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Chapter 1

Introduction

Chronic kidney disease is a very serious health issue that eventually leads to loss of organ

function and kidney failure. The treatment options at the point of kidney failure are either

continual dialysis or a kidney transplant. The preferred treatment for kidney failure is a

transplant, as dialysis is not only less effective, but also requires more time and money.

In the United States alone, there are over 100,000 patients on a waiting list for kidney

transplants, and demand is increasing at a rate that far outstrips supply. Patients either

receive a transplant from a living or deceased donor. Approximately two-thirds of trans-

plants come from cadavers, and one-third come from live donors. Because organ sales are

illegal in the United States, it is impossible to use traditional market mechanisms in order

to incentivize people to donate more kidneys. In addition, kidney exchange is a very highly

sensitized process, and many compatibility issues such as blood type or tissue type make

finding matches for transplantation quite difficult in practice.

Kidney exchange is a framework that allows patients to enter a pool with a willing but

incompatible donor in order to potentially find other patient-donor pairs with whom to

arrange a mutual exchange. For example, if pairs (P1, D1) and (P2, D2) enter the exchange

and (P1, D2) and (P2, D1) are compatible, then the two pairs can arrange a swap, i.e., a

two-cycle, that results in each patient receiving a life-saving organ.

Traditionally, this problem is represented as a directed graph in which the vertices are

5



CHAPTER 1. INTRODUCTION 6

patient-donor pairs and edges represent compatibility matchings. In particular, if there is

an edge from vertex i to vertex j, this means that the patient in pair j is compatible with

the donor in pair i, and we can think of the direction of the edge as the direction in which

a kidney will be transplanted. In theory, finding a cycle of any length in a kidney exchange

graph will result in all patients in the cycle receiving a kidney, but there are logistical

constraints that cap cycles at a certain length in practice. This is because all surgeries in

a large swap must be performed simultaneously in order to ensure no donor can back out

after his or her patient has received a kidney, thus depriving patients further along in the

swap of transplants and leaving at least one remaining patient (the first transplant in the

cycle) without a donor.

Altruistic donors in the realm of kidney exchange are donors who enter the exchange

without a matching patient. This allows the formation of long chains starting with this

altruistic donor because now at each step there is never a patient still needing a kidney who

has lost her donor.

Much of the early work in kidney exchange treated the problem as fundamentally static,

and focused on finding optimal matches assuming no entrances and exits from the pool.

While this is an NP-complete problem in its own right, it has been solved in practice [4]

and people have shifted their attention to dynamic kidney exchange.

Kidney exchange is actually a dynamic problem. There are two fundamental types of

dynamics in kidney exchange: patient-donor pairs enter and leave the exchange over time,

and blood-compatible matches prescribed by matching algorithms can fail at later stages,

before actual transplantation, for other compatibility issues that require more extensive

tests to diagnose. 1 Throughout this paper, mentions of dynamic kidney exchange refer to

the entrance and exit of pairs into and out of the pool over time; we refer to the second

type of dynamics as failure-aware kidney exchange. Although we focus primarily on dynamic

kidney exchange, we do keep in mind possible extensions of our framework to account for

the second; for example, much recent work has been done on trying to either maximize the

1Post-match failure can also occur because of death, a donor getting cold feet, or logistical issues. In
general, very few algorithmically matched patients actually receive transplants. [5]
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expected number of matches in a failure-aware setting [11] or trying to optimally allocate

a constant number of additional tests per vertex in order to minimize the number of post-

match failures [8].

In particular, the state-of-the-art UNOS kidney exchange deals with dynamics of the first

kind by clearing the exchange in batches, which means that it runs a matching algorithm

in fixed intervals.

Current kidney exchange mechanisms clear the exchange in batches in order to maximize

an offline medically-prescribed objective. This objective can range from a simple maximum

cardinality metric to more complex functions that involve various conceptions of fairness.

I discuss examples of various offline objective functions more in Chapter 3. In general,

this framework involves a step of learning how to maximize a certain objective based on

historical data, and the final output is a batch-clearing algorithm that specifies how to

output matchings in each interval in order to maximize the original objective.

In particular, given a specific offline objective function, work by Sandholm, Procaccia,

and Dickerson [9] has suggested that each vertex type has a different ‘future value’ that

weights its future usefulness. In other words, it is sometimes wise to avoid matching as

many patients as possible during one timestep in order to preserve vertices in order to

match with more highly sensitized patients in the future. To this end, they have developed

a framework, FutureMatch, that uses two stages of machine learning to learn weights on

edges and vertices in kidney exchange graphs that represent satisfying a medical objective

and the future value of vertices (patient-donor pairs), respectively. I discuss the specifics of

this process in Chapter 3.

However, this means that the exchange can take a long time to match certain people

because it deems them potentially more ‘useful’ in the future. Medical practitioners are not

always willing to wait as long as the matching algorithm may ideally want to because many

patients’ health deteriorates increasingly rapidly the longer they wait for a transplant, and

it is more dangerous to operate on less healthy patients. This leads to friction between

the generated matches and physicians’ wishes. As of yet, there is no timing objective in
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state-of-the-art kidney exchange models that could potentially balance these two dynamics.

In some stylized models, notably those by Anderson [3] and Akbarpour [2], conceptions

of timing and ‘criticality’ — essentially, closeness to death — are explored. In particular,

Akbarpour’s model suggests that, given knowledge of when patients will leave the exchange,

presumably due to death, waiting for the market to thicken and only matching critical

patients — those who will perish in the next time period — leads to superior performance.

However, Anderson’s model, which purely minimizes the total amount of people spend in

the exchange, shows that a purely greedy batching algorithm performs optimally. Therefore,

there is no clear incorporation of timing objectives in kidney exchange mechanisms designed

to achieve specific objectives.

My thesis is about finding a new way to make a tradeoff between temporal (i.e., myopic)

considerations and optimizing an offline medical objective.

1.1 Main Results

In this paper, I adapt a state-of-the-art dynamic kidney exchange framework to account for

timing considerations. In order to do this, I introduce an additional timing variable in the

state of the art kidney exchange framework in order to examine timing-aware extensions of

offline medical objectives.

I develop algorithms that learn an objective corresponding to various weighted averages

of the timing and offline medical objectives and examine their performance with respect to

both the total number of matches and the average amount of time patients spend in the

exchange. I then examine the tradeoff between the performance of these algorithms with

respect to both timing and match quality in order to determine whether introducing timing

considerations in these objective functions results in more effective matching strategies.

The results suggest that, at low levels of death in the kidney graph (i.e., patients do not

die quickly), timing-aware algorithms generally achieve comparable results on the medical

objective while reducing the average amount of time people spend in the exchange. However,
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at higher levels of death, the dynamics get much noisier and there are no clear trends.

1.2 Outline

In Chapter 2, I introduce two stylized kidney exchange models. These models provide the-

oretical intuition behind the difficulties of dynamic kidney exchange and, notably, motivate

a disucssion of fairness with respect to time. In Chapter 3, I rigorously define the kidney

exchange problem and introduce the FutureMatch framework [13]. In Chapter 4, I extend

a version of FutureMatch to account for timing objectives. In Chapter 5, I present my

empirical results. I then conclude in Chapter 6.



Chapter 2

Theoretical Kidney Exchange

Models

In order to gain intuition about the potential tradeoffs between timing and medical objec-

tives, I first approached this problem through the lens of two toy models and a corresponding

simulation. Below, I discuss the relevant models and describe how I hybridized them in or-

der to observe a tradeoff between timing and medical objectives for some range of death

probabilities.

2.1 Kidney Exchange Models

Theoretical models of kidney exchange offer useful intuition about the dynamics and the

tradeoffs between different objectives inherent in the matching process. There have been

many theoretical models proposed over time, and there is no clear gold standard model,

but I will focus on two toy models that highlight the tradeoff between timing and other

objectives.

10
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2.1.1 Erdős-Rényi Graphs

The simplest random graph model used to represent kidney exchange graphs is the Erdős-

Rényi model [15]. This model is parameterized by the total number of nodes in the graph

n and a probability p of an edge existing between any pair of vertices in the graph G(n, p).

Note that we can represent the kidney exchange case where exchanges are limited to swaps

as an undirected Erdős-Rényi graph. If we introduce three-cycles and altruistic chains, both

of which require directed edges, we can model it with a directed Erdős-Rényi graph.

For notational purposes, let ERu(n, p) be an undirected Erdős-Rényi graph with n nodes

where every two nodes form an edge with probability p. Let ERd(n, p) be a directed Erdős-

Rényi graph with n nodes where every two nodes form a directed edge with probability p.

We can also define closely related notions of ERu(n,M) and ERd(n,M), where in this case

M undirected or directed edges are chosen out of all possible edges in the graph. The two

models are essentially equivalent and have been used interchangeably in the literature [3].

Both models discussed below make use of Erdős-Rényi graphs.

Although Erdős-Rényi graphs are simple to implement and easy to rigorously analyze,

they are often too idealistic for accurate simulations. Most generative models of kidney

graphs contain additional features that allow for richer generation of realistic kidney graphs,

but Erdős-Rényi graphs are still very useful for building intuition about the dynamics

underlying kidney exchange.

2.1.2 Akbarpour 2014

Akbarpour proposed a stochastic continuous-time model of kidney exchange in order to

capture the dynamics of entrances and exits from the pool over time. Crucially, Akbarpour

only allows swaps (i.e., two-cycles) in his model. This is for simplicity’s sake, as dealing with

three-cycles and altruistic chains makes the mathematical foundation of the model much

harder to deal with. Agents (patient-vertex pairs) are drawn from an underlying distribution

of blood types γ ∼ FABO, where FABO is the blood-type distribution in the population,

and arrive according to a Poisson process parameterized by a rate m, T ∼ Poisson(α).
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Per the Erdős-Rényi model, each arriving agent is compatible with any other agent with

probability p. Each agent then becomes critical according to another, independent, Poisson

process with rate λ. Critical agents leave the market immediately, and the last possible

timestep at which they can be matched is the one where they are declared critical. This

means that if an agent a enters the market at time t0, she becomes critical at some time

t0 +X, X ∼ exp(λ). If a critical agent is not immediately matched, she perishes.

