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Abstract

Reputation systems, which rank agents based on feedback from past interactions, play a crucial role

in aggregating and sharing trust information online. Reputation systems are used to find authori-

tative web sites and ensure socially beneficial behavior on auction sites. The main problem faced

by reputation system researchers is a lack of good metrics for comparison and evaluation. This

thesis defines a novel “informativeness” metric for reputation systems which happens to approxi-

mate a crucial economic efficiency metric. This is then applied to the problem of finding optimal

reputation systems. We show empirically that this metric enables meaningful comparisons between

reputation systems, and present a technique for generatinghybrid reputation systems with variable

incentive-compatibility and efficiency properties.
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Chapter 1

Informative Reputation Systems

The world is an increasingly interconnected place; people sell goods online, swap media files,

browse social connections, and search for information among the billions of web pages indexed

by various search engines. When a user searches for a popularbook on eBay or Amazon.com, he or

she is often presented with dozens or hundreds of possible sellers to choose from. How can users tell

the difference between legitimate businesses and outrightfrauds? For better or worse, the Internet

is inherently an open system, making it difficult to assess the authenticity of a seller on an auction

site or the authority of a web page. Reputation systems, which rank agents based on feedback from

past interactions, play a crucial role in aggregating and sharing trust information online.

Under eBay’s reputation system, for example, buyers are asked to rate the quality of sellers every

time an interaction (a sale) occurs. If a seller doesn’t shipthe promised item, the buyer’s negative

feedback is recorded for others to see. Over time, buyers begin to avoid sellers with poor reputations

and reward sellers with high ones. These two steps capture the essence of what a reputation system is

about. Agents interact with each other and send ratings to a reputation system. Absolute reputation

scores or relative reputation rankings are computed and exposed to aid the agents in making future

decisions. The measure of a good reputation system is “economic efficiency”, the extent to which

the reputation system information results in the “best” decisions being made by users.

This problem would be significantly easier if the users were not rational agents who will try to

cheat the system for their own gain. Malicious sellers may create fake accounts and leave positive

feedback, abandon accounts and start over when their reputation dips too low, or leave negative feed-

back for competitors to drag them down. This issue of incentive compatibility, designing reputation

1



CHAPTER 1. INFORMATIVE REPUTATION SYSTEMS 2

systems which discourage or prevent cheating, has driven a large amount of the prior work on rep-

utation systems. These approaches have led to interesting impossibility results and characterization

theorems for simple reputation systems.

An open challenge for reputation system researchers is the lack of good metrics for “economic

efficiency.” It is inherently difficult to formally capture the efficiency of a reputation system in a

manner which is domain-independent; on a file-sharing network, for example, efficiency might be

measured in the ratio of authentic to inauthentic files swapped, while on eBay efficiency might be

measured in the number of users making a satisfying purchase. Different approaches to reputation

systems research have been more or less ad-hoc, using simulations to estimate efficiency rather than

searching for optimal reputation systems.

The goal of this thesis is to bridge the gap between these different approaches (incentive compat-

ibility on one hand, economic efficiency on the other) by firstdefining a novel metric for reputation

systems which approximates efficiency, and second applyingthis metric to the problem of finding

optimal reputation systems. Our metric is based on the accuracy or informativenessof the repu-

tation system; intuitively, this correlates with efficiency, because as more information is available

to the user the better the decision he/she can make. We present a technique for generating hy-

brid reputation systems which change their incentive-compatibility and efficiency properties as we

vary a weighting parameter. Finally, we show empirically that the informativeness metric enables

meaningful comparisons between reputation systems.

1.1 Reputation Overview

Why is the reputation system problem hard? We are forced on a daily basis to judge the reliabil-

ity of commercial transactions. If we were looking to buy a car from a used-car dealer, we would

presumably weigh many different factors to determine the trustworthiness of the dealer. Our per-

sonal interaction with the dealer would count for a lot: whenwe visit, is the dealership clean and

professional-looking? Are the cars kept in good condition?Is the lot located in a back alley or off a

major street? We might examine the dealer’s past transactions by calling past customers and asking

about their experiences. We might ask close friends whetherthey have had experience with this

particular dealer.

And we should weight these factors differently: our personal experience may count for more

than our friends’ experiences, while our friends’ opinion may count for more than the opinion of a
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stranger. And since such a large amount of money is involved in this purchase, the dealer may be

tempted to “game” the reputation system: for instance, he might point us to his business partner as

an example of a satisfied customer. Only after weighing thesefactors appropriately do we decide

whether to purchase from this dealer or to move on to another.The study of reputation systems

attempts to model this process formally. Given a set of agents and reported trust ratings, how can

we rank the agents from most trustworthy to least?

Once we have a ranking, there are a number of questions we might want to ask. First, is the

ranking that we get accurate (i.e.,are bad dealers exposed as untrustworthy)? If it is, we can use it to

rank dealers before making our choices. Next, does it lead usto make the right decisions (e.g.,buy

or not buy)? This captures the decision making at a higher level: we may not care about the relative

rankings of bad dealers, so long as we know to avoid them. Finally, how easy is it for dealers to

manipulate the rankings to their advantage? If financial gain is involved, people are sure to seek

ways of cheating the system.

Over the course of this thesis, I will formalize the intuition behind these three questions into

three metrics for reputation systems:informativeness, economic efficiency, andincentive-compatibility,

respectively. While we generally care the most about economic efficiency (we want our reputation

system to provide information which leads to good choices) it is a difficult concept to capture in

practice. The informativeness metric we want to develop provides a good approximation to effi-

ciency: intuitively, the more information we take into account when deriving our reputation scores,

the better agents can make their decisions and the higher theresulting efficiency.

1.2 Motivation

Reputation systems have found applications in a variety of practical domains. As integral compo-

nents of search engines, file-sharing networks, and shopping sites, reputation systems represent a

highly active field of current research.

Web site ranking

The Internet is composed of billions of pages of hypertext, put up by corporations, organizations,

and individuals. Because it is open and anonymous, anyone can post information on a web site.

However, judging the authenticity of a source is a crucial part of what search engines like Google

need to do to generate useful, relevant results. The PageRank algorithm [18], developed by Google’s
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founders, is one of the reputation systems examined later inthis thesis: it can be viewed as a repu-

tation system which models the web as a graph, where each web page is a node and directed edges

represent hyperlinks between pages. When particular queries are searched through Google’s search

engine, the first results shown are those with the best PageRank scores, appropriately weighted by

some measure of the relevancy of the page to the search term.

This explosion of information availability has also made usmore dependent on search engines

like Google for finding and organizing information. These search engines in turn drive the devel-

opment of reputation systems like Google’s PageRank algorithm, which rate the reliability of web

sites by examining the hyperlink structure of the web (siteswhich are linked to more frequently

should be thought of as more authoritative). For web site owners, the relative ranking or reputation

of a web site can cause huge shifts in the amount of incoming traffic and advertising revenue. Yet

the reputation systems underlying search engines are rarely transparent and available: Google relies

heavily on secrecy to prevent web site owners from optimizing their sites for higher rankings. For

businesses dependent on income from Google-driven traffic,this lack of transparency is unsettling

to say the least. This has spurred work on incentive-compatible reputation systems which cannot

be “manipulated.” The rules for such systems can be published openly, addressing this need for

transparency.

Online auction sites

Online auction sites like eBay and Amazon.com’s Marketplace have enabled small businesses and

individuals to reach thousands of niche markets. Millions of items have been listed and sold online.

Yet the relative anonymity of the Internet creates opportunities for criminals to abuse the system and

profit from fraud. To combat such behavior, eBay and Amazon implement sophisticated feedback

and rating systems to aid their users in making smart buying decisions.

Peer-to-peer networks

Peer-to-peer networks have emerged as a lasting component of the Internet’s infrastructure: studies

estimate that in 2006 between 50% and 90% of all Internet traffic was P2P-related [1]. Software

like Skype, BitTorrent, and Joost enable us to chat over VoIP, swap media files, and enjoy streaming

video, while other P2P systems create ad-hoc wireless networks and manage distributed grid com-

putation systems. Such networks are scalable and efficient.With no central server to connect to,

there is no single bottleneck or point of failure that can bring the system down.
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However, such networks are complicated to understand precisely because there is no central au-

thority to mediate between different self-interested agents. How can we model interactions between

multiple rational agents, and how can we incentivize them tobehave in socially efficient ways? One

solution is to introduce a reputation system. If we can identify users or nodes engaging in benefi-

cial behaviors by assigning them higher reputations, and ifthose reputations confer some tangible

benefit (e.g.,faster downloads for peers which share more files), we can getcooperative, collective

behavior from self-interested agents.

Need for Security

Online shopping sites like eBay and Amazon process billionsof dollars’ worth of financial transac-

tions. To help detect and prevent fraud, buyers and sellers have the opportunity to rate each other

after every transaction. Ideally, honest dealers are rewarded with high ratings and higher profits,

while shady dealers are avoided or removed after enough negative feedback. Such systems do pro-

vide incentives to play by the rules: a study of eBay’s onlineauctions by Resnicket al.[20] revealed

that high reputation sellers earned on average 7% more than sellers with no rating. In a separate,

randomized, controlled field experiment by Resnick [21], a high-reputation seller earned 8.1% more

on average using an established identity versus using new seller identities. On another level, while

it may be inconvenient if a shady dealer on an auction site fails to ship an order, there is real danger

whenever personal identity information is available online: if a scammer obtains a billing address or

credit card number he can rack up thousands of dollars in fraudulent purchases. Reputation systems

address a real need for security: by propagating trust information across the network, these systems

prevent malicious agents from repeatedly scamming users.

Need for Transparency

Because of Google’s popularity, its algorithms for rankingsites are often the largest drivers of traffic

to small and mid-sized commercial web sites. Being ranked onthe first (rather than the second) page

of Google’s search results for a particular query results inorders of magnitude more traffic, which

in turn leads to more revenue from advertisements or sales. For businesses which depend heavily

on such revenue, understanding Google’s reputation systems results in real profits.

Thus, web site owners go to great lengths to ensure good rankings. This has spawned an entire

industry centered around search engine optimization (SEO), the art of changing pages and content

to generate good rankings for particular queries. Yet this is unsatisfactory: every time Google alters
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its ranking algorithms, web site owners are forced to make tweaks and adjustments to maintain their

ranking. Conversely, there is no way for site owners to know in advance what will lead to higher

rankings. A greater level of openness or transparency with regards to Google’s ranking algorithms

is to be desired. To address this issue research on reputation systems has also been focused on

incentive compatibility: i.e., how to make systems that cannot be “manipulated.” If a reputation

system cannot be manipulated, the rules and algorithms it follows can be openly disseminated,

eliminating the wasteful user opimization underlying current systems.

1.2.1 Related Work

There are two general approaches to the study of reputation systems which differ mainly on the

emphasis that is put on theoretic incentive compatibility results versus practical efficiency results.

Axiomatic approaches seek to understand and model simple reputation systems by proving strong

theoretical results: examples include work by Altman, Cheng, and Chayes [4, 3, 2, 24, 8, 5]. Other,

more practically-focused domain-dependent approaches involve focus on simulating and evaluating

the efficiency of different reputation systems; see for example the PageRank and EigenTrust papers

[18, 15].

Because work on reputation systems draws from many disparate disciplines, each with its own

models and histories, comparing different reputation systems in a common framework is a prob-

lem which has not been addressed. Neither of these two approaches offers a common framework

for evaluating reputation systems. The axiomatic approach, while offering extensive incentive-

compatibility results, does not allow for quantitative comparisons between reputation systems, while

the domain-dependent approach fails to formally define an acceptable efficiency metric.

1.3 Primary Contributions

Economic efficiency is the primary metric on which reputation systems need to be judged. This

thesis introduces a new approach to analyzing reputation systems based on a notion of “informa-

tiveness”. The core motivation behind this metric is the difficulty of developing good economic

efficiency metrics: prior work either attempts to model utility-maximization problem formally, in

which case it is intractable to solve, or it attempts to estimate efficiency through simulation, which

does not scale well to different problem domains. The informativeness metrice we define is tractable

and acts as a good proxy for economic efficiency: the more trust graph information the reputation
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system captures, the easier it is for agents to make good decisions based on proper reputation data.

Later, we run simulations which yield empirical evidence for our intuition that the informativeness

metric correlates well with economic efficiency.

This thesis also examines an intriguing negative correlation between incentive compatibility

and informativeness. We develop a technique for combining existing reputation systems into hybrid

reputation systems, and characterize general incentive compatibility properties for these hybrid rep-

utation systems. These include both positive and negative results on the preservation of incentive-

compatibility as different reputation systems are combined. In order to characterize how incentive

compatibility properties may be traded off for informativeness, we introduce natural relaxations of

existing incentive-compatibility constructs, and demonstrate their use by proving theorems about

two hybrid reputation systems with convenient properties.The hybrid technique allows us to search

for the optimal reputation system for a given problem by adjusting a single weighting factor which

blends the two reputation systems.

