
Modeling Task Allocation with Time using Auction

Mechanisms

A thesis presented

by

Swara S. Kopparty

To

Applied Mathematics

in partial ful�llment of the honors requirements

for the degree of

Bachelor of Arts

Harvard College

Cambridge, Massachusetts

March 30, 2012

Abstract

The e�cient allocation of tasks to groups of agents has been studied extensively in various

scenarios. In this thesis we look at the task allocation problem with the added parameter of

multiple times at which the job may be completed. We consider both the settings where there

is a single task to be done and also where there are multiple subtasks of a composite task to be

completed. We model the two settings as an auction where workers submit bids for completing

individual tasks or bundles of tasks at di�erent times. In the combinatorial auction setting, we

entertain the idea that workers may consider groups of subtasks to be complementary, and we

adjust bids on bundles of tasks using a measure of complementarity. We propose a mechanism

for determining the optimal allocation in this setting. Finally, we simulate our mechanism and

show that it can e�ectively take advantage of the complementarity of subtasks.

1

Contents

1 Introduction 5

2 Related Work 8

3 Allocation of a Single Task with Multiple Times 8

4 Model for Auction of Single Task with Multiple Times 9

4.1 Winner Determination . 10

4.2 Vickrey Clarke Groves Mechanism . 10

4.3 VCG Payments . 11

4.4 Payment for Winner . 11

4.5 Payment for Non-Winner Workers . 13

4.6 Manager Payment . 13

5 Incentive Compatibility 14

6 Divisible Task with Multiple Times 16

6.1 Modeling Complementarity . 16

6.2 Formal Model of Problem . 16

6.3 Divisible Task Setting as an Extension of Single Task Setting 17

6.4 Valuation Functions . 18

6.5 Winner Determination . 19

6.6 Dynamic Programming for Winner Determination in Combinatorial Auctions 20

6.7 Winner Determination for Divisible Task Allocation with Time 22

6.8 Algorithm for Optimal Allocation in Divisible Task Setting with Time 24

6.9 VCG Payments . 25

7 Simulations 27

7.1 Modeling Bids for Individual Tasks . 28

7.2 Modeling Bids for Bundles . 28

8 Results and Discussion 30

8.1 Varying c-Values . 30

2

8.1.1 E�ect on Social Utility . 30

8.1.2 E�ect on Manager Payment . 33

8.2 Varying the Number of Agents . 34

8.3 Varying the Number of Subtasks . 36

9 Piecewise Constant Utility Functions 37

10 Conclusion 39

3

Acknowledgements

I am deeply indebted to my thesis adviser, Professor Yiling Chen, for her immense guidance, constant

encouragement, and numerous helpful suggestions. I would like to thank Professor David Parkes,

for being instrumental in my introduction to the area of Economics and Computer Science. Many

thanks to Haoqi Zhang and David for o�ering initial discussions. I want to thank my brother, Swastik

Kopparty, for being a constant source of inspiration. Lastly, I want to thank my family for providing

me with the utmost motivation and moral support throughout the development of this thesis.

4

1 Introduction

The question of e�cient allocation of resources is of great practical signi�cance with applications in

a variety of consumer-producer settings. The problem of task allocation has been studied extensively

in many situations. However, the setting where the completion time of the job is a tunable parameter

has not been studied in detail. In this thesis, we examine the concept of optimal task allocation with

an additional parameter of time. We consider the case of the manager as a consumer who has access to

a collection of workers. The manager needs a certain job to be completed within a maximal amount

of time, and the job has the possibility of being completed at earlier times, at the cost of making

the workers work harder. Why is this an interesting twist? Time can be thought of as a measure

of e�ciency. It seems very natural that when a manager is looking to complete a job, a common

necessity is for the job to get done as quickly as possible. However, we can also consider time to be

a concrete representation of a measure of the quality of the task. So, while we consider time to be

a measure of e�ciency throughout this thesis, the introduction of the additional parameter of time

could be substituted with any measure of the quality with which the task gets done. The mechanisms

we explore in this paper, then, can be used to solve situations with di�erent measures of quality.

