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Abstract

Reputation systems, which rank agents based on feedbankpfist interactions, play a crucial role
in aggregating and sharing trust information online. Refiom systems are used to find authori-
tative web sites and ensure socially beneficial behaviorugtian sites. The main problem faced
by reputation system researchers is a lack of good metricsdimparison and evaluation. This
thesis defines a novel “informativeness” metric for repatasystems which happens to approxi-
mate a crucial economic efficiency metric. This is then agapto the problem of finding optimal
reputation systems. We show empirically that this metrighdes meaningful comparisons between
reputation systems, and present a technique for genetathmig reputation systems with variable

incentive-compatibility and efficiency properties.
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Chapter 1

Informative Reputation Systems

The world is an increasingly interconnected place; peoplegoods online, swap media files,
browse social connections, and search for information gba billions of web pages indexed
by various search engines. When a user searches for a pbpolaon eBay or Amazon.com, he or
she is often presented with dozens or hundreds of possildess® choose from. How can users tell
the difference between legitimate businesses and oufiigidls? For better or worse, the Internet
is inherently an open system, making it difficult to assessatlithenticity of a seller on an auction
site or the authority of a web page. Reputation systems,wiaick agents based on feedback from
past interactions, play a crucial role in aggregating aratisf trust information online.

Under eBay’s reputation system, for example, buyers arecetskrate the quality of sellers every
time an interaction (a sale) occurs. If a seller doesn’t #héppromised item, the buyer’s negative
feedback is recorded for others to see. Over time, buyeiis beegvoid sellers with poor reputations
and reward sellers with high ones. These two steps capteiestence of what a reputation system is
about. Agents interact with each other and send ratingsepuatation system. Absolute reputation
scores or relative reputation rankings are computed andsexpto aid the agents in making future
decisions. The measure of a good reputation system is “agicrefficiency”, the extent to which
the reputation system information results in the “best’isleas being made by users.

This problem would be significantly easier if the users wererational agents who will try to
cheat the system for their own gain. Malicious sellers maate fake accounts and leave positive
feedback, abandon accounts and start over when their tepudips too low, or leave negative feed-
back for competitors to drag them down. This issue of ingentompatibility, designing reputation
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systems which discourage or prevent cheating, has drivarga Amount of the prior work on rep-
utation systems. These approaches have led to interesipussibility results and characterization
theorems for simple reputation systems.

An open challenge for reputation system researchers isittheof good metrics for “economic
efficiency.” It is inherently difficult to formally capturehe efficiency of a reputation system in a
manner which is domain-independent; on a file-sharing niétwor example, efficiency might be
measured in the ratio of authentic to inauthentic files swdpprhile on eBay efficiency might be
measured in the number of users making a satisfying purctzifferent approaches to reputation
systems research have been more or less ad-hoc, using tiimsit® estimate efficiency rather than
searching for optimal reputation systems.

The goal of this thesis is to bridge the gap between theserdift approaches (incentive compat-
ibility on one hand, economic efficiency on the other) by fitstining a novel metric for reputation
systems which approximates efficiency, and second appthilsgmetric to the problem of finding
optimal reputation systems. Our metric is based on the acgurinformativenes®f the repu-
tation system; intuitively, this correlates with efficighbecause as more information is available
to the user the better the decision he/she can make. We pr@geohnique for generating hy-
brid reputation systems which change their incentive-catibity and efficiency properties as we
vary a weighting parameter. Finally, we show empiricallgttthe informativeness metric enables
meaningful comparisons between reputation systems.

1.1 Reputation Overview

Why is the reputation system problem hard? We are forced ailalohsis to judge the reliabil-
ity of commercial transactions. If we were looking to buy a ram a used-car dealer, we would
presumably weigh many different factors to determine thetivorthiness of the dealer. Our per-
sonal interaction with the dealer would count for a lot: whenvisit, is the dealership clean and
professional-looking? Are the cars kept in good conditiththe lot located in a back alley or off a
major street? We might examine the dealer’s past transeckip calling past customers and asking
about their experiences. We might ask close friends whettesr have had experience with this
particular dealer.

And we should weight these factors differently: our per$@xgerience may count for more

than our friends’ experiences, while our friends’ opinioayntount for more than the opinion of a
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stranger. And since such a large amount of money is involwetlis purchase, the dealer may be
tempted to “game” the reputation system: for instance, lghtrpoint us to his business partner as
an example of a satisfied customer. Only after weighing tfesers appropriately do we decide
whether to purchase from this dealer or to move on to anothke study of reputation systems
attempts to model this process formally. Given a set of agantl reported trust ratings, how can
we rank the agents from most trustworthy to least?

Once we have a ranking, there are a humber of questions we migit to ask. First, is the
ranking that we get accurateq,, are bad dealers exposed as untrustworthy)? Ifitis, we cai tes
rank dealers before making our choices. Next, does it ledad oske the right decisiong.g.,buy
or not buy)? This captures the decision making at a highet:leve may not care about the relative
rankings of bad dealers, so long as we know to avoid them.lIfzimew easy is it for dealers to
manipulate the rankings to their advantage? If financiah gainvolved, people are sure to seek
ways of cheating the system.

Over the course of this thesis, | will formalize the intuitibehind these three questions into
three metrics for reputation systemisformativenesseconomic efficiengyandincentive-compatibility
respectively. While we generally care the most about ecimefficiency (we want our reputation
system to provide information which leads to good choicesy a difficult concept to capture in
practice. The informativeness metric we want to develowiges a good approximation to effi-
ciency: intuitively, the more information we take into aood when deriving our reputation scores,
the better agents can make their decisions and the higheeshking efficiency.

1.2 Motivation

Reputation systems have found applications in a varietyradtital domains. As integral compo-
nents of search engines, file-sharing networks, and shgiies, reputation systems represent a
highly active field of current research.

Web site ranking

The Internet is composed of billions of pages of hypertemt,yp by corporations, organizations,
and individuals. Because it is open and anonymous, anyamg@ast information on a web site.
However, judging the authenticity of a source is a cruciat pawhat search engines like Google
need to do to generate useful, relevant results. The PageRgorithm [18], developed by Google’s
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founders, is one of the reputation systems examined lathidrihesis: it can be viewed as a repu-
tation system which models the web as a graph, where eachagebipa node and directed edges
represent hyperlinks between pages. When particularepiare searched through Google’s search
engine, the first results shown are those with the best PajjefRR@res, appropriately weighted by
some measure of the relevancy of the page to the search term.

This explosion of information availability has also mademusre dependent on search engines
like Google for finding and organizing information. Thesarsé engines in turn drive the devel-
opment of reputation systems like Google’'s PageRank dkgoriwhich rate the reliability of web
sites by examining the hyperlink structure of the web (sitdxich are linked to more frequently
should be thought of as more authoritative). For web siteavgrthe relative ranking or reputation
of a web site can cause huge shifts in the amount of incomatffictiand advertising revenue. Yet
the reputation systems underlying search engines arg teesparent and available: Google relies
heavily on secrecy to prevent web site owners from optimgizieir sites for higher rankings. For
businesses dependent on income from Google-driven triffclack of transparency is unsettling
to say the least. This has spurred work on incentive-corigateputation systems which cannot
be “manipulated.” The rules for such systems can be puldigienly, addressing this need for

transparency.

Online auction sites

Online auction sites like eBay and Amazon.com’s Marketplaave enabled small businesses and
individuals to reach thousands of niche markets. Milliohgems have been listed and sold online.
Yet the relative anonymity of the Internet creates oppdtisfor criminals to abuse the system and
profit from fraud. To combat such behavior, eBay and Amazaguiement sophisticated feedback

and rating systems to aid their users in making smart buyigsibns.

Peer-to-peer networks

Peer-to-peer networks have emerged as a lasting compdtiet loternet's infrastructure: studies
estimate that in 2006 between 50% and 90% of all Interndiidrafas P2P-related [1]. Software
like Skype, BitTorrent, and Joost enable us to chat over \éMRp media files, and enjoy streaming
video, while other P2P systems create ad-hoc wireless nietvemd manage distributed grid com-
putation systems. Such networks are scalable and efficith no central server to connect to,

there is no single bottleneck or point of failure that camgpihe system down.
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However, such networks are complicated to understandsaigdiecause there is no central au-
thority to mediate between different self-interested #geiHow can we model interactions between
multiple rational agents, and how can we incentivize thetvefoave in socially efficient ways? One
solution is to introduce a reputation system. If we can idenisers or nodes engaging in benefi-
cial behaviors by assigning them higher reputations, atitbge reputations confer some tangible
benefit €.g.,faster downloads for peers which share more files), we caoaggterative, collective
behavior from self-interested agents.

Need for Security

Online shopping sites like eBay and Amazon process billardollars’ worth of financial transac-
tions. To help detect and prevent fraud, buyers and selkers the opportunity to rate each other
after every transaction. Ideally, honest dealers are dweawith high ratings and higher profits,
while shady dealers are avoided or removed after enoughivedaedback. Such systems do pro-
vide incentives to play by the rules: a study of eBay’s oninetions by Resnickt al.[20] revealed
that high reputation sellers earned on average 7% more gikmsswith no rating. In a separate,
randomized, controlled field experiment by Resnick [21]ighfreputation seller earned 8.1% more
on average using an established identity versus using nsw skentities. On another level, while

it may be inconvenient if a shady dealer on an auction site faiship an order, there is real danger
whenever personal identity information is available oaliri a scammer obtains a billing address or
credit card number he can rack up thousands of dollars inlfdleat purchases. Reputation systems
address a real need for security: by propagating trustrimdition across the network, these systems

prevent malicious agents from repeatedly scamming users.

Need for Transparency

Because of Google’s popularity, its algorithms for ranksitgs are often the largest drivers of traffic
to small and mid-sized commercial web sites. Being ranketiefirst (rather than the second) page
of Google’s search results for a particular query resulisrders of magnitude more traffic, which
in turn leads to more revenue from advertisements or sal@sbusinesses which depend heavily
on such revenue, understanding Google’s reputation sgstesalts in real profits.

Thus, web site owners go to great lengths to ensure goodngs ki his has spawned an entire
industry centered around search engine optimization (S#®)art of changing pages and content
to generate good rankings for particular queries. Yet thismsatisfactory: every time Google alters
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its ranking algorithms, web site owners are forced to makesaks and adjustments to maintain their
ranking. Conversely, there is no way for site owners to knewdvance what will lead to higher
rankings. A greater level of openness or transparency wighnds to Google’s ranking algorithms
is to be desired. To address this issue research on reputitems has also been focused on
incentive compatibility:i.e., how to make systems that cannot be “manipulated.” If a rejouta
system cannot be manipulated, the rules and algorithmdldwfe® can be openly disseminated,

eliminating the wasteful user opimization underlying eumtrsystems.

1.2.1 Related Work

There are two general approaches to the study of reputagigteras which differ mainly on the
emphasis that is put on theoretic incentive compatibiligutts versus practical efficiency results.
Axiomatic approaches seek to understand and model simplgation systems by proving strong
theoretical results: examples include work by Altman, Ghemd Chayes [4, 3, 2, 24, 8, 5]. Other,
more practically-focused domain-dependent approaches/afocus on simulating and evaluating
the efficiency of different reputation systems; see for gxanthe PageRank and EigenTrust papers
[18, 15].

Because work on reputation systems draws from many digpdistiplines, each with its own
models and histories, comparing different reputationesyistin a common framework is a prob-
lem which has not been addressed. Neither of these two agmeaffers a common framework
for evaluating reputation systems. The axiomatic approadiile offering extensive incentive-
compatibility results, does not allow for quantitative quanisons between reputation systems, while

the domain-dependent approach fails to formally define aa@able efficiency metric.

1.3 Primary Contributions

Economic efficiency is the primary metric on which reputatgystems need to be judged. This
thesis introduces a new approach to analyzing reputatistes\s based on a notion of “informa-
tiveness”. The core motivation behind this metric is thdiclifty of developing good economic
efficiency metrics: prior work either attempts to modelittimaximization problem formally, in
which case it is intractable to solve, or it attempts to eaterefficiency through simulation, which
does not scale well to different problem domains. The infdiveness metrice we define is tractable

and acts as a good proxy for economic efficiency: the more gmaph information the reputation
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system captures, the easier it is for agents to make goodidiesibased on proper reputation data.
Later, we run simulations which yield empirical evidencedar intuition that the informativeness
metric correlates well with economic efficiency.