1.4 Paper Outline

The remainder of this thesis is as follows: Chapter 2 lays outbackground for a general model of

reputation systems as computing a function on a “trust” graph, and describes several variations and

special cases of the basic model (symmetric vs. asymmetric,binary vs. real-valued trust). We

describe the basic game-theoretic framework behind the study of reputation systems, then detail

four different classes of reputation system, each based on different graph algorithms: eigenvector-

based algorithms like PageRank and EigenTrust, hitting-time-based algorithms, maxflow-based al-

gorithms, and shortest-path-based algorithms. The chapter concludes with a discussion of different

reputation-system metrics. Chapter 3 introduces our hybrid reputation system construct, which al-

lows us to create new reputation systems with specific tradeoffs between incentive compatibility

and informativeness. We prove general incentive-compatibility properties about this technique, as

well as specific results for two convenient hybrid reputation systems. By mixing together reputation

systems in this novel way, it is possible to trade off informativeness and efficiency in return for

incentive-compatibility. I conclude in Chapter 4 with possible applications of this work, outlining

what must be done to connect theory with practice.



Chapter 2

Modeling Reputation

Because of the variety of possible applications, past work on reputation systems has developed from

a wide range of disciplines ranging from economic mechanismdesign to graph theory to computer

systems research. In this chapter I provide a brief survey ofpast work, with the goal of unifying a

number of different approaches under a single framework. Byfocusing on common themes between

past approaches, I hope to motivate my perspective on this problem. In the process, we develop a

formal framework for talking about reputation systems. This framework will be sufficiently gen-

eral to capture all the reputation systems I will examine, including maxflow [8], Eigentrust[15],

PageRank [18], and shortest paths [4].

2.1 Economic Efficiency

The following list illustrates the steps an end-user of a reputation system might go through:

1. Users form opinions on the trustworthiness of other users

2. Users make reports to the reputation system.

3. The reputation system computes the reputation of each user.

4. Users interact with other users (buying goods, exchanging files), taking into account reputa-

tion information.

5. Repeat steps 1-4

8
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Here users, or agents, can refer to humans buying and sellinggoods through an auction site or

to automated software bots transferring files over a peer-to-peer network.

When stated this way, the goal of a reputation system is clear: it must provide information on

user reputation that leads agents to make economically efficient, utility-maximizing decisions.

Unfortunately, it is unclear what utility an agent gets froma particular output of the reputation

system. While there have been interesting empirical studies which attempt to quantify the value

of having higher reputation (e.g.,Resnicket al. ’s study of eBay’s reputation system [20]), it is

difficult to extend such work to a general agent utility function in a context independent setting.

The differences between having a high seller rating on eBay and having a high reputation on a peer-

to-peer file-sharing network appear too great to be capturedby a single all-encompassing utility

model.

2.1.1 Economic Efficiency in Prior Work

There have been two main approaches to the problem of modeling utility in the literature. The first

approach, which we will term the axiomatic approach, attempts to sidestep the issue by dealing

directly with the final ranking or reputation scores output by the reputation system. Implicit in this

formulation is the assumption that utility is directly related the reputation scores / ranking.

Axiomatic Approach and the Theory of Social Choice

Work which takes the axiomatic approach to reputation systems has focused on identifying and

analyzing basic axioms about reputation systems (hence thename of the approach). This approach

has led to both impossiblity results (i.e., a set of reasonable axioms cannot be satisfied by any

reputation system) and representation theorems (i.e., this set of axioms uniquely characterizes a

particular reputation system).

The axiomatic approach is closely connected to the classical theory of social choice (see Arrow

[6]) — the reputation system problem is modeled as a special case of a social choice problem where

the set of agents and the set of alternatives coincide, and the agents have two levels of preferences

over the alternatives (i.e.,each agent has a set of other agents which it trusts, and another set which

it doesn’t). Under the classical social choice formulationof this problem, a social choice function

is incentive compatible if agents cannot improve the rankings of their preferred alternatives by

misreporting their true preferences.
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The axiomatic approach’s focus on the final ranking may be justifiable in the reputation system

setting because an agent’s place in the final ranking roughlycorresponds to higher overall utility;

web pages which appear higher on Google’s search results tend to get more traffic and more revenue.

However, there are several serious objections to this approach for analyzing reputation systems.

First, it is difficult to formally define the sybil attack, a common manipulation which involves

an agent creating fake “sybil” agents which participate in the voting.

Second, this approach is not scalable; axioms for one reputation system must be carefully re-

proven if we wish to apply them elsewhere. And each reputation system itself requires carefully

developed axioms characterizing its properties.

A domain-dependent utility framework

The second approach to reputation systems, which we will call the domain-dependent approach,

strives to model agent utility as precisely as possible. Agents take the output of the reputation

system into account when choosing their actions; the outputof the reputation system only indirectly

influences the final utility through the choice of agent actions. Under this approach, after reports are

made to the reputation system, we assume the reputation system returns a set of reputation scores

fi(v j) representing the trust agentvi places in agentv j . Agents must then act upon the reputation

information in some way,e.g.,by interacting with another agent with high reputation scores or

rankings. The utility of an agent is determined entirely by this final interaction.

This motivates the following model for agent utility: each agentvi has a typeθi , and a setAi

of possible actions (not to be confused with possible misreport actions of reputation information).

Each agent has a decision function which, given another agent v j , uses the reputationfi(G,v j) of v j

to determine an action to take. Finally, each agent has a utility function which takes an action and

the type ofv j and determines the utility gained.

Definition 2.1.1. Given a reputation systemM, a set of agentsV = {v1, ...,vn}, a set of typesθ =

{θ1, ...,θn} s.t. ∀i,θi ∈ θ, and a trust graphG = (V,E,w), define for each agentvi ∈ V an action

spaceAi = {a1, ...,am}, and define an action functionai : V ×R → Ai , which given an agent to

interact withv j and a reputation scorefi(G,v j), determines the actiona ∈ Ai that will be taken.

Finally, define for each agent a utility functionui : θ×Ai → R.

Together these definitions define the rules under which agents can interact under a reputation

system, but we still cannot determine the utility ofvi without a model of howvi interacts with other
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agents. This motivates the definition of an interaction profile I, which is essentially a list of the other

agents which agentvi interacts with over its entire time in the system.

Definition 2.1.2. Define an interaction profileI = (g1,g2, ...,gp)s.t.gi ∈V. Thegi are not necessarily

distinct. p is the number of different interaction opportunities the given agent receives.

Putting all these pieces together,

Definition 2.1.3. Given a set of agents(v1, ...,vn), reputation scores for these agents( f1, ..., fn),

action spacesAi = {a1, ...,am}, action functionsai : R → Ai, and utility functionsui : Ai →R, define

the utility of agenti under interaction profileI as∑p
j=1ui(θi ,ai(g j , fi(g j))).

For example, in a peer-to-peer filesharing setting, one might use the EigenTrust algorithm as

the reputation system; the action space for each agent is{Share,NoShare} andai( fi(v)) = Shareif

fi(v) > c, i.e., if the current agent being considered for an interaction hasreputation> c for some

constantc. Finally, ui(a,θ) = 1 if a = Shareandui(a,θ) = 0 if a = NoShareregardless ofθ.

Critiques of the domain-dependent approach

After going through the technical details of the above utility framework, it is important to keep in

mind that we were only trying to formalize how one would calculate the utility of an agent in the

system. Simply formalizing how utility is calculated underthe domain-dependent approach is a

daunting challenge; formulating and solving a utility maximization problem is likely to be much

harder.

For this reason, work done under the domain-dependent approach tends to involve simulations

or actual deployments rather than theoretical results. Each paper develops some measure of social

welfare which is highly dependent on the problem context. For example, analyses of reputation

systems for peer-to-peer networks often involve simulations of actual networks, using the ratio of

authentic to inauthentic files exchanged as a measurement ofoverall utility. Though this approach

has yielded more complex reputation systems, incentive-compatibility issues tend to take a back

seat to practical issues. Worse, simulations of reputationsystems on peer-to-peer networks do not

provide evidence that the same reputation systems can be applied to other domains.

Both the axiomatic and the domain-dependent approaches have their benefits — see Table 2.1

for a comparison of the approaches. The axiomatic approach gives us strong incentive-compatibility

theorems, while the domain-dependent approach allows for the comparison of more complex rep-

utation systems in a quantitative way. We will draw from bothapproaches throughout this thesis
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Approach Focus Methods
Incentive Com-
patibility

What is missing

Axiomatic simple theoretic
models

proving charac-
terization theo-
rems

provable proper-
ties

standard metrics for
comparing reputation
systems

Domain-dependent complex rep.
systems

testing through
simulation

ad-hoc results results are domain-
specific and difficult to
extend

Overall Ways of comparing the
efficiency of existing
reputation systems

Table 2.1: This table summarizes the differences between the two main approaches to reputation
system research. The “What is missing” column especially highlights the contribution this thesis
work aims to make

in order to prove incentive-compatibility properties and to compare existing reputation systems in

quantitative ways.

However, both approaches fall short of providing a good metric for the economic efficiency

properties of reputation systems. This is troubling because economic efficiency is the motivating

reason for using reputation systems. As an extreme example,consider the trivial reputation system

which assigns the same constant reputation to each agent irregardless of agent reports. This system

is perfectly incentive-compatible because agent reports cannot influence the final reputation score,

but at the same time it is adds nothing of value to the system itis deployed in.

2.1.2 Motivation for a novel metric

The domain-dependent approach has taught us that explicitly modeling agent utility is intractable in

the general case and unscalable when applied to particular situations. Put another way, solving the

general utility model for the utility-maximizing strategyis not feasible, and investigating reputation

systems individually through simulation does not enable useful comparisons of economic efficiency.

This gap in usuable metrics provides motivation for our proposed “informativeness” metric.
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Intuitively, informativeness tells us how much information our reputation system uses or how ac-

curately our reputation system determines the true reputation of agents. The more information our

reputation system takes into account, the more accurate thepredicted reputation scores, which re-

sults in better decisions and (ideally) higher utility for the user. Thus, it is reasonable to expect

informativeness to be a useful proxy for economic efficiency. Since maximizing social welfare is

not possible in general, informativeness provides a good way of approximating economic efficiency.

We discuss the informativeness metric more thoroughly in the next chapter.

2.2 Game Theory and Incentive Compatibility

Thus far we have glossed over the strategic interactions between agents in a reputation system, talk-

ing instead in generalities about incentive-compatibility and utility. We now consider the reputation

system problem formally from a game-theoretic perspective.

Agents in a reputation system have many opportunities for strategic interaction, beginning with

the trust ratings they report to the reputation system. An agentu making reports about other agents

to the reputation system must consider the effect his reports will have on the final reputation scores,

and then consider the effect of different reputation scoreson the interaction decisions made by users.

The effect of making a given report depends heavily on the reports that other agents will make as

well as our model for agent actions. How do we determine how self-interested agents are likely to

behave?

The field of game theory deals exactly with this problem of predicting the behavior of multi-

ple self-interested agents behavior. In particular, game theory provides powerfulsolution concepts

which simplify our analysis. In order to talk meaningfully about this, we first establish some pre-

liminaries, following the model set out by Parkes in [19].

Definition 2.2.1. (Strategy)A strategyis a complete contingent plan or decision rule that defines

the actions an agent will take.

In our setting, during the stage when trust information is reported to the reputation system agents

can play all sorts of unexpectedstrategies, e.g.,misreporting their true trust ratings.

Definition 2.2.2. (Game)A gamedefines a set of strategiesSi for each agent and a utility function

ui(s1, ...,sn,θi) that defines the utility of agenti given the agent’s typeθi and the strategy profile

(s1, ...,sn) being played by all agents.
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When modeling reputation systems as games, the strategies of the agents are the reports about

other agents that the agent makes to the reputation system. Once these reports are made however,

how do we compute the utilities of the different agents in thesystem?

For our incentive compatibility analysis, we will follow the axiomatic model and assume that

utility is directly related to the final reputation scores output by the reputation system. The utility

an agent gets increases as its reputation score and/or relative ranking increases.

Once we have this notion of a reputation system as agame, we can discuss differentsolution

conceptsfor predicting the outcome of the game:i.e., the expected behavior of participating agents.

Definition 2.2.3. (Nash Equilibrium) Let s= (s1, ...,sn) denote the strategy profile for the strate-

gies of all agents, and lets−i = (s1, ...,si−1,si+1, ...,sn) denote the strategy of every agent except

agenti. A strategy profiles is a Nash equilibrium if

∀i,ui(si(θi),s−i(θ−i),θi) ≥ ui(s
′
i(θi),s−i(θ−i),θi)∀s′i 6= si

The above definition says that in a Nash equilibrium, every agent must be maximizing its ex-

pected utility. In games with many agents, this solution concept is unsatisfying because it requires

strong assumptions on agents’ information and beliefs; namely, that all agents possess perfect infor-

mation and assume perfect rationality on the part of other agents in computing the expected utility

of different strategies.