Note that this means that any agent a that enters the pool at time t0 must leave at some

time t1 such that t0 ≤ t1 ≤ t0 +X. We define the sojourn of a as s(a) = t1− t0. From this,

we define the utility of a as follows:

u(a) :=

 e−rs(a) if a is matched

0 otherwise.

There are thus three ways an agent a can leave the market: she could be matched with

another agent b; she could become critical and get matched immediately; or she could

become critical, remain unmatched, and perish. Akbarpour then explores the tradeoffs

between greedily matching agents as soon as they enter the exchange and waiting until

agents become critical in order to allow the market to thicken. Throughout his paper, he

looks at the special case where the cost of waiting r is negligible compared to the cost of

leaving the market unmatched, which means that the goal of the planner is simply to match

the maximum number of agents because the utility to each agent of being matched is 1.

The updated utility function for being matched then becomes

u(a) :=

 1 if a is matched

0 otherwise.

From here, we define the social welfare of an online algorithm ALG as the normalized

expected sum of the utility of all agents in the interval [0, T ]:

W (ALG) := E

[
1

mT

∑
a∈A

u(a)

]
.

Note that this corresponds exactly to maximizing the number of agents matched over a

certain time interval. We can also define a complementary measure of loss as follows. Let
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L(ALG) define the loss function under a specific algorithm ALG at time T as the ratio of

the expected number of perished agents to the expected size of the agent pool A, or

L(ALG) :=
E[|A−ALG(T )−AT |]

E[|A|]
=

E[|A−ALG(T )−AT |]
mT

,

where m is the rate at which agents arrive according to a Poisson process, AT is the set of

all agents that enter the pool at time T , A is the set of all agents at time T , and ALG(T )

is the set of all matched agents by time T .

From these definitions, we then try to maximize the welfare (or, equivalently, minimize

the loss) for each online algorithm. We now discuss the different types of online algorithms

Akbarpour considered.

Let OPTc represent the optimal algorithm given the knowledge of which agents will

become critical at any time. Akbarpour observed that, when waiting time is negligible,

OPTc will only clear matches where at least one of the vertices is critical (otherwise, it can

wait to clear them and be weakly better off), and it will match all possible critical nodes

at all times. Therefore, OPTc is inherently patient and waits until people become critical

in order to match them.

He then considers OPT, the optimal algorithm but without any knowledge of the crit-

icality of agents. Because this algorithm is not omniscient, its performance is much more

constrained and, because we have no special information about the imminent danger of any

agent, the best we can do is approximately the myopically greedy approach (i.e., greedily

match agents as soon as they enter the exchange).

To formalize this, let ALG represent any online algorithm that does not know the set

of critical agents at each time step and let OMN be the maximum omniscient matching.

Akbarpour shows that

L(ALG) ≥ L(OPT ) ≥ L(OPT c) ≥ L(OMN).

In order to further examine the tradeoffs between critical-aware (patient) and critical-

unaware (greedy) matching, he proposes three algorithms:
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• Greedy algorithm: When a new agent a enters the market, match her with an arbitrary

neighbor. If she does not have any compatible neighbors, do nothing.

• Patient algorithm: If an agent a becomes critical at time t, match her uniformly at

random with a neighbor. If she has no compatible neighbors, do nothing and let her

perish.

• Patient(α) algorithm: Assign independent exponential clocks with rate 1/α to each

agent. If an agent becomes critical or her clock ‘ticks’ at time t, match her uniformly

at random with a neighbor. If she has no compatible neighbors, do nothing and treat

the agent as if she has perished and never match her again.

Given knowledge of agents’ criticality, the Patient algorithm outperforms (i.e., results in

more matches) than the Greedy algorithm. In worlds with small waiting costs, the Greedy

algorithm results in a perpetually thin market, whereas the Patient algorithm results in

thicker, Erdős-Rényi [[formatting]] graphs with average degree d (Proposition 4.1). This

increased thickness allows the market to better react to critical nodes, resulting in more

matches overall. In particular, exponentially (in d) fewer agents perish under the Patient

algorithm than the Greedy algorithm. For d ≥ 2 and as T,m→∞,

L(Greedy) ≥ 1

2d+ 1

L(Patient) ≤ 1

2
· e−d/2

and therefore we have

L(Patient(α)) ≤ (d+ 1) · e−d/2 · L(Greedy).

Relaxing the assumption that the set of critical agents can be accurately elicited yields

additional relative bounds on the performance of the Patient and Greedy algorithms. Per

Theorem 3.10, for d ≥ 2, and as T,m→∞,

1

2d+ 1
≤ L(OPT ) ≤ L(Greedy) ≤ log(2)

d

e−d

d+ 1
≤ L(OMN) ≤ L(Patient) ≤ 1

2
· e−d/2.
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The Patient(α) algorithm is interesting because it not only represents a natural interpo-

lation of the Patient and Greedy algorithms, but also addresses timing concerns with the

Patient algorithm. In practice, matching people only when their health deteriorates to a

critical point is not feasible or practical. By introducing an exponential clock to speed up

the matching process, Akbarpour demonstrates that as long as the clocks do not tick too

quickly (i.e., α is not ‘too small’), the Patient(α) algorithm still significantly outperforms

the Greedy algorithm, meaning that waiting for even a moderate amount of time can result

in very substantial gains.

2.1.3 Anderson 2015

Anderson considered a stylized discrete-time dynamic model of a barter marketplace where,

at each time step, exactly one node enters the graph. The arriving node v desires the item

of every other node in the system with constant probability p, and each node in the system

desires v’s item with the same probability p. This means the ensuing structure is a directed

Erdős-Rényi graph, where a directed edge (a, b) from a to b means that b desires a’s item;

equivalently, arrows represent the potential flow of items in the graph. In particular, let

G(t) = (V (t), E(t)) be the directed graph of compatibilities observed before time t, where

V (t) and E(t) denote the vertices and (directed) edges in the graph.

Agent arrival and departure is significantly different than in the Akbarpour model. At

each timestep, exactly one agent arrives with an item (i.e., a patient-donor pair arrives with

an available donor kidney). Additionally, agents can only leave after being matched in a

desirable exchange. Therefore, there is no perishing of agents and no criticality present in

this model, but allowing agents to sit in the market for long (or infinite) periods of time

would result in worse performance under the objective function.

Under this framework, Anderson examined how the matching policy and types of allowed

exchanges affected agent outcomes. Under the assumption that agents in a barter market-

place want to quickly find and complete transactions, the performance metric he uses is

the average waiting time of agents in steady state, meaning the optimal policy is one that
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minimizes the average waiting time. He then showed that, under a timing-centered objec-

tive function, allowing more complex exchanges (i.e., three-cycles and chains) and greedily

matching at each timestep results in an essentially optimal outcome.

Defining cycles and chains:

As previously mentioned, Anderson defines a k-cycle as a cycle in the barter exchange graph

of length k. When a cycle is matched, all nodes are removed from the graph and each agent

in the cycle receives an acceptable item. However, his treatment of altruistic donors is

much different from previous work. At the first time period, there is exactly one altruistic

donor present in the system, and no additional altruists arrive later. An altruistic donor is

willing to give up her item without receiving anything in return, leading to the possibility

of long (theoretically unbounded) chains in the graph. When these chains are matched, the

last agent in the chain becomes the new altruistic node because she has already received

a desirable item and now is willing to give her own away. As usual, an allocation is a

collection of disjoint cycles and chains in the graph, representing a set of mutually exclusive

exchanges.

Greedy algorithms:

• Cycle removal: By the greedy assumption, the compatibility graph does not contain

any cycle of length at most k at the beginning of each time period. If the arrival of

a new node results in the formation of at least one cycle of length at most k, one is

uniformly chosen to be matched.

• Chain removal: At each time step, the algorithm finds an allocation that includes the

longest chain originating from the altruistic node (with ties being broken uniformly

at random). These nodes are then matched and removed from the system, and the

last node in the altruist-initiated chain becomes the new altruist in the system, as

described above.
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In order to examine the effect of different matching policies and types of allowed ex-

changes on the average time spent in the exchange, Anderson considered three types of

exchanges and looked for a policy in each setting that would minimize the expected waiting

time at steady state.

• Two-way cycles: For small p, the greedy policy achieves the optimal scaling and results

in an average waiting time of Θ(1/p2).

• Two-way cycles and three-way cycles: For small p, the greedy policy is scaling optimal

among monotone policies 1 and achieves an average waiting time of Θ(1/p3/2).

• Two-way cycles, three-way cycles, and altruistic chains: For small p, the greedy policy

is scaling optimal and achieves an average waiting time of Θ(1/p).

These results show that, in all three settings, a greedy policy is nearly optimal. Further-

more, for small p, including three-cycles and altruist-initiated chains can greatly reduce the

average waiting time.

2.2 A Hybridized Model

In order to examine the potential tradeoffs between match quality and timing considerations,

I hybridized both models. I used a discrete time model, as in Anderson, in which one agent

arrives at each time period; this allowed me to define the same timing objective function.

However, I introduced Akbarpour’s concept of critical nodes in order to examine the timing

performance of his Patient and Greedy algorithms. In particular, multiple nodes could

become critical at each discrete time step. I also limited the exchanges to swaps instead of

adding three-cycles and chains in order to abide by Akbarpour’s framework.

