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Abstract

Combinatorial auctions have a wide range of real-world applications; yet, designing com-

binatorial auction mechanisms that simultaneously possess good economic properties and

computational tractability remains a major challenge. An auction mechanism consists of

an allocation rule and a payment rule. We propose a new framework that uses Structural

SVMs to design a payment rule for any given allocation rule. Besides being tractable, the

payment rule produced by an exact classifier is both strategyproof and individually ratio-

nal. Unlike the VCG payment rule, our framework does not require an optimal allocation

rule, an NP-hard problem, in order to obtain a strategyproof mechanism. Our experiments

show that the payment rules generated from our framework enjoy a low level of ex post

regret and approximate well-known strategyproof payment rules, such as VCG and second

price, reasonably well. In addition, applying our framework to an allocation rule with no

corresponding strategyproof payment rule does not result in additional performance loss.
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Chapter 1

Introduction

This problem [of combinatorial auctions] has direct applications,

may be viewed as a general abstraction of complex resource allo-

cation, and is the paradigmatic problem on the interface of eco-

nomics and computer science.

Blumrosen and Nisan [4]

Combinatorial auctions (CAs) allow multiple items to be auctioned simultaneously and

permit participants to express preferences over different subsets of these items. The complex

set of possible strategies for a bidder allows for the expression of such intricate interrela-

tions between different items in the auctions as complementarity and substitutability. Many

real-world resource allocation problems require that type of expressibility as the value of an

item often depends on other items. For instance, in spectrum auctions of US Federal Com-

munications Commission (FCC), licenses for transmitting signals over different wavelengths

across multiple geographical areas are being auctioned, and these licenses can be comple-

mentary and substitutable. Other applications of combinatorial auctions include airport

time slot auctions, and railroad segment auctions [6]. Despite the utility of combinato-

rial auctions, designing CA mechanisms that are both computationally and economically

1



CHAPTER 1. INTRODUCTION 2

desirable remains a major challenge within the field of computational mechanism design.

Combinatorial auction mechanisms involve two steps: first, optimally determining win-

ners of different items (“winner determination problem” or “allocation rule”), and second,

deciding how much each winner has to pay for the allocated items (“payment rules”). One

hallmark mechanism is the Vickrey-Clarke-Groves (VCG) mechanism, which proposes a

payment rule that when coupled with a socially optimal allocation rule, guarantees that

bidders truthfully reveal their private information about their preferences. This property,

called incentive compatibility (IC) or strategyproofness (SP), is important within mechanism

design, as it allows the auctioneer access to truthful information and reduces coordination

problems. Nevertheless, two problems prevent VCG mechanisms from being useful in prac-

tice. First, despite its provision of socially optimal and incentive compatible solutions,

VCG mechanisms are known to generate poor revenues, and are vulnerable to certain types

of manipulation, such as collusion among bidders [1]. A more serious problem with VCG

mechanisms is that they require optimal allocations in order that the mechanisms become

incentive compatible.

Optimally allocating items to bidders in the combinatorial auction setting is known to

be NP-Complete, since the problem can be formulated as an integer programming problem

similar to weighted set packing, a known NP-Complete problem [23]. One of the possible

workarounds is to find an approximately optimal mechanism. Unfortunately, finding a

solution with total social welfare within a factor of m
1
2
−ε of that of an optimal solution,

where m is the number of items and ε > 0, is known to also be NP-Complete, based on

NP-Completeness of the approximation of clique size [8, 4]. Therefore, research has focused

on studying special cases such as auctions with Walrasian equilibrium [3] and single-minded

CAs [13], and on employing heuristic algorithms [4]. Without optimality, VCG payment

rules cannot be used with these algorithms to generate incentive compatible mechanisms.

In this thesis, we propose a new framework that, given any allocation rule, uses machine

learning to generate a corresponding incentive compatible payment rule for that particular
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allocation rule. The allocation rule is used to generate training instances, from which

Structural Support Vector Machines (Structural SVMs) [25, 9] are used to learn a classifier

for the allocation rule. Then, we derive a payment rule from the learned classifier. An exact

classifier produces a fully incentive compatible and individually rational payment rule for

the given allocation rule. A primary advantage of this approach over the VCG payment rule

is that the optimality of an allocation rule is not required to get an incentive compatible

mechanism. Rather, the more general property of monotonicity suffices. In addition, the

framework functions equally well when an allocation rule does not have a corresponding

incentive compatible payment rule, by seeking a payment rule that minimizes a regularized

upper bound on empirical regret for truthful bidding.

This thesis is conducted, in part, for a paper submitted to the 12th ACM Conference

on Electronic Commerce 2011, “Payment Rules for Combinatorial Auctions via Structural

SVMs” by Dütting, Fischer, Jirapinyo, Lai, Lubin, and Parkes. This thesis discusses the

theoretical model presented in the paper and further experiments with the model in various

settings, in order to verify the framework and generate insights into how the model works

in practice.

1.1 Related Work

With the intractability of combinatorial auctions, a prominent research direction has been

to identify different auction mechanisms that compromise certain properties such as op-

timality and incentive compatibility, while preserving computational tractability. Many

approximately optimal and heuristic mechanisms have been proposed for combinatorial

auctions. For instance, Lavi [12] studies worst-case optimality of polynomial time mech-

anisms. Lehmann et al. [13] proposes a
√
m − approximatation greedy mechanism for

a special case of combinatorial auctions where each bidder can bid on up to one bundle

of items. In the general setting of combinatorial auctions, linear programming relaxation
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(LPR) is known to generate optimal outcomes in some settings [4]. In practice, many types

of auctions are employed in place of general CAs, such as Simultaneous Multiple-Round

(SMR) auctions and Package Bidding used in FCC Spectrum Auctions.1

Focusing primarily on designing payment rules for given allocation rules is a relatively

new research direction that this thesis will explore. Enforcing certain desirable properties,

Parkes et al. [19] investigates different payment rules for a given allocation rule in the con-

text of combinatorial exchanges. Sharing similar methodologies, but differing in substance,

Lahaie [10, 11] employs the technique of using a “kernel trick” to work with nonlinear pric-

ing in combinatorial auctions. Nonetheless, his work differs from ours in many ways. First,

Lahaie formulates the problem of identifying market clearing prices as a quadratic optimiza-

tion program, as opposed to a learning problem as we propose in this thesis. In addition,

Lahaie works with market clearing prices rather than with the space of items and bundles.

Lastly, his framework is limited to utilitarian goals, leaving incentive compatibility as an

indirect result of the model. On the other hand, full incentive compatibility is explicitly

enforced by the model presented in this thesis.

On the machine learning side, the core of the framework presented in this thesis is a

multiclass Support Vector Machine. The framework uses a Support Vector Machine (SVM)

to learn from training instances generated by an allocation rule. Since an allocation rule of

a combinatorial auction outputs more than two classes (i.e., all possible bundles of goods),

the framework requires an SVM that can handle multiple classes. Nonetheless, SVMs are

fundamentally binary classifiers. Earlier efforts to extend SVMs to work with multiple

classes included two types of models: one-versus-all and one-versus-one. In a one-versus-all

(OVA) model, m separate SVM models are learned for m different classes. Each of the sub-

models then defines decision boundaries between that particular class and all other classes.

A winning class is chosen based on margins. A one-versus-one (OVO) model, on the other

hand, builds m(m−1)
2 classifiers for all pairs of classes. Then, a voting algorithm is used to

1More information can be found at http://wireless.fcc.gov/auctions.
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determine a winning class [17]. Weston and Watkins [26] extend traditional SVMs to work

with multiple classes by adding constraints proportional to the number of classes; as a result,

only a single classifier is needed to classify multiple classes. Crammer and Singer [5] further

increase efficiency of multiclass SVMs. Tsochantaridis et al. [25] generalize multiclass SVMs

to work with more complex datasets, and call it Structural SVMs. Nonetheless, it is unclear

which approach is best for multiclass classification. For instance, Rifkin and Klautau [20]

argue that properly-tuned OVA classifiers can be as good as other approaches in terms of

accuracy. In the context of this thesis, it is important to note that the framework presented

here can be formulated as OVA, OVO, and Structural SVMs. Nevertheless, we have chosen

to use Structural SVMs to formulate the framework for a couple of reasons. First, Structural

SVMs require training only one classifier per setting, removing logistical costs of preparing

datasets for and training multiple, different sub-classifiers for each setting. Moreover, with

Structural SVMs, we do not have to deal with normalizing different classifiers to the same

scale.

1.2 Summary of Contributions

The theoretical and empirical contributions of this thesis are as follows:

• This thesis presents a new framework for designing a strategyproof (SP) payment rule

for any given allocation rule, granted that the allocation rule can be made SP. An

exact SVM classifier produces a payment rule that is fully SP and individually rational

(IR). The advantage of this framework over existing methods lies in its applicability

to any type of allocation rule, whereas for example, the hallmark VCG rule is SP only

when coupled with optimal allocation rules.

• In addition, a connection is made between training error and economic regret. Specifi-

cally, minimizing regularized empirical error also minimizes a regularized upper bound

on empirical regret. This implies that when a classifier is inexact or an allocation rule
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cannot be made SP, the resulting payment rule still seeks to minimize an upper bound

on empirical regret for truthful bidding.

• We use benchmark value distributions and allocation rules to experiment with and

verify our framework. In the single item auction setting, agents on average experience

ex post regret of less than 0.2% of agents’ valuation range. In the single-minded CA

setting where each agent can bid on at most one bundle, average ex post regret is

less than 1.5%.2 Lastly, in the multi-minded CA setting where each agent bids on a

fixed number of bundles, easy value distributions produce average ex post regret of

less than 0.3%, whereas difficult distributions yield average ex post regret of up to 2%

of agents’ valuation range.

• The payment rules produced by our framework approximate well-known SP payment

rules, such as second price, VCG, and an SP greedy mechanism for single-minded CAs.

The root mean square errors of the predicted payments compared to the outputs of

well-known IC payment rules are in most cases less than 0.15, with agents’ valuation

range at (0, 1].

• Individual rationality violation rates of our payment rules are less than 4% for single

item auctions, between 0% and 7% for single-minded CAs, less than 6% for multi-

minded CAs with easy value distributions, and between 1% and 16% for multi-minded

CAs with difficult value distributions.

• Value distributions in which goods are substitutes are the most difficult setting for

our framework, as correct allocations in this setting tend to be skewed toward smaller

bundles. In this setting, classification accuracies range from 70% to 92%. On the other

hand, value distributions with complementary goods are the easiest setting, as most

allocations are in the full package of goods. In this setting, classification accuracies

are greater than 90%.
2The numbers reported in this section are based on the second attribute vector χ2, which outperforms

χ1 in most cases.
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• One of the main components of the framework is a feature mapping that maps agents’

valuations and allocated bundles onto a higher dimensional space, in the process defin-

ing the hypothesis space for the shapes of possible payment functions. In this thesis,

two types of feature mappings are experimented with—one precludes hypotheses that

generalize the knowledge gained from one bundle to another, while the other allows

for this. In our experiments, the two mappings perform equally well when the bundle

space is small. The second mapping outperforms the first one, as the bundle space

gets larger.

• Our initial experiments with an allocation rule that does not have a corresponding

SP payment rule show that classification accuracy, distribution of ex post regret, and

IR violation rate in this setting are in similar ranges as those in a setting with an

SP payment rule, providing initial evidence that applying our framework to a non-SP

allocation rule does not result in additional performance loss.

1.3 Outline

The remainder of this thesis is organized as follows. Chapter 2 discusses important nota-

tion related to combinatorial auctions and introduces the theoretical framework as well as

proofs of its various properties. In Chapter 3, we present the design of the experiments

that are employed to yield insights into how the model works in practice. Computational

considerations related to implementing the theoretical model are discussed. The three types

of auction settings experimented with—single item auctions, single-minded combinatorial

auctions, and multi-minded combinatorial auctions—are also explained in details. Chapter

4 presents and discusses the results of the experiments. Chapter 5 concludes and offers

directions for future work.



Chapter 2

Designing Payment Rules with

Structural SVMs

The issue of designing combinatorial auctions that simultaneously have good computational

and economic properties is not trivial. In this chapter, I present the theoretical aspect of

a model for designing payment rules based on the concept of Structural Support Vector

Machines (Structural SVMs). The approach yields payment rules that are both tractable

and strategyproof. In addition, we also establish a connection between empirical error of

the learning problem and ex post regret of the auction mechanism.

Section 2.1 explores definitions and notations related to combinatorial auctions (CAs),

as well as various properties that are important to the framework. Section 2.2 summarizes

structural SVMs. Lastly, Section 2.3 introduces the Structural SVM approach to designing

strategyproof payment rules, as well as related proofs.

8



CHAPTER 2. DESIGNING PAYMENT RULES WITH STRUCTURAL SVMS 9

2.1 Combinatorial Auctions

In a combinatorial auction, m distinct items are being auctioned, and n agents place offers

on various subsets of these items. Each agent (or “bidder”) has a valuation xi ∈ R2m

+ = B

over all possible subsets (also called “bundles” and “packages”) of items. Let Y = {0, 1}m

define the set of possible allocations, where yj = 1 if and only if item j is included in the

bundle. Let xi[y] be agent i’s valuation of bundle y. We require that an agent’s valuation

is monotonic, meaning that xi[y] ≥ xi[y′] for all y′ ⊆ y, and normalized, meaning that

xi[0] = 0. We use x ∈ Bn = X to represent all agents’ valuations (x1,x2, . . . ,xn), and

x−i ∈ Bn−1 to represent all agents’ values other than agent i’s, (x1, . . . ,xi−1,xi+1, . . . ,xn).

An auction mechanism consists of two components. First, the winner determination

algorithm specifies an allocation rule, which determines the assignment of packages of items

(including the empty bundle) to agents given agents’ valuations. We assume that the

allocation rule is symmetric with respect to agents, and therefore without loss of generality,

we define various things and derive the theoretical framework from the viewpoint of agent

1. Second, a payment rule dictates how much agent 1 has to pay for the allocated package.

Taken together, the allocation rule and payment rule defines an auction mechanism.

Definition 2.1.1 (Allocation Rule). A function g : B × Bn−1 → Y , which outputs the

allocation to agent 1 given agent 1’s valuation and the other agents’ valuations, defines an

allocation rule.

Definition 2.1.2 (Payment Rule). A function t : B × Bn−1 × Y → R, which outputs the

payment collected from agent 1 given agent 1’s valuation, the other agents’ valuations, and

agent 1’s allocated bundle, defines a payment rule.

Definition 2.1.3 (Auction Mechanism). An auction mechanism is defined as a pair of an

allocation rule g and a payment rule t: (g, t).

Another important assumption we make about the allocation rule is that it satisfies



CHAPTER 2. DESIGNING PAYMENT RULES WITH STRUCTURAL SVMS 10

consumer sovereignty. This property helps establish the connection between training error

and economic regret.

Definition 2.1.4 (Consumer Sovereignty). A decision rule g with range Y satisfies con-

sumer sovereignty if for every x−1 ∈ Bn−1 and every y ∈ Y , there exists some x1 ∈ B for

which g(x1,x−1) = y.

