested in a slightly different notion of good behavior in buyers. We are interested in

encouraging buyers to bid their true values for data.

Definition 3.1.6. A buyer bids truthfully if she reports her true value for data to the seller.

We say that a mechanism is truthful if buyers maximize their individual utilities by bidding

truthfully. A mechanism is truthful in expectation if buyers maximize their expected utilities

by bidding truthfully.

Truthful mechanisms obviate the need for strategic bidding. Avoiding strategic bidding

saves buyers the cognitive effort of determining their optimal bid given their true value.

In practice, truthfulness may also avoid inefficiencies by eliminating the convergence phase

that many non-truthful mechanisms require in order to achieve a game-theoretic equilibrium

between the buyers.

We show that RABID achieves

• constrained-efficiency,

• universal ex-post individual rationality of buyers,

• individual rationality in expectation for sellers,

• truthfulness in expectation for buyers,

• faithfulness for sellers, and

• system-wide strong budget balance in expectation.

3.2 Auction terminology

To facilitate our discussion of RABID, we define some useful terms as they pertain to the

problem of bandwidth trading.

Auctions are inherently about assigning resources to agents. We refer to this assignment

of resources as an allocation. In the bandwidth trading context, this terms takes on a more

specific meaning.

Definition 3.2.1. A buyer’s bandwidth allocation is the number of packets she receives

over some period of time through her participation in a bandwidth auction mechanism.
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In the bandwidth trading context, allocations result from the seller’s packet routing

behavior. For this reason, we use the terms route and allocate interchangeably.

Most traditional auction mechanisms can be conceptually decomposed into an allocation

rule and a payment rule. Informally speaking, the allocation rule determines who gets the

goods, and the payment rule sets the price on those goods. In the bandwidth trading

context, the goods in question are network packets. The boundary between payment- and

allocation rules is fluid, and the two rules tend to be highly interdependent.

Definition 3.2.2. A bandwidth auction mechanism’s allocation rule is a procedure for

determining whether a packet will be transmitted or dropped.

Definition 3.2.3. A bandwidth auction mechanism’s payment rule sets a price for the

allocation of packets received by a buyer.

In RABID, we perform a certain repeated process over and over. Each time, buyers submit

bids, sellers route packets, and buyers pay for their allocation. We refer to each of these

rounds as an epoch.

Definition 3.2.4. An epoch is a period of time in which:

• each buyer submits her bid to her associated seller,

• sellers route bandwidth to buyers based on these bids, and

• buyers are charged for the packets routed on their behalf.

A common tool for increasing seller revenue in many auctions mechanism is the reserve

price. We alluded to this concept in Section 3.1, in our discussion of constrained efficiency.

Definition 3.2.5. A reserve price is the minimum bid a seller will accept. Buyers will be

charged at least the reserve price for each packet they transmit.

3.3 Constructing truthful mechanisms

We have previously discussed the need for a mechanism which does not require computing

counterfactual allocations. Babaioff, Kleinberg, and Slivkins [2] propose such a mechanism.

They present a method for transforming any single-parameter monotone allocation rule

into a truthful auction mechanism. This transformation randomly samples the payments

which will incentivize buyers to bid truthfully. Crucially, the transformation requires the

allocation rule to be run only once. This allows us to circumvent the need for counterfactual

information, as previously alluded to in Section 2.2.3.
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3.3.1 Transformation preconditions

Let’s examine the properties stipulated on allocation rules by the transformation. First, the

tranformation is only applicable to single parameter rules. This means that each buyer need

submit only a single number to the seller in order for the seller to determine her allocation.

Next, the rule must be monotone. In the context of our user scenario, this means that,

all other things being equal, Bob will never decrease the amount of bandwidth he allocates

to Alice if she raises her bid.

Definition 3.3.1. An allocation rule A(·) is monotone if for all i ∈ N and for all b−i ∈ b,
bi ≥ b′i implies that Ai(bi, b−i) ≥ Ai(b′i, b−i).

We will show that RABID’s allocation rule satisfies both these preconditions.

3.3.2 Myerson characterization of truthfulness

In his work on revenue-optimal auctions [8], Myseron shows that truthful payment rules for

single-parameter allocation rules are characterized by

Pi(b) = bi · Ai(bi, b−i)−
∫ bi

−∞
Ai(u, b−i)du (3.1)

where Pi(b) is the payment owed by buyer i when the buyers’ collective bid vector is b.

Since RABID uses a single-parameter allocation rule, it seems all we need to do is compute

the integral in Equation 3.1. For convenience, let

Hi(b) =

∫ bi

−∞
Ai(u, b−i)du (3.2)

But computing H(bi) is essentially impossible. Imagine performing this integration numer-

ically. We would evaluate A(u, b−i) for many values of u 6= bi. By definition, this would

require counterfactual information we cannot obtain (Ai(u, b−i) corresponds to an allocation

which has not necessarily occurred).

Babaioff et al.’s method sidesteps this issue by taking random samples from a distribution

whose expected value is equal to Hi(b). The method is therefore truthful only in expectation.

3.3.3 Estimating Hi(b)

The core of this sampling technique comes from a method for estimating the integral of a

function. Babaioff et al. describe this method, which we summarize here.
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We wish to estimate the integral of Ai(u, b−i). Consider that this function (of u) is

defined on R+, since we can assume that buyers have non-negative value for packets. We

are therefore interested in integrating over I = [0, bi]. Since Ai(u, b−i) is a monotone

increasing function, the endpoints of I will be extrema of Ai over I.

For this reason, we can construct CDF-like monotone function F (z) defined on I such

that F (0) = 0 and F (bi) = 1. We can think of F as defining a random variable Ybi . Since

Ybi ’s CDF is given by F (z), its PDF is given by F ′ = d
dzF (z). Remember that the definition

of expected value is given by

EYbi
[h(Ybi)] =

∫ bi

0
h(u)F ′(u)du (3.3)

All we need to do is cancel out the F ′(u) in the integrand through a judicious choice of

h(z). If we let h(z) = Ai(z, b−i)/F ′(z) for fixed b−i, we obtain

EYbi

[
Ai(Ybi , b−i)
F ′(Ybi)

]
=

∫ bi

0
Ai(u, b−i)du (3.4)

3.3.4 Self-resampling procedures

In order to estimate Hi(b), we will need to evaluate the allocation rule we are transforming

with a randomly sampled value of Ybi . Then we can substitute the resulting allocation

and realization of Ybi into Equation 3.4 and obtain truthful payment. Unfortunately, this

creates a chicken and egg problem.

Let’s say we want to randomly sample Hi(b). We decide to evaluate our allocation

function A(bi) at a value sampled from Ybi . This means that buyers’ allocations are now

computed according to a new function A′i(b) = Ai(Ybi). Therefore, we actually need to

compute the truthful payments for A′i(b) instead of for Ai(b). So, we just sample Ybi again.

This creates another new allocation function, A′′i (b). But now we need to estimate payments

for A′′i (b), so we create A′′′i (b). . .

In order to avoid recursing infinitely, Babaioff et al. introduce the concept of a self-

resampling procedure. They describe this concept as a “fixed point” of the recursive sampling

process described above. In Section of 3.2 of their 2010 paper, the authors define the formal

properties of self-resampling procedures. Their key insight is to generate two values, xi and

yi. With high probability, xi = yi = bi. But with small probability, the values are resampled

below bi. The resampled value of yi = u is chosen first. Then, the resampled xi is chosen

from a distribution equal to xi’s unconditional distribution for bi = u. This allows Babaioff

et al. to apply Equation 3.4 without recursing infinitely.
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3.3.5 RABID’s self-resampling procedure

Babaioff et al. show that given a self-resampling procedure G, it is possible to construct

a mechanism which is truthful in expectation from any allocation rule A(·) which satisfies

the preconditions given in Section 3.3.1. RABID uses a self-resampling procedure G(bi, r, µ),

given below. It adapts a procedure presented by Babaioff et al.

