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Abstract

The wide-spread availability of high-speed internet access has brought about a mi-

gration of computation from local company-owned servers and personal computers to

shared resources or on-demand platforms. Rather than performing computation on

local machines, more organizations are utilizing pooled computational resources, e.g.,

grid computing, or software provided as an on-demand service, e.g., cloud computing.

These environments are open in that no single entity has control or full knowledge

of outcomes. Entities are owned and deployed by different organizations or individ-

uals, who have conflicting interests. These entities can be modeled as self-interested

agents with private information. The design of systems deployed in open environ-

ments must be aligned with the agents’ incentives to ensure desirable outcomes. I

propose open mechanism design, an open infrastructure model in which anyone can

own resources and deploy mechanisms to support automated decision making and

coordination amongst self-interested agents. This model allows for a decentralized

control structure, respecting the autonomy of resource owners and supporting in-

novation and competition. Each mechanism can adopt its own design goals. This

vision of an open infrastructure to promote automated and optimal decision mak-
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ing between multiple parties encompasses and expands on much of the thinking that

underlies agent-mediated e-commerce and on-demand computing systems. The role

of the infrastructure in an open setting – as it applies to resource allocation mech-

anisms – is to ensure or verify the property of strategyproofness, namely, whether a

self-interested agent can maximize her utility by simply reporting information about

her preferences for different resource allocation truthfully. I present two approaches,

with the role of the infrastructure slightly different in each. The first approach con-

siders passive verification of the strategyproofness of mechanisms, while the second

approach considers active enforcement of strategyproofness in decentralized auctions

for dynamic resource allocation. I present monotonic resource estimation and pricing

algorithms that can be used to ensure strategyproofness of a mechanism and empirical

results from simulations using data collected from the Crimson Grid.
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6.10 Näıve Bayes Network . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.11 Bayesian Network Structure . . . . . . . . . . . . . . . . . . . . . . . 114

7.1 Revenue gain by a player if the player switches to another strategy.
Arrows show direction of improvement. . . . . . . . . . . . . . . . . . 137

viii



List of Tables

4.1 Sequence of Instances: 2 Agents and 2 Identical Items . . . . . . . . . 36
4.2 Sequence of Instances: 3 Agents and 2 Identical Items . . . . . . . . . 46

6.1 Root Mean Squared Errors . . . . . . . . . . . . . . . . . . . . . . . . 110
6.2 Conditional Probability Table for Number of arguments . . . . . . . . 112
6.3 Conditional Probability Table for Executable Type . . . . . . . . . . . 112
6.4 Conditional Probability Table for Size . . . . . . . . . . . . . . . . . . 113
6.5 Conditional Probability Table for User ID (only the first ten user IDs

are presented) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.6 Conditional Probability Table for Number of Arguments given user ID 113

7.1 Example 11: updating the price table using the load heuristic. . . . . 128
7.2 Two-player game (Poisson): Payoffs are normalized revenue earned

over the duration of the experiment. Best responses are italicized. . . 134
7.3 Two-player game (Poisson): Payoffs are normalized value served over

the duration of the experiment. Best responses are italicized. . . . . . 134
7.4 Two-player game (Crimson Grid): Payoffs are normalized revenue earned

over the duration of the experiment. Best responses are italicized. . . 135
7.5 Two-player game (Crimson Grid): Payoffs are normalized value served

over the duration of the experiment. Best responses are italicized. . . 135
7.6 Two-player game: Payoffs are normalized revenue served over the du-

ration of the experiment. . . . . . . . . . . . . . . . . . . . . . . . . . 136
7.7 Two-player game: Payoffs are normalized value served over the dura-

tion of the experiment. Best responses are italicized. . . . . . . . . . 138
7.8 Additional Revenue Earned by Adding Machines . . . . . . . . . . . . 139
7.9 Relaxing monotonicity . . . . . . . . . . . . . . . . . . . . . . . . . . 140

ix



Citations to Previously Published Work

Large portions of Chapters 4 and 5 have appeared in the following papers:

“Passive Verification of the Strategyproofness of Mechanisms in Open Environments”,
L. Kang and D. C. Parkes, Proceedings of the 8th International Conference on Elec-
tronic Commerce, ACM Press, August 2006;

“A Decentralized Auction Framework to Promote Efficient Resource Allocation in
Open Computational Grids”, L. Kang and D. C. Parkes, Proceedings of the Joint
Workshop on The Economics of Networked Systems and Incentive-Based Computing
(NetEcon+IBC 2007), San Diego, 2007.

Discussion on the EGG project can be found in the following paper:

“EGG: An Extensible and Economics-inspired Open Grid Computing Platform”, J.
Brunelle, P. Hurst, J. Huth, L. Kang, C. Ng, D. Parkes, M. Seltzer, J. Shank, S.
Youssef, Proceedings of 3rd International Workshop on Grid Economics and Business
Models (GECON’06), Singapore, 2006.

x



Acknowledgments

This dissertation would not have been possible without the support and guidance

of numerous people. I owe my gratitude to all those who have made my doctoral

study one that I will cherish forever.

My most sincere gratitude goes to the greatest advisor ever, Prof. David Parkes,

for giving me the opportunity to begin and complete this journey. He encouraged

my every step and inspired me to keep focused. His advice and insightful comments

helped me greatly at all stages of research and writing.

I also offer great thanks to the other members of my dissertation committee, Prof.

Margo Seltzer and Prof. Avi Pfeffer. Special thanks to Susan Wieczorek for ensuring

that all my paperwork was complete and deadlines were met. She was knowledgeable

and helpful whenever I had a concern or question. I would also like to thank Dr. Joy

Sircar for allowing me to collect data on the Crimson Grid.

I would like to express my gratitude to all my friends for making my graduate

school experience so enjoyable and to the members of the EconCS Research Group

and my colleagues at Harvard University for collaboration and fruitful discussion.

I offer my deepest admiration and gratitude to my parents, In Seok and Ae Sun,

and my siblings, Erin, Christine, and Sean, for their patience, support, prayer, and

unconditional love.

Finally, I thank God for giving me the strength and resources to complete my

thesis.

Now to him who is able to do immeasurably more than all we ask or imagine,

according to his power that is at work within us (Ephesians 3: 20).

xi



Dedicated to my father, Dr. In Seok Kang.

xii



Chapter 1

Introduction

1.1 Motivation

The wide-spread availability of high-speed internet access has brought about a

migration of computation from local company-owned servers and personal computers

to shared resources or on-demand platforms. Rather than performing computation on

local machines, more organizations are utilizing pooled computational resources, e.g.,

grid computing, or software provided as an on-demand service, e.g., cloud computing.

These trends have increased the ease of collaboration and sharing and reduced the

cost of installation and maintenance for end-users. These trends have influenced e-

commerce as many services offer means for outsourcing customer support, marketing,

and sales, further lowering the barriers to entry. They have also offered a way to

solve computationally intensive problems such as climate modeling, earthquake sim-

ulation, protein folding, and financial modeling. These trends have not only affected

intra-organizational resource sharing, but also offer means of using IT resources opti-

1



Chapter 1: Introduction 2

mally within an organization (for example, Crimson Grid [76]). Amazon.com, IBM,

and Google have all introduced cloud computing platforms. Well-known grid projects

include Enabling Grids for E-sciencE (EGEE) [4], World Community Grid [1], and

SETI@home [38]. Many infrastructures, e.g., Berkeley Open Infrastructure for Net-

work Computing (BOINC) [3] and gLite [4], have been developed to act as middlemen

between the end-users and geographically distributed computational resources, tak-

ing charge of scheduling and resource allocation, and ensuring good properties for the

end-users.

These infrastructures provide an attractive application area for market mecha-

nisms because of the distributed nature of the ownership and use of resources in

these systems and the presence of users and resource owners with conflicting in-

terests. In market mechanisms, prices coordinate decision making both within and

between organizations.

These environments are open in that no single entity has control or full knowl-

edge of outcomes. Entities are owned and deployed by different organizations or

individuals, who have conflicting interests. These entities can be modeled as self-

interested agents with private information, e.g. user’s value or resource state of a

machine. The design of systems deployed in open environments must be aligned with

the agents’ incentives to ensure desirable outcomes. The goal in these environments

is to promote automated and optimal decision making between multiple parties. In

open environments, cooperation and trust cannot be assumed. Infrastructures should

allow for autonomy for resource owners, respecting their policy requirements, and

support competition and innovation.
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The study of Mechanism Design from microeconomic theory provides useful tools

for designing and analyzing systems with self-interested agents. However, the classic

model of mechanism design assumes a single mechanism with a central planner with

full enforcement power and agreement on design goals. In environments with the

scope and scale of grid computing or cloud computing, no entity has full control and

a single mechanism may not be computationally scalable, able to capture the entire

scope of a problem, or universally agreed upon. A general consensus on the goal of

the mechanism may not exist.

Then how can the model of classic mechanism design be adapted to open envi-

ronments? I propose open mechanism design, an open infrastructure model in which

anyone can own resources and deploy mechanisms to support automated decision

making and coordination amongst self-interested agents. This model allows for a

decentralized control structure, respecting the autonomy of resource owners and sup-

porting innovation and competition. Each mechanism can adopt its own design goals.

This vision of an open infrastructure to promote automated and optimal decision mak-

ing between multiple parties encompasses and expands on much of the thinking that

underlies agent-mediated e-commerce and on-demand computing systems.

Multiple entities (e.g., firms, individuals, organizations, network services) can de-

ploy decision mechanisms that can be used, for instance, to coordinate purchasing

decisions, allocation tasks or resources, schedule bandwidth, or form coordinated

plans of actions. The role of the infrastructure in an open setting – in as much as it

applies to resource allocation mechanisms – is to verify via observation and interme-

diation and/or enforce via constraints and partial control that desirable properties
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are maintained by deployed mechanisms.

The key property that the infrastructure ensures and/or verifies throughout this

work is whether a given mechanism is strategyproof or truthful. Strategyproofness is a

central property in the design of mechanisms in an open setting, allowing participants

to maximize their individual benefit by reporting truthful private information about

preferences and capabilities. Truth-revelation is a dominant strategy equilibrium in

these mechanisms, which can be computed without distributional assumptions, and

thus are robust. Strategyproofness is also desirable from a computational standpoint

because it reduces the need to model and reason about other agents, and provides

a simple and straightforward strategy to an agent. For these reasons, strategyproof

mechanisms should also encourage the adoption of agent-mediated decision making.

I present two approaches, with the role of the infrastructure slightly different in

each. In the first approach, the infrastructure verifies whether a given mechanism is

strategyproof using a light-weight passive verifier that does not make specific domain

assumptions in a setting where static mechanisms are repeatedly used. Both strate-

gyproof and non-strategyproof mechanisms can be deployed, and participants are no-

tified when a violation to strategyproofness is found. Passive verification algorithms

leverage general characterizations of strategyproof mechanisms. The infrastructure

treats a mechanism as a black box merely observing the inputs, allocation and pay-

ments. Verification takes place after the allocation and payments are decided. When

a violation is detected, the infrastructure intervenes and prevents an allocation from

being implemented.

In the second approach, the infrastructure has a more active role: it ensures that
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the deployed mechanisms are strategyproof by imposing constraints on each com-

ponent of a mechanism. These constraints are derived from the characterization of

strategyproofness developed specifically for the domain of online or dynamic mech-

anisms. In online mechanisms, agents arrive and depart at different times and an

additional dimension of manipulation, namely time, must be considered to ensure

strategyproofness.

In contrast to the first approach where the verifier requires that the rules of a

given mechanism do not change, the second approach allows for more flexibility and

lets the rules of a mechanism change over time. In the first approach, a mechanism is

not published but only the input-output sequence is checked, whereas in the second

approach, components of a mechanism must be published in a form specified by the

infrastructure that allows for checking. In the second approach, no violations of

strategyproofness are possible in that any violation will be detected before inputs to

a mechanism are received. The second approach makes a stronger assumption about

the design space as mechanisms must make use of price tables to publish prices, for

example, but still allows for flexibility in defining price schedules.

My dissertation can be divided up into two parts, based on the two approaches

described above:

Part I: (Chapter 4) Algorithms for passively verifying whether a mechanism used in

repeated, static resource allocation is strategyproof

Part II: (Chapters 5-7) An infrastructure for active enforcement of strategyproofness in

decentralized auctions for dynamic resource allocation in open environments

Preliminaries introduce concepts that are used throughout my dissertation, including
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formal definitions for a mechanism and strategyproofness, can be found in Chapter 2.

Related work in market-based control, dynamic mechanism design, distributed and

open mechanism design is discussed in Chapter 3.

Chapter 4 describes a light-weight passive verifier for strategyproofness and ex-

tensions that improve the scalability and speed of verification. Chapter 5 describes

the decentralized auction framework in detail and defines the constraints imposed

on different components in order to ensure strategyproofness. A proof that these

constraints are sufficient to ensure strategyproof is also presented.

Chapters 6 and 7 describe how the resource estimation and pricing components of

a resource allocation mechanism can be implemented, respectively, while maintaining

the constraints that ensure strategyproofness for users in the overall infrastructure.

The objective of Chapters 6 and 7 is not to provide the most accurate resource

estimation technique or optimal pricing strategy, but to present and compare var-

ious techniques that satisfy monotonicity constraints and thus fit within the open,

strategyproof infrastructure. These techniques are presented to provide a basis upon

which more sophisticated algorithms with better accuracy, or revenue or efficiency

properties, can be developed by resources that are willing to compete through these

algorithms and other innovations.

1.1.1 EGG project

The main motivating domain for Part II is the EGG project, which is an extensible

and economics-inspired open grid computing platform. EGG is a collaborative effort

by physicists, computer scientists, and economists at Harvard University and Boston
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University, with the mantra “physicists just want to run their jobs.” Users should be

able to focus on computational experiments, not gaming to obtain sufficient resources.

The work presented in Chapters 5-7 describes the microeconomic component of EGG.

An initial version of EGG is in the development phase, and some components are

already in use in managing the T2 ATLAS grid housed at Boston University.

1.1.2 The Crimson Grid

The data set used in my experiments in Chapters 6 and 7 were collected from

the Crimson Grid. The Crimson Grid is a campus grid housed at Harvard Univer-

sity’s School of Engineering and Applied Sciences. The Crimson Grid was established

in 2004 with funding from Harvard University and IBM, for research, data sharing

and collaboration among faculty and students across many disciplines. In 2006, the

Crimson Grid was supporting the research projects in 21 different scientific disci-

plines, and grid usage reached 10,000 jobs per month. Crimson Grid researchers have

also collaborated with other campuses, including GLOW at the University of Wiscon-

sin. Researchers have used the Crimson Grid to investigate earthquakes and voting

patterns, model ocean dynamics and acoustics, and simulate cancerous tumors and

subatomic particles [76].

1.2 Contributions

The main focus of my dissertation is to understand how to verify and/or impose

(a minimal set of) constraints on mechanisms deployed within an open environment

to meet system-wide goals, while allowing for autonomy in decision making. More
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specifically, this involves either verifying the strategyproofness of a mechanism using

a constraint model with minimal overhead, or imposing a small set of constraints

ensuring a mechanism is strategyproof. The key components include:

• identifying necessary and/or sufficient conditions for the strategyproofness of

resource allocation mechanisms, and

• translating these conditions into constraints on allocation and payment decisions

that can be easily verified or imposed.

The contributions of my dissertation are:

1. I design algorithms to passively verify whether a mechanism is strategyproof

using a constraint network approach and extensions that accelerate the verifi-

cation process. I identify conditions that allow a verifier to guarantee that a

mechanism is strategyproof for a subset of types and a condition that guaran-

tees that truthful reporting maximizes the worse-case utility of a participant

against an adversarial mechanism.

2. I propose an open and extensible framework for active enforcement of strate-

gyproofness in decentralized auctions for dynamic resource allocation. I iden-

tify constraints on the resource estimation and pricing components that ensure

strategyproofness for users.

3. I design and implement monotonic pricing strategies, and have created a data set

based on job histories from the Crimson Grid. I demonstrate the efficacy of the

pricing strategies and various resource estimation techniques in conjunction with
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constraints guaranteeing strategyproofness via simulations using the Crimson

Grid data set.



Chapter 2

Mechanism Design

Mechanism Design is the study of rules for decision making – a mechanism –

in multi-agent systems that give agents incentives to do what a designer wants e.g.,

revealing private information, in order to lead to good system-wide decisions. The goal

of a mechanism designer is to induce optimal system-wide decision making in domains

with self-interested agents with private information. Mechanism Design has received

much attention within computer science, with applications in distributed resource

allocation and scheduling problems and in electronic commerce [29, 32, 54, 62, 71].

A number of subfields have emerged from classical Mechanism Design, e.g., Online

(or Dynamic) Mechanism Design, Distributed Mechanism Design, and Automated

Mechanism Design.

I introduce basic definitions in game theory and mechanism design, focusing on

strategyproofness. I present price-based and monotonicity-based characterizations of

strategyproofness, which are used in subsequent chapters to develop algorithms for

verification and enforcement.

10
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2.1 Game Theory

2.1.1 Strategies and Utility Functions

Let O be the set of possible outcomes. Each agent has a valuation function v ∈ V ,

which determines the agent’s preference over outcomes o ∈ O. An agent’s preferences

are represented by a utility function, which is a mapping from O × V to the set of

real numbers R. ui(o, vi) is the utility of agent i when facing an outcome o, given

that her valuation function is vi.

Definition 1 (strategy). An agent’s strategy denoted by si(vi) ∈ Σi is a complete

plan of action defining the agent’s behavior in every distinguishable state of the world,

where Σi is the set of all possible strategies, or the strategy space.

A pure strategy defines a deterministic choice of actions at any stage of the game.

A mixed strategy is an assignment of a probability to each pure strategy. Let si denote

the strategy of agent i given her valuation function vi (conditioning on a valuation

function is left implicit). A strategy profile s = (s1, . . . , sn) is a set of strategies for

each agent fully specifying all actions in a game including exactly one strategy for

each agent. Let s−i and v−i denote the set of strategies and valuation functions for

all agents except for agent i, respectively.

A game defines a strategy space for each agent and a mapping from agent strategies

to an outcome. The agent’s utility function can now be defined in terms of strategies in

a game. Let ui(s1, . . . , sn, vi) denote the utility of agent i for the outcome of the game,

given valuation function vi and a strategy profile s = (s1, . . . , sn). The dependence on

the valuation functions of all other agents v−i is left implicit. ui defines preferences
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of agent i over her own actions and the actions taken by all other agents, given her

valuation function.

Definition 2 (best-response set). An agent’s best response set is a set of one or more

strategies that maximize her utility in a game given the agent’s valuation function and

the strategies of all other agents, i.e.,

bri(s−i, vi) = arg max
si∈Σi

ui(si, s−i, vi)

Example 1. Consider a one-shot closed auction for a single-item with n bidders

where the item is sold to the higher bidder, at a price equal to the second highest bid

(second-price auction).

An outcome defines an allocation x of the item upon completion of the auction,

and the payment pi of each agent. xi = 1 if and only if bidder i wins the item.

The strategy of each bidder is how much to bid for the item, bi. Let vi(x) denote

the value that bidder i assigns to an outcome x given a valuation function vi, e.g.,

vi(xi = 1) is the value that bidder i has for winning the item.

The utility function of each bidder can be written as

ui(b1, b2, vi) = vi(x)− pi (2.1)

where

pi =

 maxj 6=i bj, if xi = 1;

0, otherwise.

Utility functions of this form are called quasi-linear utility functions.

Assume that vi(xi = 0) = 0, i.e., the value for not winning the item is 0. A
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bidder’s best response set given b−i, the bids of all other bidders, is

bri(b−i, vi) =

 {bi|vi(xi = 1) ≥ bi > hb−i}, if vi(xi = 1) > hb−i;

{bi|bi ≤ vi(xi = 1)}, otherwise.

where hb−i = maxj 6=i bj denotes the highest bid from a bidder other than i.

Note that bi = vi(xi = 1) ∈ bri(b−i) for all b−i.

2.1.2 Solution concepts

Given assumptions about rationality, preferences, and information available to the

agents, one can compute the outcome of a game using an equilibrium solution con-

cept. Well-known solution concepts include Nash equilibrium and dominant strategy

equilibrium.

Definition 3 (Nash Equilibrium). A strategy profile (s1, . . . , sn) constitutes a Nash

equilibrium given valuation profile v = (v1, . . . , vn) if for each agent, si maximizes the

utility of agent i given s−i, i.e., si is in the best-response set of agent i given s−i

ui(si, s−i, vi) ≥ ui(s
′
i, s−i, vi) ∀s′i ∈ Σi, s

′
i 6= si

The concept of Nash equilibrium is fundamental to game theory, as there exists

a Nash equilibrium (potentially in mixed strategies) in every game [52]. However, it

makes a perfect information assumption, i.e., the preferences and rationality of every

agent are common knowledge. It is also a weak solution concept because there can

be multiple Nash equilibria in a game.

The second solution concept I introduce is the dominant strategy equilibrium. It

is a stronger solution concept than Nash equilibrium in that the perfect information
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assumption is no longer needed and that dominant strategy equilibrium implies Nash

equilibrium. A strategy si is a dominant strategy if si maximizes agent i’s utility

regardless of what strategies are played by other agents.

Definition 4 (Dominant Strategy Equilibrium). A strategy profile (s1, . . . , sn) con-

stitutes a dominant strategy equilibrium if for each agent i,

ui(si, s−i, vi) ≥ ui(s
′
i, s−i, vi) ∀s′i ∈ Σi, s

′
i 6= si, ∀s−i

for all vi and all v−i. In other words, si is in the best-response set of every s−i, for

all valuation profiles.

Since agents do not need to know the preferences or rationality (or lack thereof)

of other agents to determine which strategy to play, a dominant strategy equilibrium

is very robust, and hence, is the solution concept preferred by mechanism designers.

For computational agents, the existence of a dominant strategy can help the agent

reduce the informational and computational costs of modeling and reasoning.