1Monotone policies are defined as follows. Given a pair of nodes (i, j) and any compatibility graph G such
that the edge (i, j) is present, if we remove the edge (i, j) and create a new graph G′, the policy must act
in an identical way up until Tij = min(Ti, Tj), where Ti and Tj are the times at which i and j are removed
from the network. Essentially, monotone policies ensure that the same cycles and chains are removed at the
same times in each case, up until the time the first of the two nodes is removed from the graph. In order
for a policy to be monotone, this property must hold for every pair of nodes (i, j) and all possible graphs G
containing edge (i, j).
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By combining the two frameworks in this manner, I was able to explore the tradeoffs

between timing and match quality in Akbarpour’s algorithms. The Patient algorithm only

matches critical patients, which leads to better performance but worse average steady state

waiting time than the Greedy algorithm. Conversely, the Greedy algorithm seems to mini-

mize average steady state waiting time at the expense of the total number of matches.

In order to examine the tradeoffs between timing objectives and match quality, I im-

plemented Akbarpour’s Patient and Greedy algorithms, along with variations I termed

Smart-Patient and Smart-Greedy. The details of the algorithms are as follows.

• Patient: In the discrete time model, given a set of critical nodes c at time t, this algo-

rithm returns a matching with as many of them as possible. Crucially, this algorithm

randomly breaks ties between matchings that contain the maximal number of critical

nodes; in particular, it is indifferent between allocations with the same number of

critical nodes but different numbers of non-critical nodes.

• Greedy: This algorithm is the only one that does not know the set of critical nodes

at each discrete time step t. If the node a that just entered the exchange can be

matched (i.e., N(a) 6= ∅), this returns a matching containing that node. Else, it

returns nothing.

• Smart-Patient: Given a set of critical nodes c at time t, this algorithm returns a

matching that contains the maximal number of critical nodes and the minimal number

of non-critical nodes. In this way, it tries to preserve as many non-critical nodes as

possible in order to maintain a thicker market. This is in contrast to the Patient

algorithm’s method of randomly breaking ties between all matchings that contain the

maximal number of critical nodes. However, given multiple matchings with the same

number of critical and non-critical nodes, Smart-Patient breaks ties at random.

• Smart-Greedy: This is a hybrid of the Smart-Patient and Greedy algorithms that

returns a matching containing the maximal number of critical nodes and, secondarily,

the maximal number of non-critical nodes. Note that this allows matches between two
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non-critical nodes, whereas both Patient variants require at least one node in each

prescribed swap to be critical. Therefore, this both maximizes the number of matched

critical nodes, but also returns a matching that will lead to the thinnest remaining

market (in particular, the market at the end of each time step will have no possible

swaps).

I ran simulations with death probabilities of pd = 0.001, 0.003, 0.005, 0.01, 0.03, 0.05,

0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, and 0.6, 100 time steps in which an agent

arrived, and a constant probability of Erdős-Rényi attachment of p = 0.1 or 0.3. For each

death probability, I ran 1000 trials for each of the four algorithms and recorded the total

number of matches and the average amount of time spent in the exchange for each run. I

then plotted the average performance of each algorithm for both objectives at each death

probability pd. The standard error for each sample of 1000 runs was negligible in the scale

of each plot; see Figures 2.5 and 2.6 at the end of this section for reference. The results are

summarized below.

As illustrated in Figures 2.1 and 2.3, we see that the Smart-Greedy algorithm encapsu-

lates the best of the Greedy and (Smart-) Patient algorithms. At low death probabilities,

it matches as well as the greedy algorithm, and at higher death probabilities, it matches as

well as the Patient and Smart-Patient algorithms.

With respect to timing, as shown in Figures 2.2 and 2.4, the Greedy and Smart-Greedy

algorithms perform about equally, as do the Patient and Smart-Patient algorithms. How-

ever, the Greedy family of algorithms far out-performs the Patient family at low death

probabilities. At higher death probabilities, as the primary mode of exit from the pool

shifts from matching to death, the four algorithms’ timing performances converge.

Note that the runs with p = 0.1 and p = 0.3 are qualitatively very similar; the biggest

difference between them is a smaller difference in time performance between the Greedy

and Patient families at low death probabilities due to the sparser nature of the kidney

graph in the p = 0.1 case. However, all qualitative observations hold for both connection

probabilities, but the effect is less pronounced at p = 0.1.
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Figure 2.1: Total number of matches vs. death probability for each algorithm. p = 0.3.

Figure 2.2: Total time spent in exchange vs. death probability for each algorithm. p = 0.3.
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Figure 2.3: Total number of matches vs. death probability for each algorithm. p = 0.1.

Figure 2.4: Total time spent in exchange vs. death probability for each algorithm. p = 0.1.
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In general, Smart-Greedy performs as well as Greedy at low death probabilities and as

well as Patient and Smart-Patient at high death probabilities. The other three algorithms

each had cases in which they performed poorly (i.e., Smart-Patient and Patient perform very

poorly with respect to both timing and match cardinality at low death probabilities, whereas

Greedy performs poorly with respect to match cardinality at high death probabilities), but

Smart-Greedy performed as well as the best-performing algorithm in each case.

Part of this was by design. Smart-Patient was designed to be optimal with respect to

the cardinality of critical matches (crucially, not the total number of matches) and as unfair

as possible with respect to waiting time, whereas Greedy was designed to take a myopic

approach to minimizing the average wait time. Additionally, Patient, Smart-Patient, and

Smart-Greedy were allowed to see the set of critical nodes, whereas Greedy was not. In

this sense, Smart-Greedy illustrated that an algorithm designed to take advantage of the

strengths of both the Greedy and Patient approaches could, in fact, perform as well as

the better algorithm with respect to both timing and match cardinality at various levels of

departure rates.

However, the most interesting part of these results is the region of ‘medium’ death

probability (around pd ∈ [0.1, 0.2]). In this region, we see that the Greedy algorithm

performs worse than the other three algorithms, which had knowledge of critical nodes, but

the Greedy class of algorithms still performed noticeably better with respect to timing. The

special case of Smart-Greedy aside, this points to a tradeoff between match cardinality and

average time spent in the exchange for moderate probabilities of death, which provided the

initial motivation behind later work. The tradeoffs between the four algorithms at various

death probabilities also motivated further exploration of dynamics at low, medium, and

high levels of death.

In summary:

• As the death probability increases, the timing performance of all algorithms converges

because the principle dynamic is now death.

• Smart-Greedy has the same behavior as Greedy at low death probabilities and the
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same behavior as Smart-Patient at high death probabilities. In between, it shares the

best behavior of both Smart-Patient and Greedy.

• There is a tradeoff between cardinality and average time for moderate probabilities

of death.
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Figure 2.5: Total number of matches vs. death probability for each algorithm with error
bars. p = 0.3.

Figure 2.6: Total time spent in exchange vs. death probability for each algorithm with
error bars. p = 0.3.



Chapter 3

Dynamic Kidney Exchange

In this chapter, I lay out the relevant framework for the dynamic kidney exchange problem.

In order to do this, I first introduce the pertinent data structures in the static model of

kidney exchange and then trace the development of various approaches to dynamic kidney

exchange based on this structure.

After developing both the static and dynamic models of kidney exchange, I then provide

a brief overview of the various approaches to dynamic kidney exchange, especially focusing

on the development of FutureMatch [13], a general framework for learning to match under

a specific prescribed objective in a general dynamic model.

3.1 Static Model

As touched upon in Chapter 1, much intial work was done on the original NP-complete

problem of finding maximum matchings consisting of two-cycles, three-cycles, and altruist-

initiated chains in kidney exchange graphs. Here, I introduce all relevant terminology and

data structures needed for the static model of kidney exchange, all of which are relevant for

the dynamic problem as well.

25
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Figure 3.1: A small example of a kidney exchange graph [13].

3.1.1 Kidney Graph

Kidney exchange for n patients is traditionally modeled as a directed compatibility graph

G(n). Recall that patients and donors enter the exchange in patient-donor pairs, where

each pair is internally incompatible (i.e., each patient cannot accept her donor’s kidney).

G is constructed by creating a vertex for each patient-donor pair and an edge e from vi

to vj if the patient in vj wants the donor kidney in pair vi (the direction of edges in the

kidney exchange model corresponds to the movement of kidneys in the eventual exchange).

The weight we of edge e represents the utility to the patient at vj of obtaining vi’s donor

kidney1.

In this model, a donor is only willing to part with her kidney only if her corresponding

patient receives a kidney. Accordingly, any cycle c in the graph G represents a possible

kidney swap, where the patient at each vertex in the cycle obtains a kidney from the donor

at the previous vertex. If c containts k patient-donor pairs, then c is referred to as a k-cycle.

In practice, due to logistical concerns2, the length of allowable cycles in kidney exchange

graphs is bounded by some upper length L. In most fielded kidney exchanges, including

UNOS (the United Network for Organ Sharing), the United States’ exchange, L = 3, which

means that only two- and three-cycles are allowed.

The model also allows for altruistic donors, which are willing donors without an attached

1While in theory patients are equally happy receiving any compatible, functional kidney, issues of blood
type compatibility and tissue type compatibility, among other measures, impact how well patients survive
with new kidneys. I will discuss these issues of compatibility in greater detail later in this chapter.

2When performing kidney swaps, all transplants in a cycle must be performed simultaneously in order to
ensure no patient is left without a willing transplant should any donor down the line renege. This also means
that the surgeries must be performed at the same location, further constraining the logistical practicality of
large transplant cycles.



CHAPTER 3. DYNAMIC KIDNEY EXCHANGE 27

Figure 3.2: A partial ordering on ABO blood types.

patient, to enter the exchange. The presence of altruistic donors allows for the formation of

chains of kidney transplants instead of cycles, leading to much more flexible exchanges. It

has been shown that the addition of chains adds great utility to fielded kidney exchanges.

In theory, the length of these chains is unbounded, but most eventually terminate with a

patient who lacks a paired donor.