Consumer sovereignty implies that with a sufficiently high valuation, agent 1 can possi-

bly be allocated any bundle the agent wants, regardless of other agents’ valuations. This

property of a mechanism implies that optimizing for agent 1 over the space of agent 1’s

valuations is equivalent to optimizing for agent 1 over the space of bundles, as for every x−1

and every y, there exists x1 that agent 1 can submit and receive bundle y. Since agent 1 is

asked to submit x1, from the viewpoint of agent 1, to minimize the agent’s own economic re-

gret is to optimize over the space of agent 1’s valuation. Nevertheless, the training problem

of the framework presented in Section 2.3 optimizes for agent 1 over the space of bundles.

This requirement bridges the gap between the optimization problem of the training problem

and agent 1’s economic interest. Consumer sovereignty is a strong but reasonable property.

A weaker requirement will likely suffice, but we require this property for simplicity.

In addition, three concepts of auction mechanisms are particularly important to the

discussion of the new framework presented in this thesis.

2.1.1 Strategyproofness

We assume quasi-linear utility functions for agents, and as such, the utility to agent i given

that the agent is allocated y and charged z is xi[y] − z. Given auction mechanism (g, t)

and other agents’ valuations x−1, the utility to agent 1 is:

u1(x1) = x1[g(x1,x−1)]− t(x1,x−1, g(x1,x−1)] (2.1)

A property that is central to our work is incentive compatibility (IC). A mechanism is

considered incentive compatible, if all of the agents have no incentive to deviate from truthful
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reports of their actual valuations. Given auction mechanism (g, t) that is symmetrical with

respect to agents, we define incentive compatibility from the perspective of agent 1 as

follows:

Definition 2.1.5 (Incentive Compatibility). Agent-symmetric mechanism (g, t) is incentive-

compatible (IC) if and only if

x1[g(x1,x−1)]− t(x1,x−1, g(x1,x−1)) ≥ x1[g(x′1,x−1)]− t(x′1,x−1, g(x′1,x−1)),

for every x1 ∈ B, every x′1 ∈ B, and every x−1 ∈ Bn−1.

With this property, agent 1 cannot improve its utility by changing the report of its

valuation, no matter what the other agents do. This is the definition of dominant-strategy

incentive compatibility (DSIC) or strategyproofness (SP). Hence, we use the terms incentive

compatibility and strategyproofness interchangeably in this thesis.

The definition of IC leads to two issues of particular interest. The first issue is the char-

acteristics of allocation rules that would have corresponding, incentive compatible payment

rules. The framework for deriving payment rules presented in following sections does not

make any assumption about the input allocation rules in terms of incentive compatibility.

If a given allocation rule has a corresponding IC payment rule, then the framework would

in principle learn the payment rule that when coupled with the allocation rule, yields an

IC mechanism. At the same time, if a given allocation rule does not have a corresponding

IC payment rule, the framework would still work, but the resulting payment rule would not

make the mechanism fully incentive compatible. Rather, the payment rule in that setting

would minimize a regularized upper bound on empirical regret for truthful bidding.

To characterize so-called “SP-capable” rules, it is important to note the concept of weak

monotonicity (W-MON). The W-MON property of mechanism g requires that if g(xi,x−i) =

a 6= b = g(x′i,x−i), then xi[a]− xi[b] ≥ x′i[a]− x′i[b]. In other words, W-MON implies that

if the outcome changes from a to b as a result of a change of a single agent’s valuation, then

that agent must have increased its valuation of the new outcome b relative to its valuation
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of the old outcome a [18]. Weak monotonicity is a necessary condition for the mechanism to

be capable of being made strategyproof [22]. Various domains have been considered in order

to analyze sufficient conditions for specific cases, and generalized monotonicity properties

are found to be sufficient [22, 2]. For the interest of the framework presented here, we

are going to merely note that monotonic allocation rules can be made strategyproof, when

coupled with appropriate payment rules.

One can also consider a direct characterization of strategyproofness in terms of g and t.

From the perspective of agent 1, two sufficient conditions are required for mechanism (g, t)

to be strategyproof [18]:

t(x1,x−1,y) = p(x−1,y), ∀x1 ∈ B, ∀x−1 ∈ Bn−1,∀y ∈ Y and (2.2)

g(x1,x−1) ∈ arg max
y′∈Y

[
x1[y′]− t(x1,x−1,y′)

]
, ∀x1 ∈ B, ∀x−1 ∈ Bn−1 (2.3)

where p(x−1,y) is a price function that does not depend on x1. Equation 2.2 implies

that given the allocation, the price imposed on agent 1 must not depend on agent 1’s own

valuation. Equation 2.3 seeks to optimize the allocation from the viewpoint of agent 1.

(With symmetry, the allocation must simultaneously optimize for each and every agent.)

It is also important to note the uniqueness of strategyproof payment rules. Let mech-

anism (g, t) be an incentive compatible mechanism. Mechanism (g, t′) is incentive com-

patible if and only if for some function h : x−1 → R, we have that t′(x1,x−1,y) =

t(x1,x−1,y) + h(x−1) for every x1 ∈ B, x−1 ∈ Bn−1, and y ∈ Y [18]. In the context

of this thesis, we normalize payment for the empty bundle to be zero for individual ratio-

nality (the concept explored in Section 2.1.3). With normalized prices, we can derive the

following result:

Proposition 1 (Uniqueness of normalized, incentive compatible payment rules). Given

allocation rule g, normalized payment rule t that makes auction mechanism (g, t) incentive

compatible is unique.

Proof. Assume for a contradiction that the normalized payment rule that makes mechanism
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(g, t) incentive compatible is not unique. Thus, there exist two distinct IC payment rules

t and t′. As both of them are IC, t′(x1,x−1,y) = t(x1,x−1,y) + h(x−1) for every x1 ∈ B,

x−1 ∈ Bn−1, and y ∈ Y . When y = 0, we have that t′(x1,x−1,0) = t(x1,x−1,0) = 0, as

both t and t′ are normalized. Therefore, h(x−1) = 0, and t = t′.

2.1.2 Ex Post Regret

In reality, we cannot always get a fully SP payment rule for a couple reasons. First, since our

framework is based on a machine learning method, the resulting classifier is not always exact.

Second, if the given allocation rule is not monotonic, then the framework would certainly

not learn an SP rule. With these reasons, we are interested in a reasonable metric that could

measure the performance of a not fully SP mechanism regarding its strategyproofness. A

standard metric for this purpose is regret.1

Definition 2.1.6 (Ex Post Regret). The ex post regret to agent 1 for truthfully bidding x1

in auction (g, t), given that the other agents bid x−1 is:

regretg,t(x1,x−1) =

max
x′1∈B

(
x1[g(x′1,x−1)]−t(x′1,x−1, g(x′1,x−1))

)
− (x1[g(x1,x−1)]− t(x1,x−1, g(x1,x−1))) .

The ex post regret measures the loss in utility to agent 1 for bidding truthfully as opposed

to what the agent could have obtained given knowledge of the other agents’ bids (hence ex

post). In the case that the mechanism (g, t) is strategyproof, Definition 2.1.5 tells us that

the x′1 that maximizes the first term of the regret formula would be equal to x1, and thus

the ex post regret to agent 1 would be zero.

Consider the joint distribution x−1 ∼ Px−1|x1
on the others’ agents given that they bid

truthfully and that agent 1’s valuation is x1, the expected ex post regret to agent 1 for
1For an extended discussion of the topic, see Chapter 4 of [15].
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bidding truthfully is

Ex−1∼Px−1|x1

[
regretg,t(x1,x−1)

]
. (2.4)

2.1.3 Individual Rationality

Another important property of a mechanism is individual rationality (IR). IR ensures that

all agents gain non-negative utility from the mechanism, and therefore participate in the

mechanism on a voluntary basis.

Definition 2.1.7 (Individual Rationality). Agent-symmetric mechanism (g, t) is (ex post)

individually rational if for every x1 ∈ B and x−1 ∈ Bn−1,

x1[g(x1,x−1)] ≥ t(x1,x−1, g(x1,x−1)).

This property means that agent 1 always gets non-negative utility by participating in the

mechanism, regardless of its own valuation and the other agents’ valuations. Definition 2.1.7

is defined from the perspective of agent 1, but by symmetry, it is applied to every agent.

This requirement is important in designing real-world mechanisms, as agents would not

willingly participate in mechanisms that would yield them negative utility.

2.2 Structural Support Vector Machines

Before we present the framework, we need to familiarize ourselves with Structural Support

Vector Machines (Structural SVMs), the mechanics behind the framework. The Structural

SVM is a generalized form of multiclass support vector machines that can handle more

complex outputs, such as trees, sequences, and sets [25, 9]. Let {(x1,y1), (x2,y2), . . . ,

(x`,y`)}, where (xj ,yj) ∈ X × Y , be training instances. The goal of the Structural SVM

is to learn a classifier

h : X → Y. (2.5)
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The model then defines the discriminant function as the score of class y for input x:

f(x,y) = w · ψ(x,y), (2.6)

where ψ(x) is a feature map of x and y, and w is a parameter vector. The classifier h then

is defined as

h(x) = arg max
y∈Y

f(x,y). (2.7)

The definitions here lead directly to a hard-margin formulation of the learning problem

by fixing a margin of all training examples at 1 and using the norm of w as a regularizer:

min
w

1
2
‖w‖2, s.t. f(xj ,yj)− f(xj ,y) ≥ 1, ∀j,y 6= yj . (2.8)

From Equation 2.6, we get the training problem

min
w

1
2
‖w‖2, s.t. w · ψ(xj ,yj)−w · ψ(xj ,y) ≥ 1, ∀j,y 6= yj . (2.9)

With inconsistent training data, a soft-margin learning model is employed. Since different

inaccurate predictions vary, a loss function ∆ : Y ×Y → R is used instead of a fixed margin.

The value of ∆(yj ,y) is equal to zero if yj = y, and is greater than zero otherwise. The

soft-margin, n-slack formulation of the learning problem with margin-rescaling is

min
w,ξi≥0

1
2
‖w‖2 +

C

n

∑̀
j=1

ξj ,

s.t. w · ψ(xj ,yj)−w · ψ(xj ,y) ≥ ∆(yj ,y)− ξj , ∀j,y 6= yj .

Not only does the Structural SVM allow for more complex outputs, but the model also

utilizes a cutting plane model, which significantly reduces the number of constraints being

considered during the learning process. In the next section, we introduce an approach to

design strategyproof payment rules using Structural SVMs.
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2.3 Designing Payment Rules with Structural SVMs

The goal of the framework presented in this section is to employ Structural SVMs to de-

sign payment rules that would be strategyproof when coupled with allocation rules. The

main insight here is the similarity and connection between the decision boundaries of an

exact Structural SVM classifier and the defining properties of strategyproofness of auction

mechanisms. In this section, I first introduce the framework, then prove that the model

actually produces an SP payment rule given an allocation rule, and finally present some

other desirable properties of the model.

2.3.1 The Framework

First, we generate ` training instances {(x1,y1), (x2,y2), . . . , (x`,y`)} from a distribution

(x, y) ∼ P (X,Y ), where P (X,Y ) is the distribution induced by distribution Px of agents’

valuations and allocation rule g. Specifically, we first generate agents’ valuations xj ∈ X

for each of the training instances. Each instance xj is drawn from some distribution Px and

consists of n valuation vectors, where each of the n vectors represents an individual agent’s

valuation xj = (xj1,x
j
2, . . . ,x

j
n) = (xj1,x

j
−1). Given an allocation rule g, we then generate `

training instances, {(x1,y1), (x2,y2), . . . , (x`,y`)}, where yj = g(xj1,x
j
−1).

Following the Structural SVM framework, we use the training data to learn parameter

vector w for a classifier,

hw : X → Y s.t. hw(x) = arg max
y∈Y

fw(x,y).

We use the following function as the discriminant function:

fw(x,y) = w1x1[y] + wT
−1ψ(x−1,y), (2.10)

where w = (w1,w−1) and ψ(x−1,y) is a feature map of the other agents’ valuations x−1

and bundle y. Note that the discriminant function is linear in agent 1’s valuation of y and

nonlinear in the other agents’ valuations. As it will become clear in the proof section, this



CHAPTER 2. DESIGNING PAYMENT RULES WITH STRUCTURAL SVMS 17

custom discriminant function enables us to make a connection between the learning problem

and strategyproofness of combinatorial auctions. Using this custom discriminant function,

we follow the rest of the process as described in Section 2.2, and obtain the training problem:

min
w,ξ≥0

1
2
wTw +

C

`

∑̀
k=1

ξk (2.11)

s.t. w1

(
x1

1[y1]− x1
1[y]

)
+ wT

−1

(
ψ(x1

−1,y
1)− ψ(x1

−1,y)
)
≥ ∆(y1,y)− ξ1, ∀y ∈ Y

...
...

w1

(
x`1[y`]− x`1[y]

)
+ wT

−1

(
ψ(x`−1,y

`)− ψ(x`−1,y)
)
≥ ∆(y`,y)− ξ`, ∀y ∈ Y

where ∆(y,y) is a loss function. In the context of this thesis, we use a fixed margin loss

function, ∆(y,y′) = 0 if y = y′, and 1 otherwise. The actual learning process follows the

standard one of Structural SVMs. Once we get classifier hw(x), we finally define payment

rule tw for allocation rule g as:

tw(x1,x−1,y) = −
wT
−1

w1
ψ(x−1,y), (2.12)

where the assumption is made that w1 > 0. This assumption will be experimentally val-

idated in Sections 3 and 4. When classifier hw is exact, auction mechanism (g, tw) is

strategyproof. In addition, we can define a normalized version of tw:

t̄w(x1,x−1,y) = tw(x1,x−1,y)− tw(x1,x−1,0). (2.13)

When classifier hw is exact, auction mechanism (g, t̄w) is strategyproof and individually

rational.

2.3.2 Exact Classifier

We first consider tw and its strategyproofness property. With the assumption that w1 > 0,

we can rewrite hw(x) as

hw(x) = arg max
y∈Y

1
w1
fw(x,y) (2.14)

= arg max
y∈Y

[x1[y]− tw(x1,x−1,y)]. (2.15)
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With tw(x1,x−1,y) as the payment rule, note that 1
w1
fw(x,y) = x1[y] − tw(x1,x−1,y) is

the utility to agent 1 for being allocated y. Therefore, the classifier hw(x) optimizes for

agent 1. In addition, by design, the payment collected from agent 1 is also independent of

agent 1’s own valuation. Thus, this framework presents a strategyproof payment rule for

allocation rule g. Following, we formally prove this notion:

Theorem 1. Given allocation rule g, an exact classifier hw defines a payment rule tw that

makes auction mechanism (g, tw) strategyproof.