A more useful concept is that of adominant strategy equilibrium.

Definition 2.2.4. (Dominant Strategy Equilibrium) Strategysi is a dominant strategy if it weakly

maximizes the agent’s expected utility for all possible strategies of other agents,

ui(si ,s−i ,θi) ≥ ui(s
′
i ,s−i ,θi)∀s′i 6= si

A dominant strategy for an agent maximizes expected utilityno matter what strategies the other

agents play. This concept is superior to the standard Nash equilibrium concept because it does not

require the agents have any information about each other, and does not require agents believe that

other agents will play rationally. If a dominant strategy exists, no matter what the best move for an

agent is to play the dominant strategy.

For the remainder of this thesis, we focus solely on characterizing the dominant strategies of the

reputation system games being played. We are especially interested in reputation systems where the

dominant strategy is to truthfully report your private information (your opinions of other agents in

the system) to the reputation system.
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Definition 2.2.5. (Dominant Strategy Incentive Compatibility) A game is dominant-strategy in-

centive compatible orstrategyproofif truthfully reporting types is a dominant strategy equilibrium.

2.3 Formal Reputation Systems

2.3.1 The Trust Graph

The first step in the process of building a reputation system is modeling the process of agent reports.

Given a set of agentsV, it is assumed that each agentvi ∈V begins with ratings for some subset of

the agentsVi ⊆V. Vi is a subset of the set of all agents because agentvi hasn’t necessarily interacted

with every other agent inV. Each agent begins by reporting its ratings to the reputation system.

Definition 2.3.1. (Agent Reports)Given a set of agentsV = {v1, ...,vn} , for eachi letVi denote the

agents thatvi has trust information about. The agents inV make reportsR= {(V1, t1), ...,(Vn, tn)}

whereti : Vi → D ⊆ R
+, soti(v) represents the trust agentvi assigns tov.

A natural encoding for this data is a trust graph, in which thenodes represent agents and the

edges represent ratings of these agents. For example, in thesearch engine setting, nodes might

represent web sites, and edges might represent hypertext links between these web sites. On an

auction site, nodes represent buyers and sellers, and edgesrepresent a rating for each transaction

that has occurred (if an edge does not exist between a pair of agents, it indicates that no interaction

has occurred between the two).

The setD is the set from which agents draw their trust ratings of otheragents; its exact form

depends on the context (e.g.,for simple binary trust,D = {0,1}. For a shopping site, it may range

from D = {1, ...,5}.).

Next, define the notion of a trust graph constructed on the basis of agent reports following

Altman and Cheng [4, 8]:

Definition 2.3.2. (Trust Graph) A trust graphG = (V,E,w) is a set of verticesV and directed

edges(u,v) ∈ E,u,v ∈V. Each edge(u,v) ∈ E has an associated weightw(u,v) ∈ D ⊆ R
+. (i.e.,

vertices are individual agents, edges indicate interactions or trust between agents, and edge weights

indicate levels of trust).

Some points to note: because of the natural mapping between agents and vertices in the trust

graph, I will often refer to them interchangably, using the uniform notationvi .
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Edges in the trust graph can be directed or undirected. Undirected graphs are are appropriate

in situations where interactions have a sort of symmetry. For example, consider a social network

setting. It is reasonable to expect friendship relationships between users to be reflexive: if I am

friends with you, you should be friends with me. On the other hand, in the web page reputation

setting, a hyperlink takes visitors from one page to another- the relationship is not symmetric,

and is best captured by directed edges. This is the model adopted by the EigenTrust [15] and

PageRank [18] papers. In general, the asymmetric case is more common — consider buyers and

sellers on an auction site, or downloaders and uploaders on afile-sharing network — and the directed

edge model is richer than the undirected model (it is possible to model undirected edges by setting

w(u,v) = w(v,u))). The remainder of this thesis uses directed edges exclusively.

The trust values reported by each agent (which eventually become the weights on the edges of

the trust graph) can be drawn from different subsetsD depending on the problem domain. Binary

trust, in whichD = {0,1}, is a commonly used model in which an agent either trusts or doesn’t trust

another agent. This is the simplest model to analyze, and is found predominantly in papers which

demonstrate rigorous theoretical results: Cheng’s sybilproofness paper [8] and Altman’s axiomatic

approach [2] are two examples.

However, when users are asked to rate transactions online itcan be useful to have a wider

range of options than trust/no trust. Shopping sites like eBay and Amazon, for example, allow

agents to rate others on an integer scale:D = {0,1, ...,K}. In other contexts, it is useful to set

D = [0,1], allowing the weights to be interpreted as probabilities (when properly normalized). This

approach provides the most expressiveness, though agents may not directly choose each weight -

in the Eigentrust reputation system [15], agent reports arenormalized s.t.∑u∈Vi
ti(u) = 1, i.e., the

agent’s reported trust in other agents sums to 1. This forms the actual weights of edges on the trust

graph.

Also, the trust graph makes a distinction between an edge(u,v) of weight 0 and the absence

of an edge(u,v); it is not a complete graph. The first situation might arise ifagentu has had both

positive and negative interactions with agentv such that the net trust agentu places in agentv is 0,

while the second situation would arise if no interaction hastaken place between agentsu andv.

Using these definitions, the trust graph is naturally definedon the basis of agent reports:

Definition 2.3.3. (Constructing Trust Graphs)Given a set of agentsV and agent reportsR, con-

struct a trust graphG = (V,E,w) as follows (note that the agents map exactly to vertices in the

graph): for each vertexvi , given report(Vi , ti), create a directed edge(vi ,u) ∈ E for eachu∈Vi and
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definew(vi ,u) = ti(u).

Note that the above mapping can be used to generate a graph structure from any given set of

agent reports. This gives a way of constructing a model for any trust system.

1

2

3

Figure 2.1: Example trust graph induced by a particular pattern of agent interactions. Here agent
1 has had positive experiences buying from agents 2 and 3, agent 2 has bought from agent 3, and
agent 3 has bought from agent 1.

For example, consider the trust graph in Figure 2.1. Agent 1 has directed edges to agents 2 and

3, while agent 3 has a directed edge to agent 1, and agent 2 has adirected edge back to agent 3. In

the online auction setting (eBay), this situation could arise if agent 1 has positive transactions with

agents 2 and 3, agent 2 with agent 3, and agent 3 with agent 1. Intuitively, agent 1 should place

more trust in agent 3 than in agent 2, because in addition to having a direct interaction with agent 3

agent 1 also has an indirect relationship through agent 2.

2.3.2 Reputation System

The informal definition of a reputation system given in the first chapter described the problem of a

reputation system as deciding how to rank agents based on their own input. Using the trust graph to

model agent input, following the definition given by Altman [4], it is possible to formally define a

reputation system as a function on a trust graph.

Definition 2.3.4. (Reputation system)A reputation systemM is a mapping from a trust graph

G = (V,E,w) and its verticesV to R
n i.e.,a function f : G×V → R

n. Each f (G,v j) = (r1, ..., rn),
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where fi(G,v j) = r i (the ith component off (G,v j)) can be thought of as the reputation of agentv j

from the perspective of agentvi . This induces an ordering≺G
i over the agents, wherefi(G,u) <

fi(G,w)⇒ u≺G
i w indicates that agentw has higher reputation than agentu from the perspective of

agentvi (and should appear higher in the ranking).

Under Definition 2.3.4 we require thatf be a completely defined function overV; that is, given a

trust graphG and verticesvi ,v j fi(G,v j) always has a value; reputation systems provide predictions

for every agent from every other agent’s perspective. Even if vi andv j are not connected inG, the

reputation fi(G,v j) must exist. Also note that a higher relative value offi(G,u) is “better” in the

sense that it implies more trust from agenti in u. An agentu is ranked higher than another agentv

from vi ’s perspective iffi(G,u) ≥ fi(G,v).

There remains a fair amount of ambiguity in Definition 2.3.4;this allows for considerable flexi-

bility and variation in applying it to various problem domains.

Symmetric vs. asymmetric reputation

Reputation systems can be divided into symmetric and asymmetric (or alternatively global and

local) categories. Asymmetricreputation system computes a single reputation score for every node

in the network. It is useful to think of this as a global system, in which a single reputation score is

maintained globally for each agent. On the other hand,asymmetricreputation systems keep local

reputation information for each agent; each agent has its own reputation score for every other agent.

The symmetric/asymmetric distinction is not to be confusedwith the undirected/directed edges

distinction — the undirected/directed nature of the edges reflect inherent (a)symmetries in the prob-

lem formulation, while the differences between symmetric/asymmetric reputation system are more

arbitrary. Symmetric and asymmetric reputation systems have different computational efficiency

and incentive compatibility characteristics, so neither strictly dominates the other. Thus these two

distinctions are fundamentally orthogonal: it is possibleto have a symmetric reputation system with

directed edges (see PageRank [18]) as well as asymmetric reputation systems with undirected edges

(e.g.,shortest-path reputation).

More formally, symmetric systems are a special case of the general reputation system formula-

tion.

Definition 2.3.5. A reputation system is symmetric if∀i, j we havefi(G,vk) = f j(G,vk).
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Symmetric algorithms generally benefit from being more efficient to compute and simpler to

analyze. A good way to think about symmetric systems is that there exists a single global reputation

score for each agent; thus there areO(n) trust scores to compute as opposed toO(n2) scores under

an asymmetric system. However, later it will be shown that symmetric algorithms necessarily lack

a key incentive-compatibility property.

Asymmetric reputation systems may be justified if we agree that each node should trust itself

more than any other node in the network, or because each node is in a different position in the

trust network. There have been numerous papers analyzing approval voting and max-flow-based

algorithms for asymmetric reputation systems [2, 4, 8].

2.4 Manipulations

In this section, it is assumed that an agent’s utility is determined directly by its final ranking; thus,

agents choose manipulations in order to maximize their relative ranking. We consider several types

of manipulation when considering incentive compatibility, but each of the reputation systems are

susceptible to some or all of the attacks we describe.

Sybil Manipulation

A sybil manipulation [11] involves an agent creating and inserting a number of fake agents (under

the original agent’s control) into the network.

Definition 2.4.1. (Sybil manipulation) Given a trust graphG = (V,E,w), a sybil manipulation

strategy for nodev∈V is a tupleσ = (S,ES,wS) whereS= {s1, ...,sm} is a set of sybil agents,ES is

a set of edgesES = {(u,w) : u∈ S∪{v},w∈V ∪S} andwS : ES→ D are the weights on the edges

in ES. This results in a modified trust graphG ↓ σ = G′ = (V ∪S,E∪ES,w′), wherew′(e) = w(e)

for e∈ E, andw′(e′) = wS(e′) for e′ ∈ ES.

Under Definition 2.4.1, under a sybil manipulation an agent can create sybil agents with arbitrary

outlinks to any other agent in the trust system. Because it ischeap to create accounts automatically

on an auction site or set up hundreds of fake web pages, this type of manipulation is easy to conduct

and must be defended against. If an agent can improve its reputation using such an attack, the

reputation system is vulnerable to sybil attack.
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Under this formulation, an agent can add as many sybil nodes as it wants, and can create what-

ever graph structure (assuming directed edges and edge weights) it chooses between itself and its

sybils in order to create the modified graphG′. However, it cannot alter links from other nodes to

point to its sybils, and it cannot redirect incoming links topoint to its sybils instead. Consider the

web-page example: if I create some sybil pages, I can create hyperlinks from them back to my main

site, but I cannot force other sites to link to my sybils.

Before it is possible to compare which reputation systems are vulnerable to sybil manipulation,

it is necessary to define the concept of sybilproofness.

Definition 2.4.2. (Rank-sybilproof) A reputation system is rank-sybilproof if given a trust graph

G = (V,E,w), for any sybil strategyσ s.t. G ↓ σ = G′ = (V ∪S,E∪ES,w′), for all u,v ∈ V and

i ∈ {1, ...,n},

fi(G,v) > fi(G,u) ⇒ fi(G
′,v) > fi(G

′,u)

.

A reputation system is considered rank-sybilproof if no agent u can increase its reputation and

surpass that of another nodev that originally had higher reputation thanu by employing a sybil ma-

nipulation. It is preferable that a reputation system be value- or rank-sybilproof. However, such an

attack is very difficult to defend against. Though symmetricreputation systems are easier to char-

acterize and study, Cheng and Friedman have shown the strongnegative result that no symmetric

reputation system is value-sybilproof [8].