This thesis also examines an intriguing negative coraiabietween incentive compatibility
and informativeness. We develop a technique for combiniiglieg reputation systems into hybrid
reputation systems, and characterize general incentivgatibility properties for these hybrid rep-
utation systems. These include both positive and negatisg@ts on the preservation of incentive-
compatibility as different reputation systems are comthine order to characterize how incentive
compatibility properties may be traded off for informatiess, we introduce natural relaxations of
existing incentive-compatibility constructs, and dentoate their use by proving theorems about
two hybrid reputation systems with convenient propertidse hybrid technique allows us to search
for the optimal reputation system for a given problem by siiiig a single weighting factor which

blends the two reputation systems.

1.4 Paper Outline

The remainder of this thesis is as follows: Chapter 2 layshaigkground for a general model of
reputation systems as computing a function on a “trust” lyrapd describes several variations and
special cases of the basic model (symmetric vs. asymméinary vs. real-valued trust). We
describe the basic game-theoretic framework behind tray sifi reputation systems, then detail
four different classes of reputation system, each basedffemesht graph algorithms: eigenvector-
based algorithms like PageRank and EigenTrust, hittimg-based algorithms, maxflow-based al-
gorithms, and shortest-path-based algorithms. The chepteludes with a discussion of different
reputation-system metrics. Chapter 3 introduces our tyleputation system construct, which al-
lows us to create new reputation systems with specific tféglbetween incentive compatibility
and informativeness. We prove general incentive-comitiitiiproperties about this technique, as
well as specific results for two convenient hybrid reputasgstems. By mixing together reputation
systems in this novel way, it is possible to trade off infotiveness and efficiency in return for
incentive-compatibility. |1 conclude in Chapter 4 with pitds applications of this work, outlining

what must be done to connect theory with practice.



Chapter 2

Modeling Reputation

Because of the variety of possible applications, past wonteputation systems has developed from
a wide range of disciplines ranging from economic mechamesign to graph theory to computer
systems research. In this chapter | provide a brief survgyast work, with the goal of unifying a
number of different approaches under a single frameworkoBysing on common themes between
past approaches, | hope to motivate my perspective on totdem. In the process, we develop a
formal framework for talking about reputation systems. sTfhhamework will be sufficiently gen-
eral to capture all the reputation systems | will examinejuding maxflow [8], Eigentrust[15],
PageRank [18], and shortest paths [4].

2.1 Economic Efficiency

The following list illustrates the steps an end-user of aitafion system might go through:
1. Users form opinions on the trustworthiness of other users
2. Users make reports to the reputation system.
3. The reputation system computes the reputation of each use

4. Users interact with other users (buying goods, exchaniiies), taking into account reputa-

tion information.

5. Repeat steps 1-4
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Here users, or agents, can refer to humans buying and sgbiogs through an auction site or
to automated software bots transferring files over a pepet&r network.

When stated this way, the goal of a reputation system is:clearust provide information on
user reputation that leads agents to make economicallyeeffjaitility-maximizing decisions.

Unfortunately, it is unclear what utility an agent gets frarparticular output of the reputation
system. While there have been interesting empirical ssudieich attempt to quantify the value
of having higher reputatione(g., Resnicket al.'s study of eBay’s reputation system [20]), it is
difficult to extend such work to a general agent utility fuantin a context independent setting.
The differences between having a high seller rating on eBdyhaving a high reputation on a peer-
to-peer file-sharing network appear too great to be capthyed single all-encompassing utility
model.

2.1.1 Economic Efficiency in Prior Work

There have been two main approaches to the problem of mgddiiity in the literature. The first
approach, which we will term the axiomatic approach, attsnp sidestep the issue by dealing
directly with the final ranking or reputation scores outputfee reputation system. Implicit in this
formulation is the assumption that utility is directly rigdd the reputation scores / ranking.

Axiomatic Approach and the Theory of Social Choice

Work which takes the axiomatic approach to reputation systbas focused on identifying and
analyzing basic axioms about reputation systems (hencegtime of the approach). This approach
has led to both impossiblity resultsg., a set of reasonable axioms cannot be satisfied by any
reputation system) and representation theordrss this set of axioms uniquely characterizes a
particular reputation system).

The axiomatic approach is closely connected to the clddsieary of social choice (see Arrow
[6]) — the reputation system problem is modeled as a speasa of a social choice problem where
the set of agents and the set of alternatives coincide, andgénts have two levels of preferences
over the alternatives.é., each agent has a set of other agents which it trusts, andearsgthwhich
it doesn’t). Under the classical social choice formulatidrithis problem, a social choice function
is incentive compatible if agents cannot improve the raggkinf their preferred alternatives by

misreporting their true preferences.
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The axiomatic approach’s focus on the final ranking may bifigisle in the reputation system
setting because an agent’s place in the final ranking rougtrisesponds to higher overall utility;
web pages which appear higher on Google’s search resultsdget more traffic and more revenue.
However, there are several serious objections to this agprfor analyzing reputation systems.

First, it is difficult to formally define the sybil attack, ammon manipulation which involves
an agent creating fake “sybil” agents which participatehim¥oting.

Second, this approach is not scalable; axioms for one répuitsystem must be carefully re-
proven if we wish to apply them elsewhere. And each reputaditstem itself requires carefully
developed axioms characterizing its properties.

A domain-dependent utility framework

The second approach to reputation systems, which we willititaldomain-dependent approach,
strives to model agent utility as precisely as possible. Mgéeake the output of the reputation
system into account when choosing their actions; the owtftliie reputation system only indirectly
influences the final utility through the choice of agent atioUnder this approach, after reports are
made to the reputation system, we assume the reputatioensysturns a set of reputation scores
fi(vj) representing the trust agewtplaces in agent;. Agents must then act upon the reputation
information in some waye.g., by interacting with another agent with high reputation ssoor
rankings. The utility of an agent is determined entirely lig final interaction.

This motivates the following model for agent utility: eacheatv; has a typed;, and a sety
of possible actions (not to be confused with possible mategctions of reputation information).
Each agent has a decision function which, given anothertagemses the reputatiofiy(G, v;) of v;
to determine an action to take. Finally, each agent hasigyutihction which takes an action and
the type ofv; and determines the utility gained.

Definition 2.1.1. Given a reputation systeM, a set of agent¥ = {v1,...,v,}, a set of type® =
{64,...,6n} s.t. Vi,6; € 6, and a trust grapke = (V,E,w), define for each agem € V an action
spaceA = {a,...,an}, and define an action functiog : V x R — A;, which given an agent to
interact withv; and a reputation scor&(G,v;), determines the actioa ¢ A that will be taken.

Finally, define for each agent a utility functian: 8 x A; — R.

Together these definitions define the rules under which agent interact under a reputation

system, but we still cannot determine the utilitywpfvithout a model of how; interacts with other
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agents. This motivates the definition of an interaction pdfiwhich is essentially a list of the other

agents which agem interacts with over its entire time in the system.

Definition 2.1.2. Define an interaction profile= (91,92, ...,0p)St.gi € V. Theg; are not necessarily
distinct. p is the number of different interaction opportunities theegi agent receives.

Putting all these pieces together,

Definition 2.1.3. Given a set of agenté, ...,V,), reputation scores for these agefifs, ..., fn),
action spaced = {ay, ...,an}, action functionss; : R — Al, and utility functionsy; : A' — R, define
the utility of agent under interaction profil& aszﬁ’zl ui (8, a(g;j, fi(gj)))-

For example, in a peer-to-peer filesharing setting, one migh the EigenTrust algorithm as
the reputation system; the action space for each agéStiareNoSharé anda;( fi(v)) = Shareif
fi(v) > ¢, i.e.,if the current agent being considered for an interactionrbpatation> c for some

constant. Finally, uj(a,0) = 1 if a= Shareandu;(a,0) = 0 if a= NoShareregardless 08.

Critiques of the domain-dependent approach

After going through the technical details of the above tytiframework, it is important to keep in
mind that we were only trying to formalize how one would cédt¢e the utility of an agent in the
system. Simply formalizing how utility is calculated undee domain-dependent approach is a
daunting challenge; formulating and solving a utility makiation problem is likely to be much
harder.

For this reason, work done under the domain-dependent agptends to involve simulations
or actual deployments rather than theoretical resultsh aper develops some measure of social
welfare which is highly dependent on the problem contextr é&g@mple, analyses of reputation
systems for peer-to-peer networks often involve simutetiof actual networks, using the ratio of
authentic to inauthentic files exchanged as a measurementddll utility. Though this approach
has yielded more complex reputation systems, incentivepatibility issues tend to take a back
seat to practical issues. Worse, simulations of reputay@tems on peer-to-peer networks do not
provide evidence that the same reputation systems can tiechpgpother domains.

Both the axiomatic and the domain-dependent approachesthair benefits — see Table 2.1
for a comparison of the approaches. The axiomatic appraseb gs strong incentive-compatibility
theorems, while the domain-dependent approach allowhécomparison of more complex rep-

utation systems in a quantitative way. We will draw from bafiproaches throughout this thesis
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Incentive Com-

s

systems

simulation

Approach What is missin
pp Focus Methods patibility g
Axiomatic simple theoretici proving charac-| provable proper{ standard metrics fo
models terization theo-| ties comparing  reputatior]
rems systems
Domain-dependent complex  rep.| testing through| ad-hoc results | results are domain

specific and difficult to
extend

Overall

Ways of comparing the
efficiency of existing
reputation systems

Table 2.1: This table summarizes the differences betweervitb main approaches to reputation
system research. The “What is missing” column especialijlights the contribution this thesis

work aims to make

in order to prove incentive-compatibility properties andcbmpare existing reputation systems in

guantitative ways.

However, both approaches fall short of providing a good imdar the economic efficiency

properties of reputation systems. This is troubling beeanomic efficiency is the motivating

reason for using reputation systems. As an extreme exacygiisijder the trivial reputation system

which assigns the same constant reputation to each agegdiidiess of agent reports. This system

is perfectly incentive-compatible because agent repansat influence the final reputation score,

but at the same time it is adds nothing of value to the systésrdigployed in.

2.1.2 Motivation for a novel metric

The domain-dependent approach has taught us that exptivittieling agent utility is intractable in

the general case and unscalable when applied to partigtuatisns. Put another way, solving the

general utility model for the utility-maximizing strategynot feasible, and investigating reputation

systems individually through simulation does not enab&ulsomparisons of economic efficiency.

This gap in usuable metrics provides motivation for our psgd “informativeness” metric.
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Intuitively, informativeness tells us how much informatiour reputation system uses or how ac-
curately our reputation system determines the true rapatat agents. The more information our
reputation system takes into account, the more accurateréduicted reputation scores, which re-
sults in better decisions and (ideally) higher utility ftwetuser. Thus, it is reasonable to expect
informativeness to be a useful proxy for economic efficierf8ynce maximizing social welfare is
not possible in general, informativeness provides a gogdoizapproximating economic efficiency.
We discuss the informativeness metric more thoroughly émigxt chapter.

2.2 Game Theory and Incentive Compatibility

Thus far we have glossed over the strategic interactionsdset agents in a reputation system, talk-
ing instead in generalities about incentive-compatib#ihd utility. We now consider the reputation
system problem formally from a game-theoretic perspective

Agents in a reputation system have many opportunities fategjic interaction, beginning with
the trust ratings they report to the reputation system. Aanaigmaking reports about other agents
to the reputation system must consider the effect his repalithave on the final reputation scores,
and then consider the effect of different reputation scorgthie interaction decisions made by users.
The effect of making a given report depends heavily on therteghat other agents will make as
well as our model for agent actions. How do we determine hdfxirgerested agents are likely to
behave?

The field of game theory deals exactly with this problem ofdpeng the behavior of multi-
ple self-interested agents behavior. In particular, gamery provides powerfudolution concepts
which simplify our analysis. In order to talk meaningfullpaut this, we first establish some pre-

liminaries, following the model set out by Parkes in [19].

Definition 2.2.1. (Strategy)A strategyis a complete contingent plan or decision rule that defines

the actions an agent will take.

In our setting, during the stage when trust information jgoréed to the reputation system agents

can play all sorts of unexpectatiategiese.g.,misreporting their true trust ratings.