2.2 Mechanism Design

Formally, a mechanism consists of a social choice function f : V1× . . .×Vn → A,

that chooses an alternative f(v) = a ∈ A from a space of alternatives A, and a pay-

ment function p̃ : V1×. . .×Vn → Rn that defines a payment p̃i(v) by each agent. Here,

vi ∈ Vi is the valuation of agent i, where vi(a) ∈ R is the value of agent i for alternative

a. Also, denote v = (v1, . . . , vn) ∈ V and v−i = (v1, . . . , vi−1, vi+1, . . . , vn). The valu-

ation of an agent is private information, although we assume the valuation space Vi
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of each agent is common knowledge. Define Ei(a) = {d ∈ A|vi(a) = vi(d),∀vi ∈ Vi}1,

and let Rf (v−i) denote the range of possible alternatives given social choice function

f and reports v−i from all but one agent.

The mechanism described above is a direct-revelation mechanism, where the only

actions available to agents are to make claims about their preferences to the mech-

anism, i.e., reporting their valuation functions. By the revelation principle [26],

any mechanism can be transformed into an equivalent incentive-compatible direct-

revelation mechanism, which implements the same social choice function.

Let v′i denote the reported valuation of agent i. The utility function of an agent

defined in the previous section can now be written in terms of the reported valuations

instead of strategy profiles: ui(v
′
i, v−i, vi), or in terms of the outcome implemented by

the social choice function f given reported valuations: ui(f(v′i, v−i), vi).

A strategyproof or truthful mechanism is a mechanism for which reporting true

valuations constitutes a dominant strategy equilibrium.

Definition 5. A mechanism M is strategyproof (truthful) if for all agents i with

valuation function vi and for every v−i ∈ V−i:

ui(f(vi, v−i), vi) ≥ ui(f(v′i, v−i), vi) ∀v′i ∈ Vi, v
′
i 6= vi, ∀v−i

For quasi-linear utility functions, this can be written as: vi(a)− p̃i(vi, v−i) ≥ vi(b)−

p̃i(v
′
i, v−i) where a = f(vi, v−i) and b = f(v′i, v−i), for all types v′i ∈ Vi, i.e., no agent

can do better by misreporting her valuation function, no matter what the other agents

report.

1For instance, in a resource allocation setting with no allocative-externalities the set of equivalent
alternatives Ei(a) would be all allocations that give agent i the same bundle of goods.
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Well-known examples of strategyproof mechanisms include the family of Vickrey-

Clarke-Groves(VCG) mechanisms [34].

Let V (n) = maxa∈A

∑
i vi(a) and V (N−i) = maxa∈A

∑
j 6=i vj(a). In a VCG mech-

anism, each agent i has to pay the amount of loss in total surplus of all other agents

caused by agent i.

Definition 6. The Vickrey-Clarke-Groves (VCG) mechanism defines the social choice

function fi(v) = arg maxa∈A

∑
i vi(a), and payment rule p̃i(v) = vi(f(vi, v−i)) −[

V (N)− V (N−i)
]
.

The second-price single-item auction is an example of a VCG mechanism. In a sec-

ond price auction, the price that the winner has to pay is independent of the winner’s

bid. Other examples of strategyproof mechanisms include: the greedy mechanism

for single minded agents due to Lehmann et al. [44], mechanisms for one-parameter

agents [5], and truthful and competitive auctions for digital goods [23].

First-price sealed-bid auctions are not strategyproof, as the agent with the highest

valuation can improve his utility by bidding ε higher than the second highest agent,

which is typically lower than her true valuation.

2.2.1 Necessary and Sufficient Conditions for Strategyproof-

ness

In this section I present necessary and sufficient conditions for strategyproofness

that are used to derive verification algorithms in Chapter 4.
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Necessary: Weak Monotonicity

Extending the work of Roberts [64], Lavi et al. [42] and Bikhchandani et al. [11]

define weak monotonicity (W-MON) and use it to characterize the set of social choice

functions that can be implemented as strategyproof mechanisms.

Definition 7. A social choice function f satisfies W-MON if ∀ v ∈ V, i, and vi ∈ Vi:

f(v) = a and f(v′i, v−i) = b⇒ v′i(b)− vi(b) ≥ v′i(a)− vi(a)

It is easy to show that W-MON is a necessary condition for strategyproofness.

Lemma 1. If (f, p̃) is a strategyproof mechanism, then f satisfies W-MON.

Proof. Suppose vi, v
′
i ∈ Vi, and let a = f(vi, v−i) and b = f(v′i, v−i). Since (f, p̃) is

strategyproof,

vi(a)− p̃i(vi, v−i) ≥ vi(b)− p̃i(v
′
i, v−i)

and

v′i(b)− p̃i(v
′
i, v−i) ≥ v′i(a)− p̃i(vi, v−i).

Combining the two inequalities,

v′i(b)− v′i(a) ≥ p̃i(v
′
i, v−i)− p̃i(vi, v−i)

≥ vi(b)− vi(a),

i.e.,

v′i(b)− vi(b) ≥ v′i(a)− vi(a).

Saks and Yu [65] showed that W-MON is also sufficient for convex domains.
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Necessary and Sufficient: Price-based characterization

The key observation that I use for verifying the truthfulness (or strategyproofness)

of mechanisms is that they must be price-based (see, for instance, the work of Bartal

et al. [9] or Yokoo [74]). Note that the price-based characterization is a condition on

both allocation and payments, whereas W-MON is a condition on allocation only.

Theorem 1. A mechanism M =< f, p̃ > is strategyproof if and only if for every

agent i and every v−i:

(A1) the mechanism charges an agent-independent price

pi(a, v−i) whenever alternative a is selected

(A2) for any report vi, any v−i, the mechanism chooses an alternative a ∈ Rf (v−i)

that maximizes vi(a)− pi(a, v−i).

Here is some intuition for the sufficiency of (A1) and (A2) for strategyproofness:

an agent cannot change the price that it faces (A1), and the mechanism maximizes

its utility with respect to its reported valuation given these prices (A2). A simple

argument can also be constructed for the necessary direction.

If an agent can affect the price she pays given a fixed alternative, she may have

incentives to report untruthfully to reduce the price. Similarly, if (A2) is not satisfied,

an agent may want to report untruthfully to have the mechanism choose a more

desirable alternative.

Hence, if the mechanism is strategyproof, pi(a, v−i) must be constant across dif-

ferent runs of the mechanism for each (a, v−i) pair. Although this characterization is
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equivalent to strategyproofness, (A1) and (A2) are not directly verifiable. I can use

this price-based characterization to derive constraints on the price space.



Chapter 3

Related Work

In this section, I discuss work related to open mechanism design and economics-

inspired methods for resource allocation. Work that specifically relates to verification

is presented in Chapter 4 (Section 4.1).

3.1 Market-based Control: Applying Market-based

Approaches to Resource Allocation and Schedul-

ing

Market-based control is a paradigm for controlling complex systems using certain

features found in markets [17].

A number of existing systems employ market-based approaches to allocate com-

putational resources [2, 7, 15, 16, 54, 71]. These systems assume that resource prices

are determined through bidding in a single mechanism or in multiple identical mecha-

20
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nisms. For instance, Popcorn [54] and Spawn [71] use auctions for resource allocation.

For instance, in Spawn [71], the resource owners each run a sealed-bid second price

auction. Popcorn [54] requires buyer agents to split its work into “computelets” and

considers the second-price auction and continuous double auction. Gomoluch and

Schroeder [29] compare auctions with conventional round-robin approaches.

Another class of market-based control leverages equilibrium theory. The Market-

oriented programming paradigm [73], proposed by Wellman, leverages the general

equilibrium theory from microeconomics [47]. Prices are determined through a

tâtonnement [72] process. Kuwabara et al. [39] propose a price-equilibrium approach,

where the resource prices are computed by the sellers based on demand.

However, none of these systems consider dynamic manipulations, none provide

the bid expressiveness that is supported in the framework of Chapter 5, and none

embrace the need for open, flexible and decentralized control in computational grids

and cloud computing systems.

Most applications of market-based control have focused on allocating computa-

tional resources, but the paradigm has been applied to other complex decision sys-

tems, e.g., for factory scheduling [8], distributed climate control [18], and distributing

air pollution rights [46].

3.2 Online/Dynamic Mechanism Design

Online or dynamic mechanism design is an extension of mechanism design for

settings in which agents arrive and depart over time, and decisions must be made

dynamically without full knowledge of future arrivals or departures. This is an at-
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tractive model for open environments because it is unlikely that the set of participants

in a mechanism will be fixed for a long period.

Several recent papers have focused on dynamic auctions [57]. Some of these pa-

pers [12, 37] assume that agents arrive in a predetermined order, and an agent’s

only private information is her value. In these single-parameter domains, design-

ing truthful auctions is easier. Others [6, 32, 43, 62] present online auctions that

are strategyproof against misreports of arrival or departure time using monotoni-

cally nondecreasing prices over time, which is also the case for the auction framework

presented in Chapter 5.

Porter [62] presents a truthful online mechanism for jobs of different lengths,

where an agent must be granted the resource for a total duration equal to its job

length. Hajiaghayi et al. [32] consider a setting where users bid for access to a

reusable resource such as processor time or wireless network access, and present a

characterization for the class of truthful online allocation rules.

The model from Chapter 5 can be seen as an extension of the work of Hajiaghayi

et al. [32] that allows for general value schedules and additional parameters (e.g., job

description and reliability metric) and supports strategyproofness via a minimal set

of rules, i.e., is appropriate for an open environment.
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3.3 Distributed Mechanism Design/ Open Mech-

anism Design

Work in distributed mechanism design and open mechanism design share my mo-

tivation for a open and dynamic environment. Distributed Algorithmic Mechanism

Design (DAMD) [22] considers distributed resource allocation problems where a mech-

anism involves distributed computation carried out over a network, focusing on the

network complexity, i.e., the computational and communication efficiency, of the dis-

tributed algorithm.

Shneidman’s work on faithfulness [66, 67] presents a framework for proving spec-

ification faithfulness, whether a rational node implementing a piece of a distributed

mechanism would want to deviate from a specification. Faithfulness focuses on prov-

ing properties of a single specification of a mechanism programmed into distributed

pieces, while my framework guarantees properties when multiple specifications are

present.

Mu’alem’s work on testing truthfulness [49] shares my motivation for designing

algorithms for verifying properties of mechanisms. She discusses a technique for

constructing a generic (almost) truthful mechanism. She presents an algorithm for

testing truthfulness for a restrictive case of zero-one valuations where an agent has a

valuation of 1 for a specific allocation and zero value for all other allocations, drawing

upon the algorithm for testing Boolean monotonicity by Goldreich et al. [28].
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Passive Verification of the

Strategyproofness of Mechanisms

in Open Environments

Abstract

Consider an open infrastructure in which anyone can deploy mechanisms to sup-

port automated decision making and coordination amongst self-interested computa-

tional agents. Strategyproofness is a central property in the design of such mecha-

nisms, allowing participants to maximize their individual benefit by reporting truthful

private information about preferences and capabilities and without modeling or rea-

soning about the behavior of other agents. But, why should participants trust that

a mechanism is strategyproof? I address this problem, proposing and describing a

passive verifier, able to monitor the inputs and outputs of mechanisms and verify

24
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the strategyproofness, or not, of a mechanism. Useful guarantees are available to

participants before the behavior of the mechanism is completely known, and met-

rics are introduced to provide a measure of partial verification. Experimental results

demonstrate the effectiveness of my method.
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A new issue arises for mechanism design in open settings. Why should partici-

pants trust that a mechanism has the strategyproof property that it claims? I address

this problem, proposing and describing a passive verifier, able to monitor the inputs

and outputs of mechanisms and verify the strategyproofness, or not, of a mechanism.

Thus, my focus in this chapter is not on the design of new mechanisms but on the

verification of strategyproofness. Indeed, without verification careful design is worth-

less: it is only when a mechanism is both strategyproof and known to be strategyproof

that participants gain the benefits of simple strategies and mechanisms behave as

designed. Thus, verification is in the interest of both designers and participants.

My passive verifier exploits a price-based characterization of truthful mechanisms

and is inspired by the work of Gui et al. [31] on graph-theoretic characterizations

of truthful mechanisms. I formulate the verification problem as one of checking for

feasible solutions to a constraint satisfaction problem defined on a graph representing

the rules of a mechanism. Verifiers are situated in the computational infrastructure

and act as intermediaries between participants and a mechanism. A verifier has the

power to veto the outcome of a mechanism when the mechanism is proved to violate

strategyproofness.

I identify techniques to both accelerate the process of verification as well as reduce

the space complexity of verification. The idea is to place (weak) restrictions on the

space of allowable mechanisms in order to simplify the task of verification. I provide

three illustrations of this idea. First, I introduce the notion of summarization, which

requires that a mechanism place restrictions on the complexity of its pricing rule, in

identifying some subset w < n of n participants, that define the price faced by each
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Figure 4.1: A light-weight verifier observes the inputs and outputs of mechanisms,
and intervenes if violations to strategyproofness are found (v = valuation profile,
(f, p) = (social choice function, payment rule), (a, p) = (allocation, payments)).
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agent. Summarization provides an exponential reduction in the space complexity of

verification, from O(mdn−1) to O(mdw), in domains with m alternatives and with d

possible agent valuations. Second, when a mechanism is required to satisfy a stan-

dard property on payments, that I term natural payments, I can leverage constraint

propagation to further accelerate verification. Third, when a mechanism is required

to satisfy a property of envy-freeness, reasonable for simple domains, additional ac-

celeration is achieved.

The biggest challenge is to provide useful feedback to participants before the

complete input space for a mechanism has been observed. Here, I identify a property

that allows the verifier to guarantee that an agent’s best strategy is truthful report-

ing (conditioned on the mechanism passing the verifier) even though only a subset

of possible inputs has been observed. I identify a weaker condition that ensures that

truthful reporting maximizes the worst-case utility of a participant against an adver-

sarial (but ultimately non-strategyproof) mechanism in early stages of verification. I

also provide two metrics, namely probability-of-strategyproofness and price-flexibility,

to measure the degree of strategyproofness that is ensured for a mechanism that is

still not completely verified. These metrics facilitate an empirical study in which I

demonstrate the speed of verification (or failure of verification when using a weaker,

baseline method) on various mechanisms, both strategyproof and non-strategyproof.

4.1 Related Work: Verification

Plenty of prior work has leveraged the methods of cryptography and secure func-

tion evaluation [56, 51] to achieve absolute trust (i.e. the rules of a mechanism are
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published and correctness is verifiable to any party). When designing an auction

that will be used for a multi-million dollar allocation of government bonds the over-

head of cryptographically-secured proofs is well justified. My motivation comes from

a vision of dynamic, open environments that can support a multitude of frequent,

perhaps even mundane, decisions. For instance, I wish to enable infrastructure that

can support the minute-by-minute allocation of computational services, the buying

and selling of limited-play songs, and services to make dinner reservations, solicit

information about flight prices, and find answers to trivia questions.

Similarly, there is a large literature on the use of logic formalisms to verify the cor-

rectness of mechanisms and other institutions [25, 59, 60]. Here, a logic specification

makes explicit the rules of a mechanism and properties such as strategyproofness can

(in principle) be established through methods such as model checking. Of particular

relevance is the work of Guerin and Pitt [30], who share the same motivation of allow-

ing for the deployment of trusted mechanisms in open environments. Moreover, these

authors discuss the use of “sentinel agents” which can be used to verify the properties

of mechanisms at run time. Here, I am only interested in the verification of strat-

egyproofness and not in the verification of other properties. Second, I deliberately

eschew logic-based formalisms because model checking is intractable for appropri-

ate logics [69], and because logic formalisms are a bad fit for quantitative properties

such as strategyproofness and for the methods of combinatorial optimization that are

important for internal decision making by mechanisms.
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4.2 Problem Definition

The verifiers act as lightweight trusted intermediaries (or “wrappers”) that are

situated as a default interface between published mechanisms and participants. A

verifier receives bids from agents, passes them to the mechanism and then receives

the outcome and payments from the mechanism. At this point the verifier checks

that the mechanism has not violated strategyproofness, and if this is OK it will pass

the outcome on to the agents. Otherwise the verifier can exercise veto power on the

outcome.

A mechanism is treated as a black box, i.e., the verifier can only observe a sequence

of inputs, v1, v2, . . . vk, . . ., where vk denotes the reported valuations of the agents in

the kth run of the mechanism, and a sequence of outputs, < a1, p1 >, < a2, p2 >,

. . ., < ak, pk >, . . . where < ak, pk > denotes the alternative and vector of payments

produced by the mechanism in the kth run.

Definition 8 (passive verification problem). An online decision problem in which

a verifier observes a sequence of inputs and outputs to a mechanism (assumed fixed

and deterministic) and determines whether the mechanism is strategyproof or not

strategyproof.

A useful verifier will also reject a non-strategyproof mechanism quickly and provide

guidance on whether or not a mechanism is likely to be strategyproof even before a

final “reject” or “accept” is generated. I also demonstrate that a verifier can prove

that a mechanism is strategyproof given the private valuation of a bidder, even before

the mechanism has been fully verified.

Here are the main assumptions:
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1. The space of alternatives and the type space are finite.

2. The verifier is trusted, is able to observe all inputs and outputs to a mechanism,

and has veto power on any decision made by the mechanism (e.g. as soon as

some decision, perhaps this decision, provides proof that the mechanism is not

strategyproof).

3. Once the mechanism has decided on an alternative and payments for an in-

stance, it can no longer change that decision in the future.1

4. The mechanism is anonymous, meaning that f(vi, v−i) ∈ Ei(a) for all permuta-

tions of v−i.

The first assumption is needed to ensure that a sound and complete verifier can

operate with bounded memory requirements. The second assumption is essential to

my approach to passive verification. The third assumption ensures that the entire

history of instances is always relevant for validating or invalidating strategyproofness.

The final assumption allows the valuation profile, v−i, of all agents except i to be

treated as an unordered set of n− 1 elements (allowing for repeated elements). This

is helpful computationally, but should be relaxed in settings where anonymity is not

provided (e.g. optimal auctions [50] where prior information about bidder valuations

is used to bias the outcome of a mechanism.) These anonymous semantics for v−i will

be assumed for the rest of the paper.

1For ties, this requires that ties are broken the same way each time. Notice that this does not
rule out some forms of adaptiveness: a mechanism can update its prices via learning on any (a, v−i)
that has not been observed.
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4.3 Simple Checker

In this section I define a set of rules that can be implemented by a passive verifier,

and prove that verification with these rules is sound and complete. A constraint

network formulation is given for the rules, which leads to a concrete algorithmic

instantiation for a verifier.

4.3.1 Rules for Verification

Recall from Chapter 2 that strategyproofness is equivalent to the price-based

characterization.

Theorem 2. A mechanism M =< f, p̃ > is strategyproof if and only if for every

agent i and every v−i:

(A1) the mechanism charges an agent-independent price

pi(a, v−i) whenever alternative a is selected

(A2) for any report vi, any v−i, the mechanism chooses an alternative a ∈ Rf (v−i)

that maximizes vi(a)− pi(a, v−i).

Fix v−i. By condition (A2) from Theorem 2, a strategyproof mechanism must

choose an alternative a ∈ A such that vi(a) − pi(a, v−i) is maximized. Hence, if

f(vi, v−i) = a, then vi(a)− pi(a, v−i) ≥ vi(b)− pi(b, v−i) for all b 6= a ∈ A.

Let Ga ⊆ {vi ∈ Vi|a ∈ Ei(f(vi, v−i))}. Rearranging, I have, pi(a, v−i)−pi(b, v−i) ≤

vi(a)− vi(b) ∀b 6= a for all vi ∈ Ga. Hence, I get the following inequality:

pi(a, v−i)− pi(b, v−i) ≤ inf
vi∈Ga

{vi(a)− vi(b)} (4.1)
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Similarly, considering cases where f(vi, v−i) = b, I get:

pi(b, v−i)− pi(a, v−i) ≤ inf
vi∈Gb

{vi(b)− vi(a)} (4.2)

Combining the two, for each pair < a, b >, I have:

sup
vi∈Gb

{vi(a)− vi(b)} ≤ pi(a, v−i)− pi(b, v−i) (4.3)

≤ inf
vi∈Ga

{vi(a)− vi(b)} (4.4)

This is well known, see for instance Gui et al. [31] and Lavi et al. [42], and suggests

the following simple verification procedure.

Let H denote the history of instances currently available to the verifier. Define the

following: v ∈ vH denotes bids v ∈ V N received so far; vi ∈ vH
i (v−i) denotes the bids

from agent i that have been observed for v−i from the other agents; vi ∈ vH
i (a, v−i)

denote the bids received from agent i with the additional restriction that alternative a

(or an equivalent) was selected; a = fH(v) denotes the alternative selected given input

v (it is sufficient to choose any one of a set of equivalent alternatives); fH(v−i) ⊆ A

denotes the set of alternatives selected for v−i, and pH
i (a, v−i) denotes the payment

made by agent i given alternative a and v−i. For every new instance I first check

whether the exact same value profile has been seen before. If this is the case then the

same alternative must be selected. By case (b), if ak (or equivalent) has been seen

before for vk
−i then by (A1) the payment by i must be the same. Case (c) ensures

that previous agents could not have done better given this new information: if ak is

a new alternative for vk
−i then the price on this alternative must be high enough for

(A2), and thus for inequality (4.3) to hold for bids that have already been observed.

Case (d) ensures that the current agent could not have done better given the current
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SimpleChecker.

Initialize history H to an empty history.

1. For a new instance < vk, ak, pk >, and for each agent i, consider history fH(vk
−i)

and if non-empty:

(a) if vk
i ∈ vH

i (vk
−i) check ak ∈ Ei(f

H(vk)).

(b) if ak ∈ fH(vk
−i) check pk

i = pH
i (ak, vk

−i).