There are several questions that must be considered. How should the task be allocated so that it

is completed as quickly as possible? How should the task be allocated so that the manager has to pay

as little as possible? How can we ensure that the workers work sincerely? We consider a basic model

where there is a single manager, and he must choose amongst a group of workers and assign the task

in a way that balances all the above factors. In order to concisely capture this problem, we say that

workers report bids for completing the task at every possible time. These bids are meant to represent

the workers' self-evaluations of their skills and adeptness at completing the task at hand within each

period of time. Let us consider an example: say there is a manager, and the task is to develop some

software before a certain deadline. Suppose the deadline is time T = 5, but the manager would also

prefer that the task be done before the deadline, namely at time T = 1, 2, 3 or 4 . Let's say there

are four agents working under him, called agent1, agent2, agent3, agent4, and they each have varying

levels of skill. We assume that the manager can delegate the task of developing the software to only

a single worker, and he will pay the worker according to the time at which the worker completes the

job. Again, the questions come up: how should the manager choose whom to assign the task to? We

want to ensure that workers truthfully report their valuations. Furthermore, we want to ensure that

the task is done as early as possible. This setting can be abstracted as a scenario where the manager

5

is a consumer, and the agents are selling their skills. Thus, we choose to model this setting as an

auction, where the workers submit a price that they demand for completing the task at time T , for

all possible values of T within the maximal time. If the workers were all competing for the job at a

single time, then this would be a traditional single-item auction, where the item being auctioned is

the task. However, in this paper, we are considering the added twist that there is a range of times at

which the task may be completed. As such this is not a traditional auction setting, and we explore

the intricacies and complexities involved with attaching the time parameter into the task allocation

problem.

The basic model can evolve in two directions; �rst, by increasing the number of tasks. The simplest

case is where

1. There is a manager who has a single indivisible task to be completed at a specifed time, there

are several agents that submit their bids for the task.

2. We can increase the complexity by allowing for the task to be divided into subtasks and still

consider that there is only a single time at which groups of subtasks must be completed in

conjunction.

If we model these two situations using auction mechanisms, the �rst would be modeled as an auction

with a single item and multiple bidders. The second would be modeled as a combinatorial auction

with mutiple items and multiple bidders. These two types of settings have been extensively studied.

The second direction in which the model can evolve is to introduce time, and we consider the above

two variations with time as a parameter.

1. There is a single indivisible task to be completed at a single time chosen from a speci�ed range

of discrete times, and there are several agents that submit their bids for the task.

2. The task can be divided into subtasks and groups of subtasks may be completed in conjunction

at di�erent times from within a speci�ed range of discrete times.

We are concerned with studying these two cases in more detail. In this work, we are also interested

in modeling the idea of complementary tasks. In the setting where there are multiple subtasks that

must be allocated to agents at various times, we can consider possible modi�cations or relaxations of

our model that may further increase the e�ciency with which the major task is completed. Hence,

we also take into account that agents are multi-skilled and that subtasks of a composite task are

6

often related to one another. As such, it is natural to assume that agents may have valuations on

completing groups of subtasks at various times. We model this by allowing agents to submit bids on

all combinations of subtasks, which we refer to as bundles.

In this scenario, we design an auction mechanism based on a social-utility maximizing model which

results in optimal bundle allocation. We also design an algorithm to compute the outcome of this

mechanism which is faster than the naive brute force algorithm. The resulting mechanism turns out

to be an interesting variant of standard auctions. To illustrate the kind of auctions that arise, consider

the case where there is just a single task J which can be completed either at time 1, 2 or 3. This can

be thought of as 3 di�erent tasks which are up for auction, J1, J2, and J3 (where Ji denotes the task

of completing J in time i); but only one of of the Ji can be sold.