A matching M is a collection of disjoint cycles and chains in a kidney exchange graph

G. Note that the cycles and chains must be disjoint because each donor can only give away

one kidney (and each patient will only accept one kidney). Every vertex in a matching M

will both receive and give a kidney, unless it is an altruistic donor, in which case it only

gives a kidney.

3.1.2 Blood Types

In the kidney exchange model, patients and donors are represented by their blood type (A,

B, AB, or O). This is because the primary criterion for a possible kidney match is blood type

compatibility. An O-type patient can only accept an O-type donor; an A-type patient can

accept an O-type or A-type donor; a B-type patient can accept an O-type or B-type donor;

and an AB-type patient can accept an O-type, A-type, B-type, or AB-type donor. In this
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sense, O-type patients are universal donors and AB-type patients are universal acceptors.

As shown in Figure 3.2, each blood type can donate to all reachable nodes along the directed

edges.

Based on this partial ordering over the blood types, we can, as in [19] and [18], define

under-demanded (UD), over-demanded (OD), reciprocal (R), and self-demanded (S) pairs.

Intuitively, pairs such as (B,O) are relatively easy to match, hence their classification as

over-demanded. Conversely, (O,B) pairs are harder to match, leading them to be labeled

under-demanded. Pairs consisting of patients and donors with the same bloodtype are self-

demanded, and (A,B) and (B,A) pairs are reciprocal. Table 3.1 depicts the classification

of patient-donor pairs under this framework.

Patient Donor

O A B AB

O S UD UD UD

A OD S R UD

B OD R S UD

AB OD OD OD S

Table 3.1: Patient-donor pairs grouped by pair type. [18]

3.1.3 Tissue Types

Patients and donors must also be tissue type compatible for a successful match. Deter-

mining tissue type compatibility requires additional, more extensive tests than checking

blood type compatibility, and therefore most matches are initially made based on blood
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type compatibility and then only later checked for tissue type compatibility. Because tissue

type compatibility is not as straightforward as blood type compatibility (there is no clean

antibody-based system like the one based on blood types), people generally look at the Panel

Reactive Antibody (PRA) sensitivity of patients, which broadly measures the percentage of

the population with whom the patient will be tissue-type incompatible [18], where a higher

PRA value means fewer compatible matches. Generally, people consider two models for

PRA sensitivity: a uniform PRA model, in which all patients have the same PRA, and a

non-uniform model, in which patients are sorted into three sensitivity groups (low, medium,

and high), each associated with a different PRA value. Low sensitivity patients have lower

PRA values and more available matches than high sensitivity patients. In this paper, I fo-

cus on the uniform PRA model for simplicity, as the non-uniform model requires additional

population considerations.

3.2 Dynamic Model

Kidney exchange is fundamentally a dynamic problem. As mentioned in Chapter 1, there

are two types of dynamism: entrances and exits from the patient-donor pool, and exchange

failures after the initial match.

Entrances and exits from the pool over time are very interesting because they change

the way in which an ideal clearing engine would match people during each timestep. Most

kidney exchanges run in batches and clear periodically (anywhere from multiple times a

week to a few times per year). However, this means that myopically greedily matching

during each cycle may not yield the best results over time. In addition, the choice of an

objective function matters more in dynamic kidney exchange. This is because different

objectives lead to quantifiably different algorithms for generating matchings. In general,

dynamic, online matching is much more difficult to align with more complex long-term goals

than the static, myopic case. In this vein, I discuss the implications of various conceptions

of fairness on the dynamic matching problem below.

Over the years, people have explored two main approaches to dynamic matching: online
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stochastic optimization via the sampling of future trajectories, and a learning-based model

that matches via weighted myopia. I discuss both approaches in the next section.

3.2.1 Objective Functions and Fairness

There are many ways of formulating the problem of ‘fairness’ in kidney exchange. Each

definition comes with its own set of medical objectives and its own objective function, and

many of them are in some ways quite orthogonal to each other. In Dickerson et al.’s recent

FutureMatch paper [13], they consider three objective functions: MaxCard, MaxCard-Fair,

and MaxLife.

• MaxCard maximizes the total number of patients that are either algorithmically

matched (in the deterministic, or non-failure-aware model) or receive transplants in

expectation (in the failure-aware setting).

• MaxCard-Fair adds to this the concept of ‘marginalized’ patients, or patients who are

by some measure harder to match, and up-weights them by some factor β.

• MaxLife, the most complicated objective function they use, attempts to maximize the

total amount of time transplanted organs last in patients. Some of these objective

functions are much harder to formally characterize than others, leading the team to

devise a method for translating a medical professional-defined objective into a set of

weights on edges in the kidney exchange graph.

3.3 Stochastic Optimization

Awasthi and Sandholm [7] introduced the distinction between static (myopic) and dynamic

(non-myopic) kidney exchange. Although the authors had previously published a result in

2007 that optimally solves the kidney exchange problem given a certain pool of people [1],

they noted that this often repeatedly left behind hard-to-match patients, which harmed
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performance in the long run. In order to address this problem, they introduce a trajectory-

sampling approach that uses information about blood and tissue type distributions in the

United States in order to sample possible future trajectories. Under each trajectory, they

then consider the utility of possible actions in the current timestep. By aggregating these

results across the sampled future trajectories, they can determine the current action with

the best expected utility. They introduce three different algorithms that deal with sampling

future trajectories.

However, there are some problems with this approach. There is an inherent tradeoff

between sample size (the number of sample trajectories) and lookahead depth (the distance

you look ahead along each trajectory), and increasing lookahead depth while keeping sample

size constant can decrease the solution quality because a smaller fraction of future trajec-

tories is sampled at each time step. Additionally, the number of future trajectories scales

very quickly with the size of kidney exchange network, limiting the algorithm’s scope in

practice.

3.4 Weighted Myopia and FutureMatch

Stochastic optimization brought to light many important considerations when considering

dynamic kidney exchange, but the trajectory-sampling approach did not scale to reasonably-

sized kidney exchange graphs. In order to address this issue, Sandholm et al. moved toward

another learning-based approach they termed weighted myopia. They propose to learn ways

to re-weight kidney graphs such that taking the myopic matching on the altered graph at

each time step will eventually satisfy a specified offline objective. An additional benefit of

this approach is that it allows them to introduce measures of ‘fairness’ in dynamic kidney

exchange (e.g., as included in the aforementioned MaxCard, MaxCard-Fair, and MaxLife

objective functions), which addresses the real-world concerns of medical professionals and

patients alike. This is described in greater detail below.



CHAPTER 3. DYNAMIC KIDNEY EXCHANGE 32

3.4.1 Dynamic Matching via Weighted Myopia

In a follow-up paper, Dickerson et al. [10] address many of the computational concerns.

Because the previous trajectory-sampling approach does not scale beyond small exchanges,

the authors propose a new solution framework for the dynamic kidney exchange problem:

namely, the notion of potentials. Given a structure in the kidney exchange graph (vertex,

edge, cycle, etc.), its potential can be thought of as the expected future utility that can be

derived from that structure. For example, consider potentials on vertices3. An altruistic O

donor should have high potential, as they have the ability to set off a long chain with high

value, while a pair needing an O donor should have low potential, as they are generally

hard to match and unlikely to enable many matchings. Any algorithm with this potential

information should act accordingly, perhaps holding structures with high potentials until

the system is in a state where that potential is reached (e.g. when the altruistic O donor is

able to set off a long chain), while trying to immediately match things with lower potential.

It is assumed here that all structures of the same variety (e.g. all vertices with the same

blood type) have the same potential.

The paper introduces an algorithm that uses potentials on vertices to re-weight edges.

Given potentials pa and pb on vertices a and b, respectively, the edge e from a to b would

have weight w(e) = 1 − 1
2(pa + pb). In every period, the algorithm reweights all the edges

according to the procedure above, and then uses the myopic clearing algorithm to determine

the matching with the maximum total weight. Once the potentials are learned, this means

that each stage is computationally similar to the myopic approach, as the computation

of edge weights is generally a simple operation. Therefore, this addresses many of the

computational complexity issues of the previous paper and results in an approach that will

scale to larger instances of kidney exchange.

3Recall that each vertex contains a patient and a donor, each represented by their blood type: O, A,
B, or AB, based on the presence of A and B antibodies. Exchanges are only possible if the donor’s blood
contains a subset of the patient’s antibodies. O donors can donate to anyone, A donors can donate to A or
AB patients, B donors can donate to B or AB patients, and AB patients can donate only to AB patients. O
patients can only accept from O donors, A patients can accept from O or A donors, B patients can accept
from A or B donors, and AB patients can accept from anyone.
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3.4.2 Balancing Efficiency and Fairness in Dynamic Kidney Exchange

In 2014, Dickerson and Sandhom built upon their previous work in dynamic by articulat-

ing a solution framework that allowed for different objective functions. This enabled the

incorporation of multiple definitions of fairness, which is a desirable trait in a real-world

exchange. In particular, Dickerson and Sandholm propose various utility functions that

incorporate various measures of fairness: MaxCard, MaxCard-Fair, and MaxLife.

In the conventional approach to kidney exchange (i.e., trying to maximize the total num-

ber of matches in a pool over time), there may be groups that are perpetually marginalized

by the algorithm, such as difficult-to-match pairs. In addition, there may be sets of patients

that one desires to preference due to social or moral concerns. Determining which categories

of people qualify as ‘marginalized’ is a difficult task, which the authors recognize. Based on

best practices within the medical community, they focus on two groups: highly sensitized

and pediatric patients. Highly sensitized patients are those that are unlikely to be compat-

ible with a random kidney (for reasons other than blood type). These people are therefore

very difficult to match, but unsurprisingly, quite prevalent in the pools of kidney exchanges

as difficult cases tend to persist. Pediatric patients are quite self-explanatory: they are

preferenced because of longer future lifespan and also the potential for kidney disease to

stunt growth.