Definition 2.2.2. (Game)A gamedefines a set of strategi&sfor each agent and a utility function
ui(s1,-.-,Sn, 6;) that defines the utility of agentgiven the agent’s typ®; and the strategy profile
(s1,..-,Sn) being played by all agents.
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When modeling reputation systems as games, the stratefgiles agents are the reports about
other agents that the agent makes to the reputation systage tbBese reports are made however,
how do we compute the utilities of the different agents inghstem?

For our incentive compatibility analysis, we will follow ¢haxiomatic model and assume that
utility is directly related to the final reputation scoredput by the reputation system. The utility
an agent gets increases as its reputation score and/aveeakmking increases.

Once we have this notion of a reputation system garae we can discuss differemsplution

conceptdor predicting the outcome of the gamee.,the expected behavior of participating agents.

Definition 2.2.3. (Nash Equilibrium) Lets= (s1,...,$,) denote the strategy profile for the strate-
gies of all agents, and let | = (s1,...,5-1,S+1,---,Sh) denote the strategy of every agent except
agenti. A strategy profilesis a Nash equilibrium if

Vi, ui(si(81),5-i(8-),6i) > ui(5(6),5.i(8-1),8)vs # 5

The above definition says that in a Nash equilibrium, evegnagnust be maximizing its ex-
pected utility. In games with many agents, this solutioncegt is unsatisfying because it requires
strong assumptions on agents’ information and beliefs;ahgrthat all agents possess perfect infor-
mation and assume perfect rationality on the part of othentgin computing the expected utility
of different strategies.

A more useful concept is that ofdominant strategy equilibrium

Definition 2.2.4. (Dominant Strategy Equilibrium) Strategys is a dominant strategy if it weakly
maximizes the agent’'s expected utility for all possiblatggies of other agents,

Ui(s,Si,6i) > ui(s,5i,6)Vs # 5

A dominant strategy for an agent maximizes expected utilitynatter what strategies the other
agents play. This concept is superior to the standard Nashbeiym concept because it does not
require the agents have any information about each othérdaes not require agents believe that
other agents will play rationally. If a dominant strategyséx, no matter what the best move for an
agent is to play the dominant strategy.

For the remainder of this thesis, we focus solely on charaatg the dominant strategies of the
reputation system games being played. We are especiahesied in reputation systems where the
dominant strategy is to truthfully report your private infaation (your opinions of other agents in

the system) to the reputation system.
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Definition 2.2.5. (Dominant Strategy Incentive Compatibiity) A game is dominant-strategy in-

centive compatible ostrategyproofif truthfully reporting types is a dominant strategy eduilum.

2.3 Formal Reputation Systems

2.3.1 The Trust Graph

The first step in the process of building a reputation systemddeling the process of agent reports.
Given a set of agentg, it is assumed that each agent V begins with ratings for some subset of
the agent¥; C V.V, is a subset of the set of all agents because agéatsn’'t necessarily interacted

with every other agent K. Each agent begins by reporting its ratings to the reputaystem.

Definition 2.3.1. (Agent Reports)Given a set of agent = {vi,...,Vn} , for eachi letV; denote the
agents that; has trust information about. The agentd/irmake report®R = {(Vi,t1),..., (Va,th) }
wheret; : V; — D C R™, sotj(v) represents the trust agentassigns to.

A natural encoding for this data is a trust graph, in whichribees represent agents and the
edges represent ratings of these agents. For example, se#reh engine setting, nodes might
represent web sites, and edges might represent hypemést etween these web sites. On an
auction site, nodes represent buyers and sellers, and egjgesent a rating for each transaction
that has occurred (if an edge does not exist between a pageots, it indicates that no interaction
has occurred between the two).

The setD is the set from which agents draw their trust ratings of otgents; its exact form
depends on the contex.g.,for simple binary trustD = {0,1}. For a shopping site, it may range
fromD = {1,...,5}.).

Next, define the notion of a trust graph constructed on thés lEsagent reports following
Altman and Cheng [4, 8]:

Definition 2.3.2. (Trust Graph) A trust graphG = (V,E,w) is a set of vertice¥ and directed
edges(u,v) € E,u,v € V. Each edgdu,v) € E has an associated weightu,v) € D C R". (i.e.,
vertices are individual agents, edges indicate interasta trust between agents, and edge weights

indicate levels of trust).

Some points to note: because of the natural mapping betwgsntsaand vertices in the trust

graph, I will often refer to them interchangably, using tm&orm notationv;.
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Edges in the trust graph can be directed or undirected. Hctéid graphs are are appropriate
in situations where interactions have a sort of symmetry. @xample, consider a social network
setting. It is reasonable to expect friendship relatigmsHietween users to be reflexive: if | am
friends with you, you should be friends with me. On the othandy in the web page reputation
setting, a hyperlink takes visitors from one page to anothtbie relationship is not symmetric,
and is best captured by directed edges. This is the modeltedidyy the EigenTrust [15] and
PageRank [18] papers. In general, the asymmetric case is caonmon — consider buyers and
sellers on an auction site, or downloaders and uploadersilensiaring network — and the directed
edge model is richer than the undirected model (it is posgsibinodel undirected edges by setting
w(u,v) =w(v,u))). The remainder of this thesis uses directed edges exelysiv

The trust values reported by each agent (which eventuafigrbe the weights on the edges of
the trust graph) can be drawn from different subgedepending on the problem domain. Binary
trust, in whichD = {0, 1}, is a commonly used model in which an agent either trusts esmibtrust
another agent. This is the simplest model to analyze, amulisdf predominantly in papers which
demonstrate rigorous theoretical results: Cheng’s sydifimess paper [8] and Altman’s axiomatic
approach [2] are two examples.

However, when users are asked to rate transactions onlicenitoe useful to have a wider
range of options than trust/no trust. Shopping sites likayeBnd Amazon, for example, allow
agents to rate others on an integer scdle= {0,1,...,K}. In other contexts, it is useful to set
D = [0, 1], allowing the weights to be interpreted as probabilitiebéw properly normalized). This
approach provides the most expressiveness, though agagtaghdirectly choose each weight -
in the Eigentrust reputation system [15], agent reportnarenalized s.t.5 . ti(u) = 1, i.e., the
agent’s reported trust in other agents sums to 1. This fonemac¢tual weights of edges on the trust
graph.

Also, the trust graph makes a distinction between an €dgg of weight 0 and the absence
of an edggu,V); it is not a complete graph. The first situation might arisagéntu has had both
positive and negative interactions with agersuch that the net trust agemplaces in agent is 0,
while the second situation would arise if no interaction ta&en place between agentandv.

Using these definitions, the trust graph is naturally defimethe basis of agent reports:

Definition 2.3.3. (Constructing Trust Graphs) Given a set of agend¢ and agent reportR, con-
struct a trust grapls = (V,E,w) as follows (note that the agents map exactly to verticesen th

graph): for each vertey, given report(\i,t;), create a directed edd®,u) € E for eachu € V; and
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definew(vi,u) =ti(u).

Note that the above mapping can be used to generate a graptustrfrom any given set of
agent reports. This gives a way of constructing a model fgrtarst system.

Figure 2.1: Example trust graph induced by a particularepatof agent interactions. Here agent
1 has had positive experiences buying from agents 2 and 8t adeas bought from agent 3, and
agent 3 has bought from agent 1.

For example, consider the trust graph in Figure 2.1. Agerasldirected edges to agents 2 and
3, while agent 3 has a directed edge to agent 1, and agent 2dirasi®d edge back to agent 3. In
the online auction setting (eBay), this situation couldaif agent 1 has positive transactions with
agents 2 and 3, agent 2 with agent 3, and agent 3 with agentuitively, agent 1 should place
more trust in agent 3 than in agent 2, because in additionviadp@ direct interaction with agent 3
agent 1 also has an indirect relationship through agent 2.

2.3.2 Reputation System

The informal definition of a reputation system given in thetfohapter described the problem of a
reputation system as deciding how to rank agents based omtheinput. Using the trust graph to
model agent input, following the definition given by Altmadi,[it is possible to formally define a

reputation system as a function on a trust graph.

Definition 2.3.4. (Reputation system)A reputation systenM is a mapping from a trust graph
G = (V,E,w) and its vertice® to R"i.e.,a functionf : GxV — R". Eachf(G,vj) = (r1,...,n),
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wheref;(G,v;) =r; (theith component off (G, v;)) can be thought of as the reputation of aggnt
from the perspective of agemt. This induces an orderingiG over the agents, wherg(G,u) <
fi(G,w) = u <€ windicates that agemt has higher reputation than agerfrom the perspective of
agentv; (and should appear higher in the ranking).

Under Definition 2.3.4 we require th&atbe a completely defined function owérthat is, given a
trust graphG and verticess, v; fi(G,v;) always has a value; reputation systems provide predictions
for every agent from every other agent’s perspective. Evgnandv; are not connected i, the
reputationf;(G,vj) must exist. Also note that a higher relative valuefdfG,u) is “better” in the
sense that it implies more trust from ageim u. An agentu is ranked higher than another agent
fromv;'s perspective iffi(G,u) > fi(G,v).

There remains a fair amount of ambiguity in Definition 2.3hs allows for considerable flexi-
bility and variation in applying it to various problem domai

Symmetric vs. asymmetric reputation

Reputation systems can be divided into symmetric and asynun(er alternatively global and
local) categories. Aymmetriaeputation system computes a single reputation score &yewode
in the network. It is useful to think of this as a global systémwhich a single reputation score is
maintained globally for each agent. On the other hasgmmetriceputation systems keep local
reputation information for each agent; each agent has itsreputation score for every other agent.

The symmetric/asymmetric distinction is not to be confuséti the undirected/directed edges
distinction — the undirected/directed nature of the edgéiect inherent (a)symmetries in the prob-
lem formulation, while the differences between symmedggmmetric reputation system are more
arbitrary. Symmetric and asymmetric reputation systenve laifferent computational efficiency
and incentive compatibility characteristics, so neithtectty dominates the other. Thus these two
distinctions are fundamentally orthogonal: it is possibleave a symmetric reputation system with
directed edges (see PageRank [18]) as well as asymmetutatiem systems with undirected edges
(e.g.,shortest-path reputation).

More formally, symmetric systems are a special case of thergéreputation system formula-
tion.

Definition 2.3.5. A reputation system is symmetricyf, j we havef; (G, v) = f;j(G, ).
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Symmetric algorithms generally benefit from being more &ffitto compute and simpler to
analyze. A good way to think about symmetric systems is tieretexists a single global reputation
score for each agent; thus there &x@) trust scores to compute as oppose®fo?) scores under
an asymmetric system. However, later it will be shown thatsyetric algorithms necessarily lack
a key incentive-compatibility property.

Asymmetric reputation systems may be justified if we agre¢ ¢éach node should trust itself
more than any other node in the network, or because each sadeaidifferent position in the
trust network. There have been numerous papers analyziprgwab voting and max-flow-based

algorithms for asymmetric reputation systems [2, 4, 8].

2.4 Manipulations

In this section, it is assumed that an agent’s utility is dateed directly by its final ranking; thus,
agents choose manipulations in order to maximize theitivelaanking. We consider several types
of manipulation when considering incentive compatibilityt each of the reputation systems are

susceptible to some or all of the attacks we describe.

Sybil Manipulation

A sybil manipulation [11] involves an agent creating anceiisig a number of fake agents (under

the original agent’s control) into the network.

Definition 2.4.1. (Sybil manipulation) Given a trust graplG = (V,E,w), a sybil manipulation
strategy for node €V is a tupleo = (S Es,ws) whereS= {si,...,Sn} is a set of sybil agent&sis

a set of edgeEs= {(u,w) : ue SU{v},w eV US} andws: Es— D are the weights on the edges
in Es. This results in a modified trust grah| c = G’ = (V USEUEg,W), wherew (e) = w(e)
forec E, andw/(¢) = wg(€) for € € Es.

Under Definition 2.4.1, under a sybil manipulation an agantareate sybil agents with arbitrary
outlinks to any other agent in the trust system. Becausechéap to create accounts automatically
on an auction site or set up hundreds of fake web pages, gesofymanipulation is easy to conduct
and must be defended against. If an agent can improve itdatépu using such an attack, the
reputation system is vulnerable to sybil attack.
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Under this formulation, an agent can add as many sybil nogl#saants, and can create what-
ever graph structure (assuming directed edges and edgéte)eigchooses between itself and its
sybils in order to create the modified graBh However, it cannot alter links from other nodes to
point to its sybils, and it cannot redirect incoming linkspimint to its sybils instead. Consider the
web-page example: if | create some sybil pages, | can crgagrlinks from them back to my main
site, but | cannot force other sites to link to my sybils.