To evaluate the e�ectiveness of the mechanism, we assign agents a numerical measure of comple-

mentarity, and we use this measure to model the bids for all bundles at all times. The agents' bids

for all bundles will depend on their complementarity measure and their valuations for the individual

tasks within the bundle. We model the two cases above (with time as a parameter), and modify tradi-

tional auctions solving mechanism to determine the winners and payments for the optimal allocation

of tasks. Through simulations, we study how this mechanism can take advantage of complementary

bids.

We can imagine real-life settings where time (or quality) is a desired parameter. For example, in

a setting like Amazon Mechanical Turk [4], we could have a requester post about a time-sensitive job

(that can be broken up into subtasks) where the "turkers" could use self-evaluation of their skills in

regards to the job to make bids on various bundles of subtasks with various �nishing times. Then,

the requester can use our mechanism to determine the turkers to whom the subtasks are assigned,

what their expected completion times are, and how much they get paid. This thesis ultimately

demonstrates how our mechanism for allotting tasks can exploit complementarity of subtasks. The

major modi�cations to the traditional auction settings are the introduction of time as a parameter

and modeling complementarity of subtasks in addition to time. We study the interesting e�ects of

allowing for these modi�cations in the following sections.

7

2 Related Work

The �elds of task allocation using auction mechanisms has been studied in various settings. In par-

ticular, multi-auction methods were used for e�cient task allocation [1]. Greedy algorithms typically

have been used in task allocation using auction methods, including the stochastic clustering approach,

where simulated annealing is utilized to determine optimal exchanges between clusters of agents. [11]

Winner determination in combinatorial auctions is a hard problem to solve in polynomial time. Winner

determination in combinatorial auction settings has been extensively studied [10]. Search algorithms

utilizing dynamic progamming were studied in [9]. Other techniques include variations on the greedy

algorithm, simulated annealing, and genetic algorithms [3]. A modi�cation on the combinatorial auc-

tion setting is the combinatorial exchange setting, where iterative methods have been used for winner

determination [6], [5]. In the combinatorial exchange setting, there are multiple items not for sale in

an auction, but rather agents get utility from trading items for various prices. [6] describe a tree-

based-bidding-language (TBBL Tree Based Bidding Language) and studied mechanisms for winner

determination using iterative techniques to achieve socially optimal combinatorial exchanges.

3 Allocation of a Single Task with Multiple Times

A task allocation problem, in this context, is the following. There is a single manager whose aim is

to use the workers under him to complete a single task as e�ciently as possible. This situation can

be generalized in many ways, and we consider possible modi�cations in the coming sections. We �rst

consider the simple case where there is a single task, N workers, and T possible times for which the

workers may submit bids. The manager must pick a single worker to complete the task, and he must

pick a single time within which the worker must do so. We assume that the workers have some skill

levels which they use as a measure to generate bids on their own. We require each worker to submit

a bid for each possible time. The manager has some budget and utility that he wants to maximize.

Since the manager would like the job to be completed as early as possible (with less time taken to

complete the job being the indicator of increased e�ciency), the manager's utility is a decreasing

function of time. The workers are bidding for the job at multiple times. Of course, it is at least as

easy for an agent to complete the job with a larger amount of time, and so their bids for the task

at higher times will be lower. Thus, workers' bidding functions decrease with increasing times. The

workers derive negative utility from doing the task and derive positive utility from getting paid for it

8

by the manager, and hopefully the mechanism will make their net utility nonnegative.

Several intuitive questions are the following: how should the manager pick the worker that maxi-

mizes his utility? How can we be certain that the workers are reporting true valuations of their skills

and correspondingly, true bids for each time? Since we are modeling this as an auction, but there

are several bids for each possible time this is an atypical auction setting. Some of the issues that we

consider are how to adapt existing auction mechanisms to �nd optimal task allocation assignments in

this case. We will use modi�ed auction mechanisms in order to determine both the "winner" and the

winner payments.

