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The sequential auction problem is commonplace in open, electronic marketplaces such as
eBay. This is the problem where a buyer has no dominant strategy in bidding across
multiple auctions when the buyer would have a simple, truth-revealing strategy if there
was but a single auction event. Our model allows for multiple, distinct goods and market
dynamics with buyers and sellers that arrive over time. Sellers each bring a single unit
of a good to the market while buyers can have values on bundles of goods. We model
each individual auction as a second-price (Vickrey) auction and propose an options-based,
proxied solution to provide price and winner-determination coordination across auctions.
While still allowing for temporally uncoordinated market participation, this options-based
approach solves the sequential auction problem and provides truthful bidding as a weakly
dominant strategy for buyers. An empirical study suggests that this coordination can enable
a significant efficiency and revenue improvement over the current eBay market design, and
highlights the effect on performance of complex buyer valuations (buyers with substitutes
and complements valuations) and varying the market liquidity.

 2009 Elsevier B.V. All rights reserved.

1. Introduction

Electronic markets generate significant new trading opportunities and expand the opportunity for the dynamic pricing
of goods, and lead to improved market efficiency in many settings [11,12,64]. Electronic markets find application not only
for person-to-person transactions (e.g., auctions), but also increasingly for business-to-consumer auctions such as selling
surplus inventory [39] and business-to-business sourcing events [59].

But despite the new efficiencies offered by electronic markets, for example by enabling the application of optimization
to decision making in many parts of the supply chain, the role of automated trading agents – although long envisioned by
artificial intelligence researchers [1,26,60] – remains more fiction than reality. (One notable exception is the significant role
of automated trading for financial securities [23].) One major impediment to the adoption of automated trading agents is
that users often have insufficient trust of software agents that would work on their behalf [16,37]. Users may even have
higher expectations for automated agents than human agents in regard to what constitutes acceptable behavior [62]. For
example, the proposal by the London International Financial Futures Exchange (Liffe) to introduce automated trading was
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the cause of much debate.3 A key area of concern was that users could not be certain that the automated systems would
behave “optimally” in all situations.

One important, if unsurprising, aspect in the adoption of automated agents is that these agents avoid, and be seen to
avoid, making mistakes [47]. In the context of electronic markets, an insight offered by mechanism design, the subdiscipline
of microeconomics that seeks to design protocols to achieve system-wide objectives with self-interested agents, is that one
can sometimes design protocols that simplify the strategic considerations of bidding agents. Classic solutions, such as those
offered by the Vickrey–Clarke–Groves (VCG) mechanism [20,27,67], provide this simplicity via the property of strategyproof-
ness (which brings truthful bidding into a dominant strategy equilibrium), and in addition provide market efficiency. But
we argue that they are often not applicable in practice because they require too much temporal coordination on the part
of participants. Electronic markets such as eBay4 allow a would-be seller to decide when to sell goods in the marketplace,
and buyers can visit the marketplace at times of their own choosing. The VCG mechanism on the other hand requires that
buyers and sellers be grouped into a single, coordinated auction with all bids placed at the same time and all goods sold at
the same time.

In fact, the individual auctions on eBay are very similar to single-item second-price (Vickrey) auctions. The most signif-
icant difference is that eBay provides, via the use of a mandatory proxy agent that bids on behalf of a buyer, a “staged
Vickrey auction” such that a buyer can effectively increase her bid price at any time until an auction closes.5 Electronic
markets such as eBay do not provide a large-scale combinatorial auction, structured as a VCG mechanism (e.g., for all LCD
monitors in the market), arguably because this would require too much temporal coordination on the part of buyers and
sellers. A second issue would be determining how to define the scope for such an event to include a suitable domain of
goods likely to subsume most of those of interest to a set of potential buyers. A third issue is that at some point the compu-
tational cost for running such a large, coordinated mechanism would also get prohibitive given that winner-determination
for combinatorial auctions is NP-hard [56]. Problems of communication complexity and preference elicitation could also
become a concern [57,63].

The absence of such a large-scale coordination mechanism in markets such as eBay leads to strategic complexity for
participants. Despite a (weak) strategic equivalence between an individual auction on eBay and the Vickrey auction [40,65],
there are many reasons for buyers not to truthfully bid their value in any one auction. One reason follows from the auction
being staged rather than sealed-bid. Because some bidders may be “followers” – bidding up when others do – it can be
rational to delay until the last minute and “snipe” to avoid driving up competitors’ bid prices [4,46]. The sequential auction
problem provides another reason. This relates to issues that arise when composing strategies across a sequence of auctions.

For example, suppose that multiple copies of essentially identical items are offered for sale sequentially. For example,
Alice may want an LCD monitor, and could potentially bid in either a 1 o’clock or 3 o’clock auction. Alice would prefer to
participate in the auction that will have the lower winning price, but she cannot determine beforehand which auction that
will be. As a result, she could end up winning in the “wrong” auction, that is the auction with the higher price. A related
example of the sequential auction problem is familiar from the exposure problem studied in simultaneous ascending price
auctions [14], which also exists in our setting when a buyer desires a bundle of goods but must participate in auctions on
individual items. For example, if Alice values a video game console by itself for $200, a video game by itself for $30, and
both a console and game for $250, she must determine how much of the $20 of synergy value to include in her bid when
bidding for the console alone. If Alice incorporates some of the synergy value (e.g., by placing a bid of $210 and paying her
bid), she may incur a loss if she can not subsequently win the video game for less than $40.6

The main technical question addressed in this paper is: can one design a marketplace for temporally uncoordinated buyers
and sellers, and distinct goods, in which buyers have a simple, dominant bidding strategy? As a solution we propose a real-options
based market infrastructure, coupled with proxy bidding, that enables simple, yet optimal, bidding strategies while retaining
the dynamic arrivals and departures that are a defining feature of electronic markets such as eBay. Our main assumptions
(in increasing order of strength) are that:

• Each buyer has an arrival time and a departure time in the market, and is indifferent between buying items at any time
before her departure and with zero value after her departure.

• Buyers may have general valuations on bundles of distinct goods, but are interested in at most one unit of each of these
goods.

3 The Financial Times said at the time that “Electronic trading is the biggest single issue to face the futures community today and the industry has long confronted
a philosophical split on its merits”, in an article “Liffe’s new automated trading system has sparked a debate on automated trading”, November 30, 1989.
4 www.ebay.com.
5 While an eBay auction is open, a buyer provides her automated proxy agent with a bid ceiling. While the ceiling the agent has received is greater than

the winning price and the agent is not winning, the agent will submit a bid some amount, ε , above the current winning price (where ε > 0 is set by eBay
anywhere from cents to dollars depending on the value of the item). Therefore, when an auction ends, the winning buyer will pay a price ε above the
highest ceiling another buyer submitted, and the outcome is nearly identical to the outcome of the Vickrey auction.
6 A third reason for strategic complexity in markets such as eBay can be that the quality of items may be uncertain and buyers may adjust their belief

about the value of the item based on others’ bids; this is the so-called interdependent values model of auction theory. We do not consider interdependent
value domains in this paper. This makes our results applicable instead to markets in which buyers know their value for goods and can determine this
without seeing the bids from others. An example of such a domain is provided by our empirical study on the eBay market for a Dell LCD monitor.

http://www.ebay.com
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• Each seller offers a single unit of a good, has an arrival time and departure time in the market, has no intrinsic value
for the good, and is willing to wait until the departure time of a buyer that wins no later than her departure to receive
payment.

• Sellers are non-strategic and truthfully report arrival and departure to the market, which defines the interval of time
during which they are willing to sell the good.

We will not need to assume that buyers can only participate under one identity or prevent buyers from re-entering the
market; this provides robustness to the false-name bidding considered by Yokoo and colleagues [70]. On the sell side of the
market, we do not allow sellers to have a hard limit on the latest period by which they require payment, although this will
exist because we will focus on markets in which a maximum patience (departure-arrival) can be assumed for buyers.

In general, the options-based market will perform best when many goods can readily be categorized into few equiva-
lence classes such that every buyer is indifferent across goods in the class. While in a worst case there could be as many
equivalence classes as auctions in a market place, many items listed on eBay are essentially identical to other items, and
especially in categories such as Consumer Electronics, where the sum of all successfully closed listings during 2005 was U.S.
$3.5B (of U.S. $44B in total for all of eBay) [25]. This category is the focus of our empirical analysis, in which we consider
auctions for 19′′ Dell LCD monitors (Model E193FP) conducted on eBay during the summer of 2005. Moreover, individual
buyers may of course view goods in different classes as equivalent and no two buyers need agree on the actual value that
they assign to a good in any particular class.7

In our options-based solution, a seller auctions an option for her good rather than auctioning the good directly. The
option will ultimately either lead to a sale or require the seller to return to the market and offer another option on the
same good if so interested. By participation in the framework, sellers agree to allow proxy agents to price-match their
goods against others of equal type, with the payment a seller finally receives defined in terms of the minimal price that the
winning bidder could have bid and still traded with some seller in some auction for a good of equal type during the bidder’s arrival-
departure interval. As noted above, all sellers are assumed to behave non-strategically and to truthfully report their temporal
constraints in the marketplace. Furthermore, we assume that sellers do not have an intrinsic value for the good.

All buyers in our framework must interact through a mandatory proxy agent, and do so by reporting a value on all
possible bundles of goods of interest along with a departure time. While such an enumeration may seem daunting at first
glance, there are several reasons not to view this as a major concern in consumer markets. First, a very common purchasing
scenario is for a buyer to want a single item or to be indifferent among only a few different items. Second, Cantillon
and Pesendorfer [15] and Sandholm [59] provide empirical support that buyers can manage to construct bids in large
combinatorial settings. Third, a number of expressive, concise bidding languages have been developed for combinatorial
auctions [9,17,45]. It is also possible to allow buyers to provide lower-bounds on values, and increase these bounds over
time just as with the mandatory proxy bidding agents of eBay (see Section 6 for further discussion on this point).

A buyer’s proxy agent uses the reported information about value and departure time to determine how to bid for options
and also to determine which options held at the buyer’s reported departure time to exercise. The options that maximize the
buyer’s surplus given the reported valuation are exercised and all other options returned to the sellers. The options-based
protocol is useful because it makes truthful and immediate revelation to a proxy a dominant strategy for buyers, whatever the
future auction dynamics. Thus it can be seen as a method to generalize eBay’s existing proxy scheme to handle the sequential
auction problem in suitable categories of goods, while extending to embrace dynamic, combinatorial auctions.

In addressing questions about market efficiency and revenue we perform an empirical analysis using data on eBay auc-
tions for 19′′ Dell LCD monitors (Model E193FP) sold from 27 May, 2005 through 1 October, 2005. A conservative estimate
is that an improvement in efficiency and revenue of around 4% and 9% respectively would be enabled through an options-
based scheme. This estimate is generated on the basis of non-parametric estimation of the true value of buyers for items,
generalizing a method due to Haile and Tamer [28] to sequential auctions. The eBay analysis also informs an extensive set
of simulation experiments, in which we explore the effect of substitutes (“I want A or B”) and complements (“I only want A
if I also get B”) valuations on the efficiency of the options-based scheme and also consider the impact of market liquidity.
Buyer populations with substitutes valuations can hamper the efficiency of the marketplace because of hold-up problems
in which a buyer’s proxy holds a number of options that ultimately go unexercised but were unavailable to other buyers.
However we find that this effect is mitigated when individual buyers have negatively correlated values across items. We also
find that the buyer-to-seller ratio (a measure of liquidity) plays a critical role in market efficiency in the context of substi-
tutes valuations. Efficiency first decreases and then increases as the buyer-to-seller ratio increases and the market becomes
more competitive. For a low buyer-to-seller ratio the market remains efficient with substitutes valuations because there is
plenty of supply. Market efficiency is also high for relatively large buyer-to-seller ratios (above 4:1 in our simulations) and
substitutes valuations because increased competition segments the market; buyers tend to be competitive on only a small
number of goods. In the context of complements valuations we find that market efficiency is fairly insensitive to positive or
negative correlation in value across items and remains reasonably high.

7 In the absence of a third party logistics partner, such as Amazon, that offers fulfillment and commits to the quality of a good (e.g., new, and “in box”) it
is likely that sellers could improve revenue in the short-term by overstating the quality of their item and misleading buyers in the marketplace. However,
and just as on eBay, a well-functioning reputation system should mitigate this concern [54].
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We also provide a worst-case analysis for the practically important special case in which buyers are interested in only
one kind of good. This analysis is a slight extension of that due to Hajiaghayi et al. [29]. In our analysis, we parameterize
the competitive ratio in terms of the maximal spread of upper and lower valuations across all buyers. The main focus of
our evaluation remains empirical, and we do not provide any worst-case analysis for the general, combinatorial case.

