
Leveraging Bidder Behavior to Identify Categories of

Substitutable and Complementary Goods on eBay

A thesis presented

by

Robert Kang-Xing Jin

to

Computer Science

in partial fulfillment of the honors requirements

for the degree of

Bachelor of Arts

Harvard College

Cambridge, Massachusetts

April 4, 2006



Contents

1 Introduction 4

1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Main Results and Contributions . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 The Substitutes Problem . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.2 The Complements Problem . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 The Data 9

2.1 Collection Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Bidder Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Auctions Bid On Per Bidder . . . . . . . . . . . . . . . . . . . . . . 11

2.3.2 Auctions Won Per Bidder . . . . . . . . . . . . . . . . . . . . . . . . 11

3 The Substitutes Problem and Our Solution 15

3.1 Problem Definition and Motivation . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Generating the Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 Edge Weighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.2 Edge Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Applying Community Detection . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.1 What is a Community? . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.2 Finding Communities . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1



CONTENTS 2

3.4 Characterizing Communities via Keyword Extraction . . . . . . . . . . . . . 28

4 Substitutes Problem Results 30

4.1 Edge Filtering and Modularity . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1.1 Price Thresholding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.2 Winning Bidders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Edge Filtering and Community Keywords . . . . . . . . . . . . . . . . . . . 35

4.3 Edge Weighting and Community Keywords . . . . . . . . . . . . . . . . . . 40

4.4 Qualitative Assessment of Our Solution with Edge Filtering and Edge Weight-
ing in Conjunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 The Complements Problem 49

5.1 Problem Definition and Motivation . . . . . . . . . . . . . . . . . . . . . . . 49

5.2 Additional Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3 Our Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.3.1 Known Communities of Interest . . . . . . . . . . . . . . . . . . . . . 51

5.3.2 Unknown Communities of Interest . . . . . . . . . . . . . . . . . . . 52

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.4.1 Known Communities of Interest . . . . . . . . . . . . . . . . . . . . . 54

5.4.2 Unknown Communities of Interest . . . . . . . . . . . . . . . . . . . 60

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6 Conclusions 67

6.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.1.1 The Substitutes Problem . . . . . . . . . . . . . . . . . . . . . . . . 68

6.1.2 The Complements Problem . . . . . . . . . . . . . . . . . . . . . . . 68

6.2 Improvements to Our Solutions . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.2.1 The Substitutes Problem . . . . . . . . . . . . . . . . . . . . . . . . 69

6.2.2 The Complements Problem . . . . . . . . . . . . . . . . . . . . . . . 69

6.3 Future Research and Applications . . . . . . . . . . . . . . . . . . . . . . . 70



CONTENTS 3

6.3.1 Hierarchical Categorization . . . . . . . . . . . . . . . . . . . . . . . 70

6.3.2 Dynamic Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.3.3 Other Domains and General Lessons . . . . . . . . . . . . . . . . . . 72

A Derivation of Update Rules for Greedy Q 74

A.1 Initialization of ∆Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

A.2 Updating ∆Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

B Comparison of Control to Edge-Filtered Networks 77

C The LCD Market: Qualitative Analyses 79

C.1 Edge Filtering and Community Keywords . . . . . . . . . . . . . . . . . . . 79

C.2 Edge Weighting and Community Keywords . . . . . . . . . . . . . . . . . . 83

D Keyword Lists 85

Acknowledgements 95

Bibliography 96



Chapter 1

Introduction

Online auctions continue to grow at a fast pace. For example, at the end of 2005, the leading
online auction site eBay.com had 180.6 million registered users, a 33 percent increase over
the previous year. These users listed a total of 546.5 million items in the quarter; the total
value of successfully closed items was $12.0 billion [4].

The increasing prominence of online auctions has sparked interest in efforts to better
understand their economic properties. Much theoretical work has been done on designing
online auction mechanisms with desirable properties such as revenue-maximization [12]. At
the same time, the scale of the online auction market provides a uniquely rich data set
for empirical studies. In addition to more direct applications, such as fraud detection [24],
empirical studies also inform theory—for example, mechanism designers often make strong
assumptions about bidder behavior, and empirical studies can provide realistic guidelines
for these priors.

In this thesis, we explore, using data collected from eBay, an empirical problem in the
online auction space: given a large auction market with millions of widely varying items—
eBay, for example, sells antiques, cars, real estate, and electronics, among others—what is a
scalable way to organize these items into categories? Online auctions rely on being able to
match buyers and sellers, and it is important that they have a good categorization system
that makes items easy to find. One study found that the presence of product navigation
and categorization features in large e-commerce websites has a significant positive effect
on monthly sales [10], and another study attributes eBay’s success in part to its dynamic
categorization scheme [25]. The site initially had only a few item categories; the taxonomic
hierarchy was expanded dynamically as the site grew.

4



CHAPTER 1. INTRODUCTION 5

The categorization problem is interesting because the size of the market imposes a re-
quirement for scalability. Thus, any method needs to be largely automated and cannot rely
heavily on expert knowledge. While generating high-level categories, e.g., cars vs. electron-
ics, might be relatively easy, the method must also be able to generate subcategories at the
level of substitutable goods, e.g., one model of digital camera vs. another. After all, a bid-
der interested in a specific model of digital camera would probably like to be able to browse
a subcategory for that specific model rather than having to browse all digital cameras. In-
deed, items listed deeper in the eBay taxonomic category tree tend to attract more bidder
traffic [7]. Consistent with this finding, some have argued for “surgical search” functionality
that allows users on e-commerce websites to search low-level categories by category-specific
parameters [11]. For example, in a monitor category, such parameters might include size,
model, and brand.

Identifying substitutable goods at lower levels in the category hierarchy without resorting
to specific knowledge about the goods—the substitutes problem—is the main problem that
we specifically address in this thesis. The substitutes problem is a subproblem of the more
general categorization problem discussed above. In our setting, “identification” entails being
able to separate auctions into different groups of substitutable goods and also being able
to extract representative keywords that distinguish the different groups from each other.
For example, we would like to be able to divide a set of auctions for monitors into groups
defined by relevant attributes such as size, model, and/or brand; these attributes could also
serve as category-specific parameters for surgical search.

After addressing the substitutes problem, we extend our solution to a related prob-
lem, which we term the complements problem—identifying goods that bidders tend to buy
together. We provide a more detailed explanation of our definitions for substitutes and
complements in Chapter 3. One potential application for complements detection could be
in automated “recommender systems” that suggest goods complementary to previous user
purchases.

In the remainder of this introductory chapter, we review related literature, highlight our
main results, and conclude with an outline of the rest of the thesis.

1.1 Related Work

The empirical study of online auctions is a relatively new field, and most of the work has
been done in the past five years. This fact is not too surprising, since online auction websites
have only reached prominence recently. We focus on the results of empirical studies and
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leave technical details for later.

To our knowledge, no work has directly addressed either the substitutes problem or the
complements problem for eBay. The closest related work is a study of bidder communities
on eBay [20], which is the first study of communities in a network generated from an
online auction site.1 The authors logged all data over a 12-day period on the German
eBay.de website. They then generated a network with bidders as nodes and edges drawn
between any two bidders who bid in the same auction. Next, they applied a community
detection algorithm to the network. They found 7 “major” communities and noted that
these communities tended to correspond to auctions in specific eBay-defined high-level goods
categories. For example, one community consisted of bidders who primarily participated in
the Toy Models and Toy categories. From this data, they concluded that bidders tend to
limit their activities to general categories of goods. This finding suggests that leveraging
bidder activity information might be a good way to determine substitutable goods, especially
if bidders also form communities at a lower substitutes level in the network. The approach
that we propose to solve the substitutes problem makes use of this insight.

1.2 Main Results and Contributions

In this section, we summarize the main results contained in this thesis and highlight our
contributions. The most significant results are found in our solution to the substitutes
problem.

1.2.1 The Substitutes Problem

We propose a novel method for automatically identifying substitutable goods on eBay. We
apply our method to data taken from eBay and demonstrate that it accomplishes its goal.

Our solution to the problem consists of three parts: (1) generating a network with
auctions as nodes and edges drawn between auctions with shared bidders; (2) applying a
community detection algorithm to the largest maximally connected component (MCC)2 of
the network; and (3) characterizing the communities found by applying a keyword extraction
algorithm. The communities of nodes in the auction network correspond to communities
of substitutable goods, and the keywords extracted could be potentially used as category
headings or search parameters.

1Personal communication, M. Newman.
2We define an MCC as a connected subgraph where adding any node will result in it no longer being

connected. The largest MCC is the MCC with the most nodes.
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Aside from the overall solution itself, the main contributions of this work lie in the first
part of our solution, the network generation. In this part, we have three main contributions.
First, we apply, for the first time in the literature, community detection algorithms to an
auction network with edges defined by some measure of shared bidder behavior. Second, we
propose a natural way of weighting edges and show that edge weighting results in qualita-
tively better community and keyword results. Third, we propose methods of filtering edges
to increase the substitute community structure of the network and demonstrate that these
methods are effective. We show that our methods of edge filtering increase modularity (Q),
a metric commonly used to assess community structure in a network [2, 15, 16, 14], and
result in qualitatively better community and keyword results. We also show that we can
filter a large percentage of edges before we start losing many nodes in the largest MCC,
which is a property that a network should have in order for edge-filtering methods to be
useful. This property is important because community detection algorithms can only be
applied to connected graphs. If the largest MCC is only a small subset of the full network,
then potential communities of goods might not be found via community detection.

For the second part of our solution, we implement an existing community detection
algorithm [2]. One interesting result is that the networks we generate have extremely
strong community structure. One of our networks had a modularity score higher than the
highest known value for a real-world network in the literature [2].

For the third part of our solution, we propose a simple keyword extraction algorithm.
We show that the keywords extracted from communities in edge-filtered, weighted networks
correspond to reasonable categories of substitutable goods.

1.2.2 The Complements Problem

We propose a novel method for automatically identifying complement relationships between
communities of goods on eBay. The complements problem is harder than the substitutes
problem because there is less data available—as we shall see, relatively few bidders make
complement-type purchases. In addition, the complements problem requires a solution
to the substitutes problem, since one needs to identify the item types of interest before
being able to assess complementary relationships. For example, if we are given a data
set containing cameras and memory cards and want to assess complementary relationships
between different types of cameras and different types of memory cards, we would need to
first determine what the different types of cameras and memory cards are.

We examine two versions of the complements problem: (1) detecting complements if the
substitute communities of interest are known beforehand, and (2) detecting complements if
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the substitute communities of interest are not known beforehand.

To solve the first problem, we propose a class of metrics that measure the strength of
complementarity between any two communities of goods. We evaluate these metrics on
a data set of digital cameras and memory cards and demonstrate that the metrics can
detect complementary relationships between models of cameras and the specific memory
card formats used by those cameras.

To solve the second problem, we propose a three-step solution. The first two steps use
a modified version of the community detection algorithm to automatically determine the
substitutes communities of interest and group them into larger supercommunities defined
by complementarity—that is, substitutes communities with strong complementary relation-
ships will tend to be grouped together. Once these communities have been found, we apply
our solution to the first version of the complements problem as discussed above. We evalu-
ate our solution on the same data set and present preliminary results suggesting that it is
effective.

1.3 Outline

In Chapter 2, we give an overview of our data set and collection methodology. Chapters 3
and 4 relate to the substitutes problem. In Chapter 3, we give a more specific definition of
the substitutes problem and motivation for our approach to solving it. We then discuss the
methods for each of the three parts of our solution. In Chapter 4, we discuss the results
from applying our solution to the data set. In Chapter 5, we discuss the methods and
results for our solution to the complements problem. In our concluding chapter, Chapter
6, we discuss potential extensions to our work, including examining how network structure
changes over time and an application to hierarchical categorization.



Chapter 2

The Data

In this chapter, we give an overview of the data sets used in the thesis. We begin with a
description of our collection methodology and then discuss the two data sets we used for the
substitutes problem. Descriptions for the additional data sets we used for the complements
problem can be found in Chapter 5. We then present statistics for the number of auctions
bid on per bidder and the number of auctions won per bidder. Knowing these statistics will
be useful for understanding some of the decisions later on in the thesis.

2.1 Collection Methodology

We collected data by searching closed listings on eBay.com. The harvesting scripts were
based on those written by Jin et al. [8] and Roth et al. [21]. We used Perl scripts to
scrape the data from the web pages and then stored the data in a Mysql database. For each
auction, we collected the information specified in Table 2.1. We also collected all the bidder
information from the history page associated with each auction, as specified in Table 2.2.

2.2 Data Sets

We collected data from two categories of goods. The first set (Canon) contains all auctions
matching “Canon” in the Digital Cameras category over a period from January 10, 2006
to January 25, 2006. The second set (LCD) contains all auctions matching “LCD” in the
Monitors and Projectors category over a period from Nov. 29, 2005 to Dec. 14, 2005. The
sets were chosen because they are reasonably sized markets where there might be natural
substitutes (specific models of cameras and specific sizes, brands, or models of LCDs).

9
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Field Description
aucname The title field of the auction.
id The eBay unique ID for the auction.
sellername The name of the seller.
type The type of the auction (Buy it Now or Standard).
reserve The reserve price of the auction (if applicable).
sold If the auction sold.
highbid The high bid in the auction.
starttime The start time of the auction.
endtime The end time of the auction.

Table 2.1: Data Fields Collected for Each Auction Page.

Field Description
bidname The name of the bidder.
time The time the bid was placed.
value The value of the bid.

Table 2.2: Data Fields Collected for Each Bid History Page.

The Canon set consisted of 6717 auctions. 4308 of the auctions had at least one bidder
(64%). 4107 (61%) of the auctions sold; the remainder may have either failed to meet a
reserve price or have been cancelled by the seller. 3206 (48%) of the auctions did not have
a buy-it-now option and 569 (8%) had a reserve price.

The LCD set consisted of 11782 auctions. 8288 of the auctions (70%) had at least one
bidder. 7990 auctions (68%) sold. 6877 (58%) of the auctions did not have a buy-it-now
option and 882 (7%) had a reserve price.

2.3 Bidder Statistics

In this section, we present some statistics describing bidder activity in each of our two data
sets. Our approach to solving the substitutes problem relies on assumptions about bidder
behavior, so it is important to have a basic understanding of how bidders behave. For the
Canon set, 12759 unique bidders placed a total of 51648 bids. For the LCD set, 23801
unique bidders placed a total of 93912 bids.
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2.3.1 Auctions Bid On Per Bidder

We examined the number of distinct auctions that each unique bidder participated in.
Similar to Yang et al. [26], we constructed an undirected, unweighted bipartite graph with
bidders and auctions as nodes. An edge was drawn between a bidder node and an auction
node if the bidder placed a bid in that auction. We found, similar to Yang et al. [26], that
for both data sets the degree distribution for bidders appeared to follow a power law (Canon:
y = 0.90x−2.54,R2 = 0.95; LCD: y = 0.42x−2.23, R2 = 0.91).1 In the Canon market, 8453 of
the 12759 bidders (66%) participated in only one auction, and 2065 (16%) participated in
only two. In the LCD market, 15650 of the 23801 bidders (66%) participated in only one
auction, and 3883 (16%) participated in only two.

Graphs of the distributions for the Canon data set and LCD data set are shown in
Figure 2.1. A small number of bidders thus account for a disproportionate amount of
bidding activity. The maximum numbers of auctions participated in by a single bidder were
61 and 171 for the Canon and LCD markets, respectively. The bidder who participated in
171 auctions in the LCD market averaged more than 12 per day.