4 Model for Auction of Single Task with Multiple Times

In this section we describe the problem formally and establish the notation that we will use throughout

the remainder of the paper. Generally speaking, given the situation where a manager is faced with the

issue of hiring workers to complete a single task as e�ciently as possible, we would like to determine

the best allocation of the task to a worker, at an optimal time. The optimal allocation will satisfy

the condition that the social utility across the agents (including the manager) is maximized. Thus,

we assume that there are N workers that the manager may choose amongst, and T possible times for

which the workers may submit bids. We require each worker to submit a bid for each of the times.

We now formalize the output of our mechanism.

1. Each agent i submits a bid pit for time t (this should be thought as meaning that player i will

lose pit utility if he had to do the task in time t).

2. The manager has utility mt for time t.

3. We say that an alternative a is an (agent, time) pair including the possibility that the task is

assigned to no one (in this case, the alternative is (Nonec,time).

4. The set of alternatives A consists of

{(agent, time) | agent ∈ Agents ∪ None, time ∈ Times}

5. The agents and manager have valuations over the alternatives

vi(a) : A→ R+

9

that look like

vi(a = (j, t)) =



−pit for j = i

0 for j = None

0 for j 6= i

mt for i = mgr

4.1 Winner Determination

We consider the problem of winner determination with a single task and multiple times. We de�ne

the winning alternative to be the alternative that maximizes social utility. This is a general setting for

an auction, and as such, we use the Vickrey-Clarke-Groves mechanism to �nd the optimal outcome.

The social utility is the sum of the agents' valuations:

∑
i∈Agents,mgr

vi(a)

and we choose the alternative a ∈ A such that
∑
i∈Agents,mgr vi(a)is maximum.

This sum can be expanded as follows:

∑
i∈Agents,mgr

vi(a = (i′, t′)) = 0 + 0 + . . .+−pi′t′ + . . .+mt′ = mt′ − pi′t′

We let the optimal alternative be the pair (i∗, t∗), chosen such that m(t∗)− pi∗(t∗) is maximum.

4.2 Vickrey Clarke Groves Mechanism

The Vickrey-Clarke-Groves (VCG) mechanism can be applied in a general auction setting, with sealed

bids and multiple items being auctioned. The system ensures that all players is incentivized to report

their true valuations over the alternatives, i.e., the payment scheme is incentive compatible [8]. VCG

provides both a rule for determining the winner and a rule for describing the payments incurred for

every agent involved in the auction. The winner is chosen to be the alternative a ∈ A that maximizes∑
i vi(a). The intuition is that the winning alternative is the one that maximizes social utility, which

in this case is the sum of all agents' valuations of an alternative.

10

4.3 VCG Payments

In addition to specifying the winner for an auction in a general setting, VCG also speci�es the payments

for every agent involved in the auction [8]. The payment expected from any agent is the "externality

cost" incurred by that agent. This is found by determining the total social utility of all other agents

given the current winning alternative, and then subtracting this from the total social utility derived

from a new winning alternative when the agent is removed from the set of all agents. This payment

mechanism is incentive compatible, and can be partly attributed to the idea that the payment for

any agent does not depend on his valuation. The VCG mechanism de�nes payment functions payi for

every i ∈ n. The payment function is de�ned as follows:

payi = hi(v−i)−
∑
j 6=i

vj(a)

where

v−i = (v1, v2, . . . , vi−1, vi+1, . . . , vn)

hi(v−i) = max
b∈A

∑
j 6=i

vj(b)

4.4 Payment for Winner

We will now calculate what every agent involved in this scheme must pay. The VCG mechanism

dictates that the payment for player i is

payi = hi(v−i)−
∑
j 6=i

vj(a)

where

hi(v−i) = max
b∈A

∑
j 6=i

vj(b)

and a is the winning alternative. We �rst calculate the payment for worker i∗, the winning worker.