By providing a system in which buyers possess a simple, dominant strategy, the proxy-based solution arguably reduces
the participation costs of buyers. While the impact of this improvement is hard to estimate, this can be expected to both
improve buyer loyalty to sellers and also make the market more appealing for new entrants. These two effects ought to
preserve and enhance the health of the market and maintain seller revenue in the long term.

In outline, we first discuss related work, and then use Section 2 to introduce the model and define and characterize
the sequential auction problem. Section 3 describes the options-based scheme, giving examples and a complexity analysis.
Section 4 provides a strategic analysis and a worst-case efficiency analysis. Section 5 presents an experimental study, first
on eBay data (the LCD market) and then extending – in simulation – to consider substitutes and complements preferences
and the effect of market liquidity. Section 6 discusses the challenges of allowing proxy agents to bid less aggressively, thus
mitigating hold-up. Section 7 concludes.

1.1. Related work

A number of authors have analyzed sequential auctions selling the same item with buyers interested in buying just a
single item. This “multiple copies problem” is often studied in the context of explaining sniping behavior; see also Ocken-
fels and Roth [46], who give a collusion-based explanation for sniping. From the perspective of developing models for the
multiple copies problem, Stryszowska [66] models the problem as one of a dynamic multi-unit auction, allowing for expla-
nations of sniping as well as for bidding multiple times within an auction. Hendricks et al. [32] demonstrate that sniping
is a symmetric equilibrium in the absence of a “BuyItNow” opportunity (wherein a buyer can choose to buy an item at
any point for some fixed price). Wang [68] demonstrates, using a two-period model, how sniping in the first period is a
unique equilibrium and Zeithammer [71] provides an equilibrium model for strategic sellers and forward-looking buyers.
Notably, none of this prior work considers buyers that are able to participate in more than two auctions, while we consider
settings in which buyers may participate in an arbitrary number of auctions. Peters and Severinov [52] also allow this more
general capability and characterize a perfect Bayesian equilibrium where sellers set a reserve price equal to their true costs.
These authors consider neither buyers entering at random times nor auctions closing at different times, both of which are
addressed in our work. While these papers provide a Bayesian–Nash analysis of models that approximate current eBay-like
markets, we study the dominant strategy equilibrium in an options-based variation on current markets.

Problems of the same kind as the sequential auction problem were previously observed by Wellman and Wurman [69]
in the context of boundaries between multiple mechanisms, and later discussed by Parkes [48] and Ng et al. [43,44] in the
context of “strategyproof computing”. The problem has often been identified in the context of simultaneous ascending price
auctions, where it is termed the exposure problem [14]. Previous work addressing the exposure problem has considered two
different directions. First, one can change the mechanism and define an expressive bidding language and a strategyproof
mechanism, as seen in work on combinatorial auctions [56]. Second, one can attempt to provide automated bidding agents
with sophisticated strategies, as seen for example in the work of Boutilier et al. [8], Byde et al. [13], Anthony and Jen-
nings [1], Reeves et al. [53], and Gerding et al. [24]. Unfortunately, it seems hard to design artificial agents with equilibrium
bidding strategies, even for a simultaneous ascending price auction (i.e., without dynamic arrivals of new sellers) and all
these papers make significant assumptions.

Iwasaki et al. [34] have previously considered the use of options in the context of a single, monolithic, auction design
to help buyers with increasing marginal values avoid exposure in a multi-unit, homogeneous item auction. Sandholm and
Lesser [61] have considered options in the form of leveled commitment contracts for facilitating multi-way recontracting in a
completely decentralized market place. Rothkopf and Engelbrecht-Wiggans [55] discuss the advantages associated with the
use of options for selling coal mine leases. To the best of our knowledge, ours is the first work to study the role of options
as a method to enable dominant strategies in the context of dynamic auctions. Gopal et al. [25] have considered the use
of options for reducing exposure to risk in the context of the sequential auction problem. Our work differs in a number of
ways, including how the options are priced, which buyers obtain options, and in how much risk remains with buyers once
options are used. Buyers still face risk and have no dominant strategy in the method of Gopal et al. [25].

The technical contribution of this paper is related to online mechanism design [30,36,49,50]. In online mechanism design
(online MD), one seeks an incentive mechanism for a dynamic environment in which agents arrive and depart and in which
there is uncertainty about the future. In the analysis of our protocol, we slightly generalize the price-based characterization
of Hajiaghayi et al. [29] to establish a dominant strategy equilibrium for buyers, creating a truthful online combinatorial
auction from an uncoordinated sequence of single item auctions. The options-based scheme extends the earlier protocol
in Hajiaghayi et al. [29] to combinatorial settings, although without providing any worst-case analysis. The mechanism
presented here reduces to this earlier mechanism in an environment in which everyone is buying and selling a single unit
of the same kind of good, although reinterpreted here within a decentralized architecture.

A dynamic VCG mechanism [18,49–51] could, in principle, be used in this environment because we consider only one-
sided private information (and ignore strategic considerations on the sell side). But on the other hand, these mechanisms
require optimal allocation policies (which may be intractable in domains of interest) together with a probabilistic model
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of agent arrivals and valuations, and provide within-period ex post incentive-compatibility rather than dominant-strategy
incentive-compatibility [6,18]. One would also need to consider how to divide the revenue collected by the mechanism
across multiple sellers. A dynamic extension of the expected externality mechanism [2,21] is available for dynamic two-sided
markets [3], but would again require an optimal policy and provide only a weak guarantee about the relationship between
a buyer’s payment and her bid price. Bredin et al. [10] develop a framework for constructing dynamic double auctions with
dominant-strategy incentive-compatibility on both sides of the market, but their methods are applicable only in the limited
setting in which all agents trade only a single unit of the same good.

It is interesting to note that some of the strategic difficulties that buyers face in uncoordinated electronic auctions such
as eBay are also faced by consumers acquiring items in the retail sector and it is interesting that retail stores have devel-
oped policies that can be interpreted as assisting customers in this regard. Return policies alleviate the exposure problem by
allowing customers to return goods at the purchase price while price matching alleviates the multiple copies problem by al-
lowing buyers to receive from sellers after purchase the difference between the price paid for a good and a lower price found
elsewhere [19,38]. A concern that is discussed in the academic literature in regard to these practices in the retail sector is
that they can be anti-competitive, with sellers using them as a commitment device for avoiding price competition [33]. We
do not foresee this issue in the context of proxied, sequential auctions as proposed in this paper because the prices are not
set by sellers but rather determined by competition on the buy side.

There has been some follow-up work to an earlier version of this paper. Mous et al. [42] present work on a variation
of our scheme in which options are priced, and adopt a decision-theoretic analysis in exploring the effect on the sequen-
tial auction problem. This stands in contrast to our game-theoretic analysis, but has interest because it provides for less
aggressive options accumulation by buyers.

2. Preliminaries: The sequential auction problem

In this section we introduce the formal model and define and characterize the sequential auction problem which moti-
vates our work.

2.1. The model

In our domain, there are K different kinds of goods (often referred to as items), denoted with set G and G1, . . . ,GK
for the individual kinds of goods, a set B of buyers (perhaps unbounded), a set S of sellers (perhaps unbounded), and
T = {0,1, . . .} discrete time periods. Each buyer i ∈ B has a utility function parameterized with type θi = (ai,di, vi) ∈ Θ ,
where Θ is the set of all possible types, defining her arrival time ai ∈ T , departure time di ! ai ∈ T , and valuation vi(L) ! 0
for every possible bundle of goods L ⊆ G . There are multiple copies of each good Gk for sale but no buyer demands more
than a single unit of each good and we write Lk ∈ {0,1} to denote whether or not bundle L contains a unit of good Gk .8 We
assume free disposal and normalization, with vi(L) ! vi(S) for L ⊇ S and vi(∅) = 0.

The semantics of arrival and departure are such that buyer i has value vi(L) ! 0 for a bundle of goods L ⊆ G that is
allocated (potentially in multiple pieces) across periods [ai, . . . ,di] but has no value for goods allocated outside of this time
interval. Buyers have quasi-linear utilities, so that the utility of buyer i for receiving bundle L and paying p ∈ R!0, in some
period no later than di , is ui(L, p) = vi(L)− p. For the sake of analysis it is convenient to assume the existence of a maximal
patience, such that di − ai " ∆max, for some constant ∆max.

We motivate the semantics of the arrival time by associating this with the period in which a buyer first realizes her
demand for the good(s), or as the period at which a buyer first realizes that the market exists. The departure time models
the period in which a buyer loses interest in acquiring the good(s) from this marketplace. For example, a buyer may lose
interest in items whose value is realized at a specific past moment in time (e.g., Saturday night movie tickets), or because
she simply wishes to take advantage of an outside opportunity to acquire the item (e.g., a buyer deciding to acquire an item
at a posted price on a certain date). The model is restrictive in that it precludes a buyer having probabilistic beliefs about
her value before arrival.9 The model also requires that a buyer has constant value during the arrival-departure interval.
This seems reasonable when this interval is small in relation to the time over which the good(s) will be used; e.g., an LCD
monitor that a buyer plans on using for 3 years provides a buyer with roughly equivalent value if held for 1000 days or 998
days.

Each seller j ∈ S brings a single unit of one kind of good, denoted k j ∈ G to the market and is assumed to have no
intrinsic value for the good. Seller j has an arrival time, a j ∈ T , which models the period in which she is first interested in
listing the item, and a departure time, d j ! a j ∈ T , which defines the latest period in which she is willing to consider having
an auction for the item close. By listing a good for sale until d j , a seller is indicating her willingness to receive payment
by the end of the reported departure of the winning buyer in an auction closing at d j , while preferring to exit the market

8 The static version of this model was earlier referred to by Bartal et al. [5] as the “k-duplicates” combinatorial auction, with in their terminology k-units
of each good and each buyer restricted to buying at most one unit of each good. We adopt k to reflect the number of kinds of goods rather than the
number of units of each good.
9 One reviewer suggested that another justification could be that the arrival time simply represents a constraint on the earliest period at which a bidder

is able to participate.
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without her item being sold if there is no winner by that time. A departure time of d j therefore guarantees that a successful
seller will receive payment by d j + ∆max, where ∆max is the maximal patience of buyers. We will not be concerned with
strategic behavior by sellers and focus our analysis on removing the sequential auction problem for buyers whatever the
strategy of sellers.

The options-based framework provides a direct-revelation (online) mechanism in which each buyer i interacts with the
market only once by declaring a bid, bi ∈ Θ , which is a (perhaps untruthful) claim about her type. Denoting the bids from
all buyers as b = (b1, . . . ,bN ), a direct-revelation mechanism determines an allocation xi(b) ⊆ G and payment, pi(b) ! 0,
to each buyer. The outcome also depends on the sell-side, i.e., the goods that are brought to market, but we leave this
dependence silent in the notation. Since this is an online setting, where the bids are reported over time, the allocation and
payment functions must be online computable; i.e., if a buyer is to be allocated an item for sale in period t then this must
be known based on information available up to and including period t .

We adopt the standard assumption of limited misreports [29,30,36], with buyers unable to bid before their true arrival
period. This is equivalent to requiring that reported type, θ̂i (= θi , with θ̂i = (âi, d̂i, v̂ i), satisfies âi ! ai . Given that the arrival
time models the period in which a buyer first realizes her demand and enters the market, this assumption simply asserts
that a buyer will not enter a market for goods for which she currently has no perceived value. Given this assumption, then
strategy b∗

i (θi) ∈ Θ is a dominant-strategy equilibrium in mechanism (x, p), when

vi
(
xi

(
b∗
i (θi),b−i

))
− pi

(
b∗
i (θi),b−i

)
! vi

(
xi(b

′
i,b−i)

)
− pi(b

′
i,b−i), ∀b′

i ∈ Y (θi), ∀b−i ∈ Θ−i, ∀θi ∈ Θ, (2.1)

for every buyer i ∈ B , where b−i = (b1, . . . ,bi−1,bi+1, . . . ,bN ), and Θ−i = Π(=iΘ , i.e., the joint type space of the other
buyers. Here, we adopt Y (θi) ⊆ Θ to denote the limited reports available to agent i, i.e., with θ̂i ∈ Y (θi) ⇒ âi ! ai .

Given this assumption of limited misreports, which we make for the rest of our analysis, a mechanism is said to be
strategyproof (for the buy-side) when reporting the true type is a dominant strategy equilibrium for buyers. Truthful report-
ing by buyers is required to be a dominant strategy for all realizations of supply. Moreover, and even though we are not
concerned with strategic sellers here, this also provides robustness for buyers against strategic seller behavior.