Theorem 1. (Cheng and Friedman) There is no symmetric rank-sybilproof nontrivial reputation

function. Here nontrivial refers to any reputation function that does not return a constant reputation

for all nodes, i.e.,∀i,v fi(G,v) = C for some C∈ R.

Proof. (Sketch) If the reputation system is symmetric, and a malicious nodem is not the highest

ranked agent,m can create a duplicate copy of the trust graph structure using sybil nodes. The two

graphs are connected by nodem. Because the sybil copy graph is symmetric, there is some sybil

nodes that has a higher reputation than nodem; sincem controlss it has successfully increased its

reputation.
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Figure 2.2: (a) Example graphG with four nodes and four edges. Perhaps agent 4 has the highest
reputation (b) On the right, after the sybil manipulation bynode 1, we have a duplicate copy of the
graph starting at the manipulating node 1. By symmetry one ofthese nodes (S4) must have higher
reputation than node 1.

Misreports

Under a misreport manipulation, an agentu may simply lie about its interaction with another agent

v. Reporting a bad interaction about agentv can lowerv’s reputation, and ifu was originally ranked

belowv this can improveu’s relative ranking.

Definition 2.4.3. (Misreport Strategy) Given a trust graphG = (V,E,w), define the setE−v =

{(u,x) : (u,x) ∈ E,u 6= v} (i.e., the set of all edges inG that do not start atv). A misreport strategy

for v ∈ V is a tupleσ = (V,Ev,wv) whereEv = {(v,u) : u ∈ V} andwv : Ev → D. Applying the

strategyσ to G results in a modified trust graphG ↓ σ = G′ = (V,E−v∪Ev,w′) wherew′(e) = w(e)

for all e∈ E−v, andw′(e′) = wv(e′) for all e′ ∈ Ev

Note that the edges in the setEv do not necessarily have to exist in the original graph; it is

allowable for a node to make up an edge. Definition 2.4.3 mandates that all edges and edge weights

not originating from nodev must remain the same in the modified graph. Thus, an agentv can

misreport the weights on any of its outlinks (i.e.,edges originating fromv), but it cannot affect the

reports other agents make about it.
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Whitewashing

Another class of manipulation is the whitewashing attack, in which an agent removes itself from

the reputation system and adds a new node under its control (e.g.,a new account). Because such an

attack is cheap to conduct when dealing with a peer-to-peer network or other computerized system,

a viable reputation system needs some sort of initiation cost for new members. Such an effect has

been analyzed by Resnick and colleagues in their empirical analysis of eBay’s reputation system

[14, 20]; it has also been examined theoretically in work by Feldman and colleagues [13]. However,

modeling this attack requres a model of the dynamics of the system (when do agents enter and exit)

we will not deal with it now.

2.4.1 Strategyproofness

The sybil and misreport manipulations are often studied together; Altman has shown that the asym-

metric shortest-path algorithm, in which the reputation ofan agentu from the perspective of an agent

v∈V is given by the length of the shortest path betweenu,v, is in some sense resistant to these ma-

nipulations [3]. Sheldonet al.demonstrate a manipulation-resistant hitting-time basedapproach to

reputations based on PageRank [23]. I will discuss both these algorithms in detail later.

For the remainder of this thesis, I consider any combinationof sybil and misreport strategies as

possible manipulations of the system. To handle combining these strategies, define the composition

of two manipulations as follows:

Definition 2.4.4. Given manipulationsσ1 andσ2, for any graph G, define the composite manipula-

tion σ = σ1◦σ2 s.t. G ↓ σ = G′ iff ∃G′′ s.t. G ↓ σ2 = G′′ andG′′ ↓ σ1 = G′.

Since each type of manipulation takes a graph as input and returns a modified graph, composing

these two operations is well-defined.

A system that cannot be manipulated is called strategyproof, because an agent cannot earn a

higher utility by applying a manipulation. This is a dominant-strategy equilibrium formulation:

telling the truth must always result in higher utility usingAssumption 1. For now, we follow the

axiomatic approach and assume the utility of an agent to be directly related to the agent’s relative

ranking. This implies that a reputation is strategyproof ifno agent can increase its rank by applying

a manipulation.

Definition 2.4.5. (Rank-strategyproof)A reputation system is rank-strategyproof if given a trust

graphG = (V,E,w), for everyw∈V and for every manipulation strategyσ for nodew s.t. G ↓ σ =
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G′, for all vi ,u∈V, u 6= w,

fi(G,w) < fi(G,u) ⇒ fi(G
′,w) < fi(G

′,u)

This definition states that a reputation system is rank-strategyproof if we cannot increase our

relative ranking by applying a sybil and/or misreport manipultion. If w≺G
i u, then on trust graphG′

we must still havew ≺G′

i u. Rank-strategyproofness turns out to be very difficult to guarantee. A

different strategyproofness concept is based on the absolute repuation score of each agent.

Definition 2.4.6. (Value-strategyproof)A reputation system is value-strategyproof if given a trust

graphG = (V,E,w), for all u∈V and for all manipulation strategiesσ for u s.t. G ↓ σ = G′, for all

vi ∈V, fi(G,u) ≥ fi(G′,u).

Value-strategyproofness guarantees that an agent cannot increase its own reputation in the eyes

of another agent. Why do we introduce this concept? It seems that the relative ranking of an agent

should determine its final utility, especially in settings like web search. However, in other domains

it is often useful in practice to set absolute cutoffs for reputation scores which confer some benefit

to the agent. For example, a peer-to-peer file sharing network might be set up so that all agents with

reputation higher than some cutoffc get to download twice as fast as other agents.

A reputation system may be value-strategyproof but not rank-strategyproof because under a

value-strategyproof system it may still be possible for an agent to reduce the reputation of a higher

reputation agent; this may lower the rank of the higher-reputation agent to below that of the manip-

ulating agent.

However, the reverse is also true: a rank-strategyproof system may not be value-strategyproof. It

may be possible for an agent to increase its reputation score(e.g., fi(G,u) for agentu from agentvi ’s

perspective) under a rank-strategyproof system, so long asthe reputations of higher-ranked agents

increase as well. Thus rank-strategyproofness does not strictly dominate value-strategyproofness

(and vice versa). In most reputation systems studied in the literature, however, rank-strategyproof

reputation systems are also value-strategyproof, so in general rank weakly dominates as an IC con-

cept.

2.4.2 Relaxations

Unfortunately, both value- and rank-strategyproofness are difficult to achieve. It is useful to intro-

duce two relaxations of the value- and rank-strategyproofness concepts that attempt to ensure that
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the final ranking / reputation scores remain “close” to the true ranking / scores (as opposed to en-

suring that scores remain the same). This is done by introducing a parameterε, which determines

exactly how “close” to the true ranking a reputation system must be under any manipulation strategy.

Definition 2.4.7. (ε-value-strategyproof)A reputation system isε-value-strategyproof forε ≥ 0 if

given a trust graphG = (V,E,w), for all u ∈ V and for all manipulation strategiesσ for u giving

G′ = G ↓ σ, for all vi ∈V, fi(G,u)+ ε ≥ fi(G′,u).

This states that under anε-value-strategyproof system an agentu cannot increase its reputation

score by more thanε (as viewed from any other agentvi under any manipulation strategyσ for a trust

graphG). An additive factorε (rather than a multiplicative factor) is appropriate for this relaxation

for the same reason value-strategyproofness is a useful concept: in some domains reputation scores

above a certain fixed threshold might confer some benefits to the agent.

Definition 2.4.8. (ε-rank-strategyproof) A reputation system isε-rank-strategyproof forε ≥ 0

if given a trust graphG = (V,E,w), for all u ∈ V and for all manipulation strategiesσ for u s.t.

G′ = G ↓ σ, for all vi ∈V, w∈V,

fi(G,u)+ ε ≤ fi(G,v) ⇒ fi(G
′,u) ≤ fi(G

′,v)

This states that an agentu whose reputation under trust graphG is not withinε of another agent

v (i.e., it is ranked below agentv underG), then it cannot become ranked higher than agentv after

applying a manipulation under anε-rank-strategyproof system.

These relaxations have some precedent in prior work. Altmanand Tennenholtz [3] quantify

the incentive compatibility of different reputation systems by weakening the rank-strategyproofness

incentive compatibility concept. Because they define strategyproofness solely in terms of the fi-

nal ranking (and not the absolute reputation score) the relaxation they develop,k-worst-case-rank-

strategyproofness, is stated in terms of rank rather than value. Under a reputation system which is

k-worst-case rank-strategyproof, an agent can increase itsranking by at mostk places by executing

a misreport attack. Since this thesis takes into account both sybil and misreport manipulations, the

concept of rank-strategyproofness uses the absolute reputation score rather than the relative ranking.

2.5 Strategyproofness of existing reputation systems

Using the strategyproofness concepts developed in the previous section, this section presents several

different reputation systems, along with a discussion of their incentive-compatibility properties. The
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goal is to exhibit an interesting link between incentive compatibility and the amount of information

in the trust graph used by the reputation system. This is in essence what I want to quantify with my

informativeness metric.

2.5.1 Eigenvector-Based Methods

Eigenvector-based reputation systems can be thought of as random walks on weighted, directed trust

graphsG = (V,E,w), where the edge weightsw(vi ,v j) on edgesei j = (vi ,v j) leaving any vertexvi

have been normalized so that∑n
j=1w(vi ,v j) = 1 - i.e., so that we can treat eachw(vi ,v j) as the

probability of moving from vertexi to vertex j.

This suggests the following random-walk based algorithm:

Definition 2.5.1. (Random-walk-based algorithm)Given a trust graphG = (V,E,w), begin from

a random nodevi ∈V. At each step, with probabilityw(vi ,v j), jump to a random neighborv j of vi .

Such a process can be modeled as a Markov process with transition matrix T = [ei j ], where

0 < i ≤ n, 0< j ≤ n.

The reputation of a given nodev∈V is given by the weight onv in the stationary distribution

π of this process (the distribution satisfyingπ = Tπ). This is given by the principal eigenvector of

the matrixT, and the reputation of a nodev is defined asf (G,v) = (πv,πv, ...,πv), whereπv is the

probability of finding the random walk at nodev in the stationary distribution. Under the random-

walk interpretation of this process, the reputation of a node is the probability the random walk is at

nodev as the number of timestepst → ∞.

The motivation behind this kind of algorithm is simple yet elegant: the reputation of a node or

agent is quickly approximated by the time a web surfer or file-sharer would spend interacting with

the given agent assuming it randomly transitioned (e.g.,clicked links or shared files) with different

neighbors of the current agent.

Two examples of this class of reputation system are PageRank[18] and EigenTrust [15].

PageRank

PageRank was originally developed by Page and Brin [18] to analyze the reputation of hypertext

documents; the nodes of the trust graph represent web pages,while the edges represent hyperlinks

between pages. Because each hyperlink is symmetric, the weight on any given edge from a vertex

u is given byw(u,v) = 1
out-degree(u), where out-degree(u) is the number of edges (hyperlinks) leaving
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u. By definition, this results in∑n
j=1w(vi ,v j) = out-degree(vi)

1
out-degree(vi )

= 1, so the weight vectors

are properly normalized. Under the random-walk interpretation of this algorithm, the random walk

has an equal probability of transitioning to any of the neighbors of a given vertex.

PageRank also introduces a dampening factord: with probability d, at each step the random

walk pauses at its current state. If we let~xk be a vector(p1
k, ..., pn

k) wherepi
k represents the proba-

bility of the random walk being at nodei afterk time steps, we can represent the transition function

for this walk as follows:

~xk = (1−d)T ~xk−1 +d ~xk−1

Finally, if the random walk reaches a node with no outgoing links, PageRank randomly jumps

to another node in the trust graph with uniform probability.

EigenTrust

The EigenTrust algorithm as originally described by Kamvaret al. in [15] is very similar to PageR-

ank in that it involves computing the stationary distribution of a random walk over a trust graph.

However, it uses more complicated edge weights than PageRank: in EigenTrust, the weightw(vi ,v j)

is the difference between the number of positive and negative interactions between individual agents

in a peer-to-peer network. These weights are then normalized so that∑n
j=1w(vi ,v j) = 1. This is in

some sense more appropriate for this setting because it captures more of the available trust infor-

mation: there can be multiple download/upload interactions, not just the existence or absence of a

hyperlink.

EigenTrust does not use a dampening factor in the random walk, but it does use a random jump

factorβ. The difference with PageRank is that EigenTrust jumps backto a random pre-trusted node

rather than to a random node in the network. More formally, let p= (p1, ..., pn), wherepi is the prior

probability of randomly jumping to vertexvi . The global trust vectorx is updated by the following

process:

~xk = (1−β)Txk−1 + βp

whereβ is a suitably chosen probability between 0 and 1.