(c) if ak /∈ fH(vk
−i) check the price pk

i is no less than:

sup
b∈fH(vk

−i)

{
pH

i (b, vk
−i) + sup

vi∈vH
i (b,vk

−i)

(vi(a
k)− vi(b))

}
(4.5)

(d) if vk
i /∈ vH

i (vk
−i) check the price pk

i is no greater than:

vk
i (ak) + inf

b∈fH(vk
−i)

{
pH

i (b, vk
−i)− vk

i (b)
}

(4.6)

2. If any check fails, then reject the mechanism, else update history for vk
−i as

necessary (i.e. whenever a new vi and/or new alternative was observed).

3. Once all vi ∈ Vi for all v−i ∈ V−i have been observed, then pass the mechanism.
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history: if vk
i is a new bid for vk

−i then the price on this alternative must be low enough

for (A2), and thus for inequality (4.4) to hold for other alternatives that have been

observed.

Example 2. Consider an auction mechanism for an allocation problem with multiple

identical items. Suppose that the sequence of instances in Table 4.1 are observed (all

with two bidders and two items). Instance 1 indicates that bidder 1 has value 4 for

1 unit and 8 for 2 units. Bidder 2 has value 4 for 1 unit and 9 for 2 units. The

allocation gives both units to bidder 2, and bidder 2 makes payment 8. The auction

implements the VCG mechanism for instances 1–3 but deviates in instance 4 (The

VCG mechanism would choose the same allocation but with payments (0, 9)).

Consider the build-up of history for v−i = (4, 9), and consider allocations in which

bidder i receives 0, 1 or 2 items. Let pi(n) denote the price that agent i faces when it

wins n items. After instance 1, I get pi(0) = 0. After the second instance, the verifier

learns that pi(1) = 5, and checks that the constraints (c) pi(1) ≥ pi(0) − (v1
i (0) −

v1
i (1)) = 4 and (d) pi(1) ≤ pi(0) + v2

i (1) − v2
i (0) = 5 are satisfied. After instance

3, agent i wins one item and pays the price of 5, so the verifier checks that (b)

p3
i (1) = pi(1) = 5 holds. After instance 4, the verifier learns pi(2) = 10, and checks

that (c) pi(2) ≥ max{pi(0)−(v1
i (0)−v1

i (2)), pi(1)−(v2
i (1)−v2

i (2))} = 9. However, the

verifier also checks for the constraint (d) pi(2) ≤ pi(1) + v4
i (2) − v4

i (1) = 9, which is

violated (the price is too high). Hence, this mechanism is rejected by SimpleChecker

after the fourth instance.

Alternatively, suppose that the fourth instance is changed to v4 =

((7, 9), (4, 9)), a4 = (2, 0), p4 = (8, 0), where the mechanism still deviates from the
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VCG outcome (a4
V CG = (1, 1) and p4

V CG = (5, 2)). This time, after instance 4, the ver-

ifier learns pi(2) = 8, and checks that (c) pi(2) ≥ max{pi(0)− (v1
i (0)− v1

i (2)), pi(1)−

(v2
i (1) − v2

i (2))} = 9. Now this constraint is violated (the price too low), and the

mechanism is rejected after the fourth instance.

instance values allocation payments
1 ((4, 8), (4, 9)) (0, 2) (0, 8)
2 ((4, 9), (5, 9)) (1, 1) (4, 5)
3 ((5, 8), (4, 9) (1, 1) (5, 4)
4 ((4, 9), (5.5, 10)) (0, 2) (0, 10)

Table 4.1: Sequence of Instances: 2 Agents and 2 Identical Items

4.3.2 Establishing Soundness and Correctness

The first task is to establish soundness and correctness of the verifier. I hold these

properties to be necessary for an (exact) verifier, although insufficient to show the

utility of passive verification. Soundness simply proves that SimpleChecker will

detect the failure of strategyproofness eventually, once all inputs are observed. The

main challenge is to provide intermediate feedback, discussion of which is delayed

until Section 4.6.

Theorem 3 (Soundness). The rules as defined by SimpleChecker will detect a

non-strategyproof mechanism even if all agents are not truthful as long as all inputs

are eventually observed.

Proof. A mechanism is not strategyproof if either:
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¬ (A1) there exists some i, v−i and vi, v
′
i ∈ Vi such that f(vi, v−i) = f(v′i, v−i), but

p̃i(vi, v−i) 6= p̃i(v
′
i, v−i), or

¬ (A2) There exists some i, v−i and vi, v
′
i ∈ Vi, vi 6= v′i such that vi(f(vi, v−i)) −

pi(f(vi, v−i), v−i) < vi(f(v′i, v−i))− pi(f(v′i, v−i), v−i).

Suppose toward contradiction that a non-strategyproof mechanism passes the Sim-

pleChecker after all possible reports v ∈ V are observed. First, suppose ¬ (A1).

This is not possible because check (b) of SimpleChecker would catch the price

deviation. Second, suppose ¬ (A2), such that there exists some i, v−i and vi, v
′
i ∈ Vi

such that

vi(f(vi, v−i))− pi(f(vi, v−i), v−i) <

vi(f(v′i, v−i))− pi(f(v′i, v−i), v−i) (4.7)

Let vi = vk
i and v′i = vl

i. If k > l, then when instance k is observed, al ∈ fH(v−i).

By (4.7),

pk
i (a

k, v−i) > pl
i(a

l, v−i) + vk
i (ak)− vk

i (al)

≥ inf
b∈fH(vk

−i)
[pH

i (b, vk
−i) + (vk

i (ak)− vk
i (b))],

and step (d) of SimpleChecker would fail. A contradiction. If l > k, then when

instance l is observed, ak ∈ fH(v−i). By (4.7), I have pl
i(a

l, v−i) <

pk
i (a

k, v−i) + vk
i (ak)− vk

i (al)

≤ pk
i (a

k, v−i) + sup
vi∈vH

i (ak,v−i)

(vi(a
k)− vi(a

l))

≤ sup
b∈fH(v−i)

[pH
i (b, v−i) + sup

vi∈vH
i (b,v−i)

(vi(a
l)− vi(b))],

and step (c) would fail. A contradiction.
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Theorem 4 (Correctness). The rules as defined by SimpleChecker will never halt

a strategyproof mechanism even for agents that are untruthful.

Proof. Suppose toward contradiction that a strategyproof mechanism M is rejected

by SimpleChecker after k instances. Since M satisfies (A1), it will not fail step (b).

So it either fails (c) or fails (d). Suppose it fails (c). Then there exists al ∈ fH(vk
−i),

pk
i (a

k, vk
−i) < pl

i(a
l, vk

−i) + (vl
i(a

k)− vl
i(a

l)) for some l < k. Then vl
i(a

k)− pk
i (a

k, vk
−i) >

vl
i(a

l)− pl
i(a

l, vk
−i), violating (A2) and a contradiction. Now, suppose the mechanism

fails (d). Then there exists al ∈ fH(vk
−i), pk

i (a
k, vk

−i) > pl
i(a

l, vk
−i) + (vk

i (ak) − vk
i (al))

for some l < k. Then vl
i(a

k) − pk
i (a

k, vk
−i) < vl

i(a
l) − pl

i(a
l, vk

−i), violating (A2) and a

contradiction.

4.4 Network Checker

An algorithm for SimpleChecker can be identified by reformulating the task as

that of checking for a feasible solution to a constraint network.

I gain two main advantages from formulating the problem in terms of constraint

networks. First, I can leverage standard data structures (e.g. linked-lists) and stan-

dard algorithms (e.g. all-pairs shortest path algorithms) to construct a passive ver-

ifier. Second, I can gain additional accelerations by introducing constraints between

networks to capture additional problem structure (see Section 4.5.2).

For each v−i, I construct a constraint network in which each node in the network

is associated with an alternative and arcs in the network impose constraints on the

difference in prices between pairs of alternatives. Each network contains a single node

for each set of equivalent alternatives; e.g. one node for all allocations in which agent
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i receives bundle of goods S, irrespective of the allocation to other agents. In addition

to binary constraints, each node is also annotated with an exact price, once known.2

Recall that every strategyproof mechanism must satisfy inequalities (4.3)

and (4.4). In order to capture this requirement for some pair of alternatives < a, b >

given current history H, a directed arc b → a is labeled with a weight w(b, a)

representing the linear inequality pi(a, v−i) − pi(b, v−i) ≤ w(b, a), with w(b, a) =

infvi∈vH
i (a,v−i) {vi(a)− vi(b)}. Similarly, a directed arc a → b is created and labeled

with weight w(a, b). In addition, each node that represents an observed alternative

can be annotated with the price.

As described, my constraint network is of the same form as a Simple Temporal

Problem (STPs)(Dechter et al. [21]). Prices take the role of time and the weights

on arcs are now bounds on the difference between prices. The existence of prices

that form a feasible solution to this network is equivalent to the nonexistence of

negative-length cycles in the constraint network.

Theorem 5. [21] A given STP T is consistent if and only if it has no negative-length

cycles.

Thus, I can check for the existence of prices satisfying all constraints by checking

for the existence of negative-length cycles using an all-pairs-shortest-path algorithm.

I also refer to this process as tightening the network.

Let N denote the current set of networks (one for each v−i that has been ob-

2Compared with the directed graph formalism introduced in Gui et al. [31] for reasoning about
strategyproof mechanisms, the constraint network of a passive verifier is typically incomplete (only
containing a subset of alternatives) and associates fixed prices with alternatives that have been
observed. These prices imply constraints on future prices. In comparison, Gui et al. use the
constraint network to reason (in analysis) about whether any assignment of prices is possible.
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served). New networks are introduced dynamically (for new v−i sets) and a new node

is introduced on a network when an additional alternative is observed.

Algorithm NetworkChecker implements the sound and correct rules defined

in SimpleChecker. If a set of feasible prices exist, by step (c) and step (e) of

NetworkChecker, pa
i − pk

i ≤ w(ak, a) = infvi∈vH
i (a,v−i)(vi(a)− vi(a

k)) or pk
i − pa

i ≥

supvi∈vH
i (a,v−i)

(vi(a
k) − vi(a)) for all existing nodes a. Rewriting, I get pk

i ≥ pa
i +

supvi∈vH
i (a,v−i)

(vi(a
k) − vi(a)) ∀a ∈ H(vk

−i), which is precisely the condition that is

checked in step (c) of the SimpleChecker. Now consider step (d), in combination

with step (e), of NetworkChecker: if an arc from node a to node ak already

exists, and the arc has weight w < vk
i (ak) − vk

i (a), then I know that pak

i − pa
i ≤ w

even before observing instance k, and no constraints are updated. Otherwise, I have a

new (or tighter) constraint on the set of feasible prices, namely, pk
i − pa

i ≤ w(a, ak) =

vk
i (ak) − vk

i (a) for all a such that w(a, ak) is updated after observing instance k.

pk
i ≤ pa

i + (vk
i (ak)− vk

i (a)) for all a such that w(a, ak) is updated. Combining the two

cases, I get pk
i ≤ vk

( a
k) + infa∈fH(vk

−i)
[pa

i − vk
i (a)], which is the condition checked in

step (d) of the SimpleChecker.

Example 3. I can revisit the example in Table 4.1. Figure 4.2 illustrates the con-

straint network for v−i = (4, 9). After instance 4, the arc from node < 1, 5 > to node

< 2, 10 > has weight 4, the arc from node < 2, 10 > to node < 1, 5 > has weight -4,

the arc from node < 0, 0 > to node < 2, 10 > has weight 10, and the arc from node

< 2, 10 > to node < 0, 0 > has weight -8. Given these weights, I see that the prices

p(0) = 0, p(1) = 5, and p(2) = 10 are inconsistent, since p(1)− p(2) = −5 < −4.
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NetworkChecker.

Initialize N = ∅.

1. For a new instance < vk, ak, pk >, and for each agent i, if there is a constraint

graph G ∈ N for vk
−i then work with this graph. Otherwise, create an empty

graph G and add to set N . Then:

(a) if vk
i ∈ vH

i (vk
−i) then check ak ∈ Ei(f

H(vk)).

(b) if node ak (or equivalent3) exists in graph G then check pk
i equals price on

node.

(c) Otherwise, add node ak and assign price pk
i to the node, and for every

other node a in the graph:

add a new arc from the new node ak to a with weight w =

infvi∈vH
i (a,v−i)(vi(a)− vi(a

k))

(d) add a new arc from every other node a to the new node ak with weight

vk
i (ak)− vk

i (a) if no arc exists. If one already exists, and vk
i (ak)− vk

i (a) is

less than the current weight then update the weight to be vk
i (ak)− vk

i (a).

(e) tighten the network and check for feasibility.

2. If any check fails, then reject the mechanism, else update the history as neces-

sary.

3. Once all vi ∈ Vi for all v−i ∈ V−i have been observed then pass the mechanism.
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(a) After instance 2 (b) After instance 4

Figure 4.2: Constraint network for Multiple Identical Items with Two Bidders and
Two items.

4.5 Accelerated Verification via Structural Re-

quirements

The biggest potential shortcoming of this approach to verification is that the space

complexity quickly becomes untenable: there are dn−1 subnetworks, for a type space

of size d and n agents, and thus the space complexity is exponential in the number

of agents.

In order to address this problem I propose that the passive verifier impose struc-

tural requirements. I consider three kinds of structural requirements: (a) summa-

rization, (b) natural payments, (c) envy-freeness. These are illustrative of a more

general approach which is to restrict the space of implementable mechanisms in order

to allow for efficient verification. More than just reducing the space requirements for

verification, these structural requirements also accelerate verification by allowing for
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stronger inference and more rapid proofs of non-strategyproofness.

A strategyproof mechanism may wish to volunteer structural requirements in or-

der to facilitate faster verification. But, given that the concern in verification is to

identify the “bad apples” then it is, in general, more appropriate for the verifier to

require certain additional properties, especially properties that appear to hold for

many plausible mechanisms. I will comment on the restrictiveness of each property

as it is introduced.

4.5.1 Summarization

Summarization provides an exponential reduction in memory and computational

requirements on the verifier and also significantly accelerates the process of verifica-

tion.

Definition 9 (valid summarization function). Given reports v−i, a summarization

function s selects a subset s(v−i) of reports, and is valid when pi(a, v−i) = p′i(a, s(v−i))

for all a, all v−i, for some price function p′i.

Example 4. In a single-item Vickrey auction the price that an agent faces is deter-

mined by the highest bid among bids from other agents and s(v−i) = {maxj 6=i{vj}}

is a valid summarization function. In this case, the induced price rule p′i(i wins

item, s(v−i)) = x given s(v−i) = x and p′i(i does not win item, s(v−i)) = 0.

Example 5. Consider a combinatorial auction with single-minded bidders. A bidder

is single-minded if there exists a set g of goods and value b such that v(g′) = b if g ⊆ g′,

and v(g′) = 0 otherwise. The LOS mechanism[44] consists of the greedy allocation
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rule and the greedy payment rule. The greedy allocation rule works as follows: bids are

sorted in decreasing order according to the average amount4 of a bid vj =< gj, bj >,

defined as
bj

|gj | , where |gj| is the number of goods in the desired set gj of agent j, and bj

is her value for gj. Then given this sorted list L, each bid is examined in order and is

granted if and only if it does not conflict with any of the bids previously granted. For

each vj ∈ L, define the set Dj = {i|i > j, gi ∩ gj 6= ∅,∀l < i, l 6= j, l′th bid granted⇒

gl ∩ gi = ∅}. Note that i > j ⇔ bi

|gi| ≤
bj

|gj | . Dj is the set of indices of the bids that

are denied, but would have been granted if it were not for the presence of vj. Under

the greedy payment rule, if agent j’s bid is granted and Dj 6= ∅, j pays |gj| bi

|gi| where

i = min Dj. In other words, j pays the average amount of the first bidder whose bid

was denied due to j, per good won. Otherwise, j pays 0. In the LOS mechanism, the

summarization function s(v−i) = {vj| ∀k < j, k 6= i, gk ∩ gj = ∅}. If VCG payments

are used instead, the set s(v−i) is given by first sorting the set v−i according to the

norm used in the LOS allocation rule and then removing each bid whose set of desired

items is a superset of the set of desired items of any bid that appears before it in the

ordered list.

Summarization information can be defined by a mechanism incrementally, by iden-

tifying a subset of values v−i that define the prices to agent i for each instance. In this

case, this is done by extending the interface between the verifier and the mechanism.

Summarization functions can also be defined statically by instantiating an explicit

function. As long as the summarization function is constant, then passive verification

remains sound and correct.

4The average amount can be replaced with any norm that satisfied bid-monotonicity, i.e., is
nondecreasing in bi and norm(< g, b >) ≥ norm(< g′, b >) ∀g ⊆ g′.
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Theorem 6. A passive verifier that implements rules SimpleChecker will con-

tinue to detect a non-strategyproof mechanism and continue to pass any strategyproof

mechanism when used in combination with a fixed summarization function.

Proof. Correctness is immediate. To show soundness, suppose a mechanism is demon-

strated to be non-strategyproof without summarization after k instances. I argue that

the mechanism will still be demonstrated to be non-strategyproof with summariza-

tion. First, note that the use of summarization function does not affect step (a) of

SimpleChecker. I now have the following 3 cases:

1. Check fails in (b) of SimpleChecker: ak ∈ fH(vk
−i) and pk

i (a
k, vk

−i) 6=

pl
i(a

k, vk−i) = pH
i (ak, vk

−i) for some l < k. By definition of the summariza-

tion function, pk
i (a

k, vk
−i) = pk

i (a
k, s(vk

−i) and pl
i(a

k, vk−i) = pl
i(a

k, s(vk−i)). It

follows that pk
i (a

k, s(vk
−i) 6= pl

i(a
k, s(vk

−i).

2. Check fails in (c) of SimpleChecker: there exists al ∈ fH(vk
−i), pk

i (a
k, vk

−i) <

pl
i(a

l, vk
−i) + (vl

i(a
k) − vl

i(a
l)) for some l < k. Since pk

i (a
l, vk

−i) = pk
i (a

l, s(vk
−i))

and pl
i(a

l, vk
−i) = pk

i (a
l, s(vk

−i)), pk
i (a

k, s(vk
−i)) < pl

i(a
l, s(vk

−i)) + (vl
i(a

k)− vl
i(a

l)).

3. Check fails in (d) of SimpleChecker: there exists al ∈ fH(vk
−i), pk

i (a
k, vk

−i) >

pl
i(a

l, vk
−i) + (vk

i (ak)−vk
i (al)) for some l < k. Then pk

i (a
k, s(vk

−i)) > pl
i(a

l, s(vk
−i))

+ (vk
i (ak)− vk

i (al)).

Hence, if the mechanism fails the check in one of the 3 steps above without summa-

rization, then it will fail the check in the same step with summarization.

The following example shows that summarization can facilitate faster identifica-

tion of a non-strategyproof mechanism.
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Example 6. Consider an auction for multiple identical items, and suppose three

instances are observed for the case of three bidders and two items. The auction

instance values allocation payments
1 ((4, 8), (4, 9), (3, 6)) (0, 2, 0) (0, 8, 0)
2 ((0, 8), (4, 9), (5, 9)) (0, 1, 1) (0, 3, 5)
3 ((4, 9), (2, 8), (6, 10)) (0, 0, 2) (0, 0, 10)

Table 4.2: Sequence of Instances: 3 Agents and 2 Identical Items

implements a VCG mechanism for the first two instances but deviates in instance 3.

Now, consider the summarization function s(v−i) = {vj|∀j 6= i, j wins at least 1 item

in the allocation without agent i}. Note that s(v1
−1) = s(v3

−1) = s(v2
−3) = s(v3

−3) =

{(4, 9)}. Consider the constraints when s(v−i) = {(4, 9)}. Following the notation

from Example 1, after instance 1, I get pi(0) = 0. After the second instance, the

verifier learns that pi(1) = 5, and checks that the constraints (c) pi(1) ≥ pi(0) −

(v1
i (0) − v1

i (1)) = 4 and (d) pi(1) ≤ pi(0) + v2
i (1) − v2

i (0) = 5 are satisfied. After

instance 3, agent i wins one item and pays the price of 5, so the verifier checks that

(b) p3
i (1) = pi(1) = 5 holds. After instance 3, the verifier also learns pi(2) = 10,

and checks that (c) pi(2) ≥ max{pi(0)− (v1
i (0)− v1

i (2)), pi(1)− (v2
i (1)− v2

i (2))} = 9.

However, the verifier also checks for the constraint (d) pi(2) ≤ pi(1)+v3
i (2)−v3

i (1) =

9, which is violated (the price is too high). Hence, this mechanism is rejected.

Without summarization none of the v−i subnetworks have more than one node

and the mechanism would not have been rejected until more instances were seen.

Summarization also provides an exponential improvement in space complexity.

Let d = maxi|Vi|, m = |A| and let n denote the maximal number of agents. With-
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out summarization, I need dn−1 subnetworks, each with at most m nodes and thus

O(mdn−1) nodes.

Theorem 7. With summarization there are O(mdw) nodes across all subnetworks,

where w is the maximal number of agents required in a summarization, i.e. w =

maxi,vi
|s(v−i)|.

Proof. Proof trivial and omitted.

Thus, the space complexity is exponential in the worst-case number of agents

required for summarization instead of the worst-case number of agents.

Example 7. Consider the single item Vickrey auction with 4 agents, where |Vi| =

10. In this case, only the highest bid among bids of other agents matters. Without

summarization, I would need to keep 1000 subnetworks, while with summarization, I

only need to keep 10 subnetworks.

4.5.2 Natural Payment Functions

So far I have focused on the constraints within a single v−i subnetwork. The

additional structure provided by natural payments, allows internetwork constraints

which improve the speed with which a mechanism can be validated as strategyproof,

or proved not to be strategyproof.