G(bi, r, µ) =

{
bi with probability (1− µ)

(bi − r)γ1/(1−µ) + r with probability µ
(3.5)

where γ ∼ U(0, 1). The parameter µ ∈ (0, 1) is set by the mechanism designer. We describe

Its effect in Section 6.3.3. As described previously, r is a reserve price determined by the

seller.

3.3.6 Babaioff et al.’s generic transformation

We now outline the complete procedure outlined by Babaioff et al. for building a mechanism

which is truthful in expectation from a monotone single-parameter allocation rule. They

refer to this procedure as the generic transformation. It is generic due to its compatibility

with any self-resampling procedure. Since we will be using the self-resampling procedure

G(bi, r, µ) described previously in Section 3.3.4, we are interested in a specific transformation

we call RESERVE.

Definition 3.3.2. Let A(b) be a single-parameter monotone allocation rule, mapping bid

vector b to allocation vector A. Then RESERVEr,µ(A(·)) transforms A(b) to a new alloca-

tion rule Ã(b) and a payment rule P (·). The transformation obeys the following procedure:

1. For each i ∈ N , obtain the resampled bid xi = G(bi, r, µ). Let the resampled bid

vector (of all xi) be x.

2. Allocate according to A(x). This yields the allocation Ã.

3. For each i ∈ N , compute i’s rebate

Ri =

{
1
µ(bi − r) · Ai : xi < bi

0 : otherwise
(3.6)

4. For each i ∈ N , collect payment according to ch

Pi = biAi −Ri (3.7)

5. Return the new mechansim M = (Ã(b), P (·)).

We will see in Chapter 4 how M will form an important part of RABID.
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The RABID Mechanism

In this chapter, we give a detailed description of RABID. We begin in Section 4.1 by listing the

assumptions necessary for this formal discussion. We then launch into the mechanism de-

scription proper. For clarity, we divide this discussion into two parts. This division parallels

the conceptual division of RABID into two constituent procedures: BKS and ALIGN-TRUST.

BKS implements bandwidth allocation and pricing according to the generic transformation

introduced by the eponymous Babaioff, Kleinberg, and Slivkins, whose work we summarized

in Section 3.3. This procedure is limited in scope to only a single seller and her associated

buyers. For ease of explanation, we introduce machinery that will simplify the discussion

of the second procedure, ALIGN-TRUST. We discuss BKS in Section 4.3

Unlike BKS, ALIGN-TRUST has a system-wide scope. Its role is to redistribute payments

between sellers. We discuss ALIGN-TRUST in Section 4.4

4.1 Assumptions

Throughout our discussion of RABID, we describe the idealized version of the mechanism

with which our formal analysis is concerned. However, we will periodically mention practical

modification to improve the performance of the system. We predict that these changes

would have only minor adverse effects on the desirable properties of the mechanism. In this

section, we will outline the assumptions on which our idealized mechanism rests.

Realistically, a seller would allow buyers to connect and disconnect from her mobile

device. However, we ignore this dynamic behavior, and assume that the number of buyers

remains fixed. This is a reasonable assumption if we consider that we can simulate entrance

and exit of buyers by modifying buyer demand. If a buyer’s demand falls to zero, she will
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appear to have exited. Similarly, if a buyer begins transmitting after many epochs of silence,

she will appear to enter.

In our analysis, we do not treat any lower-level network issues. We do not treat any

link-layer behavior (Ethernet, 802.11), nor do we consider the effect of transport-layer pro-

tocols (TCP, UDP) on routing-layer (IP) packet traffic. Instead, we simply assume that

packets flow effortlessly between buyers and their seller. In our model, adding buyers to

the mechanism has no effect other than to increase the demand for bandwidth. We ignore

any overhead from increasing the number of simultaneous local-area wireless connections

to the seller, and we assume that all out-of-band communication between buyers and seller

imposes no cost on either. We can justify this assumption by pointing to work by Wu et

al. [16] which demonstrates methods of incentivizing wireless communication between self-

interested agents. The assumption of cost-free communication between buyers and seller is

especially justifiable when the local-area network is much faster than the seller’s connection

to the internet.

Buyers and sellers must have strong identities, in order to prevent forging of bids and

receipts. This strong identity might be enforced by requiring users participating in RABID

to register using a credit card.

We strongly prefer that buyers be unable to collude with sellers or with each other, and

assume this to be the case. We discuss collusion in greater detail in Section 7.2.

We assume that the unit of allocation is one packet, rather than one byte. This makes it

easy to reason about routing and pricing data. This assumption is equivalent to assuming

that all packets will be of a fixed, constant size. In order to determine pricing for packets,

each buyer must be able to keep track of the number of packets she has exchanged with the

seller. The seller must in turn keep track of all packets exchanged with each buyer.

Finally, we assume that a single routing queue can be used to allocate and price packets.

For the purpose of simplifying our analysis, we ignore the asymmetries between incoming

and outgoing traffic. An implementation of RABID would need to maintain two separate

routing queues, with separate bids.

We will discuss further assumptions relevant to specific technical details as they details

arise.

4.2 RABID’s structure

As discussed in the chapter introduction, RABID can be separated into two subprocedures:
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Theory Practice

Payment aggregated over m epochs. Payment aggregated over a period of
weeks or months.

Single queue, with a single bid, for all net-
work traffic.

Separate upload and download queues, on
which buyers bid separately.

Set of buyers N is fixed. Buyers periodically connect to- and dis-
connect from sellers.

Packet receipt transmitted to market
server for each packet.

Packet receipts batched and transmitted
together at some regular interval, in order
to conserve bandwidth.

Packets flows are determined entirely by
buyer demand and behavior at the routing
layers.

Ensuring priority allocation might require
modifying device behavior at the link layer
or transport layer (for example, re-writing
TCP packets’ window size).

Buyers and sellers have a strong identity. Participating in the mechanism requires
providing credit card.

Buyers are unable to collude with each
other or with the seller.

Mechanism operators institute complex
systems for detecting collusion or hope
that the technical complexity of collusion
will agents from colluding.

All packets priced identically. Packets priced as a function of their size.

A buyer cannot detect that she will receive
a rebate in a given epoch.

Buyers may try to detect if they will re-
ceive a rebate.

Buyer utility is quasi-linear. Buyers have
no budget constraints.

Buyers may have limited budgets.

Figure 4.1: Theoretical constraints and suggestions for relaxing these constraints in practice.
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1. A local auction mechanism we call BKS.

2. A system-wide utility redistribution procedure called ALIGN-TRUST.

In BKS, we are concerned with the interaction of a single seller with several buyers. It is

local in the sense that the seller and buyers in a particular instance of BKS are agnostic to

those in other instances. In our description of BKS, we ignore the existence of other sellers

and their associated buyers. However, we will introduce machinery which is critical to our

second subprocedure, ALIGN-TRUST. Unfortunately, the purpose of this machinery will only

become clear as we explain how it functions within ALIGN-TRUST.

Unlike BKS, ALIGN-TRUST, deals with large numbers of sellers, each of which indepen-

dently participates in its own instance of BKS. ALIGN-TRUST re-aligns the incentives of sellers

in order to incentivize seller faithfulness.

BKS ALIGN-TRUST

Regulates interactions between one
seller and a handful of buyers.

Redistributes payments among
many sellers.

Incentivizes buyer truthfulness. Incentivizes seller faithfulness.

Completely determines buyer pay-
ments.

Adjusts seller payments.

Majority of computation performed
by the seller.

Majority of computation performed
by the market server.

Figure 4.2: A comparison of RABID’s subprocedures.

The BKS and ALIGN-TRUST are subprocedures are linked by the market server, a trusted,

non-strategic entity which communicates with buyers and sellers in order to determine their

payments owed or expected. We begin our description of RABID with an examination of

the market server. Then, we proceed with our exposition of the BKS and ALIGN-TRUST

subprocedures.