Power law distributions have been found in a variety of settings both in computer science
(linking patterns in the World Wide Web) and elsewhere, leading some to propose gener-
ative models that result in these distributions [13]. One such model involves preferential
attachment—that is, new nodes tend to link to the more highly linked existing nodes [1]. In
the case of the bidder-auction network, however, a generative model makes less sense. The
distribution is likely due to a property of bidder behavior—namely, that most bidders are
interested in winning only one item (see next section) and thus place bids in an extremely
limited subset of auctions.2

2.3.2 Auctions Won Per Bidder

We also examined the number of auctions won by each unique bidder. We found that the
vast majority of bidders won only one item. For the Canon set, 4107 auctions were sold to
3821 unique bidders. Of these bidders, 3638 (95%) won only one auction. For the LCD set,
7990 auctions were sold to 7227 bidders. Of these bidders, 6708 bidders (93%) won only
one auction. The distribution of the number of auctions won per bidder also appeared to

1Here R2 is the square of the correlation coefficient and measures the linearity of the data. An R2 of 1
corresponds to perfect linearity. A power law distribution is characterized by linearity on a log-log scale.

2Mitzenmacher [13] also notes that it is difficult to distinguish power law and lognormal distributions.
We do not attempt to make such a distinction because the property of having a small number of bidders
being responsible for a disproportionate amount of bidding activity is shared between the two distributions,
and that is the relevant observation for our analysis.
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follow a power law for both markets; graphs are shown in Figure 2.2. The relatively low
range in the number of auctions won in the Canon market (1 to 22) may be responsible for
the slightly poorer fit.

These data suggest that most bidders in the market were only interested in winning one
item. As further support for this claim, winning bidders tend not to participate in other
auctions after winning an item. In the Canon market, 2422 of the 3638 winners who one
only one item (67%) participated in only one auction (the auction that they won). In and
of itself, this statistic is not conclusive, since from the above section we see that 66% of all
bidders (non-winners and winners alike) participated in only one auction.

More revealingly, when we examine the 1216 single auction winners who did participate
in more than one auction (but won only one), 1070 of the wins (88%) came in the last auction
in which the bidders participated. In other words, even though these winners participated
in more than one auction, it appears that they were only interested in winning one, since
they stopped bidding in other auctions after their win. If winning an auction had no effect
on continued participation in the market, then one would expect the above percentage to be
closer to 50%. Taken together, 2422+1070=3492 of the 3821 unique bidders (91%) in the
Canon market won only one auction and did not participate in any auctions after winning.

The data for the LCD market are similar. In this market, 4332 of the 6708 bidders
who won only one auction (65%) participated in only one auction. Of the 2376 single-
item-winners who participated in more than one auction, 2039 (86%) did not participate in
any auctions after their win. Taken together, 4332+2039=6371 of the 7227 unique bidders
(88%) in the LCD market won only one auction and did not participate in any auctions
after winning.
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(a) Canon

(b) LCD

Figure 2.1: Distribution of Number of Auctions Participated In
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(a) Canon

(b) LCD

Figure 2.2: Distribution of Number of Auctions Won



Chapter 3

The Substitutes Problem and Our

Solution

In this chapter, we provide a more specific definition of the substitutes problem and motivate
the approach we adopt to solve it. We then detail the methods for each of the three parts
of our solution. In the next chapter, we discuss the results of applying our solution to the
data sets.

3.1 Problem Definition and Motivation

Informally, two goods can be defined as substitute goods if obtaining one reduces or elimi-
nates demand for obtaining the other. Lehmann et al. [9] provide a more formal definition
where they define two items as gross substitutes iff the demand for one of the items does
not decrease when the price of the other item increases.1 In contrast, if the price of one of a
pair of complementary goods goes up, the demand for the other complementary good may
go down.

An example of a pair of substitute goods might be two similar models of digital camera.
If the price of one of the digital cameras goes up, there is no reason for demand for the
other camera to go down. An example of a pair of complementary goods might be a digital
camera and a memory card. In this case, a buyer might gain added value from having both,
since a camera is less useful without a memory card. If the price of the memory card goes

1Lehmann et al.’s definition of gross substitutes is more general than the one we use in this paper. In
particular, they define gross substitutes for arbitrarily large sets of goods and in cases where individuals
might want to buy multiple items from a set.

15
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up, the buyer’s demand for the camera might well go down. Similarly, if the price of the
camera goes up, the buyer’s demand for the memory card might go down.

The substitutes problem that we address in this paper can phrased as follows: given a
segment of the online auction market, how does one automatically determine the commu-
nities of substitutable goods?2 We propose a three-step approach to solving this problem.
We first generate a network with auctions as nodes and edges drawn between auctions with
shared bidders; next, we apply a community detection algorithm to the largest MCC of the
network; finally, we characterize the communities found by applying a keyword extraction
algorithm.

This is not the only approach that could be used. For example, an alternate approach
would be to apply natural language processing and document similarity algorithms directly
to auction listing text. However, using an auction-auction network generated from bidder
data allows us to leverage the “revealed preference” information that bidders implicitly
express when they interact with the site. If the assumption that bidders will generally limit
their auction activity to auctions with substitutable goods is valid, then one would expect
our approach to produce good results.3 The results of Reichardt and Bornholdt [20] suggest
that this assumption is fair. The fact that the vast majority (over 90%) of winning bidders
win only one item further supports the idea that, at least in the two markets we examine,
bidder behavior is a strong indicator of substitutability.

Leveraging knowledge implicit in networks has been used effectively in other areas, such
as web search. For example, the Google search engine considers the importance of pages
that link into a given page, in addition to document similarity measures, when deciding
page relevance [17].

In the next three sections, we discuss methods for each of the three parts of our solution.
2Strictly speaking, we address a closely related problem, that of identifying communities of identical (or

very similar) goods. Not all identical goods communities are also “pure” substitutes communities because
there are cases where complementary relationships can exist even within identical goods—for example, some
buyers might gain added utility from having multiple copies of a certain type of memory cards. However,
other buyers might not want to have multiple copies, so for these buyers, the items in that category of memory
card would indeed be substitutes. If we wanted to get a closer approximation to substitutes communities,
we would exclude from our data set any bidders who win multiple auctions (similar to winning-bidder
filtering, which we discuss in Section 3.2.2). In practice, there is considerable overlap between identical
goods communities and substitutes communities, and both are applicable to the larger motivating problem
of item categorization.

3We also assume that bidders will use the same user name for their transactions.



CHAPTER 3. THE SUBSTITUTES PROBLEM AND OUR SOLUTION 17

3.2 Generating the Network

In this section, we give an overview of various ways of constructing an auction network to
solve the substitutes problem. Generating the network is the first step in our solution.

The basic undirected auction network that we propose is constructed with auctions as
nodes. In the most general case, an edge is drawn between any two auctions that share
a common bidder. More formally, we define our auction-auction graph G = (V,E) where
v ∈ V iff v is an auction in the market and e = (v1, v2) ∈ E iff ∃ a bidder b s.t. b is a bidder
in both auctions v1 and v2. An alternate graph representation could be a bipartite graph
with both bidders and auctions as nodes. However, since we are only interested in classifying
auctions, collapsing the bipartite graph into an auction-only graph is a reasonable first step.

3.2.1 Edge Weighting

We consider both weighted and unweighted versions of the network. We propose a natural
way of assign weights to edges—weighting edges by the number of shared bidders between
any two auctions. This method makes sense because a greater number of shared bidders
should indicate a greater likelihood of substitutability.

3.2.2 Edge Filtering

One potentially undesirable property of the way we generate edges is that a small fraction of
bidders can be responsible for a disproportionate number of edges, due to the fact that the
degree distribution of bidder-auction edges follows a power law. A bidder that participates
in n auctions generates n(n − 1)/2 edges in our network. Thus, the bidder in the LCD
data set who participated in 171 distinct auctions was responsible for generating 14535
edges—more than 10% of the 144822 edges in the network—even though he accounts for
less than 0.02% of the bidder population.4 We do not want the community structure in
our network to be dominated by any one bidder unless we have reason to believe that that
bidder provides more meaningful information than other bidders. The dominance of “power
bidders” would be especially problematic if such bidders do not provide correspondingly
powerful information about substitutability in their bidding patterns—for example, if they
bid more or less randomly, without regard to substitutability. Unfortunately, the bids of the
bidder who participated in 171 auctions spanned items of varying brand, screen size, and

4It is possible that other users also generated some of the same edges. However, the fact remains that a
highly active bidder can generate a disproportionate number of edges.
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model. Many of these bids were extremely low relative to the ending price of the auction,
and he was not the high bidder in any of the 171 auctions that he bid in.

To address the problem of “meaningless” edges adding noise to our network, we propose
two ways to filter the edges generated:

1. Price threshold: When generating edges, only consider bids that are at least a certain
fraction f of the ending price. More formally, let bv denote the maximum value of a
bid placed by bidder b in auction v and maxbid(v) denote the maximum bid recorded
in that auction. In our graph, we then define edges e = (v1, v2) ∈ E iff ∃ a bidder b s.t.
b is a bidder in both auctions v1 and v2 and both bv1

maxbid(v1) >= f and bv2
maxbid(v2) >= f .

This filter is aimed at removing “non serious” lowball bids that might be less category
selective. We take a fraction of the ending price rather than an absolute cutoff because
we have no easy way of determining what the true value of any auctioned item is.

2. Winning bidders: When generating edges, only consider bids placed by bidders who
won exactly one auction. We define edges e = (v1, v2) ∈ E iff ∃ a bidder b s.t. b is a
bidder in both auctions v1 and v2 and the number of auctions that b won is equal to 1.
Using similar logic to that in the price thresholding case, if the bidder wins an auction,
it might be more likely that the bidder is serious and directed in bidding. Furthermore,
the fact that the bidder only won one auction might be indicative of a more substitute-
focused approach to bidding. However, this filter might be too restrictive—that is, one
would be filtering out valuable information provided by serious bidders who simply
failed to win an auction.

As an illustration of how edge filtering methods can reveal community structure, consider
Figures 3.1, 3.2, and 3.3, where we show spring-model energy-minimization representations
of various edge filters applied to the same starting network. As we filter edges, natural
communities of more closely connected auctions emerge. These figures should not be in-
terpreted too literally, however, since a community detection algorithm could still reveal
structure that is not readily apparent in the graphical representation. We discuss commu-
nity detection algorithms in the next section and more formally assess the effect of edge
filtering in the next chapter.
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Figure 3.1: The Largest MCC of the Unweighted Canon Network with No Edge Filtering.
The graph was plotted using the neato utility of Graphviz, which implements a spring-
model energy-minimization algorithm for graph visualization. The nodes in the graph are
auctions and edges are drawn between any two auctions that share a bidder.
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Figure 3.2: The Largest MCC of the Unweighted Canon Network with Price Threshold 0.8
Edge Filtering. More structure is visible in this network than in the unfiltered network
(Figure 3.1).
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Figure 3.3: The Largest MCC of the Unweighted Canon Network with Winning Bidders
Edge Filtering. More structure is visible in this network than in the unfiltered network
(Figure 3.1).



CHAPTER 3. THE SUBSTITUTES PROBLEM AND OUR SOLUTION 22

3.3 Applying Community Detection

Having generated the network, the next step in our solution involves identifying commu-
nities within it. In this section, we begin by defining communities and ways to evaluate a
community assignment for a network. We then discuss the community detection algorithm
that we use.

3.3.1 What is a Community?

Community detection in networks is a growing area of research because it can help to reveal
underlying structure [18]. For example, Flake et al. [5] found that web pages tend to
cluster into communities of semantically similar pages; community structure has also been
examined in social and biological networks [6]. Intuitively, a community is defined as a
subset of nodes that are connected more strongly to each other than to the rest of the
network. For example, a social network of all college students in the United States where
edges are defined by friendships might naturally have communities defined along college
lines. Reichardt and Bornholdt [19] propose one formal definition of a community. Given a
graph G with N nodes and M edges, a community of n nodes and m edges is one satisfying:

2m

n(n− 1)
>

2M

N(N − 1)
>

mnN

n(N − n)
(3.1)

where mnN is the number of edges connecting the community to the rest of the net-
work. Each of these terms represents an edge density—the number of edges divided by the
maximum number of edges. The first inequality requires that within-community density
be greater than the average network density, while the second inequality requires that the
average network density be greater than the density of edges leaving the community.

For a given graph G = (V,E), the community detection problem can be formalized
as a partitioning problem subject to a constraint. For all v ∈ V we need to assign a
cv ∈ 1, 2, ..., nc where nc is the number of communities. We want this partitioning to match
our intuition as to what a good community is—that is, the partitions should satisfy some
definition of community, such as the one found in Equation 3.1, and/or maximize some
metric that assesses a proposed community partitioning.

The community detection problem is difficult because there may be multiple ways to
divide any graph into acceptable communities, and furthermore, the number of “optimal”
communities is often not known beforehand. Modularity is a global metric that has been
widely used to compare different community divisions and determine an “optimal” one
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[16]. Let eij be the fraction of all edges in the network that lie between community i and
community j and dv be the degree of vertex v. Then the modularity Q of a network and
community division is:

Q =
∑

i

eii − ai
2 (3.2)

where:

ai =
1

2M
∗

∑
v∈i

dv (3.3)

ai gives the fraction of ends of edges in the network that are in the community i. ai
2

then represents the expected value of the fraction of edges in the network that would fall
wholly in community i if the edges had been assigned by chance, but keeping the same
communities (that is, edges with both ends in i).

Q thus represents the fraction of edges in the network that fall within communities (given
by eii in equation 3.2) less the expected value of that fraction if the edges had been assigned
by chance, but keeping the same communities (given by ai

2).

A value of Q = 0 indicates no community structure, while a value of Q approaching the
maximum of 1 represents the presence of strong community structure.5 Newman [16] found
that real world networks with strong community structure tend to have Q values of at least
0.3. The highest known value of Q in the literature for an unweighted real-world network
is Q = 0.75, which came from a reviewer network from Amazon.com [2].

Modularity generalizes naturally to graphs with weighted edges [15]. In this case, we
define M as the sum of all the weights of edges in the network, eij as the sum of all the
weights of edges between communities i and j divided by M , and dv as the sum of all the
weights of edges touching vertex v.

3.3.2 Finding Communities

Armed with this metric, we are now prepared to find communities in a network.6 Commu-
nity detection algorithms generally assume that the network is connected, and consistent

5In practice, it is possible to generate networks and community assignments where Q < 0. Furthermore,
for any given network, it may be impossible to attain Q = 1. In earlier work, Newman [14] normalized the
value of Q; however, he argues that the unnormalized Q is more informative [16].

6Other metrics and methods to detect communities exist. For a review, see Danon et al. [3]. We chose
to use a modularity based approach because it is widely used [3] and has a relatively fast runtime, which we
discuss later in this section.
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with previous work [2], we take the largest maximally connected component (MCC) of the
network for analysis. The goal, then, is straightforward—we simply wish to find a com-
munity division that maximizes Q for the MCC of a network. Unfortunately, finding the
maximum Q for a graph is at least exponentially hard in the number of nodes n if one were
to search over all possible community divisions. As Newman et al. [16] note, the number
of ways of partitioning a set of n nodes into c nonempty sets is given by the Stirling set
number S(n, c). To exhaustively search the entire space of community partitions, one would
need to consider

∑n
c=1 S(n, c) partitions. Since S(n, 2) = 2n−1 − 1, the search would be at

least exponentially hard.

Since an exact solution is intractable for most large data sets, Newman et al. [16] pro-
pose a greedy forward-selection method (“Greedy Q”) where one starts with each node
in its own community and iteratively joins communities based on the greatest increase in
Q. This method has been demonstrated to reliably identify communities in both artificial
networks and real-world networks [2].

Place every node in its own community;
NCommunities = number of nodes;
while NCommunities > 1 do

MaxQ = −∞;
for each pair of distinct communities i and j do

if Q from joining i and j > maxQ then
MaxQ = Q;

end

end
Join the i and j that gave MaxQ;
NCommunities = NCommunities − 1;

end
Return the community assignment corresponding to MaxQ;

Algorithm 1: Greedy Q

For this thesis, we implemented the greedy algorithm as optimized in Clauset et al. [2]
(“Optimized Greedy Q”). Rather than calculating Q from scratch for each potential com-
munity join, the algorithm keeps an array ∆Q, where entry i,j represents the change in Q

that would result from joining communities i and j. The insight behind the optimization
is that ∆Q can be initialized easily and that only a few entries in ∆Q need to be changed
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each time two communities are joined.