Proof. From Equation 2.12, the payment rule satisfies the first requirement of strate-

gyproofness that the payment is independent of an agent’s own valuation (Equation 2.2)

by construction. For the second requirement that the mechanism has to optimize for in-

dividual agents (Equation 2.3), assume for a contradiction that there exists some x, some

y′ 6= g(x) = y for which x1[y′]− tw(x1,x−1,y′) > x1[y]− tw(x1,x−1,y). But then, we have

hw(x) 6= y and the classifier is not exact.

The strategyproofness property of t̄w directly follows, as the tw(x1,x−1,0) term used

to normalize is independent of agent 1’s value (the first requirement of SP) and is being

applied to all possible y equally (preserving tw’s fulfillment of the second requirement of

SP). Following is the proof showing that t̄w is individually rational.

Theorem 2. Given allocation rule g, an exact classifier hw defines a payment rule t̄w that

makes auction mechanism (g, t̄w) individually rational.

Proof. Assume for a contradiction that (g, t̄w) is not individually rational. From Defini-

tion 2.1.7, there exists x1 ∈ B and x−1 ∈ Bn−1 that satisfies

x1[g(x1,x−1)]− t̄w(x1,x−1, g(x,x−1)) < 0.

Since hw is exact, we get that g(x) = hw(x1,x−1) = arg maxy∈Y [x1[y]− tw(x1,x−1,y)].
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This equation implies that

x1[g(x)]− tw(x, g(x)) ≥ x1[y]− tw(x1,x−1,y), ∀y ∈ Y

≥ x1[0]− tw(x1,x−1,0)

x1[g(x)]− tw(x, g(x)) + tw(x1,x−1,0) ≥ 0 (2.16)

x1[g(x1,x−1)]− t̄w(x1,x−1, g(x,x−1)) ≥ 0.

Equation 2.16 follows the fact that we normalize agent’s utility for non-allocation to zero.

Hence, we get a contradiction.

2.3.3 Inexact Classifier

Most of the time, we will not be able to get an exact classifier from the learning problem.

Nevertheless, an inexact hypothesis still enjoys some desirable properties. First, we observe

a connection between the error of the classifier and the expected ex post regret of agent 1.

We define the following loss function,

∆x(y,y′) =
1
w1

[fw(x,y′)− fw(x,y)], (2.17)

where ∆x(y,y′) = 0 when y = y′ and is otherwise weakly positive since w1 > 0 (by

assumption). Now we consider hypothesis space Hψ of multi-class classifiers given feature

mapping ψ. The generalization error for classifier hw ∈ Hψ and distribution P (X,Y )

induced by Px, given loss function ∆x, is then

RP (hw) =
∫
X×Y

∆x(y, hw(x))dP (X,Y ). (2.18)

The connection between generalization error and expected ex post regret can be made as

follows.

Theorem 3. Given allocation rule g and feature mapping ψ, the classifier hw ∈ Hψ that

minimizes generalization error RP (hw) defines a payment rule that minimizes expected ex

post regret.
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Proof. The regret faced by agent 1 for bidding truthfully on instance x1 given mechanism

(g, tw) and other agents’ bids x−1 is

regretg,tw,x−1
(x1)

= max
x′1∈R2m

(
x1[g(x′1,x−1)]− tw(x′1,x−1, g(x′1,x−1))

)
− (x1[g(x)]− tw(x1,x−1, g(x1,x−1)))

= max
y′∈Y

(
x1[y′]− tw(x1,x−1,y′)

)
− (x1[g(x1,x−1)]− tw(x1,x−1, g(x1,x−1))) (2.19)

= max
y′∈Y

(
x1[y′] +

wT
−1

w1
ψ(x−1,y′)

)
−

(
x1[g(x1,x−1)] +

wT
−1

w1
ψ(x−1, g(x1,x−1))

)

=
1
w1
fw(x, hw(x))− 1

w1
fw(x, g(x)) (2.20)

= ∆x(g(x), hw(x)) = ∆x(y, hw(x)),

where y = g(x) is the target class given input x. Eq. (2.19) follows from the assumption of

consumer sovereignty, which ensures that for every input x−1 and every y′ there exists some

x′1 that agent 1 can submit and receive package y′ under the allocation rule g. Therefore,

minimizing generalization error RP (hw) is equivalent to minimizing the expected ex post

regret with respect to distribution P .

Lastly, we establish a relationship between the ex post regret on a training instance and

SVM training error.

Theorem 4. Given allocation rule g and solution (w∗, ξ∗) to the structural SVM classifi-

cation, the ex post regret on training example (xk,yk) is bounded above by 1
w∗1
ξk.

Proof. From the learning problem (2.11), we observe that

ξk = max
y′∈Y

[
∆(yk,y′) + fw∗(xk,y′)− fw∗(xk,yk)

]
.

As ∆(y,y′) ∈ {0, 1}, we derive that

ξk ≥ max
y′∈Y

[
fw∗(xk,y′)− fw∗(xk,yk)

]
1
w∗1
ξk ≥ max

y′∈Y

[
1
w∗1
fw∗(xk,y′)−

1
w∗1
fw∗(xk,yk)

]
= regretg,t(x

k
1,x

k
−1)
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The last step comes from the proof of Theorem 3.

It is noteworthy that instead of using (g, t̄w), we can also adopt (hw, t̄w) as an auction

mechanism. Mechanism (hw, t̄w) will always be strategyproof and individually rational.

Nevertheless, since hw is inexact, the allocation rule might be infeasible by allocating the

same item to multiple agents.



Chapter 3

Experimental Design

In the previous chapter, the theoretical aspect of a new framework for designing strate-

gyproof payment rules for combinatorial auctions is presented. Nevertheless, many details

still need to be filled in, before the framework is operational in practice. This chapter

presents design considerations for the experiments aimed at substantiating the use of Struc-

tural SVMs in designing strategyproof payment rules. In doing so, the framework is tested in

three auction settings—single item auctions, single-minded CAs, and multi-minded CAs—

that are progressively more difficult in terms of computation, and more sophisticated in

terms of agents’ possible actions.

The structure of this chapter is as follows. First, Section 3.1 introduces the three auc-

tion settings as well as their corresponding value distributions and winner determination

algorithms. Taken together, a value distribution and a winner determination rule determine

distribution P (X,Y ) for training and testing hypotheses. Section 3.2 presents the details

of feature maps (ψ) and kernels of the training problem. Lastly, Section 3.3 lists out other

practical details that are crucial to running the experiments.

22
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3.1 Auction Settings

3.1.1 Single Item Auctions

We begin the experimental section with simplistic, non-combinatorial single item auctions,

which provide initial insights into other, more complex settings. In this setting, one item

is being auctioned, agent i places bid xi ∈ R for the item, and n agents are present in the

auction.

Allocation rule g(x1,x−1) = 1 if agent 1 is allocated the item, and zero otherwise. With

two classes, the learning problem for this setting can easily be formulated as a binary classi-

fication SVM. Nonetheless, for consistency, the Structural SVM formulation is employed in

this setting. Given distribution Px and allocation rule g, training set {(x1, y1), . . . (x`, y`)}

is generated from yj = g(xj1,x
j
−1).

The learning problem for the single item setting derived from (2.11) is:

min
w,ξ≥0

1
2
wTw +

C

`

∑̀
k=1

ξk (3.1)

s.t. w1

(
x1

1[y1]− x1
1[y]
)

+ wT
−1

(
ψ(x1

−1, y
1)− ψ(x1

−1, y)
)
≥ ∆(y1, y)− ξ1, ∀y ∈ {0, 1}

...
...

w1

(
x`1[y`]− x`1[y]

)
+ wT

−1

(
ψ(x`−1, y

`)− ψ(x`−1, y)
)
≥ ∆(y`, y)− ξ`, ∀y ∈ {0, 1},

where x1[y] = x1 if y = 1 and zero otherwise, and loss function ∆(y′, y) = 1 if y′ 6= y

and zero otherwise. Given exact classifier hw = arg maxy∈{0,1} fw(x, y), t̄w(x1,x−1, y) =

−wT
−1

w1
(ψ(x−1, 1)− ψ(x−1, 0)) defines a strategyproof, individually rational payment rule for

allocation rule g.

Value Distribution

Next, we need to define P (X,Y ) for generating training and test instances. This section

defines Px used for the single item setting:
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• Uniform: The bid of an agent is uniformly drawn from (0, 1].

Winner Determination Algorithm

Once we have agents’ valuations x, allocation y is generated from allocation rule g: y =

g(x1,x−1). This section defines allocation rule g for this setting:

• Optimal: The agent with the highest bid wins. The corresponding strategyproof

payment function of the optimal allocation rule for single item auctions is the second-

price payment function: the winner pays the price of the second highest bid. With

the uniqueness of strategyproof payment rules (Proposition 1), the exact classifier in

this case is the second-price payment function.

Hypothesis 1. Payment rule t̄w derived from classifier hw trained on the optimal

allocation rule for a single item auction approximates the second-price payment rule.

3.1.2 Single-minded Combinatorial Auctions

Our first foray into combinatorial auctions is with single-minded CAs, in which m items

are auctioned, and each of the n agents requests a single bundle of items [13]. An agent

i’s valuation xi is represented by (Si, vi), where agent i values bundle Si ∈ {0, 1}m = Y at

vi ∈ R. From the viewpoint of agent 1, agent 1 can be allocated either S1 or the empty

bundle.

Given training set {(x1,y1), . . . , (x`,y`)}, the learning problem for the single-minded
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CA case derived from (2.11) is:

min
w,ξ≥0

1
2
wTw +

C

`

∑̀
k=1

ξk (3.2)

s.t. w1

(
x1

1[y1]− x1
1[y]

)
+ wT

−1

(
ψ(x1

−1,y
1)− ψ(x1

−1,y)
)
≥ ∆(y1,y)− ξ1, ∀y ∈ {S1

1 ,0}
...

...

w1

(
x`1[y`]− x`1[y]

)
+ wT

−1

(
ψ(x`−1,y

`)− ψ(x`−1,y)
)
≥ ∆(y`,y)− ξ`, ∀y ∈ {S`1,0},

where x1[y] = v1 if y = S1 and zero otherwise. An important requirement for strategyproof-

ness in this context is admissibility. As the single-minded CA setting is just a special case

of the multi-minded CA, we discuss the issue of admissibility in details in Section 3.1.3,

when we discuss multi-minded CAs. Meanwhile, it is important to note that for each line

of constraints in (3.2), we iterate over y ∈ Y instead of y ∈ {Sk1 ,0} in our experiments to

get around the issue of admissibility.

Value Distributions

Regarding single-minded CAs, various distributions introduced by Sandholm [23] are widely

used in CA literature. In our experiments, two of the distributions presented by Sandholm

are used to generate agents’ valuations x for the single-minded CA setting.

• Uniform: For each agent’s preference (Si, vi), pick |Si| uniformly from [1,m]. |Si|

goods are selected using a uniform distribution. Valuation vi is drawn from (0, |Si|
m ].

• Decay: For each agent’s preference (Si, vi), first assign one random item, and repeat-

edly add a new random item until rand(0, 1) exceeds α. Valuation vi is drawn from

(0, |Si|
m ]. Sandholm [23] concludes that α = 0.75 generates the hardest dataset (at

least for his algorithms). α is fixed at 0.75 in this thesis.
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Winner Determination Algorithms

For the single-minded CA setting, we learn and test models using two types of allocation

rules, which lead to two distinct strategyproof payment functions.

• Optimal: The optimal allocation rule seeks to maximize social welfare by solving the

following integer linear programming (ILP) problem:

max
∑

i∈[1,n],S∈Y

ai,Svi(S) (3.3)

s.t.
∑

i∈[1,n],S|j∈S

ai,S ≤ 1 ∀j ∈ [1,m] (3.4)

∑
S∈Y

ai,S ≤ 1 ∀i ∈ [1, n] (3.5)

xi,S ∈ {0, 1} ∀i ∈ [1, n], ∀S ∈ Y (3.6)

where ai,S equals 1 if agent i receives bundle S, and zero otherwise. Condition 3.4

ensures that each item is allocated at most once, whereas Condition 3.5 implies that

each agent receives up to one bundle.

The corresponding strategyproof payment function is the Vickrey-Clarke-Groves (VCG)

payment function, which states that each of the agents pays the opportunity cost it

imposes on the other agents [18]. Let T (x1,x−1) =
∑

i∈[2,n],S∈Y ai,Svi(S) be the maxi-

mum total welfare excluding the utility to agent 1. VCG payment rule tVCG is defined

as T (0,x−1)−T (x1,x−1). This calculation can be done by solving two ILP problems.

As normalized and strategyproof payment rules are unique for given allocation rules,

if exact classifier hw is to output strategyproof payment rule t̄w, t̄w must be the VCG

payment rule.

Hypothesis 2. Payment rule t̄w derived from classifier hw trained on the optimal

allocation rule for a single-minded CA approximates the VCG payment rule.
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• Greedy: Lehmann et al. [13] presents strategyproof mechanism for single-minded

CAs based on a greedy algorithm. Allocation rule ggreedy is defined as:

– Calculate norm value vi/|Si|
1
2 for agent i.

– Sort agents by norm values in non-increasing order. Iterate through this sorted

list, and assign a requested bundle to each of the agents if possible.

Lehmann et al. [13] proves that ggreedy approximates the optimal allocation within a

factor of
√
m, the lower limit of an approximation algorithm [8, 4].

In addition, payment rule tgreedy to be coupled with the allocation rule is defined as

follows. The price collected from allocated agent i is computed by determining the set

of agents who would have been allocated, if agent i had not been part of the auction.

Among these agents, pick the maximal norm c. Agent i pays c × |Si|
1
2 . Lehmann et

al. [13] proves that mechanism (ggreedy, tgreedy) is strategyproof.

Hypothesis 3. Payment rule t̄w derived from classifier hw trained on greedy alloca-

tion rule ggreedy for a single-minded CA approximates greedy payment rule tgreedy.

3.1.3 Multi-minded Combinatorial Auctions

The last setting in our experiments is the multi-minded combinatorial auction. In this

setting, each agent is allowed to bid some constant number of bundles b, but can be granted

up to one bundle. Note that if b = 2m, we have the full version of combinatorial auctions;

as such, multi-minded combinatorial auctions allow for very complex sets of strategies.

At the same time, multi-minded CAs have a few advantages over general CAs. First,

multi-minded CAs allow for a concise representation of an agent’s valuation. Instead of an

explicit, exponential representation for every possible bundle, an agent’s valuation in the

multi-minded CA setting can be represented as xi = {(S1, v1), (S2, v2), . . . , (Sb, vb)}, where

agent i values bundle Sj ∈ Y at vj ∈ R, for every j ∈ [1, b]. Second, the inner product of two

valuations can be computed in polynomial time, leading to efficient kernel computation.