4.2.1 Market server

RABID relies on a central coordinating entity, which we call the market server. In our model,

the market server does not derive utility or make choices, that is to say, it is non-strategic.

Instead, it simply performs as designed. In practice, this is safe assumption so long as

the market server has a strong identity. For example, a market server operated by a large

wireless carrier is unlikely to attempt to game buyers and sellers.

Formally, the market server is defined by the tuple (µ,R). The first member of this tuple,

µ ∈ (0, 1) is identical in purpose to the µ defined in Section 3.3.5. It is the probability with
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which a buyer’s bid will be resampled in each epoch. R is a finite, preferably small, set of

reserve price levels. This set will have role in the formal definition of RABID’s sellers and in

the operation of the ALIGN-TRUST subprocedure.

The market server performs several tasks. First, it must compute buyers’ payments

according to Equation 3.7, such that the strategy which maximizes buyers’ utility in expec-

tation is to bid truthfully. Section 3.3.6 provides greater detail on these payments. Second,

the market server determines a tax rate l̄s on sellers. The tax rate plays a key role in linking

BKS with ALIGN-TRUST. It is more fully explained in Section 4.4.

4.3 The BKS subprocedure

BKS is a repeated process which determines the interaction between a single seller and her

associated buyers. Every repetition of the process constitutes an epoch, a concept to which

we alluded in Section 3.2. In our theoretical analysis, we will assume that the process repeats

exactly m times. In practice, buyers connect and disconnect from the seller from time to

time, yet we feel that a fixed time-frame model reasonably approximates this dynamic.

Since buyer demand is not stationary, we can simulate entering and exiting buyers.

Our description of BKS will proceed as follows:

• In Section 4.3.1, we formally define the seller and buyers who participate in the sub-

procedure.

• In Section 4.3.2, we list in detail each step which occurs in a single BKS epoch.

• We describe buyers’ interactions with BKS in Section 4.3.3 and describe the seller’s

interaction with the subprocedure in Section 4.3.4.

• As a prelude to our discussion of ALIGN-TRUST, we will begin discussing how payment

flows between buyers and sellers in Section 4.3.5.

Throughout our description of BKS, we ignore the existence of agents other than the single

seller and her associated buyers. However, we will lay the foundation for the involvement

of outside agents. When we introduce machinery whose purpose is to interface with the

ALIGN-TRUST subprocedure, we will make this purpose clear in order to minimize confusion.
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Player Buyer Seller

Identified by i s = (k, r)

Domain N = {1, 2, . . . , n} (N+,R+)

Type vi -

Utility function
in one epoch

ui(b) = viÃi(b)− Pi(b) us(b) =
∑n

i=1(xi − l̄s(xi − r))Ãi(b)

Figure 4.3: Player types in BKS.

4.3.1 BKS players

We have already referred informally to the set of players: a single bandwidth seller, and a

number of bandwidth buyers. However, a more formal description is in order. Let us define

the seller as s = (k, r). The seller has a reserve price r, expressed in the same units as

bids. Formally, r is fixed over the course of m epochs, but in practice, the seller must be

able to occasionally change her reserve price. Furthermore, r is drawn from the finite set

R. Section 4.4.2 explains why sellers must have a reserve price chosen from a (small) set of

alternatives. The parameter k indicates the seller’s buffer capacity. This determines how

many packets the seller can store simultaneously before it must start dropping packets. If

the seller is forced to drop packets, we say it is congested.

Let there be n buyers in the game. These buyers belong to the set N = {1, 2, . . . , n}.
We use the symbol i to refer to a specific buyer. Each buyer has several associated values.

Buyer i has a type vi. This type encodes the value the buyer receives per packet of data.

It is private to buyer i and independent of the vj for all j 6= i. While we do not explicitly

model buyers’ demand for bandwidth, we will at times find it useful to think of each buyer

as having a maximum demand for bandwidth within each epoch, to which we refer to as di.

4.3.2 A single BKS epoch

As described above, an epoch is the set of steps that are repeated over and over in BKS. In

each epoch, the seller first solicits bids from its buyers. Then for a period of time we call

the epoch length, the seller allocates bandwidth to buyers according to their bids. Buyers

are charged payments as a function of their bids and their bandwidth allocations. The next

epoch begins when the seller solicits new bids from the buyers. We assume that sellers

solicit and collect bids from buyers instantly. In practice, the end of epoch t would most

likely overlap with the bidding for epoch t+1. In general, we will denote a particular epoch

with the symbol t.

The description above elides over the differences in the way buyers and sellers participate
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in each epoch. In Sections 4.3.3 and 4.3.4 we will see explore the differences between the

buyer and seller “views” of BKS:

• Buyers’ payments are not equal to seller revenues.

• Buyers bid as if they are participating in a Babaioff et al. style random, truthful

auction.

• Sellers allocate packets as if conducting a first-price auction.

4.3.3 Buyer view of BKS

The buyer view of BKS is designed to incentivize truthful bidding, as we show in Section 5.3.

This incentive comes from assigning payment to buyers according to Equation 3.7. Each

epoch of BKS can be seen as an implementation of Babaioff et al.’s mechanism transforma-

tion.

In each epoch’s bidding phase, the buyer i reports her bid bi, (assumed to be in units

of currency/packet) to the seller. Having reported her bid, the buyer begins transmitting

packets through the seller. This is the allocation phase. The buyer reports the receipt of

each packet to the market server. In practice, these receipts should be batched to conserve

bandwidth. As mentioned in Section 2.2.1, receipts are cryptographically signed with the

buyer’s private key. This way, the seller can verify that the receipt is correct, but cannot

alter the receipt or forge fake receipts. The buyer knows that if she does not forward her

receipts, the seller will terminate her connection. After the epoch length passes, the buyer

begins the next epoch by reporting her next bid to the seller.

At the end of the epoch, buyer i will have received an allocation Ãi consisting of a

number of packets. From Ãi, she can compute her realized value viÃi. However, i does

not know the exact payment Pi she has been charged, as the payment function Pi(b) is

randomized (see Equation 3.7). This charge will be aggregated over many epochs. Buyer i

is invoiced after m epochs, and only then does she learn her total payment owed. In practice

this means that market server sends each buyer a bill at the end of the month.

We can write the utility ui received by buyer i in each epoch as

ui(b) = viÃi(b)− Pi(b) (4.1)

For a known realized allocation and payment, this ui becomes

ui = viÃi − Pi (4.2)
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This is a quasi-linear utility model, a common concept in the mechanism design literature

[13]. This model carries the implication that buyers have no budget constraints. They will

make arbitrarily large payments in exchange for an allocation of packets of equal or greater

value.

4.3.4 Seller view of BKS

We first consider the procedure observed by the seller in each epoch of BKS, and the discuss

how the seller’s payment is computed as a result of this procedure.

In each epoch, the seller first solicits bids from buyers. Together, these bids constitute

the bid vector b. The seller then resamples b according to Equation 3.5. This yields the

resampled bid vector x.

For the duration of the epoch, the seller routes the buyers’ packets. When the number

of packets buyers wish to transmit exceeds the seller’s routing capacity k, she is forced to

drop packets. Dropped packets are not transmitted and do not contribute to any buyer’s

allocation. We refer to the seller’s routing behavior as k-priority allocation:

Definition 4.3.1. Let seller s maintain a packet queue with a maximum capacity of k

packets. Let a packet’s priority be determined by its owner’s resampled bid xi, such that

the greatest xi translates to the top priority. Then k-priority allocation is the process of

inserting and removing packets from this queue so that packets with higher priority are

whenever possible delivered before those of lower priority.

• If the number of packets in the queue is less than k, then an arriving packet is always

inserted into the queue.