Place every node in its own community;
Initialize a;
Initialize ∆Q;
NCommunities = number of nodes;
while NCommunities > 1 do

Join the i and j into community j corresponding to the max value in ∆Qij ;
Update ∆Q;
Update a;
NCommunities = NCommunities − 1;

end
Return the community assignment corresponding to MaxQ;

Algorithm 2: Optimized Greedy Q

Four of the lines in the the pseudocode for Optimized Greedy Q require elaboration: the
two initialization steps, and the two update steps. A derivation of these steps is found in
Appendix A.

1. Initialization of a. This initialization is quite straightforward. Since each community
consists of one node,

ai =
di

2M
(3.4)

2. Initialization of ∆Q. There are two different initial values of ∆Qij depending on
whether i and j are connected.7 If i and j are connected,

∆Qij =
1
m
− di ∗ dj

2m2
(3.5)

If i and j are not connected,
∆Qij = 0 (3.6)

3. Updating ∆Q. As noted before, only a few elements of the ∆Q matrix need to
be updated after community i is joined to community j to form community j′. In
particular, we need to update elements in the jth row and column (and also delete the
ith row and column). Furthermore, we do not need to update every item in the jth

7The value in Equation 3.5 is twice as much as the corresponding equation 8 in Clauset et al. [2]. The
discrepancy is due to a typographical error in their paper.



CHAPTER 3. THE SUBSTITUTES PROBLEM AND OUR SOLUTION 26

row and column–we only need to update the items that correspond to a community
k that was connected to at least one of i and j prior to their join.
If k is connected to both i and j:

∆Q′
jk = ∆Q′

kj = ∆Qik + ∆Qjk (3.7)

If k is connected to i but not j:

∆Q′
jk = ∆Q′

kj = ∆Qik + 2ajak (3.8)

If k is connected to j but not i:

∆Q′
jk = ∆Q′

kj = ∆Qjk + 2aiak (3.9)

4. Updating a. This update is quite simple.

a′j = aj + ai (3.10)

∆Q is stored in two ways. Rows are stored as both balanced binary trees and as max-
heaps. In addition, a separate max-heap H stores the maximums of each row in ∆Q. Each
update step takes O((|i|+ |j|) log n) time. We make |i|+ |j| insertions of cost O(log n) into
the balanced binary trees. We also make |i|+ |j| reheaps for the row max-heaps and up to
|i| + |j| reheaps for H, each with cost bounded by O(log n). There are at n update steps,
and |i|+ |j| is bounded by n as well, so the runtime of the algorithm is O(n2 log n).8

An example illustrating the results of applying community detection to a network is
shown in Figure 3.4.

8|i| + |j| is in fact often much less than n and, by making additional assumptions, one can develop a
tighter bound [2].
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Figure 3.4: Community Assignments for a Sample Network. In this network, nodes assigned
to different communities are given different colors and number labels. The network was
derived from a 10% sample of the auctions in the LCD market. Nodes are auctions and
edges are drawn between any two auctions that share a common bidder. The network was
plotted using neato. We depict the 10% sample rather than the full network because the
visualization tool performs better on smaller networks. It is interesting to note that auctions
which cluster together in the spring-model energy-minimization visualization of the graph
tend to be assigned to the same community.
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3.4 Characterizing Communities via Keyword Extraction

The community partitioning of a network is only useful for the substitutes problem if we
are able to determine what type of good each community represents. In this section, we
present a simple algorithm for automatically extracting uniquely representative descriptive
keywords from the auction titles in a community. There are other well-established methods
for keyword extraction, such as term frequency-inverse document frequency (tf-idf) [23].
One advantage to the approach we use is that it allows for potentially better “tuning”
because we can threshold by two independent parameters.

The algorithm is based upon the intuition that a representative keyword for a community
should satisfy the following two properties:

1. Widely shared: the keyword should be shared by a large percentage of the auctions
in the community.

2. Overrepresented: the percentage of auctions having the keyword within the commu-
nity should be greater than the percentage of auctions in the entire network having
the keyword in a statistically significant manner.

The motivation for property (1) is obvious—a keyword can only be descriptive of a
community if a large fraction of its members share it. Property (2) is required so that we
can highlight the keywords that uniquely define a community. For example, in the LCD
market, almost all of the auctions in any given community will have LCD in the title, but
we would not want to consider it a unique descriptive keyword for a particular community.

More formally, in order for a keyword to be considered a descriptive keyword for a
community:

1. The keyword must be shared by at least a fraction pc of the auctions in the commu-
nity.9

2. The fraction pc must be statistically significant relative to the population proportion
pg at a confidence level a (single-tailed Z-test). We define z = (pc− pg)/s, where pg is
the fraction of auctions in the global set of all n auctions that share the keyword and

9We define an auction as “sharing” a keyword if the title of the auction contains that keyword. There
are many possible refinements to this method, such as examining auction page text in addition to title text.
However, using only titles is a reasonable starting point, and, as we shall see, works well in practice. Sellers
also have incentive to make auction title text descriptive summaries of their items, since when bidders browse
listings, only the auction title is visible. Keywords were space-delimited.
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s =
√

pg ∗ (1− pg)/n is the standard deviation. We then define a = µprob(z) where
µprob(z) is the upper probability of the µ distribution.10

Setting the parameters pc and a determines how strongly one wishes to enforce these two
properties. A higher pc and a lower a would impose more stringent requirements on the
keywords extracted.

10In practice, the Z-test requires a sample size of at least 30 to be significant. Most of our major commu-
nities are at least size 30, so this requirement is not an issue.



Chapter 4

Substitutes Problem Results

In this chapter, we present the results of applying our solution to the substitutes problem to
the eBay data. The key findings are that (1) edge filtering contributes to significantly better
community structure, (2) edge weighting also contributes to slightly better community
structure, and (3) our solution to the substitutes problem using price thresholding and edge
weighting produces very reasonable categories of substitutable goods.

We demonstrate the first result both quantitatively and qualitatively. First, we show
that edge filtering increases modularity—indeed, the edge filtered networks have modularity
scores similar to the highest recorded modularity for real-world networks. Second, we show
that edge filtering, when combined with keyword extraction, results in communities that
have qualitatively better keywords. We demonstrate the second and third results through
a similar qualitative discussion of the keywords extracted from the communities found.

We conclude this section by discussing the significance of the results and some limitations
to our method.

4.1 Edge Filtering and Modularity

In this section, we present data demonstrating that both methods of edge filtering that we
propose—price thresholding and single winner filtering—increase modularity with respect
to both unfiltered networks and to “control” networks that have the same number of edges
as our filtered networks, but with edges randomly filtered. In the next section, we show
that this increased modularity corresponds to qualitatively better communities, suggesting
that edge filtering reveals otherwise-hidden real community structure in each market.

30
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4.1.1 Price Thresholding

As discussed earlier, price-threshold edge filtering consists of only including edges generated
from bids that were at least some fraction f of the ending price of the auction. We begin this
subsection by discussing some basic properties of the edge filtering method and guidelines
for choosing a fraction f . We then discuss the effect of thresholding on modularity.

We generated networks with varying levels of price thresholding. Descriptive statistics
for these networks are found in Tables 4.1 and 4.2. In a picking a threshold f , one would
want to select a fraction f that filters a significant number of edges while leaving the size of
the largest maximally connected component (MCC) relatively unchanged. It is important
to keep as many nodes as possible, since ultimately the communities and categories will
come from these nodes, and if the largest MCC is not a significant fraction of the overall
market, then potential categories of goods in the market might be lost. At the same time,
it is important to filter out as many uninformative edges as possible.

Threshold Edges Edges in Largest MCC Nodes in Largest MCC
Unfiltered (f = 0) 43737 43690 3173
Filtered f = 0.2 36505 36447 3141
0.4 30535 30471 3099
0.6 22830 22752 3012
0.8 13035 12858 2710
0.9 7452 6930 2103
1 926 231 22

Table 4.1: Canon Network Statistics with Price Threshold Filtering

Threshold Edges Edges in Largest MCC Nodes in Largest MCC
Unfiltered (f = 0) 144822 144503 6024
Filtered f = 0.2 113422 113060 5934
0.4 92055 91660 5813
0.6 60955 60502 5621
0.8 28918 28206 5072
0.9 15079 14009 4171
1 1726 153 18

Table 4.2: LCD Network Statistics with Price Threshold Filtering

One desirable property of price thresholding in the networks we examine that quickly
becomes apparent from these statistics is that we can remove many edges (via a high thresh-
old) before we start losing a significant number of nodes in the MCC. For example, in the
Canon data set at threshold 0.6, 48% of the edges are filtered at a “cost” of only 5% of the
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nodes. To illustrate the tradeoff between edges and nodes, we plot, in Figures 4.1 and 4.2,
the percent of edges and the percent of nodes in the MCC as a function of our threshold
fraction f .

Figure 4.1: Canon Edges and Nodes vs. Price Threshold

Figure 4.2: LCD Edges and Nodes vs. Price Threshold

In order to assess whether filtering edges by price threshold increases modularity, we
ran the community detection algorithm for the networks at threshold 0 (unfiltered), 0.6,
and 0.8. We generated unweighted networks because we wanted to compare our modularity
scores with those in the existing literature, which have been generated using unweighted
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networks.

We found that price thresholding increased the modularity. In the Canon market, the
base modularity at filtering threshold 0 (unfiltered) was 0.51. Filtering at threshold 0.6
increased the modularity to 0.66, and filtering at threshold 0.8 further increased the modu-
larity to 0.77. In the LCD market, the base modularity was also 0.51. Filtering at threshold
0.6 increased the modularity to 0.63, and filtering at threshold 0.8 further increased the
modularity to 0.72. These data are summarized in Table 4.3.

As noted earlier, real-world networks with community structure tend to have Q scores
of 0.3 and above; thus, even the unfiltered eBay networks we construct show evidence of
community structure. However, it is significant that filtering increased the modularity score.
The highest recorded value of modularity for a real-world network in the literature was 0.75,
and the modularity of the Canon network at threshold 0.8, 0.77, was higher.

To further establish the effectiveness of edge filtering, we generated “control” filtered
networks that filtered the same number of edges as the price thresholded networks, but
with edges filtered randomly. For example, the control network for the Canon threshold 0.8
network was a network with 13035 edges (the same number of edges as the Canon threshold
0.8 network) constructed by randomly removing 30702 edges from the base network, which
had 43737 edges. One caveat is that while the full control network has the same number
of edges as its matched edge filtered network, the largest MCC of the control network has
a slightly different number of edges and nodes from the largest MCC of the edge filtered
network. In all the price thresholding cases, this difference was less than 5% of the number
of edges in the filtered largest MCC. The network statistics for the price-threshold control
networks can be found in Tables B.1 and B.2 in Appendix B.

We ran the community detection algorithm for these networks and compared the Q

scores. The results are shown in the tables below. While removing random edges appears
to increase Q relative to baseline, in every case the control network had a lower Q score
than the paired price thresholded network. This result demonstrates that the greatly in-
creased modularity in the price threshold networks is not simply an artifact of removing
edges—rather, it is the result of removing edges intelligently, thus revealing real community
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structure.1

Canon Network Q from Price Thresholding Q of Control
Unfiltered (f = 0) 0.51 0.51
Filtered f = 0.6 0.66 0.58
0.8 0.77 0.62
LCD Network Q from Price Thresholding Q of Control
Unfiltered (f = 0) 0.51 0.51
Filtered f = 0.6 0.63 0.53
0.8 0.72 0.56

Table 4.3: Canon and LCD Network Modularity with Price Threshold Filtering

In interpreting these results, it is important to keep in mind that the greedy community
detection algorithm does not guarantee the optimal solution. There is also no guarantee
that given two networks N1 and N2 where the optimal Q for N1 is greater than the optimal
Q for N2, that the greedy algorithm will arrive at a higher Q for network N1 than for
network N2. Thus, it is possible that the trends observed above are somehow due to an
inherent bias in the algorithm. Nonetheless, the fact that the trends are consistent in all
the cases examined makes this possibility less likely.

4.1.2 Winning Bidders

In addition to examining price filtering, we also examined winning bidder filtering—only
considering bids from bidders who won exactly one auction. Basic descriptive statistics
along with Q scores for these networks are contained in Tables 4.4 and 4.5. As before, we
compared the Q scores to a control network with the same number of edges. In this case,
the control networks had similar numbers of edges as their corresponding winning bidder
filtered networks but had over 20% more nodes. Thus, the comparison to control networks
in this case might be less informative. The network statistics for the winning-bidders control
networks can be found in Tables B.3 and B.4 in Appendix B.

1Increased modularity is not necessarily good in and of itself—presumably, there is some natural level of
community structure inherent to each market that we examine, and one could imagine that some methods
of edge filtering might bias the network by “artificially” increasing modularity, resulting in community
assignments of high modularity but low semantic value. For example, given a fully connected market (where
there is no true community structure), one could apply a biased edge-filtering method that selectively removes
edges in order to form “artificial” communities in the filtered network. However, our methods of filtering
edges are not biased in so obvious a manner, and in Section 4.2, we show that the increased modularity of our
price-threshold-edge-filtered networks correlates with communities that have qualitatively better keywords.
Thus, the increased modularity in this case corresponds to the discovery of real community structure.
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Winning bidder filtering, like price thresholding, seems to increase modularity relative
to baseline and control. In the Canon network, the Q of the winning bidder filtered network
was 0.71, while the Q of the unfiltered network was 0.51, and the Q of the control network
was 0.61. In the LCD network, the Q of the winning bidder filtered network was 0.62, while
the Q of the unfiltered network was 0.51, and the Q of the control network was 0.53. These
results are shown in Table 4.6.

However, winning bidder filtering has a few disadvantages when compared to price
thresholding. First, it seems like this method of filtering is too strict, since we lose more
nodes in the largest MCC for a similar number of edges removed relative to price threshold-
ing. As noted before, we want to keep the largest MCC largely intact because ultimately
our community categories will come from the largest MCC. For example, price thresholding
at 0.6 for the LCD market has 60955 edges and a largest MCC of 5621 auctions, while
winning bidder filtering has almost the same number of edges (59136) but a largest MCC of
only 4281 auctions. Second, this method is less tunable, since we cannot vary the selectivity
of the winning bidders filter to get a desired number of nodes in the largest MCC.

Network Edges Edges in Largest MCC Nodes in Largest MCC
Unfiltered 43737 43690 3172
WBF 12142 11931 2178

Table 4.4: Canon Network Statistics with Winning Bidder Filtering (WBF)

Network Edges Edges in Largest MCC Nodes in Largest MCC
Unfiltered 144822 144503 6024
WBF 59136 58715 4281

Table 4.5: LCD Network Statistics with Winning Bidder Filtering (WBF)

Canon Network Q Q of Control
Unfiltered 0.51 0.51
WBF 0.71 0.61

LCD Network Q Q of Control
Unfiltered 0.51 0.51
WBF 0.62 0.53

Table 4.6: Canon and LCD Network Modularity with Winning Bidder Filtering (WBF)

4.2 Edge Filtering and Community Keywords

In this section, we demonstrate that in addition to improving modularity, edge filtering also
results in communities with qualitatively better keywords. Ultimately, the keywords are the
most informative output of our method, since they enable us to define the types of goods



CHAPTER 4. SUBSTITUTES PROBLEM RESULTS 36

(hopefully substitutes) that are contained in each community of auctions that we find. We
examine price-threshold edge filtering, since, as discussed in the previous section, we believe
that it is a more promising method that winning-bidders filtering. Additionally, we focus
our analysis in this section on the Canon market. A qualitative analysis of the LCD market
gave similar results and can be found in Appendix C.

We compared the results of applying our solution to the unweighted Canon network
with price thresholding at f = 0 (unfiltered) to the results of applying it to the unweighted
Canon network with price thresholding at f = 0.8. We evaluated the communities and
keywords found using qualitative standards for within-community and across-community
keywords, as discussed in the next paragraph.