Consider again inequalities (4.3) and (4.4). Following Lavi et al. [42], define

δab(v−i) = inf{vi(a)− vi(b)|vi ∈ Vi, a ∈ Ei(f(vi, v−i))}. Then, I have:

−δba(v−i) ≤ pi(a, v−i)− pi(b, v−i) ≤ δab(v−i) (4.8)
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Definition 10 (Natural payment functions). A mechanism has a natural payment

function if the agent-independent price function satisfies

pi(a, v−i)− pi(b, v−i) = δab(v−i) = −δba(v−i), (4.9)

for all pairs < a, b >.

The natural payment function is often satisfied by known mechanisms, for in-

stance, it is typically satisfied by the VCG mechanism (this depends on the value

domain) and the LOS mechanism. Natural payments permit the introduction of

internetwork constraints, as demonstrated by the following lemma.

Lemma 2. Consider a strategyproof mechanism with natural payment functions.

Suppose for an alternative a, v−i and v′−i are such that ∀j 6= i, either v′j = vj

or v′j(a) − v′j(b) > vj(a) − vj(b) for all b 6= a. Then pi(a, v′−i) − pi(b, v
′
−i) ≤

pi(a, v−i)− pi(b, v−i), for all b 6= a.

I introduce the following lemma to aid the proof of Lemma 2.

Lemma 3. Consider a truthful social choice function f and some valuations v for

which f(v) = a. Suppose v′ is such that for each j, either v′j = vj or v′j(a)− v′j(b) >

vj(a)− vj(b) ∀b 6= a. Then f(v′) = a.

Proof. [of Lemma 3] The proof follows from W-MON [42], which is a necessary con-

dition for truthfulness.

Definition 11. A social choice function f satisfies W-MON if ∀ v ∈ V, i, and vi ∈ Vi:

f(v) = a and f(v′i, v−i) = b⇒ v′i(b)− vi(b) ≥ v′i(a)− vi(a).
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Without loss of generality, suppose the first k agents are such that v′j = vj and

the rest of the agents are such that v′j(a) − v′j(b) > vj(a) − vj(b) ∀b 6= a. By W-

MON, f(v′1, . . . , v
′
k, v

′
k+1, vk+2, . . . , vN) = f(v1, . . . , vk, v

′
k+1, vk+2, . . . , vn) = a. Now,

applying W-MON again with agent k + 2, f(v′1, . . . , v
′
k, v′k+1, v′k+2, vk+3 . . ., vn) = a.

I can repeatedly apply W-MON up to agent n to get f(v1, v
′
2, . . . , v

′
n) = a.

Now, I prove Lemma 2.

of Lemma 2. First, note that for any vi such that f(vi, v−i) = a, f(vi, v
′
−i) = a by

Lemma 3. Consider v̄i such that for a fixed b ∈ A, b 6= a,

v̄i = argvi
inf{vi(a)− vi(b)|f(vi, v−i) = a}.

Then v̄i(a) − v̄i(b) = δab(v−i). Now, since f(v̄i, v
′
−i) = a, δab(v−i) ∈ {vi(a) −

vi(b)|f(vi, v
′
−i) = a}. So, δab(v−i) ≥ inf{vi(a) − vi(b)|f(vi, v

′
−i) = a} = δab(v

′
−i).

Hence, δab(v
′
−i) ≤ δab(v−i). Since δab(v−i) = pi(a, v−i) − pi(b, v−i) (by natural pay-

ments), it follows that pi(a, v′−i)− pi(b, v
′
−i) ≤ pi(a, v−i)− pi(b, v−i).

Thus, given a constraint in the subnetwork for v−i and some alternate reports

v′−i by all agents except one that satisfies the condition of Lemma 2, then I can add

a corresponding constraint to the subnetwork for v′−i, or vice versa. The additional

constraint provides the following kind of inference: given pi(a, v−i) ∈ [c, d] for some

constants c and d, then pi(a, v′−i) ≤ d. To illustrate the condition of Lemma 2,

consider the case of single-minded bidders. Here, the condition is satisfied if each

agent j 6= i bids for the same bundle in v′−i as in v−i, and all agents j 6= i who win

in v−i submit the same or larger value in v′ while losing agents do not increase their

bid in v′.
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Example 8. Consider a strategyproof mechanism with 2 agents and two items s and

t, and suppose a = {agent 1 wins s, agent 2 wins t }. If v′2 is such that agent 2 values

alternative a higher relative to all other alternatives, then if the alternative is a for

both v and v′, agent 1 must not pay a higher price under v′.

I can implement the internetwork constraints as follows. First, define the indicator

function:

I(a, v−i, v
′
−i) =


1, if vj = v′j or

v′j(a)− v′j(b) > vj(a)− vj(b) ∀b 6= a;

0, otherwise.

Then, for each alternative a and valuations vi, v−i such that I(a, v−i, v
′
−i) = 1, I add

the following constraints: pi(a, v′−i)− pi(b, v
′
−i) ≤ maxpi∈Fi(v−i) [pi(a, v−i)− pi(b, v−i)]

to subnetwork v′−i and pi(a, v−i) − pi(b, v−i) ≥ minpi∈Fi(v′−i)
[pi(a, v′−i) − pi(b, v

′
−i)] to

subnetwork v−i, where Fi(v−i) denotes the space of feasible prices defined by the

constraint network. Note that maxpi∈Fi(v−i) [pi(a, v−i) − pi(b, v−i)] = wv−i(b, a) and

minpi∈Fi(v′−i)
[pi(a, v′−i)−pi(b, v

′
−i)] = −wv′−i(a, b), where w(v−i)(a, b) denotes the weight

on the arc from a to b in subnetwork v−i.

4.5.3 Envy-freeness

The third example to illustrate the power of structural requirements is the prop-

erty of envy-freeness [27].

Let fi(v) denote the allocation of goods to agent i defined by social choice function

f .
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Modified NetworkChecker.

Add a new step (d1) between steps (d) and (e):

(d1) For each v−i such that G(v−i) ∈ N and ak ∈ fH(v′−i):

– if I(ak, vk
−i, v−i) = 1, then

∗ In G(vk
−i): update the weight on the arc from ak to each a ∈ fH(vk

−i)∩

fH(v−i) to be

min{wvk
−i(ak, a), wv−i(ak, a)}.

∗ In G(v−i): update the weight on the arc from a ∈ fH(vk
−i) ∩ fH(v−i)

to ak to be

min{wvk
−i(a, ak), wv−i(a, ak)}.

– If I(ak, v−i, v
k
−i) = 1, then reverse the role of vk

−i and v−i, and repeat

previous step.
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Definition 12. Mechanism M =< f, p̃ > is envy-free if vi(fi(v))−p̃i(v) ≥ vi(fj(v))−

p̃j(v),∀i,∀j,∀v ∈ V .

This property is easily verified by checking that there is no agent that prefers an

outcome-price pair that was received by another agent. Thus, this can be checked by

adding an additional set of internetwork constraints.

Many strategyproof mechanisms are also envy-free. For example, VCG mech-

anisms in domains with superadditive valuations satisfy the property of envy-

freeness [55]. As another example, it is easy to show that envy-freeness holds for

any strategyproof mechanism in the domain of single-minded combinatorial auctions

that is fair, which requires that for any set w and any two agents i and j such that

the bids are bi = (w, vi) and bj = (w, vj) where vi > vj, then agent j should not win.

The LOS family of mechanisms satisfy fairness and therefore all LOS mechanisms are

envy-free.

4.6 Providing Intermediate Feedback to Partici-

pants

I describe in this section some intermediate feedback that can be provided to

participants to guide their behavior even before a mechanism’s strategyproofness (or

lack thereof) is completely established. This is the main technical achievement of my

work.
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4.6.1 Partial Strategyproofness

First, recall that the verifier is able to check the outcome of a mechanism before

the outcome is implemented and before payments are collected from agents and veto

the result if the input-output instance provides proof that the mechanism is not

strategyproof. This veto power is important in establishing the following useful result.

Theorem 8. Given history H, consider an instance in which the reports of agents

except i are v̂−i and instance (vi, v̂−i) has been observed by the mechanism for agent

i’s true valuation vi. In this case, and conditioned on the mechanism passing the

verifier in this instance, then agent i’s best-response is to report her true valuation.

Proof. Fix v̂−i. Condition on the case that all checks in the verifier pass. First, if the

agent reports vi then the mechanism must make the same decision as previously, by

checks (a) and (b) in SimpleChecker. Now suppose the agent reports some v′i 6= vi.

I argue that this cannot improve the agent’s utility. Case 1. The mechanism selects

an alternative a′ already observed. Now I argue that the agent must actually prefer

the outcome, a, that would have been selected given truthful report vi. Either a′ was

observed after a in which case check (c) would have ensured that a was preferred to a′

by an agent with type vi, or a was observed after a′ and check (d) would have ensured

that a was preferred to a′ by an agent with type v′. Case 2. The mechanism selects a

new alternative, not previously observed for v̂−i. In this case, because vi was already

observed (with outcome a) then to pass check (c) it must be the case that outcome a

would preferred by an agent with true type vi. This concludes the proof.

Note that the above theorem continues to hold even if the mechanism is ultimately
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not strategyproof: it is still rational for an agent to bid her true type if vi and v̂−i

(reports by the other agents) have already been observed. Moreover, the observation

leads to the following two corollaries. Here, when truthful reporting is an ex post

Nash equilibrium given knowledge Ṽ ⊂ V about joint types, then every agent must

maximize its utility by reporting its true type in equilibrium as long as every other

agent is truthful and whatever the actual joint valuation v ∈ Ṽ .

Corollary 1. Given history H, let Ṽ ⊂ V denote some subspace of joint type space

V for which all joint inputs v ∈ V have been observed. Given knowledge that v ∈ Ṽ ,

and conditioned on the mechanism passing the verifier in this instance, then truthful

reporting is an ex post Nash equilibrium.

Corollary 2. Given history H, and considering agent i with true type vi, then if

(vi, v−i) has been observed by the verifier for all v−i, then conditioned on the mecha-

nism passing the verifier in this instance truthful bidding is a dominant strategy for

bidder i.

I see that there are reasonable conditions under which a partially informed agent

(e.g. with information about the space of possible types of other agents) should report

its type truthfully even before the strategyproofness of a mechanism is fully verified.

Moreover, these observations suggest that it will be useful for a verifier to publish the

set of types for which the mechanism is provably strategyproof. Note also that these

results can all be rephrased in terms of summarizations of reports from other agents

when summarization is used.

A somewhat weaker guarantee is also available to a bidder in the case that report

v̂−i has been observed but not in combination with the agent’s type vi. This guarantee
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is provided in the context of an adversarial mechanism, which seeks to minimize the

utility to agent i while passing the verifier in this instance. The earlier guarantees are

provided for any mechanism.

Theorem 9. Given history H, then agent i maximizes her worst-case utility against

an adversarial mechanism by reporting truthfully whenever report v̂−i has been ob-

served, contingent on the mechanism passing the verifier in this instance.

Proof. Worst-case utility refers to the minimum utility achieved over all possible

choices that can be made by the mechanism in responding to the input, while still

passing the verifier. Fix vi and v̂−i ∈ H. First suppose the agent is truthful. In

this case the best the adversary can do, in terms of minimizing the utility to the

agent, and still pass the checks (e.g. in SimpleChecker) is to select the preferred

alternative for the agent in a ∈ fH(v̂−i). Choosing some less-preferred alternative in

fH(v̂−i), or some less-preferred alternative outside of fH(v̂−i) would violate check (d)

in SimpleChecker. Now suppose the agent is untruthful and reports v′i 6= vi. In this

case, the mechanism can always choose one of the current alternatives and pass since

check (c) would not be triggered and check (d) is satisfied by choosing a′ ∈ fH(v̂−i),

the most-preferred alternative with respect to v′i. Note that the alternative selected

when reporting vi is at least this good. Also, if the mechanism chooses to select

some new alternative then this must necessarily be even worse for the agent (since

the mechanism is adversarial). This completes the proof.
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4.6.2 Metrics for Partial Verification

I introduce two quantitative metrics for the degree to which a mechanism’s strat-

egyproofness has been partially verified. First, Corollary 1 can be used to define a

lower-bound on the probability that truthful reporting is an ex post Nash equilibrium,

given history H and given a distribution on types of bidders.

Corollary 3. Given history H and probability distribution g on agent types, then

truthful bidding is an ex post Nash equilibrium conditioned on the mechanism passing

the verifier in this instance, with probability:

Pr(SP |H) =
∑

v∈V N

g(v)IH(v) (4.10)

where g(v) is the probability that agents have types v and IH(v) is an indicator func-

tion, and equal to 1 if and only if v ∈ vH .

I refer to this metric as the probability-of-strategyproofness. In combination with

summarization, this becomes:

Pr(SP |H) =
∑

v∈V N

g(v)IH(s(v−1), . . . , s(v−N)) (4.11)

where IH(s(v−1), . . . , s(v−N)) is an indicator function, and equal to 1 if and only if

summarizations s(v−i) for all i have been observed by the mechanism given history

H. A probability-of-strategyproofness metric can also be defined for a single agent

i, where the average is computed with respect to the marginal distribution on the

reports of agents 6= i, given agent i’s type vi.

A complementary measure is provided by the price-flexibility metric. This metric

takes into account the range of prices still available to a mechanism in setting prices
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on alternatives not yet observed. Let FeasH(v) ⊆ A denote the set of alternatives that

can be selected without failing the verifier given input v and history H. If v has been

observed this is the singleton containing the alternative fH(v) that was previously

selected. But, even when v has not been observed I have restrictions on alternatives

that can be selected. There can be alternatives for which, if selected, there is no price

that can be assigned to satisfy checks (c) and (d) in the verifier for all agents.

For a ∈ FeasH(v), I define the price flexibility on a, denoted flexH(v, a) as:

vi(a) + inf
b∈fH(v−i)

{pH
i (b, v−i)− vi(b)}

−

[
sup

b∈fH(v−i)

{
pH

i (b, v−i) + sup
v′i∈vH

i (b,v−i)

(v′i(a)− v′i(b))

}]
(4.12)

This represents the range of prices available to the mechanism without violating

the checks in the verifier, and is non-empty since a is in the feasibility set. Now, for

valuation profile v = (v1, . . . , vN), define the price-flexibility, as:

PFH(v) =
∑

v∈V N

g(v)

 1

NH(v)

∑
a∈FeasH(v)

flexH(v, a)

 , (4.13)

where NH(v) = |FeasH(v)|. Notice that if all inputs v−i have been observed for vi

then PFH(vi) = 0. This is as I would expect: a fully-verified mechanism has no

flexibility and must continually make the same decisions and assign the same prices

as in the past.

4.7 Experiments: Passive Verification

I present experimental results to demonstrate that the verifier can impose useful

restrictions on the mechanism design space (via summarization, natural payments,
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Figure 4.3: Number of instances before failure in a first-price multi-item auction.

and envy-freeness) and increase the confidence in truthful mechanisms and accelerate

the detection of failure in manipulable mechanisms.

For illustrative purposes, the experimental results are presented for a mixture of

known and invented mechanisms. I consider both Vickrey and first-price auctions

for the allocation of multiple identical items. In addition, I consider single-minded

bidders in a combinatorial auction (with multiple non-identical items) and the LOS

mechanism [44] as well as the LOS greedy allocation rule in combination with VCG

payments (this mechanism is called greedyVCG, and is manipulable; see example 5 for

more details on the LOS mechanism and the LOS greedy allocation rule). I also find
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it useful to construct an artificial, manipulable mechanism for single-minded bidders

using local search techniques combined with VCG payments. I call this mechanism

localVCG.

(a) Number of instances before failure in

greedyVCG: Agents.

(b) Number of instances before failure in

greedyVCG: Items.

(c) Number of instances before failure in

localVCG: Agents.

(d) Number of instances before failure in

localVCG: Items.

Figure 4.4: Exploring Verification with Single-Minded Bidders.

To provide a baseline I compare with an algorithm that simply checks for violations
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of (A1). This algorithm is sound but not complete. Actually, it completely fails to

reject the greedyVCG mechanism, which only makes errors of type (A2). On the

other hand, it is sound against first-price auctions, which only violate (A1). The

localVCG mechanism is useful because it violates both (A1) and (A2), permitting a

comparison between the baseline and my verification methods.

4.7.1 Domain 1: Multi-item Auctions

I consider a first-price multi-item auction with g identical goods and construct

agent valuations by defining the marginal value of the kth item for agent i as inde-

pendently drawn from a uniform distribution over {0, 1, . . . , z − 1}. Here, z denotes

the max number of values in the value domain for any one of these items. With g

items the size of the type space for each agent is m = zg. I consider the verifier

both with and without the internetwork constraints that arise from the requirement

of natural payment functions (which hold for the VCG mechanism in this auction

environment), but do not consider the use of summarization.

Figure 4.3 illustrates the number of instances observed before failure. Fixing z = 5,

I first vary the number of items g from 1 to 10 for n = 3 agents (i.e. with m = zg = 5g

types per agent, m3 different instances, and at most m2 networks). Second, I vary

the number of agents n from 1 to 10 for g = 3 items (i.e. with m = 53 = 125 types

per agent, 125n instances and at most 125n−1 networks). For each experiment each

point represents an average over 10 runs. The NetworkChecker is tested with

and without internetwork constraints due to natural payments, and labeled base and

prop accordingly.
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Observe that internetwork constraints considerably speed up the verification pro-

cess. In addition, since at most n new nodes are created for each instance, the number

of nodes in the graph is roughly proportional to a multiple of n times the number of

instances observed before failure and the running time and space complexity of the

verifier is roughly linear in the number of instances observed. Thus, imposing natural

payments and enabling internetwork constraints improves space and time complexity.

4.7.2 Domain 2: Single-Minded Bidders

For single-minded bidders I generated a distribution of instances by using the

L4 Legacy distribution of the Combinatorial Auctions Test Suite (CATS) [45]. I

discretized the type space by rounding the values to the nearest 250 (the values fell

into a range of [0, 3000]). There are g distinct items, and each agent can choose

any subset of the g items, and have a value ∈ {0, 250, . . . , 2750, 3000} for the desired

bundle. The results are averaged over 10 trials.

In this experiment I impose both summarization and envy-freeness, which is a

reasonable structural requirement in this environment (as noted in Section 4.5). As

a summarization function I adopt the summarization function defined in Example 5

for the VCG mechanism, which is also valid for the LOS mechanism and therefore

reasonable to impose. I also compare with the benchmark algorithm, which fails to

catch the non-strategyproofness of greedyVCG but is effective for localVCG.

Figures 4.4 (a) and (b) illustrate the results for Network Checker (“base”),

and also with summarization (“sum”) and with the additional structure provided by
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envy-freeness (“envy-free”), which is used here without summarization 5 In Figure 4.4

(a) I vary the number of agents n while fixing the number of items at g = 3 (m = 137

types, since there are 23− 1 bundles of 3 items). In Figure 4.4 (b) I vary the number

of items g while fixing the number of agents at n = 4 (m = 132g−1). The use of sum-

marization provides a significant speed-up, and the imposition of envy-freeness makes

the verification of a non-strategyproof mechanism almost immediate. As expected,

summarization becomes more important as the number of agents increases, and its

benefit increases, because without summarization it gets less and less likely that the

history contains observations relevant to a new instance.

Figures 4.4 (c) and (d) illustrate the results for Network Checker with and

without summarization and the benchmark algorithm with and without summariza-

tion, this time with the localVCG mechanism. Local search is modeled after the

stochastic local search algorithm by Hoos and Boutilier [33]. The only difference is

that my search is non-stochastic: I do greedy hill climbing with their neighborhood

definition and improvement criteria. Local search is used first to approximate a solu-

tion with all agents. During this phase I also track the best solution found for each

marginal economy. For payments, I then run local search with a smaller number of

search steps on each of the marginal economies and adopt for the economy without

i the best allocation discovered in the main search and in the explicit search in the

marginal economy. In addition to failing (A2), localVCG can also fail (A1) because

the price to a buyer can now depend on the search path adopted in the main economy,

which can on the buyer’s own bid.The same summarization function is adopted as

5For single minded bidders, the internetwork constraints from natural payments used in Net-
workChecker are trivially satisfied, and do not improve the checking.
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above. I again vary the number of agents, and then the number of items. In compar-

ison with the benchmark algorithm, the verifier detects non-strategyproofness more

quickly both with and without summarization, with the benefit over the benchmark

with summarization most noticeable as the number of items increases.

4.7.3 Computing Metrics

I have also experimented with the probability of strategyproofness (PrSP) and price

flexibility (PF) metrics defined in Section 4.6. These metrics allow the verifier to pro-

vide feedback to agents before finally verifying that a mechanism is strategyproof

(or not). I present results for single-minded combinatorial auctions and the (strat-

egyproof) LOS mechanism. Monte Carlo analysis is used to estimate PrSP and PF

over all possible valuations v ∈ V , where the valuations are drawn according to the

CATS Legacy distribution.

Figure 4.5 (a) displays the estimated PrSP for LOS in a domain with 4 agents

and 3 items. The results are averaged over 100 trials. I consider NetworkChecker

without summarization and then with the two summarization functions described in

Example 5 (the first is the more general VCG rule, the second is the rule designed for

LOS.) Summarization greatly improves the probability that truthful reporting is a

dominant strategy at any given point in the verification process, especially the second

summarization function which is designed for LOS. Thus, in deploying the LOS mech-

anism it would be useful to instruct the verifier to adopt this strict summarization

function in order to accelerate verification.

Figure 4.5 (b) displays the estimated PF for LOS in a domain with 3 agents and 3
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(a) Estimated probability of strategyproofness: Effect of

summarization

(b) Estimated pricing flexibility: Effect of internetwork

constraints (from natural payments)

Figure 4.5: Evaluating metrics for partial strategyproofness in verification of the LOS
mechanism in single-minded combinatorial auctions.
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items. The results are averaged over 300 trials. I compare NetworkChecker with

and without the imposition of natural payments and thus with and without the avail-

ability of internetwork constraints. I find that internetwork constraints are somewhat

effective in reducing the price flexibility, although the effect is not as pronounced as

that of summarization on the probability of strategyproofness.