Our concern here is with online markets that are structured as a sequence of separate auctions. For this reason, it is
helpful to adopt the terminology locally strategyproof, in describing an auction in which truthful bidding is a dominant
strategy if a buyer was restricted to bidding in that one auction [48]. This would be true, for example, if the auction is for a
unique item that is only available for auction once in a buyer’s lifetime (e.g., a piece of artwork for which there is no
substitute), or if a buyer is very impatient. In Section 5 we present empirical evidence to suggest that this is generally not
a good assumption in markets such as eBay, and it is this observation that leads to the sequential auction problem.

One metric for the performance of our mechanism will be efficiency. The efficiency is a measure of the total value of
buyers for an allocation of goods. For the empirical analysis, we will generally adopt one of the following two metrics for
efficiency:

• average buyer value,
• total buyer value normalized by the value of an online benchmark.

Average buyer value provides a suitable efficiency metric when buyers are each interested in one unit of one good,
i.e. the “single item demand” setting. No normalization is required when comparing the options-based scheme with the
efficiency of eBay in this setting, because all goods are sold under both mechanisms and thus the total number of winning
buyers is the same.

But when considering buyers with substitutes valuations, we normalize to an online benchmark because the total number
of winning buyers varies between our simulation of eBay and the options-based scheme. The benchmark is explained in
Section 5.2. For the case of complements valuations, it will be sufficient for our analysis (which is focused on the effect of
correlations on values across items) to consider the total buyer value. We will adopt analogous metrics for seller revenue
and buyer surplus; see Section 5.

For the purpose of theoretical analysis, we will also adopt a worst-case analysis for the single item demand setting, where
we bound the worst-case efficiency of the options-based mechanism as a fraction of the value of the best offline solution,
i.e., the best omniscient solution.

2.2. The sequential auction problem

The sequential auction problem describes the strategic problem that can face a buyer even though she faces a sequence
of locally strategyproof auctions. Consider the following two motivating examples:

Example 1. Alice values acquiring one ton of sand before Wednesday for $1000. Bob will hold a Vickrey auction for one
ton of sand on Monday, and another such auction on Tuesday. Alice has no dominant bidding strategy because she cannot
predict whether the price of the Tuesday auction will be greater or less than the price of the Monday auction, and she
needs to know this price when deciding on an optimal bidding strategy on Monday.
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Example 2. Alice values one ton of sand with one ton of stone at $2000. Bob holds a Vickrey auction for one ton of sand on
Monday. Charlie holds a Vickrey auction for one ton of stone on Tuesday. Alice has no dominant bidding strategy because
she needs to know the price for stone on Tuesday in order to know how much to bid for sand on Monday. If Alice bids too
high on Monday, she may be left with one ton of sand but no ability to buy the one ton of stone required to complete her
construction project. If Alice bids too low on Monday, she might forfeit the opportunity to buy both the sand and stone, for
example if the price of stone on Tuesday is low.

Definition 1 (sequential auction problem). The sequential auction problem exists when a buyer has no dominant bidding
strategy in a sequence of auctions, despite each auction being locally strategyproof.

There are a variety of ways in which an absence of a dominant strategy may arise. First, consider a buyer who values
one ton of sand for $1000, one ton of stone for $2000 and both for $2000 (i.e., substitutes valuations). Suppose the buyer
faces one auction for sand followed by one for stone and that the possible prices for either goods are unconstrained. She
faces the sequential auction problem because there are future prices for which it is optimal to purchase sand and some for
which it is optimal to purchase stone. In general, buyers with substitutes valuations face the sequential auction problem.
As a second example, consider a buyer who values one ton of sand for $1000 and one ton of sand and one ton of stone
together for $1500. Suppose that the buyer faces an auction for sand and another for stone and that either bundle {sand} or
{sand, stone} may be the utility maximizing bundle given possible prices. She faces the sequential auction problem because
the good that first goes to auction has uncertain marginal value; this value is either $1000 or $1500 if the good is sand and
$0 or $500 if the good is stone. In general, buyers who are interested in goods whose marginal values are dependent on the
acquisition of other goods face the sequential auction problem.

As another example, consider a buyer who values one ton of sand for $1000 and faces two auctions for sand, either
of which may have the lowest price. She faces the sequential auction problem because even though the value of the sand
is $1000 and constant in both auctions, either auction may have the best price. In general, buyers who are interested in
fewer instances of a good than there are auctions selling that good face the sequential auction problem. For a final example,
consider a buyer who values sand for $1000, stone for $500 and sand and stone together for $1500 (i.e., a linear valuation)
and suppose just two auctions, one for sand and then one for stone. Suppose one other buyer competes in both auctions.
If the competitor may bid $1,000,000 for stone if the buyer bids more than $300 for sand, and $10 otherwise, the buyer is
better off bidding below $300 for sand, even if this involves losing that auction, because she will then receive the stone for
a payoff of $1490. In general, buyers whose competitors condition future bids on the buyers’ past bids face the sequential
auction problem.

3. An options-based scheme

In what follows we focus exclusively on domains in which the underlying auctions are Vickrey auctions for individ-
ual items (i.e., second price, sealed-bid auctions). Vickrey auctions are selected not only because of convenience, but also
because they nicely model eBay auctions.

The solution that we propose, in resolving the sequential auction problem in this context, consists of two primary
components: the use of real options to allow buyers to secure the lowest possible prices and the use of mandatory proxy
agents to prevent the abuse of these options through costless hoarding. A real option is a right to acquire a real good at a
certain price, called the exercise price; see Dixit and Pindyck [22]. For instance, Alice may obtain from Bob the right to buy
sand from him at an exercise price of $1000. An option gives the right to purchase a good at an exercise price but does
not imply an obligation. We will see that this flexibility makes options useful in addressing the sequential auction problem.
Proxy agents acting on behalf of buyers can put together a collection of options, and then decide which options (perhaps
none) to exercise.

While the buyer of an option has the right but not the obligation to purchase the good, the seller must honor the contract
if the option is exercised. For this reason, options are typically sold at a premium called the option price. Several factors are
often considered when a seller tries to determine how to price an option with a particular exercise price, including the
relationship between the exercise price and the perceived value of the good available in the option, the volatility of value
the good may experience over time, and the length of time over which a buyer can decide to exercise the option. Real
options are often difficult to price as the metrics for determining a price are difficult to quantify. However, among traded
options (i.e., options for traded securities such as stock), much progress has been made in determining the prices of options,
with one of the most celebrated being the formula of Black and Scholes [7].

The problem with options with a non-zero option price in our setting is that they cannot support a simple, dominant
bidding strategy because a buyer would need to compute the expected value of an option to justify the cost. But this
expected value requires a probabilistic model of the future, which in turn requires the buyer to model the bidding strategies
and values of other buyers. This is the very pattern of reasoning that we are trying to avoid in designing the options-based
marketplace! For this reason, we adopt costless options, which always have an option price of zero. The exercise price is set
competitively in the marketplace.

The traditional issue with costless options is that buyers are always weakly better off with a costless option than without
one, whatever the exercise price. A buyer need exercise only those option(s) that result in a gain of surplus and bears no
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cost by not exercising an option. But having buyers that pursue options that they have no intention of exercising would
cause market efficiency to unravel. To prevent this kind of hoarding of options, we adopt mandatory proxy agents. These
proxy agents provide buyers with an obligation to exercise those options that maximize their reported utility – as defined
by reported valuation v̂ i – given the exercise price. The proxy agents also act to restrict buyers to acquiring only options
that they might credibly choose to exercise.10 Only proxy agents place bids in the underlying auctions.

In Section 3.1 we give details about the proxied, options-based solution. Section 3.2 provides a number of detailed
examples and Section 3.3 provides a complexity analysis. We delay until future sections a formal proof of strategyproofness
and any analysis of the efficiency and revenue properties.

3.1. The bidding proxy and price-matching rules

In our framework we first modify each individual Vickrey auction to sell a real option for the underlying good to the
highest bidder with an initial exercise price equal to the second-highest bid price received.11 Each option is costless, and is
set to expire at the end of the winning proxy’s patience. Proxy agents bid in these auctions. In opting into the options-based
protocol, a seller gives the winning proxy agent the right to reduce the exercise price on the option issued by the seller
given evidence that a lower price would have been available had the proxy waited and bid instead in some future auction.
This is what we mean by “price matching.”

Buyers must compete in the market by submitting a bid to their proxy agent. For buyer i ∈ B , this bid occurs in some
reported arrival time, âi ! ai , and is a claim about her valuation v̂ i (perhaps untruthful) for different bundles of goods and
also about her departure time d̂i ! âi . All transactions are intermediated by proxy agents. In what follows, we describe
the three steps that are followed by a proxy agent: (a) acquiring options, (b) setting the exercise price on options via
seller-sanctioned price matching, and (c) exercising options. This completely defines the options-based mechanism.

Step one: Acquiring options. When an option for a good in which a buyer is interested is available in an auction and
the proxy does not hold an option, the proxy submits a bid equal to the buyer’s (reported) maximum marginal value for the
item. A proxy does not bid for an item on which it already holds an option. The maximum marginal value for an item Gk ,
given reported valuation v̂ i , is defined as:

bidi(k) = max
L⊆G

[
v̂ i

(
L ∪ {Gk}

)
− v̂ i(L)

]
. (3.1)

By bidding this value, a proxy will compete for any option that could possibly be of benefit to the buyer and choose not to
bid only on those options that could never be of value to the buyer. Note that this is a static determination, made entirely in
terms of the valuation of a buyer and without considering the prices for which the proxy already holds options. In bidding
up to the maximal possible value of some item, the proxy is considering the case that all goods in bundle L that go together
with this good will be available and for a price of $0.12

Step two: Setting the exercise price. Rather than acquire more than one option on the same kind of good, proxy agents
are authorized by sellers to adjust the exercise price of an option that they win downwards (from the initially set price
of the second-highest bid). Such an adjustment is made whenever a proxy discovers that it could have achieved a better
exercise price for an option on the same kind of good by waiting to bid in a later auction. A proxy is able to identify such a
missed opportunity by storing locally, for each good on which it holds an option, the identity of the active bidder (if any) that
would have already won an option had the proxy itself not won an option. Initially, when a proxy wins an option it stores in its
local memory the identity (which may be a pseudonym) of the proxy agent that it “bumped” from winning, if such a proxy
exists (i.e., the second-highest bidder).

To see how price matching works, fix some good Gk on which Proxy A holds an option. Proxy A now monitors each
future auction for the same kind of good and determines what the buyer population would be had Proxy A delayed its own
bid until that auction. To make this determination, Proxy A requests from the auction the identities of the buyer proxies
(if any) and their bids.13 Proxy A identifies the highest bid across those proxies whose identity is not stored in A’s local
memory. This is the bid against which Proxy A would be competing had A delayed its entry until this auction. If the bid
price of Proxy B is lower than Proxy A’s current exercise price, Proxy A price matches down to Proxy B’s bid price, since this
is exactly the price that Proxy A could have achieved by delaying its bid until this later auction. If there is no such bid from
another proxy then the price is matched down to zero (or a reserve price, if any).

10 Unlike in the financial markets, our solution does not permit option holders to sell their options to others. Therefore, proxies have no incentives to
hoard costless options speculating on future option reselling opportunities.
11 The system can also set a reserve price for each kind of good, provided that the same reserve is adopted for all auctions selling the same good. Without
such an invariant reserve price, price matching would not be possible as a seller might be required to match a price below their personal reserve price.
Exploring how limiting this may be in scenarios where sellers actually have different reservation values is an area of future work.
12 If the proxy has knowledge that some items will not be for sale, or can lower-bound the possible price on other items (e.g., because of a market-wide
reservation price adopted by sellers – see Footnote 11), then the marginal value can be modified downwards to preclude such bundles or adjust downward
by lower bounds on the price of items. Care must be taken, though. We return to this issue in Section 6.
13 In a marketplace such as eBay, this information could be provided (again in pseudonymous form) by the market infrastructure. Moreover, the only
information that is minimally required is the highest bid price across all buyer proxies except one stated by the proxy, and the identity of the highest proxy
if it was not the winner of the auction.
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Table 1
A 3 buyer example in which each buyer wants a single item and one auction occurs on each of
Monday and Tuesday. “XY ” indicates an option with exercise price X and bookkeeping that a proxy
has prevented Y from currently possessing an option. “→” indicates the updating of exercise price,
together with bookkeeping for an option already held.