CHAPTER 3. EXPERIMENTAL DESIGN 28

Given distribution Px and allocation rule g, training set {(x1,y1), . . . , (x`,y`)} can be

generated. Then, the learning problem for the multi-minded CA case derived from (2.11)

is:

min
w,ξ≥0

1
2
wTw +

C

`

∑̀
k=1

ξk (3.7)

s.t. w1

(
x1

1[y1]− x1
1[y]

)
+ wT

−1

(
ψ(x1

−1,y
1)− ψ(x1

−1,y)
)
≥ ∆(y1,y)− ξ1, ∀y ∈ Y 1

...
...

w1

(
x`1[y`]− x`1[y]

)
+ wT

−1

(
ψ(x`−1,y

`)− ψ(x`−1,y)
)
≥ ∆(y`,y)− ξ`, ∀y ∈ Y `

where given that xk1 = {(Sk1 , vk1 ), (Sk2 , v
k
2 ), . . . , (Skb , v

k
b )}, Y k = {Sk1 , Sk2 , . . . , Skb } is the set

of bundles that agent 1 is interested in. This presents another advantage of multi-minded

CAs, as the number of constraints per one training instance is equal to b rather than 2m.

Since the constraints of the learning problem exclude bundles that are outside of “target”

bundles of agent 1, an important requirement for strategyproofness in this setting, as well as

in the single-minded setting, is that for every bundle y′ /∈ Y k, there exists a bundle y ∈ Y k

such that fw(xk,y′) ≤ fw(xk,y). This requirement prevents agent 1 from deviating by

reporting a bundle that is outside of its target bundles. When y * y′, ∀y ∈ Y k, there is no

incentive for agent 1 to deviate, as agent 1 would not gain any utility from y′ and hence

the empty zero, of which price is normalized to be zero, will certainly be weakly better.

The case that is of particular concern is when y ⊆ y′, where y ∈ Y k and y is the maximal

such bundle in an agent’s multi-minded set. (Such a bundle always exists since the empty

bundle is in Y k.) By definition of multi-minded, x1[y′] = x1[y], so if the price of y′ is lower

than that of y, agent 1 can improve its outcome by reporting y′. It suffices to address this

concern in terms of admissibility :

Definition 3.1.1 (Admissibility). A discriminant function is admissible if wT
−1ψ(x,y′) ≤

wT
−1ψ(x,y), so that the payment is greater for every bundle y′ ≥ y, for any x.

In addition to ensuring strategyproofness, admissibility also helps extend Theorem 4 to



CHAPTER 3. EXPERIMENTAL DESIGN 29

the single-minded and multi-minded CA settings.

Corollary 1. Given allocation rule g for the multi-minded CA problem, and admissible

solution (w∗, ξ∗) to the structural SVM classification, the ex post regret on training example

(xk,yk) is bounded above by 1
w∗1
ξk.

Proof. Admissibility ensures that irrelevant bundles can be ignored, and hence:

max
y′∈Y

[
1
w∗1
fw∗(xk,y′)

]
= max

y′∈Y k

[
1
w∗1
fw∗(xk,y′)

]
.

From (3.7), we have that

ξk = max
y′∈Y k

[
∆(yk,y′) + fw∗(xk,y′)− fw∗(xk,yk)

]
= max

y′∈Y

[
∆(yk,y′) + fw∗(xk,y′)− fw∗(xk,yk)

]
,

where the second equation is derived from admissibility. The rest of the proof follows the

proof of Theorem 4

Enforcing admissibility in the learning constraints is crucial as it is one of the require-

ments for strategyproofness. In this thesis, we iterate each of the learning constraints over

Y instead of Y k. This achieves the same effect as directly enforcing admissibility, at the

expense of computational tractability of the model. Replacing the full iteration over all

y ∈ Y with additional constraints on admissiblity is an important area of future work.

Value Distributions

In designing datasets for multi-minded auctions, two main concerns arise. First, we need to

take into consideration complementarity and substitutability of different goods. An agent

can directly express complementarity by the way the agent bids different bundles. The issue

of substitutability is slightly more complicated. In regular formulations of CAs, an agent is

allowed to receive more than one bundle. As the utility of a combined bundle of substitute
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goods to the agent is lower than the sum of the utility of individual items, the problem of

calculating total utility to the agent arises. Fujishima et al. [7] propose the use of dummy

goods to enforce substitutability. In our case, since the formulation of our approach allows

each agent up to one bundle, substitutability can easily be expressed in bids in a similar

manner as complementarity. Second, we need to ensure free disposal, which means that if

for any two bundles Si, Sj requested by an agent and Si ⊆ Sj , then the value of Si must

not be greater than that of Sj . This requirement helps ensure that all bundles requested

by an agent are meaningful.

Lubin and Parkes [16] propose a modified version of the Sandholm distributions used

in our single-minded CA experiments for their experiments with combinatorial exchanges.

With slight modifications to their distributions, we get two distributions for multi-minded

combinatorial auctions1:

• Uniform: This distribution is comparable to Sandholm’s uniform distribution for

single-minded CAs, and works as follows:

– Assign a uniform random common value 0 < c(g) ≤ 1 to every good g, and a

uniform random private value 0 < yi(g) ≤ 1 to agent i. The value agent i places

on good g is wi(g) = βc(g) + (1− β)yi(g), for some β ∈ [0, 1].

– Select the number of goods in each bid uniformly from [1,m]. (Each agent places

b bids.)

– For each bid, goods are drawn with a uniform distribution. The value of each bid

B to agent i is
(P

g∈B wi(g)

m

)ζ
, for some ζ. Note that ζ > 1 implies that goods

are complements, whereas ζ < 1 means that goods are substitutes. Also, the

denominator normalizes all valuations to the (0, 1] range.
1Note that for multi-minded CAs, the Combinatorial Auction Test Suite (CATS) provides five groups of

benchmark distributions that are inspired by real-world scenarios, such as path auctions, and airport slot
auctions [14]. Nevertheless, due to the nature of the CATS distributions, we cannot specify a fixed number
of agents in an auction. As the current formulations of attribute vectors as explained in Section 3.2 do not
support varying the number of agents within the same SVM classifier, we are unable to use CATS for our
purpose.
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– Correct free disposal. For every (Si, vi) and (Sj , vj) requested by an agent, if

Si ⊆ Sj and vj < vi, then assign vi to vj .

• Decay: In a similar manner, the decay distribution here is intended to be compared

to Sandholm’s decay distribution for single-minded CAs. The procedure is similar

to the uniform distribution for multi-minded CAs as mentioned above, except for the

second step. Instead of using a uniform distribution to determine the number of goods

in each bundle, the number of desired goods in the bundle is determined by starting

with 1 and repeatedly incrementing the number until rand(0, 1) exceeds α. Similar

to the single-minded case, we fix α at its hardest value, 0.75.

Winner Determination Algorithms

For the multi-minded CA setting, we train and test models on two allocation rules:

• Optimal: The optimal allocation is computed by solving an integer linear program-

ming problem to maximize social welfare. The formulation of the ILP problem is sim-

ilar to (3.3). The corresponding strategyproof payment function is the VCG payment

function, which can be solved through two ILP problems as explained in Section 3.1.2.

Due to Proposition 1, exact classifier hw trained on the optimal allocation rule is the

VCG payment function.

Hypothesis 4. Payment rule t̄w derived from classifier hw trained on the optimal

allocation rule for a multi-minded CA approximates the VCG payment rule.

• Greedy: To the best of our knowledge, there are no known greedy allocation rules

and payment functions that are incentive compatible and work with multi-minded

CAs. As such, we devise a greedy allocation rule from the one by Lehmann et al.

[13] in Section 3.1.2. First, we treat all of the bids from different agents equally and

rank the bids based on the norm vi/|Si|
1
2 . Then, as we iterate through the sorted list
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to assign requested bundles, we check that the agent who requests that bundle must

have not been allocated any bundle yet, in addition to checking that the items in the

bundle are not yet allocated. Since this allocation rule does not have a corresponding

strategyproof payment function, we hope to get insights into how the model works

with allocation rules without SP payment rules.

Parameters of Interest

In addition to basic parameters of the structural SVM, the multi-minded CA setting intro-

duces two extra parameters: ζ and β. As mentioned above, ζ determines complementarity

and substitutability of different goods. In our experiments, we use 0.5, 1, and 1.5 separately

for ζ. β represents how correlated agents’ valuations of items are across agents, with 1 being

perfectly correlated. We experiment with 0.1, 0.3, 0.5, 0.7, and 0.9 as values of β.

3.2 Feature Map

Before the framework presented in the previous chapter would actually work in practice, we

need to specify its last component—feature map ψ(x−1,y). As mentioned in Section 2.3.1,

the role of the feature map is to map x−1 (values of all agents other than agent 1) and

y (allocation to agent 1) into a higher dimensional space and in the process define the

hypothesis space for price functions over values and bundles. The feature map can be

decomposed into two components: an attribute vector (χ) and a feature expansion (φ) that

corresponds to a Kernel (K) in the dual space:

ψ(x−1,y) = φ(χ(x−1,y)) (3.8)

The attribute vector (χ) combines x−1 and y into one vector, and the kernel (φ) transforms

the vector into a higher dimensional space. Choosing appropriate attribute vectors and

kernels is both an art and science, and two kinds of attribute vectors are tested in this

thesis.
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3.2.1 Attribute Vectors

As previously mentioned, attribute vectors combine x−1 and y into one vector. There are

many ways to combine the two components, but in this thesis, we experiment with two

kinds.

The first attribute vector (χ1) separates x−1 based on the y value. The vector is a

concatenated vector of zero vectors and the x−1 vector, with x−1 at the yth slot of the

vector:

χ1(x−1,y) =



0

0

...

x−1

...

0

0



(3.9)

This vector essentially assumes that there is zero interaction between different y values. In

other words, knowledge gained from one y value does not contribute anything to other y

values. This is quite a strong assumption, as there should be symmetry among different y

values. Since this attribute vector uses only data from one y value to learn the model for

that particular y, this vector would likely require more training data.

The second attribute vector (χ2) that we experiment with allows for more interaction

between x−1 and y:

χ2(x−1,y) =



x2 \ y

x3 \ y

. . .

xn \ y


(3.10)

where xj \y is the projection of the valuation of agent j onto a good space without bundle

y being available. For example, if xj = {({A,B}, $5), ({B,C}, $4)} and y = {A,D}, then
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xj \ y = {({A,B}, $0), ({B,C}, $4)}, since A is no longer available to agent j. This is a

reasonable attribute vector, as y is being allocated to agent 1 and not available to other

agents. At the same time, the effects of allocating y to agent 1 on other agents should

determine whether agent 1 will be allocated y.

It is important to note that both attribute vectors only work with a constant number of

agents. This property limits the kind of datasets we can work with, and requires that we

train a separate model for every number of agents. Designing an attribute vector that does

not depend on the number of agents is an important area of future work.

3.2.2 Kernel

Fundamentally, an SVM is a linear classifier, whereas in many cases, datasets are not linearly

separable. One common solution to the problem is to map the data in the original space

onto a higher dimensional space in such a way that preserves relevant dimensions of data

points, before applying a linear separator in that space. We can achieve this by using a

feature expansion φ(x) to map x into a higher dimensional space, except that φ is not

always efficient or possible to directly compute. Instead, we work in the dual space, where

only the inner product of two attribute vectors is required for computation. The idea is to

replace the inner product with a kernel function K(x,x′), which corresponds to some φ in

the primal space. This technique is referred to as “the kernel trick” [17].

Initially, two kernels are considered: polynomial kernel and Gaussian radial basis function

(RBF). The polynomial is defined as follows:

Kpolynomial(x,x′) = (1 + xTx′)p, (3.11)

where x and x′ are two attribute vectors and p ∈ Z+ is the degree of the polynomial. This

kernel function corresponds to a polynomial feature expansion in the primal space, with all

polynomial terms up to the pthdegree.
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The RBF kernel is defined as:

KRBF(x,x′) = exp

(
−‖x− x′‖2

2σ2

)
, (3.12)

where σ ∈ R+ [24]. In the context of this thesis, we use γ = 1
2σ2 for notational simplicity

and consistency with the SVM-Struct package used in our experiments. Simplifying the

RBF formula, we get that:

KRBF(x,x′) = exp
(
−γ
(
‖x‖2 + ‖x′‖2 − 2xTx′

))
, (3.13)

where γ ∈ R+. The feature map corresponding to the RBF kernel is infinite dimensional.

In our preliminary tests, RBF performs significantly better than the polynomial one. Due

to limited computational resources, we choose to continue the experiments with only RBF

as the kernel.

3.2.3 Inner Product of Attribute Vectors

From Equations 3.11 and 3.13, we can see that both polynomial and RBF kernels require

inner products for computation. As such, an important requirement of attribute vectors is

that there is a way to efficiently compute the inner product of two vectors.

For the first attribute vector (χ1), we can calculate the inner product as follows:

〈
χ1(x−1,y), χ1(x′−1,y

′)
〉

= Iy=y′

n∑
i=2

〈
xi,x′i

〉
, (3.14)

where Ip = 1 if p is true and zero otherwise.

The process for the second attribute vector (χ2) is as follows:

〈
χ2(x−1,y), χ2(x′−1,y

′)
〉

=
n∑
i=2

〈
xi \ y,x′i \ y

〉
(3.15)

The next step is to compute 〈xi,x′i〉, which is required for computing the inner products

of both of the attribute vectors. (The calculation of 〈xi \ y,x′i \ y〉 can be done in a similar

manner as that of 〈xi,x′i〉.) First, we consider the single-minded setting, which is a special



CHAPTER 3. EXPERIMENTAL DESIGN 36

case of the formula for the multi-minded case. Let xi corresponds to a set Si valued at vi,

and x′i to a set S′i valued at v′i. For each subset S of all m goods, if Si ⊆ S and S′i ⊆ S,

then viv′i contributes to xTi x′i. Since there are 2m−|Si∪S′i| sets that satisfy this condition, we

have:

xTi x′i = viv
′
i2
m−|Si∪S′i|. (3.16)

The general formula for the multi-minded case is as follows. The proof of the lemma can

be found in the appendix.

Lemma 1. Consider a multi-minded CA and two bid vectors xi and x′i corresponding to

sets S = {S1, . . . , Ss} and S′ = {S′1, . . . , S′t} with associated values v1, . . . , vs and v′1, . . . , v
′
t.

Then,

xTi x′i =
∑

T⊆S,T ′⊆S′

(
(−1)|T |+|T

′| · ( min
Sk∈T

vk) · ( min
S′j∈T ′

v′j) · 2
m−|(

S
Sk∈T Sk)∪(

S
S′

j
∈T ′ S

′
j)|
)
. (3.17)

Proof. The contribution of a particular bundle U of items to the inner product is equal to the

product of xi’s valuation of U and x′i’s valuation of U , or (xi[U ] · x′i[U ]). In a multi-minded

CA, xi[U ] = maxSk∈S,Sk⊆U vk. Thus, the inner product is equal to

xTi x′i =
∑
U∈Y

(
(max

Sk∈S
Sk⊆U

vk) · (max
S′

j
∈S′

S′
j
⊆U

v′j)
)
.