• If the seller receives a packet at a time when its queue is full, then the seller must

drop a packet. The seller chooses the packet with the lowest priority from the set of

size k + 1 consisting of those packets in its queue and the arriving packet, and drops

it. The remaining k packets occupy the queue.

• When removing a packet from its queue in order to route it, the seller always chooses

the highest priority packet currently in its queue.

We say that k-priority allocation induces the OSTRICT routing prioritization.

Definition 4.3.2. A routing prioritization characterizes the order in which packets are

delivered by the seller. Formally, it is a function which computes a permutation of a set of

packets. In this paper, we will be concerned with two routing prioritizations:
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• OSTRICT : packets are routed such that higher priority packets are delivered before

lower priority packets.

• OFIFO: packets are routed in the order in which they arrive in the queue.

Remark 4.3.1. Under BKS, the seller achieves OSTRICT with respect to the resampled bids

xi.

The seller routes traffic under the assurance that for each byte routed for buyer i, she

will receive payment xi− l̄s(xi− r). The constant l̄s is the tax rate, which is determined by

the market server. We describe l̄s in greater detail in Section 4.3.5.

The seller’s utility us is given by

us(b) =

n∑
i=1

(xi − l̄s(xi − r))Ãi(b) (4.3)

According to us, the seller does not derive any inherent value from her participation in the

mechanism. Instead, all her utility is obtained from the payments earned from buyers.

We can re-write the seller’s utility as

us(b) =
n∑
i=1

xi · Ãi(b)− l̄s
n∑
i=1

(xi − r)Ãi(b) (4.4)

We will refer to the rightmost sum as the seller’s revenue above the reserve price.

Definition 4.3.3. The seller’s revenue above the reserve price is given by the expression

n∑
i=1

(xi − r)Ãi(b) (4.5)

The tax rate l̄s is applied to the seller’s revenue above the reserve price, rather than her

total revenue.

4.3.5 Reconciling payments with the market server

As described in sections 4.3.3 and 4.3.4, buyers’ net payments are computed differently than

the revenue earned by the seller. It is up the market server to reconcile these two quantities

(we will see greater justification for this in our discussion of ALIGN-TRUST).

The sum of buyers’ net payment, given by Equation 3.7, must be equal to the seller’s

revenue. The method by which the market server can balance these two sums is through

the tax rate l̄s. This is a fixed portion of the seller’s revenue above the reserve price. The
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tax is collected by the market server and redistributed to buyers in order to pay for buyer

rebates.

We first examine the procedure by which the market server collects information on

buyers’ bids and allocations throughout each epoch. Then, we derive an expression for l̄s.

At the beginning of each epoch, the market server must coordinate with the seller to

ensure that the she (the seller) correctly resamples the bid vector b. This is because the

market server will credit payment to the seller according to the resampled bid vector.

Practically speaking, this coordination could involve exchanging a random seed every few

epochs. The market server must also note when buyer i’s resampled bid falls below its

original bid (that is, xi < bi) meaning that i is due to receive a rebate according to Equation

3.6.

Throughout the epoch, the market server aggregates the buyers’ receipts, which are

forwarded to it by the seller. The market server uses its stored copies of buyers’ public keys

to verify the authenticity of the receipts.

After m epochs, the market server can compute l̄s. Before deriving an expression for l̄s,

let us define a few useful quantities. Let the superscripts t = 1, 2, . . . ,m denote the epoch

number with which a value is associated. For example, Ãti is buyer i’s allocation in epoch

t. An overbar above a symbol signifies that it represents a value which is computed across

m epochs, rather than on an epoch-by-epoch basis.

• D̄ is the total value of all rebates owed to buyers:

D̄ =
m∑
t=1

n∑
i=1

Rti (4.6)

• K̄ is the total difference between the per-byte price paid by buyers (before rebate),

and the per-byte price received by sellers. That is,

K̄ =
m∑
t=1

n∑
i=1

Ati(bti − xti) (4.7)

• V̄ is the total payment to sellers above the reserve price:

V̄ =

m∑
t=1

n∑
i=1

Ati(xti − r) (4.8)

We can compute l̄s as

l̄s =
D̄ − K̄
V̄

(4.9)
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In other words, D̄ − K̄ is the amount of money that needs to be paid to buyers, and V̄ is

the pool of money from which this payment will be drawn.

4.4 The ALIGN-TRUST subprocedure

Why go to the extra trouble in Sections 4.3.4 and 4.3.5 of instituting an indirect payment

system which places a tax on sellers? This exercise in algebra allows the market server to

pay buyer i her rebates without collecting them directly from s, buyer i’s seller. As we will

see in the Chapter 5, we use this indirection to assure RABID’s faithfulness with respect to

sellers.

4.4.1 Computing tax rates

The purpose of ALIGN-TRUST is to compute a value of l̄s for each seller s in such a way that

l̄s is minimized by faithful routing according to OSTRICT . This subprocedure is performed

by the market server. In previous subsections, we discussed the interaction between the

market server and a single seller and her corresponding set of buyers. In reality, many

independent sellers simultaneously mediate their interactions with their buyers through the

market server. Let S be the set of all sellers served by the market server, and let s ∈ S
refer a specific seller. Furthermore, let us randomly partition S into S1 and S2 such that

S1 ∪ S2 = S, S1 ∩ S2 = ∅, and |S1| ≈ |S2|. In Section 4.2.1, we introduced a values D̄,

K̄, and V̄ (Equations 4.6 to 4.8). Now let us define similar values over all sellers in Sk for

k ∈ {1, 2}:

D̄k =
∑
s∈Sk

D̄s (4.10)

K̄k =
∑
s∈Sk

K̄s (4.11)

V̄k =
∑
s∈Sk

V̄s (4.12)

Let l̄s
(k)

be the tax rate for all sellers in set Sk. We can now formally describe ALIGN-TRUST.

Definition 4.4.1. The ALIGN-TRUST procedure simultaneously determines the tax rates

l̄s
(k)

for k ∈ {1, 2} corresponding to seller pools S1 and S2. It computes D̄k, K̄k and V̄k,

and then sets taxes rates according to

l̄s
(k)

=
(D̄(−k))− (K̄(−k))

V̄k
(4.13)
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4.4.2 Pooling sellers by reserve price

We have omitted one last detail. Sellers will need to choose different reserve prices – sellers

who routinely hang around in large, crowded rooms full of lawyers and bankers should set a

higher reserve price than those whose primary clientele consists of undergraduate students.

Throughout our description of ALIGN-TRUST, we implicitly assumed that r was identical

for all s ∈ S. However, not all sellers will set the same reserve price. In order to accomodate

the heterogeneity of reserve prices, the market server must actually perform ALIGN-TRUST

not just once, but instead one time for each of the reserve prices in R. We can think of the

set S in align trust as the set of all sellers for a given reserve price r ∈ R. The need to pool

sellers by reserve price dictates that we select a small, discrete set of legal reserve prices.



Chapter 5

Theoretical analysis of RABID

Having described RABID in detail, we are now ready to consider how it achieves the desirable

economic properties introduced in Section 3.1. In the course of this analysis, we will intro-

duce two other mechanisms: VMM and FIXED. This pair of alternatives will offer illustrative

comparisons to RABID. First, we will introduce FIXED and VMM. Then, we will show how

RABID achieves constrained efficiency, universal ex-post individual rationality for buyers,

individual rationality in expectation for sellers, strong budget balance in expectation, seller

faithfulness, and buyer truthfulness in expectation.

5.1 Alternative mechanisms

In order to establish some context for RABID, we consider two other mechanisms which do

not achieve all the properties of RABID. FIXED is a baseline mechanism in which packets are

allocated at a fixed price on a first-come, first-serve basis. VMM is named after Hal Varian

and Jeffrey MacKie-Mason, whose work [15] this mechanism derives from. It conducts a

packet-level VCG auction for each packet that enters the seller’s routing queue.