Buyer Reported type Monday Tuesday

Molly (Monday, Tuesday, $8) 6Nancy 6Nancy → 4Polly
Nancy (Monday, Tuesday, $6) – 4Polly
Polly (Monday, Tuesday, $4) – –

Formally, the exercise price pt(k) in period t on good Gk on which the proxy holds an option is set to minâi"τ"t{pτ
b−i

(k)}
where pτ

b−i
(k) is the maximal bid price across other proxies in period τ on good Gk , but excluding any bid from a proxy

whose identity is stored in i’s local memory in period τ . If there are no such bids from other proxies, then pτ
b−i

(k) is set to
zero (or a reserve price, if any).

After price matching, one of two adjustments is made by Proxy A for bookkeeping purposes. First, if Proxy B was the
winner of this latest auction, Proxy A’s local memory as it relates to this good can be cleared. This is because the proxy
earlier bumped by Proxy A must no longer be bidding (otherwise it would have won this latest auction before Proxy B),
and thus Proxy A’s earlier win no longer affects the set of active bidders for this good going forward. On the other hand,
if Proxy B is the second-highest bidder in this latest auction (having been outbid by the proxy stored in Proxy A’s local
memory), Proxy B will now be stored in Proxy A’s local memory, as Proxy B would have won the good without the presence
of Proxy A in the market (because the proxy stored in Proxy A’s local memory would not have competed against Proxy B in
this latest auction had Proxy A never been around to bump it from the auction that Proxy A won).

Step three: Exercising options. At the reported departure time, d̂i , the proxy for buyer i chooses which options (if any)
to exercise. The option(s) that are exercised, L∗

i , are those that maximize the reported utility of the buyer given the final
exercise price on each good:

L∗
i ∈ argmax

L⊆O

[
v̂ i

(
γ (L)

)
− p(L)

]
, (3.2)

where O is the set of all options held by the proxy, γ (L) ⊆ G are the goods that correspond to some subset L ⊆ O of
these options, and p(L) = ∑

k∈L p(k) is the total exercise price for this set of options where p(k) is the exercise price on
the option corresponding to good Gk (as determined via price-matching). All other options are returned. No options are
exercised when there is no bundle of options with (weakly) positive utility.

Remark: Re-posting seller options. An auction for the good brought to market by a seller will first occur at the arrival
period of the seller. If at some point later the buyer that wins this auction returns the option unexercised and the time
period is before the seller’s departure then it would be ideal to be able to initiate another auction for an option on the
seller’s good. However, the system prevents a seller from re-auctioning an option until the maximal patience, ∆max, after
the option was first allocated. Recall that ∆max defines the maximal patience (departure-arrival) over all possible buyers in
the market.14 This maintains a truthful mechanism by preventing a buyer from acquiring an option with a view to holding
it, returning it unexercised, and later re-entering the market when the option is again auctioned and achieving a lower
price.15

In the absence of strong identities, where the market definitively knows the identity of each market participant, the
market prevents buyers from affecting future supply in a useful way by waiting a sufficiently long amount of time before
reauctioning a returned option.16 However, in the presence of strong identities, the market can explicitly prevent a proxy’s
buyer who has returned an option from bidding on that option for ∆max into the future. Consequently, a seller can reauction
an option as soon as it is returned, increasing the likelihood of selling the item before her departure.

3.2. Examples of proxy behavior

We first provide an example to illustrate the price-matching logic that is followed by proxies (also illustrated as Table 1):

Example 3. Consider three buyers, all of whom enter the market on Monday and depart the market after Tuesday. Molly
values an item for $8, Nancy for $6 and Polly for $4. On Monday, an auction occurs where all three proxies bid, with Molly’s

14 In practice one might choose to make a tradeoff here, in which that gain from allowing earlier reposting of an item can be traded for the cost of losing
strategyproofness for the most patient buyers.
15 Here is an example where Alice has a useful manipulation of this kind: Alice values an Apple for $5 from Monday to Wednesday. Bob values the Apple
for $8 but only on Monday. Consider a seller with an Apple and high patience. If Alice is truthful then Bob wins on Monday for $5 and exercises the option.
But if Alice claims to value an Apple together with a Banana at $10 only from Monday to Tuesday then Alice wins the Apple option for $8, but returns it
at the end of Tuesday. On Wednesday, the seller re-posts and an Apple auction occurs with Alice returning and bidding $5 for an Apple alone and winning
the Apple for $0.
16 One common technique that is used at present to achieve strong, or almost strong, identities in electronic markets is to require a unique cell phone
number or credit card number of every registration.
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proxy winning with the highest bid of $8 and receiving an option for $6. Molly’s proxy adds Nancy to its local memory. On
Tuesday, another auction occurs where only Nancy’s and Polly’s proxies bid, with Nancy’s proxy winning an option for $4
and noting that it bumped Polly’s proxy. At this time, Molly’s proxy will price match its option down to $4 (because Nancy is
already in memory) and replace Nancy with Polly in its local memory for bookkeeping purposes, as Polly would be holding
an option had Molly delayed her bid past this round.

To illustrate how the options-based scheme handles the exposure problem, consider the following example where Alice
desires a bundle of two goods:

Example 4. Alice values one ton of sand and one ton of stone together for $3000 (but has no value for either by itself).
Bob values one ton of sand for $800. Charlie values one ton of stone for $2000. All buyers have a patience of 2 days. On
day one, a stone auction is held, where Alice’s proxy bids $3000 and Charlie’s bids $2000. Alice’s proxy wins an option to
purchase stone for $2000. On day two, a sand auction is held, where Alice’s proxy bids $3000 and Bob’s bids $800. Alice’s
proxy wins an option to purchase sand for $800. At the end of the second day, Alice’s proxy holds an option to buy stone
for $2000 and sand for $800 and exercises both options spending a total of $2800.

As an illustration of how the options-based scheme handles substitutes values consider the following example:

Example 5. Alice values either one ton of coarse sand for $1000, or one ton of fine sand for $800 (but only $1000 for
both). Bob values coarse sand for $800. Charlie values fine sand for $900. On day one, a coarse sand auction is held where
Alice’s proxy bids $1000 and Bob’s proxy bids $800, resulting in Alice’s proxy winning an option for the coarse sand with an
exercise price of $800. On day two, a fine sand auction is held where Alice’s proxy bids $800 and Charlie’s proxy bids $900,
resulting in Charlie’s proxy winning an option for the fine sand with an exercise price of $800. At the end of day two, Alice’s
proxy exercises its coarse sand option and Charlie’s proxy exercises its fine sand option.

3.3. Complexity analysis

In providing a complexity analysis for the problem facing proxy agents, we consider the particular case of a valuation
function that is described in the exclusive-or (XOR) bidding language [45]. An XOR valuation of size M defines a set of M
bundle-value pairs (or atomic terms), {(L1, vi(L1)), . . . , (LM , vi(LM))}, and defines valuation

vi(S) = max
Lm⊆S,m∈{1,...,M}

[
vi

(
Lm

)]

for any bundle S , where Lm is one of the atomic terms. This is equivalent to saying that buyer i is interested in buying at
most one bundle. We have the following two immediate results:

Theorem 1. Given an XOR valuation of size M, there is an O (KiM2) algorithm for computing the maximum marginal value on each
interesting good for buyer i ∈ B, where Ki = |⋃m∈{1,...,M} L

m| is the number of different items in which the buyer is interested.

Proof. For each item, recall Eq. (3.1), which defines the maximum marginal value of an item. For each bundle Lm in the M-
term valuation, and any item Gk , vi(Lm ∪{Gk}) can be identified by considering each of the M terms in sequence. Therefore,
the number of terms explored to determine the maximum marginal value for any item Gk is O (M2), and the total number
of bundle comparisons to be performed to calculate the maximum marginal value on every item is O (KiM2). !

Theorem 2. The total memory required by a proxy to implement price matching is O (Ki(log(V ) + log(B))), where

Ki =
∣∣∣∣

⋃

m∈{1,...,M}
Lm

∣∣∣∣

is the number of different items in which the buyer is interested, V is the maximum value a buyer possesses for a bundle, and B is the
maximum number of buyers within the system at any given time. The total work performed by a proxy in updating the state in each
auction is O (1).

Proof. The proxy stores one maximum marginal value for each item of interest, i.e., O (log(V )) information for each of
O (Ki) items. The proxy also stores at most one buyer’s identity for each item of interest, i.e., O (log(B)) information for
each of O (Ki) items.17 The proxy also stores one exercise price for each item of interest, i.e., O (log(V )) information for

17 As Lemma 2 implies, while more than B buyers may be present over the entire time in which a buyer participates in the marketplace, only the B
buyers in the market at any given time actually matter to a proxy, and so only log(B) information is required to store the identities, assuming proper
recycling of information when buyers leave the market.
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each of O (Ki) items. For each auction, the proxy either submits a precomputed bid or price matches, both of which take
constant work. !

The computation required to determine the most profitable bundle at the time of departure is O (MKi) arithmetic oper-
ations, as for each bundle one can determine the potential profit on that bundle by iterating over the options held on items
in that bundle, of which there are at most Ki .18

4. Theoretical analysis of the options-based scheme

In this section, we establish that the options-based scheme supports truthful bidding as a dominant bidding strategy
for buyers. We also develop a worst-case, competitive analysis for allocative efficiency in the practical case in which all
buyers and sellers want to trade one unit of an identical good. The competitive analysis generalizes earlier analysis due to
Hajiaghayi et al. [29] to include a bound on the maximum ratio of minimum to maximum values in the buyer population.
This is a useful modification because values will typically fall into natural bounds in practical settings.19

4.1. Strategic analysis: Establishing truthfulness

The proxies transform the market into a direct revelation mechanism, where each buyer i makes a claim about her type
to her proxy agent in some period âi ! ai . The dominant bidding strategy for each buyer is to report her true valuation and
true departure time to her proxy agent immediately upon arrival to the system, that is, to bid her true type θi = (ai,di, vi).
We assume that neither buyers nor sellers receive any information about prices, or previous bids of other agents, before
submitting a bid to their proxy agents.20 A brief discussion about the effect on equilibrium properties of allowing buyers
and sellers to see information about the market before bidding or deciding when to list goods is given at the end of this
section.

In establishing strategyproofness, we provide a slight generalization of an existing characterization of strategyproof online
auctions [29], to allow for combinatorial online auctions. For this, define a value-independent price function, psâi ,d̂i ,b−i

(L) ! 0,

on all L ⊆ G , which can depend on the bids of other agents b−i and the reported arrival âi and departure d̂i of buyer i. The
price function is value-independent because it does not depend on the reported valuation v̂ i of the buyer. The price function
will depend on the realization of supply, but this dependence is suppressed to keep the notation simple.

Definition 2 (monotonic prices). A value-independent price function is monotonic in arrival and departure if psa′
i ,d

′
i ,b−i

(L) !
psai ,di ,b−i

(L), for all buyers i, all a′
i ! ai , all d′

i " di , all bids b−i by other buyers, all realizations of supply, all ai,di and all
L ⊆ G .

Monotonic prices increase with a tighter arrival-departure interval, fixing the bids submitted by other buyers and the
realization of supply within the market.

Lemma 1. An online combinatorial auction is strategyproof if there exists a monotonic, value-independent price function, psâi ,d̂i ,b−i
(L),

and given that for every buyer i, all reports θ̂i = (âi, d̂i, v̂ i), all bids b−i from other buyers, and all realizations of supply, the buyer is
allocated a bundle L∗

i ∈ argmaxL⊆G [vi(L) − psâi ,d̂i ,b−i
(L)] in period d̂i and makes payment psâi ,d̂i ,b−i

(L∗
i ).

Proof. Fix some a′
i and d′

i . A buyer should report true valuation function, v̂ i = vi , because the prices she faces are inde-
pendent of her report and by being truthful bundle L∗

i maximizes her true utility. This in place, fix v̂ i = vi . Now, it is
never useful to bid d̂i > di because the buyer will not receive her allocation until her true departure (and have zero value).
By limited misreports, the buyer cannot report âi < ai . Reporting âi > ai or d̂i < di (weakly) increases the price on every
bundle L by monotonicity. !