According to the VCG payment scheme,

payi∗ = hi∗(v−i∗)−
∑
j 6=i∗

vj(a)

11

where

hi∗(v−i∗) = max
b∈A

∑
j 6=i∗

vj(b)

So, in this case, we have

hi∗(v−i∗) = max
(i′,t′)∈A

v1(i
′, t′) + v2(i

′, t′) + . . .+ vi∗−1(i
′, t′) + vi∗+1(i

′, t′) + . . .+ vmgr(i
′, t′)

Since we know that worker i has nonzero value for an alternative (a, k) only if i = a (only if he is the

chosen worker), we see that these terms look like −pak′ +mk = mk − pak over all a 6= i∗ and all times

k. So we have that

hi∗(v−i∗) = mt′ − pi′t′

where alternative (i′, t′) yields the maximum social utility when agent i∗ is removed from the set of

possible workers. Now we calculate ∑
j 6=i

vj(a)

which in this case is

∑
j 6=i∗

vj(i
∗, t∗) = v1(i

∗, t∗) + v2(i
∗, t∗) + . . .+ vi∗−1(i

∗, t∗) + vi∗+1(i
∗, t∗) + . . .+ vmgr(i

∗, t∗)

Since no other agents except i∗ and the manager regard this alternative as having nonzero value, and

since i∗ is omitted from the total valuation of this alternative, this is simply equal to mt∗ . Thus, the

winner has to pay

mt′ − pi′t′ −mt∗

In other words, the winner will receive a payment of

mt∗ + pi′t′ −mt′

12

4.5 Payment for Non-Winner Workers

Now we calculate the payments for the remaining workers, using the VCG payment scheme. All other

agents l will have to pay

payl = hl(v−l)−
∑
j 6=l

vj(i
∗, t∗)

. We know that

∑
j 6=l

vj(i
∗, t∗) = v1(i

∗, t∗) + . . . vi(i
∗, t∗) + . . .+ vmgr(i

∗, t∗) = mt∗ − pi∗t∗

because this expression is just the sum of all agents' valuations of the winning alternative, omitting

the current worker l - since the winner i∗ is still included in the sum of the valuations, his utility from

winning is counted in the total. Next, we know that

hl(v−l) = max
b∈A

∑
j 6=l

vj(b)

The winning alternative (i∗, t∗) is still included in the set of alternatives because worker i is now

omitted when constructing the new set of alternatives, and i∗ remains. So we pick the b ∈ A that

maximizes the sum of utilities without agent l, which will be the alternative (i∗, t∗). Thus

hl(v−l) = pi∗t∗ −mt∗

So, we have that the payment for any agent l that is not a winner is

pi∗t∗ −mt∗ − (mt∗ − pi∗t∗) = 0

All other agents will not have to give any payment.

4.6 Manager Payment

In this section we calculate the VCG payment for the manager.

paymgr = hmgr(v−mgr)−
∑

j 6=mgr

vj(i
∗, t∗)

13

where

hmgr(v−mgr) = max
b∈A

∑
j 6=mgr

vj(b)

So we have ∑
j 6=mgr

vj(i
∗, t∗) = v1(i

∗, t∗) + . . .+ vi∗(i
∗, t∗) + . . . vN (i∗, t∗)

recalling that there are N possible workers in total. This is equivalent to

∑
j 6=mgr

vj(i
∗, t∗) = 0 + . . .+ (−pi∗t∗) + . . .+ 0 = −pi∗t∗

Next we calculate

hmgr(v−mgr) = max
b∈A

v1(b) + v2(b) + . . .+ vi∗(b) + . . .+ vN (b)

Since we want the alternative that maximizes this sum, and no one being assigned the task is a

viable alternative, we �nd that it is the alternative that yields the maximal utility of 0. If any

other alternative was chosen, the sum of utilities would be negative since the manager's utility is not

considered in this setting. So we �nd that the manager's payment is −pi∗t∗ . This is an important

point to be discussed about the VCG mechanism; it often can lead to an imbalance in payments

[2]; here we see that the sum of payments for all involved agents (manager and workers) is nonzero,

but the assigned worker must recieve payment. Thus in this setting, the manager serves as both

the auctioneer and as an involved agent in the calculation of social utilities. The introduction of

the additional parameter of time requires that the manager's utilities be taken into account when

determining the optimal alternative, however when decided payments the manager must make up for

the imbalance and step back into the role of auctioneer.