Chapter 5

A Decentralized Auction

Framework to Promote Efficient

Resource Allocation in Open

Computational Grids

Abstract

Computational grids enable the sharing, aggregation, and selection of geographically

distributed computational resources that can be used for solving large-scale and data

intensive computing applications. Computational grids are an appealing target ap-

plication for market-based resource allocation especially given the attention in recent

years to “virtual organizations” and policy requirements. In this chapter, I present

a framework to promote truthful, decentralized, dynamic auctions in computational

66
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grids. Rather than a fully-specified auction, I propose an open, extensible framework

that is sufficient to promote simple, truthful bidding by end-users while supporting

distributed and autonomous control by resource owners. The auction framework facil-

itates the use of resource prediction in enabling an expressive language for end-users

and highlights the role of infrastructure in enforcing rules that balance the goal of

simplicity for end users with autonomy for resource owners. The technical analy-

sis leverages simplifying assumptions of “uniform failure” and “threshold-reliability”

beliefs.



Chapter 5: A Decentralized Auction Framework to Promote Efficient Resource
Allocation in Open Computational Grids 68

Computational grids enable the sharing, aggregation, and selection of geograph-

ically distributed computational resources that can be used for solving large-scale

and data intensive computing applications. The distributed ownership and use of

computational resources make market mechanisms, where prices coordinate decision

making both within and between organizations, a good fit for solving resource allo-

cation problems in grids. Market mechanisms promote efficiency: in the short run,

resources are allocated to the best use, and in the long run, prices provide signals for

long-term investments that enable the best policy decisions. Market mechanisms also

enable policy and, together with appropriate macroeconomic controls, may offer the

compelling solution to the problem of “virtual organizations” that has taxed the grid

community [24].

Substantial advances have been made in grid software and its conceptual frame-

work in recent years. However, real-world open science grids are still limited in size

to hundreds of sites and thousands of computers. The complexity in expressing a

user’s needs and the lack of flexibility and autonomous control in resource manage-

ment in existing systems have been some of the main obstacles. Users should be able

to focus on computational experiments, not gaming, to obtain sufficient resources,

and organizations should be able to share resources in a flexible and locally managed

manner.

The vision for market-based computational grids and the broad scope of the

EGG project are described in [14]. EGG is a collaborative project between Har-

vard and Boston University, involving high-energy physicists, computer scientists,

and economists. The EGG architecture brings together environment computing and
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economic principles to create a vision of grid computing that realizes the promise of

autonomy and openness. Here I provide additional details about the microeconomic

aspect of EGG and ignore macroeconomic issues (e.g. currency supply, inflation,

questions of policy, etc.). These are of equal importance and part of the fabric of

EGG, components of which are currently being implemented and will be deployed as

a practical platform.

The auction framework is designed around the following design principles:

• Efficiency: in the long-run, as the system adapts, jobs should be allocated to

resource owners best able to run the job at low cost, subject to other policy

constraints.

• Simplicity: A simple bidding language is provided for end-users and the frame-

work is strategyproof for users and thus non-manipulable.1 Strategyproof mech-

anisms mean that users need not engage in wasteful counterspeculation about

how best to game the system and can focus on using grids rather than gaming

grids.

• Decentralized control: Resource owners retain control and flexibility over

their own resources. A complete auction (e.g. with pricing policy) is not spec-

ified, but rather the framework provides a minimal set of rules that ensure

truthfulness.

• Extensibility: Resource owners can replace and improve components (e.g.

pricing strategies, resource estimation algorithms) over time. This supports

1Given the simplifying assumptions of uniform-failure and threshold-reliability beliefs, to be dis-
cussed in Section 5.1.2.
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innovation.

Details about how resource owners can implement algorithms for resource esti-

mation or pricing is provided in the subsequent chapters, Chapters 6 and 7. In this

chapter, I focus on the design of the auction framework.

I consider a dynamic model in which jobs arrive over time and allocation deci-

sions need to be made dynamically. The dynamics complicate the question of strat-

egyproofness (introducing new opportunities for manipulation). They also make the

problem a poor fit for existing technologies, such as combinatorial auctions [20] and

combinatorial exchanges [58] that assume all bids are present at the same time.

A user can bid for resources at any time by describing her job and annotating

the job with a value schedule that defines her willingness to pay as a function of the

job completion time. This bid spawns a one-time reverse auction in which qualified

resource providers compete for the right to execute the job. The auction framework

completes this auction by consulting price tables maintained by each resource provider

(representing the bids of the resource providers) and the resource estimates of each

resource provider for the job. The auctioneers (and not the sellers) look up a price

to quote to the user in the context of the reverse auction after performing payoff-

maximization on behalf of the user. The auction framework enforces rules on price

tables and resource estimation that ensure strategyproofness for end users. Technical

assumptions about uniform-failure and threshold-reliability beliefs are made in order

to support claims about non-manipulability.
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5.1 Model and Key Components

I consider the problem of allocating computational resources on compute servers

when jobs can have different size/lengths and arrive dynamically. A similar problem

of allocating storage space and time can be defined for file servers, but is not analyzed

in this thesis. I do not study combinatorial issues related to how a user structures

her work across multiple jobs (see Section 5.4); rather I assume that each user has a

predetermined set of jobs.

Figure 5.1: Control Flow: resource providers own and control their price tables,
resource predictors, and schedulers, but the market infrastructure imposes constraints
on the price tables and resource predictors.
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5.1.1 Actors

The model consists of four types of entities: the market infrastructure, auctioneers,

users, and resource providers:

Market infrastructure: Trusted by both users and resource providers. One im-

portant role is to impose constraints on the resource providers (e.g. on the price

tables, resource estimates) in order to ensure strategyproofness. The infrastructure

also maintains and publishes statistics that the auctioneers can use to compute the

reliability metrics for resource providers.

Auctioneers: Part of the infrastructure, a one-time auctioneer is created on behalf

of a user whenever she runs a job. The auctioneer is personalized in terms of the

collection of resource providers from which the auctioneer should solicit offers (i.e.,

the user’s own view of the grid.)

Users: Individuals or organizations who wish to employ the resources available on

the grid to run jobs, e.g., a physicist who wants to run Monte Carlo simulations.

Resource Providers: Resource providers maintain a collection of computational

resources and schedule and perform jobs that are won through auctions. Each re-

source provider maintains a resource prediction module and price tables within the

microeconomic framework and also runs its own local scheduler.

5.1.2 Modeling Users: Jobs and Beliefs

Each job has a description and an arrival time and a user has a value schedule

for the completion time of the job and a minimum reliability threshold for resource

providers from which the user wishes to solicit offers. (Recall that one role of the
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market infrastructure is to maintain a reliability metric for each resource provider.

This is a measure of the frequency with which a resource provider has successfully

completed a job by the scheduled completion time. Note that while reliability is a

similar concept to reputation, I emphasize that reliability here is objectively measured

and non-manipulable.) The arrival time of a job is the earliest time the value of the

job is known to the user and the job can be described. A user can be associated with

multiple jobs. Taken together, type, θi = (Ji, wi, ai, γi), completely characterizes the

information about a job:

• Ji is a string describing the job to be submitted. Ji can be thought of as a list

of fields for executable files, input files, number of loops, etc., and specifies how

to perform the job (e.g., file location). The default syntax and semantics are

defined by the market infrastructure. I assume that attributes can be extracted

from Ji, to be used for resource prediction.

• wi : [ai, ai + ∆] → R≥0 is a function of the completion time where wi(τ) is a

nonnegative real number representing the willingness to pay for job completed

by time τ . I call wi the value schedule for job i. I assume every job has bounded

patience, i.e., there exists a minimal constant ∆ ∈ R≥0 such that wi(τ) = 0 for

all τ > ai + ∆, for all jobs i. I assume ∆ is known to the market infrastructure

and resource providers. I call ∆ user patience.

• ai ∈ R≥0 is the arrival time

• γi ∈ [0, 1] is the minimum tolerable reliability of the resource providers to which

the job should be submitted.
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Throughout this paper, let di denote the latest time τ for which wi(τ) > 0, i.e.,

the maximal deadline or departure time of the job.

A bid for a job consists of the job description, value schedule and an optional

parameter specifying a minimal reliability. The arrival time is defined by when a

user can bid, and is not explicitly included in a bid. For example, a bid with a

linear value schedule could define (“download Atlas 5.x2”,(10, 2,Apr-01-06 00:00:01),

99%), where the second component describes a monotonically decreasing willingness-

to-pay of (2 + (10− 2)(td − τ))/(td − t0), where τ is the time of completion, td is the

maximal deadline (Apr-01-06 00:00:01 in the example), and t0 is the time at which

the bid is submitted to the auctioneer. The auctioneer should then only accept offers

from resource providers with reliability ≥ 99%. A simple special case is a constant

willingness-to-pay with a hard deadline. I assume that a user has no value for receiving

a completed job outside of a job’s arrival-departure interval or for an incomplete job.

I assume that there is a partial order � on job descriptions such that J ′ � J

whenever a job with description J ′ has as much value as a job with description J , to

a user who has a job with description J . In other words, I assume that if J ′ � J ,

then any user with a job with description J values another job with description J ′

as much, which can potentially be restrictive. For example, a job with description

J ′ may require a more recent software installation version number with backwards

compatibility, have more loops, or run on a larger input file. For instance, a job

with 2000 Monte Carlo iterations is better than a job with 1000 of the same Monte

Carlo iterations. A job description may include fields for software versions, number

2http://atlas.web.cern.ch/Atlas/index.html
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of Monte Carlo iterations, and the size of the input file so that this partial order can

be defined. Given this I formalize what it means for a user to be “single-minded” in

my model:

Definition 13. Let Ji be the description for job i. Define νi(J
′
i , τ) to be the value to

the user (who submits job i) if she is given some completed job with description J ′
i by

time τ . A user is single-minded if:

νi(J
′
i , τ) =

 wi(τ), if J ′
i � Ji;

0, otherwise.

The technical results about strategyproofness rely critically on two simplifying

assumptions about user beliefs. Threshold-reliability beliefs are beliefs that a user

holds about the comparative reliability across resource providers (and for a particular

job) while uniform-failure beliefs are beliefs that a user holds about the comparative

reliability across different jobs (and for a particular provider). Denote the set of

resource providers with reliability metric at least γi by Γi.

Definition 14 (threshold-reliability beliefs). A user has threshold-reliability beliefs

for job i with description Ji if she holds belief that all resource providers ∈ Γi are

equally likely to successfully complete a specific job with description J ′
i such that J ′

i �

Ji, and that success is independent of the completion time.

By this assumption, a user does not reason about the probability that the winning

resource provider will successfully complete a specific job. For example, if γi = 90%,

the user is indifferent between a resource provider with reliability 93% and another

resource provider with reliability 95% (given that both yield the same payoffs at their

respective scheduled completion times).



Chapter 5: A Decentralized Auction Framework to Promote Efficient Resource
Allocation in Open Computational Grids 76

Definition 15 (uniform-failure beliefs). A user has uniform failure beliefs if she

holds beliefs that Pr( A job with description J ′
i successfully completes if scheduled

with resource provider k) ≤ Pr( A job with description Ji successfully completes if

scheduled with resource provider k), for all jobs with description J ′
i � Ji, for all k

with reliability at least γi.

With uniform-failure beliefs, a user believes that she cannot improve the proba-

bility that a job completes by replacing it with another job with description J ′
i � Ji.

Note that the uniform failure assumption is about completion probabilities if sched-

uled by the same resource provider.

5.1.3 Resource Prediction: Auction Rules

A resource predictor takes the description Ji and the arrival time ai of job i

as inputs and outputs a vector Qi of estimated resource requirements. A resource

provider can use any learning algorithm it chooses, but the market infrastructure

imposes a monotonicity requirement that constrains the estimates for different jobs

and also how the model can be refined across time. I assume that the learned model

has a concise representation so it can easily be verified by the infrastructure (e.g.,

Näıve Bayes, continuous Gaussian linear regression, decision tree, etc.). A resource

provider can also select periods in which it is inactive, where it does not generate

any resource estimates (but simply queues jobs arriving in this period such that an

estimate will be given once the inactive period is over, if these jobs are still not

scheduled by any other resource provider).

Let Qt
ik = R̂t

k(Ji) ∈ (R≥0)
L denote the L-dimensional vector of resource require-
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ments given Ji produced by the learned model used by resource provider k to estimate

resource requirements at time t.

Definition 16 (monotonicity w.r.t. job description). Resource provider k’s estimator

R̂t
k(J) is monotonic if R̂t

k(J
′) ≥ R̂t

k(J) for all J ′ � J , for all t.

Monotonicity with respect to job description is a reasonable property. For exam-

ple, using a larger input file or a running a larger number of Monte Carlo iterations of

a loop should not require less disk space or shorter runtime. Moreover, I can assume

without loss that if J ′ � J requires less resources than J , then a resource provider

can perform J ′ for the user instead, and set Rt
k(J) = Rt

k(J
′). It should also hold

when estimating network resources for software installation with backwards compat-

ibility. For instance, installing Atlas 5.x should never have a lower resource estimate

than installing Atlas 4.x because if Atlas 5.x actually requires less resources (and is

backwards compatible), then whenever Atlas 4.x needs to be installed, Atlas 5.x can

be installed instead.

Monotonicity with respect to time is imposed to ensure that users cannot benefit

from misreporting the arrival time, i.e., delaying job submission, hoping to get a

lower price from a lower future resource estimate. Let ∆ be the user patience (see

Section 5.1.2):

Definition 17 (time monotonicity). Resource provider k’s estimator R̂t
k(J) is mono-

tonic with respect to time if R̂t′

k (J) ≥ R̂t(J) ∀ J , for all t < t′ < t + ∆ such that

resource provider k is not inactive in either t and t′.

If a resource provider wishes to introduce a new model with lower estimates for
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some jobs then it can become inactive for a period of at least ∆. No inactive period

is required if the new model does not decrease resource estimates.

In this vision, I expect there to be competition among resource providers. In the

long run, as competition grows, it will be in the interest of a resource provider to

accurately estimate its required resources. If it underestimates the resource require-

ments, the resource provider will not be able to complete an assigned job, damage

its reliability, or receive a lower price. On the other hand, if it overestimates, it will

forego a chance to earn revenue by losing the job to a resource provider that offers a

lower price.

5.1.4 Price Tables: Auction Rules

A resource provider maintains a price table visible to the market infrastructure,

and a function of a vector of resource requirements Q and the completion time τ . It

can be thought of as a table of dimension 1+dim(Q) where dim(Q) is the dimension

of the vector Q and the last dimension corresponds to period in which the job is

to be completed. The price table is used by the market infrastructure to generate

a resource provider’s bid, given a reverse auction for a particular job in some time

period.

The ability of resource providers to fill the price table based on their own objectives

is a key feature that provides autonomous control. A resource provider can update its

price table entries to incorporate scheduling constraints, meet a target load level, or

to improve its revenue. However, in order to maintain strategyproofness for end-users,

the market infrastructure imposes that the price table entries are admissible.
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Let φt
k(Q, τ) denote the price table entries quoted by resource provider k in period

t for resource requirement Q for the completion time τ . φt
k(Q, τ) can be interpreted as:

the price (quoted in time t) that resource provider k wishes to receive for completing

a job with resource requirements Q, if it were scheduled to complete by time τ . Given

a job, a scheduled completion time τ ∗k for each resource provider k is selected by the

auctioneer, such that the payoff of the user is maximized.

Let Q[l] denote the lth component of the vector Q, and let ∆ be the user patience.

Definition 18 (admissibility). Price table entries

φt
k(Q, τ) are admissible if both:

φt
k(Q

′[l], τ) ≥ φt
k(Q[l], τ) ∀Q′[l] > Q[l],∀l,∀τ, ∀t (5.1)

,φt′

k (Q, τ) ≥ φt
k(Q, τ) ∀t′ > t,∀t′ ≤ τ ≤ t + ∆,∀Q. (5.2)

Prices are admissible if (1) the price table entries are nondecreasing in each com-

ponent of the resource requirements, e.g., if Q consists of runtime (r) and disk space

(s)

φt
k((r

′, s), τ) ≥ φt
k((r, s), τ) ∀r′ > r

φt
k((r, s

′), τ) ≥ φt
k((r, s), τ) ∀s′ > s

and (2) the price table entry for a given completion time within the user-patience

window (t + ∆) does not decrease over time. Note that this still allows a resource

provider to decrease prices outside of the user-patience window.

Example 9 (Admissible prices). Consider the following 2-dimensional price table

where each row corresponds to estimated memory usage, and each column to the
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scheduled completion time. Let t0 denote the current time. Suppose the intervals

for memory are [0, 2), [2, 4), [4, 8) Megabytes, and the intervals for a job’s scheduled

completion time is [t0, t0 + 1), [t0 + 1, t0 + 2), [t0 + 2, t0 + 3),[t0 + 3, t0 + 4) hours.

Suppose the table entries are currently:

memory τ ∈ [0, 1) τ ∈ [1, 2) τ ∈ [2, 3) τ ∈ [3, 4)
[0,2) 5 4 6 10
[2,4) 17 13 15 12
[4,8) 20 15 21 25

Suppose ∆ = 3 hours. Then, by admissibility the resource provider can increase

or decrease all the entries beyond the user patience window. For example, the entries

10, 12, and 25 from the fourth column of the table can be updated to 4, 16, and 18,

respectively. However, the other entries cannot be decreased. An updated price table

with admissible entries may look like:

memory τ ∈ [0, 1) τ ∈ [1, 2) τ ∈ [2, 3) τ ∈ [3, 4)
[0,2) 8 4 7 4
[2,4) 18 17 15 16
[4,8) 24 18 100 18

Note that earlier completion times may have higher prices. While I might expect

later completion times to have lower prices than earlier ones, the system does not

require this.

5.2 Auction Framework

I now define the rules of the reverse auction that is created on-the-fly each time a

user submits a job. As well as defining the auction, which determines which resource

provider (if any) gets to run the job, the auction framework imposes the following

additional assumptions:
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• When a user reports Ĵi, Ĵi is the job that will be performed (a user cannot

report Ĵi and then have the resource perform Ji instead).

• The user makes no payment and does not receive an incomplete job if the job

is not completed by the scheduled completion time.

Consider the following auction protocol:

1. On receiving bid (Ĵi, âi, ŵi, γ̂i):

(a) Let d̂i be the latest time τ such that ŵi(τ) > 0.

(b) Consider the resource providers with reliability at least γ̂i. Ensure the

resource provider does not change its estimator function based on infor-

mation about the job.

i. For each resource provider k, compute the resource estimates R̂âi
k (Ĵi).

Let r̂k denote the estimated runtime.

ii. The relevant price table entries are revealed to the auctioneer by the

market infrastructure. Given the price table entries at time t = âi,

the auctioneer computes τ ∗k where τ ∗k is the earliest time in [âi + r̂k, d̂i]

such that:

τ ∗k = arg max
τ∈[âi+r̂k,d̂i]

{ŵi(τ)− φâi
k (R̂âi

k (Ĵi), τ)} (5.3)

(c) Select a resource provider k∗ with maximal utility. Denote the set of

resource providers with reliability at least γ̂i by Γ̂i. Let k∗ be

k∗ = arg max
k∈Γ̂i

{ŵi(τ
∗
k )− φâi

k (R̂âi
k (Ĵi), τ

∗
k )} (5.4)
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The price that a user submitting job i whose type is θ̂i = (Ĵi, âi, ŵi, γ̂i)

faces is:

pi(Ĵi, âi, ŵi, γ̂i) = φâi
k∗(R̂

âi
k∗(Ĵi), τ

∗
k∗) (5.5)

The job is not scheduled if all resource providers have prices higher than

value. Break ties in favor of earlier times.

(d) Collect payment from job i and place in escrow.

(e) The market infrastructure requires that resource provider k∗ encrypts the

outcome of job to prevent job i from accessing outcome until τ ∗k∗ .

2. On the scheduled completion time τ ∗k∗ :

(a) Check whether job is completed. Update resource provider reliability.

(b) If completed, allow job to transfer outcome of computation.

(c) If completed, transfer payment from escrow to resource provider. Else

return payment to job.

A resource provider can employ a scheduling algorithm of choice, and retains

autonomy to decide when to actually schedule a job. Notice though, that to get paid

for a job it wins, it must schedule the job so the job can be completed on or before

the scheduled completion time τ ∗k , specified by the auctioneer.

Example 10 (Looking up prices in a price table). Given a job request and a price

table then a row is chosen based on the estimated resource requirement of the job. The

ultimate price is determined based on the optimal scheduled completion time, which is

chosen by the reverse auction to be where value - price is maximal among the entries

before the deadline, breaking ties earlier.
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memory τ ∈ [0, 1) τ ∈ [1, 2) τ ∈ [2, 3) τ ∈ [3, 4)
[0,2) 9 5 4 6
[2,4) 19 17 13 15
[4,8) 24 20 15 21

Suppose the estimated memory usage is 2.5 megabytes and the value schedule given

by the user is wi([t0, t0 + 2)) = 19, wi([t0 + 2, t0 + 3)) = 17, and wi([t0 + 3, t0 + ∆]) =

0. Then the auctioneer examines the row 19, 17, 13, and chooses the scheduled

completion time of 2 hours from now, at a price of 13 (i.e., the entry corresponding to

[t0+2, t0+3)), since 17-13 = 4 is the maximum value - price among the corresponding

entries.

5.3 Theoretical Analysis

5.3.1 Simplicity for Users

Given that users are modeled with threshold-reliability beliefs I work with the

following relaxed notion of strategyproofness:

Definition 19 (t-strategyproofness). An online mechanism with limited misreports

(no early arrivals) is t-strategyproof if all users hold threshold-reliability beliefs, and

no user has incentive to misreport her job description, value schedule, arrival time,

or minimum tolerable reliability, regardless of the reports of other users.

A t-strategyproof mechanism chooses the most favorable resource provider for a

user with threshold-reliability beliefs when given the user’s true parameters Ji, wi,

ai, and γi, for any reports of the other users.