The maximum-minimums identity (see e.g. [21]) states that for any set {x1, . . . , xn} of

n numbers, max{x1, . . . , xn} =
∑

Z⊆X((−1)|Z|+1 · (minxi∈Z xi)). We can rewrite the two

terms in the previous equations as:

max
Sk∈S
Sk⊆U

vk =
∑
T⊆SS

Sk∈T Si⊆U

(
(−1)|T |+1 · ( min

Sk∈T
vk)
)

and max
S′

j
∈S′

S′
j
⊆U

v′j =
∑

T ′⊆S′S
S′

j
∈T ′ S′j⊆U

(
(−1)|T

′|+1 · ( min
S′j∈T ′

v′j)
)
.

The inner product can thus be written as

xTi x′i =
∑
U∈Y

∑
T⊆S,T ′⊆S′S
Sk∈T Sk⊆US
S′

j
∈T ′ S′

j
⊆U

(
(−1)|T |+|T

′| · ( min
Sk∈T

vk) · ( min
S′j∈T ′

v′j)
)
.



CHAPTER 3. EXPERIMENTAL DESIGN 37

Lastly, for given T ⊆ S and T ′ ⊆ S′, there are exactly 2
m−|(

S
Sk∈T Sk)∪(

S
S′

j
∈T ′ S

′
j)| bundles U

such that
⋃
Sk∈T Sk ⊆ U and

⋃
S′j∈T ′

S′j ⊆ U , and we obtain

xTi x′i =
∑

T⊆S,T ′⊆S′

(
(−1)|T |+|T

′| · ( min
Sk∈T

vk) · ( min
S′j∈T ′

v′j) · 2
m−|(

S
Sk∈T Sk)∪(

S
S′

j
∈T ′ S

′
j)|
)
.

If S and S′ have constant size as in the single-minded and multi-minded CA cases, then

the sum on the right hand side of (3.17) ranges over a constant number of sets and can be

computed efficiently.

3.3 Logistics of the Experiments

3.3.1 Practical Details of the Models

The SVM-Struct package is used to run all of the experiments. The package provides func-

tionality to train and test a structural SVM model as described by Joachims et al. [9] and

as summarized in Section 2.2. We use the margin-rescaling implementation within SVM-

Struct. Note that we currently use the default method to enumerate the most preferred

bundle of an agent, which iterates through all of the possible bundles. As the number of

bundles is exponential in the number of goods, this is likely to become intractable. Finding

a more efficient method to search over bundles is another important area of future work.

Using SVM-Struct

Using the provided APIs, we specified three main components of the package: loss, attribute

vector, and kernel functions. The loss function is specified as:

∆x(y,y′) = Iy=y′

The attribute vector and kernel functions are defined as in Section 3.2. Nevertheless, one

more step is required before the kernel becomes fully functional. Currently, the kernel
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function as described in Section 3.2 takes in χ(x−1,y), meaning that we have to find a way

to incorporate x1[y] into the kernel function in such a way that x1[y] would remain linear

in the kernel formula.2 This is rather a trivial matter, since in general if there is kernel

function K in the dual space that corresponds to feature expansion φ(w) in the primal

space, then a kernel function for [z, φ(w)] would be just z ∗ z′ +K(w,w′).

In our case, we have standard RBF kernel K(χ(x−1,y), χ(x′−1,y
′)), which corresponds

to φ(χ(x−1,y)) in the primal space. The new kernel function that incorporates x1 would

be:

K ′((x,y), (x′,y′)) = x1[y] ∗ x′1[y′] +K(χ(x−1,y), χ(x′−1,y
′)). (3.18)

Computing Payments from Dual Formula

Since we work in the dual space, we have to be able to compute payments from the dual

formula of a trained classifier. After running the learning algorithm, we get a classifier

written in the dual form as follows (SV refers to the set of support vectors):

y(x) = arg max
y∈Y

fw(x,y)

= arg max
y∈Y

∑
t∈SV

αtytK ′((xt,yt), (x,y)) + θ0 (3.19)

Considering some y∗,y∗ ∈ Y , the discriminant function for the y∗ value is as follows:

fw(x,y∗) =
∑
t∈SV

αtytK ′((xt,yt), (x,y∗)) + θ0 (3.20)

From Equation 3.18, we replace K ′ with K:

fw(x,y∗) =
∑
t∈SV

αtyt (xt,1[yt] ∗ x1[y∗] +K(χ(xt,−1,yt), χ(x−1,y∗))) + θ0

=

(∑
t∈SV

αtytxt,1[yt]

)
x1[y∗] +

∑
t∈SV

αtytK(χ(xt,−1,yt), χ(x−1,y∗)) + θ0

2Recall from Equation 2.10 in Section 2.3.1 that the discrimination function in use is fw(x,y) = w1x1[y]+
wT
−1ψ(x−1,y).
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From Equation 2.10, fw(x,y∗) = w1x1[y∗] + wT
−1ψ(x−1,y∗):

w1x1[y∗] + wT
−1ψ(x−1,y∗)

=

(∑
t∈SV

αtytxt,1

)
x1[y∗] +

∑
t∈SV

αtytK(χ(xt,−1,yt), χ(x−1,y∗)) + θ0

As such, we get the two following relationships:

w1 =
∑
t∈SV

αtytxt,1[yt] (3.21)

wT
−1ψ(x−1,y∗) =

∑
t∈SV

αtytK(χ(xt,−1,yt), χ(x−1,y∗)) + θ0

From Equation 2.12, the unnormalized payment rule is: tw(x−1,y) = −wT
−1

w1
ψ(x−1,y∗).

Hence, in the dual form, the unnormalized payment to agent 1 given that the agent is

allocated y∗ is:

tw(x−1,y∗) = −
∑

t∈SV αtytK(χ(xt,−1,yt), χ(x−1,y∗))
w1

− θ0
w1

(3.22)

The normalized payment rule can be derived directly from Equation 2.13:

t̄w(x−1,y∗) = −
∑

t∈SV αtyt [K(χ(xt,−1,yt), χ(x−1,y∗))−K(χ(xt,−1,yt), χ(x−1,0))]
w1

(3.23)

3.3.2 Instance-based Normalization

In addition, we test an optimization technique called “instance-based normalization,” in

hopes that it will help improve performances of learned hypotheses. Specifically, we nor-

malize each instance of training and test sets so that the value of the highest bid except

for agent 1’s bids within each individual instance is at exactly 1, before passing it to the

learning algorithm or classifier. Then, we de-normalize the values and solutions back to the

former scale afterwards.
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3.3.3 Training, Tuning, Testing

For each setting, two parameters need to be tuned. The first parameter is the C value of the

optimization problem. As part of the objective function of the learning problems, C is the

trade-off between empirical regret and regularization. The second parameter that needs to

be adjusted for each model and each dataset is the γ value of the RBF kernel. After some

preliminary testing, (C, γ) = {104, 105}× {10−2, 10−1, 1} is used during the tuning process.

In each setting, three training sets and three validation sets are generated. 200 training

instances of (xj ,yj) are initially generated for each training set, but then for each of the

200 instances, we derive n instances by switching the order of agents in such a way that

each of the n agents gets to be ahead of the list and hence be agent 1 exactly once. We

then order the other agents on the list randomly. Hence, each training set contains 200×n

instances. In a similar manner, each validation set contains 1000 × n instances. We use

these validation sets to tune C and γ. Finally, we generate an additional “golden pair”

of training and test sets for each of the settings, and report performances based on these

golden pairs.

3.3.4 Metrics

In this thesis, we employ four kinds of metrics to measure performances of the learned

hypotheses and to generate insights into the outputs of the models:

0/1 Classification Accuracy

0/1 classification accuracy refers to the accuracy of the trained model in predicting the

bundle allocated to agent 1 of each instance in the golden test set. Specifically, with `

instances in the test set, the formula of 0/1 classification accuracy is:∑`
k=1 I(hw(xk) = yk)

`
(3.24)
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Even though this metric might not yield much insight into how the learned hypothesis per-

forms as a strategyproof payment rule, the fact that it is a standard way to directly measure

the performance of an SVM leads us to use it as the main metric in tuning parameters.

Ex post Regret

Ex post regret is a good measure of whether the payment rule obtained from the trained

hypothesis is strategyproof. Specifically, an SP payment rule should introduce zero regret

to participating agents. Let y = g(x1,x−1) be the bundle allocated to agent 1. If classifier

hw correctly predicts a bundle y, the agent experiences no regret. On the other hand, if

the model predicts hw(x) = y′ 6= y, then according to the payment rule, the agent would

be better off with y′ than with y. As such, the agent experiences regret that is equal to

the difference in utility surplus from being allocated y′ instead of y. The regret for an

individual agent is measured as follows:

x1[y′]− tw̃(x,y′)− (x1[y]− tw̃(x,y)) (3.25)

In this project, we employ two metrics to measure the expected ex post regret of the

trained models. The first metric is average ex post regret, which is the arithmetic mean of

ex post regret experienced by all of the agents in the test set:∑`
k=1 xk1[y′]− tw̃(x,y′)− (xk1[y]− tw̃(x,y))

`
(3.26)

Nevertheless, as Lubin and Parkes [16] point out, examining the distribution of regret

across all of the agents can yield insights into different mechanisms. As such, the second

metric used is the 95thpercentile ex post regret. This metric looks at the 95thpercentile regret

across all of the agents in the test set instead of the average regret.
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Payment Difference

All of the auction settings in this thesis except for the multi-minded CA with a greedy allo-

cation rule have corresponding strategyproof payment rules. In these auctions, we can com-

pare the payments predicted by the trained hypotheses to the actual payments as computed

from the payment rules associated with the winner determination algorithms. The primary

metric we use for reporting payment difference is the root mean square error (RMSE) over

all allocated agents. Let p(x−1,y) denote the strategyproof payment, and A the subset of

test instances with agent 1’s being allocated. The payment RMSE metric is defined as:√∑
k∈A(t̄w(xk1,x

k
−1,yk)− p(xk−1,yk))2

|A|
(3.27)

In addition, we also employ two secondary metrics that help facilitate the process of

interpreting the data. The first of the two metrics is average payment difference, which is

the arithmetic mean of payment error:∑
k∈A(t̄w(xk1,x

k
−1,y

k)− p(xk−1,y
k))

|A|
(3.28)

The second metric is average absolute payment difference, which is defined as:∑
k∈A

∣∣t̄w(xk1,x
k
−1,y

k)− p(xk−1,y
k)
∣∣

|A|
(3.29)

Individual Rationality Violation

The last metric that is monitored during testing is the individual rationality violation rate.

Individual rationality (IR) is violated when an agent is forced to pay more than the value

of items allocated to the agent. Note that the normalized payment rule t̄w is guaranteed to

be IR only if classifier hw is exact. The IR violation rate is measured as:∑`
k=1 I(tw̃(xk,yk) > xk1[yk])

`
(3.30)



Chapter 4

Experimental Results

In this chapter, I present the results of the experiments described in Section 3.1 of the

previous chapter. To reiterate the goals of the experiments, we are interested in validating

the framework and specifically the four hypotheses presented there, and in understand-

ing how various components of the model and experimental settings affect performance

in practice. Specifically, in each experimental setting, we investigate strategyproofness of

learned payment rules by examining ex post regret, benchmark the learned rules against

well-known strategyproof rules, and study how performance is affected by attribute vectors,

value distributions, normalization, and other elements of the experiments.

This chapter is divided into four main sections to reflect three auction settings with

strategyproof payment rules and one setting without a strategyproof payment rule. In each

section, I summarize major results and trends, before discussing and interpreting the results.

4.1 Single-item Auctions

In the single-item auction setting, we test the two types of attribute vectors (χ1 and χ2)

as defined in Section 3.2.1, and with and without an optimization technique of normalizing

individual instances as explained in Section 3.3.2.

43
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Agents
0/1Accuracy Regret 99Regret PriceRMSE IR Violate
χ1 χ2 χ1 χ2 χ1 χ2 χ1 χ2 χ1 χ2

2 97.3 99.5 0.0005 0.0000 0.0226 0.0000 0.023 0.003 2.70 0.30
3 97.2 96.8 0.0005 0.0006 0.0197 0.0255 0.030 0.034 1.13 1.57
4 95.5 95.6 0.0016 0.0020 0.0559 0.0722 0.052 0.053 2.40 3.40
5 95.1 95.3 0.0020 0.0018 0.0679 0.0594 0.059 0.064 2.32 3.00
6 94.9 94.9 0.0022 0.0023 0.0736 0.0727 0.067 0.069 2.73 3.30

Agents
0/1Accuracy Regret 99Regret PriceRMSE IR Violate
χ1 χ2 χ1 χ2 χ1 χ2 χ1 χ2 χ1 χ2

2 96.8 99.0 0.0007 0.0001 0.0276 0.0001 0.026 0.007 3.25 0.00
3 95.4 97.1 0.0017 0.0006 0.0584 0.0253 0.046 0.027 3.27 2.73
4 96.6 95.8 0.0012 0.0020 0.0440 0.0663 0.039 0.055 0.78 1.82
5 95.0 95.4 0.0022 0.0023 0.0715 0.0757 0.058 0.057 2.94 0.92
6 96.7 95.5 0.0011 0.0018 0.0377 0.0612 0.044 0.055 1.33 1.92

Table 4.1: Performance of the two attribute vectors in single item auctions. (Top: without
normalization, Bottom: with instance-based normalization.)

4.1.1 Main Results

Table 4.1 presents the five primary performance metrics. Ranging from mid to high 90s, 0/1

classification accuracies (“0/1 Accuracy”) reflect the high quality of the learning algorithm

in the single item auction setting. In addition, classification accuracy highly correlates with

average ex post regret (“Regret”), 99thpercentile ex post regret (“99Regret”)1, and payment

root mean square error (“PriceRMSE”), which together determine the quality of payment

rules. The correlation between the first four metrics implies that better learned hypotheses

are also better payment rules. IR Violation rates (“IR Violate”), on the other hand, are out

of sync with the other metrics. We tackle this issue in the subsequent discussion section.

Considering that agent valuations are uniformly drawn from (0, 1], average ex post regret

is very low, at roughly 0.2% of the valuation range. Recall Equation 2.20 within the proof of

Theorem 3, regret arises only when the instance is misclassified, so it is not surprising that
1In the single item setting, with classification accuracies above 95% in most cases, the 95thpercentile ex

post regret is zero in most cases. Therefore, we report the 99thpercentile regret instead.



CHAPTER 4. EXPERIMENTAL RESULTS 45

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Pa
ym

en
t

Valuation of agent 2

SVM \chi1
Second Price

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Pa
ym

en
t

Valuation of agent 2

SVM \chi2
Second Price

Figure 4.1: Agent 1’s predicted payments vs. second price payments in 2-agent single item
auctions, without instance-based normalization. (Left: χ1, Right: χ2)

average ex post regret is very low given that misclassification rates for all cases are less than

5%. The 99thpercentile ex post regret, on the other hand, shows that when a hypothesis

misclassifies, the agent can experience a normalized regret of up to 7%. Although the

7% ex post regret might seem high, it is important to note that the 99thpercentile metric

essentially acts as the upper limit of ex post regret an agent could expect to experience.

Therefore, the learned payment rules in the single item setting perform well with respect

to strategyproofness.