18 We can also consider the impact of alternate bidding languages, such as additive-OR valuations or its generalizations (e.g., OR* [45]), which can be
exponentially more concise than the XOR language, and might therefore be desirable in some markets. First notice that the time and space complexity of
price matching is unchanged. On the other hand, it is well known that the valuation problem, i.e., finding vi(S) for some bundle S , is NP-hard for OR and
OR* because one must solve a maximal weighted set packing problem, with the atomics providing the elements of the set. Thus, the problem of finding
the most profitable bundle upon departure is also NP-hard, with the value of each atomic adjusted according to the option prices. The maximum marginal
value problem is also NP-hard, via a reduction from the valuation problem to the marginal value problem, in which a new item k′ is introduced to all
atomics, such that vi(S) = 0 while vi(S ∪ Gk′ ) provides the value on bundle S for the original bid.
19 The worst-case analysis that we present is limited to this “single-item” environment in which each agent is buying or selling one copy of an identical
good. As a purely computational problem, the so-called k-duplicates combinatorial auction winner determination problem is NP-hard to approximate to

within a worst-case factor of O (K
1

n+1 −ε ), with K types of goods, n copies of each good, and where each agent interested in at most one good [5]. In the
special case of n = 1 (i.e., with one copy of each good in the market) this reduces to the (tight) lower-bound of O (K

1
2 −ε ) [31,58]. The lower-bound in the

k-duplicates setting with a large number of each item is more forgiving, leaving more opportunity for developing methods with good worst-case properties.
20 This is in contrast to proxy agents, who must receive information about bids from other proxies in order to perform price matching.
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Observe that it is not necessary for the prices to be monotonic with respect to subset inclusion of bundle L because
the assumption made in the lemma is that the bundle allocated is one that maximizes payoff across all bundles; if a larger
bundle has a smaller price then it would be selected.

Price-matching and bookkeeping are the methods by which a monotonic, value-independent price function is constructed
in the options-based auction. This is established in the following lemmas. The first lemma is useful in establishing the
correctness of the bookkeeping algorithm:

Lemma 2. At any given time, for any buyer i, there is at most one other buyer in the system whose proxy does not hold an option for a
given item because of buyer i’s presence, and the identity of that buyer will be stored in buyer i’s proxy’s local memory at that time if
such a buyer exists.

Proof. Fix some item and the proxy for buyer i. The proof is by induction on the sequence of auctions for the item while
buyer i’s proxy is present in the market. The correctness of the information in the proxy’s local memory is easy to establish
in the base case before the proxy has participated in any auction. Now consider the first auction for this item in which
the proxy wins and suppose it prevents another proxy from winning an option on the good (which is the interesting case).
Consider now two cases: (a) the bumped proxy will leave the system having never won an option on the item, or (b) the
bumped proxy will win an auction on this item in the future. In case (a), while this bumped proxy is still present then
proxy i’s presence prevented exactly that one proxy but no other proxies from winning an option. This is because the
presence of the bumped proxy in the market does not preclude any other proxy from winning (because the bumped proxy
is losing anyway). The identity of this bumped proxy remains in proxy i’s local memory because no price matching will
have occurred on this item because each winning proxy in each subsequent auction must have submitted a bid higher than
the bumped proxy’s bid (else the bumped proxy would have won) and therefore higher than proxy i’s exercise price, which
is initialized to the bid price of the bumped proxy. Eventually the bumped proxy leaves and proxy i no longer has any
effect on the bid dynamics for this item. At some point some other proxy may win an option for this item and the proxy’s
local memory is cleared. In case (b), while the bumped proxy is not yet winning then this is as in case (a). In period t in
which the bumped proxy wins then proxy j, with the highest other bid in that auction (if any), would have won without i’s
presence. Proxy i necessarily price matches in this case – because the exercise price it could have achieved is the bid price
of proxy j and less than that of the winning (bumped) proxy and thus its current exercise price – and then updates its
local memory to contain the identity of proxy j. Proxy j is the new proxy that does not hold an option because of buyer i’s
presence in the market. Case (a) or (b) now holds again for this new bumped proxy, proxy j, and the proof continues until
proxy i finally departs the market. !

In establishing strategyproofness, it is sufficient to consider the special case of a price function psâi ,d̂i ,b−i
(L) that is

linear in the items Gk ∈ L, so that psâi ,d̂i ,b−i
(L) = ∑

Gk∈L psâi ,d̂i ,b−i
(k). This will be the case because the price on a bundle

in the options-based scheme is constructed by adding the options price on the constituent goods of the bundle. The price
function psâi ,d̂i ,b−i

(k) on items is itself monotonic with respect arrival and departure, with prices associated with the options
prices, because of price-matching on individual options. This implies that the price function psâi ,d̂i ,b−i

(L) is monotonic. The
following easy lemma is stated without proof:

Lemma 3. The bundle of goods that maximizes a buyer’s reported valuation given a linear, agent-independent and monotonic price
function, defined in terms of the sum of prices on individual goods, will never contain an item that is priced above her maximum
marginal value.

Theorem 3. Truthful bidding is a dominant-strategy equilibrium for buyers in the options-based, proxied market and for all sell-side
strategies.

Proof. Fix buyer i. First, define an agent-independent price, ptb−i
(k), on item Gk in period t as the highest bid by the proxies

(= i not holding an option on item Gk at time t (∞ if there is no supply at t), and not including any proxy that would have
already won an option had i never entered the system (i.e., whose identity is stored in the i’s proxy’s local memory for
item Gk by Lemma 2). Conditioned on t ! âi , this price is well-defined and independent of any report θ̂i buyer i makes to
her proxy because the set explicitly excludes the one proxy (see Lemma 2) that i prevents from holding an option by its
presence, and comprises exactly those bids that would be made without i present. (For this, we exploit the fact that the
bid values are equal to maximal marginal values and independent of earlier bids by buyer i’s proxy.) Furthermore, i cannot
influence the supply of item Gk because any options returned by other buyers due to a price set by i’s proxy’s bid will be
re-auctioned (if at all) after i has departed the system. Moreover, the market is opaque and thus seller’s decisions about
when to list an item are independent of the bid of buyer i. Now define psâi ,d̂i ,b−i

(k) = minâi"τ"d̂i
pτ
b−i

(k) (possibly ∞),

which is well defined upon d̂i and is monotonic in arrival and departure because it is defined as the minimal value over
its domain. Conditioned on holding an option on Gk upon departure, this is exactly the exercise price obtained by buyer i’s
proxy. Now define psâi ,d̂i ,b−i

(L) = ∑
k: Gk∈L psâi ,d̂i ,b−i

(k), which is monotonic in âi and d̂i because psâi ,d̂i ,b−i
(k) is monotonic



ARTICLE IN PRESS ARTINT:2410

Please cite this article in press as: A.I. Juda, D.C. Parkes, An options-based solution to the sequential auction problem, Artificial Intelligence (2009),
doi:10.1016/j.artint.2009.01.002

JID:ARTINT AID:2410 /FLA [m3G; v 1.23; Prn:6/02/2009; 15:25] P.13 (1-24)

A.I. Juda, D.C. Parkes / Artificial Intelligence ••• (••••) •••–••• 13

and remains value-independent. (Note that this price is ∞ when there was never any supply of item Gk .) Given the options
held by a proxy at d̂i , which may be a subset of those items Gk with prices psâi ,d̂i ,b−i

(k) < ∞, the proxy exercises options

to maximize utility based on reported valuation, v̂ i . We show that the proxy would not want to select any options on items
that are not available because the prices on missing options would be too high. For this, consider such a bundle L′ , that is
interesting based on v̂ i but has one or more missing options. One possibility is that there is an item Gk ∈ L′ for which an
option was never for sale, in which case psâi ,d̂i ,b−i

(k) = ∞ and psâi ,d̂i ,b−i
(L′) = ∞ and L′ is not utility maximizing. On the

other hand, in the case that every item in L′ was available for sale in interval [ai, . . . ,di], we know that ptb−i
(k) was at least

the maximal marginal value in every such period (else the buyer’s proxy would have won) and the bundle cannot maximize
utility by Lemma 3. !

Note that a proxy acquires an option on every item that could possibly be in the buyer’s utility-maximizing bundle at
the final prices. For any option that a proxy agent does not explicitly hold upon departure, either the item was never for
sale, or the competition was such that the price was always so high that the buyer would not want to exercise the option
even if the clearing price on the other options was zero.

Remark 1. The options-based scheme satisfies voluntary participation (or “individual rationality”) for both buyers and sellers,
meaning that every participant has non-negative utility in equilibrium. For buyers, this follows because the proxy exercises
a utility maximizing set of options and will exercise no options if all bundles have negative utility. For sellers without any
intrinsic value for the good, voluntary participation follows because the prices on options remain non-negative.

Remark 2. The options-based scheme is robust against buyers that can participate under multiple identities or through
re-entry with the same identity. This is because the price function psâi ,d̂i ,b−i

(L) is linear on every bundle of goods L ⊆ G ,
being defined as the sum of the prices, psâi ,d̂i ,b−i

(k) introduced in the proof. So long as the prices that a buyer faces remain
unchanged when she participates multiple times, she cannot gain by winning multiple bundles because of linearity of prices
and because all alternate bids must necessarily have (weakly) tighter arrival-departure intervals and therefore higher prices.
In fact, the prices may increase – but cannot decrease – when a buyer participates multiple times because prices in the
underlying auctions are weakly increasing in more participants (a property of the Vickrey auction), and note that the supply
available to a buyer is unaffected by its strategy because of the delay that is required of a seller before reposting an item
for auction.

Remark 3. In a practical market such as eBay, it is often desirable to allow buyers to see information about the market before
bidding; e.g., about recent prices and recent bids. The effect of providing information about the market is a weakening of the
equilibrium from a dominant strategy equilibrium to an ex post Nash equilibrium, in which truthful bidding would remain
a best-response for every buyer (and for all possible types of other buyers and all possible market dynamics), as long as
other buyers are rational and bid truthfully. Consider the strategic problem facing buyer i. The earlier analysis holds, but
only as long as the bids of other buyers and therefore the prices faced by this buyer, continue to be independent of her own
bid. This is true in the ex post Nash equilibrium because the other buyers follow the truthful-revealing, equilibrium strategy.
But this agent-independence of prices is no longer true whatever the strategy of the other buyers, because another buyer
might follow a “crazy” strategy and bid extremely high if she sees a bid of a particular value from buyer i, and thus buyer i
should deviate from bidding truthfully to prevent the triggering of this action by the other buyer.21 A similar consideration
applies on the sell-side, with buy-side incentive compatibility retained as long as seller’s strategies are unaffected by market
information that is affected by active buyers, and including when sellers are non-strategic.

4.2. Efficiency analysis

In this section, we provide a worst-case, competitive analysis in the practical case in which all participants are buying
or selling one unit of the same kind of good. An online mechanism is said to be k-competitive with respect to efficiency if it is
guaranteed to achieve an allocation with value at least 1/k of that achieved in an optimal offline, or omniscient allocation.
The omniscient allocation maximizes total value given perfect hindsight about the arrival and departure and values of
market participants. For example, a mechanism that is 2-competitive for efficiency will achieve a total value that is at least
half of the total value of the optimal, offline allocation, for all possible agent populations.

In this special case, in which all buyers and sellers trade at most one unit of the same good, our problem is the same
as that considered by Hajiaghayi et al. [29], and the options-based scheme presented here is equivalent to their mecha-

21 The same kind of phenomenon occurs in indirect mechanisms such as ascending-price VCG mechanisms, where straightforward bidding is an ex post
Nash equilibrium but not a dominant strategy equilibrium [41].
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nism.22 These authors show that their mechanism, and thus also the options-based scheme, is 2-competitive for efficiency
in this setting and also prove a tight lower-bound to show that no truthful, online mechanism can provide better than
2-competitiveness and the options-based protocol has the best possible, worst-case efficiency.

We provide a slight generalization of the analysis and parameterize the competitive analysis with a lower bound, 0 "
α " 1, on the ratio of the minimum to maximum value for the item in the buyer population; i.e., wi/w j ! α for all buyers
i, j ∈ B , with values wi, w j on the item for buyers i and j respectively. For α = 0 the relative values are unbounded and wi
can be arbitrarily smaller than w j . For α = 1 the values must be identical across all buyers because if wi (= w j then either
wi/w j < 1 or w j/wi < 1. This parameter provides for a tighter worst-case analysis in settings in which such a bound on
the relative values of buyers is available. The result relies on an additional assumption when α > 0, which is that there is
at least one buyer without an option present in every auction. This is enough to guarantee that every item is sold, which is
required for the analysis.23

Theorem 4. When every buyer and seller is interested in trading one unit of the same item, given a lower-bound 0 " α " 1 on the
ratio of minimum to maximum values in the buyer population, and given at least one buyer in every auction not holding an option if
α > 0, then the options-based scheme is 2

1+α -competitive for efficiency.