A formal definition of t-strategyproofness can be found in Definition 20.



Chapter 5: A Decentralized Auction Framework to Promote Efficient Resource
Allocation in Open Computational Grids 84

Definition 20 (t-strategyproofness). Let θ = (θi, . . ., θn), and let θ−i denote

(θ1, . . . , θi−1, θi+1, . . . , θn). Let θi = (Ji, wi, ai, γi) for all i. An online mechanism

with limited misreports (no early arrivals) is t-strategyproof if all users hold threshold-

reliability beliefs, and ∀i, ∀θ′i ∈ Θ and ∀θ−i ∈ Θn−1 such that fi(θ
′
i, θ−i) is not null,

and J ′
i � Ji:

wi(τ)− φai
k (R̂ai

k (Ji), τ) ≥ wi(τ
′)− φ

a′i
k′(R̂

a′i
k′ (J

′
i), τ

′)

if resource provider k′ has reliability at least γ, where fi(θ) = Ck(ai, Ji, τ) and

fi((J
′
i , w

′
i, a

′
i, γ

′
i), θ−i) =

Ck′(a′i, J
′
i , τ

′).

Given θi = (Ji, wi, ai, γi) for all users i, suppose fi(θ) = Ck(ai, Ji, τ), i.e., the

auctioneer selects the contract offered by resource provider k. Now, since a user has

no value and makes no payments for an incomplete job, there are two cases:

vi(θi, C
k(ai, Ji, τ)) =

 wi(τ), if job completed;

0, otherwise.

pi(θ, C
k(ai, Ji, τ)) =

 φai
k (R̂ai

k (Ji), τ), if job completed;

0, otherwise.

However, since the users hold threshold-reliability beliefs, they do not explicitly

reason about the probability that their jobs will not complete. This leads to the

concept of t-strategyproofness. Define p̃t(J, γ, τ) = minr(k)≥γ pt
k(R

t
k(J), τ) to be the

price schedule given scheduled completion time τ that a user faces if she reports job

description J , and reliability γ at time t.
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Lemma 4. p̃t(J, γ, τ) is nondecreasing with respect to t, all J ′ � J , and all γ′ > γ.

Proof. Fix t. For all J ′ � J , for all τ , and for all resource providers k,

Rt
k(J

′) ≥ Rt
k(J) ∀t

pt
k(R

t
k(J

′), τ) ≥ pt
k(R

t
k(J), τ)

Hence, p̃t(J ′, γ, τ) ≥ p̃t(J, γ, τ) ∀τ, ∀J ′ � J . For γ′ > γ the set of which the auction-

eer takes the minimization is smaller, hence, p̃t(J, γ′, τ) ≥ p̃t(J, γ, τ) ∀τ, J, ∀γ′ > γ.

Finally, if t′ > t, then for all τ , k, by admissibility,

pt′

k (Rt′

k (J ′), τ) ≥ pt
k(R

t
k(J), τ),

and p̃t′(J, γ, τ) ≥ p̃t(J, γ, τ).

Theorem 10. The auction protocol is t-strategyproof for jobs with bounded patience

and users with limited misreports, uniform failure and threshold beliefs, if price ta-

ble entries are admissible, resource predictors satisfy monotonicity for each resource

provider.

Proof. I show that reporting true θ = (Ji, vi, ai, γi) is a t-dominant strategy given

that the contract chosen by Auction 1 succeeds.

First, by threshold beliefs, a user holds beliefs that the probability that a contract

holds is the same for all contracts offered by a resource provider in Γi. Hence, she is

indifferent across all contracts C ′(ai, J
′
i , τ) offered at time ai by any resource provider

with reliability at least γi, where C ′ is any contract for J ′
i � Ji, completing by τ .
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If a user reports Ĵi such that Ĵi 6� Ji, she has no value for the completed job. If

the user reports γ̂ < γi then the only way the user’s utility is affected is if a resource

provider k̂ with reliability γi is selected, in which case, the user has no utility. By

Lemma 4, for any given τ , the user cannot improve her utility by reporting Ĵi � Ji,

γ̂i > γi, or by delaying her arrival time.

By monotonicity of the resource estimator and admissible prices, a user cannot

receive a lower price by reporting a later arrival time or J ′
i � Ji. The uniform failure

belief assumption implies that for a specific job Ji, a user has no incentive to report

J ′
i � Ji to achieve a higher probability of success on a specific resource provider.

Threshold-reliability belief spares us from reasoning about the probability that a job

will complete on the winning resource provider.

5.4 Discussion: Strategic Properties

First, I discuss properties that are essential for Theorem 1. The market infrastruc-

ture requires that the resource provider holds the result of a job until the scheduled

completion time. This prevents a job from benefiting by overstating its patience and

getting a lower price, while still getting the result of the computation early enough.

Another important role of the market infrastructure is to ensure that the price quotes

do not change based on the bid of a job. It is a role of the auctioneer, not of the re-

source providers, to select the best scheduled completion time for a user and perform

the payoff-maximization decision. Resource providers define admissible prices but

can update prices only in between receiving bids. Prices are set based on scheduled



Chapter 5: A Decentralized Auction Framework to Promote Efficient Resource
Allocation in Open Computational Grids 87

completion times rather than based on the actual times in which jobs are performed.

This is to prevent a resource provider from deliberately rescheduling the job to ex-

tract more revenue. Completion risk is carried by resource providers in that if they

fail to complete a job by the scheduled completion time, they receive no payment and

the user makes no payment (in this case, the user also receives no benefit). This is

necessary to maintain strategyproofness in the value schedule model. Note that the

estimate does not need to be accurate for the auction to remain truthful.

One possible form of useful manipulation that remains, e.g. when prices are super-

additive in the size of resource allocations, is for a user to split a job into multiple

smaller jobs. This kind of manipulation has been observed when very strategic players

are present [53]. Having recognized this, super-additive prices can provide opportu-

nities for significant improvement in efficiency, and can be incorporated by allowing

price discrimination.

One additional concern that is relevant to the performance of the system is what

happens when resource estimates are poor quality, as would be expected when a new

user enters the system or when a new class of jobs are run. Here, I can augment the

proposal to allow a user to optionally state explicit (computational) resource require-

ments. The auction would now need to be changed so that the resource estimate is

adopted as a hard limit on the amount of resources provided to a job. This prevents

a new manipulation in which a user underreports resource requirements of a job but

is able to complete her work anyway for a lower price. This change was not needed

for the current model because of the coupling of resource estimation with job descrip-

tions. A user should exercise this “override option” and report explicit information
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about resource requirements of her job when: (1) the resource provider overestimates

resource requirements in which case a user can get a lower price by correcting the

resource provider and still complete her job successfully, or (2) the resource provider

underestimates resource requirements to such a degree that the job will not be com-

pleted successfully in which case a user will pay more but prefer to report correct

resource requirements so that her job completes. Note that if a user believes that all

resource providers have accurate estimators, then she has no incentive to override the

estimates.



Chapter 6

Resource Estimation with

Monotonicity Constraints in Open

Systems

Abstract

The ability to accurately estimate resource requirements is crucial for resource

providers to efficiently schedule jobs in open systems. I study the resource prediction

problem that each resource provider faces in the decentralized auction framework

presented in Chapter 5 through experiments using historical data from the Crimson

Grid.

I explore learning techniques including linear regression, Näıve Bayes classifica-

tion, Bayesian network classification, and conditional linear gaussian to predict the

runtime of a job given attribute values available at submission time. I report the

89
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relative accuracy of each technique given historical data from the Crimson Grid. Re-

call that the market infrastructure discussed in Chapter 5 requires that the learned

models used by the resource predictors satisfy the monotonicity constraints to en-

sure strategyproofness for users. I discuss how the monotonicity requirement can be

imposed or verified in combination with each learning technique.
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The ability to accurately estimate resource requirements is crucial for resource

providers to efficiently schedule jobs in open systems. Furthermore, accurate resource

prediction enables a better assignment between jobs and resources, and improves the

overall utility of an open system. I study the resource prediction problem that each

resource provider faces in the decentralized auction framework presented in Chapter 5

through experiments using historical data from the Crimson Grid.

I explore learning techniques including linear regression, Näıve Bayes classification,

Bayesian network classification, and conditional linear gaussian networks to predict

the runtime of a job given attribute values available at submission time. I report

the relative accuracy of each technique given historical data from the Crimson Grid

collected between October 2006 and October 2007.

Recall that the market infrastructure discussed in Chapter 5 requires that the

learned models used by the resource predictors satisfy the monotonicity constraints

to ensure strategyproofness for users when price quotes are generated based on the

predicted resource usage. I discuss how the monotonicity requirement can be imposed

or verified in combination with each learning technique.

The goal of this chapter is not to propose an optimal resource estimation method,

but rather to explore well-known learning techniques in conjunction with monotonic-

ity requirements, demonstrate that these techniques achieve reasonable accuracy, and

provide a stepping stone for resource providers to compete through building and de-

ploying more advanced resource estimation techniques.
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6.1 Problem definition

The resource prediction problem can be formulated as follows: given a job de-

scription that assigns value to a set of attributes, estimate the resource usage of a job

using a function L satisfying monotonicity constraints. Throughout this chapter, the

objective is to predict the run time of a given job, but the same approaches may be

applied to predict the use of other computational resources (e.g., disk space, memory

usage).

A job J is characterized by a vector of attribute and value pairs < (a1, v1), . . .,

(an, vn) >. There are two phases to the resource prediction problem:

Phase 1: Given a training set (subset of past observations), learn the parameters of

the function L.

Phase 2: Given L, compute L(J). The output of the function L can be a continuous

value (regression), a class label (classification), or a distribution.

As more jobs are observed, Phase 1 is repeated to improve the accuracy of L.

6.1.1 Error Metric

Let r(J) be the observed run time and L(J) be the predicted run time of job J .

The root mean squared error (RMSE) metric is used when L(J) predicts a continuous

value. Let n be the total number of jobs in the prediction set.

RMSE =

√√√√ 1

n

n∑
i=1

(L(J)− r(J))2 (6.1)



Chapter 6: Resource Estimation with Monotonicity Constraints in Open Systems 93

For classification models, L(J) returns a class label or a range of run times. Let

L(J) be the mean value of the class L(J), and r(J) be the mean value of the class

that r(J) belongs to. Two different metrics analogous to the RMSE metric can be

defined.

RMSE1
dis =

√√√√ 1

n

n∑
i=1

(L(J)− r(J))2 (6.2)

Defining the root squared mean error via equation 6.2 has the advantage that if

the correct class is predicted, the error is 0.

RMSE2
dis =

√√√√ 1

n

n∑
i=1

(L(J)− r(J))2 (6.3)

On the other hand, using the definition from (6.3) incorporates the tradeoff between

the size of the classes and the accuracy of prediction. I use equation 6.3 for the

classification techniques.

If the output of L is a distribution for each job, then the distribution of root

squared mean error can be computed via sampling:

Repeat M times:

1. For each of the n distributions, sample the distribution to obtain L(J)k.

2. Compute RTSEk =
√

1
n

∑n
i=1(L(J)k − r(J))2.

Create a distribution using RTSE1, . . . , RTSEM .

6.1.2 Monotonicity

Recall from Chapter 5 that there exists a partial order � over the set of jobs

that represents the users’ preference ordering over attribute values. For example, if



Chapter 6: Resource Estimation with Monotonicity Constraints in Open Systems 94

attribute j is the input file size and vj = 10KByte and vj′ = 20KByte, and vk = vk′

for all k 6= j, then J ′ � J .

For many learning techniques, the probability distribution of L(J) or the expecta-

tion and variance over L(J) can be computed. First, when the probability distribution

of L(J) is available, monotonicity can be defined as follows:

Definition 21. [Monotonicity: Distribution] A learning model L satisfies monotonic-

ity if for all J ′ � J , if F ′ ≥ F everywhere, where F ′ is the cumulative distribution

function on L(J ′) and F is the cumulative distribution function on L(J) (stochastic

dominance).

However, in the case where the entire probability distribution is not available,

a relaxed version of monotonicity can be defined in terms of the expectation and

variance of the prediction.

Definition 22 (Monotonicity: Mean-variance). A learning model L satisfies mono-

tonicity if for all J ′ � J , E[L(J ′)] ≥ E[L(J)] and V ar[L(J ′)] ≥ V ar[L(J)].

To ensure that the auction framework is strategyproof, higher expectation and

higher variance in the prediction must translate to an increase in price. For example,

if J1 � J2 and L(J1) and L(J2) have the same expectation, but L(J1) has a higher

variance. Then the price quote given (E[L(J1)], V ar[L(J1)]) must be no less than

the price quote given (E[L(J2)], V ar[L(J2)]). This is to prevent preferred jobs from

receiving a lower price quote.
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Example Attributes

The following are examples of attributes, values of which can be determined at

submission time. These attributes can become input to the resource predictor.

1. User/ Organizational information

• Domain: set of research institutions, research groups, or individual users

• Hierarchical information can be revealed by e-mail or IP addresses.

• In my data set, the username is available for every job. Research group

name may also be available (e.g., seas/group/groupname/).

2. Geographical location

3. Virtual location (IP addresses)

4. Time of submission

5. Type of executable

• Domain: { Unknown, Fortran, Rand, Matlab, R, etc. }

• The executable type may be determined by the suffix of the command.

6. Memory size (Image Size in Condor), CPU speed

7. Internet connection speed

8. Operating system (All jobs in the Crimson Grid data set run on Linux, but may

be applicable for other data sets).

9. Current load of the machine for which resource usage is predicted
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10. Currency type used for payment: virtual organizations may create their own

currency to implement sharing policies

11. Size of executable and input files

12. Program-specific parameters (flags)

13. Number of Arguments

6.2 Description of the Crimson Grid data set

I created a data set by collecting Condor job histories of jobs deployed on the Crim-

son Grid, a campus grid housed at Harvard University (see Chapter 1, Section 1.1.2),

from October 2006 to October 2007. The data set includes approximately 100,000

jobs. Condor is a specialized workload management system for computationally in-

tensive jobs developed at University of Wisconsin, Madison [68]. The Crimson Grid

leverages the job queueing mechanism, scheduling policy, priority scheme, resource

monitoring, and resource management provided by Condor. Users submit their jobs

to Condor. A sample user input file for Condor is presented in Figure 6.1. Users

can specify the name of the executable, the input files, machine requirements (e.g.,

memory, operating system, architecture), and where to store the output and error

information. Then Condor places the jobs into a queue, chooses when and where to

run the jobs, monitors their progress, and informs the user upon completion.

Figures 6.2 and 6.3 show the information available for each job in the data set.

The bold fields are used to compute the value of the input attributes as shown in

Figure 6.4. The underlined fields contain information needed to compute the output,
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Figure 6.1: Sample Condor user input file.

run time. Jobs with 1 or more restarts or more than one host are left out to ensure

that CompletionTime - JobStartTime actually reflects the run time of a given job.

Jobs that did not complete, i.e., ones with ExitCode not equal to 0, are not included

in the data set. Figure 6.5 shows the decision process.

Figure 6.6 shows the run time distribution of the jobs in the data set. The X-axis

is labeled by the midpoint of each bucket (the size of each bucket is 5,000 seconds).

The histogram includes jobs with run time up to 50,000 seconds. Approximately 4%

of jobs have length beyond 50,000 seconds (≈ 14 hours), with the longest job having

a run time of 4 days and 16 hours. More than 80% of the jobs are relatively short,

taking less than 10,000 seconds.

Mean 12996.38 seconds
Standard Deviation 46645.15 seconds
Maximum 404204.00 seconds

Figure 6.7 shows the relationship between the size of the executable and the run time

of a job. The fitted line shows that there is a positive correlation between the two



Chapter 6: Resource Estimation with Monotonicity Constraints in Open Systems 98

Figure 6.2: Snapshot of data: Bold fields are used as inputs in the experiments.
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Figure 6.3: Snapshot of data: Bold fields are used as inputs in the experiments.
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Figure 6.4: Input attributes

variables. The slope of the line is 1.646 with a standard error = 0.02, and the positive

relationship is statistically significant.

Attributes available at submission time include user and research group informa-

tion(Owner or User, time of submission (QDate), the command name (Cmd)(from

which one can extract the type of executable), size of executable (ExecutableSize),

and arguments (Arguments). A user can also provide an estimate of memory usage

at submission time (ImageSize). If a user does not provide an estimate, ImageSize is

set to ExecutableSize. However, after a job runs to completion, the ImageSize field is

updated to the actual memory usage. The run time of a job can be computed using

the JobStartDate and CompletionDate fields.

Time variables (e.g., QDate, JobStartDate, and CompletionDate) are measured in
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Figure 6.5: Computing the run time

seconds elapsed since the epoch (00:00:00 UTC, January 1, 1970). ExecutableSize and

ImageSize are measured in KBytes.

6.3 Learning Techniques

I employ several machine learning techniques to learn the run time prediction

function. I start with a regression method, where all variables are assumed to be

continuous, then classification methods where all variables are assumed to be dis-

crete, and finally, explore a combination method where both continuous and discrete

variables can be used.

Linear regression produces a continuous model of run time, where Näıve Bayes
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Figure 6.6: Distribution of the run time of Crimson Grid jobs
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Figure 6.7: Executable size vs. Run time
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classification and Bayesian network classification predict ranges (class labels) of run

time using discretized attributes using MAP (Maximum A-Posteriori Estimator).

Conditional linear gaussian takes both discrete and continuous attributes, and pro-

duces a Gaussian distribution over run time. Details on these techniques and other

machine learning approaches can be found in [41, 48, 70, 75]. Attributes are written

in uppercase, while specific attribute values are denoted by lowercase letters.

6.3.1 Linear Regression

Linear regression uses a least-squares function to model the relationship between

one or more independent variables and the dependent variable. This function is writ-

ten as a linear combination of one or more model parameters (regression coefficients).

The learned model can be represented concisely as a vector of coefficients. The inde-

pendent variables and the dependent variable are real-valued. For discrete attributes,

indicator variables (dummy variables) with values ∈ {0, 1} can be used.

The objective function minimizes the sum of squared residuals, ri, the difference

between the observed value and the value predicted by the model:

ri = yi −
m∑

j=1

Xijβ̂j,

where y is the (observed) vector of the dependent variable, X is the matrix of inde-

pendent variables (input attributes), and β̂ is the vector of estimated coefficients.

In matrix form, the vector of residuals can be written as y−Xβ̂, thus the objective

function becomes:

min
β̂

(y −Xβ̂)′(y −Xβ̂). (6.4)

The solution to 6.4 is β̂ = (X ′X)−1X ′y [35].
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6.3.2 Näıve Bayes Classification

Näıve Bayes is the simplest form of Bayesian networks, where the class node (the

predicted variable) has no parents and is the only parent of all other nodes. Näıve

Bayes classification is based on the independent attribute assumption, i.e., that each

attribute is independent given the predicted attribute.

Although the independent attribute assumption is often violated in real world

applications, many empirical comparisons [61, 40] have showed that Näıve Bayes

performs as well as modern decision tree algorithms, e.g., C4.5 [63].

The main advantage of Näıve Bayes models is that only a small amount of training

data is necessary to estimate the parameters (means and variances of the variables)

needed for classification.

Figure 6.8: A Näıve Bayes Network

The algorithm for Näıve Bayes classification given the network in Figure 10 is as

follows:
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1. Estimate Pr(Y = y) as fraction of records with Y = y

2. Estimate Pr(X i = xi|Y = y) as fraction of Y = y records that also have

X i = xi.

3. To predict the Y value given observations of all the X i values, compute

Ŷ = arg max
y

Pr(Y = y|X1 = x1, . . . , Xm = xm)

MAP(Maximum A− Posteriori Estimator)

= arg max
y

Pr(Y = y)
m∏

i=1

Pr(X i = xi|Y = y)

6.3.3 Bayesian Network Classification

Formally, a Bayesian network is a directed acyclic graph (DAG), where each node

represents an attribute, and each arc between nodes represents a probabilistic de-

pendency, which is quantified via a conditional probability distribution. The joint

distribution of node values can be written as a product of the distributions of each

node and its parents:

Pr(X1, X2, . . . , Xm) =
m∏

j=1

Pr(Xj|parents(Xj))

A Bayesian network can be used to compute the conditional probability of a node

given values assigned to the other nodes. Thus, a Bayesian network can be used

as a classifier that outputs the posterior probability distribution of the class node

given the values assigned to other attributes. A major advantage of Bayesian network

classifiers is that the network structure can represent the inter-relationships among the

attributes. Learning the parameters for a given network structure that are optimal for
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a set of complete data simply involves computing the empirical conditional frequencies

from the data [19].

Suppose one wants to predict an output Y with values in y ∈ {y1, . . . , ynY
} when

there are m input attributes, X1, . . . , Xm.

The model is built as follows:

1. Divide data set into nY smaller data sets, DS1, . . . , DSnY
, where DSj is the set

of records for which Y = yj.

2. For each DSj:

Learn Density Estimator Mj to model the input distribution among the records

for which Y = yj.

Mj estimates Pr(X1, . . . , Xm|Y = yj).

3. Estimate Pr(Y = yj) as the fraction of records for which Y = yj.

4. For a new input with attribute values X1 = x1, . . . , Xm = xm

Ŷ = arg max
y

Pr(Y = y|X1 = x1, . . . , Xm = xm)

= arg max
y

Pr(X1 = x1, . . . , Xm = xm|Y = y)Pr(Y = y)

When a new input arrives with attributes X1 = x1, . . . , Xm = xm, the model predicts

the value of Y that makes Pr(Y = y|X1 = x1, . . . , Xm = xm) most likely (Maximum

A-Posteriori Estimator).
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6.3.4 Conditional Linear Gaussian

A conditional linear gaussian (CLG) network [41] is a variation of a Bayesian net-

work where every discrete node has only discrete parents and every continuous node

has Condition Linear Gaussian conditional probability tables. Conditional linear

gaussian networks have the advantage that they allow for both discrete and contin-

uous variables, that the learned model has a concise description that can easily be

published, and that distributional information (mean and variance) for the output

variable is available. Figure 6.9 is an example of a conditional linear gaussian net-

work. The output variable Y is continuous, and has two continuous parents X1, X2,

and one discrete parent D1. The distribution of Y follows a normal distribution where

its mean is a linear combination of the values of continuous parents and the variance

depends on only its discrete parent.