Qualitatively, within a given community, a good set of keywords should be one that
defines a category of substitutable goods. In the Canon market, we might want keywords
to correspond to specific models of cameras. Other possible good keywords would be those
specifying key attributes like camera resolution. We would not want too many keywords for a
community—it would be surprising if many different camera models were grouped together
in the same community, since different models generally make poor substitutes. Across
communities, we would want minimal overlap between keywords, since each community
should define a unique set of substitutable goods. In addition, we would want enough
communities to be able to identify a range of distinct substitutes communities.

For the network with f = 0, there were 22 communities ranging in size from 2 to 1256.
We define a major community as one whose size is at least 1% of the total number of
auctions in the MCC. In the network with f = 0, there were 4 such communities. We
applied keyword extraction following the methods outlined in Section 3.4 with a = 0.01 and
pc = 0.32 and examined the keywords for those 4 communities. The largest community did
not have any significant keywords.3 The remaining 3 communities had 4 to 5 significant
keywords each. The major communities with significant keywords are depicted in Figure
4.3. One community had no specific models of camera as a keyword, 1 community had 1
specific model (s2), and 1 had 2 specific models (a410 and a520). It is questionable whether
the a410 and a520 cameras are good substitutes, since they vary on many dimensions,
including resolution (3.2 vs 4.0 megapixels). Across communities, there was no overlap
between camera model keywords.

2a = 0.01 requires that the keyword must be overrepresented at a 99% significance level, and pc = 0.3
requires that the keyword must be shared by at least 30% of the auctions in the community. We tried to
find parameters to give good results for the f = 0 unweighted network and kept the same parameters for all
of our analyses.

3The first keyword satisfying pc = 0.3, for any level of a, is the not-too-informative “digital” with a = 0.07.
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For the network with f = 0.8, there were 26 communities ranging in size from 3 to
637. Of these, 11 were major communities. We applied keyword extraction with the same
parameters and examined the keywords. Nine of the major communities had significant
keywords, with a range of 1 to 5 significant keywords per community. The major commu-
nities with significant keywords are depicted in Figure 4.4. Six of the 9 communities had
one specific model of camera as a keyword (a620, s2, s1, s50, sd200, g2) and none had two
camera model keywords. Again, across communities, there was no overlap between camera
model keywords.

The keywords and communities from the f = 0.8 network are qualitatively better. In
particular, the f = 0.8 network identifies a larger set of communities with at least one
camera model keyword than the f = 0 network (6 vs. 2) without having more between-
community overlap. One would expect that there are more than the 2 classes of substitutable
camera models in the market represented by the f = 0 network. Furthermore, none of the
communities in the f = 0.8 network had two different camera model keywords grouped
together, while in the f = 0 network one of the communities had two fairly dissimilar
camera models grouped together.
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Figure 4.3: Canon Communities with No Edge Thresholding and with Unweighted Edges.
The size of each circle is proportional to the number of nodes in each community. Significant
keywords (a ≤ 0.01, pc ≥ 0.3) and their associated pc are listed in order of descending a
(most overrepresented keyword first). Since the a values are all small, they are not shown.
Placement of the communities in the figure is arbitrary.
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Figure 4.4: Canon Communities with 0.8 Edge Thresholding and with Unweighted Edges.
The size of each circle is proportional to the number of nodes in each community. Significant
keywords (a ≤ 0.01, pc ≥ 0.3) and their associated pc are listed in order of descending a
(most overrepresented keyword first). Since the a values are all small, they are not shown.
Placement of the communities in the figure is arbitrary.
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4.3 Edge Weighting and Community Keywords

In addition to examining the effect of edge filtering on the quality of results, we also wanted
to examine the effect of weighting edges by the number of shared bidders. We assessed the
effectiveness of edge weighting qualitatively, in a similar manner as in the previous section.
Again, we focus our analysis in this section on the Canon market. A qualitative analysis of
the LCD market gave similar results and can be found in Appendix C.

We applied our solution to an un-edge-filtered, weighted Canon network and compared
the results to those for the un-edge-filtered, unweighted network in the previous section (see
Figure 4.3).

For the weighted network, there were 13 communities ranging in size for 3 to 757. Of
these, 9 were major communities. We applied keyword extraction with the same parameters
and examined the keywords. All 9 of the major communities had significant keywords, with
a range of 1 to 5 significant keywords per community. These major communities are shown
in Figure 4.5. Three of the 9 communities had exactly one camera model keyword (s2, a410,
a520) and one had two (a620 and a610). Again, across communities, there was no overlap
between camera model keywords.

The performance is similar to that of the unweighted Canon network. However, one
could argue that it is slightly better for two reasons. First, the weighted network identifies
a larger set of communities with at least one camera model keyword than the unweighted
network does (4 vs. 2). In addition, the grouping of a620 and a610 in the same community
in the weighted network is somewhat more justifiable than the grouping of a410 and a520
in the same community in the unweighted network, because the a610 and a620 models were
released at the same time to replace an older model.4 Nonetheless, the a620 and a610 also
differ in their resolution, so they are not ideal substitutes.

4Information obtained from a review of the Canon a620 (http://www.dpreview.com/reviews/canona620/).
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Figure 4.5: Canon Communities with No Edge Thresholding and with Weighted Edges. The
size of each circle is proportional to the number of nodes in each community. Significant
keywords (a ≤ 0.01, pc ≥ 0.3) and their associated pc are listed in order of descending a
(most overrepresented keyword first). Since the a values are all small, they are not shown.
Placement of the communities in the figure is arbitrary.
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4.4 Qualitative Assessment of Our Solution with Edge Fil-

tering and Edge Weighting in Conjunction

As a final step, we applied edge filtering and edge weighting in conjunction and assessed
the results. For each of our markets—Canon and LCD—we generated a network that used
both price threshold edge filtering (at f = 0.8) and edge weighting and applied our solution.
We applied keyword extraction with the same parameters and examined the keywords. We
discuss results for the Canon market first and then turn to the LCD market.

For the Canon market with both edge filtering and edge weighting, there were 25 com-
munities ranging in size from 3 to 339. Of these, 15 were major communities. Twelve of the
major communities had significant keywords, with a range of 1 to 6 significant keywords per
community. These major communities are shown in Figure 4.6. Ten of these major com-
munities had exactly one camera model keyword (sd500, a620, s2, a70, a520, s50, sd200,
s80, s410, s110) and two communities had two camera keywords (sd400 and sd450; pro1
and g6). Again, there was no overlap of camera models between communities.

The pairs of camera keywords that were grouped in the same communities (sd400 and
sd450; pro1 and g6) are natural substitutes. In particular, the sd400 is the predecessor to the
sd450, and the two camera models are extremely similar—they share the same resolution
and memory card, with the major difference being a slightly larger LCD screen on the
sd450.5 The substitutability of the pro1 and g6 is not quite as strong. However, they are
2 of the 6 “high-end” Powershot digital cameras that Canon offers and both take the same
type of memory card (compact flash).6

This version of the network identified the most different camera model keywords (14).
We wanted to determine the percentage of all Canon camera models in the market that our
method identified. Ideally, we would want this percentage to be high. Unfortunately, there
is no direct way to determine the total number of different camera models in the market
because the lowest level of the current eBay hierarchy is by brand and not model.

To determine a plausible camera model candidate set, we obtained a list of current
Canon digital cameras.6 There were a total of 23 models; the name for 15 of these 23
models appeared at least once in the title of an auction in the Canon market data set.7 The
8 models that did not appear in our data set tend to be newer camera models.

5One review (http://www.dpreview.com/reviews/canonsd450/) termed the sd450 a “fairly minor up-
grade” to the sd400.

6Information obtained from the official Canon Powershot website (http://www.powershot.com).
7The 15 models that appeared at least once in our data set are (number of auctions matching in paren-

theses): a620 (578), sd550 (446), a610 (439), s2 (424), sd500 (417), a520 (345), sd450 (322), sd400 (294),
a410 (235), s80 (206), sd30 (165), s70 (94), g6 (91), pro1 (85), sd430 (22).
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Of the 15 current model keywords that are present in our data set, 9 of the model
keywords (60%) were identified by our method. We examined the number of auctions
in our data set matching each current model keyword and compared keywords that were
identified to those that were not. We found that the 9 current-model keywords that were
identified had a greater average number of auctions matching than the 6 current-model
keywords that were not identified, although this difference was not significant (307 to 234,
single-tailed T a = 0.22).

As noted earlier, our method identified a total of 14 model keywords—the remaining 5
keywords that our method identified correspond to models that were discontinued and thus
no longer listed on the official Canon website.

Taking these results together, the application of our method to an edge filtered, edge
weighted Canon network thus produced a community segmentation that was clearly superior
to ones from edge filtering or edge weighting alone. In addition, the method was able
to identify more than half of the current Canon models present in the eBay market and
identified several discontinued Canon models in the market as well.

For the LCD market with both edge filtering and edge weighting, there were 42 com-
munities ranging in size from 3 to 973. Of these, 12 were major communities. Ten of the
major communities had significant keywords, with a range of 1 to 7 significant keywords per
community. These major communities are shown in Figure 4.7. Eight of these 10 commu-
nities had a size (15”, 17”, 19”, 20”, 24”) and/or a specific model number (e173fp, 2005fpw,
2405fpw) as a keyword. Importantly, no communities had more than one size or more than
one model number. This property is desirable because it is unlikely that different sizes or
models of monitors serve as good substitutes.

The communities are not quite as distinct as in the Canon market—for example, there
are two communities with e173fp as a keyword and also two communities with 15” as a
keyword. Thus, there is some evidence of oversegmentation. Nonetheless, when taken
together, the keywords for the 12 major communities do seem to encapsulate the significant
areas of the market—for example, all major monitor sizes are represented in at least one of
the major communities.

An interesting anecdote is that examining the individual auctions in the LCD community
corresponding to 24” 2405fpw Dell monitors (community 6 in Figure 4.7) revealed one case
where our method correctly grouped an auction with similar other auctions even though
the seller had listed it in an incorrect category. In this case, the seller listed the item in
the 19-inch Dell monitor category (see Figure 4.8), but our method nonetheless grouped it
with other 24” monitors of the same model.



CHAPTER 4. SUBSTITUTES PROBLEM RESULTS 44

Figure 4.6: Canon Communities with 0.8 Edge Thresholding and with Weighted Edges. The
size of each circle is proportional to the number of nodes in each community. Significant
keywords (a ≤ 0.01, pc ≥ 0.3) and their associated pc are listed in order of descending a
(most overrepresented keyword first). Since the a values are all small, they are not shown.
Placement of the communities in the figure is arbitrary.
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Figure 4.7: LCD Communities with 0.8 Edge Thresholding and with Weighted Edges. The
size of each circle is proportional to the number of nodes in each community. Significant
keywords (a ≤ 0.01, pc ≥ 0.3) and their associated pc are listed in order of descending a
(most overrepresented keyword first). Since the a values are all small, they are not shown.
Placement of the communities in the figure is arbitrary.
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Figure 4.8: A Seller-Miscategorized Monitor Listing. Our method grouped the item
(id=8730606839) with other items of the same model (24” 2405fpw) even though the seller
listed it in a category for 19” monitors.
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4.5 Discussion

In both the Canon and LCD markets, the results of applying our method to an edge-weighted
and price-thresholded network produced qualitatively good community segmentations and
keywords. In the Canon market, for example, the method segmented the market into well-
defined, non-overlapping communities characterized by keywords for camera model and
resolution. The results are particularly striking because our method was given absolutely no
a priori information about the type of goods in the market—instead, using bidder behavior
alone, our method was able to automatically identify the most relevant 20-30 item-defining
keywords in the Canon market from a global set of 899 and categorize auctions based on
these keywords.

Despite the relatively good performance on the two data sets, there are a number of
limitations to the method. One limitation is the dependence on assumptions about bidder
behavior, and another is the data loss that occurs during network construction because we
only look at the largest MCC. We will now discuss each of these in turn.

Our method is extremely dependent on assumptions about bidder behavior. As noted
before, we assume that bidders tend to bid in auctions that are for similar goods. In
general, this assumption is not problematic. However, in certain markets where there are
strong complementarities of non-substitutable goods, this assumption might not hold true.
In particular, if, in these markets, bidders tend to bid more in auctions that have non-
substitutable complementary goods than in auctions that have substitutable goods, then
our method might not perform as well.

Generating a network with edges based on shared bids across auctions from the same
bidder also introduces an implicit temporal bias to the network. If the time period of
interest for a type of item for each bidder is bounded by some value t,8 then in order
to draw an edge between two auctions, the auctions must be no further than t apart in
time. Temporal fluctuations in bidder volume or behavior patterns might bias the network
in an undesirable manner. In addition, auctions with a longer duration might be better
connected in the network simply because there is a longer time period during which bidders
can generate edges to them. The effect (if any) of the time range of the data set used to
generate the network on the results also remains to be determined.

Another limitation of the method is that the largest MCC to which we apply community
detection represents only a subset of all of the auctions in the data set. This is because we

8We define the time period of interest as the length of time during which a bidder is actively trying to buy
an item. It is hard to imagine that bidders will participate indefinitely on eBay to buy an item. Eventually,
if they are unsuccessful in winning the item, they will turn to other markets.
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can only draw an edge between two auctions if they have a shared bidder—not all auctions
will have shared bidders with other auctions. The Canon set consisted of 6717 auctions,
4308 of which had at least one bidder; the largest MCC without edge filtering had 3173
nodes. The LCD set consisted of 11782 auctions, 8288 of which had at least one bidder; the
largest MCC had 6024 nodes.

In both of our markets, even after edge filtering at f = 0.8, the largest MCC still had
over half of the auctions in the data set. Thus, we still are applying community detection
to a large fraction of the market. However, in filtering out auctions, we might lose some of
the smaller communities of goods.

We discuss future work and applications in the concluding chapter of the thesis.



Chapter 5

The Complements Problem

Having discussed our solution to the substitutes problem, we now extend our work to a
related problem—detecting complementary goods. We begin this section by defining the
problem. Then, we discuss the additional data sets we collect in order to evaluate our
methods. Next, we discuss our preliminary solution to the problem and present results. We
conclude with a discussion of the results and the current limitations to our method.

5.1 Problem Definition and Motivation

Two goods are complementary if the value to a bidder of having the pair is greater than
the sum of the values of having each separately. In contrast to substitutes, if the price of
one of a pair of complementary goods goes up, the demand for the other complementary
good may go down. As noted earlier, an example of a pair of complementary goods is a
digital camera and a memory card. Having a memory card for the digital camera increases
the value a user gets from the camera. If the price of memory cards were to go up, the
demand for cameras would likely go down; similarly, if the price of cameras were to go up,
the demand for memory cards would likely go down.

In this chapter, we investigate whether we can identify complementary goods on eBay.
More specifically, we propose and assess methods for identifying pairs of goods that bidders
often buy together. We assume that buying goods together is evidence for complementarity.1

As noted earlier, a method of detecting complementary goods could be applied to refining
“recommender systems” that give bidders suggestions on goods to purchase based on their

1As in the substitutes section, we also assume that bidders generally will use the same user name for
their transactions.

49
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past purchases. Complementary goods can occur in sets larger than two, but as a starting
point, we only consider complementary pairs of goods.

One should note that an approach to the complements problem requires a solution to the
substitutes problem, since one needs to know the item types of interest before being able
to assess complementary relationships. For example, if we are given a data set containing
cameras and memory cards and want to assess complement relationships between different
types of cameras and different types of memory cards, we would need to first determine the
major substitutes communities—that is, what the different types of cameras and memory
cards are. We propose a method for detecting complements if the substitute communities of
interest are known and also propose a method for detecting complements if the substitute
communities of interest are not known.

5.2 Additional Data Sets

In order to better assess our methods, we collected two additional data sets. The first
set (Secure Digital) consists of all auctions matching “Secure Digital” in the Secure Digital
memory card category over a period from January 10, 2006 to January 25, 2006. The second
set (Compact Flash) consists of all auctions matching “Compact Flash” in the Compact
Flash memory card category over the same time period. The time period was the same as
the time period for our Canon data set.