Proof. Let OFF and ON denote the winners in the offline and online solutions respectively. We seek a lower bound
VON/VOFF = ∑

i∈ON vi/
∑

i∈OFF vi ! 1+α
2 for all possible inputs. For any input, we can place an upper bound on VOFF in

terms of VON through a charging argument, as follows. Following Hajiaghayi et al. [29], consider some buyer i ∈ OFF . We
“charge” her value to a buyer in ON. If i ∈ ON then we charge the value to herself. Otherwise, let auc be the auction that i
wins offline. Since i never wins in the options-based market, she was present in the market when auc closed, and so the
options-based scheme must have picked a winner j ∈ ON whose value is (weakly) greater than the value of i. We charge
the value of i to j. It is not hard to see that this charging scheme charges each agent j in the options-based market at most
twice, each time for a value less than the value of j. Let ONCE ⊆ ON and TWICE ⊆ ON denote the online winners that are
charged once and twice respectively. We have that VOFF " ∑

j∈ONCE v j+ 2
∑

j∈TWICE v j . For α = 0 this gives

VON

VOFF
!

(
∑

j∈ONCE v j +
∑

j∈TWICE v j)

(
∑

j∈ONCE v j + 2
∑

j∈TWICE v j)
! 1/2,

with the worst-case occurring for ONCE = ∅. Consider now α > 0, and let B ′ ⊆ OFF denote the subset of OFF that are
matched to the TWICE set. Let K = |B ′| and note that K must be even so that K/2 is an integer. Now, for α > 0 we know
that n = |OFF| = |ON|, because all items are sold in the online solution by assumption. Then, we have |ONCE| = n − K ,
|TWICE| = K/2, and an additional n − (n − K ) − K/2 = K/2 winners in ON. Let V denote the maximal value across all
winners in set OFF . We have VON ! ∑

j∈ONCE v j +
∑

j∈TWICE v j + (K/2)αV , and therefore

VON

VOFF
!

∑
j∈ONCE v j +

∑
j∈TWICE v j + (K/2)αV

∑
j∈ONCE v j + 2

∑
j∈TWICE

(4.1)

! (n − K )αV + (K/2)V + (K/2)αV

(n − K )αV + K V
(4.2)

= α(n − K ) + (K/2)(1 + α)

α(n − K ) + K
(4.3)

! K/2(1+ α)

K
= 1+ α

2
, (4.4)

where the second inequality follows by substituting the smallest possible values of agents in ONCE (counted equally in
numerator and the denominator) and the largest possible values of agents in TWICE (counted twice in the denominator).
The final inequality follows by analysis of the rate of change of the numerator and the denominator with respect to K for
any α ∈ (0,1], which is always more positive for the denominator than the numerator and therefore a valid lower bound is
achieved by setting K = n. !

The assumption that there is “at least one buyer in every auction not holding an option” implies a requirement on both
the input and the algorithm. But we can also provide a sufficient condition on the input for this property to hold, namely that
for all auctions, that either a new bid arrived since the last auction or there is a bid i present at time t (i.e., with âi " t " d̂i)
for which at least one higher-value bid had arrived prior to all previous auctions to occur in periods {âi, . . . , t − 1}.

22 The mechanism of Hajiaghayi et al. [29] combines a greedy matching algorithm, in which the next item is allocated to the agent with the highest value
that is currently unmatched, with a “critical value” payment in which successful buyers pay the smallest value that they could have reported and still been
successfully matched.
23 The empirical analysis that we present in Section 5 is performed for a sequence of auctions that complete in a sale on eBay, and in our simulations it
will be the case that every item is sold in the options-based scheme.
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When α = 0, that is with no bound on buyer values, we recover the competitive ratio of 2. The competitiveness goes
to 1 as α → 1, as the values become more homogeneous. In the analysis of the eBay LCD market, we find the values of all
buyers are bounded between $200 and $300, in which case α = 0.67 and the competitive ratio is around 1.2, which implies
that the total value of the allocation made by the options-based scheme is guaranteed to be within 17% of the value of the
best-possible offline solution.

5. Empirical analysis

In this section, we present the results of an experimental study of the average-case performance of the options-based
scheme for both efficiency and seller revenue. This study is in two parts. We first report results from an analysis of data
collected from eBay on all auctions for a 19′′ Dell LCD monitor sold during the summer of 2005. From this data we derive a
population of buyers and sellers, including estimates of the (true) arrival and departure times, and (true) values of buyers.
We adapt a non-parametric approach to estimate the values of buyers (Haile and Tamer [28], extended to dynamic auctions
in Juda [35]), and couple this with bootstrapping to provide robustness. We estimate that the options-based scheme would
provide a 4% improvement in efficiency and a 9% improvement in seller revenue over the status quo, and thus a significant
improvement in total surplus in the market.

We also report the results from additional simulations designed to understand the performance of the options-based
scheme in environments in which buyers have substitutes valuations or complements valuations. These simulations are in-
spired by the eBay data but are not directly performed in terms of this data because we do not attempt to identify the
preferences of buyers with more complex valuations.24 Buyer populations with substitutes valuations can hamper efficiency,
although efficiency remains high when the valuations of a given buyer for the different items are either negatively corre-
lated or uncorrelated. Buyer populations with complements valuations tend to achieve consistent efficiencies for different
within-buyer correlation on the value of items. Finally, we study the role of liquidity by varying the buyer-to-seller ratio and
find that for buyer-to-seller ratios that are typical in the eBay marketplace, the efficiency remains high even when buyers
have substitutes valuations over many different items.

As discussed in the introduction, for the purpose of our first set of results in regard to the Dell LCD market it is sufficient
to compare the average value and revenue per successful buyer, because there is no hold-up problem and the same number
of buyers win in both eBay and the options-based scheme. For the purpose of substitutes valuations we normalize with
respect to an online benchmark and for the purpose of complements valuations it will be sufficient to consider the total
value (and revenue) achieved in the options-based scheme.

5.1. An eBay market for LCD screens

We collected data from eBay on all auctions for a 19′′ Dell LCD monitor (Model E193FP) sold from 27 May, 2005 through
1 October, 2005, of which there were 1956 instances.25 Assuming that each pseudonym represents a unique buyer, we
observe 10,151 distinct bidders participating in these auctions. Given the data, our aim is to simulate a sequence of auctions
for options that match the timing of auctions on eBay and with the true, underlying value of the buyers as identified from
the eBay data. We define eBay seller revenue as the actual closing prices in the data. For eBay efficiency we compute the
efficiency implied by the allocation on eBay and the estimate of the true values that we make for each winner.

For each auction on eBay that closes with a sale, we simulate a Vickrey auction for an option on the item. Auctions
on eBay in which the item goes unsold are not considered within our simulation.26 The sequence in our simulation is the
same as the sequence on eBay with an auction scheduled to occur when it first opens on eBay. An auction that opened at
1:00:00pm on day 1 would be simulated before an auction that opened at 1:00:01pm on day 1. We schedule auctions at
the time an auction opens rather than closes on eBay to allow for the possibility of re-posting an item that goes unsold.
(Although this is only relevant with more general valuations because all options are exercised in the current context.)

We estimate the arrival, departure and value of each buyer on eBay from their observed behavior.27 Arrival is estimated
as the first time that a buyer interacts with the eBay proxy, while departure is estimated as the latest closing time among eBay

24 When buyers have substitute preferences, it would be difficult to determine the entire set of substitutes in which a buyer may be interested, as a buyer
on eBay may have never bid on all substitutes. When buyers have complements preferences, it would be difficult to determine based solely on their bidding
behavior the extent to which they already possess the complementary goods. For example, if we were to observe a buyer bidding on a left shoe, there is
no way to know definitively if the buyer already possesses a right shoe, or only intends to start bidding on a right shoe once a left shoe has been acquired.
25 Specifically, search queries found all auctions where the auction title contained all of the following terms: ‘Dell’, ‘LCD’ and ‘E193FP’, while excluding all
auctions that contained any of the following terms: ‘Dimension’, ‘GHZ’, ‘desktop’, ‘p4’ and ‘GB.’ The exclusion terms exist so that the only auctions analyzed
would be those selling exclusively the LCD of interest. For example, the few bundled auctions selling both a Dell Dimension desktop and the E193FP LCD
are excluded. Further information on the fields for each auction and how those fields were processed is provided in Juda [35].
26 Unsuccessful auctions are likely either completely unseen by the buyer population or reserve auctions where the reserve price was not met. In either
scenario, we consider these auctions too unique to include in the simulation. For example, if unsuccessful auctions were modeled in the options-based
scheme, then more items would be sold in the options scheme than on eBay, making it significantly more difficult to compare the total seller revenue
generated between the two markets.
27 The relatively few buyers observed to have won multiple items on eBay in practice are simulated as multiple buyers with identical arrival, departure
and value. At most one of these identical buyers will participate in any given auction.
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(a) The PDF of closing prices of Dell E193FP LCD screens using
a worst-case estimate of buyer value. While the average closing
price on eBay and the options scheme are comparable, the vari-
ance is significantly lower in the options scheme.

Options eBay

Price $239.66 $240.24
stddev(Price) $12 $32
Value $263 $244
BuyerSurplus $23 $4

(b) The average price paid per good, average buyer value among
winners, and average winning buyer surplus on eBay for Dell
E193FP LCD screens as well as the simulated options-based mar-
ket using worst-case estimates of buyer values. (Note: All items
are sold in both markets.)

Fig. 1. Comparisons between empirically observed results on eBay and simulation results of the options scheme using a worst-case estimate of buyers’ true
valuations.

auctions in which a buyer participates. Both are clearly conservative, but adopted in the interest of simplicity. We note that
less conservative estimates of these timing constraints would improve the performance of the options-based auction in
simulation because there would be greater competition. We are careful about the end effects of the first few days of data
and the last few days of data.28

In our first experiments, we adopt a conservative estimate of the true value of a buyer on eBay, estimating this simply as
the highest bid this buyer was observed to have placed in any LCD auction. Fig. 1(a) shows the distribution of closing prices both
on eBay and in the simulated options scheme under this “worst-case” assumption. The closing price in the simulation is
defined as the final exercise price (i.e., after price matching). The seller revenue is similar between the two schemes while
the estimated effect on efficiency suggests an advantage for the options-based scheme (as the winners in the options-based
scheme possess a higher average value for the item than on eBay).29 See Fig. 1(b). While the winning buyers on eBay
have an estimated mean value of $244, the options scheme’s winning buyers have a mean value of $263 (a 7% increase).
Consumer surplus, which measures the average buyer utility over all winning buyers, increases in the options-based scheme
from $4 to $23.30 We notice also that the standard deviation of prices is significantly reduced in the options-based scheme.

Fig. 2(a) shows a very distinct difference between eBay and the options scheme. We plot the closing price of an auction
against the patience of the auction’s winner. In the options scheme, not only do buyers with a larger patience generally
pay lower prices than buyers with smaller patience but the variance of price paid decreases with patience. Quantifying
this effect, we ran linear regressions of price versus the log of patience in seconds for both eBay and the options scheme.
While we cannot say that patience is correlated with price on eBay (with a 95% confidence interval of the patience coeffi-
cient ranging from −0.517 to 0.642), patience is negatively correlated with price in the options-based scheme (with a 95%
confidence interval of the patience coefficient ranging from −1.995 to −0.938).

In our second set of experiments, we adopt a less conservative estimate of the true value of a buyer by using the non-
parametric methods of Haile and Tamer [28], generalized to apply to dynamic auctions.31 Fig. 3(a) shows the distribution of
actual closing prices in eBay and in the options scheme as simulated with this new, less conservative estimate. The mean

28 When running the simulations, the final ten days worth of observed auctions are not simulated. Ten days also is past the 90th percentile of the
distribution of buyer patience. Buyers bidding toward the end of the window are likely to bid higher in the future on eBay than their current bids (this
is suggested by the regression analysis in Juda [35]), which results in low estimates for buyer value among these buyers. Similarly, we must allow for a
start effect in which the initial seller revenue in simulation will be artificially high because no buyers in the initial period will be marked as already traded
when in fact they would have if the simulation had started earlier. For this, the options simulation starts from the initial period but seller revenue is only
accounted after the first ten days.
29 Note that in markets where buyers are only interested in a single item, every item is sold in the options based scheme. Consequently, an increase in
average price or winners’ average value does also imply an increase in total revenue and total allocative value (and hence efficiency).
30 This improvement in consumer surplus occurs because of the redistribution effect of an improved allocation and represents the increase in value to
winning buyers. But these are lower bounds on consumer surplus given the conservative estimate of true value and thus overstate the relative improvement
in consumer surplus provided by the options-based scheme. Note that buyer surplus on eBay is above zero even when conservatively estimating buyer
values, as there are buyers who had submitted losing bids in other auctions that were higher than the winning prices in auctions won.
31 See Juda [35] for more information. In particular, we are able to estimate that the true values of buyers on eBay are 15% greater than their observed
maximum bids. This estimate is based on identifying a multiplicative factor that separates the distribution of observed bid values from a conservative
estimate on the distribution of underlying values that can be derived through analysis of order statistics and simple, reasonable assumptions.
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(a) A scatter plot of the price paid by winners against the patience
of the buyer (in secs) for Dell E193FP LCD screens using worst-
case estimates of buyer values.