Before it is possible to compare which reputation systerasrainerable to sybil manipulation,

it is necessary to define the concept of sybilproofness.

Definition 2.4.2. (Rank-sybilproof) A reputation system is rank-sybilproof if given a trust drap
G = (V,E,w), for any sybil strategy s.t. G| 0 =G = (VUSEUEg,wW), for all u,v €V and
ie{l,..,n},

fi(G,v) > fi(G,u) = fi(G,v) > fi(G,u)

A reputation system is considered rank-sybilproof if nordgecan increase its reputation and
surpass that of another nodéhat originally had higher reputation tharby employing a sybil ma-
nipulation. It is preferable that a reputation system beerabr rank-sybilproof. However, such an
attack is very difficult to defend against. Though symmatejgutation systems are easier to char-
acterize and study, Cheng and Friedman have shown the stegadive result that no symmetric

reputation system is value-sybilproof [8].

Theorem 1. (Cheng and Friedman) There is no symmetric rank-sybilproof nontrivial reputeti
function. Here nontrivial refers to any reputation functithat does not return a constant reputation

for all nodes, i.e.Yi,v fi(G,v) = C for some G= R.

Proof. (Sketch) If the reputation system is symmetric, and a nmalginodem is not the highest
ranked agentn can create a duplicate copy of the trust graph structureyissibil nodes. The two
graphs are connected by node Because the sybil copy graph is symmetric, there is somié syb
nodes that has a higher reputation than nadesincem controlssit has successfully increased its

reputation. O
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b W
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Figure 2.2: (a) Example grap® with four nodes and four edges. Perhaps agent 4 has the highes
reputation (b) On the right, after the sybil manipulationrimde 1, we have a duplicate copy of the
graph starting at the manipulating node 1. By symmetry orthede nodes (S4) must have higher
reputation than node 1.

Misreports

Under a misreport manipulation, an agerhay simply lie about its interaction with another agent
v. Reporting a bad interaction about agean lowen's reputation, and ifi was originally ranked

belowv this can improvau's relative ranking.

Definition 2.4.3. (Misreport Strategy) Given a trust graptG = (V,E,w), define the seE_, =
{(u,x) : (u,x) € E,u# v} (i.e., the set of all edges i@ that do not start at). A misreport strategy
for ve V is a tupleo = (V,E,,w,) whereE, = {(vu) : ue V} andw, : E, — D. Applying the
strategyo to G results in a modified trust gragh | 6 = G’ = (V,E_,UE,,W) wherew/(e) = w(e)
forallec E_,, andw/ (¢') = w(€) for all € € E,

Note that the edges in the g8§ do not necessarily have to exist in the original graph; it is
allowable for a node to make up an edge. Definition 2.4.3 masdhat all edges and edge weights
not originating from nodes must remain the same in the modified graph. Thus, an ageah
misreport the weights on any of its outlinkise(, edges originating fromr), but it cannot affect the

reports other agents make about it.
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Whitewashing

Another class of manipulation is the whitewashing attankywhich an agent removes itself from

the reputation system and adds a new node under its coatgolg new account). Because such an
attack is cheap to conduct when dealing with a peer-to-petvark or other computerized system,
a viable reputation system needs some sort of initiation foosiew members. Such an effect has
been analyzed by Resnick and colleagues in their empiritallysis of eBay’s reputation system

[14, 20]; it has also been examined theoretically in work bidman and colleagues [13]. However,
modeling this attack requres a model of the dynamics of tkeay (when do agents enter and exit)

we will not deal with it now.

2.4.1 Strategyproofness

The sybil and misreport manipulations are often studieéttugy; Altman has shown that the asym-
metric shortest-path algorithm, in which the reputatioamfigenti from the perspective of an agent
v eV is given by the length of the shortest path betwean is in some sense resistant to these ma-
nipulations [3]. Sheldomt al. demonstrate a manipulation-resistant hitting-time baggaoach to
reputations based on PageRank [23]. | will discuss bothethtgorithms in detail later.

For the remainder of this thesis, | consider any combinatiosybil and misreport strategies as
possible manipulations of the system. To handle combirtiegé strategies, define the composition

of two manipulations as follows:

Definition 2.4.4. Given manipulationg; andas, for any graph G, define the composite manipula-
tiono=0700,5t.G|o=Giff 3G"s.t.G| 0, =G"andG" | 0, =G

Since each type of manipulation takes a graph as input amchsed modified graph, composing
these two operations is well-defined.

A system that cannot be manipulated is called strategyplmfause an agent cannot earn a
higher utility by applying a manipulation. This is a domita&trategy equilibrium formulation:
telling the truth must always result in higher utility usidgsumption 1. For now, we follow the
axiomatic approach and assume the utility of an agent to feettli related to the agent’s relative
ranking. This implies that a reputation is strategyproafdafagent can increase its rank by applying

a manipulation.

Definition 2.4.5. (Rank-strategyproof) A reputation system is rank-strategyproof if given a trust
graphG = (V,E,w), for everyw € V and for every manipulation strategyfor nodews.t. G | 0 =
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G, forallvi,ueV,u#w,
fi(G7W) < fi(Gau) = fi(Glaw) < fi(Gluu)

This definition states that a reputation system is rankesiygoroof if we cannot increase our
relative ranking by applying a sybil and/or misreport maitipn. If w <iG u, then on trust grapt®’
we must still havew <iG’ u. Rank-strategyproofness turns out to be very difficult targatee. A
different strategyproofness concept is based on the alksa@puation score of each agent.

Definition 2.4.6. (Value-strategyproof)A reputation system is value-strategyproof if given a trust
graphG = (V,E,w), for all u € V and for all manipulation strategiesfor us.t. G | 6 = G/, for all
vi eV, fi(G,u) > fi(G,u).

Value-strategyproofness guarantees that an agent cammeaise its own reputation in the eyes
of another agent. Why do we introduce this concept? It sebaighie relative ranking of an agent
should determine its final utility, especially in settingselweb search. However, in other domains
it is often useful in practice to set absolute cutoffs forutggion scores which confer some benefit
to the agent. For example, a peer-to-peer file sharing nktmaght be set up so that all agents with
reputation higher than some cutaffet to download twice as fast as other agents.

A reputation system may be value-strategyproof but not-sdrddegyproof because under a
value-strategyproof system it may still be possible for gard to reduce the reputation of a higher
reputation agent; this may lower the rank of the higher+4&jmn agent to below that of the manip-
ulating agent.

However, the reverse is also true: a rank-strategyproaésymay not be value-strategyproof. It
may be possible for an agent to increase its reputation $eqe (G, u) for agentu from agent;’s
perspective) under a rank-strategyproof system, so lonigeageputations of higher-ranked agents
increase as well. Thus rank-strategyproofness does rictfysstominate value-strategyproofness
(and vice versa). In most reputation systems studied initds@iure, however, rank-strategyproof
reputation systems are also value-strategyproof, so iargerank weakly dominates as an IC con-
cept.

2.4.2 Relaxations

Unfortunately, both value- and rank-strategyproofnesgsdéfficult to achieve. It is useful to intro-

duce two relaxations of the value- and rank-strategypresgnconcepts that attempt to ensure that
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the final ranking / reputation scores remain “close” to the tranking / scores (as opposed to en-
suring that scores remain the same). This is done by introduwcparameteg, which determines

exactly how “close” to the true ranking a reputation systeustibe under any manipulation strategy.

Definition 2.4.7. g-value-strategyproof) A reputation system is-value-strategyproof fog > O if
given a trust grapls = (V,E,w), for all u € V and for all manipulation strategiesfor u giving
G =G| o forallv eV, fi(Gu)+&> fi(G,u).

This states that under @&rvalue-strategyproof system an agargannot increase its reputation
score by more thasi(as viewed from any other agentunder any manipulation strategyfor a trust
graphG). An additive factore (rather than a multiplicative factor) is appropriate fostrelaxation
for the same reason value-strategyproofness is a usefaeptiin some domains reputation scores
above a certain fixed threshold might confer some benefitsetagent.

Definition 2.4.8. g-rank-strategyproof) A reputation system is-rank-strategyproof foe > 0
if given a trust graphG = (V,E,w), for all u € V and for all manipulation strategies for u s.t.
G =G|o,forallvieV,weV,

fi(G,u) +¢€ < fi(G,v) = fi(G,u) < fi(G,v)

This states that an agemtvhose reputation under trust gra@his not withine of another agent
v (i.e., it is ranked below agent underG), then it cannot become ranked higher than ageafter
applying a manipulation under arrank-strategyproof system.

These relaxations have some precedent in prior work. Altarah Tennenholtz [3] quantify
the incentive compatibility of different reputation sysigby weakening the rank-strategyproofness
incentive compatibility concept. Because they define etrgtroofness solely in terms of the fi-
nal ranking (and not the absolute reputation score) theatan they developk-worst-case-rank-
strategyproofness, is stated in terms of rank rather thluev&Inder a reputation system which is
k-worst-case rank-strategyproof, an agent can increasanking by at mosk places by executing
a misreport attack. Since this thesis takes into accoutt $diil and misreport manipulations, the
concept of rank-strategyproofness uses the absoluteatépuscore rather than the relative ranking.

2.5 Strategyproofness of existing reputation systems

Using the strategyproofness concepts developed in théopiesection, this section presents several
different reputation systems, along with a discussion @if iincentive-compatibility properties. The
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goal is to exhibit an interesting link between incentive partibility and the amount of information
in the trust graph used by the reputation system. This issare what | want to quantify with my

informativeness metric.

2.5.1 Eigenvector-Based Methods

Eigenvector-based reputation systems can be thought ahdem walks on weighted, directed trust
graphsG = (V,E,w), where the edge weights(v;,v;) on edgess; = (vi,V;) leaving any vertex;
have been normalized so thgf_; w(vi,vj) = 1 - i.e., so that we can treat eas(v;,vj) as the
probability of moving from vertex to vertexj.

This suggests the following random-walk based algorithm:

Definition 2.5.1. (Random-walk-based algorithm)Given a trust grapls = (V, E,w), begin from
arandom node; € V. At each step, with probabilitw(vi,v;), jump to a random neighbaf of v;.

Such a process can be modeled as a Markov process with imansiatrix T = [g;], where
0<i<nO0<j<n.

The reputation of a given nodec V is given by the weight o in the stationary distribution
Tt of this process (the distribution satisfyimg= Tm). This is given by the principal eigenvector of
the matrixT, and the reputation of a nodes defined ad (G,v) = (1%, T, ...,Ty), WhereTy, is the
probability of finding the random walk at noden the stationary distribution. Under the random-
walk interpretation of this process, the reputation of aeniscthe probability the random walk is at
nodev as the number of timesteps— oo,

The motivation behind this kind of algorithm is simple yetgdnt: the reputation of a node or
agent is quickly approximated by the time a web surfer ordilarer would spend interacting with
the given agent assuming it randomly transitionedj.(clicked links or shared files) with different
neighbors of the current agent.

Two examples of this class of reputation system are PageR&hknd EigenTrust [15].

PageRank

PageRank was originally developed by Page and Brin [18] &dyae the reputation of hypertext
documents; the nodes of the trust graph represent web pabisthe edges represent hyperlinks

between pages. Because each hyperlink is symmetric, tightvan any given edge from a vertex

uis given byw(u,v) = Wgree(u) where out-degree(u) is the number of edges (hyperlinksijrig
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u. By definition, this results iry {_; w(vi,vj) = out-degreév;) 7=1,50 the weight vectors

Ut degieen)
are properly normalized. Under the random-walk interpi@teof this algorithm, the random walk
has an equal probability of transitioning to any of the nbiyls of a given vertex.

PageRank also introduces a dampening fadtowith probability d, at each step the random
walk pauses at its current state. If wedgtbe a vector pﬁ, ..., Pr) where pL represents the proba-
bility of the random walk being at nodefterk time steps, we can represent the transition function

for this walk as follows:

K= (1-d)Tx 1 +dxa

Finally, if the random walk reaches a node with no outgoinggdj PageRank randomly jumps
to another node in the trust graph with uniform probability.