5 Incentive Compatibility

We now show that these payments are incentive compatible. The VCG mechanism is known to ensure

incentive compatibility, but we show that the payments derived above are incentive compatible for all

agents and also show that VCG is applicable in this scenario.

With the payments derived above, we now check: does any agent involved in this scheme have

incentive to deviate?

14

We �rst note that the original winner i∗ has no incentive to deviate; if he deviates so that he does

not win the task, then he will receive utility 0 which is less than his current pro�t. If he deviates in

a manner such that he is still the winner, his payment will not change because it does not depend on

his reported valuations. Overall, it is futile for i∗ to deviate from revealing his true valuations.

Take agent i. Say he reports some bid p′it instead of his true bid pit for some time t.

If mt − p′it is not the new maximum value for the social utility, then it is clear that i no incentive

to deviate because he is still not a winner.

If it is the case that mt − p′it is the new maximum, that is,

mt − p′it ≥ mt∗ − pi∗t∗ ,

then agent i will be the new winner and consequently will get paid

mt + pi∗t∗ −mt∗

and will derive utility equal to his true valuation of doing the job at time t, which is −pit. Now we

check, is the agent's net pro�t positive? That is, is it that case that

mt + pi∗t∗ −mt∗ + (−pit) > 0?

Since we know that in reality

mt∗ − pi∗t∗ ≥ mt − pit

we can say that

mt∗ − pi∗t∗ −mt + pit ≥ 0

and consequently that

mt + pi∗t∗ −mt∗ − pit ≤ 0

Thus, agent i will not derive positive pro�t from deviating from his true valuation, and the pay-

ments ensure incentive compatibility.

15

6 Divisible Task with Multiple Times

6.1 Modeling Complementarity

So far, we have considered the case where there is a manager whose aim is to complete a single task,

and he has the option of assigning the single task to a single agent to complete within a predetermined

period of time. However, this is often not very realistic and does not seem to allow for e�ciency. While

it is possible that a task may be such that it can only be completed in entirety to an agent, we shall

now consider tasks that may be easily divided into subtasks. Similarly, it is possible that budgetary

or other restrictions require that the manager assign a task to a single agent, but it is more realistic

that the manager has been given workers that can all work on di�erent tasks in parallel. Furthermore,

it is reasonable to assume that workers can handle working on multiple groups of tasks. We again

assume that workers must submit bids for a discrete set of times, but now we allow that a worker can

submit bids for collections of subtasks. We call such a collection a bundle of subtasks. Thus, with

the introduction of bundles, and the allowance for workers to submit bids on bundles, we can now

consider the problem in a more general setting.

To summarize, the setting is as follows:

1. The task at hand can be easily split into a group of subtasks.

2. The workers must submit bids on all bundles of subtasks.

3. The workers submit such bids for all possible times.

Using this preliminary setup, we can now introduce the notion of complementary subtasks. One of

the main reasons for the division of the original task into subtasks is to make the process of completing

the task more e�cient. A very natural assumption about the subtasks of a larger task is that the

output or results of one subtask may aid in faster completion of another. When a worker bids on a

bundle of subtasks, it means that he believes that bundle of subtasks to be complementary in some

way.

6.2 Formal Model of Problem

In this section we describe the problem formally and establish the notation that we will use throughout

the remainder of the thesis. Generally speaking, given the situation where a manager is faced with the

16

issue of hiring workers to complete a task, composed of several subtasks, as e�ciently as possible, we

would like to determine the best allocation of bundles of subtasks to the workers, with a time assigned

for each worker. The optimal allocation will satisfy the condition that the social utility across all

agents (including the manager) is maximized. Thus, we assume that there are N workers that the

manager may choose amongst,M subtasks to be bid upon, and T possible times for which the workers

may submit bids. Each worker will submit a bid for every (bundle,time) pair. We now formalize the

output of our mechanism. We say that an alternative is a function a from the set of all subtasks to

the set of all (agent,time) pairs, including the possibility that a subtask may be assigned to no one

(represented by None). Formally, this is:

a : Tasks→ (Agents× Times) ∪ None

where

Tasks = {task1,, taskM}

Agents = {agent1, ..., agentN}

Times = {1, ..., T}

We denote the set of alternatives by A.