Now, we investigate further into the type of payment rules obtained from the framework.

Hypothesis 1 predicts that payment rule t̄w from classifier hw that is trained on the optimal

allocation rule for a single item auction approximates the second price payment rule. Back

to Table 4.1, payment RMSE comparing predicted payments from t̄w with second price

payments range between 0.01 and 0.06. Later in Table 4.2, we observe that average absolute

payment differences (“Average Absolute Payment Diff”) are between 0.01 and 0.05 for all

single item auction settings. The absolute payment diff metric implies that on average,

predicted payments are about 1− 5% of agents’ valuation range off second price payments,

providing strong evidence in support of the similarity between the learned payment rules

and the second price rule. To further visualize our payment rules, Figure 4.1 plots the
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Figure 4.2: Regret and Payment RMSE trends for both attribute vectors, and with and
without instance-based normalization in single item auctions.

predicted payments against the second price payments in the setting with two agents. Note

that the second price payment rule in this scenario is merely the valuation of agent 2.

As seen in both graphs, our models approximate the second price payment rule very well.

Taken together, the empirical data provides strong support for Hypothesis 1.

Lastly, we examine how various components affect performance. Figure 4.2 illustrates

the overall trends of average ex post regret and payment RMSE, as the number of agents

increases. The first observation is that performance suffers as the number of agents increases.

For instance, average ex post regret increases from the [0.0000, 0.0007] range for 2 agents to

the [0.0011, 0.0018] range for 6 agents. We hypothesize that the decrease in performance is

because we do not tune models along the dimension of the size of a training set. In addition,

the two graphs also compare the performance of the two attribute vectors with and without

normalizing individual instances (“norm”). With respect to attribute vectors, χ2 performs

better than χ1 in the 2-agent setting, but with more agents, the two attribute vectors yield

comparable results.

The effect of normalization is more volatile. Figure 4.2 shows that the performance of

normalized models relative to those of non-normalized models tend to be unpredictable.

Plotting predicted payments against “correct” second-price payments, Figure 4.3 offers



CHAPTER 4. EXPERIMENTAL RESULTS 47

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Pa
ym

en
t

Second Price Payment

4 agents, without normalization

\chi1\chi1 Fitting
Second Price

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Pa
ym

en
t

Second Price Payment

4 agents, with normalization

\chi1 (norm)
\chi1 Fitting

Second Price

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Pa
ym

en
t

Second Price Payment

6 agents, without normalization

\chi1\chi1 Fitting
Second Price

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Pa
ym

en
t

Second Price Payment

6 agents, with normalization

\chi1 (norm)
\chi1 Fitting

Second Price

Figure 4.3: Predicted vs. second price payments in single item auctions, using χ1. (Left:
without normalization, Right: with normalization, Top: 4 agents, Bottom: 6 agents.)

a closer look of how instance-based normalization affects performance. With normalized

models, predicted payments tend to concentrate better along the second price payment line.

In addition, whereas in the non-normalized cases, payment errors are generally independent

of correct payments, the range of payment errors in normalized cases is directly proportional

to correct payments, and hence to the highest valuation of the other agents (maxi 6=1 xi); i.e.,

lower valuations of other agents lead to lower predicted payment errors. This observation

implies that the normalized models return the same range of outputs for all of the normalized

test instances, and once de-normalized, these instances are in proportion to the original

output range.
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Agents
Average Payment Diff Average Absolute Payment Diff

χ1 χ2 χ1 norm χ2 norm χ1 χ2 χ1 norm χ2 norm
2 0.0186 0.0011 0.0211 -0.0058* 0.0186 0.0024 0.0211 0.0058
3 -0.0002 0.0057 0.0119 0.0201 0.0235 0.0272 0.0369 0.0222
4 0.0021 0.0214 -0.0133* -0.0021* 0.0416 0.0393 0.0256 0.0399
5 0.0305 0.0338 0.0127 -0.0193* 0.0482 0.0518 0.0456 0.0386
6 0.0164 0.0184 -0.0069* -0.0029* 0.0532 0.0541 0.0321 0.0447

Table 4.2: Average payment difference across all settings of single item auctions. (* is when
a normalized model have a lower IR violation rate that its non-normalized counterpart of
the same attribute vector.)

4.1.2 Discussion

Taken together, these numbers provide strong initial evidence in favor of the proposed

framework. Classification accuracies are high, while ex post regret and payment difference

RMSE are low. Not only do the models in the single item auction setting perform well in

terms of strategyproofness, but they also approximate the second price payment rule very

well. However, there are two issues that still require more investigation. The first issue is

the individual rationality violation rate, and the second issue is possible, structural biases

in our payment functions.

Table 4.2 presents average payment difference (“Average Payment Diff”) and average

absolute payment difference (“Average Absolute Payment Diff”) in all of the settings. The

first thing we notice is the relationship between IR violation rates and average payment

difference. Specifically, holding the number of agents and the type of attribute vector con-

stant, a higher average payment difference perfectly translates into a higher IR violation

rate. In all of the six settings that normalized models enjoy lower IR violation rates than

their non-normalized counterparts (marked with *), the normalized models also enjoy lower

average payment difference. For comparison, in the other settings, all of the normalized

models have higher average payment difference. As average payment diff implies the direc-

tion of payment bias of a learned model, lower average payment difference suggests a lower
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positive bias in predicted payments. The fact that IR is violated if and only if a payment

is incorrectly predicted to be above agent 1’s valuation implies that the IR violation rate of

a payment function is proportionate to the percentage of test instances that the payment

function overestimates prices for. Therefore, even though a non-biased payment rule does

not imply zero IR violation, a more negatively biased payment rule would likely enjoy a

lower IR violation rate. Therefore, we have reduced the question of the volatility of IR

violation to the issue of biases in our payment functions.

As for the issue of payment biases, two trends emerge from Table 4.2. First, nine out

of the ten non-normalized models are positively biased (i.e., having positive average pay-

ment difference). Second, seven out of the ten normalized models are less positively biased

than their non-normalized counterparts (i.e., having lower average payment difference). We

believe that both trends possibly reflect structural biases within the experimental frame-

work, either in the training model or the value distribution. This issue will require further

investigation.

4.2 Single-minded Combinatorial Auctions

In the single-minded CA setting, we continue to experiment with both χ1 and χ2, and with

and without normalization. The number of items is fixed at 5, and the number of agents

is varied between 2 and 6. As mentioned in Section 3.1.2, we use two value distributions:

uniform and decay, and two allocation rules: optimal and greedy.

4.2.1 Main Results

Tables 4.3 and 4.4 show the five primary performance metrics under optimal and greedy

allocations. Only results from normalized models are presented here, since the results from

both types of models are comparable. The effect of normalization will be discussed toward

the end of this section. Across all auction settings, classification accuracies are in the
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Agents
0/1Accuracy Regret 95Regret PriceRMSE IR Violate
χ1 χ2 χ1 χ2 χ1 χ2 χ1 χ2 χ1 χ2

2 84.2 98.0 0.0081 0.0011 0.0517 0.0000 0.091 0.040 6.70 0.35
3 82.8 91.3 0.0120 0.0047 0.0865 0.0292 0.113 0.076 7.87 4.43
4 83.3 90.5 0.0173 0.0064 0.1252 0.0431 0.162 0.097 9.20 5.03
5 83.2 89.2 0.0243 0.0086 0.1878 0.0641 0.221 0.122 12.00 6.46
6 85.2 89.5 0.0224 0.0093 0.1860 0.0674 0.224 0.136 10.77 6.10

Agents
0/1Accuracy Regret 95Regret PriceRMSE IR Violate
χ1 χ2 χ1 χ2 χ1 χ2 χ1 χ2 χ1 χ2

2 87.2 97.5 0.0057 0.0005 0.0275 0.0000 0.073 0.028 5.75 1.35
3 81.7 93.3 0.0184 0.0036 0.1196 0.0138 0.161 0.080 9.03 2.80
4 83.6 89.0 0.0178 0.0103 0.1314 0.0745 0.167 0.137 8.88 5.88
5 87.7 91.1 0.0153 0.0091 0.1203 0.0597 0.178 0.145 7.76 6.98
6 88.1 90.8 0.0189 0.0096 0.1563 0.0776 0.215 0.147 8.00 7.07

Table 4.3: Performance of the two attribute vectors in single-minded CAs, using optimal
allocation, 5 items, and instance-based normalization. (Top: Uniform, Bottom: Decay
Datasets.)

Agents
0/1Accuracy Regret 95Regret PriceRMSE IR Violate
χ1 χ2 χ1 χ2 χ1 χ2 χ1 χ2 χ1 χ2

2 87.3 92.2 0.0061 0.0045 0.0350 0.0287 0.078 0.065 5.90 3.15
3 80.8 86.8 0.0133 0.0116 0.0900 0.0976 0.123 0.117 9.50 8.53
4 78.0 88.3 0.0428 0.0095 0.3093 0.0808 0.295 0.124 16.70 5.88
5 85.1 87.1 0.0150 0.0155 0.1118 0.1239 0.165 0.166 8.98 8.74
6 87.8 89.9 0.0138 0.0106 0.1053 0.0773 0.182 0.155 6.55 7.07

Agents
0/1Accuracy Regret 95Regret PriceRMSE IR Violate
χ1 χ2 χ1 χ2 χ1 χ2 χ1 χ2 χ1 χ2

2 87.3 92.8 0.0063 0.0040 0.0400 0.0193 0.073 0.064 7.70 3.55
3 85.3 89.8 0.0113 0.0110 0.0800 0.0901 0.124 0.146 8.47 5.80
4 86.5 88.2 0.0153 0.0126 0.1152 0.0979 0.166 0.147 8.75 7.85
5 87.4 89.6 0.0125 0.0090 0.0955 0.0684 0.163 0.128 7.46 5.26
6 90.7 91.4 0.0112 0.0087 0.0795 0.0610 0.182 0.145 5.55 4.72

Table 4.4: Performance of the two attribute vectors in single-minded CAs, using greedy
allocation, 5 items, and instance-based normalization. (Top: Uniform, Bottom: Decay
Datasets.)
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Figure 4.4: Regret and Payment RMSE trends for single-minded CAs with the uniform and
decay distributions and the optimal and greedy allocations. (Using χ2 and normalization.)

high 80s to low 90s for χ2 and in the low 80s for χ1. Classification accuracy, average ex

post regret, 99thpercentile regret, payment RMSE, and IR violation are highly correlated.

Across the two value distributions and two allocation rules, there are no major differences

in performance. Figure 4.4 plots average ex post regret and payment RMSE across these

different settings. The optimal allocation rule is slightly easier to learn than the greedy

allocation rule in most cases, whereas the uniform distribution is slightly easier that its decay

counterpart in most cases. Note that in the 4-agent, greedy, uniform case, the performance

of χ1 is at odds with the general trends. Specifically, classification accuracy drops slightly

from its neighboring cases, whereas regret is about three times, and price RMSE and IR

violation rates is about twice as much as those of its neighboring cases. This performance

lag does not seem to be systematic, as all of the metrics bounce back to their original levels,

when one more agent is added to the setting. Therefore, we believe that this setting likely

suffers from some idiosyncratic factors during the training or testing processes, and hence

discard this setting as an outlier in our discussion of results.

From Tables 4.3 and 4.4, average ex post regret ranges from 0.1% to 1% for χ2 and to

2% of agents’ valuation range for χ1. Considering that average ex post regret for the single

item setting ranges from 0% to 0.2%, regret in this setting is almost an order of magnitude
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Figure 4.5: Predicted vs. benchmarks payments of 6-agent, 5-item single-minded CAs,
using χ2 and normalization.

higher that the single item case. Nonetheless, 1% expected ex post regret is still small. The

95thpercentile ex post regret, on the other hand, ranges from 4% to 19% for χ1 and from

0% to 12% of agents’ valuation range for χ2. Even though these numbers seem high, the

fact that less than 5% of the population experience ex post regret greater than 10% of the

valuation range suggests that the predicted payment rules still perform reasonably well in

terms of strategyproofness.

In terms of the characteristics of payment rules, Hypothesis 2 predicts that payment

rules from classifiers trained on the optimal allocation rule in the single-minded CA setting

approximate the VCG payment rule. From Table 4.3, the payment RMSE benchmarking
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Agents
Average Payment Diff Average Absolute Payment Diff

ψ1 ψ2 ψ1 norm ψ2 norm ψ1 ψ2 ψ1 norm ψ2 norm
2 0.0104 -0.0316 0.0336 0.0010 0.0360 0.0320 0.0440 0.0149
3 0.0597 0.0408 0.0601 -0.0060 0.0978 0.0821 0.1079 0.0543
4 0.0778 0.0537 0.0341 -0.0043 0.1307 0.1006 0.1270 0.1009
5 0.1052 0.1009 0.0687 0.0736 0.1519 0.1282 0.1375 0.1103
6 0.0777 0.0853 0.0472 0.0683 0.1542 0.1222 0.1734 0.1155

Table 4.5: Average payment difference across all settings of single-minded CAs, using opti-
mal allocation and decay distribution.

Agents
Average Payment Diff Average Absolute Payment Diff

ψ1 ψ2 ψ1 norm ψ2 norm ψ1 ψ2 ψ1 norm ψ2 norm
2 0.0005 0.0018 0.0308 -0.0107 0.0384 0.0378 0.0459 0.0352
3 0.0145 -0.0271 0.0286 -0.0338 0.0914 0.0990 0.0929 0.1025
4 0.0341 -0.0828 0.0449 0.0373 0.1185 0.1334 0.1193 0.1073
5 0.1022 0.0510 0.0314 0.0093 0.1583 0.1428 0.1262 0.0975
6 0.0535 0.1611 0.0149 0.0071 0.1485 0.1832 0.1418 0.1097

Table 4.6: Average payment difference across all settings of single-minded CAs, using greedy
allocation and decay distribution.

predicted payments against VCG payments ranges from 0.03 to 0.22. As shown in Ta-

ble 4.52, average absolute payment difference ranges from 0.01 to 0.17 across all models

and settings, reflecting that predicted payments on average differ from VCG payments by

1%-17% of agents’ valuation range. Furthermore, the top two graphs of Figure 4.5 plot the

predicted payments tested on an unseen test set against the VCG payments in the 6-agent,

5-item settings. The fitting lines are close to the VCG payment rule for both distributions.

Even though the predicted payments are dispersed, the figure suggests that with more

training instances, the learned payment rule is likely to converge to the VCG payment rule.

As for the greedy allocation rule, Hypothesis 3 predicts that payment rules from classifiers

trained on this allocation rule in the single-minded CA setting approximates tgreedy. From

2Note that only results from the decay distribution are shown here, since they are representative of those
from both distributions.
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Figure 4.6: Performance of single-minded CAs, using the optimal allocation and decay
dataset: 0/1 Accuracy, Regret, Payment diff, IR violation trends for χ1, χ2, and with and
without instance-based normalization.