The motivation for using pre-trusted nodes rather than random nodes is to improve the incentive-

compatibility properties of the algorithm. The authors argue that PageRank is more susceptible to

sybil attack because by creating a large number of sybil nodes a malicious attacker can control where
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the random walk jumps to. However, assuming the existence ofpre-trusted nodes is unsatisfying; it

is unclear where such pre-trusted nodes originate, and how the system guarantees that no malicious

nodes are included.
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Figure 2.3: (a) Given this simple unweighted trust graph, PageRank returns [0.39,0.21,0.40] (b)
After adding a single sybil and cutting his outlink, agent 2 changes the PageRank vector to
[0.11,0.41,0.08,0.39] (c) If agent 2 is allowed to add an arbitrary number of sybils, its PageRank
goes to 0.5 while the PageRank of every other node goes to 0.

Bianchini et al. [7] have shown that the optimal sybil manipulation for a nodev under the

PageRank algorithm is to create sybil nodes in a star formation.

Theorem 2. (Bianchini et al. ) Given any trust graph G, vertices vi ,v j , and for any manipulation

σ resulting in G′ = G ↓ σ,

fi(G
′,v j) ≤ 0.5

Proof. (sketch)For the PageRank reputation system, the optimal manipulation for a given nodeu

is to createN sybils, whereN is as large as possible. Each sybil links to nodeu, andu links to each

of its sybils. Furthermore,u cuts all outlinks to non-sybil nodes.

Any random walk that reaches either nodeu or any of its sybils cannot escape, and hits nodeu

on every other step. Thus, in the limit asN → ∞, the stationary probability ofu approaches 0.5.

If a nodeu has a PageRank greater than 0.5, E[Xt = u] > 0.5 which implies thatP(Xt+1 = u|Xt =

u) > 0, so there must exist a self loop fromu back to itself; however, this is explicitly disallowed by

construction.

Therefore, 0.5 is the optimal PageRank manipulation.

This manipulation extends naturally to analyses of other eigenvector-based algorithms like
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EigenTrust. Figure 2.3 illustrates the sybil attack on the PageRank algorithm: even a single sybil

can greatly improve the reputation of a malicious node.

Thus, PageRank and EigenTrust do not satisfy rank-strategyproofness nor value-strategyproofness;

by applying this manipulation an agent can raise both the absolute reputation and the relative rank

of a given node. In fact, work by Cheng and Friedman [9] has bounded the increase in ranking that

is possible under PageRank given a fixed number of sybils.

2.5.2 Hitting Time Reputation

In 2007, Sheldon and Hopcroft [23] proposed a manipulation-resistant reputation system based on

the hitting time of a random walk over a trust graph. This system, described more formally below,

builds on the PageRank reputation system by creating a ranking which is close to the PageRank

ranking, but is value-strategyproof against sybil attacks. Because it privileges a set of pre-trusted

nodes, this algorithm is asymmetric in nature.

Defining the hitting time algorithm first requires a definition of the hitting time of a nodev

under a kind of random walk on a trust graphG = (V,E,w). Define a starting distributionq; the

starting node is chosen randomly from this distribution. Ateach step, with probabilityα, the random

walk jumps to a node chosen randomly from the starting distributionq. With probability 1−α, the

random walk randomly follows an outgoing edge of the currentnode. Because the parameterα can

vary, I refer to these random walks asα-random walks. More formally,

Definition 2.5.2. let (Xt)t≥0 be the sequence of nodes visited by this walk. ThenP(X0 = v) = q(v)

and

P(Xt = v|Xt−1 = u) =











αq(v)+ 1−α
out−degree(u) if (u,v) ∈ E

αq(v) if (u,v) /∈ E

The definition of anα-random walk is analogous to the model of the random surfer inthe

PageRank algorithm. However, where the PageRank algorithmuses the stationary probability of

the random walk as the reputation of each node, this algorithm focuses on the hitting time of each

node.

Definition 2.5.3. Thehitting timeof a nodev is H(v) = min{t : Xt = v}, E[H(v)] is the expected

number of steps before a givenα-random walk first arrives at nodev.
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Definition 2.5.4. The jump timeof an α-random walk is given byJ a geometric random variable

with parameterα; J should be interpreted as the first time theα-random walk jumps to a node from

the starting distribution instead of randomly following anedge from the current node.

Under the hitting-time based algorithm, the reputation of anodeu∈V from the perspective of

nodev is the probability that a random walk on the trust graph hitsu without randomly jumping.

Definition 2.5.5. Given a trust graphG, the reputation of nodeu from vi ’s perspective isfi(G,u) =

Pr(H(u) < J)

BecauseJ is simply a geometric random variable, the reputation of a node actually correlates

closely with the hitting time of the node. Though this reputation system computes a single global

trust value for each agent, because it uses a predefined trustdistribution q it can still be value-

strategyproof without contradicting Theorem 1.

1

3

2

1

3

2

S

(a) (b)

Figure 2.4: (a) The reputations under the hitting time algorithm for this small graph approximate
PageRank: [0.39,0.21,0.40] (b) Adding sybils does not shorten the hitting time for agent 2 because
the only way to get to the sybil node is to go through agent 2

The star-shaped PageRank manipulation is not effective under the hitting time algorithm. Be-

cause sybils and other manipulations are only allowed to create outlinks from malicious nodes, it is

impossible to shorten the path to nodev. Similarly, agentvcannot decrease its hitting time by adding

additional out-links (either to sybils or to other nodes) because before such outlinks are considered

the random walk must already have arrived atv.



CHAPTER 2. MODELING REPUTATION 30

Note that an agent can still improve its ranking in the systemby reducing the reputation of

other agents. It can do this by removing outlinks to higher-reputation nodes, thus lengthening

the hitting time by forcing random walks to take alternate paths. Thus this does not satisfy rank-

strategyproofness. However, Shelden and Hopcroft are ableto bound the effectiveness of such

manipulations:

Theorem 3. (Sheldon and Hopcroft) Under the hitting time algorithm, node u∈V cannot surpass

a node w∈V that is at least twice as reputable: i.e., given any manipulation σ and any trust graph

G, let G↓ σ = G′. Then for all vi ,

2 fi(G,u) ≤ fi(G,w) ⇒ fi(G
′,u) ≤ fi(G

′,w)

This result is interesting because it ties together value- and rank-strategyproofness. Under the

hitting time reputation system, a node which is twice as reputable as another node (on an absolute,

value-based scale) cannot be surpassed in rank by the lower-valued node. We will use this result

later to show desirable incentive compatibility properties of a hybrid hitting-time / shortest-path

algorithm.

However, the design of this reputation system is troubling because of the initial pretrusted dis-

tribution q. It is unclear how one would find and designate such pre-trusted nodes, and how one

would verify that no pre-trusted node was malicious.

Asymmetric hitting-time based algorithms, which generally do not depend on the existence of

such an initial distribution, have also been defined and studied in the literature [5]. Like in the

symmetric hitting-time mechanism, the reputation of agentu is equal to the probability that certain

α-random walks hit nodeu before jumping. However, under asymmetric hitting-time algorithms,

only random walks which start from nodevi are considered when computingfi(G,u) = Pr(Hi(u) <

J), whereHi(u) = min(t : Xt = u,X0 = vi).

This asymmetric hitting-time algorithm can be shown to be value-strategyproof but not rank

strategyproof; the argument proceeds analogously to the proof for the symmetric hitting-time algo-

rithm.
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2.5.3 Maxflow-based Algorithms

Another family of reputation system which is value-strategyproof is the asymmetric maxflow-based

family studied by Cheng and Friedman [8] and Altmanet al. [4] from an axiomatic incentive-

compatibility perspective. To understand this reputationsystem it is necessary to define what is

meant by the flow through the graph.

Definition 2.5.6. Define a flow f low(vi ,v j) between a sinkvi and a sourcev j in a trust graph

G = (V,E,w) to be a mappingF : E → R satisfying the following properties:

1. for all e∈ E, F(e) ≤ w(e)

2. for anyv ∈ V, let I(v) = {(u,v) ∈ E : u ∈ V} be the set of incoming edges and letO(v) =

{(v,u) ∈ E : u∈V} be the set of outgoing edges. Then∑e∈I(v) F(e) = ∑e∈O(v) F(e).

The first condition is a capacity constraint; it ensures thatthe flow across any edge does not

exceed the capacity of the edge. The second condition is a flowconstraint; the flow entering a vertex

must be equal to the flow leaving a vertex. In order to define what the maximum flow through a

graph is, define the value of a flow as follows:

Definition 2.5.7. Let I(v) = {(u,v) ∈ E : u ∈ V}. The value of a flowf low(vi ,v j) is defined as

∑e∈I(vi ) F(e)

This is exactly the flow leaving the source vertex, and would be equivalent to the flow entering

the sink vertex.

Definition 2.5.8. The maximum flowMF(vi ,v j) is the flow of maximum value betweenvi andv j .

For more information about maximum flow algorithms, see a reference book such as [10].

The maxflow reputation system sets agentv j ’s reputation as viewed from agentvi ∈V to be the

value of the maximum flow fromvi to v j .

Definition 2.5.9. Given a trust graphG and verticesvi ,v j , the maxflow reputation system sets

fi(G,v j) = MF(vi ,v j).

The intuition behind this system is that each trust relationship from agenti to agentj is indicative

of the maximum amount of trust or utility that agenti would lend to agentj; thus, when consid-

ering any path in the trust graph between two agents, the smallest weight (smallest capacity) edge
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Figure 2.5: (a) Under the max-flow system, the reputation of agent 2 from agent 1’s perspective is
1, while the reputation of agent 3 from agent 1’s perspectiveis 2 because of the direct path from 1
to 3 and the indirect path from 1 to 2 to 3. (b) Maxflow is not rank-sybilproof because by removing
the link to agent 3, agent 2 causes the reputation of agent 3 from agent 1’s perspective to drop to 1,
making the agents tied in rank.

determines how much trust the path contributes. Mobiuset al. [17] demonstrate that the maxflow

reputation system falls out naturally when modeling a borrowing game on a social network.

This algorithm is value-strategyproof. To see this, consider a trust graphG = (V,E,w), and

arbitrary agentsvi ,v j ∈ V. The reputation ofv j from vi ’s perspective isfi(G,v j) = MF(vi ,v j).

Playing a sybil strategy cannot increase the maximum flow betweenvi ,v j (and thus cannot increase

the reputation of agentv j ) because no links can be added to the sybil nodes from nodes already

in the trust graph, and so no additional flow can be sent through the sybils. Also,v j misreporting

its outlinks cannot increase the maximum flow, because any flow crossing an edge leavingv j must

already have enteredv j .

However, the maxflow algorithm is not rank-strategyproof: it is possible for an agenti to remove

an outlink to an agentj with higher reputation. This potentially lowers the reputation of agent j,

increasing the relative ranking of agenti. A simple example of this manipulation can be found in

Figure 2.5.
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2.5.4 Shortest-Path Algorithms

Finally, the asymmetric shortest-path algorithm, described in detail by Altman [4], deserves mention

as both the simplest and the most manipulation-resistant reputation system. Given a trust graphG,

let SP(vi ,v j) denote the length of the shortest path between agentsvi andv j . In the unweighted

edges setting, this is simply the number of hops betweenvi andv j on graphG.

Definition 2.5.10. For a given trust graphG, the asymmetric shortest-path algorithm sets agentv j ’s

reputation as viewed from agentvi ∈V to be fi(G,v j) = 1
SP(vi ,vj )

.

Intuitively, we should trust an agent which is 5 steps away less than an agent we have a direct

trust relationship with.

The difference between our definition and the definition of the shortest-path reputation system

due to Altman is that Altman never defines the reputation score for an agent, instead working directly

with the relative rankings of the agents. Under his definition of the shortest-path system,

SP(vi ,u) < SP(vi ,v) ⇔ u≺G
i v

It is simple to verify that the function we have chosen forfi(G,v j) satisfies the above property.

1

3

2

3

Figure 2.6: The reputations of agents 2 and 3 from agent 1’s perspective are 1/2 and 1, respectively.
Agent 2 can do nothing to increase his reputation by adding outlinks, because by the time the
shortest path algorithm considers outlinks from agent 2 it must already have arrived at agent 2.

This algorithm is rank-strategyproof in addition to being value-strategyproof. It is value-strategyproof

because an agentj cannot change the shortest path from agenti to j by either creating sybils or mis-

reporting outlinks; the path must already have arrived at agent j before it can include outlinks or
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Reputation Sys-
tem

Directed? D Symmetric?
Incentive

Compatibility

EigenTrust directed [0,1] symmetric no

PageRank directed {0,1} symmetric no

Hitting Time directed {0,1} both value-strategyproof

Max-flow both {0,...,C} asymmetric value-strategyproof

Shortest Path both {0,1} asymmetric
value and rank strate-
gyproof

Table 2.2: This table summarizes the properties of the different reputation systems we have dis-
cussed in this chapter. Directed? refers to the use of directed vs. undirected edges;D is the set
from which edge weights are drawn. As we move from top to bottom, we tend to find asymmetric
reputation systems with better incentive-compatibility properties.

edges to sybils.