As discussed above, we have reason to believe that memory cards and cameras have com-
plementary relationships. Furthermore, different models of camera require specific formats
of memory cards—either compact flash or secure digital. Thus, we can assess the effective-
ness of our methods by comparing the strength of complementary relationships detected for
each camera model and the two types of memory cards.

The Secure Digital set consisted of 12803 auctions. 7348 of the auctions had at least one
bidder (57%). 7289 of the auctions sold (57%); the remainder may have failed to meet a
reserve price or may have been cancelled by the seller. 9092 (71%) of the auctions did not
have a buy-it-now option and 107 (0.83%) had a reserve price. As with the previous sets,
most bidders win only one auction. 5807 of the 6376 unique winning bidders won only one
auction (91%).

The Compact Flash set consisted of 4910 auctions. 2718 of the auctions (55%) had at
least one bidder. 2646 of the auctions (54%) sold. 2404 (49%) of the auctions did not have
a buy-it-now option and 125 (2.5%) had a reserve price. 2076 of the 2646 unique winning
bidders won only one auction (90%).
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We also examined the number of bidders who won items in two different markets and
found that these numbers were low: 75 bidders won an item in both the Canon and Secure
Digital market, 45 bidders won an item in the both the Canon and Compact Flash market,
and 92 bidders won an item in both the Compact Flash and Secure Digital markets.

5.3 Our Solution

As noted above, to address the complements problem one must know the communities of
items that one wants to assess complementary relationships between. For example, in our
data set, natural communities of items to examine would be different models of cameras
and different types of memory cards. In this section, we first present a method for detecting
complements if the substitute communities of interest are known. Then, we present a
method for detecting complements if the substitute communities of interest are not known.

5.3.1 Known Communities of Interest

The first case we consider is if the communities of interest are known. One situation where
this case applies would be if we had already identified camera models and wanted to see if
there were complementary relationships with the different memory card types. In this case,
we simply need to define a means to evaluate the strength of the complementary relationship
between two communities of goods c1 and c2. Intuitively, if the two communities have a
large number of shared winning bidders (bidders who win items in both c1 and c2), then
it is likely that the two communities have high complementarity. We propose two different
but related ways to measure complementarity: comp(c1, c2) and compT (c1, c2). We define
comp(c1, c2) as:

comp(c1, c2) = max(cpct(c1, c2), cpct(c2, c1)) (5.1)

where cpct(a, b) is the number of distinct winning bidders in a that also win at least one
auction in b divided by the total number of distinct winning bidders in a. In this definition,
we use percentages (rather than just taking absolute numbers) because it makes sense to
normalize by community size. The fact that there are 10 shared winning bidders between
two communities is extremely significant if the communities are each size 10 but much less
significant if the communities are each size 10000.

By the definition above, comp(c1, c2) is symmetric but cpct(c1, c2) is not. The definition
of cpct(c1, c2) captures the idea of asymmetric complementarities. In the digital camera
and memory card domain, we might expect in general that cpct(c,m) > cpct(m, c) where
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c is a camera community and m is a memory card community, since most purchasers of
a new camera would want to also buy a new memory card, but not every purchaser of a
new memory card would also want to buy a new camera (memory cards can be used in
other electronics, such as PDAs). comp(c1, c2) takes the maximum of these asymmetric
complementarities. Thus, comp(c1, c2) represents the strongest of the two (potentially
asymmetric) complementarity relationships between any two communities.

In addition, comp(c1, c2) only measures complementarity between different communi-
ties. Some communities might be complements with themselves—for example, some bidders
might gain added marginal utility from buying multiple copies of a memory card. Explor-
ing asymmetric complementarities and within-community complementarities would be an
interesting area for future work, but comp(c1, c2) is a reasonable starting point.

In some cases, particularly when community sizes are small or when there are only weak
complementary relationships in the market, comp(c1, c2) might not be informative. In
particular, when there are very few auctions with shared winning bidders, comp(c1, c2) will
be 0 over much of its domain. As we saw in the previous section, there is in fact a sparsity
of shared winning bidders in our data set. We thus also propose a less restrictive, tunable
version of comp(c1, c2), which we call compT (c1, c2). We define compT (c1, c2) as:

compT (c1, c2) = max(cpctT (c1, c2), cpctT (c2, c1)) (5.2)

where cpctT (a, b) is the number of distinct winning bidders in a that also place a bid that
is at least a fraction T of the closing price of an auction in b divided by the total number of
distinct winning bidders in a. The intuition here is similar to that found in the substitutes
chapters for price threshold edge filtering. A high bid fraction signifies interest in an item.
Note that comp1(c1, c2) is essentially equivalent to comp(c1, c2)—the only difference is that
comp1(c1, c2) includes bids that tied the closing price but lost.

Having defined these metrics, assessing complementary pair relationships for a set of
communities simply involves evaluating the metric for each pair.

5.3.2 Unknown Communities of Interest

The above discussion assumes that the item communities of interest are known. This as-
sumption might not always be true. Imagine, for example, that we are given a combined
market of Canon, Secure Digital, and Compact Flash data (without any hierarchical or
community information, such as camera models) and want to determine the major comple-
mentary relationships between communities of identical goods that are not known before-
hand. In this subsection, we present a method that, given a large, heterogeneous market,
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can automatically group and suggest communities that might have complementary relation-
ships. This method requires less a priori knowledge about the data set than the method
described in the previous subsection.

Our approach involves three steps. First, we group individual goods that likely have
complementary relationships. Next, we examine the major communities of complement
candidates (“complement supercommunities”) from the first step and try to subdivide each
of them into distinct categories. Finally, having identified the subcommunities (“substitute
subcommunities”) of interest within each larger complement supercommunity, we then apply
the methods in the previous subsection to these subcommunities. We discuss the details of
each step in turn.

1. We group individual goods that likely have complement relationships into complement
supercommunities. In this step, we would want to group items by some measure of
shared winning bidders. If the same bidder wins two different items, then we have
reason to believe that a complement relationship between the two items exists. The
most obvious way of grouping items by shared winning bidders is to generate an
auction network W0 = (V,E) where an edge e is drawn between two auctions v1 and
v2 iff the same bidder won the two auctions. Unfortunately, with this approach, there
is very little connectivity in the network. For example, if we refer to Table 4.1, we
see that the largest MCC for the Canon network at edge-filter f = 1 is only 22, and
the shared winning bidder network is even more restrictive in edge generation.2 Thus,
instead of having a largest MCC with a majority of nodes, we instead end up with
many disconnected smaller MCCs.

To solve this connectivity problem, we propose overlaying our winner information on
a more connected network when applying community detection. We generate a net-
work S0 using edge weighting and edge filtering as in the substitutes problem but
apply a modified version of the Greedy Q community detection algorithm, which we
term the complements supercommunity detection algorithm. Rather than initializing
the Greedy Q algorithm with each node in its own community, we instead initialize
communities to be the individual MCCs in the auction network W0, as defined above.
Running community detection in this way should emphasize communities containing

2As noted earlier, the network at f = 1 generates edges between two auctions if the same bidder bid
in both and placed a bid that was 100% of the closing price in each. This network is quite similar to the
shared winning bidder network; however, in the f = 1 network bids that tied the maximum but lost (eBay
breaks ties in favor of the earlier bidder) are still considered in edge generation, while in the winning bidder
network these bids are not considered.
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complementary goods (since auctions won by the same bidder fall in the same com-
munity) and also substitutes for those complementary goods (since we begin with the
original substitutes network).3

2. We identify the substitute subcommunities within each larger complement supercom-
munity. From the previous step, we should now have supercommunities with a mixture
of complementary goods and their substitutes. In this step, we want to separate each
complement supercommunity into substitute subcommunities. Thus, for each super-
community, we run the standard Greedy Q community detection algorithm on the
corresponding subgraph from S0.4

3. We determine the complementary relationships between the substitute subcommuni-
ties of goods identified. Once we have identified the substitute subcommunities of
interest, we can simply apply the methods from the previous subsection to them. In
particular, we can generate a comp(c1, c2) matrix for all of the subcommunities in
each supercommunity.

Note that in markets where no strong complements exist, the method above reduces to
a hierarchical application of the substitutes community detection algorithm. The difference
between our method and a hierarchical application of the substitutes community detection
is that complementary goods (if they exist) should tend to fall in the same supercommunity
after the first step.

5.4 Results

In this section, we present preliminary results for each of the methods outlined in the
previous section.

5.4.1 Known Communities of Interest

We were interested in determining if our comp(c1, c2) and compT (c1, c2) metrics can dis-
tinguish between compact flash and secure digital complements for the different model
communities of Canon camera identified in the previous chapter (see Figure 4.6). We chose

3An alternate way to get a similar result might be to give edges made by shared winners in S0 an
additional weight w and then run the standard Greedy Q algorithm. Adding the weight also forces auctions
won by the same bidder to tend to cluster in the same community.

4We use S0 because in this step we are interested in finding the communities of identical goods and not
complements.
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to examine these relationships because we have reason to suspect what the correct asso-
ciations should be, making it easier to interpret results. As noted above, Canon digital
cameras take either compact flash or secure digital memory cards. Of the 12 camera model
communities, 7 were secure digital cameras and 5 were compact flash cameras.

We examined comp(c1, c2) and compT (c1, c2) for 14 communities. Twelve of these com-
munities were the camera communities from the previous chapter. In addition, we generated
one compact flash community and one secure digital community. Each of the memory card
communities contained a random 10% sample of successfully sold auctions in their respec-
tive markets.5 We then generated 14x14 matrices for comp(c1, c2) and compT (c1, c2) (for
T = 0.9, 0.7, 0.5, and 0). An entry i, j in the matrix represents the value of the comp(i, j)
or compT (i, j). Since the functions are symmetric, the matrices are necessarily symmetric
as well.

In Figure 5.1, we display the complement function values for the compact flash and
secure digital memory card communities in relation to the camera communities. Most of
the values for comp(c1, c2) are 0—that is, there were no shared winners between most of
the community pairs. For 4 of the 7 secure digital camera communities, there was a nonzero
comp(c1, c2) value between the camera community and the secure digital community. For 1
of the 5 compact flash camera communities, there was a nonzero comp(c1, c2) value between
the camera community and the compact flash community. Importantly, there were no false
positives—none of the secure digital camera communities had nonzero comp(c1, c2) with the
compact flash community, and none of the compact flash camera communities had nonzero
comp(c1, c2) with the secure digital community. While comp(c1, c2) does not result in any
false positives, it only associates 5 of the 12 camera communities with the expected memory
card model. The remaining 7 communities had complement function values of 0 with both
memory card types. It is possible that no complement relationships exist for the other 7
communities; however, it is also possible that comp(c1, c2) is too restrictive and thus fails
to identify complement relationships that do exist.

We next assessed whether we could identify more associations by relaxing the definition
of comp(c1, c2). At the least restrictive value of T , comp0(c1, c2) the function is able to asso-
ciate 8 of the 12 camera communities with their correct memory card type, which is almost
twice as many associations identified by comp(c1, c2). In this process, however, one compact
flash camera community is potentially misclassified, since it has similar comp0(c1, CF ) and

5We did not generate substitute communities for the memory card markets because we simply wanted
to test for complements between cameras and memory card types in general. For future work, it would
be interesting to examine whether we can detect stronger complements between some models of camera
and some subtypes of memory card—for example, if higher resolution cameras have strong complementary
relationships with higher capacity memory cards.
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comp0(c1, SD) values.

The data suggest that there is some between-camera-community complementarity—that
is, there are bidders who win multiple cameras from different communities. Figure 5.2
depicts the full 14x14 density plot for comp(c1, c2). As we see, only 2 of the 4 camera
communities with memory card comp(c1, c2) relationships had their strongest comp(c1, c2)
value with the memory card community. The other two camera communities had stronger
complement relationships with another camera community.

As we relax our definition of comp(c1, c2), the between-camera-community values of
compT (c1, c2) begin to dwarf the camera-memory card values of compT (c1, c2). This fact
becomes evident in Figure 5.3, which depicts a 14x14 density plot for comp0(c1, c2). While
8 of the 12 camera communities are associated with the correct memory card type, none of
these relationships had the highest value of comp0(c1, c2) for their row.

Interestingly, there seems to exist stronger complementarity between secure digital cam-
eras and secure digital cards than between compact flash cameras and compact flash cards.
Further investigation is needed to determine if this phenomenon is due to an intrinsic prop-
erty of the goods and market or if it is due to some bias in our complementarity metric.

Together, these results suggest that while relaxing comp(c1, c2) can result in the iden-
tification of more associations, there are potential trade-offs in increased misclassification
and noise.
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Figure 5.1: 2x12 Density Plots of Different Complementarity Function Definitions. Each
density plot shows the complementarity function values between the two memory card types
(CF and SD) and the 12 camera communities, 7 of which use SD memory cards and 5 of
which use CF memory cards. Relaxing the definition of complementarity function reveals
more correct associations. Brighter boxes indicate a higher value.



CHAPTER 5. THE COMPLEMENTS PROBLEM 58

Figure 5.2: 14x14 Density Plot of comp(c1, c2). Brighter boxes indicate a higher value.
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Figure 5.3: 14x14 Density Plot of comp0(c1, c2). Brighter boxes indicate a higher value.
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5.4.2 Unknown Communities of Interest

In the previous subsection, we discussed the results pertaining to our method of assessing
the complementarity relationship between known communities of identical goods. We now
turn to evaluating our method for identifying major complementary relationships between
communities of identical goods that are not known beforehand.

As noted before, our method involves three steps. The first step aims to group goods
with strong complementary relationships into the same complements supercommunity. The
second step aims to identify the categories of goods (substitutes subcommunities) that lie
within each complements supercommunity. The third step then assesses the complementary
relationships between these substitutes subcommunities.

To evaluate our method, we took a combined market of Canon, Secure Digital, and
Compact Flash data. We wanted to see if the method would be able to separate Canon
cameras by their complement relationships with memory cards. In other words, we wanted
the see if the communities found after the first step would contain only one type of camera
and associated memory card (either secure digital cameras and secure digital memory or
compact flash cameras and compact flash memory, but not secure digital cameras and
compact flash memory or compact flash cameras and secure digital memory.)

For the first step of our method, we generated the S0 network for the combined data
set using f = 0.8 and edge weighting by shared bidders. We then applied the modified
complements supercommunity detection algorithm that initializes communities to W0. For
comparison, we also applied the standard community detection algorithm.

The complements community detection algorithm produced 44 communities ranging in
size from 2 to 1881. The standard community detection algorithm produced 59 communi-
ties ranging in size from 2 to 3176. In order to qualitatively assess the groupings of camera
and memory, we looked for the largest community in each set that had the keyword Canon
at pc > 0.05. The third largest community (size 1194) from the complements community
detection algorithm and the second largest community (size 1705) from the standard com-
munity detection algorithm satisfied this criterion.6 In the following paragraphs, we refer
to the community from the complements algorithm as the complements supercommunity
and the community from the standard algorithm as the standard supercommunity.

We then ran the second step of our method, applying standard community detection to
each of these supercommunities with a = 0.01 and pc = 0.3. We consider a community to

6The larger communities in the sets that did not satisfy the criterion seemed to be dominated by memory
cards.
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be major if it contains at least 5% of the auctions in its supercommunity.7 The results are
shown in Figures 5.4 and 5.5.

In the complements supercommunity, there were 7 major substitutes subcommunities
with at least one significant keyword. Four of the subcommunities contained cameras that
take secure digital memory (sd500, sd400, sd450, and sd550) and two of the subcommu-
nities contained secure digital memory cards (512mb and 1gb/2gb). The last community
(the smallest) contained Canon cameras of unspecified model. This result makes sense,
since the community associates secure digital memory cards with secure digital cameras.
Furthermore, the segmentation into substitutes is robust—first, there is no overlap between
camera models and second, the division of memory cards by size (512mb and 1gb/2gb) is
reasonable.