Table 4.4, the payment RMSE benchmarking predicted payments against tgreedy payments

ranges from 0.06 to 0.29. Similar to that of the optimal allocation rule, average absolute

payment difference ranges from 3.5% to 18.3% of agents’ valuation range across all models

and settings, as partially shown in Table 4.63. The bottom two graphs of Figure 4.5 plot

the predicted payments on an unseen test set against the tgreedy payments in the 6-agent,

5-item settings. The fitting lines of both distributions approximate the tgreedy payment rule

well, showing evidence in support of Hypothesis 3.
3Note that only results from the decay distribution are shown here, since they are representative of those

from both distributions.
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Finally, we explore the effect of different components of the experiments on performance.

Figure 4.6 plots 0/1 classification accuracy, average ex post regret, payment difference, and

IR violation with χ1 and χ2, and with and without normalizing individual instances. As

seen in this figure, χ2 consistently performs better than χ1 in all of the four metrics in

most of the cases. As for instance-based normalization, it is unclear whether normalization

improves performance in general. However, normalized models consistently outperform

non-normalized models in terms of IR violation.

4.2.2 Discussion

The errors in terms of classification, regret, and payments in the single-minded CA case are

significantly higher than those in the single item auction setting. There are two possible

explanations for the performance lag. First, due to limited computing resources4, the

training sets used in training single-minded models are of the same size as those used in single

item models. With increasing complexity of the single-minded CA setting, performance is

likely to suffer. Second, it is important to note that the value distributions used in the

single-minded CA case are different from the one used in the single item experiments. This

discrepancy could potentially explain the performance gap. The second hypothesis will be

discussed in details in the discussion section of the multi-minded CA experiments.

It is also important to consider the continuing trends of payment biases. In the single-

minded CA case, 85% of the non-normalized models from both attribute vectors, both

allocation rules, and both distributions have positive biases (i.e., positive average payment

difference). This number is comparable to that of the single item case, which is at 90%.

Second, 65% of the normalized models from all the settings of single-minded CAs are less

positively biased than their non-normalized counterparts (i.e., having less average payment

diff). Although the second trend is not as strong, it explains why normalized models enjoy
4Training time for single-minded CAs with the current setup is in the order of hours. Whereas most cases

take less than an hour, some of the larger cases can take up to 2-3 hours.
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lower IR violation rates in most of the settings.

4.3 Multi-minded CAs with an SP payment rule

For the multi-minded CA setting, we decided to drop the non-normalized models due to

limited computing resources. As noted in the two previous sections, results from non-

normalized and normalized models are comparable, except that predicted payments from

normalized models tend to be more concentrated and slightly less positively biased. These

characteristics propel us to only experiment with normalized models in the multi-minded

CA setting. In addition to the two attribute vectors, we are also interested in the effects

of varying ζ, which determines the level of complementarity and substitutability, and β,

which determines the correlation between agents’ private values. In this section, we focus

on the optimal allocation rule, which can be made strategyproof. In the next section, we

study the greedy allocation rule, which does not have a strategyproof payment rule.

4.3.1 Main Results

Tables 4.7 and 4.8 provide the primary metrics for our experiments with a multi-minded

CA, varying the number of agents and the degree of complementarity and substitutability

(ζ) and fixing β at 0.5. Similar to the single-minded CA case, there is a correlation between

classification accuracy, average ex post regret, 95thpercentile ex post regret, payment RMSE,

and IR violation.

Classification accuracies range from 16% to 93% for χ1 and 70% to 96% for χ2. In

the easiest setting (ζ = 1.5 and decay dataset), classification accuracies are in the 90s for

both attribute vectors. Therefore, in easy settings, the performance of multi-minded CAs

is better than that of single-minded CAs. In other settings, however, performance is either

comparable or worse. This observation suggests that value distributions have large effects

on performance. We will further investigate this issue toward the end of this section. Also,
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(Agents, ζ)
0/1Accuracy Regret 95Regret PriceRMSE IR Violate
χ1 χ2 χ1 χ2 χ1 χ2 χ1 χ2 χ1 χ2

(2, 0.5) 72.8 92.3 0.0145 0.0017 0.0940 0.0093 0.110 0.035 6.5 2.3
(3, 0.5) 53.7 74.1 0.0354 0.0180 0.1555 0.1151 0.144 0.114 19.4 14.1
(4, 0.5) 56.2 70.4 0.0411 0.0236 0.1898 0.1370 0.146 0.116 25.1 15.4
(5, 0.5) 64.0 74.0 0.0376 0.0214 0.1939 0.1393 0.146 0.111 23.0 13.9
(6, 0.5) 69.0 76.1 0.0285 0.0204 0.1648 0.1354 0.117 0.103 16.7 13.8
(2, 1.0) 80.9 94.3 0.0104 0.0005 0.0706 0.0015 0.055 0.018 8.8 1.4
(3, 1.0) 75.9 84.0 0.0135 0.0050 0.0907 0.0373 0.060 0.042 12.8 6.5
(4, 1.0) 72.9 80.5 0.0180 0.0078 0.1096 0.0550 0.060 0.042 20.9 10.8
(5, 1.0) 69.8 75.5 0.0205 0.0100 0.1194 0.0672 0.061 0.039 20.1 11.7
(6, 1.0) 74.8 80.3 0.0206 0.0098 0.1319 0.0704 0.056 0.040 21.8 14.2
(2, 1.5) 89.2 95.7 0.0032 0.0003 0.0212 0.0000 0.027 0.016 3.7 1.4
(3, 1.5) 84.1 89.6 0.0052 0.0021 0.0368 0.0181 0.036 0.025 8.1 5.4
(4, 1.5) 87.6 91.0 0.0047 0.0018 0.0331 0.0117 0.034 0.023 6.5 4.1
(5, 1.5) 91.0 93.0 0.0033 0.0019 0.0214 0.0077 0.036 0.025 6.5 3.4
(6, 1.5) 90.6 90.8 0.0044 0.0024 0.0284 0.0177 0.037 0.026 6.6 4.8

Table 4.7: Performance of multi-minded CAs, using the optimal allocation and uniform
distribution. (With 5 items, 3 bundles, β = 0.5, instance-based normalization.)

(Agents, ζ)
0/1Accuracy Regret 95Regret PriceRMSE IR Violate
χ1 χ2 χ1 χ2 χ1 χ2 χ1 χ2 χ1 χ2

(2, 0.5) 70.7 91.9 0.0138 0.0011 0.0847 0.0085 0.102 0.022 8.0 1.1
(3, 0.5) 54.7 74.7 0.0370 0.0161 0.1717 0.1022 0.140 0.107 18.3 10.8
(4, 0.5) 65.8 75.7 0.0310 0.0188 0.1658 0.1232 0.145 0.123 17.7 15.0
(5, 0.5) 66.1 75.7 0.0340 0.0186 0.1851 0.1226 0.140 0.112 20.7 12.2
(6, 0.5) 16.2 70.1 0.1185 0.0240 0.2755 0.1447 0.120 0.111 18.2 16.3
(2, 1.0) 85.1 93.8 0.0058 0.0006 0.0425 0.0028 0.039 0.019 4.8 1.9
(3, 1.0) 78.9 85.2 0.0113 0.0045 0.0802 0.0337 0.056 0.038 11.5 6.5
(4, 1.0) 73.9 78.0 0.0148 0.0096 0.0964 0.0666 0.056 0.043 14.7 8.4
(5, 1.0) 79.3 81.4 0.0136 0.0085 0.0970 0.0614 0.056 0.040 14.8 10.1
(6, 1.0) 75.5 78.8 0.0213 0.0106 0.1410 0.0755 0.061 0.041 22.0 15.2
(2, 1.5) 90.9 94.8 0.0026 0.0006 0.0140 0.0003 0.032 0.019 3.2 1.9
(3, 1.5) 93.0 94.7 0.0021 0.0008 0.0089 0.0007 0.032 0.024 3.8 1.4
(4, 1.5) 92.3 93.4 0.0023 0.0011 0.0125 0.0043 0.036 0.023 3.7 1.9
(5, 1.5) 92.8 94.3 0.0017 0.0009 0.0092 0.0031 0.032 0.025 3.4 3.5
(6, 1.5) 94.1 94.9 0.0021 0.0008 0.0042 0.0002 0.035 0.017 3.0 3.0

Table 4.8: Performance of multi-minded CAs, using the optimal allocation and decay dis-
tribution. (With 5 items, 3 bundles, β = 0.5, instance-based normalization.)
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Figure 4.7: Predicted vs. VCG payments for multi-minded CAs with 5 agents, 5 items, 5
bundles, ζ = 1.5, and β = 0.5. (Left: χ1, Right: χ2.)

note that the performance of χ2 drops significantly, when ζ = 0.5 and the number of agents

is 6. Since the performance lag in this case does not seem to be part of the macro trends,

we discard the instance in our current analysis of general trends and will further investigate

this issue in the subsequent discussion section.

As shown in Tables 4.7 and 4.8, average ex post regret ranges from 0.002 to 0.041 for

χ1 and from 0.001 to 0.024 for χ2. Relative to agents’ valuation range, the average ex post

regret is somewhere between 0.1% and 4%. These numbers are only slightly higher than

those of single-minded CAs. As for the 95thpercentile ex post regret, the regret ranges from

0.01 to 0.19. These numbers are in line with those of single-minded CAs. These numbers

suggest that the predicted payment rules perform well as strategyproof payment rules.

As for the characteristics of the payment rules themselves, Hypothesis 4 predicts that

in the multi-minded CA setting, payment rules from classifiers trained on the optimal allo-

cation rule approximate the VCG payment rule. As shown in Tables 4.7 and 4.8, payment

RMSEs (“PriceRMSE”) benchmarking predicted payments against VCG payments are in

the same range as payment RMSEs in the single-minded setting. Figure 4.7 plots the pre-

dicted payments against the VCG payments in a setting with 5 bundles and 5 items. The

fitting lines for both attribute vectors approximate the VCG payment rule well. Therefore,
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β
0/1Accuracy Regret 95Regret PriceRMSE IR Violate
ψ1 ψ2 ψ1 ψ2 ψ1 ψ2 ψ1 ψ2 ψ1 ψ2

0.1 92.5 94.5 0.0035 0.0013 0.0186 0.0019 0.045 0.031 4.2 2.3
0.3 93.6 94.6 0.0027 0.0015 0.0084 0.0021 0.040 0.028 4.0 2.8
0.5 92.8 94.3 0.0017 0.0009 0.0092 0.0031 0.032 0.025 3.4 3.5
0.7 90.1 91.9 0.0024 0.0014 0.0132 0.0089 0.030 0.022 4.3 4.0
0.9 85.6 89.2 0.0029 0.0012 0.0216 0.0093 0.024 0.015 8.1 5.1

Table 4.9: Performance of multi-minded CAs, varying β. (Using optimal allocation, decay
dataset, 5 agents, 5 items, 3 bundles, ζ = 1.5, and instance-based normalization.)

Bundles
0/1Accuracy Regret 95Regret PriceRMSE IR Violate
ψ1 ψ2 ψ1 ψ2 ψ1 ψ2 ψ1 ψ2 ψ1 ψ2

2 92.0 94.1 0.0033 0.0012 0.0192 0.0028 0.039 0.025 5.8 1.1
3 92.8 94.3 0.0017 0.0009 0.0092 0.0031 0.032 0.025 3.4 3.5
4 93.2 93.9 0.0020 0.0013 0.0077 0.0040 0.031 0.024 4.1 3.8
5 92.3 94.5 0.0022 0.0011 0.0094 0.0022 0.030 0.019 2.7 3.6

Table 4.10: Performance of multi-minded CAs, varying the number of bundles requested
per agent. (Using the optimal allocation, decay dataset, 5 agents, 5 items, β = 0.5, ζ = 1.5,
and instance-based normalization)

empirical evidence suggests that the learned payment rules approximate the VCG payment

rule, as proposed by Hypothesis 4.

Lastly, we examine the effect of various elements of the models and experiments on per-

formance. Tables 4.7 and 4.8 shows that attribute vector χ2 consistently outperforms χ1,

similar to single-minded CAs. In addition, ζ, the degree of complementarity, has significant

effects on performance. Specifically, the models trained on the highest degree of comple-

mentarity (ζ = 1.5) perform significantly better than those trained on the other two values

of ζ. At the same time, performance suffers in settings with substitute goods (ζ = 0.5). We

further investigate this issue in the following discussion section.

Table 4.9 presents the results of different settings varying the correlation between agents’

values (β). Performance slightly drops, as there is a higher level of correlation between
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agents’ values (i.e., higher β). We hypothesize that this is because with a higher degree

of correlation, different solutions to an allocation problem yield closer results, and learning

problems become more difficult. Finally, we experiment with different numbers of requested

bundles by single agents (b). The results are presented in Table 4.10. As seen here, none of

the performance metrics are affected by the increasing number of bundles. This observation

implies that our framework is able to scale with respect to performance in terms of the

number of bundles. Note that we do not scientifically measure training time in this project,

but from observation, training time does increase significantly with larger cases.

4.3.2 Discussion

Overall, our models work as well in approximating the VCG payment rule in the multi-

minded CA setting as in the single-minded CA setting. Nevertheless, the significant per-

formance gap between different value distributions resulted from different levels of comple-

mentarity and substitutability in the multi-minded setting requires further investigation.

Table 4.11 presents empirical results for different values of ζ. For each ζ value, the left col-

umn shows the distribution of sizes of bundles allocated to agent 1 according to the optimal

allocation rule. The table presents data from the uniform distribution, meaning that sizes

of requested bundles are uniformly distributed between 1 and 5. More than half of allocated

bundles in the substitutes setting (ζ = 0.5) contain fewer than 4 items, compared to 17.2%

and 2.4% of allocated bundles in the settings with ζ = 1.0 and ζ = 1.5 respectively. This

observation reflects that with substitutability between goods, most items are allocated in

smaller packages, since agents value larger bundles less.

With ζ = 1.0, we notice that more than 10% of output bundles contain all of the goods.

With the uniform distribution, approximately 20% of all requested bundles contain all

items, meaning that roughly half of the agents who request the bundle with all items are

allocated that bundle. With no complementarity or substitutability between goods, there

is no advantage in allocating smaller or larger bundles in terms of pure values; however,
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Size of bundles
ζ = 0.5 ζ = 1.0 ζ = 1.5

Allocated Accuracy Allocated Accuracy Allocated Accuracy
0 46.2% 80.2% 68.0% 84.3% 77.9% 95.6%
1 27.4% 71.7% 8.6% 42.1% 1.8% 28.1%
2 15.6% 65.8% 4.7% 49.4% 0.3% 46.7%
3 7.6% 67.2% 3.9% 53.9% 0.3% 64.7%
4 3.0% 64.7% 4.7% 63.1% 2.7% 84.3%
5 0.2% 30.0% 10.2% 70.9% 17.0% 90.6%

Total 100.0% 74.0% 100% 75.5% 100% 93.0%

Table 4.11: Distribution of sizes of allocated bundles according to the optimal allocation
rule and classification accuracy per each size of bundles for multi-minded CAs, using the
uniform distribution, 5 agents, 5 items, 3 bundles per agent, β = 0.5, and χ2.

allocating the bundle with all items ensures that all goods are allocated. Therefore, we

observe that there is a bias toward the bundle with all items. This effect is amplified with

complementarity between items. Specifically, 17.0% of output bundles contain all goods,

or about 85% of those who request the full bundle as one of their bundles receive the full

bundle. Bundles of other sizes excluding non-allocation constitute roughly 5% of allocated

bundles. Therefore, it is clear that with complementarity, it is better to allocate larger

bundles.