By misreporting edges, an agentj can potentially decrease the reputation of other agents. How-

ever, if the shortest path from agenti to agentk goes through agentj, then the reputation of agent

k must be strictly less than the reputation of agentj (the length of the shortest path is at least 1

greater). Thus, agentj cannot decrease the reputation of any agents which are higher in rank, and

so cannot improve its reputation score. See Figure 2.6 for a simple example.

2.5.5 Summary

Table 2.5.5 summarizes the setup and approaches used for analyzing each of the reputation sys-

tems discussed thus far, as well as the incentive compatibility properties. As we move from top to

bottom, we tend to find asymmetric reputation systems with good incentive compatibility proper-

ties. However, we also move from algorithms which potentially use every edge in the trust graph

to algorithms which use very few edges (shortest-path). This trend gives motivates our definition of

informativeness: how much information does the reputationsystem make use of?

2.6 Informativeness

We wish to find a metric which tells us how accurately our reputation system predicts true types

θi . This measure is useful because the more information our reputation system takes into account,

the better the predicted reputation scores, which results in better decisions and higher utilities for



CHAPTER 2. MODELING REPUTATION 35

P a g e R a n k  /  E i g e n T r u s t

H i t t i n g  T i m e

M a x  F l o w

S h o r t e s t  P a t h

I n f o r m a t i v e n e s s
I n c e n t i v e  C o m p a t i b i l i t y

v a l u e - s t r a t e g y p r o o f

r a n k - s t r a t e g y p r o o f

Figure 2.7: This summarizes the tradeoffs between informativeness and incentive compatibility. In-
centive compatibility properties get better as we go from top to bottom: the shortest-path algorithm
has the best incentive-compatibility properties. On the other hand, as we go from bottom to top the
reputation systems take into account more information about the structure of the graph.

the users. Thus, our new informativeness metric may act as proxy for approximating economic

efficiency, which is still our overriding standard when it comes to evaluating reputation systems.

The intuition for this metric comes from the observation that the shortest-path based reputation

system ignores most of the information contained in the trust graph. Two agents that are a distance

2 away from a given nodev have the same reputation, even if one agent is connected to all other

agents that are a distance 1 away fromv, while the other agent is connected to just 1 other agent a

distance 1 away fromv. As we move from the shortest-path system to the maxflow system and then

the eigenvector-based systems, we take into account more and more of the trust graph information.

This is desirable because trust information is being propagated more quickly across the network,

leading to fewer instances of abuse. But as more of the trust graph is taken into account, incentive

compatibility properties are lost. As shown in Figure 2.7, the shortest-path system is in some sense

the “most” incentive-compatible (rank-strategyproof). Maxflow algorithms are value-strategyproof,

while hitting time algorithms are merely “resistant” to manipulation.

Unfortunately, like economic efficiency, informativenessis a difficult metric to formalize; we

choose to deal with it in an empirical fashion through simulation of a real problem domain. How-

ever, our metric is still general enough to allow multiple existing reputation systems to be compared

on the same scale.

Definition 2.6.1. (Informativeness)Given a trust graphG, a set of agents{v1, ...,vn} with types
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{θ1, ...,θn}, define the informativeness of a reputation systemM asI = ∑n
i=1∑n

j=1( fi(G,v j)−θ j)
2

Since each agent in the system is given a type which determines the probability of malicious

behavior, the measure of a reputation system’s informativeness is the squared error between an

agent’s real type and its predicted reputation score.
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Hybrid Reputation Systems

This chapter presents the novel theoretical contributionsof this work. The first idea is a way of

combining two different reputation systems into a hybrid reputation system. I then demonstrate

several incentive-compatibility properties of the resulting systems.

Since there are reputation systems like PageRank which are informative and economically effi-

cient but possess poor incentive-compatibility properties, and reputation systems like maxflow with

poor informativeness and efficiency properties but good incentive-compatibility, a natural thing to

do is to take a convex combination of an agent’s reputation score under different reputation systems.

3.1 Theoretical Properties of Hybrid Reputation Systems

Definition 3.1.1. The α-hybrid of two reputation systemsM1 and M2 is defined as a reputation

systemMα(M1,M2): given a trust graphG = (V,E,w), let f 1
i (G,v j) denote the reputation of node

v j ∈V from vi ∈V ’s perspective under reputation systemM1, and let f 2
i (G,v j) be similarly defined

for M2. The reputation ofv j from vi ’s perspective underMα(M1,M2) is given by

f α
i (G,w) = α f 1

i (G,v j)+ (1−α) f 2
i (G,v j)

There are a few issues related to normalization when combining absolute reputation scores in

this way. Most of our reputation systems (e.g.,PageRank) output reputation scores in the range

[0,1], but maxflow could output flows in the range[0,10], [0,1000], etc. Combining maxflow with

another reputation system in a naive way clearly biases the resulting hybrid.

However, the raw reputation scores are meaningless; a maximum flow of 50 on one trust graph

cannot be compared to a maximum flow of 1000 on another graph. Only the relative ranking

37
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amongst agents is significant. Thus, we are free to normalizethe output of the maxflow algorithm

to fall in [0,1]. If we let M denote the maximum capacity of any edge, and|E| denote the number

of edges, the maximum flow between any pair of vertices is bounded above byM|E|. Whenever we

use the maxflow reputation system in a hybrid system, we can normalize the output of maxflow to

lie between[0,1] by divide the raw reputation scores output byM|E|.

3.2 Theoretical bounds

There are a few simple bounds on the incentive compatibilityproperties of certain hybrid reputation

systems that can be rigorously demonstrated. These bounds can be more sophisticated the more that

is known about the reputation systemsM1 andM2.

3.2.1 General properties

It is reasonable to expect certain properties to follow directly if M1 andM2 possess the same strat-

egyproofness properties ;i.e., , if M1 and M2 are both value-strategyproof we expectMα to be

value-strategyproof as well.

Lemma 4. If M1 and M2 are value-strategyproof on all trust graphs G, then Mα is value-strategyproof

on all graphs G.

Proof. This follows from the value strategyproofness ofM1, M2. For given nodesvi ,v j , under any

manipulationG′, neither the contributions from the first nor the second component of f α
i (G′,v) =

α f 1
i (G,v j)+ (1−α) f 2

i (G,v j) can increase the reputation score ofv.

However, the analogous lemma does not hold for rank-strategyproofness. The proof (by coun-

terexample) provides intuition for an additional condition that is needed.

Lemma 5. If M1 and M2 are rank-strategyproof on all trust graphs G, then Mα is not necessarily

rank-strategyproof on all graphs G.

Proof. By counterexample.

Assume a trust graphG with two agents, 1 and 2. There is a link from agent 1 to agent 2.

Reputation systemM1 assigns a reputation of 1 to agent 2 and a reputation of 0 to agent 1 (and

all other agents). This is trivially rank-strategyproof.



CHAPTER 3. HYBRID REPUTATION SYSTEMS 39

1

2

0 . 5 * 0 + 0 . 5 * 1 . 5 = 0 . 7 5

0 . 5 * 1 + 0 . 5 * 1 = 1 . 0 0
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N o d e  2 ’ s  R e p u t a t i o n :

(a) (b)

Figure 3.1: counterexample for Lemma (5). (a) On the left, wehave the normal reputation values
underM1, M2. Note that agent 2 has a repuatation lower than that of agent 1underM2. (b) On the
right, agent 1 has cut the link, and so agent 2’s reputation score contribution fromM2 drops to 0.

Reputation systemM2 assigns a reputation of 1.5 to agent 1, and assigns reputation 1 to agent 2

if an edge exists from agent 1 to agent 2 and reputation 0 otherwise. This is still rank-strategyproof

because agent 1 has no agents ranked higher than it, and agent2 cannot affect the final ranking.

Now, for α = 0.5, agent 1 has reputation 0.75 while agent 2 has reputation 1. If agent 1 removes

the link to agent 2, then agent 2’s reputation is lowered to 0.5, and agent 1 becomes ranked higher

than agent 2. See Figure 3.1

This counterexample is possible because there is a failure of monotonicity betweenM1 andM2:

because the relative rankings of agent 1 and 2 are different underM1 andM2, lowering the reputation

of a lower-ranked agent can cause rankings to flip under the compositeMα. So, if it is known that

the relative ranking underM1 is the same as the relative ranking underM2, then the theorem about

rank-strategyproofness theorem does hold.

Lemma 6. If M1 and M2 are rank-strategyproof on all trust graphs G, and for all vi ,v j ,vk f 1
i (G,v j)<

f 1
i (G,vk) ⇔ f 2

i (G,v j) < f 2
i (G,vk), then Mα is rank-strategyproof on all graphs G.

Proof. Given any trust graphG and any agentvi, consider two agentsu,w. WLOG assume that

underMα u≺i w.

If we had thatf 1
i (G,u) > f 1

i (G,w), by the monotonicity conditionf 2
i (G,u) > f 2

i (G,w). Taking
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convex combinations of these, we have

α f 1
i (G,u)+ (1−α) f 2

i (G,u) > α f 1
i (G,w)+ (1−α) f 2

i (G,w)

and thenu�i u, a contradiction.

Therefore, bothf 1
i (G,u) < f 1

i (G,w) ⇔ u≺1
i w and f 2

i (G,u) < f 2
i (G,w) ⇔ u≺2

i w. Since both

M1 andM2 are rank-strategyproof, under any manipulationσ s.t. G′ = G ↓ σ we must still have

f 1
i (G′,u) < f 1

i (G′,w) and f 2
i (G′,u) < f 2

i (G′,w), so under the hybrid system

α f 1
i (G,u)+ (1−α) f 2

i (G,u) < α f 1
i (G,w)+ (1−α) f 2

i (G,w)

and we haveu≺i w as desired.

Finally, if M1 is rank-strategyproof whileM2 is not, it should not be surprising thatMα is not

necessarily rank-strategyproof.

Lemma 7. If M1 is rank-strategyproof but M2 is not rank-strategyproof on all trust graphs G=

(V,E), then Mα is not necessarily rank-strategyproof.

Proof. This follows from the fact thatM2 is not rank-strategyproof: letM1 be the trivial reputation

system that assigns a score of 0 to all agents. The reputations of two agentsi, j are now entirely

determined byM2, and sinceM2 is not rank-strategyproofMα cannot be strategyproof.

A similar lemma holds for value-strategyproofness:

Lemma 8. If M1 is value-strategyproof but M2 is not value-strategyproof on all trust graphs G=

(V,E), then Mα is not necessarily value-strategyproof.

Proof. Similar to the above lemma.

Finally, the equivalent lemmas exist for theε-rank andε-value-strategyproof concepts from

Chapter 2.

Lemma 9. If M1 is ε1-value-strategyproof and M2 is ε2-value-strategyproof on all trust graphs

G = (V,E), then ifε = ε1 + ε2 Mα is ε-value-strategyproof.
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Proof. This follows from theεi-value-strategyproofness ofM1, M2. For given nodesvi ,v j , under

any manipulationG′, we have

f 1
i (G,v j)+ ε1 ≤ f 1

i (G′,v j)

f 2
i (G,v j)+ ε2 ≤ f 2

i (G′,v j)

⇒ α f 1
i (G,v j)+ αε1 +(1−α) f 2

i (G,v j)+ (1−α)ε2 ≤ α f 1
i (G′,v j)+ (1−α) f 2

i (G′,v j)

f α
i (G,v j)+ αε1+(1−α)ε2 ≤ f α

i (G′,v j)

Sinceα is at least 0 and at most 1, the constant term is bounded byε1 + ε2, so this isε-value-

strategyproof.

Lemma 10. If M1 is ε1-rank-strategyproof and M2 is ε2-rank-strategyproof on all trust graphs

G = (V,E), then Mα is not necessarilyε-rank-strategyproof ifε = ε1 + ε2.

Proof. Setε1,ε2=0 and apply Lemma 5

Lemma 11. If M1 is ε1-rank-strategyproof and M2 is ε2-rank-strategyproof on all trust graphs

G = (V,E), if ε = ε1 + ε2, and the following monotonicity condition holds

∀vi,v j ,vk, f 1
i (G,v j) < f 1

i (G,vk) ⇔ f 2
i (G,v j) < f 2

i (G,vk)

then Mα is ε-rank-strategyproof

Proof. This proof proceeds similarly to Lemma 9

The last few lemmas are interesting because they allow us to chain hybrid reputation systems

together; our hybrid algorithms generally end up with a relaxed strategyproofness formulation, so

this lets us combine twoε-value strategyproof hybrids.