Options eBay

Intercept 271.6 286.7
log(Patience) −1.466∗

(0.270)
0.063
(0.295)

(b) Regressions of price versus the log of patience.
∗indicates statistically significant at least at the 5% significance
level. Standard error below coefficients.

Fig. 2. Price versus patience.

(a) The PDF of closing prices of Dell E193FP LCD screens using a
less conservative estimate of buyer value.

Options eBay

Price $275.80 $240.24
stddev(Price) $14 $32
Value $302 $281
BuyerSurplus $26 $40

(b) The average price paid per good, average buyer value among
winners, and average winning buyer surplus on eBay and un-
der the simulated options market, for Dell E193FP LCD screens
and a less conservative estimate of buyer values. (Note: All items
are sold in both markets. Numbers in bold identical to those in
Fig. 1(b).)

Fig. 3. Comparisons between empirically observed results on eBay and simulation results of the options scheme using a less conservative estimate of buyers’
true valuations.

price in the options scheme is now significantly higher than the mean price on eBay ($240 on eBay, $276 in the options
scheme). The standard deviation on closing prices in the options scheme is also significantly less, being $32 on eBay vs.
$14 in the options scheme. The estimated efficiency of the options-based scheme again remains higher than that on eBay
because, while the winning buyers on eBay are estimated to have a mean (true) value of $281, the winners in the options
scheme are estimated to have a mean value that is 7.5% higher (at $302).32 It bears emphasis that in reporting these results,
the same value estimates that are adopted in the simulation of the options scheme are also adopted in estimating the total
value of the allocation implemented on eBay.

Comparing Fig. 1(b) and Fig. 3(b), we see a variety of changes between the two value estimations. Within the options
based schemes, as the participants are estimated as having a higher value in Fig. 3(b), but submitting their true value
as they have a dominant strategy to do so, average price and winning buyer value are appropriately higher. Alternatively,
within eBay, a higher estimate of value does not impact the actual set of empirically observed results. Therefore, a higher
estimated value per winning buyer coupled with identical prices results in a significant change in buyer surplus.

Bootstrapping. While the simulation of the options-based market suggests better efficiency and seller revenue than on
eBay, a reasonable concern may be that the performance of the options-based market is influenced by specific details of

32 The consumer surplus for buyers in the options scheme is below that on eBay, but this could be easily addressed by the use of fees or other methods
to redistribute surplus. The significant effect is that both revenue and value have increased, representing greater total surplus.
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Table 2
Average price paid per good, buyer value per winner, and buyer surplus per winner, over 50 bootstrapped simulations of the options-based scheme with less
conservative estimate of buyer values (with standard deviations in parentheses). The table also provides the ratio of the performance of the options-based
scheme (averaged over these bootstrapped simulations) and eBay.

Options Bootstrap
Options Bootstrap Bootstrap

eBay eBay

Price $275.80 0.95 $261.89 1.09 $240.24
($1.37)

Value $302 0.97 $292 1.04 $281
($0.86)

BuyerSurplus $26 1.14 $30 0.74 $40
($0.95)

the particular buyer population considered. To alleviate these concerns, we also perform a set of bootstrapped simulations.
Rather than using the 10,151 unique buyers observed to have participated on eBay in the simulation we instead simulate
the options-based market using 10,151 buyers where each buyer is drawn uniformly with replacement among all buyers
observed to have bid on eBay. This creates a buyer population that is similar to that observed on eBay, while providing
insight into how sensitive the results are to the exact combination of buyers observed. Table 2 provides the average results
of 50 bootstrapped simulations, together with the performance of the options-based scheme without bootstrapping and the
results for the actual allocation in the eBay market. The results support an estimate of efficiency that is 4% greater than on
eBay and seller revenue that is 9% greater than on eBay.

5.2. Simulation: Substitutes preferences

While the options-based market appears effective when the bidding population has simple preferences and wants only a
single good, we now examine the efficacy of the system when buyers have substitutes preferences. To see why substitutes
preferences can be problematic consider the following:

Example 6. Alice values one of either an apple or banana by Tuesday for $10. Bob values one of either an apple or banana
by Tuesday for $8. On Sunday, an apple auction is held where Alice’s proxy wins an option for the apple for $8. On Monday,
a banana auction is held where Alice’s proxy wins an option for the banana for $8. At the end of Tuesday, Alice’s proxy
exercises one of her two options, returning the other option, while Bob leaves the market having acquired nothing.

Clearly, it would have been more efficient for Bob to have won an option for only one of the pieces of the fruit. However,
the scheme has Alice’s proxy holding both options. We refer to this as the holdup problem.33

We first consider a market in which buyers have substitutes preferences over two items. Inspired by the observed
population of eBay, we consider a market with a 120-day time period where each buyer’s value is distributed normally
over a Gaussian distribution for Monitor A with mean $265 and standard deviation $45 and for Monitor B with mean $240
and standard deviation $20. The value for the bundle of A and B is the maximum of the two values. 5000 buyers arrive
uniformly over the 120-day time period, and with patience distributed according to a Normal distribution with a mean of
3.9 days and a standard deviation 11.4 days (as was observed to be the mean and standard deviation of patience among
the eBay buyers), and truncated to be non-negative and rounded to the nearest day. We model 2000 sellers that enter the
market uniformly over the 120-day time period, with the patience of each seller distributed by a Normal distribution with
a mean of 7 days and a standard deviation 1 day. Each seller offers one of Monitor A or Monitor B with equal probability.
In the simulation, an auction is scheduled for a seller for an option on her good immediately upon arrival and the good is
re-posted when a seller’s option is returned unexercised before her departure.34

In the experiments, we consider both a positive and a negative correlation between the value that a buyer has for
Monitor A and Monitor B. Positive correlations might exist if some buyers possess generally higher valuations across all
items than other buyers. Negative correlations suggest that buyers have strong “tastes” for each item and it is likely that
either one or the other item will appeal to a particular buyer but not both.35

Table 3 shows summary statistics for the performance of the market in this setting. Rather than provide a comparison to
eBay, we compare the value of the options-based allocation to the value of a greedy online benchmark. The greedy online

33 To provide a counterpoint, note that if buyers have linear-additive values on individual items then they will always exercise every option they win and
no options will be returned and go unsold. This is because the maximum marginal value of each item is exactly the value a buyer will ultimately realize in
exercising that option, whatever the details of the other goods that it wins.
34 For this to be possible in practice without introducing new opportunities for buyer manipulation we would need to prevent a buyer’s proxy from
rebidding on the same item within period ∆max (as discussed in Section 3.1). This was not done within the simulation but would have a negligible effect
on the results.
35 To model positive correlation, if a buyer’s valuation for Monitor A is x standard deviations above the mean, her valuation for Monitor B is set to x
standard deviation above the mean (cf. for x standard deviations below the mean). Alternatively, to model negative correlation, if a buyer’s valuation for
Monitor A is x standard deviations above the mean, her valuation for Monitor B is set to x standard deviations below the mean (cf. for x standard deviations
below the mean).
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Table 3
Market performance (averaged over 30 instances) with 5000 buyers and 2000 sellers in a 120 day marketplace and buyers with substitutes preferences on
2 items.

Buyers’ values Items sold
(%)

Total value Buyer surplus
(% value)

Sellers returned
(%)

Value %
of online benchmark

− Correlated 100.0 569,665 7.6 0.02 96.5
Uncorrelated 87.1 500,571 8.5 18.3 85.2
+ Correlated 61.4 362,704 9.2 41.7 63.3

Table 4
Market performance (averaged over 30 instances) with 5000 buyers and 3000 sellers in a 120 day marketplace. Buyers possess substitutes preferences over
3 items.

Buyers’ values Items sold
(%)

Total value Buyer surplus
(% value)

Sellers returned
(%)

Value %
of online benchmark

Uncorrelated 75.0 632,504 7.5 33.8 74.5
+ Correlated 44.4 388,191 8.6 58.1 47.2

benchmark is computed as follows. In each period, it looks at all buyers and sellers in the market and computes a tentative,
value-maximizing allocation of goods among the population using a mixed-integer program. For each pair of buyers and
sellers that are matched in this allocation, if either one departs in this period then the trade between them is committed.
Otherwise, both buyers and sellers carry over into the next period and continue to be available for provisional allocation.

The “sellers returned” statistic in Table 3 indicates the average number of sellers whom have an option returned unsold.
One can understand by comparing the fraction of items sold and the fraction of “sellers returned” the number of items that
are sold successfully on second (and later) attempts; e.g., for uncorrelated values 18.3% of items are initially unsold but only
100 − 87.1 = 12.9% of items are unsold eventually.

When values across the two items are negatively correlated, the market in effect breaks itself up into two disjoint
markets, one for the first and one for the second item, because buyers do not typically possess a sufficiently high value
on both of the items to be competitive on both. Because of this, all items are typically sold and the estimated efficiency
(based on the percentage as related to the greedy online benchmark) is high and there is only a slight holdup problem. On
the other hand, when values across the two items are either uncorrelated or positively correlated, buyers are more likely
to hold options on both items, thus causing holdup problems and blocking lower-valued buyers who may never hold an
option.

Similar results are found when we consider substitute preferences over three items (where the distribution of value for
the third item is normal with mean $265 and standard deviation $45), and scaling the number of sellers to 3000 from 2000
to keep the same number of each item supplied on average (see Table 4). When the values across the three items are
positively correlated for a buyer, fewer items are sold and the market efficiency falls (as defined with respect to the greedy
online benchmark).36

As a third experiment with substitutes preferences, we investigate the extent to which the number of items for which
each buyer has some value can affect the performance of the market. For this, we consider a market with 1000 buyers and
1000 sellers and 10 different kinds of items. Buyers possess substitutes preferences on between 1 and 10 items, always with
uncorrelated values across items.37 The value on a bundle of items is defined as

vi(L) = max
Gk∈L

vi(k), (5.1)

i.e., these are pure substitutes valuations. Fig. 4 illustrates the average market performance of the options-based scheme. As
the number of items in which a buyer is interested increases (the “size” of a buyer’s valuation), the additional competition
reduces buyer surplus. In addition, efficiency (as defined with respect to the greedy online benchmark) falls because the
holdup problem gets worse. However, it is interesting that the number of items sold remains fairly constant at around 53%.
In Section 5.4 we will see that the effect of the size of a buyer’s substitutes valuation on efficiency depends on the buyer-
to-seller ratio and is significantly improved for higher buy-side competition.

5.3. Simulation: Complements preferences

We now consider buyers with complements valuations for items. While a buyer has a value for each individual item,
in this simulation she is also interested in acquiring both items. The synergy (or lack thereof) of acquiring both items is
provided via a Gaussian distributed multiplicative factor, β ∈ (−1,1), of the sum of the values of the individual components

36 There being no simple way to define negatively correlated values on three items we just present results for uncorrelated and positively correlated
values.
37 The specific distributions from which valuations are drawn are as follows: vi(1) ∼ N(260,45), vi(2) ∼ N(240,10), vi(3) ∼ N(250,5), vi(4) ∼ N(280,5),
vi(5) ∼ N(260,20), vi(6) ∼ N(230,55), vi(7) ∼ N(220,60), vi(8) ∼ N(245,5), vi(9) ∼ N(260,5), vi(10) ∼ N(290,5).
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Fig. 4. Market performance (averaged over 30 runs) with 1000 buyers and 1000 sellers in a 120 day marketplace with 10 different kinds of goods being
offered. Buyers have substitutes preferences over a varying number of items.

Table 5
Market performance with 5000 buyers and 2000 sellers in a 120 day marketplace. Buyers possess complements preferences over 2 items.

Buyers’ values Items sold
(%)

Number
of buyers

Average
bundle size

Total value Buyer surplus
(% value)

Sellers returned
(%)

− Correlated 80.0 1253 1.28 477,388 6.4 31.4
Uncorrelated 80.7 1139 1.42 487,841 7.5 29.7
+ Correlated 77.3 926 1.67 477,257 9.0 35.1

of the bundle, such that the value for two items, vi({A} ∪ {B}) = (1 + β) (vi({A}) + vi({B})), and we define β ∼ N(0,0.1).
We also consider correlation (both negative and positive) across the single-item values on different items. We simulate a
market with 5000 buyers and 2000 sellers and 120 days, adopting the same set-up as in the substitutes experiments.