The approach here increases the weight of any edge that is adjacent to a marginalized

patient by a factor (1 + β) for some value β. This is their notion of ‘fairness’: that by

preferencing these margnalized groups, they have made the system more fair.

In order to incorporate measures of fairness into their model, Dickerson and Sandholm

obtain an objective function from a panel of medical experts. They then translate that

function into a set of weights on the edges in the compatibility graph. Then, given this

weighting function, they learn potentials on graph structures, as in the previous paper.

The potentials are then combined with the edge weighting function to give each edge a

final weight, and the resulting re-weighted graph is then fed through the myopic matching

algorithm at each time period. Given an edge e with a weight w(e) and potentials pa and



CHAPTER 3. DYNAMIC KIDNEY EXCHANGE 34

Figure 3.3: The FutureMatch pipeline. [13]

pb at each of its vertices, its final weight would be fw(e) = w(e) · (1 − pa − pb). Note that

this approach closely mirrors that in the previous paper, but it adds in a medical objective

that can incorporate measures of fairness.

In addition, this paper introduced the possiblity of post-match failure - when transplants

do not occur due to unforeseen incompatibility, logistical issues, or death - to the paradigm

of online matching. Therefore, under this assumption, the authors maximize the expected

number of transplants instead of merely the number of algorithmically-prescribed matches.

They further explore this form of dynamism in subsequent papers, as discussed below.

3.4.3 FutureMatch

The FutureMatch framework [13] learns from historical data how to match people in each

time step in order to maximize some overarching objective function over time. In order to do

this, it incorporates two steps of machine learning to learn edge weights and vertex potentials,

respectively, resulting in a parameterized online matching algorithm that learns to match

in the present in order to match some desired long-term behavior. One key consideration

in the development of this framework is scability; the fielded clearing algorithm must be

able to run relatively quickly in order to be implementable in practice. Also, note that this

framework allows for two- and three-cycles as well as altruist-initiated chains.

At a very high level, the FutureMatch framework consists of three main steps: translating

a medically-defined objective into a set of edge weights on the kidney exchange graph, learn-

ing vertex potentials, and incorporating both sets of weights into a final myopic weighted

matching algorithm.
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The first step in FutureMatch is deciding what objective function to maximize. The

objective functions are defined by domain experts, generally a committee of medical and

legal professionals, and they are generally quite hard to quantify. For example, if the goal

is to maximize the total time patients survive after kidney transplantation, then much

additional data about the relative quality of each match (i.e., the weight on each edge in

the compatibility graph) is needed. Therefore, it is possible to learn a set of edge weights w

in the compatibility graph corresponding to a medically-defined objective function by using

historical data.

The resulting learned weight function w is then fed into a simulator based on real histor-

ical data and which therefore mimics the true underlying distribution of kidney exchange

patients and donors. This simulator generates training and test data, which are then fed

into a system for learning the potentials on vertices in the original kidney graph. The

potential of a vertex in the graph is the expected utility to the overall exchange of that

vertex in the future. Therefore, potentials intuitively quantify the value for waiting to use

a certain vertex or set of vertices at a later time in the exchange. Although potentials can

be defined for any graph element class (not just vertices), the authors focused on learning

potentials on patient-donor blood type pairs, or what we defined as vertices in the graph.

The edge weights and vertex potentials are then combined in a final parameterized online

matching (or clearing) algorithm. This is a very simple process that merely results in a re-

weighting of the original input graph. Furthermore, note that now finding myopic, greedy

matchings in the re-weighted kidney graph will result in the desired long-term behavior

because of the incorporation of the learned edge weights and vertex potentials. Essentially,

the weights encode the future, resulting in a ‘potential-aware’ kidney exchange graph in

which greedily matching at each time step addresses the original medically-defined objective.

In particular, the final step of online matching makes use of state-of-the-art myopic matching

based on a branch-and-price algorithm developed by Dickerson, Procaccia, and Sandholm

[11].
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Match Failures

FutureMatch also allows for failure-aware considerations. As tangentially touched on be-

fore, FutureMatch matches in either a deterministic or a failure-aware setting. In the

deterministic setting, FutureMatch learns to maximize the objective function subject to

the assumption that all matches will go through to transplantation. In the failure-aware

setting, FutureMatch learns to maximize the expected value of the objective function under

some assumption of post-match failure. However, note that post-match failures are allowed

in both cases, and after an algorithmically-prescribed match fails, the pair is re-entered into

the patient-donor pool. The main difference between the deterministic and failure-aware

settings is the fact that the deterministic model maximizes the given objective purely based

on algorithmic matches, whereas the failure-aware model maximizes the given objective in

expectation. Again, I focus on the deterministic setting in this thesis, but the framework

is flexible and able to consider the failure-aware setting.

Learning Edge Weights

Once a medical objective is set by a committee of medical professionals, the FutureMatch

framework learns a corresponding set of edge weights that encodes the desired function. As

mentioned above, three objectives are considered (MaxCard, MaxCard-Fair, and MaxLife),

each with a different resulting learned weight function based on historical data.

One issue that the FutureMatch team noticed was that experts often conflate the ends

and means of their policy suggestions. However, the framework of FutureMatch ensures the

separation of the ends and means. The ends (or goal) of the exchange, the expert-defined

objective, is defined as weights on edges, whereas the means, potentials on vertices, are

automatically optimized in a manner orthogonal to the initial expert-defined ends.

However, although the medical objective is initially translated into a set of weights

on edges, when evaluating the quality of the final clearing algorithm, the output of the

algorithm is judged based on the originally defined medical objective, and not based on the

learned edge weights. This removes the effect of any inaccuracies or biases when learning
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the edge weights and allows for more correct evaluation overall.

Learning Vertex Potentials

The learned edge weights represent the value of an edge in the present. However, because

the medical objective is defined in a dynamic setting (i.e., over many match cycles), it is

also necessary to learn discount factors on parts of the graph that could potentially be more

valuable in the future. The initial idea of potentials was proposed by Dickerson, Procaccia,

and Sandholm [9], but the FutureMatch conception of potentials uses an algorithm that

converges and more realistic training and test data in order to more effectively characterize

the future expected utility from each graph element.

Potentials are defined on a set of features Θ that represent many element types in the

pool. For each element type θ, there exists a potential Pθ ∈ R that represents the expected

future utility of that element type to the overall pool. In this case, potentials are defined

over the blood types of patients and donors. Recall that humans have blood types O, A,

B, or AB, depending on the presence or absence of two proteins (A and B), and blood type

compatibility is based primarily on the presence and absence of the same proteins. A donor

can donate blood to any patient with a superset of her blood proteins (O can donate to

anyone, A can donate to A or AB, B can donate to B or AB, and AB can only donate to

AB). Conversely, a recipient can accept blood from any donor with a subset of her blood

proteins (O can only accept O, A can accept O or A, B can accept O or B, and AB can

accept any blood type). This intuitively means that it is easier to find a match for an O

donor or an AB patient, meaning that they are perhaps more ‘valuable’ overall.

Formally, potentials are defined on all types of vertices. In this case, there are 16 patient-

donor blood type pairs and 4 altruistic blood types, so this means that there are 20 types

of vertices: ΘABO = {O − O,O − A, . . . , AB − B,AB − AB} ∪ {O, . . . , AB}. There is a

real-valued potential Pθ for each θ ∈ ΘABO, which we then learn.

After learning potentials on vertices, we again re-weight the edges in the graph. Specif-

ically, the revised weight fw of an edge, in terms of the learned edge weight w(e) from the
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medical objective and the potentials on the donor (d) and patient (p) vertices, Pθd and

Pθp , is fw(e) = w(e) · (1 − Pθd − Pθp). These new ‘re-weights’ balance the myopic value of

an edge in the framework of the objective function with the future value of each edge as

represented by the two vertices it connects. As such, the new weights balance the medical

objective and the potential expected utility through learned weights on both edges (myopic

and goal-oriented) and vertices (long-term utility).

SMAC

The FutureMatch team uses SMAC [17], a sequential model-based algorithm configuration

tool that searches through a parameter space in order to optimize a provided objective. In

this case, the parameter vector is the vector of vertex potentials, and the evaluation metric

is based on many trials through the kidney exchange simulator. In particular, SMAC loops

through a cycle of hypothesizing and evaluating a vector of vertex potentials, and after

convergence, it returns a list of potentials.

For the purposes of my thesis, I treated SMAC as a black box; that is to say, I did

not worry about the specifics of its implementation, but only used it to search through the

vertex potential parameter space and return a list of final potentials.

Online Clearing Algorithm

The online clearing algorithm is exactly a myopically greedy matching on the re-weighted

kidney exchange graph. It incorporates the edge weighs learned to reflect the medical

objective function in the first stage of FutureMatch, as well as the vertex potentials learned

to discount the utility of various blood types in the second stage.

In each period, the online clearing algorithm maximizes the total weight of the matching

it clears, where for each chain or cycle c, u(c) =
∑

e∈cwe. A current myopic state-of-the-art

algorithm based on work by Dickerson, Procaccia, and Sandholm [11] is used to efficiently

find matchings on the edge- and potential-weighted graphs. The algorithm is then tested

on current data from UNOS and evaluated based on the initially defined medical objective
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(crucially, not the learned edge-weight approximation of the objective).

3.5 Related Work

Although failure-aware kidney exchange is not the focus of this thesis, it is an orthogonal

form of dynamism in the kidney exchange problem. Additionally, much work has been

done on incentivizing truthful reporting from participating hospitals — i.e., making sure

that they don’t hide any cycles or chains they can match internally — and interesting

results have come out of both of these angles on the kidney exchange problem. Ideally, the

kidney exchange problem would be best addressed by a combination of a mechanism that

incentivizes truthful reporting by hospitals and an algorithm that accounts for entrances

and exits over time, as well as post-match failures. However, this has yet to be put together

in a cohesive manner.