5.1.1 FIXED

In this mechanism, we do not consider seller incentives. The price per packet is fixed at p.

Buyers must pay exactly p to send or receive a packet. Buyer utility is given by

uFIXEDi = (vi − p)AFIXED (5.1)

Routing of packets is performed on a first-in, first-out basis. We call the induced prioriti-

zation of this allocation rule OFIXED.

35
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FIXED is truthful (see Definition 3.1.6) and universally ex-post individually rational (Def-

inition 3.1.2) for buyers, under the reasonable assumption that buyers can control their de-

mand. It is weakly budget balanced (Definition 3.1.4). However, it is critically inefficient.

5.1.2 VMM

In Sections 1.2 and 2.2.3, we allude to the failure of VCG mechanisms to be truthful in

repeated settings. VMM is one such mechanism. It is similar to the BKS procedure described

in Section 4.3. In each epoch, buyers report their bids to the seller, who then allocates

bandwidth to the buyers over the course of the epoch. As in BKS, the seller is defined

as s = (k, r), where k is the seller’s buffer capacity and r its reserve price. Allocation is

performed according to k-priority allocation. However, VMM does not resample bids, and

therefore performs k-priority allocation with respect to the original bid vector b.

Buyers are charged according to the VCG payments. Varian and MacKie-Mason argue

in [14] that the VCG price for any packet j is the bid of the highest-priority packet j′ dropped

while j was in the queue (where j′ may be the packet displaced by j on its entrance into

the queue).

Definition 5.1.1. Let o, o′, . . . be a series of times at which packets may arrive at the VMM

seller and potentially be inserted into the seller’s queue. Let O(o1, o2) be the set of all

packets dropped by the seller between times o1 and o2. Then the VMM price of a packet p

arriving at the seller at time o1 and routed at time o2 is given by the maximum of the bids

associated with each packet in the set {j′|j′ ∈ O(o1, o2) and owner(j′) 6= owner(j)}.

VMM is universally ex-post individually rational and weakly budget balanced. Unlike

FIXED, It is constrained-efficient (Definition 3.1.1) in the case that buyers bid truthfully.

As mentioned above, VMM is not truthful for buyers. Despite VMM’s use of the Vickrey-

Clarke-Groves mechanism for allocating and pricing packets, its repeated application of

VCG disincentivizes buyers’ truthful bidding.

5.2 Constrained efficiency

RABID produces an approximately constrained-efficient allocation. Because RABID’s subpro-

cedure BKS allocates bandwidth according to the the resampled bids xi rather than the

original bids bi, inefficient allocations sometimes occur. Babaioff, Kleinberg, and Slivkins

provide an excellent starting pointing for analyzing RABID’s efficiency. In Section 3.5 of

their 2010 paper [2], the authors place bounds on their transformation’s welfare. Since
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Figure 5.1: Increasing µ lowers α, the expected value of the ratio of RABID’s efficiency to
the optimal efficiency, assuming a reserve price of 0.

the transformation lies at the heart of RABID, much of their findings are applicable in this

situation.

The mechanism parameter µ gives the probability that xi < bi for some i in some epoch.

Babaioff et al. point out that by the union bound, the probability that ∃xi < bi is at most

nµ. Therefore, in any particular epoch, the allocation will be fully efficient (under both

Babaioff et al.’s transformation and RABID) with probability at least 1− nµ.

We are also interested in the ratio of RABID’s average efficiency to the efficiency of the

optimal allocation. Babaioff et al. show that for reserve prices r = 0, the expected value of

this ratio is given by α = 1− µ/(2− µ).

5.3 Buyer truthfulness

We now consider the truthfulness (in expectation) of RABID for buyers.

Theorem 1. RABID is truthful for buyers in expectation.

Proof of Theorem 1 follows from the application of Babaioff et al.’s generic transformation
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to k-priority allocation (Definition 4.3.1), which yields the buyer payments. To show this, we

must prove that k-priority allocation w.r.t. buyer i’s original bid bi constitutes a monotone

allocation rule.

Lemma 2. k-priority allocation w.r.t. bi is a monotone allocation rule.

Proof. We must show that for fixed b−i and for all b′i such that bi ≥ b′i, k-priority allocation

yields Ai(bi, b−i) ≥ Ai(b′i, b−i). Consider that all packets allocated at bid b′i will also be

delivered for the weakly greater bid bi. Furthermore, there may exist packets which would

be dropped at bid b′i but delivered at bi. Thus, Ai(bi, b−i) ≥ Ai(b
′
i, b−i), completing the

proof.

In comparison to RABID, we know that VMM is not truthful for buyers with over the course

of an epoch. This is due to VMM’s use of VCG pricing, which is known not to be truthful

in repeated settings [5]. The repetition in VMM stems from the large number of packets that

are routed in each epoch. The routing of each packet constitutes a single VCG auction. As

a result, buyers will have an incentive to shave their bids.

FIXED, on the other hand, achieves complete buyer truthfulness. This follows trivially

from the payment rule. Let us interpret the price p as an agent i’s bid, such that bi = p

and

P FIXED
i = pAi = biAi −

∫ bi

−∞
Ai(u, b−i)du (5.2)

Since no allocation is possible at any bid less than p, we have that∫ bi

−∞
Ai(u, b−i)du = 0 (5.3)

Hence, by the Myseron characterization of truthful payment, FIXED is truthful under all

circumstances.

5.4 Universal ex-post individual rationality for buyers

Individual rationality for buyers in RABID follows from Babaioff et al.’s generic transforma-

tion. Buyers never need bid (or pay) more than their value per bytes.

This is also the case in VMM, which leads to individual rationality for buyers in this

mechanism as well.

In FIXED, buyer i only demands bandwidth when vi > p, thus yielding individual ratio-

nality for buyers.
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5.5 Individual rationality in expectation for sellers

ALIGN-TRUST introduces some complexities which seem to threaten the budget balance of

RABID. Luckily, we can show that in the limit where the number of sellers grows to infinity,

our mechanism is indeed individually rational for sellers.

Theorem 3. Let S be the set of sellers over which revenues are pooled and taxed by

ALIGN-TRUST. Then, for all s ∈ S,

lim
|S|→∞

us ≥ 0 (5.4)

Proof. Remember that ALIGN-TRUST randomly partitions S into sets S1 and S2. This trick is

due to Goldberg and Hartline’s work on competitive auctions [6]. For each set, we compute

the sum of the rebates D̄k owed to buyers associated with sellers in set Sk, as well as K̄k,

the total difference between buyers’ and sellers’ per-packet payment. We also computed V̄k,

the total pre-tax revenue of sellers in set Sk. We can think of these values as averages taken

over the randomly chosen sets S1 and S2. Hence, by the law of large numbers,

lim
|S|→∞

{D̄1, K̄1, V̄1} = lim
|S|→∞

{D̄2, K̄2, V̄2} (5.5)

lim
|S|→∞

l̄1s = lim
|S|→∞

l̄2s (5.6)

In this case, the tax rate is the same across the entire set of sellers. But since we know

that paying the tax rate determined for paying off one’s own buyers is guaranteed to be less

than or equal to one. As a result, the expectation of seller revenue, and therefore, utility,

is non-negative.

Lemma 4. Sellers can expect per-packet revenues greater than or equal to the reserve price

r:

E

[
us∑m

t=1

∑n
i=1 Ãti

]
≥ r (5.7)

Proof. By Theorem 3, we have that E[l̄s
(k)

] ≤ 1. Substituting l̄s
(k)

= 1 into Equation 4.3,

we obtain

us(b) =
n∑
i=1

(xi − (1)(xi − r))Ãi(b) (5.8)

us(b) = r ·
n∑
i=1

Ãi(b) (5.9)

By summing over m epochs and re-arranging, we obtain Equation 5.7, completing the proof.
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5.6 Seller faithfulness

We will now examine the seller faithfulness of RABID (see Definition 3.1.5). A naive applica-

tion of Definition 3.3.2 without ALIGN-TRUST, while intended to achieve priority allocation,

incentivizes the seller to violate the intended prioritization, even in expectation. If the seller

is aware that buyer i’s resampled bid xi has been resampled below the original bid bi, then

she knows i will receive a rebate in the current epoch. Since Ri = bi · Ã/µ, the seller will

“cut off” buyer i until the end of the epoch.