Table 5 shows summary statistics for the performance of the market. The average bundle size is the average number
of items allocated to winning buyers. This increases from uncorrelated to correlated values across items. This time the
correlation seems unimportant, and no matter whether values across items are positively or negatively correlated, we see
that around 80% of the items are sold. The number of items sold is relatively high because buyers who hold multiple options
can generally exercise both options because of their complements valuations. The number of items sold is not limited as
much because of holdup with complements as with substitutes preferences. An individual buyer’s surplus tends to be higher
when values are positively correlated because, conditioned on winning at all, she is likely to have higher value on both items
and thus higher surplus (while continuing to benefit from price matching). In a simulation in which the number of sellers is
increased to 3000 and buyers have complements valuations on three items, but otherwise unchanged, the number of items
sold remains at around 80% of supply for both uncorrelated and positively correlated across-item values.

5.4. Simulation: Market liquidity

For our final study we consider buyers with substitute preferences and uncorrelated values across items and vary the
liquidity in the market. For this, we vary the buyer-to-seller ratio, which is the ratio of the total number of buyers to sellers
in the market, and fix the number of sellers at 500. Fig. 5 plots the efficiency (calculated as the ratio of total value of goods
allocated in the options-based scheme to a greedy online allocation that approximates the total possible realizable value)
against buyer-to-seller ratio. We adopt this online benchmark because we are interested in understanding how our solution
to the strategic problem (through options, proxies and price-matching) affects performance in relation to a non-strategyproof
online algorithm.

What is particularly interesting is that efficiency initially tends to decrease with increasing buyer-to-seller ratio (for
all numbers of items other than one) but then increases again.38 For extremely low buyer-to-seller ratios there is little
competition in the market and buyers do not hold up each other too badly and the efficiency is high even with substitutes
valuations on many items. As the buyer-to-seller ratio increases, efficiency falls as more buyers are blocked because of the
holdup problem. At some point, though, efficiency begins to increase again because it becomes less likely that any single

38 For the problem instance where buyers are only interested in a single item, efficiency is always very close to 100% for all buyer-to-seller ratios. Note
also that while there is a data point above 100%. This is not a spurious result because the online benchmark is not guaranteed to be optimal, and can on
occasion be out-performed by the options-based scheme.
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Fig. 5. Efficiency of the options-based scheme at various buyer-to-seller ratios (averaged over 30 runs). Buyers have substitutes preferences on different
numbers of items. Number of sellers fixed at 500. Number of days fixed at 120.

buyer will be competitive on multiple items. The effect is to separate the market across different types of goods, with each
buyer tending to only win on one or two goods and therefore causing only a slight holdup problem and providing higher
efficiency. On eBay, for example, we see a buyer-to-seller ratio well above 5:1 in the LCD market and might expect efficiency
to remain high even when buyers have large substitutes valuations.

6. Discussion: Improving market efficiency

The empirical study in the previous section not withstanding, two factors that limit the market efficiency of the options-
based scheme are:

(1) Proxy agents hold onto options that they will likely not exercise.
(2) Proxy agents bid their maximum marginal value for options.

Regarding the first point, notice that while proxy agents exercise every option that they hold when items have constant
marginal value (e.g., when a buyer wants a single item, or has a linear valuation function), a number of options will be
returned in general. This occurs quite frequently in our experiments, although a number of these items are ultimately sold
upon reposting in a new auction. One simple improvement that can be adopted is to allow a seller who wishes to leave the
marketplace but has an issued option to leave (with the good) if the proxy already knows that the option will definitely go
unexercised. In so doing, sellers need only remain in the market while there is some possibility that their option will be
exercised. However, it is difficult to provide sellers with additional flexibility, for example to allow a seller to offer multiple
options for the same unit of a good, without compromising the strategyproofness of the market for buyers. If faced with
options that do not provide an exclusive right to exercise and receive a good (for instance if two options are issued on the
same unit and both proxies seek to exercise them), then proxy agents would have an incentive to bid for multiple options
on the same good.

Regarding the second point, notice that proxy agents may be submitting excessively large values when bidding maximum
marginal values. Even if a proxy is already guaranteed utility z on a bundle of options (based on their current exercise price),
the proxy will still go ahead and bid for options on items that could not possibly bring utility of more than z at any exercise
price, including zero. The bid price is not adaptive to options and exercise prices already secured. We would wish to provide
a proxy with a less aggressive bidding strategy and prevent a proxy from acquiring options on items that are currently priced
too high to be exercised and especially those that will never be exercised. A natural candidate for a less aggressive bidding
strategy – which would still provably acquire all options that could possibly be useful – is to bid the maximum willingness to
pay given its current allocation of options and the current exercise prices on these options. That is, the proxy should factor
in its current state in deciding how much to bid.

For example, suppose that Alice values exactly one piece of fruit (either an apple at $10, a banana at $5, or an orange
at $5). If Alice’s proxy already holds an option for an apple with an exercise price of $8, she might only bid $3 (instead
of $5) in future auctions for bananas and oranges because securing an option for a banana or an orange at a price above
$3 would only be dominated by the apple option. Similarly, if Alice’s proxy already holds an option for an apple with an
exercise price of $2, she should not bid at all for bananas or oranges, as the maximum surplus possible from acquiring a
banana or an orange is guaranteed to be less than the surplus of $10− 2 = $8 already guaranteed for the apple.

More formally, let Ot denote the set of options held by a proxy at time t , γ (L) ⊆ G denote the goods that correspond
to some subset L ⊆ Ot of these options, and pt(L) = ∑

k∈L p
t(k) denote the total exercise price in period t for this set of
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options where pt(k) is the current exercise price on the option for good Gk . Let ût
i (L) = v̂ i(γ (L))− pt(L) denote the reported

utility of the buyer for options, L. Let Lt∗ denote the set of options that maximizes this reported utility. Given this, define
the maximal willingness to pay for an option on an item k given the current state of the proxy as:

wtpti (k) = max
S

[
0,min

[
v̂ i

(
S ∪ {Gk}

)
− ût

i

(
Lt∗

)
, v̂ i

(
S ∪ {Gk}

)
− v̂ i(S)

]]
, (6.1)

where v̂ i(S ∪ {Gk}) − ût
i (L

t∗) considers the utility already guaranteed with the current options, and v̂ i(S ∪ {Gk}) − v̂ i(S) is
the maximal marginal value of good Gk . This expression calculates the greatest amount a buyer will possibly be willing to
spend on an item given the current options held and with uncertainty as to what future items will appear in auctions and
about future option prices (assume all S ∪ {Gk} are free while the prices on items in Lt∗ remain the same). However, this
scheme cannot be implemented in the proxied architecture without forfeiting truthfulness:

Example 7. Both Alice and Bob have substitutes valuations. Alice values either one ton of sand for $2000, one ton of stone
for $1900 and both for $2000. Bob values either one ton of sand for $1800, one ton of stone for $1500 and both for $1800.
Both buyers have a patience of 2 days. On day one, a sand auction is held, where Alice’s proxy bids $2000 and Bob’s
bids $1800. Alice’s proxy wins an option to purchase sand for $1800. On day two, a stone auction is held, where Alice’s
proxy bids $1700 (as she has already obtained a guaranteed $200 of surplus from winning a sand option, and so reduces
her stone bid by this amount), and Bob’s bids $1500. Alice’s proxy wins an option to purchase stone for $1500. At the end
of the second day, Alice’s proxy would exercise the option she holds for stone with an exercise price of $1500 to obtain a
good valued for $1900, and so obtains $400 in surplus. Now consider what would happen if Alice instead lies, declares that
she values only stone, and for $1900. On day one, a sand auction is held, where Bob’s proxy bids $1800. Bob’s proxy wins
an option to purchase sand for $0 (because Alice’s proxy stays out). On day two, a stone auction is held, where Alice’s proxy
bids $1900, and Bob’s bids $0 (as he has already obtained at least $1800 of surplus from winning the sand option, and so
is not interested in winning the stone option). Alice’s proxy wins the stone option with an exercise price of $0, achieving
$1900 in surplus.

By misrepresenting her valuation, Alice was able to secure higher surplus by giving more surplus to Bob and therefore
reducing the competition that she faced in a future auction. The basic tenet of strategyproof mechanisms requires that the
prices faced by a bidder, such as Alice, should be independent of her strategy. This has been compromised because there
is now some potential for Alice to influence Bob’s bids in the future and in turn the price that she will face. The technical
problem is that the value, ût

i (L
t∗), in Eq. (6.1) is the amount of surplus already guaranteed to buyer i, and this now depends

on the proxy bids of some other buyer. A slight modification to the option-based scheme, presented in Juda [35], can address
this problem in a restricted (“set-valued”) class of valuation domains, namely those in which there are two kinds of goods A
and B , and each buyer is either indifferent between A and B or interested in the bundle AB . However, we do not know of
a remedy to this problem that will allow proxy agents to bid adaptively in more general valuation domains and leave this
for future work.

We see a number of additional directions for future work. These include:

(a) Allowing buyers to return options to the market early. We ask whether a scheme can be developed in which a buyer can
return an option as soon as her proxy determines that the option will never be exercised given the other options it
holds. Such a return would reduce the holdup problem and improve efficiency.

(b) Allowing buyers to demand multiple units of a particular item. This seems quite challenging because a naive solution will
leave proxies facing a tradeoff between competing to acquire additional options on a particular good or choosing not to
compete, perhaps eliciting greater opportunities for price matching on options that they already hold.

(c) Allowing sellers to have values on bundles rather than items. Scenarios may exist where sellers are interested in selling
multiple items in a single lot. The amount of information required to perform bookkeeping and track the minimal price
possible across auctions is greater than in the current system; in particular, it seems that all bundles in which a bumped
buyer is interested would need to be stored.

(d) Allowing a buyer’s value to vary with time. For example, a buyer’s valuation may decrease over time. The difficulty in
retaining strategyproofness is that a naive solution will leave a proxy with the need to decide if it should delay the
exercising of its option, risking the degradation of value but possibly gaining a lower exercise price. However, the
system can be extended to enable buyers to increase their declared value for an item, express a value for new items, or
further delay their departure time, while retaining strategyproofness for buyers that have certain valuations, as in our
standard model. The effect would be to allow for new demand information to be immediately incorporated within the
market should such a need develop. See Juda [35] for further discussion about these extensions.

(e) Mitigating strategic problems facing sellers. While our results suggest that sellers can increase their revenue over the eBay
protocol when all sellers participate and are straightforward – reporting true arrival and departure information – such
behavior may not always be in the best interest of each seller. For example, a seller may do better by delaying her
entry into the market if she believes the market is currently “cold” but will soon become “hot” such that there is more
competition and higher prices.
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(f) Exploring hierarchical options-based schemes. The use of options in this paper shifts the sequential auction problem across
auctions in a site to a similar problem across different auction sites (e.g., eBay and Yahoo!). It is interesting to consider
whether a hierarchical options-based scheme can be developed to help to mitigate the strategic complexity that buyers
likely face when bidding across sites.

(g) Exploring interactions between sites. When multiple auction sites are competing for buyers and sellers to conduct business
within their market, one can imagine one site going to great lengths to drive traffic toward them. Within the options-
based scheme, one potentially malicious strategy would be for a site to inject bad buyers or sellers into the other site’s
market. While strong identities can dramatically reduce the ability to inject malicious market participants, exploring
how robust the options-based scheme is to the injection of malicious participants would be interesting.

Other future areas of work, as well as some progress on extensions of the options-based scheme, are found in Juda [35].

7. Conclusions

We have proposed a novel, options-based method for resolving the strategic difficulties faced by buyers in uncoordinated
electronic marketplaces. Our solution to the sequential auction problem is to require that buyers submit bids to mandatory
bidding proxies which then bid for options on goods and exercise options to maximize reported buyer utility. By allowing
proxy agents to match the exercise prices of options to the lowest price that would have been possible through careful
timing of the proxies’ bid, it becomes a dominant strategy for buyers to report their true value and true temporal constraints
to the market. The proxy agents act across multiple auctions and bring simple, truthful bidding into an equilibrium while
retaining the dynamic arrivals and departures of open, Internet marketplaces and operating without batching auctions.
An empirical analysis that is informed by data collected on eBay suggests that the options-based scheme can provide an
improvement in efficiency and revenue over eBay of around 4% and 9% respectively. A series of experiments to examine
the effect of a holdup problem that can exist when buyers have general valuations shows that this is mitigated when
competition is either very low or high, or when individual buyers have negatively correlated values across items. Efficiency
also remains relatively high when buyers have complements valuations, where efficiency is augmented when sellers can
re-post goods for sale when options go unexercised.
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