In comparison, in the standard supercommunity, there were 8 major communities with at
least one significant keyword. Six of these communities contained cameras that take secure
digital memory and one contained compact flash memory cards. The last community (the
second smallest) contained cameras of unspecified model. From a complements perspective,
this result is not as good as the complements supercommunity result for two reasons—it
fails to associate secure digital memory cards with secure digital cameras and furthermore
incorrectly associates compact flash memory cards with secure digital cameras. We note,
however, that the segmentation into substitute communities is again quite qualitatively
good.

We then applied the third step of our method to both sets of subcommunities. Since
we have identified the communities, we generated matrices for comp(c1, c2) for each set
following the methodology in the previous subsection. The results are shown in Figures
5.6 and 5.7.8 Not surprisingly, there was stronger complementarity in the complements
supercommunity than in the standard supercommunity.

In summary, the above results provide preliminary evidence for the potential effectiveness
of our method for automatically finding complementary groups of goods works. However,
more analysis is needed. For example, we would need to examine in detail each of the
other major complements supercommunities generated and compare them to the standard
supercommunities.

7In the substitutes section we used 1%, but we raised the percentage slightly here because the supercom-
munities are smaller than those in the substitutes section.

8The two communities that did not have a specific camera model are not shown.
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Figure 5.4: Subcommunities of the Complements Supercommunity with 0.8 Edge Thresh-
olding and Weighted Edges. The size of each circle is proportional to the number of nodes
in each community. Significant keywords (a ≤ 0.01, pc ≥ 0.3) and their associated pc are
listed in order of descending a (most overrepresented keyword first). Since the a values are
all small, they are not shown. Placement of the communities in the figure is arbitrary.
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Figure 5.5: Subcommunities of the Standard Supercommunity with 0.8 Edge Thresholding
and Weighted Edges. The size of each circle is proportional to the number of nodes in each
community. Significant keywords (a ≤ 0.01, pc ≥ 0.3) and their associated pc are listed in
order of descending a (most overrepresented keyword first). Since the a values are all small,
they are not shown. Placement of the communities in the figure is arbitrary.
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Figure 5.6: Density Plot of comp0(c1, c2) for Substitutes Subcommunities in the Comple-
ments Supercommunity. Brighter boxes indicate a higher value.
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Figure 5.7: Density Plot of comp0(c1, c2) for Substitutes Subcommunities in the Standard
Supercommunity. Brighter boxes indicate a higher value.
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5.5 Discussion

In this chapter, we extended our work in the substitutes domain to the related problem of
complements. We proposed a class of metrics to evaluate the complementarity between any
two communities of goods. The metrics were able to correctly associate camera communities
with their complementary memory card communities despite the relative sparsity of shared
winning bidder information. In addition, we presented a method for automatically finding
communities that exhibit strong complementarity relationships and provided preliminary
evidence that it was effective.

Despite the generally good results, the methods we propose do have some limitations.
As previously mentioned, one limitation of applying the metrics we propose is that they
depend very strongly on having good substitutes communities. If substitutes communities
are noisy (for example, if camera models with different memory types are grouped into the
same community), then the metrics will not give good results.9

In addition, the metrics may have difficulty distinguishing between substitutes and com-
plements, especially when we lower T in compT (c1, c2). As we see in Figure 5.3, camera
models had higher values of compT (c1, c2) with other camera models (which are better
substitutes) than with memory cards (which are better complements). At the most restric-
tive definition of comp(c1, c2) this problem was less severe; however, there were also fewer
camera-memory card associations identified.

As in the case of substitutes, our complements methods also have an implicit temporal
bias. We only collected two weeks worth of data—if bidders do not try to win complementary
items simultaneously (or in a short time range), then we will miss complement relationships.

We discuss future work and applications in the next and final chapter of the thesis.

9The fact that we were able to get reasonable complementarity results in this section is additional evidence
that the communities identified by our substitutes algorithm are good.



Chapter 6

Conclusions

As online auction sites grow in size, it becomes important to have a method of organizing
the goods available into reasonable categories. Auction sites are successful because they
bring sellers and buyers together, and having a good item categorization structure makes
it easier for buyers to find the items that they want. As we noted earlier, studies have
demonstrated that the categorization needs to extend to the level of substitutable goods in
order to be most effective.

In this thesis, we have proposed a method to solve the substitutes problem and demon-
strated it to be effective. The method relies on a minimum of expert knowledge, which
is important because the online auction markets list goods across a variety of domains.
Additionally, we extend our work to the related problem of complementary goods.

There are three major sections in this chapter. The first section summarizes our major
contributions. The second section lists areas where our methods can be improved. The
final section contains a discussion of future research and applications.

6.1 Summary of Contributions

As we noted earlier, relatively little work has been done previously on the problems ad-
dressed in this paper. Indeed, community detection algorithms have been applied only once
in the literature to networks derived from online auction markets. In this section, we high-
light the major contributions of this thesis to the substitutes and complements problems.
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6.1.1 The Substitutes Problem

The key insight behind our solution to the substitutes problem is one about bidder behavior—
namely, that bidders tend to bid in auctions with substitutable items. We generate a novel
auction network that makes use of this insight, which we believe gives it an advantage over
other methods, such as text-based clustering.

Beyond the overall solution, the major contribution of our work lies in the way we refined
our auction network. We found that we could improve our results dramatically by filtering
edges, and to a lesser extent by weighting edges. We proposed two ways of filtering edges
to remove edges that were uninformative with regards to substitute community structure.
We demonstrated that both of these filtering methods increased the modularity score of the
network; furthermore, edge filtering by price thresholding resulted in qualitatively better
substitute communities. We also showed that edge weighting by the number of shared
bidders resulted in qualitatively better substitute communities.

When we combined price-threshold edge filtering with edge weighting and applied our
solution, we found that we were able to generate reasonable communities of substitutable
goods in both the Canon and LCD markets of eBay.

6.1.2 The Complements Problem

One major contribution to solving the complements problem was our formulation of metrics
for determining the strength of a complement relationship between any two known commu-
nities. We found that data on complement behavior was relatively sparse in the markets
we examined, despite the fact that we had reason to suspect the existence of complement
relationships. A low percentage of bidders won multiple items in the Canon, Secure Digital,
and Compact Flash markets; as a result, the first formulation of our metric did not identify
many of the expected relationships. We proposed ways of relaxing our metric so that we
could detect complements even when there were not shared winners and demonstrated that
these relaxed metrics perform better, although there is a trade-off with increased noise.

The second contribution to solving the complements problem was our method for au-
tomatically detecting and grouping substitute communities that have strong complement
relationships even when no substitute or hierarchical structure information is known be-
forehand. We presented preliminary results suggesting that our method could be effective.
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6.2 Improvements to Our Solutions

Despite the generally positive results outlined above, there are still several areas where
our methods could be improved. In this section, we discuss possible improvements to our
methods for the substitutes and complements problems.

6.2.1 The Substitutes Problem

In the substitutes domain, a better community detection algorithm would obviously improve
results. While the greedy modularity algorithm is widely used, there has not been work
done on proving a performance bound. Assessing alternate algorithms for maximizing Q,
such as simulated annealing, would be worthwhile. In addition, the formal properties of
Q are largely unexplored. While Q works well in practice, it is possible that an alternate
metric for community detection might provide better results.

There is also room to improve the keyword extraction algorithm. One could improve
keywords extracted by looking at auction listing text beyond the title. One could also
implement a more sophisticated algorithm, such as one that looks at n-grams rather than
just single words.

Finally, work can be done to make the method more automated. Currently, there are four
parameters that must be user-specified: f for edge filtering, a and pc for keyword extraction,
and the minimum size threshold of a major community. We provide some guidelines for
setting these parameters in our previous discussion. For example, in setting f we want
to filter out a large number of edges while keeping the size of the largest MCC as high
as possible. In order for our method to be truly automated, these guidelines need to be
formalized so that parameters can be determined without user input.

6.2.2 The Complements Problem

In the complements domain, it is important to more formally characterize the properties
of the comp(c1, c2) and compT (c1, c2) metrics we define. For example, we normalize for
community size by taking percentages of winning bidders rather than absolute numbers,
but we need to assess whether the normalization succeeds in practice. One way to answer
this question would be to take a larger set of data and see whether size correlates with the
complementarity scores for a community. Other metrics can also be developed. For example,
it would be useful to have a way of measuring the overall level of complementarity in a
market. One way of doing this would be to take an average of the pairwise complementarity
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scores. In addition, as in the substitutes case, in order to fully automate the method
we would need a way to automatically determine a good value for T . We want T to
be low enough that compT (c1, c2) can identify complement relationships between many
different communities but high enough that compT (c1, c2) does not also identify substitute
communities as having complement relationships. Finally, as we noted earlier, the ability
of the metric to detect complementary relationships between communities depends strongly
on whether those communities are well-defined. One way to produce “cleaner” metric scores
between communities might be to only look at auctions in each community that contain
the top keywords (in terms of highest pc) for that community. For example, if a community
has a camera model as its top keyword, then in evaluating a complementarity score for that
community we would look only at auctions that contain that keyword.

There is also room to improve our method for automatically detecting and grouping sub-
stitutes communities that have strong complement relationships. In particular, it would be
useful to be able to specify the “granularity” at which we want to detect complement rela-
tionships. For example, rather than detecting complement relationships between individual
models of camera and individual brands and sizes of memory card, we might want to detect
more general complement relationships between classes of cameras and types of memory
cards. In this case, we would want the method to have fewer, larger supercommunities and
fewer, larger subcommunities. Plausible subcommunities would be one for all compact flash
cards, one for all secure digital cards, one for cameras that take compact flash memory
cards, and one for cameras that take secure digital memory cards. Currently, there is no
way to specify to our method the number of communities desired.

6.3 Future Research and Applications

Finally, we turn to avenues for future research. We discuss the possibility of extending
our substitutes method to derive a hierarchical categorization of the entire eBay market.
We then discuss extending our method to dynamic networks of auctions that are still in
progress. Finally, we turn to potential applications of the results in this thesis to other
domains with network structure.

6.3.1 Hierarchical Categorization

In this thesis, we examined only the lowest level of the item categorization problem: iden-
tifying substitutable goods. In order to be fully applicable to large online auction markets,
we would need to generalize our method to higher levels in the hierarchical categorization
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of goods. For example, eBay has 33 top-level categories ranging from Antiques to Video
Games. Digital Cameras fall in a subcategory of the top-level Cameras and Photo category,
while LCD Monitors are nested one level lower, falling in a subcategory of the category
Monitors and Projectors, which in turn is a subcategory of the top-level category Comput-
ers and Networking. It would be interesting to see the results of applying our method to a
larger data set, ideally, one that contains all items on eBay. A hierarchical application of
our method where we first apply it to the global data set, then apply it to the individual
communities identified, and repeat until we reach a satisfactorily low level, would be one
approach to generalizing our method.

One might expect that the lowest level of the categorization problem, which we address,
would be the hardest level to solve, since it would seem to require the most specific knowledge
about goods, such as knowledge about different models of cameras. However, higher levels
of categorization pose their own challenges. Purely keyword-based approaches might fail
to give good keywords for higher-level supercategories, since many of the items in these
supercategories probably do not contain a good shared keyword. For example, the individual
listings in the Consumer Electronics top-level category of eBay probably do not have the
phrase “consumer electronics” in their text. Determining the best hierarchy is also non-
trivial, even at low levels. For example, in the case of digital cameras, it is not obvious
whether it would be better to categorize by resolution and then by brand, or vice versa.

6.3.2 Dynamic Networks

In this thesis, we generated all of our networks from closed auction listings. These listings
have the most data about an auction, since we know the closing price and all of the bidder
information. Thus, with an application to determining categories for organizing an auction
website in mind, it makes sense to use closed auctions because having more auction data
makes it easier to generate a better network. Indeed, we make use of the closing price of
the auction in our edge filtering method.

Nonetheless, it would be exciting to see whether we can generate useful networks when
including auctions that are still in progress. In this dynamic network, structure would
change over time as new auctions are added to the system and new cross-auction bids are
placed. Characterizing dynamic network structure is an interesting theoretical problem—
all of the network analysis literature we have seen in this thesis focuses on static networks
and ignores the fact that networks can change over time. The highly temporal nature of
auctions on eBay makes it a good data set for developing and empirically evaluating new
methods for analyzing dynamic network structure.
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As others have noted [22], a disproportionately high fraction of bids are placed near the
end time of auctions on eBay. It would be interesting to see whether we could determine
meaningful substitutes community information about an auction relatively soon after it is
listed, even in the absence of a large amount of current bid data. One way of compensating
for the relative sparsity of bid data early in an auction’s listing period is to make use of our
results from networks constructed on closed listing data. For example, suppose that we have
a substitutes community c from running our substitutes method on recently closed listings.
Let Bc be the set of all bidders who contributed to the edges in c. We could then look
and see whether any bidders in Bc are also bidding in any currently active auctions—if a
bidder b1 ∈ Bc is a bidder in current auction a1 and a bidder b2 ∈ Bc is a bidder in another
current auction a2, then we could draw an edge between a1 and a2. Note that by this
definition, we could draw an edge between a1 and a2 even if they did not share a common
bidder (b1 6= b2)—the basis for such edges lies in the fact that they share bidders from a
community that has been identified from past data. We could also develop metrics, based
on communities derived from past auctions, to assess how directed individual bidders are—
that is, how strongly they tend to limit their activity to single communities of goods. In
our construction of dynamic networks, we could weight edges from bidders by how directed
bidders have been in the past.1

Constructing a dynamic network has clear applications for eBay. For example, it would
be useful if the site could automatically recategorize items that were incorrectly listed by
sellers, while those items were still available for sale. As we saw earlier, our method was able
to correctly recategorize at least one such item after it had closed. Better categorization of
currently listed items could increase market efficiency, since it would make an item visible
to a larger segment of the interested bidder population.

6.3.3 Other Domains and General Lessons

While the specific data set we use comes from the online auction website eBay.com, we
expect that the methods used in this thesis would produce similar results when applied
to other online auction sites such as uBid.com and Overstock.com. These sites all have
readily available bid history information, and as long as our assumptions about bidder
behavior hold, we should be able to identify substitutes communities in these markets as
well. Our methods could also be extended to other non-auction e-commerce websites where

1Some of these ideas, such as considering the directedness of bidders, could be used to potentially improve
results for the static substitutes problem as well. After all, the data set of closed listings that we used did not
all close at the same time—rather, auctions closed over the entire time period for which data was collected.
Thus, we really have a version of the dynamic network structure problem.
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hierarchical categorization is important, such as Amazon.com. In this case, we do not have
bidder data, since items are sold at a fixed price. However, one could imagine alternate
ways of defining edges that also capture substitutability. For example, we could construct
an edge between all the items that a user visits in the same web session—if users tend to
limit themselves to similar items, then the communities identified on this network could
also be useful in defining categories.

As we noted earlier, community detection algorithms have been applied to a wide variety
of non-economic domains, including social, biological, and technological networks. While
there may not be direct analogues for the substitutes or complements problems in these
domains, the results from our work still have relevance. In particular, the finding that
edge filtering can result in dramatically improved community divisions suggests that edge
filtering might also contribute to improved results in other domains. For example, if one is
trying to identify communities of semantically similar web pages, with nodes as web pages
and edge defined by hyperlinks, better results might be obtained by identifying and then
filtering out “uninformative” links. Simple ways of identifying uninformative links might be
considering link placement in the page and the similarity of the link text to the other text
in the page. In future work, it would be interesting to examine whether edge filtering can
produce improvements in other domains on a similar scale as the improvements we found
in the auction domain.

More generally, the dramatic improvements we found from edge filtering touch upon a
simple but important point: the results of any network-based approach to solving a problem
are constrained by the quality of the network used. Even an “optimal” community detection
algorithm—for example, one that finds the global maximum modularity—would produce
poor results if the edges in the network it is applied to do not reflect the type of communities
desired. It is important to keep this point in mind as network-based approaches are applied
to solve problems in a growing set of domains.