The seller s must be compelled to adhere to the OSTRICT routing prioritization. The

seller payment rule should ensure the seller receives the greatest payment per packet for

packets belonging to the highest bidder, the second greatest payment for those belonging

to the second highest, and so on.

Theorem 5. RABID is faithful for sellers.

Proof. In order to prove Theorem 5, we must show that sellers maximize their revenues by

implementing OSTRICT with respect to x.

The price per packet paid to sellers is equal to the resampled bid xi, minus a tax deter-

mined independently of the seller’s allocation. Routing the most valuable packets first pays

no less than routing less valuable packets first. Finally, a seller cannot decrease her tax

rate l̄s
(k)

by decreasing her revenue. Therefore, sellers receive maximum utility by routing

according to OSTRICT with respect to x.

This property holds for VMM as well. Since packets with higher bids are always routed

first, and VMM payment is a monotone function of bid, sellers participating in this mechanism

will have no incentive to distort the routing prioritization.

Trivially, FIXED is faithful for sellers since all packets yield exactly the same utility.

5.7 Strong budget balance in expectation

Strong budget balance in expectation is a system-wide property of RABID. Intuitively, it is

strongly budget balanced since no cash need enter or leave the system so long as all seller

tax rates l̄s
(k) ≤ 1.



CHAPTER 5. THEORETICAL ANALYSIS OF RABID 41

5.8 Fairness and RABID’s parameter µ

The parameter µ dictates the probability any particular agent’s bid is resampled in some

epoch. As discussed in Section 5.2, the frequency with which bids are resampled bears

on the efficiency of the mechanism. Resampling (usually) reorders the priority on buyers’

traffic. In Babaioff et al.’s transformation, the choice of µ represents a tradeoff between

efficiency and rebate size. But in RABID, tuning µ has a slightly different effect.

As µ approaches zero, individual rebates become less frequent and greater in magnitude.

Fixing the time span (number of epochs) over which a seller operates, this translates to

increased variance in revenue. Imagine a seller who operates for fifty epochs with µ = 0.01.

If the seller must pay even a single rebate, this rebate may be larger than the sum of the

seller’s revenue. Under ALIGN-TRUST, the seller is not responsible for paying this rebate.

As a result, the seller can almost certainly expect positive revenue, rather than the grossly

negative revenue she would have faced without ALIGN-TRUST’s rebate pooling. Through

this example we see that µ trades off efficiency for fairness – as µ approaches zero, the

mechanism’s efficiency increases, but the strength of the redistributive effect increases as

well. In Section 6.3.3, we present experimental evidence in support of this claim.



Chapter 6

Experimental results

Until this chapter, this thesis has been concerned with the theoretical properties of RABID.

But we are also interested in characterizing the mechanism’s behavior through simulation.

We have constructed a packet-level simulator of RABID, and in this chapter we present

our simulation results. In Section 6.1, we describe our simulator. Then in Section 6.2,

we provide experimental evidence demonstrating RABID’s theoretical properties. Finally, in

Section 6.3, we explore behaviors of RABID revealed by our simulations.

6.1 Simulator overview

Our simulator is designed to study the allocation of bandwidth in a reasonably realistic

setting. We seek to model the arrival, queuing, and delivery of packets. By conducting

simulations, we seek to explore how RABID allocates packets under congestion, measure the

revenue it achieves, and observe the variance in the utility received by its participants.

6.1.1 Simulation scope

We have chosen the scope of our simulator to balance simplicity and performance with

realism and scale. Our simulator is limited to the BKS sub-procedure of RABID. This means

that we model only a single seller and a small number of buyers to whom she sells bandwidth.

Because our simulated seller always routes according to the priority ordering stipulated by

BKS, we can combine the results of multiple simulations to observe the results of applying

ALIGN-TRUST, RABID’s other sub-procedure.

Each simulation runs for a set number of epochs (usually fifty). Once the simulation is
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complete, we aggregate data on packets delivered and dropped, payments disbursed, and

utility achieved. We then export this data to an analysis suite for visualizing our simulation

results. Each epoch has a specified epoch length (usually 300 milliseconds). Because many of

the elements of the simulator are randomized, most of our simulated experiments aggregate

the results of several simulations.

6.1.2 Simulated epochs

At the simulator’s core is its treatment of each single epoch. Each epoch begins at some

time t measured after the beginning of the simulation, and ends at t+ l, where l is the epoch

length. At the beginning of the epoch, the seller solicits bids from each buyer. It provides

buyers with data about system behavior in previous epochs, including other agents’ bids and

their allocations. This allows us to implement highly strategic buyer behavior. However,

most buyer bidding strategies do not require this information. The buyer strategy we

experiment with most commonly is truthful bidding. We implement the buyers’ bidding

behavior through the combination of a strategy model and a utility model. The utility model

dictates the buyer’s value per packet, which can then inform the strategy model’s choice of

bid.

Once bids have been collected, the seller solicits packets from buyers. We ignore the

direction of these packets – there are no separate upload and download queues, only a

single unidirectional queue. We also ignore the destination of the packets. The seller

will simply attempt to deliver each packet back to the buyer who submitted it. This is

a simple way to keep track of which packets are actually routed, and which are dropped.

Buyers submit packets to the seller based on a demand model. Unless otherwise noted,

we implement this demand model as a random packet generator. The time delay between

packets is an exponentially-distributed random variable. We control demand through the

exponential distribution’s rate parameter λ, where a greater λ translates to a shorter delay

between packet transmissions.

The seller asks buyers to submit all packets they wish to transmit before the next packet

collection delay. At each delay, typically every 100 milliseconds, the seller removes a number

of packets from its queue and delivers them to buyers. We call the number of packets

delivered the packets per delay. Under the aforementioned buyer demand model with an

exponentially distributed time delay between packets, the number of packets arriving in

each packet collection delay follows a Poisson distribution.

At the end of each epoch, the seller tallies the packets delivered and dropped, and

computes the payment from each buyer. We store a set of statistics for each epoch, including
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the number of packets delivered, the number of packets dropped, the payment made in each

period, and the value received by each agent.

6.1.3 Simulating ALIGN-TRUST

As mentioned in Section 6.1.1, our simulator does not perform the ALIGN-TRUST procedure.

However, it is straightforward to emulate ALIGN-TRUST in the analysis of simulation data.

Because simulated sellers always route packets according to design, we can skip the random

assignment of sellers to different pools, and simply compute the tax rate over all sellers. The

resulting seller revenues are essentially equivalent to those obtained through ALIGN-TRUST.

6.1.4 Default simulation parameters

Our experiments typically vary a handful of parameters. However, the majority of param-

eters remain unchanged. In Sections 6.2 and 6.3, we describe our experiments in terms of

modified parameters. Understanding our experiments therefore requires an understanding

of our default parameters. These are summarized in Figure 6.1.4.

System-wide parameters

Parameter name Default value

µ 0.1

epoch length 300ms

packet delivery delay 150ms

max. packets delivered per delay 300

seller buffer capacity 20

reserve price 0.75

Buyer parameters
vi bi λ

Buyer 0 1 1 0.065

Buyer 1 2 2 0.065

Buyer 2 3 3 0.065

Buyer 3 4 4 0.065

Figure 6.1: Summary of our default simulation parameters.

Our choice of default parameters leads to several default behaviors. Each buyer generates

an average of 20 packets per epoch. The seller can route 40 packets per epoch, and therefore

can fully serve only two buyers at a time. In our default experimental setup, participants

experience network congestion.