Figure 6.9: Conditional Linear Gaussian Network
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6.4 Experimental Results

The following attributes available at submission time were used in the experiments.

1. User ID: user IDs are assigned to each distinct user based on the Owner field

in the Crimson Grid data.

2. Size: ExecutableSize in KBytes

3. Type of Executable: the name of the executable file is available through the Cmd

field. This variable is a boolean variable of whether the job is a mathematical

and

4. Number of Arguments: number of arguments provided in the Arguments field.

The dependent variable or the class node is the run time of a job. Initially, the

time of submission and requirements (architecture, operating system, and memory

requirement) were also included as inputs, but were removed because of the lack of

correlation between these variables and the run time.

I randomly partitioned the data set into two equal-sized sets and used one as the

training set and the other as the prediction set.

The Näıve Bayes classification gave results that were slightly less accurate but

comparable (2.94% higher root mean squared error) to the Bayesian network classi-

fication using a learned network structure.

Table 6.1 summarizes the root mean squared errors of each learning method.
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Learning Method RTSE
Linear Regression 18871

Näıve Bayes classification 12090
Bayesian network classification 11745
Conditional linear gaussian1 11258

Table 6.1: Root Mean Squared Errors

6.4.1 Linear Regression

A separate indicator variable was created for each distinct user ID. Another indi-

cator variable was used for the type of executable. The R-Squared value was 0.8229,

indicating that 82.29% of the variability in run time can be explained by the inde-

pendent variables, user ID, size, type of executable, and number of arguments. The

estimated coefficients and their standard errors are reported below (only the coeffi-

cients for the first three unique user IDs are presented).

Variable Coefficient Standard Error
Number of Arguments -46.32 58.79
Type of Executable -534.92 10145.40

Size 1.120 0.02
userId=0 -8245.33 10227.42
userId=1 22213.16 10612.18
userId=2 -4690.67 10252.53

The results suggest that user ID has a strong impact on run time, and that size

has a strong positive correlation with run time. Number of arguments and type of

executable both have a slightly negative effect on run time. The root mean squared

error of the linear regression model given the prediction set with the above coefficients

was 18871.
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6.4.2 Näıve Bayes Classification

The Näıve Bayes network used for classification is presented in Figure 6.4.2.

Figure 6.10: Näıve Bayes Network

The Näıve Bayes Classifier requires that all nodes are discrete. The run time

node is discretized such that the range of each class is 5000 (same as the bucket size

of the histogram presented in Figure 6.6). Number of arguments is divided up into

5 categories, 0-9, 10-19, 20-29, 30-39, and at least 40. Size is also discretized into

classes of range 5000.

The conditional probability tables for when the run time is between 0 and 5000

(Y = y1) is presented in Tables 6.2 through 6.5.

The root mean squared error defined in equation 6.3 of the Näıve Bayes model is

12090.
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Number of Arguments(X1) Pr(X1|Y = y1)
0-9 0.7811

10-19 0.0927
20-29 0.0635
30-39 0.0459
40+ 0.0168

Table 6.2: Conditional Probability Table for Number of arguments

Executable Type (X2) Pr(X2|Y = y1)
false 0.9223
true 0.0777

Table 6.3: Conditional Probability Table for Executable Type

6.4.3 Bayesian Network Classification

The same set of discretized data used in section 6.4.2 is used. The proposed

network structure is presented in Figure 11. This structure is learned using the

K2 algorithm [19], where all orderings of the 5 nodes were considered. Then the

maximum likelihood parameters for the fully observed model are computed. The

learned conditional probability table of Number of Arguments (up to 20-29) given

User ID for the first five user IDs is presented in Table 6.6 The root mean squared

error defined in equation 6.3 of the classification model given the Bayesian network

in Figure 11 is 11745.

6.4.4 Conditional Linear Gaussian

Run time and size are treated as continuous variables with gaussian conditional

probability tables and all the other attributes as discrete variables.

Let u be the vector containing values of discrete parents, User ID, Type, and
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Size(X3) Pr(X3|Y = y1)
[0, 5000) 0.2657

[5000, 10000) 0.7282
[10000, 15000) 0.0062
[15000, 20000) 0
[20000, 25000) 0
[25000, 30000) 0
[30000, 35000) 0
[35000, 40000) 0
[40000, 45000) 0

45000+ 0

Table 6.4: Conditional Probability Table for Size

User ID(X4) Pr(X4|Y = y1)
1 0
2 0.0009
3 0.0018
4 0.0026
5 0.0035
6 0.0044
7 0.0053
8 0.0062
9 0.0071
10 0.0079

Table 6.5: Conditional Probability Table for User ID (only the first ten user IDs are
presented)

User ID Pr(0− 9|User ID) Pr(10− 19|User ID) Pr(20− 29|User ID)
1 0.0189 0.0314 0.761
2 1 0 0
3 0.0272 0.0612 0.1905
4 0.996 0 0
5 0.9231 0.0769 0

Table 6.6: Conditional Probability Table for Number of Arguments given user ID
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Figure 6.11: Bayesian Network Structure

Number of Arguments, and x be the value of the continuous parent, Size.

Pr(Y |u, x) = N (au,0 + au,1x, σ2
u)

In contrast with the other models, the prediction is not a point value or class label, but

rather a distribution. The distribution of the root mean squared error is computed

as described in Section 6.1.1, where the number of trials, M , is 1000. The mean of

the distribution of the root mean squared error is 11258, and the standard deviation

is 1205.

6.5 Verifying and Imposing Monotonicity

For linear regression and conditional linear gaussian, monotonicity can be imposed

by restricting that the coefficients of the attributes for which the partial order is de-

fined are nonnegative. Similarly, for verification, one can check whether the published
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coefficients are nonnegative. For conditional linear gaussian, the variance must also

be checked if the partial order is defined on discrete variables.

For Näıve Bayes and Bayesian network classification, the parameters are estimated

such that likelihood of the data is maximized (the negative of the log likelihood mini-

mized). In other words, the parameter estimation problem is an optimization problem

with the objective of maximizing likelihood of data. Hence, one can add monotonicity

constraints to the parameter estimation problem and solve the optimization problem

with respect to the added constraints. For verification, the conditional probability

distributions of the output node can be compared for stochastic dominance.

Experimental results for linear regression and conditional linear gaussian show

that the learned models satisfy monotonicity constraints. For instance, the coefficient

of size estimated by linear regression is 1.120 with a standard error of 0.02, hence,

one can conclude that the coefficient is nonnegative with more than 99.7% confidence.

Similarly, for conditional linear gaussian, I check whether each learned coefficient

au,1 ≥ 0 for each vector u of values of discrete parents, User ID, Type, and Number

of Arguments. In this case, the variance does not depend on size.



Chapter 7

Methods for Optimal Monotonic

Pricing in Open Systems

Abstract

Decentralized and autonomous control of resources and extensibility are desirable

properties for efficient and sustainable resource allocation schemes in open compu-

tational grids. In a dynamic, distributed, and asynchronous setting, it is unrealistic

to propose a particular selling mechanism that all resource owners should use. The

auction framework supports the design principle of decentralized and autonomous

control by allowing resource owners the flexibility of designing their own pricing al-

gorithms and requiring only that the prices are admissible. This is achieved through

resource owners defining and publishing their own price schedules called price tables.

Resource owners can further replace and improve their pricing algorithms over time,

leading to innovation.

116
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In this chapter, I discuss several strategies with which a resource owner can define

an admissible price schedule while maximizing total expected revenue in the context

of the auction framework from Chapter 5. I present results from a simulation of the

auction framework combined with price tables populated using these strategies. I

compare the revenue properties of each strategy and formulate the offline optimal

revenue problem and the offline optimal value problem as linear programs to use

the solutions as benchmarks to evaluate the efficacy of the auction framework, given

when these strategies are used, and estimate the cost of imposing the monotonic

prices requirement.
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In Chapter 5, I argued that decentralized and autonomous control and extensi-

bility of resources is a desirable property of any efficient and sustainable resource

allocation scheme in open computational grids. In a dynamic, distributed, and asyn-

chronous setting, it is unrealistic to propose a particular selling mechanism that all

resource owners should use. The auction framework supports the design principle of

decentralized and autonomous control by allowing resource owners the flexibility of

designing their own pricing algorithms and requiring only that the prices are admissi-

ble. This is achieved through resource owners defining and publishing their own price

schedules, which I call price tables. Resource owners can further replace and improve

their pricing algorithms over time to extract more revenue, leading to innovation.

In this chapter, I suggest several strategies with which a resource owner whose

goal is to maximize total expected revenue can define an admissible price schedule.

Load: The load-based heuristic adjusts prices based on the current load, i.e., the

number of time slots currently scheduled.

Elasticity: The elasticity-based heuristic adjusts prices based on the estimated

price elasticity of demand.

Consensus: The consensus strategy is based on the Consensus algorithm [10], an

Online Stochastic Optimization technique. Prices are adjusted based on votes

given from job arrival scenarios by solving the offline optimization problem given

each scenario.

In all of these strategies, the price for each time slot is only allowed to fall if the time

slot is outside of the scheduling horizon to respect monotonicity.
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I design a simulation of the auction framework with multiple resource providers

where price tables are populated using the strategies described above. I separate the

resource estimation module from the pricing module and assume that the resource

estimates are given. I compare the revenue properties of each strategy and formulate

the offline optimal revenue problem and the offline optimal value problem as linear

programs to use the solutions as benchmarks when evaluating the efficacy of the auc-

tion framework given when these strategies are used. I estimate the cost of imposing

the monotonic prices requirement by comparing the revenue and value achieved with

admissible prices to the case where price cuts are allowed.

The analysis is based on the simple case where the only resource requirement a

resource provider cares about is the run time of a job (job length), however, it can be

generalized to the case with multi-dimensional resource requirements. I assume that

each job requires a fixed number of contiguous slots, and that users have constant

willingness to pay (denoted by vi) for a completed job within their arrival-departure

window.

7.1 Price tables

Recall that a resource provider maintains a price table visible to the market infras-

tructure, which is a function of a vector of resource requirements Q and the completion

time τ . It can be thought of as a table of dimension 1 + dim(Q) where dim(Q) is

the dimension of the vector Q and the last dimension corresponds to period in which

the job is to be completed. The price table is used by the market infrastructure to

generate a resource provider’s bid, given a reverse auction for a particular job in some
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time period.

The ability of resource providers to fill the price table based on their own objectives

is a key feature that provides autonomous control. A resource provider can update its

price table entries to incorporate scheduling constraints, meet a target load level, or

to improve its revenue. However, in order to maintain strategyproofness for end-users,

the market infrastructure imposes that the price table entries are admissible.

Let φt
k(Q, τ) denote the price table entries quoted by resource provider k in period

t for resource requirement Q for the completion time τ . φt
k(Q, τ) can be interpreted as:

the price (quoted in time t) that resource provider k wishes to receive for completing

a job with resource requirements Q, if it were scheduled to complete by time τ . Given

a job, a scheduled completion time τ ∗k for each resource provider k is selected by the

auctioneer, such that the payoff of the user is maximized.

Let Q[m] denote the mth component of the vector Q, and let ∆ be the user

patience.

Definition 23 (admissible prices). Price table entries

φt
k(Q, τ) are admissible if both:

φt
k(Q

′[m], τ) ≥ φt
k(Q[m], τ) ∀Q′[m] > Q[m],∀m, ∀τ,∀t (7.1)

,φt′

k (Q, τ) ≥ φt
k(Q, τ) ∀t′ > t,∀t′ ≤ τ ≤ t + ∆,∀Q. (7.2)

Prices are admissible if (1) the price table entries are nondecreasing in each com-

ponent of the resource requirements, e.g., if Q consists of runtime (r) and disk space
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(s)

φt
k((r

′, s), τ) ≥ φt
k((r, s), τ) ∀r′ > r

φt
k((r, s

′), τ) ≥ φt
k((r, s), τ) ∀s′ > s

and (2) the price table entry for a given completion time within the user-patience

window (t + ∆) does not decrease over time. Note that this still allows a resource

provider to decrease prices outside of the user-patience window.

7.1.1 Single-dimensional Price tables

For illustrative purposes, I consider here a single resource, the run time or length

of a job. I further assume that the run time of a job is given (recall that the run

time is computed by the resource estimation module of each resource provider) and

is an integer at least 1. This can be represented via a two-dimensional price table

indexed by job length and scheduled completion time, or a single dimensional price

table indexed by scheduled completion time, where the price quote for a job of length

l is computed by summing up the slot prices of l contiguous slots.

Alternative 1: Multi-dimensional price table

A price table is a two-dimensional table of number of slots (or job length) × time

period. Each entry φ(l, τ) defines a price for l slots with scheduled completion time

τ . Note that φ(l′, τ) ≥ φ(l, τ) for all l′ > l, for all τ by admissibility, and that φ(l, τ)

is undefined (or ∞) for τ < t0 + l where t0 is the current time. Moreover, I have

the restriction that the scheduling must be feasible given the set of jobs already won,
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e.g., if the number of slots already scheduled prior to τ is ns(τ), then the price table

entries are undefined for all (l, τ) such that l + ns(τ) < τ − t0.

Alternative 2: Additive prices (single-dimensional price table)

The resource can maintain a single-dimensional table, as in the case of unit-length

jobs. Each entry φ(τ) represents the price of a given slot τ . Let the length of job i be

li, user patience be ∆i, the current time be t0. Then the price quote from resource j

is

ρj = mint∈[t0+li,t0+∆i]

τ=t∑
τ=t−li

φj(τ). (7.3)

An additional restriction must be placed: if the number of slots already scheduled

prior to τ is ns(τ), l + ns(τ) < τ − t0. However, this is not sufficient to ensure

scheduling feasibility in this model.

Incorporating capacity constraints

To ensure scheduling feasibility, the resource providers can publish capacity con-

straints in addition to the price schedule. The auctioneer does not obtain price

quotes from resource providers whose capacity constraints would be violated if job is

accepted.

The scheduled completion time for a job j becomes:

τ ∗ = arg max
τ

wj(τ)− ρ(τ)

subject to Capacity Constraints

instead of

τ ∗ = arg max
τ

wj(τ)− ρ(τ)
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where wj(τ) is the maximum willingness to pay for job j if the completion time is τ ,

and ρ(τ) is the price quote based on completion time τ .

7.2 Offline Omniscient Optimal Revenue Problem

The offline omniscient optimal revenue problem solves for the optimal price sched-

ules of a resource given that it knows the exact sequence of future job arrivals within

a fixed scheduling horizon. The objective is to maximize total revenue subject to

capacity constraints and admissible prices constraints.

I study the problem in the case of a single resource with a single-dimensional price

table, where jobs have constant value(vi) within the arrival-departure window. Let

J = {(v1, l1, a1, d1), . . . , (vn, ln, an, dn)} be the set of jobs, and let ∆ be the scheduling

horizon. Then the total revenue received is:∑
i

min
t∈[ai+li,di]

τ=t∑
τ=t−li

φai(τ) (7.4)

where φt(τ) denotes the price table entry for slot τ at time t.

First, define ρ(a, d, l) = mint∈[a+l,d]

∑τ=t
τ=t−l φ

a(τ). ρ(a, d, l) is the price quote for a

job of length l with arrival-departure window [a, d]. Let ρi = ρ(ai, di, li) for each job

i.

Also define

xi(s, t) =

 1, job i is scheduled in the interval [s, t] (t = s + li);

0, otherwise.

(7.5)

and let yi =
∑

(s,t):ai≤s<t≤di
xi(s, t)) be the indicator variable for whether job i is

scheduled within its arrival-departure window. Let t0 be the current time period.

Then the offline optimal revenue problem becomes:
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Maximize
∑

i ρiyi subject to:

ρiyi ≤ vi ∀i (schedule if value is at least price)∑
i

xi(s, t) ≤ 1 ∀[s, t] ⊆ [t0, t0 + ∆] (capacity constraint)

φt′(τ) ≥ φt ∀t′ > t ∈ [t0, t0 + ∆], τ ∈ [t, t0 + ∆]

This can be written as the following linear program:

Maximize
∑

i

zi subject to

Constraints:

φt(τ) ≤ φt+1(τ) ∀t ∈ [t0, t0 + ∆], ∀τ ∈ [t, t0 + ∆] (7.6)∑
i

xi(s, t) ≤ 1∀[s, t] ⊆ [t0, t0 + ∆] ∀i : (7.7)

zi ≤ ρi (7.8)

zi ≤Miyi (7.9)

yi ≤
s=di−li∑

s=ai

xi(s, s + li) (7.10)

vi − ρi ≥ −Ni(1− yi) (7.11)∑
[s,t]⊆[ai,di]

xi(s, t) ≤ 1 (7.12)

ρi ≤
τ=t+li∑

τ=t

φai(τ)∀t ∈ [ai, di − li] (7.13)

with constants Mi and Ni (maximum possible value of ρi and vi)

Mi ≥ max ρi

Ni ≥ max vi
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Bounds:

φt(τ) ≥ 0 ∀t ∈ [t0, t0 + ∆], ∀τ ∈ [t, t0 + ∆] (7.14)

∀i : (7.15)

yi ∈ {0, 1} (7.16)

xi(s, t) ∈ {0, 1} ∀[s, t] ⊆ [ai, di] (7.17)

zi ≥ 0 (7.18)

φt(τ) ≥ 0 (7.19)

ρi ≥ 0 (7.20)

I prove a lemma showing that there is a single optimal price schedule that yields

the same revenue as the optimal general formulation with one price schedule per time

period. This allows us to solve a simpler linear program where there is only one price

variable per time slot.

Lemma 5. There exists a single price schedule that yields the same revenue as the

optimal general formulation with admissible prices.

Proof. Note that a set of price schedules determines an allocation. Let J be the set

of jobs assigned to a resource provider given the optimal general formulation, ordered

in increasing order of scheduled time. Note that scheduling all jobs in S must be

feasible, i.e., there exists (tSj , tEj ) for each j such that

aj ≤ tSj < tSj + lj = tEj ≤ dj

and tEj < tSj+1 ∀j
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Consider a price schedule where the prices for slots within the interval [tSj , tEj ] are

exactly the quoted prices of the slots for job j. Hence, there exists an equivalent

formulation where the scheduling rule is “schedule-where-price-quoted” that yields

the same revenue given the resource wins the same set of jobs.

Now fix a job j ∈ J , and suppose there exists a job j′ that the resource provider

could have scheduled with earlier arrival time and higher valuation than j such that

J\{j}∪{j′} is still feasible. Then the resource provider could have increased revenue

by accepting j′ in lieu of j. This contradicts the optimality of the J .

Given the fixed price schedule, suppose there exists a job j ∈ J such that

ρ(aj, dj, lj) < ρ(tSj , tEj , lj), i.e., job j faces a lower price given the single price sched-

ule. Then there exists i ∈ J such that for some alternate start time for job j sj,

[sj, sj + lj] ⊆ [tSi , tEi ], and ρ(sj, sj + lj, lj) < ρ(tSj , tEj , lj). Then i must have arrived

earlier than j, since otherwise, the prices faced by i cannot be lower than that faced

by j by monotonicity. Since i arrived earlier and is scheduled in [tSi , tEi ], those slots

are not available when j arrives, i.e., capacity constraints prevent j from receiving a

lower price quote.

Hence, the single price schedule generates the same revenue as the optimal general

formulation.

The offline omniscient value problem can be formulated similarly.
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7.3 Description of Pricing Strategies

In this section, I describe each pricing strategy in detail. Consider the single-

dimensional price table model. For all three strategies, I divide the slots within the

scheduling horizon ∆ into three regions: urgent(U), medium(M), not urgent(NU),

and start with a single price per slot for each region, by setting the initial price vector

p0 such that p0
U ≥ p0

M ≥ p0
NU , p0

r ∈ [0, V ], r ∈ [U,M,NU ].

7.3.1 Heuristic based on load

This simple heuristic helps resource owners maintain a target load level. If the

resource is facing high demand, i.e., load is heavy, then the base prices for each region

is increased, and vice versa.

1. Let the time between price table updates be T , and fix δp > 0 for each region.

2. At the end of each period, for each region, record the number of slots that

were scheduled in that period. This is the load in each period. Suppose load

∈ {heavy, medium, light}.

3. For each region r ∈ {U,M,NU}, at the end of period t

• if (load == heavy) then pt+1
r = pt

r + δpr

• if (load == medium) then pt+1
r = pt

r

• if (load == light) then pt+1
τ = pt

τ − δp for slots τ beyond the scheduling

horizon, and pt+1
τ = pt

τ for slots within the scheduling horizon.
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Example 11. Suppose ∆ = 6. At every time step t, U = {t + 1, t + 2}, M =

{t + 3, t + 4}, and NU = {t + 5, t + 6}. Let δp = 1.

We start at time t = 0, with p0
U = 5, p0

M = 4, and p0
NU = 3. For each job scheduled

at t, with scheduled completion time τ , record if τ falls into U, M, or NU when the

job is submitted. Suppose after the observation period T = 2, we find that the load in

U is heavy, and the load in NU is light. Then we update pU = 6, and pNU for the

slots outside the scheduling interval to be 2.

current time 1 2 3 4 5 6 7 8
t = 0 5 5 4 4 3 3
t = 1 5 5 4 4 3 3
t = 2 6 6 4 4 3 2

Table 7.1: Example 11: updating the price table using the load heuristic.

7.3.2 Heuristic based on elasticity

The elasticity-based heuristic adjusts prices based on the estimated price elasticity

of demand. If demand is inelastic, base prices for each region is increased to extract

more revenue. The basic idea behind the elasticity estimation is to treat demand for

a job of length l as demand for l separate slots.