Appendix A

Derivation of Update Rules for

Greedy Q

In this section, we include a derivation of the update rules for the optimized greedy modu-
larity algorithm. The update rules were first exhibited by Clauset et al. [2], but they were
presented without derivation.

We begin by establishing some preliminary properties of ∆Q and then apply these prop-
erties to the update rules.

Let
qi = eii − ai

2 (A.1)

Substituting Equation A.1 into Equation 3.2 gives:

Q =
∑

i

eii − ai
2 =

∑
i

qi (A.2)

Without loss of generality, let us assume we are joining communities a and b into com-
munity c. Let us call the set of communities prior to the join P and the set of communities
after the join P ′. Note that P ′ = P + {c} − {a} − {b}. Then it follows that:

∆Qab =
∑
i∈P ′

qi −
∑
i∈P

qi = qc − [qa + qb] (A.3)

.

The above equation is true because qi does not change for any community i that was
not involved in the join.

Substituting Equation A.1 into Equation A.3 and simplifying gives:

∆Qab = qc − [qa + qb] = eab − 2aaab (A.4)
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We now can derive the initialization and update rules.

A.1 Initialization of ∆Q

Initially, every community is exactly one node. Therefore, if node i and node j are con-
nected, eij = 1

M ; otherwise, eij = 0.1 Let us then substitute into Equation A.4.

If i and j are connected, we get:

∆Qij = eij − 2aiaj =
1
M

− 2aiaj (A.5)

Substituting for ai and aj gives the initialization Equation 3.5.

If i and j are not connected, we get:

∆Qij = eij − 2aiaj = 0− 2aiaj = −2aiaj (A.6)

Since the algorithm is greedy and we are interested in only the maximum value of Q, we
can set ∆Qij = 0 in the case when ∆Qij is negative, which gives the initialization Equation
3.6.

A.2 Updating ∆Q

As before, let ∆Q′ be the updated ∆Q matrix and ∆Q be the current matrix. Without
loss of generality, let us assume we joined community i and community j into community
j′. Let k be one of the other communities.

From Equation A.4, we have ∆Q′
j′k = ej′k − 2aj′ak. We know that aj′ = ai + aj .

Substituting, we get:

∆Q′
j′k = ej′k − 2aiak − 2ajak (A.7)

.

Now, note that ej′k can be defined in terms of ejk and eik depending on the connectivity
of k and i and j.

If k is connected to both i and j, then ej′k = eik + ejk, so:

∆Q′
j′k = eik + ejk − 2aiak − 2ajak (A.8)

1In a slight abuse of notation, here we let i and j refer to both nodes and the communities that those
nodes define.
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If k is connected to i but not j, then ej′k = eik, so:

∆Q′
j′k = eik − 2aiak − 2ajak (A.9)

If k is connected to j but not i, then ej′k = ejk, so:

∆Q′
j′k = ejk − 2aiak − 2ajak (A.10)

Finally, if k is connected to neither i nor j, then ej′k = 0, so:

∆Q′
j′k = −2aiak − 2ajak (A.11)

All that remains is to note that from Equation A.4, we have ∆Qik = eik − 2aiak and
∆Qjk = ejk − 2ajak. If we substitute these terms into our update rules, Equations 3.7, 3.8,
and 3.9, we see that they are identical to Equations A.8, A.9, and A.10 as derived above.
In the case where k is connected to neither i nor j, ∆Q′

j′k is negative, so we can ignore the
update in the greedy implementation.



Appendix B

Comparison of Control to

Edge-Filtered Networks

In this appendix, we provide tables comparing basic descriptive statistics for the largest
MCCs of control networks to the largest MCCs of their corresponding edge-filtered net-
works. We present statistics for both price-threshold edge filtering and winning-bidder edge
filtering. For each type of filtering, we present statistics for both the Canon and LCD
markets.

The data show that the largest MCCs in the price-thresholded control networks are quite
similar (in terms of number of edges and nodes) to the largest MCCs in their corresponding
price-threshold networks. However, the largest winning-bidder control network MCCs have
many more nodes than the MCCs of their corresponding winning-bidder networks.
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Network Edges Edges in Largest MCC Nodes in Largest MCC
0.6 22830 22752 3012
Control 0.6 22830 22787(+0.15%) 3032(+0.66%)
0.8 13035 12858 2710
Control 0.8 12858 13004(+1.1%) 2840(+4.8%)

Table B.1: Canon Control Networks vs. Price-Thresholded Networks. The percentage
difference (relative to the price-thresholded network) for number of edges in the largest
MCC and number of nodes in the largest MCC is given in parentheses.

Network Edges Edges in Largest MCC Nodes in Largest MCC
0.6 60955 60502 5621
Control 0.6 60955 60744(-0.35%) 5458(-2.9%)
0.8 28918 28206 5072
Control 0.8 28918 28743(+1.9%) 4891(-3.6%)

Table B.2: LCD Control Networks vs. Price-Thresholded Networks. The percentage dif-
ference (relative to the price-thresholded network) for number of edges in the largest MCC
and number of nodes in the largest MCC is given in parentheses.

Network Edges Edges in Largest MCC Nodes in Largest MCC
WBF 12142 11931 2178
Control WBF 12142 12112(+1.5%) 2812(+23%)

Table B.3: Canon Control Networks vs. Winning Bidder Filtering (WBF) Networks. The
percentage difference (relative to the WBF network) for number of edges in MCC and
number of nodes in MCC is given in parentheses.

Network Edges Edges in Largest MCC Nodes in Largest MCC
WBF 59136 58715 4281
Control WBF 59136 58955(+0.41%) 5474(+27.9%)

Table B.4: LCD Control Networks vs. Winning Bidder Filtering (WBF) Networks. The
percentage difference (relative to the WBF network) for number of edges in MCC and
number of nodes in MCC is given in parentheses.



Appendix C

The LCD Market: Qualitative

Analyses

In this appendix, we include qualitative keyword and community results for the LCD market.
We provide the results from the application of our method to three different networks:
one with no edge filtering and unweighted edges (Figure C.1), one with price-threshold
edge filtering and unweighted edges (Figure C.2), and one with no edge filtering and with
weighted edges (Figure C.3).

Similar to Sections 4.2 and 4.3 for the Canon market, we demonstrate that for the LCD
market, price-threshold edge filtering results in significantly better community structure
and keywords, and that edge weighting results in slightly better community structure and
keywords. The results of the LCD market with both edge filtering and edge weighting
applied in conjunction are found in Section 4.4 in the main body of the thesis.

C.1 Edge Filtering and Community Keywords

We compared the results of applying our solution to the unweighted LCD network with price
thresholding at f = 0 (unfiltered) to the results of applying it to the unweighted Canon
network with price thresholding at f = 0.8. We evaluated the communities and keywords
found using qualitative standards for within-community and across-community keywords,
as discussed in the next paragraph.

Qualitatively, within a given community, a good set of keywords should be one that de-
fines a category of substitutable goods. In the LCD market, we would likely want keywords
to correspond to monitor sizes, brands, and model numbers. We would not want too many
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keywords for a community—it would be surprising if many different LCD monitors or mod-
els were grouped together in the same community, since these would generally make poor
substitutes. Across communities, we would want minimal overlap between keywords, since
each community should define a unique set of substitutable goods. In addition, we would
want enough communities to be able to identify a range of distinct substitute communities.

For the network with f = 0, there were 58 communities ranging in size from 2 to 2486.
We define a major community as one whose size is at least 1% of the total number of
auctions in the largest MCC. In the network with f = 0, there were 4 such communities.
We applied keyword extraction with a = 0.01 and p = 0.3 and examined the keywords for
those 4 communities. Of these, 3 communities had significant keywords, with a range of
3 to 5 keywords each. The major communities with significant keywords are depicted in
Figure C.1. There were 2 monitor sizes (17”, 19”) and 1 monitor model (2005fpw) in the
set of significant keywords. No community had more than 1 monitor size or monitor model
keyword. Across communities, there was no overlap between LCD size or model keywords.

For the network with f = 0.8, there were 66 communities ranging in size from 3 to
1174. Of these, 10 were major communities. We applied keyword extraction with the same
parameters and examined the keywords. Eight of the major communities had significant
keywords, with a range of 1 to 6 significant keywords per community. The major communi-
ties with significant keywords are depicted in Figure C.2. There were 4 monitor sizes (15”,
17”, 19”, 24”) and 2 monitor models (2005fpw, 2405fpw) in the set of significant keywords.
Again, no community had more than 1 monitor size or monitor model keyword, and across
communities, there was no overlap between camera model keywords. There appears to be
some over-segmentation, since, for example, there are 4 different communities that have 17”
as a keyword.

The keywords and communities from the f = 0.8 network are qualitatively better. In
particular, the f = 0.8 network identifies a larger set of monitor sizes and monitor models.
While there is some over-segmentation in the f = 0.8 network, this is arguably preferable
to completely missing two sizes of monitors in the market (15” and 24”) and one model
(2405fpw).
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Figure C.1: LCD Communities with No Edge Filtering and with Unweighted Edges. The
size of each circle is proportional to the number of nodes in each community. Significant
keywords (a ≤ 0.01, pc ≥ 0.3) and their associated pc are listed in order of descending a
(most overrepresented keyword first). Since the a values are all small, they are not shown.
Placement of the communities in the figure is arbitrary.
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Figure C.2: LCD Communities with 0.8 Edge Thresholding and with Unweighted Edges.
The size of each circle is proportional to the number of nodes in each community. Significant
keywords (a ≤ 0.01, pc ≥ 0.3) and their associated pc are listed in order of descending a
(most overrepresented keyword first). Since the a values are all small, they are not shown.
Placement of the communities in the figure is arbitrary.
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C.2 Edge Weighting and Community Keywords

We applied our solution to an un-edge-filtered, weighted LCD network and compared the
results to those for the un-edge-filtered, unweighted network in the previous section (see
Figure C.1).

For the weighted network, there were 28 communities ranging in size for 3 to 2089. Of
these, 6 were major communities. We applied keyword extraction with the same parameters
and examined the keywords. All 6 of the major communities had significant keywords, with
a range of 1 to 7 significant keywords per community. These major communities are shown
in Figure C.3. There were two monitor sizes (17”, 19”) and two monitor models (e173fp,
2005fpw) in the set of significant keywords. In addition, one community had a keyword for
projectors (projector). Again, no community had more than 1 monitor size or monitor model
keyword, and across communities, there was no overlap between camera model keywords.

The performance is similar to that of the unweighted LCD network. However, one could
argue that it is slightly better because it identifies another model type (e173fp) as well as
a category of non-monitors that were in the data (projectors).
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Figure C.3: LCD Communities with No Edge Filtering and with Weighted Edges. The
size of each circle is proportional to the number of nodes in each community. Significant
keywords (a ≤ 0.01, pc ≥ 0.3) and their associated pc are listed in order of descending a
(most overrepresented keyword first). Since the a values are all small, they are not shown.
Placement of the communities in the figure is arbitrary.



Appendix D

Keyword Lists

In this section, we give lists of keywords. The first two tables contain lists of keywords
for the global Canon set and the global LCD set. All keywords present in at least 1% of
auctions are listed.

Then, we give lists of keywords for major communities of the final Canon and LCD
networks analyzed in this paper: the price threshold 0.8, weighted networks. We list all
keywords that are present in at least 5% of the auctions in their community.
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canon 0.994
powershot 0.930
digital 0.665
camera 0.487
megapixel 0.417
new 0.324
elph 0.272
5.0 0.185
3.2 0.126
7.1 0.125
mp 0.125
4.0 0.101
is 0.099
a620 0.093
brand 0.079
s2 0.067
usa 0.066
sd400 0.065
sd500 0.059
sd450 0.048
a610 0.048
sd 0.046
kit 0.044
a70 0.042
3.2mp 0.041
a520 0.041
1gb 0.038
nr 0.037
card 0.035
sd550 0.034
zoom 0.034
s400 0.031

a410 0.031
s500 0.028
w/ 0.027
warranty 0.026
5mp 0.025
s50 0.025
sd200 0.024
s410 0.024
s1 0.024
512mb 0.022
extras 0.021
2.1 0.020
5.0mp 0.020
shot 0.019
box 0.019
2.0 0.019
256mb 0.019
plus 0.018
7.1mp 0.018
1 0.018
power 0.018
4.0mp 0.017
s80 0.017
sd300 0.016
a85 0.016
like 0.016
no 0.015
with 0.015
4mp 0.015
sd-500 0.015
3x 0.014
mega 0.014

a510 0.014
a75 0.014
mb 0.014
g3 0.014
12x 0.014
reserve 0.014
&amp 0.014
128mb 0.013
a95 0.013
4x 0.013
used 0.013
g6 0.013
sd-550 0.013
g2 0.012
case 0.012
a400 0.012
cf 0.011
opt 0.011
memory 0.011
s30 0.011
s1is 0.011
s230 0.011
500 0.011
for 0.011
s110 0.011
pro1 0.011
nib 0.010
w/1gb 0.010
s200 0.010
as 0.010

Table D.1: Keywords for the Global Canon Set with the Fraction of Auctions Matching. All
94 keywords matching 1% or more of auctions are listed. In total, there were 899 keywords.
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lcd 0.952
monitor 0.805
flat 0.493
new 0.478
panel 0.441
dell 0.415
17” 0.228
19” 0.211
ultrasharp 0.150
brand 0.136
15” 0.121
2005fpw 0.106
e173fp 0.095
samsung 0.085
sony 0.085
tft 0.079
screen 0.074
widescreen 0.069
black 0.063
2405fpw 0.063
inch 0.056
24” 0.051
20” 0.051
syncmaster 0.050
box 0.048
nr 0.048
computer 0.047

hp 0.046
17 0.044
color 0.041
viewsonic 0.040
sealed 0.040
19 0.039
914v 0.038
20.1 0.037
mag 0.033
sdm-hs95/b 0.032
nec 0.031
wide 0.031
nib 0.030
e193fp 0.030
display 0.030
in 0.029
like 0.027
20.1” 0.025
18” 0.023
monitor, 0.022
15 0.020
acer 0.020
2405 0.020
sdm-hs95 0.019
1905fp 0.018
warranty 0.018
dvi 0.016

no 0.016
1800fp 0.016
model 0.015
reserve 0.015
digital 0.014
speakers 0.014
18 0.014
innovision 0.013
flat-panel 0.013
w/ 0.012
gateway 0.012
multisync 0.012
pc 0.012
princeton 0.012
*new* 0.012
ibm 0.011
with 0.011
pavilion 0.011
tv 0.011
e153fp 0.011
kds 0.011
lt916s 0.010
emachines 0.010
envision 0.010

Table D.2: Keywords for the Global LCD Set with the Fraction of Auctions Matching. All
78 keywords matching 1% or more of auctions are listed. In total, there were 2535 keywords.
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Table D.3: Major Communities and All Keywords of pc >

0.05 for the Canon Network with Price Thresholding f = 0.8
and Edge Weights. For each community, keywords are sorted
(left-right, top-bottom) in ascending order of a (the most
overrepresented keywords are listed first.) The format for
each entry is keyword a pc. Communities with significant
keywords have, in parentheses, the number of the correspond-
ing community in Figure 4.6.