6.1.5 Implementation details

Our simulator is implemented in Haskell. The choice of language has had an important

impact on the development of our simulator. Haskell’s extraordinary type system has

been a huge asset in ensuring correctness and finding bugs at compile time. The excellent
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performance of native code generated by GHC enables us to run experiments quickly. Each

individual simulation completes in hundredths of a second. Additionally, Haskell’s dense

standard library and wonderful package manager have proven to be tremendous time savers.

6.2 Simulation results concerning theoretical properties

In this section, we present our simulation results in support of our theoretical claims con-

cerning RABID. We will focus on the properties most evident in simulation, namely, efficiency,

truthfulness, and individual rationality.

6.2.1 Efficiency

RABID is designed to produce efficiency gains over fixed-price mechanisms by allocating

bandwidth to buyers with the greatest value for data. In Figure 6.2.1, we demonstrate

RABID’s efficiency gains compared to FIXED as we increase the seller’s buffer size. When

the seller’s buffer is small, the seller is forced to drop packets. Under FIXED, the seller

drops packets without regard for their value. The packets dropped are essentially chosen

at random, since packets arrive at random times. However, RABID and VMM both keep

higher-value packets in their queues and drop those of lower value.

Interestingly, VMM achieves higher efficiency than RABID in the data shown in Figure

6.2.1. This is due to a loss of efficiency from the resampling procedures at the heart of BKS.

However, we see that the difference in efficiency is small, substantiating RABID’s approximate

efficiency.

Yet VMM’s efficiency in this context is somewhat artificial, since in this experiment buyers

bid truthfully. As we will see in Section 6.2.2, buyers under VMM generally receive a boost

in utility from shaving their bids by the right amount. Figure 6.2.1 shows that VMM with

truthful bidding achieves lower buyer utility than RABID.

6.2.2 Buyer truthfulness in expectation

Figure 6.2.2 compares the utility of a strategic buyer under VMM and RABID. In this exper-

iment the strategic buyer, Buyer 1, has a value of 5 per packet. She competes for limited

bandwidth against Buyer 0, who has value 4 per packet, but demands slightly more data

than Buyer 1. Buyer 0 always bids truthfully, while Buyer 1 bids strategically. Buyer 1’s

bid is given on the x-axis in Figure 6.2.2’s. When Buyer 1 bids below Buyer 0, she receives

greater utility than she would truthfully bidding her value per packet of 5. Focusing on the
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Figure 6.2: Under congestion, RABID and VMM both allocate bandwidth more efficiently than
FIXED.

efficiency achieved by the mechanism, we see that Buyer 1’s strategic behavior has a slight

negative effect on the mechanism’s utility. When Buyer 1 raises her bid above Buyer 0’s,

the mechanism’s total utility (efficiency) increases.

6.2.3 Revenue and weak budget balance

It is important that our simulation results bear-out our claim that RABID is individually

rational for sellers in expectation. We would like to show not only that sellers can expect not

to lose money, but that under reasonable circumstances, they should expect strongly positive

revenues. Figure 6.2.3 demonstrates that even in the absence of a reserve price, sellers can

achieve strong revenue under RABID. To generate this figure, we run numerous simulations,

each with randomly chosen parameters. We vary the number of buyers uniformly at random

between one and ten. Buyers’ values-per-packet are sampled uniformly at random on the

interval [0, 5]. We use the resulting data to emulate ALIGN-TRUST, as described in Section

6.1.3.

The revenue distribution is skewed heavily to the right. Not only are all sellers’ revenues

positive, but in fact the majority of sellers enjoy healthy revenue.
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Figure 6.3: VMM achieves lower buyer utility under truthful bidding than BKS, as truthful
bidding in VMM is not a dominant strategy. As a result, truthfully bidding buyers in VMM

overpay for their bandwidth.

6.3 Simulation results characterizing the behavior of RABID

6.3.1 ALIGN-TRUST decreases revenue variance

ALIGN-TRUST is a necessary part of RABID– without it, seller faithfulness would not be

a dominant strategy. But ALIGN-TRUST confers additional benefits on sellers. It vastly

reduces the variance in revenue over BKS alone (assuming that buyers do not behave strate-

gically in this instance of BKS). The pooling performed by ALIGN-TRUST averages out much

of the variance in payments that arises from the large, infrequent random rebates gener-

ated by BKS. On the x-axis of Figure 6.3.1 are revenues that sellers would achieve without

ALIGN-TRUST, assuming faithful behavior. The y-axis shows revenue under ALIGN-TRUST.

Each point represents a single seller. The vertical compression which is evident in this data

set demonstrates the reduction in variance of seller revenues. Note that the range of the

y-axis in this figure is only one-fourth that of the x-axis. We also observe that while sellers

appearing left of x = 0 would have suffered negative revenues alone, ALIGN-TRUST ensures

that all sellers achieve non-negative revenue.

6.3.2 Seller revenue

Our simulation results provide some characterization of RABID’s revenue generating behav-

ior. In Figure 6.3.2, we vary the seller’s buffer capacity between 1 and 25. We do not apply

the ALIGN-TRUST transformation in post processing, so that the figure shows the results a

well-behaved seller could expect without rebate pooling and at reserve price r = 0. We see
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Figure 6.4: Buyer 0 has value 4; Buyer 1 has value 5. We see that Buyer 1 maximizes
her utility under VMM by under-bidding. Unfortunately, this causes a reduction in the VMM’s
efficiency. Under BKS, Buyer 1 maximizes her utility by bidding truthfully.

that revenue is greatest when capacity is high enough to let a reasonable number of packets

reach their destination, but also low enough that bandwidth remains a scarce, expensive

resource.

Figure 6.3.2 shows results from an experiment similar to experiment reported on in Figure

6.3.2, with the difference that Figure 6.3.2 modifies the seller’s reserve price rather than

her buffer capacity. Because of the congestion mechanism participants under our default

parameters (see Figure 6.1.4), bandwidth is already a scarce and expensive resource. Figure

6.3.2 shows that under these conditions, it is expensive enough that no fixed-price auction

can achieve greater revenue.

6.3.3 Tuning µ

In Section 5.8, we discussed how the mechanism designer’s choice of µ represents a trade-off

between efficiency and fairness. Figure 6.3.3 explores this effect. To generate this figure,

we ran several hundred simulated experiments. As in Figure 6.3.1, each point on the

plot represents the outcome of a single experiment. Simulation parameters are randomly

selected similarly to the manner in which they are chosen to generate Figure 6.2.3. For

these experiments, the number of buyers is chosen uniformly at random between 2 and 6

(inclusive). Buyer values per packets are chosen uniformly at random from [0, 5]. Buyer

rate parameters (λ) are fixed at 0.065. All other parameters correspond to the defaults. We

then generate two groups of experiments. The first is run at µ = 0.1, while the second is
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Figure 6.5: Under ALIGN-TRUST, no seller loses money.

run at µ = 0.9.