We can now pick any two existing reputation systems (provided they are normalized to out-

put reputation scores in the range[0,1]) and combine them using theα-hybrid technique outlined

in Definition 3.1.1. There are however two reputation systemhybrids that illustrate interesting

incentive-compatibility properties and deserve special analysis: first, the PageRank/normalized

maxflow hybrid reputation system isε-value-strategyproof; second, the hitting-time/shortest-path

hybrid reputation system isε-rank-strategyproof.
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3.2.2 Theoretical Properties of the PageRank/Maxflow Hybrid Reputation System

Let MPageRankbe the PageRank reputation system, and letMmaxflow be the maxflow reputation sys-

tem. LetMα(MPageRank,Mmaxflow) be theα-hybrid of MPageRank,Mmaxflow. MPageRankis neither rank-

nor value-strategyproof, whileMmax-flow is value-strategyproof but not rank-strategyproof.

By immediate application of Lemma 4 above,Mα is not necessarily value-strategyproof. How-

ever, using specific information about PageRank and max-flow, it can be shown that the relaxed

form of value-strategyproofness applies toMα(MPageRank,Mmaxflow).

Theorem 12.Mα(MPageRank,Mmaxflow) is 0.5α-value-strategyproof on all trust graphs G= (V,E,w).

Proof. SinceMmaxflow is value-strategyproof, an agentu cannot improve its reputation score from

agentvi ’s perspective in the contribution fromMmaxflow under any manipulationσ. If we let G′ =

G ↓ σ,

(1−α) f maxflow
i (G′,u) ≤ (1−α) f maxflow

i (G,u)

.

By Theorem 2, the optimal manipulation forMPageRankcannot increase the reputation score

of any agentu above 0.5 (this involves creating an infinite number of sybils linking back to the

manipulating node). For any such nodeu, the increase in reputation contributed byMPageRankto the

final reputation under manipulationσ yielding G′ = G ↓ σ is

α f PageRank
i (G′,u)−α f PageRank

i (G,u) ≤ α(0.5−0) = 0.5α

Rearranging and summing these equations yields

α f PageRank
i (G,u)+ (1−α) f maxflow

i (G,u)+0.5α ≥ α f PageRank
i (G′,u)+ (1−α) f maxflow

i (G′,u)

fi(G,u)+0.5α ≥ fi(G
′,u)

which is the definition of 0.5α-value-strategyproof

This is the type of relationship that was expected: by quantifying the incentive compatibility

tradeoff as a function ofα, it is possible to gradually improve the incentive-compatibility properties

of this reputation system by decreasingα. If it can be shown that informativeness increases asα

increases, there may exist an optimal value ofα which trades off the “right amount” of incentive

compatibility for informativeness.
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3.3 Theoretical Properties of the Hitting-Time/Shortest-Path Hybrid

Reputation System

The previous hybrid reputation system demonstrated how value-strategyproofness can be quanti-

fied. It is also possible to create a hybrid reputation systemwith rank-strategyproofness properties.

Let Mhitting be the hitting-time based reputation system, and letMshortestbe the shortest-path based

reputation system. LetMα(Mhitting,Mshortest) be theα-hybrid of Mhitting,Mshortest. Mshortestis rank-

and value-strategyproof, but intuitively appears to use the least information about the trust graph.

Mhitting is in some sense as informative as PageRank, but retains value-strategyproofness. Thus, it is

reasonable to expectMα might have better incentive-compatibility properties than Mhitting and better

informativeness and efficiency thanMshortest.

By immediate application of Lemma 4 and Lemma 7,Mα is value-strategyproof but not nec-

essarily rank-strategyproof. But, like the PageRank-maxflow hybrid, an additional result can be

shown using the relaxed form of rank-strategyproofness.

Theorem 13. Mα(Mhitting,Mshortest) is α-rank-strategyproof on all trust graphs G= (V,E,w).

Proof. Given a trust graphG, an agentu’s reputation from agentvi ’s perspective underMα has two

components:

fi(G,u) = α f hitting
i (G,u)+ (1−α) f shortest

i (G,u)

SinceMshortest is rank-strategyproof and value-strategyproof, for any agent v and under any

manipulationσ yielding G′ = G ↓ σ,

f shortest
i (G,u) ≤ f shortest

i (G,v) ⇒ f shortest
i (G′,u) ≤ f shortest

i (G′,v) (3.1)

For the hitting time componnet of the reputation, by Theorem3, under any manipulationσ

yielding G′ = G ↓ σ, agentu cannot surpass an agentw whose reputation is twice that of agentu.

More formally,

2 f hitting
i (G,u) ≤ f hitting

i (G,w) ⇒ f hitting
i (G′,u) ≤ f hitting

i (G′,w)

Multiply the above relation byα to get:

2α f hitting
i (G,u) ≤ α f hitting

i (G,w) ⇒ α f hitting
i (G′,u) ≤ α f hitting

i (G′,w) (3.2)
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Next, multiply equation (3.1) by(1−α) to get

(1−α) f shortest
i (G,u)≤ (1−α) f shortest

i (G,v)⇒ (1−α) f shortest
i (G′,u)≤ (1−α) f shortest

i (G′,v) (3.3)

Finally, we sum equations (3.2) and (3.3) to get:

2α f hitting
i (G,u)+ (1−α) f shortest

i (G,u) ≤ α f hitting
i (G,w)+ (1−α) f shortest

i (G,w)

⇒ α f hitting
i (G′,u)+ (1−α) f shortest

i (G′,u) ≤ α f hitting
i (G′,w)+ (1−α) f shortest

i (G′,w)

or alternatively,

α f hitting
i (G,u)+ f α

i (G,u) ≤ f α
i (G,w)

⇒ f α
i (G′,u) ≤ f α

i (G′,w)

Since hitting time reputation is a probability on a random graph, for anyG fhitting
i (G,u) ≤ 1.

Plugging this into the above equation yields the relation

α+ f α
i (G,u) ≤ f α

i (G,w) ⇒ f α
i (G′,u) ≤ f α

i (G′,w)

which is exactly the definition ofα-rank-strategyproofness.

Again, this relationship allows incentive compatibility of the Mα reputation system to be ad-

justed. Depending on the informativeness properties of this algorithm under different values ofα,

there may exist an optimal tradeoff between incentive-compatibility and informativeness.
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Experimental Results

Next, we empirically analyze the informativeness and economic efficiency properties of the shortest-

path / hitting time hybrid reputation system in the problem domain of peer-to-peer file sharing. Our

goal is to show that the informativeness metric is closely related to the economic efficiency of the

system.

4.1 Experimental Setup

Following the model of the Eigentrust paper [15], for the simulations we created a model of a file-

sharing system with a collection of well-behaved agents (which always exchange authentic files)

and a collection of malicious agents which share inauthentic files with some probability.

We model this by initializing each agent with a typep, which determines the probability of

sharing inauthentic files. Well-behaved agents havep = 1, while malicious agents were initialized

with some probability of sharing inauthentic filesp ∈ [0,1]. The profile of malicious agents is

generated once for each set of test parameters and shared across different initial graph topologies.

This serves to reduce noise. Information on the structure ofthe network is drawn from real-world

studies of such networks and will be discussed in the next section [22, 16].

4.1.1 Graph Topology

Real peer-to-peer networks display a power-law degree distribution with a few highly connected

nodes and many poorly-connected nodes [22]. To create a realistic model of the structure of a

peer-to-peer graph, I used the preferential attachment model (see [16]) to construct graphs that obey

45
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power-law-like degree distributions. Starting with a pairof nodes that are connected to one another,

new nodes are incrementally added. Each new node is connected to exactly one of the old nodes.

The exact node it is connected to is randomly chosen, where the probability of choosing a given

nodev is equal to the indegree ofv divided by the number of edges in the graph. This makes it more

likely for nodes with large numbers of edges to become more highly connected.

This graph defines the initial topology of the network. As thesimulation progresses, and as

agents interact with one another, the degree distribution of the graph will change. This process is

dependent on the decision framework used by the individual agents.

4.1.2 Decision Framework

At each time step, with constant probability, an agenti chooses to download a file. A random set of

responding agentsK is chosen from the set of all agents. Agenti then calculates the trust value of

each agent inK using the reputation system being tested.

We initially tested two different rules for determining whether an interaction takes place. The

first rule is the deterministicδ-greedy rule (δ = 0.1). Under this rule, an agent chooses to download

from a random responding agentj with probability δ. This helps agents discover new connections

on the trust graph. With probability 1−δ, the agent downloads from the highest-reputation agentj

that responds (note that the reputations all lie in[0,1]).

The second rule is the reputation-weighted-random decision rule. Under this rule, the proba-

bility of interacting with any of the responding agents is weighted by its current reputation score.

Agents which have not been interacted with previously are given a default probability of 0.10, after

which the probabilities are normalized. Agents with higherreputation are more likely to be chosen

for download.

Preliminary tests of the dynamics of this indicated that theδ-greedy update rule more appro-

priately maintained the structure of the peer-to-peer network, so all simulations were run with the

δ-greedy rule. Appendix A has a brief word about the preliminary testing.

If agent i chooses to interact, and agentj is malicious, agentj sends an inauthentic file with

probability p j .

Following the interaction, agenti applies an update rule to the trust graph. If a malicious file

was sent from agentj, agenti severs its link entirely with agentj if one exists. If a good file was

sent, agenti creates a link toj if one did not already exist (i.e., if this occured through random

exploration). This grim trigger update rule is severe and leads to fast isolation of malicious nodes.



CHAPTER 4. EXPERIMENTAL RESULTS 47

4.2 Measurements: efficiency and informativeness

The measure of economic efficiency falls out naturally in thefile-sharing domain: use the ratio of the

number of authentic files versus inauthentic files exchangedover the network. This is appropriate

as a measure of general social welfare because it aligns withthe purpose of the filesharing network

– allow users to transfer files quickly.

For informativeness, agent types are determined by the probability p of sending a malicious file.

For each reputation system, the final reputations of each agent are normalized so that the agent with

the highest reputation has a reputation of 1. This ensures that the range of the reputation system

coincides with the possible agent types. The informativeness metric is the mean squared error

between the reputation score for each agent and the type of each agent (more precisely, since the

reputation system is asymmetric, I compare the reputation score for each agent from the perspective

of every other agent against the true type).

4.3 Experimental Results

These tests were run on a system with 50 agents for 100 timesteps. We varied both the weighting

factor of theα-hybrid reputation systemα∈ {0.0,0.1, ...,1.0} as well as the proportion of malicious

agentsβ = {5%,10%,20%,40%}. Because of the stochastic nature of the simulations 10 trials were

run at each combination ofα andβ and the data averaged across these trials. To further reducenoise,

ten different random initial graph topologies were generated under each graph generation method

and reused.

For each trial the data gathered includes the efficiency in terms of authentic files transferred as

well as the informativeness, calculated according to Definition 2.6.1 as the mean-squared-error be-

tween actual types and reputation score. The following results show MSE and authentic/inauthentic

ratio for different proportions of well-behaved vs. malicious agents and different values ofα. α = 0

corresponds to the pure shortest-path algorithm, whileα = 1 corresponds to the pure hitting time

algorithm. These tests were all run using graphs generated with a preferential attachment model,

using theδ-greedy decision rule and grim-trigger update rule.

Figure 4.1 (a) shows an interesting trend. The mean square error starts out high under the

shortest-path reputation system and drops as it moves towards the hitting-time algorithm (Note:

since mean squared error is being graphed, the lower the error the more informative the algorithm
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(a) (b)

Figure 4.1: (a) Mean squared error (informativeness) afterrunning the simulation for different val-
ues ofα (b) Number of authentic files (measure of efficiency) transferred over the course of the
simulation. Standard error bars are plotted.

is). This is the expected result; since the hitting-time reputation system takes more information

about the trust graph into account than the shortest-path system, we expect to see informativeness

increase asα increases and more weight is put on hitting time.

It is also interesting that informativeness appears to be maximized somewhere in between the

pure hitting time and pure shortest-path algorithms, withα = 0.9, but this pattern falls within stan-

dard error. One possibility direction for future work is investigating whether the optimal informa-

tiveness does indeed occur somewhere betweenα = 0 andα = 1.

There is a similar pattern in the efficiency ratings of the different algorithms: both the hitting

time and shortest-path algorithm perform worse than the hybridization of the two when the propor-

tion of malicious agents is sufficiently large (i.e.,whenr = 0.2 or r = 0.4).

This is a promising result: as informativeness rises, so does the economic efficiency of the

reputation system. However, since efficiency is always relatively high, the trend is not entirely

compelling.

The data for the graphs generated under theGn,p model is shown in Figure 4.2. These tests

also used theδ-greedy decision rule and grim-trigger update rule. Thoughthe data is noisier, the

same general trends apply: asα increases, and as informativeness increases, we see an increase in

efficiency as well.