3.5.1 Failure-Aware Kidney Exchange

A second form of dynamism in kidney exchange involves the failure of algorithmic matches

before actual transplantation. In fact, most matches do not ultimately result in transplants,

leading to a very interesting problem of maximizing the expected number of transplants

instead of the total number of deterministic matches, as addressed by Dickerson et al. [11].

This also introduces the idea of match quality into the framework of kidney exchange, a

direction that has been explored by Blum et al. [8].

In particular, Dickerson et al. addresses the problem of maximizing the expected number

of lives saved in theory on random graph models, on real data from past kidney exchange

runs, and on synthetic data generated by a realistic kidney exchange simulator. By formulat-

ing the problem as a probabilistic exchange, they design a scalable branch-and-price-based

clearing algorithm that addresses the above objectives. However, they treat the process of

determining whether a match will go to completion more or less as a black box and merely
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assign success probabilities qe to each edge e, which they then use to determine the dis-

counted utility of each cycle or chain. In particular, the utility u(c) of a chain or cycle c is

equal to the sum of all weights we on edges e in c multiplied by the product of the success

probabilities on all edges e in c. In other words,

u(c) =

[∑
e∈c

we

]
·

[∏
e∈c

qe

]
.

They then use this discounted utility per cycle or chain throughout the paper in their max-

imization of the total expected utility (equivalently, the total number of expected trans-

plants) over time.

However, Blum et al. [8] approach this problem from a different perspective based on

the medical tests needed in order to determine compatibility past the initial blood-type

matching stage, which is generally the basis of algorithmically-prescribed matchings. In

the standard operating procedure for kidney exchange, additional tests are administered to

each matched pair in order to determine their actual compatibility. However, these tests are

expensive and time-consuming, and, as mentioned before, many algorithmically matched

swaps are ultimately found to be incompatible. In this way, tests between vertices yield

additional information as to whether the edge between the two vertices truly exists (i.e., if

the prescribed exchange will be carried out in reality).

Blum et al. consider the problem of querying a small number of edges per vertex in order

to gain as much information as possible. They design an adaptive algorithm that queries a

constant number of edges per vertex and achieves an aribtrarily close approximation of the

optimal omniscient solution.

3.5.2 Truthful Reporting in Kidney Exchange

One other major problem in the realm of kidney exchange is incentivizing hospitals to

truthfully report their pool of patients and donors. Many hospitals may be tempted to

withhold pairs of patients and donors they can match themselves [18], but this harms

overall exchanges by increasing the number of ‘hard to match’ pairs. Therefore, there has
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been much work in designing proper mechanisms in order to make sure that hospitals are

incentivized to report all of their pairs.

When considering truthful reporting, it is necessary to consider both individual ratio-

nality and strategyproofness. A mechanism is individually rational if players are better off

participating in the exchange than abstaining (i.e., matching their pairs purely internally).

On the other hand, a mechanism is strategyproof if agents are best off truthfully entering

all their pairs in the exchange. In particular, this means that no hospital will do better

off by keeping some internal matches ‘hidden’ from the exchange. Additionally, note that

strategyproofness implies individual rationality, but not the other way around; it is a strictly

stronger claim. Establishing individual rationality for kidney exchange mechamisms is not

particularly hard, but ensuring strategyproofness is much more difficult.

Toulis and Parkes [18] observe that the expected benefit of pooling scales with the square

root of the number of pairs in each hospital. They then design the xCM algorithm, which

incentives hospitals of at least moderate size to fully report their pairs.

In a similar vein, Ashlagi et al. [6] examine strategyproof mechanisms for incentivizing

hospitals to truthfully report their pairs. They establish welfare loss bounds for randomized

and deterministic mechanisms and propose a randomized mechanism that guarantees at

least half of the maxmimum social welfare in the worst case, but which performs much

closer to optimal in simulations.



Chapter 4

Dynamic Kidney Exchange with

Timing Considerations

For the bulk of my research, I did not use the full version of FutureMatch, but rather wrote

my own stripped-down version. I focused on the second step — learning potentials on

vertices — and used the previously existing learned edge weights corresponding to Future-

Match’s objective functions [13]. This allowed me to be more flexible in my experiments and

better isolate the effect of introducing timing considerations into the general FutureMatch

framework.

In general, my framework consisted of the following pieces, which I explain in more detail

below. It is also visually represented in Figure 4.1.

• Graph generator: I wrote a simulator that generated kidney graphs G = (V,E). This

was used for training and testing various iterations of the online algorithm.

• Simulator: This took in a graph, a set of potentials, and edge weights and returned

a matching resulting from carrying out a weighted myopic clearing algorithm on the

re-weighted graph.

• Evaluator: This took in a matching and evaluated the timing and medical objective.

It then combined the timing and medical objectives and reported a global score that

42
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Figure 4.1: A schematic of the timing-aware learning framework.

SMAC could interpret.

• SMAC: As described in Chapter 3, this was used to learn a set of potentials (i.e.,

weights on vertices representing future utility) corresponding to a certain combination

of a medical objective and timing considerations.

• Offline clearing algorithm: This is the output of the entire pipeline, and this takes in

a set of learned potentials and edge weights and returns a weighted myopic algorithm

designed to address a scoring rule corresponding to a certain combination of timing

and a medical objective.

4.1 Graph Generation

I generated kidney exchange graphs G = (V,E) that were then processed by a simulator

in order to obtain matchings. In essence, each graph represents the change (i.e., entrances

and exits) in a kidney exchange pool over time.

4.1.1 Vertices

I generate vertices consisting of patient-donor pairs by drawing two independent blood types

from a distribution FABO [18]. In addition, each vertex pair is associated with an entrance
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and exit time from the exchange, as discussed below. Therefore, each vertex consists of

four parts: a patient blood type, a donor blood type, an entrance time, and an exit time,

or V = (PABO, DABO, t0, t1).

Also, note that there are no altruistic vertices in my model. This is also for simplicity’s

sake, as adding unbounded-length chains significantly complicates the matching process.

Dealing with the generation of altruists also adds another layer to entrance dynamics that

unnecessarily complicates things in a proof-of-concept work.

Entrances and Exits

In my discrete-time model, I define an exchange as having a start time T0 and an end time

Tf . Vertices are uniformly generated at times E ∼ Unif(T0, Tf ). However, not all generated

vertices enter the exchange; if the generated vertex is self-compatible, then it does not enter

the exchange. I explain this in greater detail in 4.1.3. Agents exit the exchange either when

they are matched or if they perish. To this end, I again take the deterministic (i.e., not

failure-aware) view in the FutureMatch framework.

Death Probability

As in [2], each agent a’s lifespan is drawn from an exponential distribution parameterized by

a variable p. In particular, if a enters the exchange at time t0, she dies at some time t0 +X,

X ∼ exp(p). This death probability is held constant across all agents in the exchange.

4.1.2 Edges

For each blood type compatible pair of a patient and donor at different vertices, I determined

whether or not they were tissue compatible by flipping a biased coin, as described in 4.1.3.

For every patient-donor combination deemed compatible, I introduced a directed edge from

the vertex containing the donor to the vertex containing the intended recipient. I then

stored all these potential edges.
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Note that this generates all potential edges in a graph without taking timing into account.

Specifically, some of these edges may never occur because the endpoint vertices may not be

in the exchange at the same time. It is left to the simulator to determine which edges are

actually viable when running the exchange.

Edge Weights

Due to the focus on the MaxCard objective, all weights on edges in the graph are trivially

set to 1 because we only care about the total number of matches, implying that all vertices

are of equal importance to us.

When considering other objectives (i.e., MaxCard-Fair and MaxLife), learning edge

weights becomes much more complicated. In the MaxCard-Fair case, which can be viewed

as a generalized version of MaxCard, we can multiplicatively re-weight edges that involve a

marginalized patient. For example, we can define an edge re-weighting function ∆β : E → R,

where β is a parameter that determines how much to prefer a certain marginalized subpop-

ulation M , as follows:

∆β(e) :=

 (1 + β)we if e ends in Vp ∈M

1 otherwise.

The MaxLife case is yet more complicated. First, it is necessary to run a Cox proportional

hazards test in order to determine the effect of multiple features on survivability. The most

significant features are then fed into a regression learning step in order to output an edge

weighting function that takes features such as recipient age, the age difference between

the recipient and donor, and components of each person’s HLA profile in order to output

a weight on the specified edge. However, this requires a much more detailed population

profile.

For the purposes of this thesis, I used a uniform edge weighting scheme (i.e., without loss

of generality, all edge weights were set to 1) because of my focus on the MaxCard objective.
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4.1.3 Compatibility

As in [18], I take a two-stage approach to determining compatibility between two vertices:

they must be both blood type and tissue type compatible. When generating a new patient-

donor pair, I draw the blood type of each person from a pre-defined distribution as in [18]

and [20]. If the pair is blood type incompatible, then it enters the exchange. However, if the

pair is blood type compatible, I then flip a biased coin representing the PRA values of each

person (as discussed in 3.1.3, this is assumed to be uniform across the entire population)

and then only enter the pair into the exchange if the components are determined to be tissue

type incompatible. Specifically, if the donor has a PRA value of pd and the patient has a

PRA value of pp, the probability that they are tissue type compatible is (1− pd) · (1− pp).

More generally, this framework holds for determining general compatibility: the patient

and donor must be both blood and tissue type compatible.

I obtained both the blood type distribution and the uniform PRA value I used from

existing literature [18] [20].

4.2 Simulation

Given a graph G, a set of edge weights W , and a set of potentials Θ, the simulator generates

a matching via weighted myopia, which means it re-weights the edges in the graph based

on W and Θ and then carries out a greedy batching algorithm in order to obtain a final

matching.