EigenTrust

The EigenTrust algorithm as originally described by Kanetzal. in [15] is very similar to PageR-
ank in that it involves computing the stationary distribuatiof a random walk over a trust graph.
However, it uses more complicated edge weights than PageReBigenTrust, the weight/(v;, vj)

is the difference between the number of positive and negatteractions between individual agents
in a peer-to-peer network. These weights are then normbsﬁzahatz?:lw(vi,vj) =1. Thisisin
some sense more appropriate for this setting because itreapinore of the available trust infor-
mation: there can be multiple download/upload interastiort just the existence or absence of a
hyperlink.

EigenTrust does not use a dampening factor in the random tvakt does use a random jump
factor . The difference with PageRank is that EigenTrust jumps baekrandom pre-trusted node
rather than to a random node in the network. More formaltypte (ps, ..., pn), wherep; is the prior
probability of randomly jumping to verte. The global trust vectax is updated by the following
process:

%= (1-PB)Tx-1+Bp

wheref is a suitably chosen probability between 0 and 1.

The motivation for using pre-trusted nodes rather thanoandodes is to improve the incentive-
compatibility properties of the algorithm. The authorsusrdghat PageRank is more susceptible to
sybil attack because by creating a large number of sybilsiadealicious attacker can control where
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the random walk jumps to. However, assuming the existenpeesfrusted nodes is unsatisfying; it
is unclear where such pre-trusted nodes originate, and li@sytstem guarantees that no malicious

nodes are included.

(@)

Figure 2.3: (a) Given this simple unweighted trust graphgdRank returns [0.39,0.21,0.40] (b)
After adding a single sybil and cutting his outlink, agent tzacges the PageRank vector to
[0.11,0.41,0.08,0.39] (c) If agent 2 is allowed to add ariteaty number of sybils, its PageRank
goes to 0.5 while the PageRank of every other node goes to 0.

Bianchini et al. [7] have shown that the optimal sybil manipulation for a nadender the

PageRank algorithm is to create sybil nodes in a star foomati

Theorem 2. (Bianchini et al.) Given any trust graph G, vertices,v;, and for any manipulation
o resultingin G=G | o,
fi(G/,Vj) <05

Proof. (sketch) For the PageRank reputation system, the optimal manipualdétir a given node:
is to createN sybils, whereN is as large as possible. Each sybil links to nadandu links to each
of its sybils. Furthermorey cuts all outlinks to non-sybil nodes.

Any random walk that reaches either nader any of its sybils cannot escape, and hits node
on every other step. Thus, in the limit Bs— oo, the stationary probability af approaches.8.

If a nodeu has a PageRank greater tha®, & [X; = u] > 0.5 which implies thaP (X1 = u|X =
u) > 0, so there must exist a self loop franback to itself; however, this is explicitly disallowed by
construction.

Therefore, (b is the optimal PageRank manipulation. O

This manipulation extends naturally to analyses of othgemiector-based algorithms like
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EigenTrust. Figure 2.3 illustrates the sybil attack on tagdRank algorithm: even a single sybil
can greatly improve the reputation of a malicious node.

Thus, PageRank and EigenTrust do not satisfy rank-strategfness nor value-strategyproofness;
by applying this manipulation an agent can raise both thelatesreputation and the relative rank
of a given node. In fact, work by Cheng and Friedman [9] hasided the increase in ranking that

is possible under PageRank given a fixed number of sybils.

2.5.2 Hitting Time Reputation

In 2007, Sheldon and Hopcroft [23] proposed a manipulatésistant reputation system based on
the hitting time of a random walk over a trust graph. Thisaystdescribed more formally below,
builds on the PageRank reputation system by creating armankhich is close to the PageRank
ranking, but is value-strategyproof against sybil attadkecause it privileges a set of pre-trusted
nodes, this algorithm is asymmetric in nature.

Defining the hitting time algorithm first requires a definitiof the hitting time of a node
under a kind of random walk on a trust gra@h= (V,E,w). Define a starting distribution; the
starting node is chosen randomly from this distributioneéth step, with probabilitgr, the random
walk jumps to a node chosen randomly from the starting tistion g. With probability 1— a, the
random walk randomly follows an outgoing edge of the currentte. Because the parametecan

vary, | refer to these random walks agandom walks. More formally,

Definition 2.5.2. let (X )i>0 be the sequence of nodes visited by this walk. TREXy = V) = q(v)
and

aq(v) + -—=9__ if (uv) eE
P(Xt _ V|X[_1 _ u) _ CI( ) out—degreéu) ( )

aq(v) if (uv)¢E
The definition of ana-random walk is analogous to the model of the random surfehén
PageRank algorithm. However, where the PageRank algouites the stationary probability of
the random walk as the reputation of each node, this algorittuses on the hitting time of each
node.

Definition 2.5.3. The hitting time of a nodev is H(v) = min{t : X; = v}, E[H(Vv)] is the expected

number of steps before a givenmrandom walk first arrives at node
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Definition 2.5.4. The jump timeof ana-random walk is given byl a geometric random variable
with parameten; J should be interpreted as the first time theandom walk jumps to a node from

the starting distribution instead of randomly following @aige from the current node.

Under the hitting-time based algorithm, the reputation nbdeu € V from the perspective of

nodev is the probability that a random walk on the trust graph tigthout randomly jumping.

Definition 2.5.5. Given a trust grapke, the reputation of node from v;’s perspective i (G,u) =
Pr(H(u) <J)

Because] is simply a geometric random variable, the reputation of éenactually correlates
closely with the hitting time of the node. Though this repioia system computes a single global
trust value for each agent, because it uses a predefineddistisbution q it can still be value-

strategyproof without contradicting Theorem 1.

(@) (b)

Figure 2.4: (a) The reputations under the hitting time atgor for this small graph approximate
PageRank: [0.39,0.21,0.40] (b) Adding sybils does nottsinahe hitting time for agent 2 because
the only way to get to the sybil node is to go through agent 2

The star-shaped PageRank manipulation is not effectiveruhe hitting time algorithm. Be-
cause sybils and other manipulations are only allowed tatereutlinks from malicious nodes, it is
impossible to shorten the path to nodeimilarly, agent cannot decrease its hitting time by adding
additional out-links (either to sybils or to other nodesgdngse before such outlinks are considered

the random walk must already have arrived.at
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Note that an agent can still improve its ranking in the systgnreducing the reputation of
other agents. It can do this by removing outlinks to higlegmtation nodes, thus lengthening
the hitting time by forcing random walks to take alternatéhpa Thus this does not satisfy rank-
strategyproofness. However, Shelden and Hopcroft aretabb®und the effectiveness of such

manipulations:

Theorem 3. (Sheldon and Hopcroft) Under the hitting time algorithm, nodeaV cannot surpass
a node we V that is at least twice as reputable: i.e., given any margpah o and any trust graph
G,let G| 0=G. Thenforally,

2fi(G,u) < fi(G,w) = fi(G,u) < fi(G,w)

This result is interesting because it ties together valad-rank-strategyproofness. Under the
hitting time reputation system, a node which is twice as t&pe as another node (on an absolute,
value-based scale) cannot be surpassed in rank by the \@hezd node. We will use this result
later to show desirable incentive compatibility propestaf a hybrid hitting-time / shortest-path
algorithm.

However, the design of this reputation system is troubliaganse of the initial pretrusted dis-
tribution g. It is unclear how one would find and designate such preddusbdes, and how one
would verify that no pre-trusted node was malicious.

Asymmetric hitting-time based algorithms, which genegrald not depend on the existence of
such an initial distribution, have also been defined andistuth the literature [5]. Like in the
symmetric hitting-time mechanism, the reputation of ageistequal to the probability that certain
a-random walks hit node before jumping. However, under asymmetric hitting-timgoaithms,
only random walks which start from nodgare considered when computifigG, u) = Pr(H;(u) <
J), whereH; (u) = min(t : X; = u, Xp = ;).

This asymmetric hitting-time algorithm can be shown to blueastrategyproof but not rank
strategyproof; the argument proceeds analogously to thaf for the symmetric hitting-time algo-

rithm.
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2.5.3 Maxflow-based Algorithms

Another family of reputation system which is value-strgf@gof is the asymmetric maxflow-based
family studied by Cheng and Friedman [8] and Altmainal. [4] from an axiomatic incentive-
compatibility perspective. To understand this reputasgatem it is necessary to define what is
meant by the flow through the graph.

Definition 2.5.6. Define a flow flow(v;,v;) between a sinkj and a source; in a trust graph
G = (V,E,w) to be a mappind : E — R satisfying the following properties:

1. forallec E, F(e) <w(e)

2. for anyveV, letl(v) = {(u,v) € E:ueV} be the set of incoming edges and @tv) =
{(v,u) € E:ueV} be the set of outgoing edges. Theg ) F(€) = Jecon F(€)-

The first condition is a capacity constraint; it ensures thatflow across any edge does not
exceed the capacity of the edge. The second condition is afiogtraint; the flow entering a vertex
must be equal to the flow leaving a vertex. In order to definetwh@maximum flow through a
graph is, define the value of a flow as follows:

Definition 2.5.7. Let I(v) = {(u,v) € E:uc V}. The value of a flowflow(v;,v;) is defined as
Zeel(vi) F(e)

This is exactly the flow leaving the source vertex, and woddequivalent to the flow entering

the sink vertex.
Definition 2.5.8. The maximum floaMF (v, v;) is the flow of maximum value betweenandy;.

For more information about maximum flow algorithms, see arefce book such as [10].
The maxflow reputation system sets aggrd reputation as viewed from agewtc V to be the

value of the maximum flow from; to v;.

Definition 2.5.9. Given a trust graplG and verticesv;,vj, the maxflow reputation system sets
fi(G,vj) = MF (v, V).

The intuition behind this system is that each trust relatidm from agent to agentj is indicative
of the maximum amount of trust or utility that agentould lend to agenj; thus, when consid-
ering any path in the trust graph between two agents, thdeshaleight (smallest capacity) edge
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'@

(@) (b)

Figure 2.5: (a) Under the max-flow system, the reputationgeh& 2 from agent 1's perspective is
1, while the reputation of agent 3 from agent 1's perspecéti@because of the direct path from 1
to 3 and the indirect path from 1 to 2 to 3. (b) Maxflow is not raykilproof because by removing
the link to agent 3, agent 2 causes the reputation of ageon3digent 1's perspective to drop to 1,
making the agents tied in rank.

determines how much trust the path contributes. Mokiual. [17] demonstrate that the maxflow
reputation system falls out naturally when modeling a beimg game on a social network.

This algorithm is value-strategyproof. To see this, coasi trust graplc = (V,E,w), and
arbitrary agentss,v; € V. The reputation ok; from vi’s perspective isfi(G,vj) = MF(v;,V;).
Playing a sybil strategy cannot increase the maximum flow&env;, v; (and thus cannot increase
the reputation of agent;) because no links can be added to the sybil nodes from nockdgl
in the trust graph, and so no additional flow can be sent thrdlg sybils. Alsoy; misreporting
its outlinks cannot increase the maximum flow, because amydtossing an edge leaving must
already have entereg.

However, the maxflow algorithm is not rank-strategyprobfs possible for an agento remove
an outlink to an agenj with higher reputation. This potentially lowers the repigta of agent;,
increasing the relative ranking of agentA simple example of this manipulation can be found in

Figure 2.5.
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2.5.4 Shortest-Path Algorithms

Finally, the asymmetric shortest-path algorithm, desctiim detail by Altman [4], deserves mention
as both the simplest and the most manipulation-resistantagon system. Given a trust gra@h
let SAvi,v;) denote the length of the shortest path between agermtsdv;. In the unweighted
edges setting, this is simply the number of hops betwgandv; on graphG.

Definition 2.5.10. For a given trust grap, the asymmetric shortest-path algorithm sets aggst

reputation as viewed from agewte V to be fi(G,v;) = SP(+IVJ)

Intuitively, we should trust an agent which is 5 steps awag lhan an agent we have a direct
trust relationship with.

The difference between our definition and the definition ef$hortest-path reputation system
due to Altman is that Altman never defines the reputationesfmran agent, instead working directly

with the relative rankings of the agents. Under his definitibthe shortest-path system,
SPVv;,u) < SAV;,V) & u<Cv

It is simple to verify that the function we have chosen fdiG, v;) satisfies the above property.

Figure 2.6: The reputations of agents 2 and 3 from agent t&ppetive are 1/2 and 1, respectively.
Agent 2 can do nothing to increase his reputation by addingn&s, because by the time the
shortest path algorithm considers outlinks from agent 2istalready have arrived at agent 2.