Community 2077 (1) of size 339
sd400 0.000 0.451 sd450 0.000 0.322 5.0 0.000 0.575
elph 0.000 0.676 digital 0.000 0.894 new 0.000 0.528
w/1gb 0.000 0.050 5mp 0.000 0.074 s500 0.000 0.068
card 0.000 0.080 megapixel 0.020 0.472 powershot 0.435 0.932
brand 0.648 0.074 mp 0.884 0.103 canon 0.989 0.985

Community 1200 (2) of size 329
sd500 0.000 0.432 sd550 0.000 0.258 7.1 0.000 0.480
sd-500 0.000 0.116 sd-550 0.000 0.097 elph 0.000 0.581
500 0.000 0.082 digital 0.000 0.851 sd 0.000 0.125
7.1mp 0.000 0.055 new 0.000 0.438 brand 0.022 0.109
kit 0.073 0.061 powershot 0.137 0.945 megapixel 0.335 0.429
usa 0.487 0.067 camera 0.926 0.447 canon 0.991 0.985
mp 0.996 0.076

Community 174 of size 287
s1 0.000 0.157 repair 0.000 0.084 s1is 0.000 0.094
a95 0.000 0.101 cameras 0.000 0.084 parts 0.000 0.063
a70 0.000 0.122 is 0.000 0.202 3.2 0.000 0.237
sd300 0.000 0.056 2.1 0.000 0.056 3.2mp 0.003 0.073
canon 0.103 1.000 camera 0.305 0.502 4.0 0.415 0.105
mp 0.485 0.125 megapixel 0.899 0.380 powershot 0.913 0.909
digital 0.959 0.617 elph 0.994 0.206 5.0 0.998 0.118

Community 2363 (3) of size 276
a620 0.000 0.833 new 0.000 0.844 7.1 0.000 0.475
kit 0.000 0.192 620 0.000 0.062 usa 0.000 0.239
a610 0.000 0.163 7.1mp 0.000 0.087 512mb 0.000 0.091
camera 0.000 0.714 256mb 0.000 0.080 4x 0.000 0.062
not 0.000 0.051 brand 0.000 0.181 1gb 0.000 0.091
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Table D.3: Major Communities and All Keywords of pc >

0.05 for the Canon Network with Price Thresholding f = 0.8
and Edge Weights. (continued).

mp 0.011 0.170 powershot 0.042 0.957 canon 0.108 1.000
sd 0.268 0.054 digital 0.430 0.670 megapixel 0.998 0.330

Community 2072 of size 275
a410 0.000 0.193 a610 0.000 0.236 a400 0.000 0.069
a510 0.000 0.062 s400 0.000 0.084 3.2mp 0.000 0.102
3.2 0.000 0.222 mp 0.010 0.171 camera 0.010 0.556
canon 0.108 1.000 new 0.312 0.338 4.0 0.323 0.109
powershot 0.567 0.927 5.0 0.774 0.167 digital 0.846 0.636
brand 0.859 0.062 megapixel 0.999 0.327 elph 1.000 0.164

Community 408 (4) of size 204
s2 0.000 0.848 is 0.000 0.853 12x 0.000 0.181
opt 0.000 0.137 mem.crd 0.000 0.127 5.0 0.000 0.564
5.0mp 0.000 0.152 1gb 0.000 0.206 s2is 0.000 0.074
plus 0.000 0.127 zoom 0.000 0.162 sd 0.000 0.176
brand 0.000 0.206 new 0.000 0.436 megapixel 0.102 0.461
kit 0.252 0.054 canon 0.452 0.995 mp 0.453 0.127
usa 0.763 0.054 camera 0.957 0.426

Community 69 (5) of size 153
a70 0.000 0.412 a85 0.000 0.196 yr 0.000 0.137
3.2 0.000 0.438 1 0.000 0.137 warranty 0.000 0.144
3.2mp 0.000 0.183 s230 0.000 0.072 usa 0.000 0.137
mp 0.001 0.209 camera 0.001 0.614 digital 0.018 0.745
powershot 0.035 0.967 canon 0.178 1.000 4.0 0.437 0.105
megapixel 0.992 0.320 elph 0.998 0.170

Community 2163 (6) of size 150
a520 0.000 0.460 4.0 0.000 0.400 sealed 0.000 0.053
s1 0.000 0.093 a510 0.000 0.067 a410 0.000 0.100
3.2 0.000 0.220 brand 0.001 0.147 megapixel 0.005 0.520
new 0.545 0.320 canon 0.574 0.993 is 0.584 0.093
powershot 0.786 0.913 camera 0.905 0.433 mp 0.951 0.080

Community 2508 of size 131
g2 0.000 0.214 s200 0.000 0.122 a300 0.000 0.115
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Table D.3: Major Communities and All Keywords of pc >

0.05 for the Canon Network with Price Thresholding f = 0.8
and Edge Weights. (continued).

g1 0.000 0.076 2.0 0.000 0.145 3.3 0.000 0.061
a40 0.000 0.076 s230 0.000 0.076 extras 0.000 0.092
w/ 0.000 0.099 3.2 0.000 0.229 4.0 0.002 0.176
megapixel 0.014 0.511 powershot 0.138 0.954 canon 0.197 1.000
mp 0.921 0.084 camera 0.937 0.420 elph 0.996 0.168
digital 0.999 0.542

Community 185 (7) of size 119
s50 0.000 0.420 s30 0.000 0.143 s45 0.000 0.067
n-sony 0.000 0.059 5 0.000 0.067 4.0mp 0.000 0.076
4mp 0.000 0.059 used 0.000 0.050 3.2 0.007 0.202
s400 0.010 0.067 extras 0.014 0.050 5.0 0.017 0.261
mp 0.190 0.151 powershot 0.200 0.950 canon 0.208 1.000
megapixel 0.399 0.429 4.0 0.618 0.092 camera 0.638 0.471

Community 645 (8) of size 115
sd200 0.000 0.435 sd-200 0.000 0.217 g3 0.000 0.165
sd300 0.000 0.104 4.0 0.000 0.278 elph 0.000 0.452
digital 0.000 0.843 3.2 0.001 0.226 nr 0.192 0.052
canon 0.212 1.000 megapixel 0.222 0.452 powershot 0.226 0.948
camera 0.424 0.496 mp 0.934 0.078 5.0 1.000 0.052

Community 2195 (9) of size 69
pro1 0.000 0.377 g6 0.000 0.406 8 0.000 0.319
pro 0.000 0.116 year 0.000 0.072 1 0.000 0.174
7.1 0.000 0.333 with 0.002 0.058 like 0.003 0.058
megapixel 0.006 0.565 warranty 0.008 0.072 usa 0.016 0.130
powershot 0.090 0.971 nr 0.177 0.058 canon 0.268 1.000
mp 0.587 0.116 camera 0.911 0.406 new 1.000 0.087

Community 1935 (10) of size 61
s80 0.000 0.639 8.0 0.000 0.164 model 0.000 0.131
8.0-megapixel 0.000 0.082 usa 0.000 0.246 brand 0.000 0.262
a520 0.000 0.148 new 0.000 0.541 kit 0.000 0.131
1gb 0.007 0.098 camera 0.031 0.607 4.0 0.215 0.131
powershot 0.261 0.951 canon 0.874 0.984 digital 0.893 0.590



APPENDIX D. KEYWORD LISTS 91

Table D.3: Major Communities and All Keywords of pc >

0.05 for the Canon Network with Price Thresholding f = 0.8
and Edge Weights. (continued).

mp 0.919 0.066 3.2 0.923 0.066 megapixel 0.953 0.311
elph 1.000 0.082

Community 2636 (11) of size 56
s410 0.000 0.446 *new-demo* 0.000 0.107 s-410 0.000 0.054
4.0 0.000 0.518 s400 0.000 0.250 elph 0.000 0.750
s500 0.000 0.161 sd110 0.000 0.071 4.0mp 0.001 0.071
megapixel 0.104 0.500 mp 0.111 0.179 card 0.231 0.054
powershot 0.314 0.946 digital 0.417 0.679 5.0 0.791 0.143
canon 0.893 0.982 3.2 0.949 0.054 camera 1.000 0.214
new 1.000 0.054

Community 2497 (12) of size 31
s110 0.000 0.484 2.1 0.000 0.516 s100 0.000 0.161
nice 0.000 0.065 elph 0.000 0.710 2.0 0.001 0.097
nr 0.003 0.129 digital 0.020 0.839 megapixel 0.131 0.516
canon 0.339 1.000 powershot 0.451 0.935 mp 0.681 0.097
3.2 0.849 0.065 camera 0.998 0.226

Table D.4: Major Communities and All Keywords of pc >

0.05 for the LCD Network with Price Thresholding f = 0.8
and Edge Weights. For each community, keywords are sorted
(left-right, top-bottom) in ascending order of a (the most
overrepresented keywords are listed first.) The format for
each entry is keyword a pc. Communities with significant
keywords have, in parentheses, the number of the correspond-
ing community in Figure 4.7.

Community 4618 (1) of size 973
19” 0.000 0.692 sony 0.000 0.304 914v 0.000 0.177
sdm-hs95/b 0.000 0.144 samsung 0.000 0.230 sdm-hs95 0.000 0.089
19 0.000 0.124 syncmaster 0.000 0.133 black 0.000 0.149
mag 0.000 0.087 new 0.000 0.629 brand 0.000 0.206
tft 0.000 0.127 sealed 0.000 0.075 nib 0.000 0.061
e193fp 0.000 0.061 box 0.018 0.063 monitor 0.503 0.805



APPENDIX D. KEYWORD LISTS 92

Table D.4: Major Communities and All Keywords of pc >

0.05 for the LCD Network with Price Thresholding f = 0.8
and Edge Weights. (continued).

inch 0.695 0.052 lcd 1.000 0.928
Community 1200 (2) of size 754

e173fp 0.000 0.438 17” 0.000 0.638 panel 0.000 0.650
17 0.000 0.122 flat 0.000 0.668 dell 0.000 0.581
brand 0.000 0.239 new 0.000 0.611 color 0.000 0.090
like 0.000 0.052 hp 0.001 0.070 box 0.001 0.073
monitor 0.005 0.842 sealed 0.032 0.053 lcd 0.046 0.966
tft 0.680 0.074 inch 0.703 0.052 screen 0.987 0.053

Community 4075 (3) of size 637
15” 0.000 0.435 15 0.000 0.069 nec 0.000 0.085
viewsonic 0.000 0.068 display 0.000 0.052 tft 0.007 0.105
hp 0.052 0.060 screen 0.072 0.089 monitor 0.175 0.819
panel 0.396 0.446 black 0.593 0.061 flat 0.605 0.488
lcd 0.811 0.945 samsung 0.997 0.055 17” 0.998 0.181

Community 2077 (4) of size 583
2005fpw 0.000 0.839 widescreen 0.000 0.441 ultrasharp 0.000 0.640
20.1 0.000 0.281 20” 0.000 0.317 dell 0.000 0.916
20.1” 0.000 0.161 wide 0.000 0.136 new 0.000 0.714
sealed 0.050 0.053 box 0.093 0.060 lcd 0.134 0.962
screen 0.906 0.060 brand 0.974 0.108

Community 666 (5) of size 446
1905fp 0.000 0.159 viewsonic 0.000 0.094 hp 0.000 0.103
15” 0.000 0.197 19” 0.000 0.296 like 0.000 0.054
syncmaster 0.002 0.081 monitor 0.002 0.859 17” 0.008 0.276
samsung 0.020 0.112 lcd 0.084 0.966 ultrasharp 0.117 0.170
nr 0.280 0.054 flat 0.579 0.489 screen 0.582 0.072
inch 0.664 0.052 panel 0.667 0.430 tft 0.946 0.058
dell 0.986 0.363

Community 2363 (6) of size 391
24” 0.000 0.660 2405fpw 0.000 0.803 2405 0.000 0.251
dell 0.000 0.859 ultrasharp 0.000 0.453 wide 0.000 0.174
24 0.000 0.064 new 0.000 0.696 widescreen 0.000 0.179
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Table D.4: Major Communities and All Keywords of pc >

0.05 for the LCD Network with Price Thresholding f = 0.8
and Edge Weights. (continued).

panel 0.014 0.496 lcd 0.036 0.972 brand 0.071 0.161
nr 0.220 0.056 inch 0.253 0.064 flat 0.341 0.504
screen 0.723 0.066 monitor 0.836 0.785 2005fpw 0.986 0.072

Community 2195 (7) of size 278
e173fp 0.000 0.331 17” 0.000 0.536 color 0.000 0.115
computer 0.000 0.126 17 0.000 0.097 flat 0.000 0.615
inch 0.000 0.104 panel 0.001 0.536 screen 0.001 0.122
dell 0.021 0.475 15” 0.029 0.158 nr 0.030 0.072
viewsonic 0.040 0.061 lcd 0.040 0.975 box 0.060 0.068
monitor 0.081 0.838 brand 0.618 0.129 tft 0.742 0.068
new 0.952 0.428

Community 3017 (8) of size 267
18 0.000 0.184 1800fp 0.000 0.187 18” 0.000 0.217
computer 0.000 0.258 e193fp 0.000 0.165 flat 0.000 0.719
dell 0.000 0.521 screen 0.000 0.127 monitor 0.002 0.876
19” 0.002 0.281 ultrasharp 0.014 0.199 17 0.017 0.071
color 0.099 0.056 black 0.155 0.079 lcd 0.220 0.963
brand 0.250 0.150 panel 0.340 0.453 inch 0.500 0.056
tft 0.595 0.075 17” 0.761 0.210 e173fp 0.871 0.075
sony 0.890 0.064 new 0.984 0.412

Community 2673 of size 189
parts 0.000 0.143 repair 0.000 0.095 for 0.000 0.106
or 0.000 0.053 15” 0.000 0.275 model 0.000 0.063
viewsonic 0.000 0.095 15 0.001 0.053 screen 0.003 0.127
hp 0.006 0.085 display 0.010 0.058 nr 0.021 0.079
inch 0.083 0.079 color 0.196 0.053 17 0.284 0.053
tft 0.696 0.069 17” 0.703 0.212 lcd 0.980 0.921
flat 1.000 0.339

Community 906 of size 99
lg 0.000 0.071 nec 0.000 0.121 multisync 0.000 0.051
pc 0.000 0.051 acer 0.002 0.061 sony 0.021 0.141
17” 0.022 0.313 tft 0.059 0.121 like 0.072 0.051
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Table D.4: Major Communities and All Keywords of pc >

0.05 for the LCD Network with Price Thresholding f = 0.8
and Edge Weights. (continued).

display 0.109 0.051 hp 0.122 0.071 19 0.134 0.061
color 0.157 0.061 syncmaster 0.173 0.071 inch 0.265 0.071
samsung 0.284 0.101 19” 0.298 0.232 monitor 0.369 0.818
lcd 0.370 0.960 black 0.384 0.071 computer 0.437 0.051
brand 0.550 0.131 15” 0.731 0.101 new 1.000 0.303
flat 1.000 0.293 panel 1.000 0.232

Community 3166 (9) of size 95
1704fpt 0.000 0.179 90 0.000 0.084 1704fp 0.000 0.053
day 0.000 0.095 refurbished 0.000 0.084 computer 0.000 0.242
warranty 0.000 0.084 1800fp 0.000 0.074 17” 0.000 0.379
tft 0.002 0.158 monitor 0.003 0.916 nib 0.030 0.063
18” 0.030 0.053 sealed 0.122 0.063 screen 0.125 0.105
inch 0.230 0.074 nr 0.243 0.063 box 0.250 0.063
17 0.348 0.053 hp 0.381 0.053 19” 0.401 0.221
dell 0.449 0.421 ultrasharp 0.531 0.147 samsung 0.777 0.063
panel 0.887 0.379 15” 0.922 0.074 lcd 0.954 0.916
brand 0.961 0.074 flat 0.966 0.400 new 1.000 0.284

Community 4533 (10) of size 88
/new 0.000 0.091 multi 0.000 0.091 inches 0.000 0.091
sync 0.000 0.091 7004201 0.000 0.068 fpd1830 0.000 0.068
gateway 0.000 0.102 e15t4 0.000 0.057 nec 0.000 0.148
15” 0.000 0.330 in 0.000 0.125 model 0.000 0.080
2001fp 0.000 0.057 emachines 0.000 0.057 box 0.000 0.125
19 0.006 0.091 monitor 0.027 0.886 like 0.041 0.057
nib 0.072 0.057 viewsonic 0.093 0.068 lcd 0.137 0.977
screen 0.159 0.102 tft 0.208 0.102 flat 0.223 0.534
sony 0.275 0.102 hp 0.316 0.057 panel 0.396 0.455
inch 0.490 0.057 black 0.601 0.057 ultrasharp 0.968 0.080
17” 0.989 0.125
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