Formally, as discussed in Chapter 3, given an edge weight w(e) and potentials Pθd and

Pθp on the donor and patient vertices, respectively, the re-weighted edge has value fw(e) =

w(e) · (1− Pθd − Pθp). The new edge weight is then used to myopically generate matchings

that incorporate both the medical objective (as represented by edge weights) and the future

value of various vertices (as captured by the learned potentials).
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4.2.1 Swaps

I only allowed swaps (i.e., two-cycles) in my framework. This significantly simplified the

matching process because I could use a weighted version of Edmonds’ Blossom algorithm

[14] implementated by Galil [16] in order to find the maximum weight matchings in each

time period.

As previous studies have shown, adding three-cycles and altruist-initiated chains greatly

improves the overall performance of kidney exchange algorithms [3]. However, as a first

step in examining the effects of timing on other aspects of kidney exchange, simplifying

the problem allowed me to run a deterministic algorithm in order to find matchings, as op-

posed to the more complicated branch-and-price algorithms used to solve the NP-complete

bounded-length cycle case.

4.3 Evaluation

This step takes a matching and returns a summary score that combines the timing and

MaxCard objectives via a weighted average.

4.3.1 Timing Objective

I introduced a global timing parameter tg that measured the average amount of time people

spent in the exchange before leaving due to either death or transplant. The timing objective

aimed to minimize this quantity.

4.3.2 Medical Objective

Throughout this thesis, I considered the MaxCard medical objective [9] [13]. Although this

objective does not explicitly contain a particularly strong notion of fairness, as discussed

earlier, this is the canonical kidney exchange objective and there is the richest literature on

how to interpret and process this particular objective function.
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4.3.3 Weighting the Timing Objective

I then combined the timing objective with the MaxCard objective score in order to create

a new ‘timing-weighted’ score to feed into SMAC. I examined five different combinations of

the timing and MaxCard objectives.

I used a ‘slider’ that allows for different weighted averages of timing and the medical

objective to be used as an objective function for SMAC. I had five ranges of weighting that

ranged from purely the timing objective to only the medical objective, with three ranges in

between. If we let a and 1−a represent the weights given to the timing and medical objective,

respectively, the five combinations I tested correspond to a ∈ {0, 0.25, 0.50, 0.75, 1}.

However, because the timing and MaxCard objectives measure drastically different things,

merely taking a weighted average would not preserve the relative weights I desired in each

of my test scenarios. To that end, in order to combine the timing and MaxCard objectives,

I first (approximately) normalized each and then took a weighted average. In order to ap-

proximately normalize each objective, I first generated a large amount of data on a training

set with the same death probability p but all constant edge weights and potentials. From

this, I then extracted the mean µ and standard deviation σ for both the timing and Max-

Card objectives, which I then used to transform the data into an approximately standard

score: Xnew = X−µ
σ .

Additionally, because it is desirable to minimize timing and maximize cardinality, I then

negated the normalized cardinality score before taking a weighted average of the two. In

particular, given a weighted average parameterized by a ∈ [0, 1], a normalized timing score

st, and a normalized cardinality score sc, the final aggregated score to feed into SMAC is

s = a · st + (1− a) · (−sc).

4.4 SMAC

As mentioned in Chapter 3, I treated the specifics of SMAC as a black box and merely used

it to learn potentials corresponding to various timing-aware objective functions.
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4.4.1 Convergence

However, something I did notice was that SMAC often took prohibitively long to converge,

even when I ran it over long periods of time. In personal correspondence, John Dickerson

also mentioned that in multiple cases in the FutureMatch paper, SMAC did not converge

for all potentials. Therefore, I cut off all SMAC runs at a very high cutoff and took the last

iteration of potentials as the input to my final offline clearing algorithm.

4.5 Offline Clearing Algorithm

The offline clearing algorithm takes in the final learned potentials Θ and the edge weights we

in order to create a weighted myopic algorithm that first re-weights the edges in each kidney

exchange graph according to the standard re-weighting function fw(e) = w(e)·(1−Pθd−Pθp)

and then chooses a greedy matching on this re-weighted graph during each batch. Because

I only allowed swaps in my model, the greedy matching solution is well-defined up to

equivalence classes with the same overall score (i.e., it is always possible to achieve an

optimal matching under some objective function). This algorithm was then tested on a

separate set of kidney exchange graphs in order to get a final score.



Chapter 5

Experimental Results

5.1 Goal

The overarching idea behind my implementation was to eventually observe a tradeoff be-

tween timing and the medical objective. In order to do this, I produced two kinds of graphs:

summary graphs that show the timing and MaxCard performance of each algorithm, and

scatterplots of the number of matches against the inverse average time for each death prob-

ability and weighted objective function. The summary plots provide a broad picture of the

results, whereas the scatterplots allow us to examine specific tradeoffs in greater depth.

5.2 Methodology

I tested five different combinations of the timing and MaxCard objectives: 0timing, 25tim-

ing, 50timing, 75timing, and 100timing. As described in Chapter 4, these represent sliding

weighted averages between the two (normalized) objectives.

Additionally, I explored six different death probabilities: p = 0.001, 0.003, 0.005, 0.01,

0.03, and 0.05. In general, p = 0.001 and 0.003 are considered low probabilities of death,

p = 0.005 and 0.01 are considered medium probabilities of death, and p = 0.03 and 0.05 are

high probabilities of death.

50
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I ran exchanges consisting of 500 patient-donor pairs and 1000 timesteps over which they

were uniformly distributed to enter the pool. As per [18] and [20], I assumed a constant

tissue-type compatibility factor (PRA) of 0.2.

During the SMAC learning step, I repeatedly trained potentials on a set of 1000 training

instances. I then evaluated each final offline algorithm on a set of 5000 previously unseen

test instances.

5.3 Graphs

In Figures 5.1, 5.2, 5.3, and 5.4, we can see a bit of separation into two main types of

algorithms — generally, the more timing-aware algorithms do better on the timing objective

than the MaxCard objective, and the less timing-aware algorithms exhibit the opposite

tradeoff. However, there is some noise in these plots, especially in 5.2 and 5.4, probably

due to the fact that SMAC did not completely converge when training the potentials.

Additionally, the spread in the timing and MaxCard objectives is quite small due to the

sparse nature of the kidney exchange graph. Figures 5.1 and 5.3 in particular suggest that

there is a tradeoff between algorithms trained with different degrees of timing awareness.

At higher death probabilities, as seen in Figures 5.5 and 5.6, the relationship between

timing-aware clearing algorithms and the timing-objective tradeoff begins to break down.

This is due to the larger amount of noise due to the relatively high death probabilities.

The error bars on each summary graph represent the standard error in each direction

(S = s√
n

, where s is the standard deviation and n is the number of samples). However,

they may be misleading in this case because they cannot fully encapsulate the case in which

one algorithm out-performs another on most instances in the test set because they are

aggregating averages over a very large test sample. Therefore, in order to examine this

behavior more closely, we also look at scatterplots of the difference in performance between

different algorithms with respect to the total number of matches and overall timing.
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Figure 5.1: The timing-objective tradeoff with a death probability of 0.001.

Figure 5.2: The timing-objective tradeoff with a death probability of 0.003.
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Figure 5.3: The timing-objective tradeoff with a death probability of 0.005.

Figure 5.4: The timing-objective tradeoff with a death probability of 0.01.
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Figure 5.5: The timing-objective tradeoff with a death probability of 0.03.

Figure 5.6: The timing-objective tradeoff with a death probability of 0.05.
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Figure 5.7: Scatterplot comparing the score performance of the 0timing and 100timing
algorithms with a death probability of 0.001.

Figure 5.8: Scatterplot comparing the time performance of the 0timing and 100timing
algorithms with a death probability of 0.001.
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Figure 5.9: Scatterplot comparing the score performance of the 0timing and 100timing
algorithms with a death probability of 0.003.

Figure 5.10: Scatterplot comparing the time performance of the 0timing and 100timing
algorithms with a death probability of 0.003.



CHAPTER 5. EXPERIMENTAL RESULTS 57

Figure 5.11: Scatterplot comparing the score performance of the 0timing and 100timing
algorithms with a death probability of 0.005.

Figure 5.12: Scatterplot comparing the time performance of the 0timing and 100timing
algorithms with a death probability of 0.005.
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These scatterplots suggest more strongly that at p = 0.001, 0.003, and 0.005, timing-

aware algorithms outperform timing-unaware algorithms with respect to timing while still

achieving comparable MaxCard results. Additionally, even when comparing algorithms in

between 0timing and 100timing (e.g,. comparing 25timing with 75timing), we can see that

the more heavily timing-aware algorithms often out-perform the others in terms of timing,

while performing similarly on the MaxCard objective. For more graphs, please see the

Appendix.

Although none of these findings were especially strong, they serve as a hint that further

tradeoffs between timing and match quality exist in the FutureMatch framework. These

results certainly suggest that the various timing-aware algorithms perform about the same

on the offline medical objective but better with respect to the timing metric. Therefore, we

can say that perhaps it is possible to design timing-aware algorithms that keep people in

exchanges for shorter periods of time while achieving roughly the same performance, which

would be a very interesting and potentially useful result.

However, as we raise the death probability, this tradeoff becomes less noticeable. This

is likely due to, again, the greater amount of noise in the system at higher death rates, and

as the principal dynamic behind exits from the pool switches from matches to deaths, the

performance of a timing-aware algorithm matters less as more vertices are forced to die as

opposed to being matched. This is because the kidney graphs are relatively sparse to begin

with, and therefore at certain levels of death, it is impossible to have a thick enough market

to guarantee that any significant portion of them get successfully matched.