This algorithm is rank-strategyproof in addition to beirague-strategyproof. Itis value-strategyproof
because an ageftannot change the shortest path from agémi by either creating sybils or mis-
reporting outlinks; the path must already have arrived anhagbefore it can include outlinks or
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EigenTrust directed | [0,1] symmetric no

PageRank directed | {0,1} symmetric | no

Hitting Time directed | {0,1} both value-strategyproof
Max-flow both {0,...,G | asymmetric | value-strategyproof
Shortest Path both {0,1} asymmetric éigjrio?nd rank  strate-

Table 2.2: This table summarizes the properties of therdiffiereputation systems we have dis-
cussed in this chapter. Directed? refers to the use of dilegs. undirected edgeB, is the set
from which edge weights are drawn. As we move from top to Inotteve tend to find asymmetric
reputation systems with better incentive-compatibilitpperties.

edges to sybils.

By misreporting edges, an ageintan potentially decrease the reputation of other agenta- Ho
ever, if the shortest path from ageartb agentk goes through agerijt then the reputation of agent
k must be strictly less than the reputation of aggifthe length of the shortest path is at least 1
greater). Thus, agentcannot decrease the reputation of any agents which arerhighenk, and
S0 cannot improve its reputation score. See Figure 2.6 fonple example.

2.5.5 Summary

Table 2.5.5 summarizes the setup and approaches used fgringaeach of the reputation sys-
tems discussed thus far, as well as the incentive comptipiioperties. As we move from top to
bottom, we tend to find asymmetric reputation systems withdgacentive compatibility proper-

ties. However, we also move from algorithms which potelytiabe every edge in the trust graph
to algorithms which use very few edges (shortest-path)s frbend gives motivates our definition of

informativeness: how much information does the reputagigsiem make use of?

2.6 Informativeness

We wish to find a metric which tells us how accurately our rapfah system predicts true types
6;. This measure is useful because the more information outagpn system takes into account,
the better the predicted reputation scores, which resulbeiter decisions and higher utilities for



CHAPTER 2. MODELING REPUTATION 35

PageRank / EigenTrust

Hitting Time value-strategyproof ) .
. Incentive Compatibility
Informativeness
Max Flow
Shortest Path rank-strategyproof

\J

Figure 2.7: This summarizes the tradeoffs between infduera¢ss and incentive compatibility. In-

centive compatibility properties get better as we go fromttobottom: the shortest-path algorithm
has the best incentive-compatibility properties. On theohand, as we go from bottom to top the
reputation systems take into account more information ath@ustructure of the graph.

the users. Thus, our new informativeness metric may act @s/gor approximating economic
efficiency, which is still our overriding standard when inges to evaluating reputation systems.

The intuition for this metric comes from the observationt th& shortest-path based reputation
system ignores most of the information contained in the gytegph. Two agents that are a distance
2 away from a given node have the same reputation, even if one agent is connectedl dthat
agents that are a distance 1 away frgmvhile the other agent is connected to just 1 other agent a
distance 1 away froma. As we move from the shortest-path system to the maxflow syated then
the eigenvector-based systems, we take into account mdreare of the trust graph information.
This is desirable because trust information is being prapatymore quickly across the network,
leading to fewer instances of abuse. But as more of the traghgs taken into account, incentive
compatibility properties are lost. As shown in Figure 2Li& shortest-path system is in some sense
the “most” incentive-compatible (rank-strategyproof)aiflow algorithms are value-strategyproof,
while hitting time algorithms are merely “resistant” to niyaulation.

Unfortunately, like economic efficiency, informativendssa difficult metric to formalize; we
choose to deal with it in an empirical fashion through sirtiataof a real problem domain. How-
ever, our metric is still general enough to allow multiplésting reputation systems to be compared
on the same scale.

Definition 2.6.1. (Informativeness)Given a trust grapl, a set of agent§v, ..., v, } with types
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{01,...,6n}, define the informativeness of a reputation sysMrasl = 31, 57_; (fi(G,vj) — 0;)?

Since each agent in the system is given a type which detesntiveeprobability of malicious
behavior, the measure of a reputation system’s informagise is the squared error between an

agent’s real type and its predicted reputation score.



Chapter 3

Hybrid Reputation Systems

This chapter presents the novel theoretical contributmithis work. The first idea is a way of
combining two different reputation systems into a hybrigutation system. | then demonstrate
several incentive-compatibility properties of the resgjtsystems.

Since there are reputation systems like PageRank whicmfangriative and economically effi-
cient but possess poor incentive-compatibility propertad reputation systems like maxflow with
poor informativeness and efficiency properties but gooéntige-compatibility, a natural thing to
do is to take a convex combination of an agent’s reputatioresender different reputation systems.

3.1 Theoretical Properties of Hybrid Reputation Systems

Definition 3.1.1. The a-hybrid of two reputation systemlgl; and M5 is defined as a reputation
systemMq (M1, My): given a trust graple = (V,E,w), let f1(G,v;) denote the reputation of node
vj €V fromy; € V's perspective under reputation systéfy, and Ietfiz(G,vj) be similarly defined

for M2. The reputation of; from v;'s perspective undeviy (M1, M>) is given by
f4(G,w) = af(G,vj) + (1—a) f4(G,v))

There are a few issues related to normalization when comdpiabsolute reputation scores in
this way. Most of our reputation systems.q.,PageRank) output reputation scores in the range
[0,1], but maxflow could output flows in the ran¢@ 10|, [0,1000, etc. Combining maxflow with
another reputation system in a naive way clearly biasesethdtmg hybrid.

However, the raw reputation scores are meaningless; a maxiftow of 50 on one trust graph

cannot be compared to a maximum flow of 1000 on another graphly e relative ranking

37
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amongst agents is significant. Thus, we are free to normddzeutput of the maxflow algorithm
to fall in [0,1]. If we letM denote the maximum capacity of any edge, #ajddenote the number
of edges, the maximum flow between any pair of vertices is dedrabove by |E|. Whenever we
use the maxflow reputation system in a hybrid system, we cemalize the output of maxflow to

lie between0, 1] by divide the raw reputation scores outputMyE|.

3.2 Theoretical bounds

There are a few simple bounds on the incentive compatilglitperties of certain hybrid reputation
systems that can be rigorously demonstrated. These boandseanore sophisticated the more that
is known about the reputation systeivig andM,.

3.2.1 General properties

It is reasonable to expect certain properties to followdliyeif M; andM, possess the same strat-
egyproofness propertiesi.g., , if M1 and M, are both value-strategyproof we expddy to be
value-strategyproof as well.

Lemmad. If M; and M, are value-strategyproof on all trust graphs G, thep M value-strategyproof
on all graphs G.

Proof. This follows from the value strategyproofness\f, M». For given nodes;,v;, under any
manipulationG’, neither the contributions from the first nor the second ammept of f*(G',v) =

a f1(G,vj) + (1—a) f2(G,v;) can increase the reputation scorevof O

However, the analogous lemma does not hold for rank-styptegfness. The proof (by coun-

terexample) provides intuition for an additional conditithat is needed.

Lemma 5. If M1 and M, are rank-strategyproof on all trust graphs G, then, M not necessarily

rank-strategyproof on all graphs G.

Proof. By counterexample.
Assume a trust grap® with two agents, 1 and 2. There is a link from agent 1 to agent 2.
Reputation systerivl; assigns a reputation of 1 to agent 2 and a reputation of 0 ot dg@nd
all other agents). This is trivially rank-strategyproof.
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Node 1's Reputation: Node 1’'s Reputation:

0.5*0+0.5*1.5=0.75 0.5*0+0.5*1.5=0.75

-

e Node 2’'s Reputation: Node 2's Reputation:

e 0.5*1+0.5*1=1.00 .7 0.5*1+0.5*0=0.50

() (b)

Figure 3.1: counterexample for Lemma (5). (a) On the leftharee the normal reputation values
underMj, M2. Note that agent 2 has a repuatation lower than that of agentiérM,. (b) On the
right, agent 1 has cut the link, and so agent 2’s reputatiorestontribution frormv, drops to 0.

Reputation systerivl, assigns a reputation of 1.5 to agent 1, and assigns reputatmagent 2
if an edge exists from agent 1 to agent 2 and reputation Owiber This is still rank-strategyproof
because agent 1 has no agents ranked higher than it, andZaggmtot affect the final ranking.

Now, fora = 0.5, agent 1 has reputation/® while agent 2 has reputation 1. If agent 1 removes
the link to agent 2, then agent 2's reputation is lowered.5o &hd agent 1 becomes ranked higher
than agent 2. See Figure 3.1 O

This counterexample is possible because there is a faifurmootonicity betwee; andM,:
because the relative rankings of agent 1 and 2 are differetgrivi; andM,, lowering the reputation
of a lower-ranked agent can cause rankings to flip under thpositeMy. So, if it is known that
the relative ranking undevl; is the same as the relative ranking untier, then the theorem about

rank-strategyproofness theorem does hold.

Lemma 6. If My and M are rank-strategyproof on all trust graphs G, and for allw, vk fil(G,Vj) <
f1(G,w) & f2(G,vj) < f2(G,w), then My is rank-strategyproof on all graphs G.

Proof. Given any trust grapl& and any agent;, consider two agents,w. WLOG assume that
underMgy U < w.
If we had thatf}(G,u) > f1(G,w), by the monotonicity conditiori?(G,u) > f2(G,w). Taking
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convex combinations of these, we have
aft(G,u)+ (1—a) fZ(G,u) > af(G,w) + (1—a) fZ(G,w)

and theru =i u, a contradiction.

Therefore, bothf}(G,u) < f1(G,w) < u <!t wand f?(G,u) < f?(G,w) < u <2 w. Since both
M; and M, are rank-strategyproof, under any manipulat®s.t. G' = G | o we must still have
f1(G,u) < f1(G',w) and f?(G',u) < f?(G',w), so under the hybrid system

af1(G,u)+ (1— o) f3(G,u) < a f1(G,w) + (1—a) f2(G,w)

and we haves <; w as desired. O

Finally, if M; is rank-strategyproof whil#, is not, it should not be surprising thity is not

necessarily rank-strategyproof.

Lemma 7. If M1 is rank-strategyproof but Mis not rank-strategyproof on all trust graphs &

(V,E), then My is not necessarily rank-strategyproof.

Proof. This follows from the fact thai, is not rank-strategyproof: léfl; be the trivial reputation
system that assigns a score of 0 to all agents. The repwatiotwo agents, | are now entirely
determined byl,, and sinceM; is not rank-strategyprod¥l, cannot be strategyproof. O

A similar lemma holds for value-strategyproofness:

Lemma 8. If M is value-strategyproof but plis not value-strategyproof on all trust graphs=6

(V,E), then M, is not necessarily value-strategyproof.
Proof. Similar to the above lemma. O

Finally, the equivalent lemmas exist for tlserank ande-value-strategyproof concepts from
Chapter 2.

Lemma 9. If My is g;-value-strategyproof and Mis e»-value-strategyproof on all trust graphs
G = (V,E), then ife = €1 + €2 M4 is e-value-strategyproof.
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Proof. This follows from theg;-value-strategyproofness df;, M,. For given nodes;,v;, under
any manipulatiorG’, we have

f1(Gyv))+er < fHG,v))
f2(G,vj) +e2 < fA(G,v))

= aft(G,vj) +agr+(1-a)f2(G,v)) +(1-)ex < aft(G,vj)+(1—a)fA(G,v))
f1(Gvj) +ae1+(1-a)ez < f7(Gv))

Sincea is at least 0 and at most 1, the constant term is boundeg} #ye,, so this ise-value-

strategyproof. O

Lemma 10. If My is g;1-rank-strategyproof and Mis €p-rank-strategyproof on all trust graphs

G = (V,E), then M, is not necessarilg-rank-strategyproof iE = €1 + €.
Proof. Seteq,€,=0 and apply Lemma 5 O

Lemma 11. If M; is g;1-rank-strategyproof and Mis €p-rank-strategyproof on all trust graphs

G = (V,E), if e = €1+ &5, and the following monotonicity condition holds
Wi, Vi, ik, TH(G,V)) < FH(G, W) & 12(G,v)) < T2(G, W)
then M, is e-rank-strategyproof
Proof. This proof proceeds similarly to Lemma 9 O

The last few lemmas are interesting because they allow ukam tybrid reputation systems
together; our hybrid algorithms generally end up with axethstrategyproofness formulation, so
this lets us combine twe-value strategyproof hybrids.