For each ζ value, the right column in Table 4.11 shows the classification accuracy of

our models given that the correct classification is a bundle of that size. As seen here,

our models are mediocre classifiers for most bundle sizes in the settings with ζ = 0.5 and

ζ = 1.0. However, for ζ = 1.5, our models achieve 90% accuracy rates in two largest

cases: non-allocation and allocation of the full bundle. In other words, with low ζ values,

the models have to learn to work well with all bundle sizes, whereas with ζ = 1.5, the

learning problems are able to concentrate their efforts in learning to classify two classes:

the zero and complete bundles. This observation explains why our models are able to

achieve classification accuracy of more than 90% in the ζ = 1.5 cases and of lower than 75%

in the ζ = 0.5 cases.
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Type of classification errors ζ = 0.5 ζ = 1.0 ζ = 1.5
Should have been allocated 47.77% 42.45% 47.73%

Should not have been allocated 35.29% 43.67% 49.15%
Predicted bundle ⊂ correct bundle 1.77% 4.90% 1.14%
Correct bundle ⊂ predicted bundle 2.77% 5.39% 0.85%

Predicted bundle intersects correct bundle 2.31% 1.71% 0.85%
Predicted and correct bundles unrelated 8.17% 1.31% 0.28%

Predicted bundle not requested 1.93% 0.57% 0.00%

Table 4.12: Breakdown of classification errors by type for multi-minded CAs with different
ζ values.

Furthermore, we analyze the types of misclassifications experienced in different settings

of multi-minded CAs. Table 4.12 presents the breakdown of classification errors by type,

further confirming our interpretation of Table 4.11. First, the fact that 8% of classification

errors in the substitute good setting (compared to 1.31% and 0.28% in the other settings)

occur with no connections between predicted and correct bundles suggests that the models

in this setting struggle to learn correct decision boundaries between different requested

bundles. In the setting with ζ = 1.0, the third and fourth error types stand out, relative to

those of the other settings. Both of these classification types imply that the problem with

the models in this setting is allocating bundles that are either too large or too small. Given

that there is no complementarity and substitutability between goods, it is reasonable to

expect that the models consistently assign packages that are too large and too small without

any bias for either of the directions. Another explanation is that without complementarity

and substitutability, multiple solutions could yield very similar results, making the learning

problem more difficult. Lastly, in the setting with ζ = 1.5, almost 97% of the errors come

from the first two types, which are errors between allocating and not allocating. This

observation suggests that the primary issue facing the models in this setting is deciding

between two classes.

Recall from Section 4.2 that most of the models in the single-minded setting are able to

achieve classification accuracy within the range of 80−95%. This range is almost 10% lower
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Size of bundles
Optimal Greedy

Allocated Accuracy Allocated Accuracy
0 73.0% 94.2% 73.7% 94.4%
1 5.4% 51.5% 5.2% 34.0%
2 3.2% 59.7% 2.9% 51.0%
3 3.7% 77.7% 3.9% 61.3%
4 5.7% 84.6% 6.1% 73.6%
5 9.1% 89.9% 8.1% 91.2%

Total 100.0% 89.2% 100% 87.1%

Table 4.13: Distribution of sizes of allocated bundles according to the optimal and greedy
allocation rules and classification accuracy per each size of bundles for single-minded CAs,
using the uniform distribution, 5 agents, 5 items, and χ2.

than those of the single item setting and the multi-minded setting with complementarity

(ζ = 1.5). Table 4.13 presents the distribution of sizes of allocated bundles according to the

optimal and greedy allocation rules as well as classification accuracy per each bundle size in

the single-minded setting. As seen here, the distribution of bundle sizes in this case is very

similar to that of the multi-minded setting with ζ = 1.0 shown in Table 4.11. Unlike those

in the multi-minded setting, the value distributions in the single-minded setting do not

assume underlying values for individual items; yet, the distributions in the single-minded

setting draw an agent’s valuation of bundle Si uniformly from (0, |Si|
m ], where m is the

total number of goods. In other words, an expected valuation of a bundle is linear to the

number of items in the bundle. Therefore, on average the value distributions of the single-

minded case approximate a value distribution with no complementarity or substitutability

between goods. Since the single-minded setting is simpler than the multi-minded case, it

is not surprising that our models in the single-minded case perform better than those in

the multi-minded case without complementarity and substitutability (ζ = 1.0), whereas

the difficulty of non-complementary goods settings explains why the models perform worse

than the multi-minded models with complementarity (ζ = 1.5).
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In addition, we revisit the outlier case mentioned at the beginning of the results sec-

tion. Recall from Table 4.8 that with ζ = 0.5, the decay distribution, and 6 agents, the

performance of attribute vector χ1 drops significantly. Specifically, classification accuracy

is at 16.2%, whereas average ex post regret is three times as much as those of its neigh-

boring cases. Inspecting the training data used in the case reveals that the training data

does not contain the instances where the full bundle is allocated. This is reasonable, as

Table 4.11 points out that with ζ = 0.5, the full bundle is rarely allocated. As such, the

models trained in this setting have not been exposed to the full bundle. During testing, the

χ2 model from which we report results handles the situation well, by rarely allocating the

full bundle (0.35% of the test instances). The χ1 model, on the other hand, hands out the

full bundle to 73% of the test instances. Consider our initial observation that χ1 does not

permit any interaction between different types of bundles (y). When a type of bundle is

missing from training data, the χ1 model trained on such data will not be able to properly

handle the missing bundle type. χ2 models, on the other hand, are able to infer knowledge

for handling unseen bundles from other known bundle types. In addition, this observation

also suggests that with a larger bundle space, the performance gap between χ1 and χ2 in-

creases, as χ1 is unable to apply knowledge learned about one bundle type to other bundle

types. This fact likely explains why χ1 and χ2 perform equally well in the single item case,

but χ2 significantly outperforms χ1 in larger, more complex settings.

Lastly, we examine the assumption that the linear coefficient, w1, of agent 1’s valuation

in the discriminant function is positive. Out of the 1,761 successfully trained models in the

optimal, multi-minded CA setting, only 10 models have negative w1 values. In addition, 8

of these 10 models are χ1 models, and 9 out of the 10 models are from ζ = 0.5 cases. The

fact that more than 99% of the models have positive w1 values suggests that our assumption

about positivity of w1 is reasonable. Besides, most of the models with negative w1 values

are cases where training is considered more difficult than usual (i.e., either using attribute

vector χ1 or setting ζ at 0.5).
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In conclusion, the analysis in this section suggests that settings with substitute goods are

the most difficult one for our framework, whereas those with complementary goods are the

easiest setting. Moreover, χ2 models outperform their χ1 counterparts because χ2 allows for

interactions between different bundle types—models with χ1 completely break, when some

bundle types are missing from training data. It is also important to note that with limited

computing resources, we do not tune the models on the dimension of training set sizes.

Therefore, it is possible that larger training sets could lead to a significant improvement in

performance in all settings.

4.4 Multi-minded CAs without an SP payment rule

In this last experimental setting, we match our framework with a greedy allocation rule,

which has no corresponding strategyproof payment rule. The goal of this experiment is to

show that the framework extends robustly to a non-strategyproof allocation rule.

Table 4.14 presents the results from this setting, varying the number of agents and the

degree of complementarity of goods (ζ). Note that the payment RMSE metric is missing

here, as this setting does not have a strategyproof payment rule to benchmark the results

against. Excluding the 6-agent and χ1 case with ζ = 0.5, classification accuracies range

from 54% to 95%, a similar range as that of the strategyproof multi-minded setting. The

difference in performance across different value distributions is also in line with that in the

previous setting. The similarity between classification accuracy of this setting and that of

the previous setting implies that what the learning algorithm in this setting is about to

achieve is comparable to that in a setting with a strategyproof payment rule.

In addition, Table 4.14 also shows that the distribution of ex post regret in this setting

is similar to that in the previous setting. Specifically, average ex post regret ranges from

0.3% to 3.6% of agents’ valuation range, whereas the 99thpercentile ex post regret ranges

from 0.1% to 10.3% of the valuation range. These ex post regret values are slightly less
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(Agents, ζ)
0/1Accuracy Regret 95Regret IR Violate
ψ1 ψ2 ψ1 ψ2 ψ1 ψ2 ψ1 ψ2

(2, 0.5) 66.0 88.0 0.0154 0.0026 0.0858 0.0191 10.6 2.6
(3, 0.5) 54.7 74.8 0.0357 0.0167 0.1567 0.1074 24.9 13.3
(4, 0.5) 64.3 76.0 0.0274 0.0185 0.1404 0.1246 16.6 13.2
(5, 0.5) 59.8 69.6 0.0338 0.0244 0.1615 0.1396 17.7 17.7
(6, 0.5) 27.1 74.7 0.0982 0.0208 0.2810 0.1352 17.1 13.8
(2, 1.0) 87.5 94.8 0.0057 0.0007 0.0428 0.0007 5.1 2.0
(3, 1.0) 78.4 82.1 0.0134 0.0058 0.0993 0.0423 13.9 8.5
(4, 1.0) 78.0 82.7 0.0142 0.0072 0.1029 0.0526 13.6 8.8
(5, 1.0) 73.6 79.6 0.0142 0.0081 0.0943 0.0577 14.3 11.0
(6, 1.0) 74.7 77.0 0.0137 0.0200 0.0890 0.1310 16.8 21.6
(2, 1.5) 92.2 92.5 0.0025 0.0013 0.0107 0.0080 3.7 6.0
(3, 1.5) 90.2 91.6 0.0028 0.0015 0.0162 0.0112 5.5 4.8
(4, 1.5) 91.9 92.0 0.0022 0.0016 0.0118 0.0103 5.3 4.3
(5, 1.5) 92.2 94.5 0.0027 0.0011 0.0141 0.0017 5.8 2.1
(6, 1.5) 92.9 94.8 0.0033 0.0011 0.0149 0.0007 5.8 3.6

Table 4.14: Performance of multi-minded CAs with the greedy allocation, using the decay
distribution, 5 items, 3 bundles, instance-based normalization.

than those of the previous setting. Moreover, the IR violation rates of this and the previous

settings are also within the same range.

The similarity of the results of this setting and the previous strategyproof setting suggests

that our framework does not suffer any additional performance loss in a setting without a

strategyproof payment rule. In the future, it would also be interesting to further investigate

the type of payment rules trained in such a setting.
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Conclusions

We have presented the theoretical framework to design a strategyproof payment rule for any

given allocation rule in the context of combinatorial auctions. The advantage of this frame-

work over other existing methods including VCG-inspired payment rules is its applicability

to any kind of allocation rule as long as the allocation rule satisfies a form of monotonic-

ity and hence has a corresponding strategyproof payment rule. The only requirement for

the framework to function is that training instances can be generated based on the allo-

cation rule. We accomplish this by establishing a connection between decision boundaries

of Structural Support Vector Machines and various economic properties of combinatorial

auctions. In particular, minimizing regularized empirical error also minimizes a regularized

upper bound on empirical regret. An exact classifier is proven to provide a strategyproof

and individually rational payment rule.

Through our experiments, we show that the framework is able to approximate well-

known strategyproof payment rules well for both optimal and greedy allocation rules under

benchmark value distributions, in all three auction settings—single item auctions, single-

minded CAs, and multi-minded CAs. The root mean square errors comparing payments

from our models to those from known SP rules are in most cases under 0.15, with agents’

67
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valuation range of (0, 1].1 With respect to strategyproofness, agents on average experience

ex post regret for bidding truthfully of less than 2.5% of their valuation range in all cases.

Individual rationality violation rates are under 4% for single item auctions, under 7% for

single-minded CAs, less than 6% for multi-minded CAs with easy value distributions, and

between 1% and 16% for multi-minded CAs with difficult value distributions.

In the multi-minded combinatorial auction setting, the methodology works particularly

well with complementary goods and not so well with substitute goods. This is because in

the substitutes case, correct allocations tend to be skewed toward smaller bundles, whereas

most allocations are in the full package in the complements case. Furthermore, we observe

that the non-normalized models tend to be positively biased, but the bias is sufficiently

small in most cases. Lastly, our initial experiments with an allocation rule that does not

have a corresponding SP payment rule reveal that applying our framework to a non-SP

allocation rule does not lead to additional performance loss.

A primary concern with the framework is its scalability. Once trained, a classifier pro-

duces a payment rule that is polynomial-time in the number of support vectors. Given that

the numbers of support vectors are in the thousands in our experiments, the payment rules

of our framework are quite fast. Yet, the time it takes to train each classifier presents a

bottleneck of the system. We observe that training time of larger and more complex cases

is significantly longer than that of easier settings. In large cases, training can take more

than 6 hours. We can argue that if we are to use this methodology in practice, spending

hours, or even days, training a model should be considered an acceptable, one-time cost.

Nevertheless, the long training time severely limits what we can do in our experiments.

A few things can be done to improve computational tractability of the model. First, note

that we currently enumerate all interesting bundles in search for a bundle with the highest

score during both training and predicting processes. Looking for a more efficient algorithm

for determining the most preferred bundle given a hypothesis and agents’ valuations is an
1The numbers reported in this chapter are based on attribute vector χ2.
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important step to reduce computational cost. Furthermore, recall that for each training

instance, we create constraints for all possible bundles instead of just interesting bundles,

to get around the issue of admissibility. Imposing admissibility, hence, is another important

step toward making the framework more computationally efficient.

In terms of future directions, there are many aspects of the framework that could be

further improved. First, we currently make an assumption that a well-learned model would

yield a positive value of w1, the coefficient of agent 1’s valuation. As this assumption is

central to the established connection between the learning problem and strategyproofness,

enforcing the positivity of w1 as an additional constraint is crucial. This task is not trivial,

as the constraint has to be formulated in the dual space. Second, although we have shown

that exact classifiers yield individually rational payment rules, exact classifiers are unlikely

to be achieved in practice. As one of the most desirable properties within the field of

mechanism design, methods to directly achieve individual rationality on every instance are

of great interest.

Another important area of future work is to improve the attribute vector. As seen in the

experiments, using attribute vectors with different structures yields significantly different

results in terms of performance. Therefore, there are likely some other attribute vectors that

can better capture defining features of agents’ valuations and produce even better results.

Moreover, both of the attribute vectors in this thesis are dependent of the number of agents

and the number of items. Having to learn new payment rules for different numbers of agents

is inefficient, and finding an agent-independent attribute vector is a topic for future work.

Similarly, an attribute vector that can absorb different numbers of items would also make

the process much more efficient.
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