Of course, all these observations come with a very basic kidney exchange model. Per-

haps introducing three-cycles and altruistic donors, using a richer population model, and

implementing a non-uniform PRA model would lead to a different conclusion, but in this

limited framework, it seems that there is evidence for a rather successful tradeoff between

timing and the MaxCard objective where, at low death probabilities, it is possible to train

timing-aware algorithms that result in people spending less time on average in exchanges

while resulting in roughly the same cardinality of matches overall.
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Figure 5.13: Scatterplot comparing the score performance of the 0timing and 100timing
algorithms with a death probability of 0.01.

Figure 5.14: Scatterplot comparing the time performance of the 0timing and 100timing
algorithms with a death probability of 0.01.
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Figure 5.15: Scatterplot comparing the score performance of the 0timing and 100timing
algorithms with a death probability of 0.03.

Figure 5.16: Scatterplot comparing the time performance of the 0timing and 100timing
algorithms with a death probability of 0.03.
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Figure 5.17: Scatterplot comparing the score performance of the 0timing and 100timing
algorithms with a death probability of 0.05.

Figure 5.18: Scatterplot comparing the time performance of the 0timing and 100timing
algorithms with a death probability of 0.05.



Chapter 6

Discussion and Conclusion

6.1 Relevance

Considering aspects of timing in dynamic kidney exchange is an important problem: not

only do timing-aware algorithms reduce the risk of patients dying while waiting for a kidney,

they also lessen the burden on physicians — performing a transplant on a healthier patient

is both easier and less stressful than on a more fragile patient — and ease patient concerns

about not being able to be matched in time. Perceived fairness does a lot to sway public

opinion and lead to the adoption of new matching approaches, and incorporating explicit

measures of timeliness into current kidney exchange algorithms will do much to ease peoples’

minds. Additionally, even small improvements in the average amount of time spent in kidney

exchanges are important, as improving matching speed by even a day saves real lives.

Although the model used in this thesis was admittedly simplistic and unrealistic, the

implication that there is a possible tradeoff between timing considerations and medically-

prescribed objectives could add an interesting dimension to this optimization problem: from

a practical standpoint, is there an optimal blend of timing and fairness that leads to some

provable level of performance? Or, taking this a bit further into the hands of patients in the

exchange, is there perhaps a way for people to collectively specify a particular combination

of timing and a medical objective based on an information aggregation-based measure of

62



CHAPTER 6. DISCUSSION AND CONCLUSION 63

their preferences?

Additionally, this represents a first step toward combining timing objectives as highlighed

in Anderson’s theoretical model [3] with the real-world implications of Dickerson et al.’s

FutureMatch framework [13], which could potentially lead to extensions down the line that

incorporate more involved measures of timing or explicitly model time spent in the exchange

in the medically-prescribed objective. It seems that a lot of work has been done on the ‘end

result’ of these exchanges without much thought being given to the actual mechanics within

the realm of the exchange itself, and introducing timing considerations in the model will

hopefully lead people to not treat the exchange as a black box in terms of peoples’ overall

well-being. Of course, there are models that can specify the general health of patients in

the exchange and which preferentially match them [12], but explictly trying to capture the

amount of time people in general spend in the exchange in conjunction with the FutureMatch

framework represents a step in a new direction.

6.2 Future Work

Firstly, given more time, I would extend my framework to contain the complete FutureMatch

framework. In particular, this means extending to all three fairness objectives and their

corresponding edge weights, as opposed to just considering MaxCard. I would also add

three-cycles and altruist-initiated chains into my model, which would hopefully allow for the

entirety of Anderson’s results (i.e., a large decrease in average time spent in the exchange)

[3] to propagate to the revised FutureMatch framework.

Additionally, I would simulate a more complex and realistic population, both in terms

of blood-type distribution, which varies by race, among other factors, and in terms of

tissue-type compatibility, because people aren’t uniformly tissue-sensitive. As discussed

in [18] and [20], there are three widely-accepted levels of PRA sensitivity, and generating

patients and donors with a non-uniform level of PRA sensitivity would result in much more

realistic data. It would also allow us to consider measures of fairness between people with

different levels of PRA sensitivity, which adds a new facet to the problem: suppose that
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adding timing objectives forces algorithms to match too quickly, resulting in harder-to-

match patients being neglected? Exploring the dynamics in a heterogeneous population

would help address additional fairness questions that our previous homogeneous population

never encountered.

In my model, the entrances and exits of vertex pairs over time were also highly styl-

ized. One possible next step would be to introduce vertices with different exit functions,

which could either be exponential functions with a different parameter or another fam-

ily of function altogether. Allowing subpopulations to have different lifespan distributions

within the exchange could also lead to interesting fairness results; perhaps the presence of

a shorter-lived population S would force the algorithm to learn to match only longer-lived

subpopulations L, as letting a member of S die would presumably increase the overall av-

erage amount of time spent in the exchange by less than if the algorithm matched people

in S and let members of L die. A richer set of time features could also yield much more

nuanced and interesting results. For example, we could care about the worst-case waiting

time instead of the average, or we could try to minimize a combination of the average

wait time and the population standard deviation. Additionally, we could introduce a new

type of timing-based potential for a set of graph elements (e.g., vertices or edges), which

could possibly enrich the expressibility of the timing aspect of the objective. Additionally,

the timing and medical objectives could be combined in more complex ways than a simple

weighted average in order to reflect the preferences of people in the exchange.

Lastly, it would be interesting to see how this expanded FutureMatch-esque framework

dovetails with other aspects of kidney exchange: notably, failure-aware kidney exchange

and truthful mechanisms. Although combining everything into one cohesive model could be

very tricky due to the different basic assumptions in each case, this could lead to interesting

results about the tradeoff between the different approaches themselves. For example, Blum

et al.’s adaptive querying algorithm in the failure-aware FutureMatch framework could have

more of a relative effect than trying to maximize the number of matches in expectation

and not learning from each failed match. Additionally, combining the matching aspect

of dynamic kidney exchange with a properly-incentivizing mechanism could lead to better
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real-world effects, a very important step when deploying these algorithms in reality.

6.3 Conclusion

Theoretical models by Anderson et al. [3] and Akbarpour et al. [2] suggested a tradeoff

between the average time patients spent in the exchange and the total cardinality of all

matches. I explored this in more detail through the lens of Dickerson et al.’s FutureMatch

framework [13], and through the introduction of a coarse timing measure, showed that

timing-aware algorithms may be able to reduce the average amount of time spent in the

exchange at steady state without significantly reducing the total number of matches.



Chapter 7

Appendix

As mentioned in Chapter 5, the following are other scatterplots of the performance of

various timing-aware algorithms on the timing and MaxCard objectives for various death

probabilities. These support the observation that more timing-aware algorithms result in

more efficient performance on timing objectives without sacrificing much match quality.

66
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Figure 7.1: Scatterplot comparing the score performance of the 50timing and 100timing
algorithms with a death probability of 0.001.

Figure 7.2: Scatterplot comparing the time performance of the 50timing and 100timing
algorithms with a death probability of 0.001.
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Figure 7.3: Scatterplot comparing the score performance of the 75timing and 100timing
algorithms with a death probability of 0.001.

Figure 7.4: Scatterplot comparing the time performance of the 75timing and 100timing
algorithms with a death probability of 0.001.
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Figure 7.5: Scatterplot comparing the score performance of the 0timing and 25timing algo-
rithms with a death probability of 0.003.

Figure 7.6: Scatterplot comparing the time performance of the 0timing and 25timing algo-
rithms with a death probability of 0.003.



CHAPTER 7. APPENDIX 70

Figure 7.7: Scatterplot comparing the score performance of the 0timing and 75timing algo-
rithms with a death probability of 0.003.

Figure 7.8: Scatterplot comparing the time performance of the 0timing and 75timing algo-
rithms with a death probability of 0.003.
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Figure 7.9: Scatterplot comparing the score performance of the 25timing and 50timing
algorithms with a death probability of 0.003.

Figure 7.10: Scatterplot comparing the time performance of the 25timing and 50timing
algorithms with a death probability of 0.003.
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Figure 7.11: Scatterplot comparing the score performance of the 25timing and 100timing
algorithms with a death probability of 0.003.

Figure 7.12: Scatterplot comparing the time performance of the 25timing and 100timing
algorithms with a death probability of 0.003.
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Figure 7.13: Scatterplot comparing the score performance of the 50timing and 75timing
algorithms with a death probability of 0.003.

Figure 7.14: Scatterplot comparing the time performance of the 50timing and 75timing
algorithms with a death probability of 0.003.
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Figure 7.15: Scatterplot comparing the score performance of the 75timing and 100timing
algorithms with a death probability of 0.003.

Figure 7.16: Scatterplot comparing the time performance of the 75timing and 100timing
algorithms with a death probability of 0.003.
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Figure 7.17: Scatterplot comparing the score performance of the 0timing and 25timing
algorithms with a death probability of 0.005.

Figure 7.18: Scatterplot comparing the time performance of the 0timing and 25timing
algorithms with a death probability of 0.005.
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Figure 7.19: Scatterplot comparing the score performance of the 0timing and 50timing
algorithms with a death probability of 0.005.

Figure 7.20: Scatterplot comparing the time performance of the 0timing and 50timing
algorithms with a death probability of 0.005.
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Figure 7.21: Scatterplot comparing the score performance of the 25timing and 75timing
algorithms with a death probability of 0.005.

Figure 7.22: Scatterplot comparing the time performance of the 25timing and 75timing
algorithms with a death probability of 0.005.
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Figure 7.23: Scatterplot comparing the score performance of the 50timing and 75timing
algorithms with a death probability of 0.005.

Figure 7.24: Scatterplot comparing the time performance of the 50timing and 75timing
algorithms with a death probability of 0.005.
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Figure 7.25: Scatterplot comparing the score performance of the 75timing and 100timing
algorithms with a death probability of 0.005.

Figure 7.26: Scatterplot comparing the time performance of the 75timing and 100timing
algorithms with a death probability of 0.005.
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