We can now pick any two existing reputation systems (pravitteey are normalized to out-
put reputation scores in the ranffel]) and combine them using tleehybrid technique outlined
in Definition 3.1.1. There are however two reputation systerorids that illustrate interesting
incentive-compatibility properties and deserve specialysis: first, the PageRank/normalized
maxflow hybrid reputation system g&value-strategyproof; second, the hitting-time/shd+pegh
hybrid reputation system gsrank-strategyproof.
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3.2.2 Theoretical Properties of the PageRank/Maxflow Hybd Reputation System

Let Mpagerandde the PageRank reputation system, andVighxrow be the maxflow reputation sys-
tem. LetMq (MpagerankMmaxfiow) b€ thea-hybrid of MpagerankMmaxfiow- MpagerankS neither rank-
nor value-strategyproof, whilélmax-fiow iS Value-strategyproof but not rank-strategyproof.

By immediate application of Lemma 4 abow, is not necessarily value-strategyproof. How-
ever, using specific information about PageRank and max-flogan be shown that the relaxed

form of value-strategyproofness appliesMg (MpagerankMmaxfiow)-
Theorem 12. My (MpagerankMmaxfiow) IS 0.50-value-strategyproof on all trust graphs6(V,E, w).

Proof. SinceMpmaxiiow IS Value-strategyproof, an agemtannot improve its reputation score from
agenty;’s perspective in the contribution froMm,axsow Under any manipulatioo. If we let G’ =
G| o,

(1_ G) fimaxﬂow(G/’ U) < (1 - G) fimaxfIOW(G’ U)

By Theorem 2, the optimal manipulation fdMpagerankCannot increase the reputation score
of any agentu above 05 (this involves creating an infinite number of sybils linfiback to the
manipulating node). For any such nagleghe increase in reputation contributed Mpagerando the

final reputation under manipulatianyieldingG' =G | g is
af9eREG ) — o £P29°Ra%G 1) < a(0.5— 0) = 0.5
Rearranging and summing these equations yields
afF9eRANEG ) 4 (1— o) £ G )+ 0.50 > o fF9RANG U) + (1— o) fm@fow ! y)
fi(G,u) +0.50 > fi(G/,u)
which is the definition of ba-value-strategyproof O

This is the type of relationship that was expected: by gfdng the incentive compatibility
tradeoff as a function ad, it is possible to gradually improve the incentive-comipitity properties
of this reputation system by decreasiag If it can be shown that informativeness increases as
increases, there may exist an optimal value athich trades off the “right amount” of incentive
compatibility for informativeness.
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3.3 Theoretical Properties of the Hitting-Time/ShortestPath Hybrid

Reputation System

The previous hybrid reputation system demonstrated howevsirategyproofness can be quanti-
fied. Itis also possible to create a hybrid reputation systetim rank-strategyproofness properties.
Let Mhiting be the hitting-time based reputation system, andighestbe the shortest-path based
reputation system. Le¥lq(Mhiting, Mshortes) be thea-hybrid of Myiting, Mshortest MshortestiS rank-
and value-strategyproof, but intuitively appears to useldast information about the trust graph.
Mhiting IS in SOMe sense as informative as PageRank, but retaires-stihtegyproofness. Thus, itis
reasonable to expebty might have better incentive-compatibility propertiesrtiviing and better
informativeness and efficiency thdfnortest
By immediate application of Lemma 4 and LemmaM, is value-strategyproof but not nec-

essarily rank-strategyproof. But, like the PageRank-noaxthybrid, an additional result can be

shown using the relaxed form of rank-strategyproofness.
Theorem 13. Mg (Mhitting, Mshortesy IS a-rank-strategyproof on all trust graphs & (V,E,w).

Proof. Given a trust graplks, an agent’s reputation from agent’s perspective undevl, has two
components:
fi(G,u) = af"™(G,u) + (1— a) f""S{G, u)

Since MghortestiS rank-strategyproof and value-strategyproof, for angrag and under any
manipulationo yieldingG' = G | o,

fiShorteSEG,U) < fiShorteSEG,V) = fishortesEG/’u) < fishortesEG/’V) (3_1)

For the hitting time componnet of the reputation, by Theo@nunder any manipulatioo
yielding G’ = G | g, agentu cannot surpass an agemtwhose reputation is twice that of agant
More formally,

Multiply the above relation by to get:
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Next, multiply equation (3.1) byl —a) to get
(l— G) fishortesEG’ U) < (l— G) fishortesEG’ V) - (l— G) fishortesEG/’ U) < (l— G) fishortesEG/’V) (3_3)
Finally, we sum equations (3.2) and (3.3) to get:

20 fM™9(G,u) + (1— ) fOeStGu) < af™MY(G,w) + (1 - a) FNOESt G, w)

—~q fihimng(G', U+ (1— o) fishortesEG/7 u) a fihitting(G/,W) f(1-a) fishortesEG/’ w)

A

or alternatively,

(Xfihitting(G, U) + fia (G,U) < fiu (G7W)
= f%(G,u) < 9(G,w)

Since hitting time reputation is a probability on a randoragdy, for anyG fihit“”g(G, u) <1.

Plugging this into the above equation yields the relation
o+ fiu(G> U) < fia(G>W) = fia(G/>u) < 1:ia (G,,W)

which is exactly the definition afi-rank-strategyproofness. O

Again, this relationship allows incentive compatibility the My reputation system to be ad-
justed. Depending on the informativeness properties sfalgorithm under different values af

there may exist an optimal tradeoff between incentive-ctibpity and informativeness.



Chapter 4

Experimental Results

Next, we empirically analyze the informativeness and eoauoe@fficiency properties of the shortest-
path / hitting time hybrid reputation system in the probleomain of peer-to-peer file sharing. Our
goal is to show that the informativeness metric is closelsteel to the economic efficiency of the

system.

4.1 Experimental Setup

Following the model of the Eigentrust paper [15], for the giations we created a model of a file-
sharing system with a collection of well-behaved agentsidiwialways exchange authentic files)
and a collection of malicious agents which share inauthdiiis with some probability.

We model this by initializing each agent with a type which determines the probability of
sharing inauthentic files. Well-behaved agents havel, while malicious agents were initialized
with some probability of sharing inauthentic filgsc [0,1]. The profile of malicious agents is
generated once for each set of test parameters and shaosg ddferent initial graph topologies.
This serves to reduce noise. Information on the structuteehetwork is drawn from real-world

studies of such networks and will be discussed in the nexiosef22, 16].

4.1.1 Graph Topology

Real peer-to-peer networks display a power-law degreeildision with a few highly connected
nodes and many poorly-connected nodes [22]. To create stieahodel of the structure of a

peer-to-peer graph, | used the preferential attachmenehgsele [16]) to construct graphs that obey
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power-law-like degree distributions. Starting with a pafinodes that are connected to one another,
new nodes are incrementally added. Each new node is codriecexactly one of the old nodes.
The exact node it is connected to is randomly chosen, whergribbability of choosing a given
nodev is equal to the indegree efdivided by the number of edges in the graph. This makes it more
likely for nodes with large numbers of edges to become mabkljiconnected.

This graph defines the initial topology of the network. As imulation progresses, and as
agents interact with one another, the degree distributidheograph will change. This process is

dependent on the decision framework used by the individgeihts.

4.1.2 Decision Framework

At each time step, with constant probability, an agestiooses to download a file. A random set of
responding agents is chosen from the set of all agents. Agefiten calculates the trust value of
each agent it using the reputation system being tested.

We initially tested two different rules for determining wher an interaction takes place. The
first rule is the deterministid-greedy rule § = 0.1). Under this rule, an agent chooses to download
from a random responding agentvith probability d. This helps agents discover new connections
on the trust graph. With probability-1, the agent downloads from the highest-reputation agent
that responds (note that the reputations all ligiri]).

The second rule is the reputation-weighted-random detisite. Under this rule, the proba-
bility of interacting with any of the responding agents isigited by its current reputation score.
Agents which have not been interacted with previously arerga default probability of .Q0, after
which the probabilities are normalized. Agents with higreputation are more likely to be chosen
for download.

Preliminary tests of the dynamics of this indicated thatdrgreedy update rule more appro-
priately maintained the structure of the peer-to-peer agtwso all simulations were run with the
o-greedy rule. Appendix A has a brief word about the prelimjrtasting.

If agenti chooses to interact, and aggnis malicious, agenj sends an inauthentic file with
probability p;.

Following the interaction, agemtapplies an update rule to the trust graph. If a malicious file
was sent from agent agenti severs its link entirely with agerjtif one exists. If a good file was
sent, agent creates a link tg if one did not already existi.€., if this occured through random

exploration). This grim trigger update rule is severe ardi$eto fast isolation of malicious nodes.
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4.2 Measurements: efficiency and informativeness

The measure of economic efficiency falls out naturally infileesharing domain: use the ratio of the
number of authentic files versus inauthentic files exchamyed the network. This is appropriate
as a measure of general social welfare because it aligngh@tpurpose of the filesharing network
— allow users to transfer files quickly.

For informativeness, agent types are determined by theapiiity p of sending a malicious file.
For each reputation system, the final reputations of eaaft age normalized so that the agent with
the highest reputation has a reputation of 1. This ensugdstl range of the reputation system
coincides with the possible agent types. The informatigermaetric is the mean squared error
between the reputation score for each agent and the typecbfasgent (more precisely, since the
reputation system is asymmetric, | compare the reputatioredor each agent from the perspective
of every other agent against the true type).

4.3 Experimental Results

These tests were run on a system with 50 agents for 100 tipgeste varied both the weighting
factor of thea-hybrid reputation system € {0.0,0.1,...,1.0} as well as the proportion of malicious
agent$3 = {5%, 10%, 20% 40%}. Because of the stochastic nature of the simulations 116 wiere
run at each combination ofandf and the data averaged across these trials. To further redis=s
ten different random initial graph topologies were gerestainder each graph generation method
and reused.

For each trial the data gathered includes the efficiencyringeof authentic files transferred as
well as the informativeness, calculated according to Didimi2.6.1 as the mean-squared-error be-
tween actual types and reputation score. The followinglt®show MSE and authentic/inauthentic
ratio for different proportions of well-behaved vs. mabigs agents and different valuesoofa = 0
corresponds to the pure shortest-path algorithm, wiie 1 corresponds to the pure hitting time
algorithm. These tests were all run using graphs generaitbdawpreferential attachment model,
using thed-greedy decision rule and grim-trigger update rule.

Figure 4.1 (a) shows an interesting trend. The mean squeave &arts out high under the
shortest-path reputation system and drops as it moves devthe hitting-time algorithm (Note:

since mean squared error is being graphed, the lower theteeranore informative the algorithm
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Figure 4.1: (a) Mean squared error (informativeness) aftiening the simulation for different val-
ues ofa (b) Number of authentic files (measure of efficiency) tramsfit over the course of the
simulation. Standard error bars are plotted.

is). This is the expected result; since the hitting-timeutapion system takes more information
about the trust graph into account than the shortest-patiersy we expect to see informativeness
increase as increases and more weight is put on hitting time.

It is also interesting that informativeness appears to be@miaed somewhere in between the
pure hitting time and pure shortest-path algorithms, with 0.9, but this pattern falls within stan-
dard error. One possibility direction for future work is @stigating whether the optimal informa-
tiveness does indeed occur somewhere betweerd anda = 1.

There is a similar pattern in the efficiency ratings of thdedént algorithms: both the hitting
time and shortest-path algorithm perform worse than theitiigation of the two when the propor-
tion of malicious agents is sufficiently largee(,whenr = 0.2 orr = 0.4).

This is a promising result: as informativeness rises, s@ dbe economic efficiency of the
reputation system. However, since efficiency is alwaystively high, the trend is not entirely
compelling.

The data for the graphs generated under@g model is shown in Figure 4.2. These tests
also used thé-greedy decision rule and grim-trigger update rule. Thotnghdata is noisier, the
same general trends apply: @sncreases, and as informativeness increases, we see aasadn

efficiency as well.
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Figure 4.2: (a) Mean squared error (informativeness) aftiening the simulation for different val-
ues ofa (b) Number of authentic files (measure of efficiency) tramsfit over the course of the
simulation.