1. Let the time between updates in prices be T . Let the price vector in the interval

[kT, (k + 1)T ) be pk.

2. Fix ∆p > 0 (price increments), and δp > 0 (perturbation).

3. While time ∈ [kτ, (k + 1)τ):
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• For each job that arrives, first determine which slots the default price quote

is based on (compute the scheduled completion time). Let S be the set of

slots selected.

• For each slot τ ∈ S, let r be the region corresponding to slot τ . Flip a

coin, and let π(τ) = pk(τ) if H, and π(τ) = pk(τ) + δp if T. Offer
∑

τ π(τ),

and increment the number of times that pk(τ) or pk(τ)+ δp was offered for

each region.

• If
∑

τ π(τ) is accepted by the job, i.e., if the resource wins the job, incre-

ment the number of times that pk(τ) or pk(τ) + δp was accepted for each

region.

• For each region r: let pk
r denote the price vector for region r and W be the

event that the resource wins the job.

– Estimate Pr(W |pk
r) and Pr(W |pk

r + δp).

– Compute

ηr =
pk

r

Pr(W |pk
r)
× Pr(W |pk

r + δp)− Pr(W |pk
r)

δp

– If |ηr| < 1, pk+1
r = pk

r + ∆p.

– If |ηr| > 1, pk+1
r = pk

r −∆p for slots outside the scheduling horizon.

Note that δp must be small enough so that pk
U ≥ δp + pk

M ≥ 2δp + pk
NU .

Example 12. Let ∆p = 1. Suppose 5 jobs of length 2 arrive in [0, T ], and all jobs

can be scheduled in the urgent region. 5 of them are offered a price of p0
U = 4, which

all 5 accept, and the other 5 are offered 5, among which 4 accept. Then

ηU =
4

1
× 1− 0.8

1
= 0.8 < 1.
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For the next observation period, the price for the urgent region p1
U is increased to 5.

7.3.3 Online stochastic optimization: Consensus algorithm

The idea behind the consensus algorithm is to sample a set of scenarios, solve

the offline optimization problem given each scenario, then keep a vote as to which

strategy is optimal. Prices are updated every T periods via the consensus algorithm.

• Scenario s: Sequence of job arrivals (facing this machine) within scheduling

horizon ([t0, t0 + ∆]), where each job associated with a value and length.

• Strategy space: for each region r, ∆p ∈ {−2,−1.5,−1,−0.5, 0, 0.5, 1, 1.5, 2.0}

• States consist of jobs already won, current price table entries

Consensus Algorithm:

1. Generate n scenarios.

2. For each scenario:

(a) Solve the offline optimization problem given the set of jobs already won,

and current price table entries.

(b) Compare the slot prices computed for time step t1 > t0 to the current price

table entries. Let d(τ) = pt1(τ) − pt0(τ) (rounded to the nearest multiple

of 0.5).

(c) For each region, if τ ∈ r, increment the votes for bucket corresponding to

d(τ).
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3. For each region, select ∆p to be the value of the bucket that received the most

votes. Let pr = pr + ∆p, and update price table entries.

7.4 Empirical Study

In this section, I compare the relative performances of the load-based, elasticity-

based, and consensus pricing strategies, first by simulating job arrival based on the

Poisson arrival distribution, then by using a job arrival distribution modeled after the

Crimson Grid data described in Chapter 5 Section 3.

7.4.1 Design of the simulation

The load-based, elasticity-based, and consensus pricing strategies are implemented

and tested in conjunction with the auction framework. Each resource provider main-

tains its own price table, which is populated with a base price vector. Then after

every 5 time steps, the price table is updated via the pricing strategy elected by the

resource provider. For simplicity, I assume that a resource provider does not switch

pricing strategies throughout each run of the experiment. However, all 28 distinct

combinations of 6 resource providers electing one of three strategies are explored.

Each job has the following parameters:

• arrival time

• patience

• willingness-to-pay or value of a job given that it is completed by arrival time +

patience
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• reliability threshold

• length of the job estimated by the resource estimation module

Job arrival distributions are obtained by simulating Poisson arrival and by using

a distribution modeled after the Crimson Grid data described in Chapter 5 Section

3.

Poisson Arrival Distribution

Given a constant λ, the number of arrivals in each period is sampled as follows:

Initialize L← e−λ, n← 0, and P ← 1.

While P ≥ L

n← n + 1

Generate a uniform random number r ∈ [0, 1]

P ← rP

Return n

λ is the expected number of arrivals within each period. In each period, n new jobs

are generated and added to the job queue of the Auctioneer. The length of each job

is a uniform random number between 1 and 5.

Crimson Grid Arrival Distribution

Each (arrival time, length) pair is sampled from the Crimson Grid data distribu-

tion. Given monthly job submission data, beginning of each month corresponds to
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time 0 and the end of each month corresponds to time 300. Each day is divided up

into roughly 10 intervals. Jobs that run longer than a day are not included in the

experiment. The arrival time of each job is mapped into [0, 300] according to which

interval the job submission time falls into, and the length of a job is mapped into

[0, 10], where the length is the number of intervals between job start time and job

completion time (inclusive).

The default values for the remaining parameters are set as follows for both arrival

distributions:

• patience: length ×(1 + r) where r is a uniform random number in [0, 1]

• willingness-to-pay: length2 × r where r is a uniform random number in [0, 1]

• reliability threshold: 0.8 + 0.2r where r is a uniform random number in [0, 1]

7.4.2 Performance of the strategies

I present the revenue and value properties of each combination of the three strate-

gies. First, I analyze a two-player game, in the case of only two resource providers,

where the payoff is (1) revenue earned and (2) value served (total value of the jobs

scheduled on each resource provider) under both the Poisson arrival distribution and

the distribution modeled after the Crimson Grid data. Second, I present a more exten-

sive heuristic game analysis in the case where 6 resource providers are competing for

jobs for both revenue and value. In each game, the payoffs are normalized by dividing

the revenue and value by the revenue of an omniscient offline revenue-optimal resource

provider and the value of an omniscient offline value-optimal resource provider, re-
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spectively. Finally, I estimate the cost of imposing monotonic prices constraints by

comparing the revenue earned and value served when the constraints are present

to those when the constraints are removed. Unless otherwise noted, the results are

generated using the Crimson Grid distribution.

Two-player game

Poisson distribution

The following tables are generated using a Poisson arrival distribution with λ = 2.

Payoffs are normalized with respect to the revenue of an omniscient offline revenue-

optimal resource provider or the value of an omniscient offline value-optimal resource

provider, where the optimal payoff is the average revenue earned by 2 omniscient

offline revenue-optimal resource providers or the average value served by 2 omniscient

offline value-optimal resource providers, respectively.

L E C
L (0.377, 0.377) (0.382, 0.515) (0.361, 0.543)
E (0.515, 0.382) (0.510, 0.510) (0.506, 0.543)
C ( 0.543, 0.361) ( 0.543, 0.506) ( 0.526, 0.526)

Table 7.2: Two-player game (Poisson): Payoffs are normalized revenue earned over
the duration of the experiment. Best responses are italicized.

L E C
L (0.513, 0.513) (0.524, 0.625) (0.498, 0.682)
E (0.625, 0.524) (0.637, 0.637) (0.632, 0.675)
C ( 0.682, 0.498) ( 0.675, 0.632) ( 0.661, 0.661)

Table 7.3: Two-player game (Poisson): Payoffs are normalized value served over the
duration of the experiment. Best responses are italicized.

Crimson Grid Distribution
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L E C
L (0.401, 0.401) (0.418, 0.429) (0.383, 0.513)
E (0.429, 0.418) (0.444, 0.444) (0.435, 0.513)
C ( 0.515, 0.383) ( 0.513, 0.435) ( 0.496, 0.496)

Table 7.4: Two-player game (Crimson Grid): Payoffs are normalized revenue earned
over the duration of the experiment. Best responses are italicized.

L E C
L (0.778, 0.778) (0.834, 0.843) (0.791, 0.917)
E (0.843, 0.834) (0.854, 0.854) (0.829, 0.932) )
C ( 0.917, 0.791) ( 0.932, 0.829) ( 0.891, 0.891)

Table 7.5: Two-player game (Crimson Grid): Payoffs are normalized value served
over the duration of the experiment. Best responses are italicized.

The payoffs and best-responses in a 2-player symmetric game with strategy space

{load-based(L), elasticity-based (E), consensus (C)} are presented in tables 7.2 through

7.5. In all games, the unique Nash equilibrium is (C, C). Moreover, (C, C) constitutes

a dominant strategy equilibrium of the game.

The difference in normalized revenue earned across strategy pairs is smaller un-

der the Crimson Grid distribution. A resource provider playing strategy C earns a

relatively higher payoff when facing the Poisson arrival distribution. However, the

relative value served is higher for all strategy pairs when facing the Crimson Grid

distribution.

Heuristic games analysis [36]

I present a game theoretic analysis of a six-player symmetric game. There are(
6+3−1

6

)
= 28 distinct combinations of six players choosing from three pricing strategies.

Table 2 summarizes the payoff (average total revenue) of each player. Each entry

denotes the mean or the standard error of the payoff of a player who played a strategy
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given the strategy profile for all 6 players. Figure 1 shows the revenue gain by a player

if the player switches to another strategy. As noted in Section 4.2.1, choosing the

Consensus strategy yields the highest payoff regardless of the other players’ strategy

profiles.

L E C Total
( 0 , 0 , 6 ) 0.000 ( 0.000 ) 0.000 ( 0.000 ) 0.492 ( 0.006 ) 2.952
( 0 , 1 , 5 ) 0.000 ( 0.000 ) 0.031 ( 0.005 ) 0.579 ( 0.007 ) 2.926
( 0 , 2 , 4 ) 0.000 ( 0.000 ) 0.050 ( 0.005 ) 0.705 ( 0.009 ) 2.919
( 0 , 3 , 3 ) 0.000 ( 0.000 ) 0.106 ( 0.005 ) 0.859 ( 0.010 ) 2.895
( 0 , 4 , 2 ) 0.000 ( 0.000 ) 0.183 ( 0.006 ) 1.058 ( 0.010 ) 2.849
( 0 , 5 , 1 ) 0.000 ( 0.000 ) 0.302 ( 0.006 ) 1.251 ( 0.014 ) 2.761
( 0 , 6 , 0 ) 0.000 ( 0.000 ) 0.440 ( 0.006 ) 0.000 ( 0.000 ) 2.639
( 1 , 0 , 5 ) 0.019 ( 0.005 ) 0.000 ( 0.000 ) 0.624 ( 0.007 ) 3.139
( 1 , 1 , 4 ) 0.040 ( 0.009 ) 0.063 ( 0.019 ) 0.611 ( 0.019 ) 2.548
( 1 , 2 , 3 ) 0.116 ( 0.010 ) 0.064 ( 0.004 ) 0.859 ( 0.010 ) 2.821
( 1 , 3 , 2 ) 0.229 ( 0.013 ) 0.119 ( 0.004 ) 1.058 ( 0.010 ) 2.702
( 1 , 4 , 1 ) 0.422 ( 0.015 ) 0.205 ( 0.005 ) 1.251 ( 0.014 ) 2.492
( 1 , 5 , 0 ) 0.648 ( 0.014 ) 0.315 ( 0.005 ) 0.000 ( 0.000 ) 2.224
( 2 , 0 , 4 ) 0.031 ( 0.005 ) 0.000 ( 0.000 ) 0.705 ( 0.009 ) 2.880
( 2 , 1 , 3 ) 0.067 ( 0.006 ) 0.097 ( 0.005 ) 0.859 ( 0.010 ) 2.809
( 2 , 2 , 2 ) 0.132 ( 0.009 ) 0.151 ( 0.004 ) 1.058 ( 0.010 ) 2.681
( 2 , 3 , 1 ) 0.231 ( 0.009 ) 0.251 ( 0.005 ) 1.251 ( 0.014 ) 2.466
( 2 , 4 , 0 ) 0.445 ( 0.013 ) 0.295 ( 0.005 ) 0.000 ( 0.000 ) 2.071
( 3 , 0 , 3 ) 0.065 ( 0.005 ) 0.000 ( 0.000 ) 0.859 ( 0.010 ) 2.773
( 3 , 1 , 2 ) 0.109 ( 0.007 ) 0.201 ( 0.005 ) 1.058 ( 0.010 ) 2.643
( 3 , 2 , 1 ) 0.192 ( 0.007 ) 0.286 ( 0.006 ) 1.251 ( 0.014 ) 2.398
( 3 , 3 , 0 ) 0.325 ( 0.010 ) 0.348 ( 0.006 ) 0.000 ( 0.000 ) 2.019
( 4 , 0 , 2 ) 0.113 ( 0.006 ) 0.000 ( 0.000 ) 1.058 ( 0.010 ) 2.567
( 4 , 1 , 1 ) 0.176 ( 0.006 ) 0.364 ( 0.006 ) 1.251 ( 0.014 ) 2.320
( 4 , 2 , 0 ) 0.272 ( 0.007 ) 0.431 ( 0.007 ) 0.000 ( 0.000 ) 1.950
( 5 , 0 , 1 ) 0.186 ( 0.006 ) 0.000 ( 0.000 ) 1.251 ( 0.014 ) 2.183
( 5 , 1 , 0 ) 0.260 ( 0.006 ) 0.523 ( 0.007 ) 0.000 ( 0.000 ) 1.824
( 6 , 0 , 0 ) 0.271 ( 0.006 ) 0.000 ( 0.000 ) 0.000 ( 0.000 ) 1.627

Table 7.6: Two-player game: Payoffs are normalized revenue served over the duration
of the experiment.
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Figure 7.1: Revenue gain by a player if the player switches to another strategy. Arrows
show direction of improvement.



Chapter 7: Methods for Optimal Monotonic Pricing in Open Systems 138

L E C Total
( 0 , 0 , 6 ) 0.000 ( 0.000 ) 0.000 ( 0.000 ) 0.922 ( 0.002 ) 5.531
( 0 , 1 , 5 ) 0.000 ( 0.000 ) 0.084 ( 0.007 ) 1.091 ( 0.002 ) 5.541
( 0 , 2 , 4 ) 0.000 ( 0.000 ) 0.125 ( 0.007 ) 1.328 ( 0.003 ) 5.562
( 0 , 3 , 3 ) 0.000 ( 0.000 ) 0.247 ( 0.009 ) 1.627 ( 0.003 ) 5.623
( 0 , 4 , 2 ) 0.000 ( 0.000 ) 0.440 ( 0.008 ) 1.966 ( 0.007 ) 5.691
( 0 , 5 , 1 ) 0.000 ( 0.000 ) 0.735 ( 0.007 ) 2.117 ( 0.013 ) 5.790
( 0 , 6 , 0 ) 0.000 ( 0.000 ) 0.905 ( 0.004 ) 0.000 ( 0.000 ) 5.432
( 1 , 0 , 5 ) 0.042 ( 0.007 ) 0.000 ( 0.000 ) 1.091 ( 0.002 ) 5.499
( 1 , 1 , 4 ) 0.089 ( 0.015 ) 0.072 ( 0.004 ) 1.328 ( 0.003 ) 5.473
( 1 , 2 , 3 ) 0.262 ( 0.037 ) 0.109 ( 0.003 ) 1.627 ( 0.003 ) 5.361
( 1 , 3 , 2 ) 0.534 ( 0.066 ) 0.227 ( 0.005 ) 1.999 ( 0.007 ) 5.215
( 1 , 4 , 1 ) 0.983 ( 0.074 ) 0.427 ( 0.004 ) 2.317 ( 0.013 ) 5.007
( 1 , 5 , 0 ) 1.502 ( 0.071 ) 0.663 ( 0.003 ) 0.000 ( 0.000 ) 4.818
( 2 , 0 , 4 ) 0.062 ( 0.007 ) 0.000 ( 0.000 ) 1.328 ( 0.003 ) 5.437
( 2 , 1 , 3 ) 0.145 ( 0.014 ) 0.159 ( 0.003 ) 1.627 ( 0.003 ) 5.332
( 2 , 2 , 2 ) 0.306 ( 0.025 ) 0.263 ( 0.001 ) 1.999 ( 0.007 ) 5.137
( 2 , 3 , 1 ) 0.563 ( 0.027 ) 0.473 ( 0.003 ) 2.317 ( 0.013 ) 4.863
( 2 , 4 , 0 ) 1.020 ( 0.026 ) 0.560 ( 0.002 ) 0.000 ( 0.000 ) 4.280
( 3 , 0 , 3 ) 0.124 ( 0.009 ) 0.000 ( 0.000 ) 1.627 ( 0.003 ) 5.253
( 3 , 1 , 2 ) 0.236 ( 0.013 ) 0.335 ( 0.002 ) 1.999 ( 0.007 ) 5.042
( 3 , 2 , 1 ) 0.440 ( 0.017 ) 0.517 ( 0.003 ) 2.317 ( 0.013 ) 4.670
( 3 , 3 , 0 ) 0.728 ( 0.013 ) 0.651 ( 0.002 ) 0.000 ( 0.000 ) 4.137
( 4 , 0 , 2 ) 0.219 ( 0.008 ) 0.000 ( 0.000 ) 1.999 ( 0.007 ) 4.874
( 4 , 1 , 1 ) 0.386 ( 0.008 ) 0.589 ( 0.006 ) 2.317 ( 0.013 ) 4.448
( 4 , 2 , 0 ) 0.605 ( 0.009 ) 0.741 ( 0.006 ) 0.000 ( 0.000 ) 3.901
( 5 , 0 , 1 ) 0.367 ( 0.007 ) 0.000 ( 0.000 ) 2.317 ( 0.013 ) 4.153
( 5 , 1 , 0 ) 0.550 ( 0.005 ) 0.823 ( 0.006 ) 0.000 ( 0.000 ) 3.572
( 6 , 0 , 0 ) 0.527 ( 0.004 ) 0.000 ( 0.000 ) 0.000 ( 0.000 ) 3.160

Table 7.7: Two-player game: Payoffs are normalized value served over the duration
of the experiment. Best responses are italicized.

7.4.3 Varying Supply and Demand

I vary the value of λ in the Poisson distribution and the number of machines

to test the effect of a change in demand and supply, respectively. I assume all ma-

chines elect the Consensus strategy, since it is a dominant strategy equilibrium. As
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λ increases, the relative efficiency of the system with respect to the value-optimal

allocation increases.

As the number of machines increases, the proportion of value served increases.

However, the revenue earned by each additional machine decreases as seen in Ta-

ble 7.8.

Number of Machines Additional Revenue
1 230.1
2 218.0
3 214.5
4 205.88
5 189.86

Table 7.8: Additional Revenue Earned by Adding Machines

7.4.4 Relaxing the monotonic prices constraint

I study the cost of imposing monotonic prices constraints by comparing the rev-

enue earned when monotonic prices constraints are present to that when the con-

straints are relaxed and resource providers are allowed to freely decrease prices, for

each of the strategies.

In each run of the experiment, all machines play the same strategy, and the average

revenue per machine is computed with and without the monotonicity constraint. We

observe that monotonic prices constraints are the most costly given a resource provider

using the load-based strategy, and have smaller effect for the elasticity-based heuristic

and the consensus strategy. When the Consensus strategy is employed, imposing

monotonic prices constraints sacrifices less than 20% of the total revenue.
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Strategy % Revenue loss Standard error
Load 41.84% 2.15%

Elasticity 78.36% 1.94%
Consensus 81.41% 4.73%

Table 7.9: Relaxing monotonicity

Table 7.9 shows the proportion of total revenue earned when monotonic prices

constraints are imposed relative to when the constraints are relaxed.



Chapter 8

Conclusions

I introduced the problem of verifying whether a mechanism is strategyproof and

provided a constraint-network based algorithm for verification. The verifier is able

to reject mechanisms that are not strategyproof based on the violation of constraints

imposed by strategyproofness on the price space. Experimental results demonstrate

the potential for accelerated checking when there is additional structure to exploit and

also suggests metrics that can be informative in guiding bidders before a mechanism

is fully verified. Useful intermediate guarantees can also be provided to participants.

In practice, I believe that the most benefit from passive verification (as defined

here) will be realized in combination with approximations that allow the verifier to

forget some of its history and further reduce the space complexity of verifiers. In

future work, limited memory checking, where one lets the verifier forget part of the

history, and allow false positives, can be explored; e.g. using data structures such

as Bloom filters [13] to allow for fast checking. Another important avenue for future

work is to introduce methodologies that can allow for a continuous type space.

141
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I presented a open framework with which to support truthful, dynamic and decen-

tralized auctions in computational grids. The framework is designed to be extensible,

aligned with incentives, simple for users, and allow for distributed and autonomous

control of resources. Some innovations described in this work include: the use of

resource prediction in quoting prices, embracing openness and extensibility, the in-

frastructure’s role of enforcing rules to maintain strategyproofness, and the concepts

of uniform-failure and threshold-reliability beliefs that allow for a technical analysis

of strategyproofness.

I explored the use of machine learning methods for resource prediction when mono-

tonicity constraints are imposed, and presented the relative accuracy of each method

from a simulation using Crimson Grid data. I designed and implemented various

monotonic pricing strategies and presented their revenue and value efficiency when

facing different arrival distributions. These components can be replaced over time

with ones employing more advanced techniques, driven by innovation and competi-

tion. The ultimate goal of this work is to deploy a market-based system to support

efficient resource allocation across multiple administrative domains on an open com-

putational infrastructure.

Key challenges that remain include how to ensure privacy, security, and reliability

in open systems. A verifier that checks the integrity of results may be beneficial. The

issues of control and ownership of data that arise, for example, if a user wants to move

her computational job to another resource provider, possibly a competitor, are not

yet resolved. The initial distribution of wealth in virtual marketplaces may have a

significant effect on the global behavior of systems. An interesting future project may
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quantify the effects that various initial distributions of wealth have on the efficiency

of resource allocation.
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