CHAPTER 4. EXPERIMENTAL RESULTS 49

(a) (b)

Figure 4.2: (a) Mean squared error (informativeness) afterrunning the simulation for different val-
ues ofα (b) Number of authentic files (measure of efficiency) transferred over the course of the
simulation.

4.3.1 Quiescence Tests

The first few timesteps of any simulation are generally chaotic as the reputation system slowly

converges towards the true reputations of each agent – this introduces noise into the final data.

Instead, in general the metric is least noisy when evaluatedon the steady-state behavior of any

given reputation system.

To this end, we developed the following empirical criterionto determine when a reputation sys-

tem has reached steady-state (quiescence): for each agentv andw, compare the change in reputation

of agentv from agentw’s perspective against a fixed threshold (δ = 0.1). If the change exceeds this

threshold, count it as an absolute change. Finally, computethe average number of changes from one

round to the next. When this dips below another threshold(δ = 0.005), we assume the system has

reached a steady-state.

From the steady-state, the simulation is then run for a specified number of time-steps. The

following simulations were run with 50 agents for 50 timesteps after quiescence. Each trial consisted

of 5 separate and independent runs.

The general trends under the quiescence tests closely mirror the results from the standard simu-

lation. These results are included primarly because the standard error (plotted as the standard error

bars) is considerably lower in both the informativeness andefficiency measurements. This gives
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(a) (b)

Figure 4.3: (a) Mean squared error (informativeness) afterrunning the simulation as a function ofα
(b) Number of authentic files (measure of efficiency) transferred over the course of the simulation.

confidence that the trends observed in Figure 4.3 are not a by-product of the randomness of the

process.

4.4 Informativeness metric evaluation

The informativeness metric I developed appears to effectively mirror the economic efficiency met-

ric. As informativeness increases, the general trend is forefficiency to increase as well. Though

more simulation is necessary for this to be convincing, the fact that this result is robust under the

quiescence test and under different initial graph topologies is highly suggestive.

As a side note, the informativeness metric is effective at separating the relatively uninformative

shortest-path reputation system from the hitting time reputation; the informativeness rises sharply

as we increaseα to bias towards hitting time.

4.5 Hybridization evaluation

The Mα construct is able to deliver different levels of informativeness in exchange for sacrificing

incentive compatibility. The results suggest that a locally optimal reputation system configuration

exists somewhere between our two chosen reputation systems. Interesting questions for future work
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include testing different hybrid algorithms to see if we also find locally optimal performance be-

tweenα = 0 andα = 1.

This provides validation for the empirical approach: my formulation allows for quantitative

predictions. Starting with a reputation system with known properties, it is possible to trade off

incentive compatibility in return for informativeness, and by extension economic efficiency. This

suggests interesting potential applications for this method in designing custom reputation systems.

By creating and tuning aα-hybrid, we can creating a novel reputation system which is tuned for a

particular context.



Chapter 5

Conclusions

5.1 Summary

The overarching concern of a reputation system is to provideusers with information that allow for

good decisions,i.e.,economic efficiency. In order to do this, a reputation systemmust be both in-

centive compatible (IC) and informative. Incentive compatibility ensures that wasteful optimization

and manipulation of the reputation system does not occur, while informativeness ensures that each

agent has accurate information to make its decision. In Chapter 1, we discussed past work in this

field which tended to focus on one of these reputation system properties over the other,i.e., focus-

ing either on proving formal incentive compatibility properties or on evaluating the performance of

individual reputation systems.

One primary contribution of this thesis was recognizing thetension between incentive compat-

ibility and economic efficiency, two desirable reputation system properties. As reputation systems

move towards stronger IC, they tend to become less efficient.This trend motivated the definition

of a range of different incentive-compatibility concepts,including value-strategyproofness, rank-

strategyproofness, and the novelε-rank andε-value-strategyproof relaxations, in order to better

characterize this inherent tradeoff. Reputation systems like shortest paths and maxflow satisfying

rank- or value-strategyproofness performed poorly in simulation against reputation systems with no

IC guarantees. This pattern was revealed only after analyzing both the IC properties and the empiri-

cal performance of a wide variety of existing reputation systems, including shortest-paths, maxflow,

hitting time, and eigenvector algorithms.

In order to investigate the nature of the aforementioned tension, we developed a method for
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trading off the incentive compatibility properties of a reputation system against informativeness and

efficiency properties. Theα-hybridization technique discussed in Chapter 3 allows forthe creation

of new reputation systems by taking a convex combination of two different reputation systems. If

chosen carefully, by adjusting the weighting parameterα it is possible to tuned for informativeness

or IC. Following the model of Altman and others [4, 3, 24], we theoretically characterize the IC

properties of our hybrid construct.

The next major contribution was the development of an informativeness metric for reputation

systems which was empirically shown to correlate well with the economic efficiency of the reputa-

tion system. The intuition behind this is reasonable; reputation systems that use more trust graph

information to generate their reputation scores generallyencode more information about the trust

graph; this additional information gives the agents in the system a better chance of making socially

beneficial decisions. And because reputation systems are used in so many different contexts, it

is difficult to develop economic efficiency metrics which aregeneralizable or even tractable. The

informativeness metric is simple in concept and enables useful comparisons among many existing

reputation systems.

Our experiments under a peer-to-peer file-sharing domain served to validate the informativeness

metric as both practically usable and as a good proxy for efficiency. Using reasonably faithful

models of real peer-to-peer systems, we showed that both theinformativeness and the efficiency of

the hitting-time/shortest-path hybrid increase dramatically as we change the weighting factorα to

emphasize the hitting-time reputation system. This resultremains robust under changes in the initial

graph topology and under steady-state quiescence testing.

5.2 A Recommendation System Application

Peer-to-peer networks benefit generally from the application of reputation systems; these benefits

are somewhat tangential to the primary contributions of this thesis –i.e.,ways of measuring infor-

mativeness and ways of constructing informative reputation systems. Recommendation systems,

however, offer a compelling application domain for this work.

Reputation systems in online systems are often accompaniedby systems for making person-

alized recommendations to end users. Systems like Amazon’sbook-recommendation service or

NetFlix’s movie-rental service suggest new products that shoppers may enjoy based on their past

history of purchases. Because online retailers have information on the purchasing patterns of so
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many different buyers, they can make well-informed suggestions that customers are willing to in-

vestigate. There is real financial incentive to construct these systems properly; recommendations

can uncover material that customers are willing to pay for but did not know existed.

While much of the existing literature on recommendation systems is based on collaborative fil-

tering techniques, work by Andersen, Chayeset al. [5] has investigated building a recommendation

system on top of an existing trust graph, leveraging the information contained in social relation-

ships. Following Andersen’s model, avoting networkis built on top of an existing trust graph by

annotating a subset of nodes with “votes” (either+ or −).

Definition 5.2.1. (Voting Network)A voting network is a directed, annotated graphG= (N,V+,V−,E)

whereN is a set of nodes,V+,V− ⊆ N are disjoint subsets of positive and negative voters, and

E ⊆ N×N is a set of edges. LetV = V+ ∪V− denote the set of voters, and letV ′ = N V denote the

set of nonvoters.

Definition 5.2.2. (Recommendation system)Given a voting networkG and a specific nonvoter

s∈V ′, a recommendation system outputs a recommendationR(G,s) ∈ {−,0,+}.

The authors state and prove axioms characterizing several different recommendation system al-

gorithms. However, under the above formulation, I will demonstrate that a recommendation system

problem can be reduced to a standard reputation system problem.

Definition 5.2.3. (Recommendation-reputation reduction)Given a voting networkG= (N,V+,V−,E),

define its reputation-reduction trust graphG′ = (N∪{−,+},E∪ET,w) wheree= (n,−) ∈ ET iff

n∈V+, ande= (n,+) ∈ ET iff n∈V−. The weight functionw(e) = 1 for e∈ E∪ET.

In other words, a new good-node is inserted in the trust graphfor each alternative. For each

voter v ∈ V that voted for a particular alternativea an edge(v,a) ∈ ET is created. Once we have

our trust graph, given any agentn∈ N, we can run any reputation system to get a ranking of all the

agents from agentn’s perspective; the highest ranked alternative is returnedas the recommendation.

There are several advantages to the proposed reduction. First, under the reputation system

formulation it is easy to extend the recommendation problemto situations with more expressive

preferences and multiple goods. We can add weights on edges from agent-nodes to good-nodes to

represent more expressive preferences, and we can add more goods by simply adding additional

good-nodes.

By encoding both trust information and opinion informationinto the same trust graph, we sim-

plify the problem and allow reputation system techniques tobe applied to this new domain of
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Figure 5.1: The image on the left shows a voting network complete with annotated nodes. On the
right, we show the reputation-reduced version of the same voting network; the alternatives now have
their own nodes, and each node that was annotated has a link tothe corresponding alternative.

trust-based recommendation. The work presented in this thesis on measuring informativeness and

constructing informative reputation systems is especially well-suited for the problem of accurately

predicting which goods appeal to which users. Because the end user either likes or dislikes the

end recommendation, informativeness is almost exactly equivalent to economic efficiency in this

domain. This makes trust-based recommendation systems a promising open topic for future work

in this space.

5.3 Open Problems

The real promise of reputation systems lie in their application to real, large-scale systems. There

remain significant challenges in scaling up the techniques outlined in this thesis to real-world prob-

lems. We have so far ignored issues of scalability and computational efficiency in order to develop

compelling metrics for evaluating and tuning reputation systems; these issues must be addressed

before the benefits of our reputation system work are fully realized.

The applications we have discussed in this paper depend on analyzing and drawing trust infor-

mation from the activities of thousands or hundreds of thousands of individual users and agents. I

have not considered computational efficiency issues in thiswork, focusing instead on issues facing

the end-user: informativeness, economic efficiency, and incentive compatibility; however, a repu-

tation system which takes too long to run or too much space to compute is of little practical use.
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Polynomial time algorithms do exist for both the hitting-time and shortest-path algorithms; how-

ever, for datasets on the scale of Amazon’s book rating database more significant optimization may

be necessary.

These issues are even more complicated when the setting changes to a distributed, peer-to-peer

domain. Throughout my analysis I have implicitly assumed the existence of a trusted center which

can gather agent reports and run the reputation computation. In a peer-to-peer network this com-

putation must either be duplicated at each node (probably prohibitively expensive) or distributed

across the network. However, distributed computation raises a number of challenging incentive-

compatibility issues which do not arise in the centralized setting; see [12] for a more in-depth

description of decentralized mechanism design. If computation of the reputation system is dis-

tributed, agents may be able to influence their ranking not only by misreporting interactions but

by deviating from the preprogrammed reputation computation algorithm, opening up new classes

of manipulations that have not been defined in this thesis. Developing manipulation-resistant dis-

tributed algorithms remains a difficult open problem.

5.4 Conclusion and Outlook

Because of the wide range of potential applications, reputation systems are likely to play an integral

role in the evolution of the Internet. Reputation systems drive commerce on online retailers. They

control download speeds on peer to peer networks. They extract information from the hyperlink

structure of the web itself. And as the amount of trust and interaction information grows, so does the

demand for reputation systems that can take advantage of this information. The work we have done

on informativeness metrics will make it simple for users to compare different reputation systems

and pick the one that achieves the highest level of economic efficiency.

But at a higher level, our work onα-hybrid reputation systems allow the construction of repu-

tation systems with exactly the right tradeoff between informativeness and incentive compatibility.

A web site which offers houses for sale probably merits a reputation system with stronger incentive

compatibility properties than a web site for children’s toys. The ability to build exactly the right rep-

utation system for the task is sure to benefit the users of suchsystems. Investigating the applications

and the limits of this approach is an exciting area for futureresearch.



Appendix A

Decision Rule Selection

The two decision rules yield vastly different dynamics in terms of the evolving graph topology.

Preliminary simulations with 25 agents were run for 50 rounds; using the data I generated the

following plots of the degree distribution of the peer-to-peer network over time under the reputation-

weighted-random andδ-greedy decision rules.

(a) (b)

Figure A.1: (a) Initial degree distribution forδ-greedy rule (b) Ending degree distribution.

Figure A.1 shows theδ-greedy results. A few agents gained or lost links; one agentended up

fully connected to other nodes in the network. Theδ-greedy method preserves the initial power-law

like distribution.

Behavior under the random algorithm (see A.2) is much different. By emphasizing exploration,
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(a) (b) (c)

Figure A.2: (a) Initial degree distribution under the reputation-weighted-random rule (b) Intermedi-
ate degree distribution (c) Ending degree distribution.

this causes good nodes to gain links with one another very quickly; bad nodes are isolated near the

bottom. However, because the distribution quickly moves away from the initial power-law degree

distribution, I chose to do most of the testing using theδ-greedy update rule.
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