4.3.1 Quiescence Tests

The first few timesteps of any simulation are generally doaas the reputation system slowly
converges towards the true reputations of each agent —nn@diices noise into the final data.
Instead, in general the metric is least noisy when evaluatethe steady-state behavior of any
given reputation system.

To this end, we developed the following empirical critertordetermine when a reputation sys-
tem has reached steady-state (quiescence): for eachweaygthty, compare the change in reputation
of agentv from agentw's perspective against a fixed threshodd< 0.1). If the change exceeds this
threshold, count it as an absolute change. Finally, contpetaverage number of changes from one
round to the next. When this dips below another threslidle 0.005), we assume the system has
reached a steady-state.

From the steady-state, the simulation is then run for a ipdchumber of time-steps. The
following simulations were run with 50 agents for 50 tim@stafter quiescence. Each trial consisted
of 5 separate and independent runs.

The general trends under the quiescence tests closelyriigroesults from the standard simu-
lation. These results are included primarly because thmelatd error (plotted as the standard error

bars) is considerably lower in both the informativeness etffidiency measurements. This gives
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Figure 4.3: (a) Mean squared error (informativeness) aftening the simulation as a function of
(b) Number of authentic files (measure of efficiency) tramsfit over the course of the simulation.

confidence that the trends observed in Figure 4.3 are not@dmuct of the randomness of the

process.

4.4 Informativeness metric evaluation

The informativeness metric | developed appears to effelgtimirror the economic efficiency met-
ric. As informativeness increases, the general trend igfficiency to increase as well. Though
more simulation is necessary for this to be convincing, #e that this result is robust under the
quiescence test and under different initial graph tope®gs highly suggestive.

As a side note, the informativeness metric is effective pasaing the relatively uninformative
shortest-path reputation system from the hitting time t&jan; the informativeness rises sharply
as we increase to bias towards hitting time.

4.5 Hybridization evaluation

The My construct is able to deliver different levels of informatiess in exchange for sacrificing
incentive compatibility. The results suggest that a lgcajptimal reputation system configuration
exists somewhere between our two chosen reputation syshetaesting questions for future work
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include testing different hybrid algorithms to see if wegoafgd locally optimal performance be-
tweena = 0 anda = 1.

This provides validation for the empirical approach: mynfafation allows for quantitative
predictions. Starting with a reputation system with knowoperties, it is possible to trade off
incentive compatibility in return for informativeness,daby extension economic efficiency. This
suggests interesting potential applications for this metin designing custom reputation systems.
By creating and tuning a-hybrid, we can creating a novel reputation system whichned for a

particular context.



Chapter 5

Conclusions

5.1 Summary

The overarching concern of a reputation system is to prowgdes with information that allow for
good decisionsi.e., economic efficiency. In order to do this, a reputation systenst be both in-
centive compatible (IC) and informative. Incentive conilpitity ensures that wasteful optimization
and manipulation of the reputation system does not occutewiformativeness ensures that each
agent has accurate information to make its decision. In @hdp we discussed past work in this
field which tended to focus on one of these reputation systeypepties over the othere., focus-
ing either on proving formal incentive compatibility praties or on evaluating the performance of
individual reputation systems.

One primary contribution of this thesis was recognizingtnesion between incentive compat-
ibility and economic efficiency, two desirable reputatigistem properties. As reputation systems
move towards stronger IC, they tend to become less efficithis trend motivated the definition
of a range of different incentive-compatibility concepiscluding value-strategyproofness, rank-
strategyproofness, and the nowetank ande-value-strategyproof relaxations, in order to better
characterize this inherent tradeoff. Reputation systekesshortest paths and maxflow satisfying
rank- or value-strategyproofness performed poorly in &itinn against reputation systems with no
IC guarantees. This pattern was revealed only after amg\moth the IC properties and the empiri-
cal performance of a wide variety of existing reputationayss, including shortest-paths, maxflow,
hitting time, and eigenvector algorithms.

In order to investigate the nature of the aforementionedioen we developed a method for
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trading off the incentive compatibility properties of a végtion system against informativeness and
efficiency properties. The-hybridization technique discussed in Chapter 3 allowdHercreation

of new reputation systems by taking a convex combinatiorwofdifferent reputation systems. If
chosen carefully, by adjusting the weighting paramatéris possible to tuned for informativeness
or IC. Following the model of Altman and others [4, 3, 24], virearetically characterize the IC
properties of our hybrid construct.

The next major contribution was the development of an infdiveness metric for reputation
systems which was empirically shown to correlate well whth €conomic efficiency of the reputa-
tion system. The intuition behind this is reasonable; ragior systems that use more trust graph
information to generate their reputation scores genesailyode more information about the trust
graph; this additional information gives the agents in tystesm a better chance of making socially
beneficial decisions. And because reputation systems &k insso many different contexts, it
is difficult to develop economic efficiency metrics which generalizable or even tractable. The
informativeness metric is simple in concept and enableBilsemparisons among many existing
reputation systems.

Our experiments under a peer-to-peer file-sharing domaweddo validate the informativeness
metric as both practically usable and as a good proxy forieffty. Using reasonably faithful
models of real peer-to-peer systems, we showed that boihftrenativeness and the efficiency of
the hitting-time/shortest-path hybrid increase dranadliicas we change the weighting faciorto
emphasize the hitting-time reputation system. This resufains robust under changes in the initial

graph topology and under steady-state quiescence testing.

5.2 A Recommendation System Application

Peer-to-peer networks benefit generally from the appticadif reputation systems; these benefits
are somewhat tangential to the primary contributions & thesis -.e., ways of measuring infor-
mativeness and ways of constructing informative reputasigstems. Recommendation systems,
however, offer a compelling application domain for this tor

Reputation systems in online systems are often accompagieystems for making person-
alized recommendations to end users. Systems like Amabmok-recommendation service or
NetFlix’s movie-rental service suggest new products thappers may enjoy based on their past

history of purchases. Because online retailers have irdtiam on the purchasing patterns of so
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many different buyers, they can make well-informed sudgestthat customers are willing to in-
vestigate. There is real financial incentive to construeséhsystems properly; recommendations
can uncover material that customers are willing to pay fardid not know existed.

While much of the existing literature on recommendatiortesys is based on collaborative fil-
tering techniques, work by Andersen, Chageal. [5] has investigated building a recommendation
system on top of an existing trust graph, leveraging therinégion contained in social relation-
ships. Following Andersen’s modelvating networkis built on top of an existing trust graph by

annotating a subset of nodes with “votes” (eitheor —).

Definition 5.2.1. (Voting Network) A voting network is a directed, annotated grapk- (N,V,,V_,E)
whereN is a set of nodesy,,V_ C N are disjoint subsets of positive and negative voters, and
E C N x N is a set of edges. L&t =V, UV_ denote the set of voters, and \{ét= N V denote the

set of nonvoters.

Definition 5.2.2. (Recommendation systemiven a voting networkG and a specific nonvoter

seV’, arecommendation system outputs a recommend&i&ys) € {—,0,+}.

The authors state and prove axioms characterizing seviffeakdt recommendation system al-
gorithms. However, under the above formulation, | will dersivate that a recommendation system

problem can be reduced to a standard reputation systerrepmobl

Definition 5.2.3. (Recommendation-reputation reduction)iven a voting networks = (N,V,,V_,E),
define its reputation-reduction trust graBh= (NU {—, +},E UEr,w) wheree= (n,—) € Er iff
neV,,ande= (n,+) € Er iff n€V_. The weight functiorw(e) = 1 fore € EUEg.

In other words, a new good-node is inserted in the trust gfapkach alternative. For each
voterv € V that voted for a particular alternatigean edge(v,a) € Ey is created. Once we have
our trust graph, given any ageme N, we can run any reputation system to get a ranking of all the
agents from agents perspective; the highest ranked alternative is retuaseithe recommendation.

There are several advantages to the proposed reductiost, &irder the reputation system
formulation it is easy to extend the recommendation probiersituations with more expressive
preferences and multiple goods. We can add weights on edgesaigent-nodes to good-nodes to
represent more expressive preferences, and we can add oumie by simply adding additional
good-nodes.

By encoding both trust information and opinion informatiato the same trust graph, we sim-

plify the problem and allow reputation system techniqueddoapplied to this new domain of
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Figure 5.1: The image on the left shows a voting network ceteplvith annotated nodes. On the
right, we show the reputation-reduced version of the sartiegyaetwork; the alternatives now have
their own nodes, and each node that was annotated has a timk torresponding alternative.

trust-based recommendation. The work presented in thistlom measuring informativeness and
constructing informative reputation systems is espgciaéll-suited for the problem of accurately
predicting which goods appeal to which users. Because tHeuser either likes or dislikes the
end recommendation, informativeness is almost exactlyvalgunt to economic efficiency in this
domain. This makes trust-based recommendation systenmmragimg open topic for future work

in this space.

5.3 Open Problems

The real promise of reputation systems lie in their apgheato real, large-scale systems. There
remain significant challenges in scaling up the techniquéged in this thesis to real-world prob-
lems. We have so far ignored issues of scalability and coatipuial efficiency in order to develop
compelling metrics for evaluating and tuning reputatiosteyns; these issues must be addressed
before the benefits of our reputation system work are fulljized.

The applications we have discussed in this paper dependadyzang and drawing trust infor-
mation from the activities of thousands or hundreds of thads of individual users and agents. |
have not considered computational efficiency issues invibi¥, focusing instead on issues facing
the end-user: informativeness, economic efficiency, andntive compatibility; however, a repu-
tation system which takes too long to run or too much spacenapate is of little practical use.
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Polynomial time algorithms do exist for both the hittingyd and shortest-path algorithms; how-
ever, for datasets on the scale of Amazon’s book rating datmore significant optimization may
be necessary.

These issues are even more complicated when the settingeshéma distributed, peer-to-peer
domain. Throughout my analysis | have implicitly assumesidhistence of a trusted center which
can gather agent reports and run the reputation computaltioa peer-to-peer network this com-
putation must either be duplicated at each node (probaldlilpitively expensive) or distributed
across the network. However, distributed computationesas number of challenging incentive-
compatibility issues which do not arise in the centralizettisg; see [12] for a more in-depth
description of decentralized mechanism design. If comjmuteof the reputation system is dis-
tributed, agents may be able to influence their ranking nbt by misreporting interactions but
by deviating from the preprogrammed reputation computagiigorithm, opening up new classes
of manipulations that have not been defined in this thesisieldping manipulation-resistant dis-
tributed algorithms remains a difficult open problem.

5.4 Conclusion and Outlook

Because of the wide range of potential applications, réjomaystems are likely to play an integral
role in the evolution of the Internet. Reputation systentgedcommerce on online retailers. They
control download speeds on peer to peer networks. Theyoditfmrmation from the hyperlink
structure of the web itself. And as the amount of trust anefattion information grows, so does the
demand for reputation systems that can take advantagesahfbrmation. The work we have done
on informativeness metrics will make it simple for users tonpare different reputation systems
and pick the one that achieves the highest level of econoffidieacy.

But at a higher level, our work oa-hybrid reputation systems allow the construction of repu-
tation systems with exactly the right tradeoff betweenrimfativeness and incentive compatibility.
A web site which offers houses for sale probably merits atajmn system with stronger incentive
compatibility properties than a web site for children’sgo¥ he ability to build exactly the right rep-
utation system for the task is sure to benefit the users of sggtems. Investigating the applications

and the limits of this approach is an exciting area for furesearch.



Appendix A

Decision Rule Selection

The two decision rules yield vastly different dynamics imie of the evolving graph topology.
Preliminary simulations with 25 agents were run for 50 rajndsing the data | generated the
following plots of the degree distribution of the peer-teep network over time under the reputation-
weighted-random and-greedy decision rules.
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Figure A.1: (a) Initial degree distribution f@rgreedy rule (b) Ending degree distribution.

Figure A.1 shows thé-greedy results. A few agents gained or lost links; one ageded up
fully connected to other nodes in the network. Thgreedy method preserves the initial power-law
like distribution.

Behavior under the random algorithm (see A.2) is much difierBy emphasizing exploration,
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Figure A.2: (a) Initial degree distribution under the regiittn-weighted-random rule (b) Intermedi-

ate degree distribution (¢) Ending degree distribution.

this causes good nodes to gain links with one another vegkiyiibad nodes are isolated near the

bottom. However, because the distribution quickly moveayafkom the initial power-law degree

distribution, | chose to do most of the testing using dhgreedy update rule.
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