In Figure 6.3.3, we plot the revenue each seller achieves under RABID on the y-axis, and

the revenue she would achieve without pooling on the x-axis. The distribution of revenue is

vertically compressed due to the redistribution engendered by ALIGN-TRUST. If there were

no redistribution, then every point would fall on the line x = y. This allows us to visualize

the magnitude of the redistribution by measuring the slope of the data generated by each

group of experiments. We see that the slope of of the experiments for µ = 0.9 is greater

than that for µ = 0.1, but is still less than 1. That is, a greater µ leads to less utility

redistribution but seems unlikely to eliminate this redistribution. It should be noted that

µ = 0.9 is an extreme parameter choice – this equates to almost constant resampling, which

leads to very poor efficiency.
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Figure 6.6: ALIGN-TRUST reduces the variance in seller revenue. Seller revenues with (y-axis)
and without (x-axis) ALIGN-TRUST are plotted against each other. The vertical compression
evident in this figure demonstrates the reduction in revenue variance.
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Figure 6.7: For a reserve price of zero, the fixed price mechanism achieves no revenue, but
both VMM and RABID achieve strongly positive revenue.
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Figure 6.8: Manipulating the reserve price yields no greater benefit to FIXED than to RABID

or VMM.
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Figure 6.9: As µ increases, RABID’s redistributive effect decreases.
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Discussion and Conclusion

In this chapter, we will examine issues which our work does not directly address or which

remain unresolved. Among these issues are fairness and collusion. We identify two aspects

of RABID which raise questions as to whether the allocations and payments computed by

the mechanism are fair. Next, we investigate several collusion schemes with potentially

dire consequences for seller individual rationality and system budget balance. Resolving

questions of fairness and preventing collusion provide fertile grounds for future work.

We end the chapter with some concluding thoughts on this thesis.

7.1 Fairness

The concept of fairness in mechanism design is often fluid, having no single definition. What

would characterize a fair bandwidth trading mechanism? Are agents participating in RABID

treated fairly? Fairness may not be a binary property. Instead, it may be possible to trade

fairness for increased efficiency or revenue.

We identify two aspects of RABID which raise questions about fairness in the context

of bandwidth trading. The first is the redistributional aspect of ALIGN-TRUST. By taxing

sellers a portion of their revenue, ALIGN-TRUST redistributes wealth. Is it fair to sellers to

take more from some than from others?

Buyers have fairness concerns as well, centering around the effects of the bid resampling

needed to achieve truthfulness. Imagine a buyer with a high value for data and a great

demand for bandwidth. If this buyer’s bid is resampled below those of a number of other

buyers, she might appear to lose her connectivity for the length of an epoch.
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We will examine the consequences of these fairness issues, and explore possible tradeoffs

in both circumstances between fairness and other properties.

7.1.1 Redistribution

The ALIGN-TRUST procedure ensures the faithfulness of RABID with respect to sellers. How-

ever, its redistributive natures may require participants to accept a degree of unfairness, as

a share of their wealth will be taken from them.

We suggest a few ways to redress this unfairness, potentially at the expense of other

auction properties.

• Institute a regressive tax rather than a flat tax.

• Inject cash into the system. The extra cash could be used to pay buyers’ rebates

without taking as much money from sellers. This would necessarily remove all budget

balance from the mechanism.

• Do not run ALIGN-TRUST, instead let sellers pay buyers’ rebates. Removing ALIGN-TRUST

would dismantle the incentives required for seller faithfulness. However, this may make

sense if the mechanism designer believes the technical challenge of implementing ma-

nipulative seller behavior would be greater than the benefit this would incur for the

manipulator.

7.1.2 Interrupted connectivity

As an unfortunate consequence of the bid resampling we first described in Section 3.3,

buyers with a high value for data may be “cut off” from time to time as their bids are

resampled below others’. Imagine a consultant making an international voice-over-IP call

to a client. The consultant would be very upset if her call were dropped due to having her

bid resampled below four other buyers’ bids. We must ask if it is fair to let buyers willing

to pay dearly for every packet lose their connections.

The ideal solution to this problem is to a design a new self-resampling procedure (see

Section 3.3.4) which guarantees that no buyer entirely loses connectivity. However, this

seems like a difficult task.

Tuning mechanism parameters offers the simplest hope of addressing this issue. By

decreasing both the resampling probability µ and the epoch length, the mechanism designer

could reduce the frequency with which buyers are cut off, and decrease the length of time
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during which they lose connectivity. This would, however, come at the cost of decreased

fairness to seller.

Finally, it might be possible to make changes to RABID’s allocation rule in order to trade

efficiency for fairness. By always routing a certain amount of traffic for each buyer in each

epoch, a modified mechanism could avoid cutting off any of its buyers.

7.2 Collusion

We first alluded to the issue of collusion while discussing prior work in Section 1.2, and

again in Section 2.2.4 while describing the challenges addressed by RABID. In this section,

we briefly sketch two collusion schemes and then discuss their consequences.

7.2.1 Buyer-buyer collusion

In this scheme, a set of trusted buyers collude in order to minimize their net payment for

bandwidth. The buyers communicate their true values to each other. They then submit

reduced bids in such a way as to preserve their true priority order. If all buyers associated

with some seller participate in the collusion scheme, buyer i can bid r+ εi such that εi � r

and pay little more than the reserve price.

Buyers face two obstacles to achieving this type of collusion. First, buyers need to trust

each other. Second, they must find a way to communicate their true values to each other.

Unfortunately, buyers will always be physically near to each other in order to connect to

the seller’s wifi adapter, which makes communicating and overcoming trust barriers easy.

Should mechanism designers attempt to create elaborate counter measures for this kind

of collusion? By performing statistical inference on buyer bidding behavior or observing

communication between buyers, it might be possible to detect and prevent buyer-buyer

collusion.

These efforts may not be cost-effective. The main effect of buyer-buyer collusion is to

reduce seller revenue. However, it leaves all other properties essentially unchanged. In the

worst case scenario, sellers are essentially forced to set a fixed price, and buyers still achieve

constrained-efficient outcomes. It may be best to ignore this type of collusion.
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7.2.2 Buyer-seller collusion

Buyer-seller collusion is potentially much more harmful to RABID’s desirable properties. In

buyer-seller collusion, buyers and seller cooperate in maximizing buyers’ rebates. The seller

notifies a buyer each time she, the buyer, can expect to receive a rebate. In response, the

buyer rapidly generates receipts for non-existent packets. The seller forwards these receipts

to the market server, delivering a tremendous rebate to the buyer. Since the cost of these

rebates is not paid by the seller, she has no disincentive to participate in this scheme.

Furthermore, the buyer can give a share of her proceeds to the seller as compensation.

While we refer to this procedure as “collusion,” it could in reality be the product of

a single agent operating multiple devices, for example, a smartphone and a laptop. In

essence, agents can effectively steal from the system. The result is potentially devastating.

Buyer-seller collusion might void sellers’ expectations of individual rationality, break budget

balance, and seller disincentivize faithfulness.

One countermeasure against this attack is to conceal knowledge of which agents will

receive rebates in which periods. For example, all bid resampling could be performed by

the market server, rather by sellers, who would instead only learn the prioritization order

over buyers in each epoch. This would prevent the single-user smartphone-and-laptop attack

described above. However, it is unlikely to be completely effective at preventing all buyer-

seller collusion attacks. Mechanism designers should expect to need to deploy significant

countermeasures against this class of attacks.

7.3 Conclusion

In this thesis, we have presented RABID, a mechanism which facilitates bandwidth trading

between untrusting internet device users. RABID addresses a number of challenges inher-

ent to the bandwidth trading context. Among these challenges we count the inability of

buyers and sellers to hold each other accountable for delivering promised bandwidth, and

the impossibility of computing counterfactual bandwidth allocations. Despite these chal-

lenges, RABID achieves a number of desirable economic properties. We prove that RABID

is approximately constrained-efficient, universally ex-post individually rational for buyers,

individually rational in expectation for sellers, strongly budget balanced in expectation, and

truthful in expectation for buyers.

In order to achieve these properties, RABID leverages work by Babaioff, Kleinberg, and
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Slivkins to allocate bandwidth on a packet-by-packet basis according to a routing priori-

tization dictated by buyers’ bids. Truthful payments are computed without the need for

computing counterfactual allocations.

We provide simulation data in support of our theoretical results. Our simulations com-

pare the performance of RABID two alternative mechanisms, VMM and RABID, and show that

RABID generally outperforms these alternatives in terms of generating simultaneously truth-

ful and efficient outcomes. Through simulation, we provide additional characterizations of

RABID’s behavior, illustrating trade-offs between efficiency and fairness.
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