In this setting, an optimal allocation will be a disjoint splitting over all subtasks into bundles,

with each bundle being assigned to the agent with the lowest bid for that bundle. We will discuss the

optimal allocation more formally in coming sections.

6.3 Divisible Task Setting as an Extension of Single Task Setting

The divisible task setting requires agents to submit bids on bundles of subtasks and times. This

is basically as though there is now a more expansive set of tasks for each time - we can consider

every bundle to be a di�erent "task". Taking complementarity into account, the agents now will

re-evaluate their bids for each bundle of tasks based on their notion of how complementary the tasks

are. Acknowledging this lets us reuse the VCG mechanism for both determining the optimal outcome

as well as determining payments for all agents in the optimal allocation.

17

6.4 Valuation Functions

We assume the manager will get utility only if all subtasks are completed, i.e. that the single major

task is done to completion, and furthermore that the manager seeks to minimize the maximum time

for all bundles of subtasks to be completed. Thus the manager has utility m(t) solely as a function of

time, and his utility is nonzero only when the major task is �nished. (We will refer to the subtasks

of the major task interchangeably as both tasks and subtasks. When discussing the major task to be

completed, we will refer to it as the "major task".)

Each player will get di�erent utility depending on the bundle of subtasks he is assigned, and also

depending on the time for which the bundle is assigned. Players will have zero utility if they are not

assigned any bundle of tasks in the winning alternative. So, when an agent bids on a single subtask

and is assigned that subtask in the optimal allocation, then he has valuation equal to his bid for the

single subtask. If an agent does not get assigned any subtask, his valuation on the optimal allocation

is 0. If an agent is assigned a bundle of subtasks, then his valuation on this allocation is his bid for the

bundle of subtasks. Recall that we are assuming that agents submit true valuations because we use

the VCG principle of maximizing social utility to solve for the winning allocation, and VCG ensures

incentive compatibility.

We encapsulate these ideas in a valuation function over the space of alternatives. For an alternative

a, the valuation function will take the form vi(a) as described below. For a given alternative a, we

use aagent(b) to denote the agent assigned to task b in the allocation, and we use atime(b) to denote

the time allotted for the the completion of task b (this is the time allotted to aagent(b) to complete b).

E�ectively, aagent contains the set of all agents assigned tasks in the alternative, and atime contains

the set of all times chosen to �nish the tasks. We let Bi represent all (task,time) pairs (b, t) assigned

to agent i and say that −pi(Bi) denotes agent i's utility for being assigned the bundle Bi. That is,

the agent has utility equal to negative of his bid for his assigned (bundle, time) pair. In summary, we

have:

vi(a) =


vmgr(a) for i = mgr

vpi(a) for i ∈ Agents

18

Where vmgr(a) =


0 ∃ taskj , aagent(taskj) = None

m(t) t = maxj atime(taskj)

and

vpi(a) =


0 i 6= aagent(taskj) ∀ taskj ∈ Tasks

−pi(Bi) Bi = {(b, t) | aagent(b) = i and atime(b) = t}

6.5 Winner Determination

We again follow the VCG method for determining the winner. We want to choose the alternative a

that maximizes the social utility of all agents, where social utility is de�ned as

∑
i∈Agents,mgr

vi(a)

We call a the optimal allocation for this problem. We note that optimal allocation will be some

assignment of bundles of subtasks to the agents, including the possibility within a some bundle of

subtasks is assigned to no agent if the bids for those subtasks were not high enough. We can treat

this as a combinatorial auction because each agent submits bids for all bundles at di�erent times, and

it is as though all (bundle,time) pairs correspond to bids for separate "tasks". This is e�ectively a

combinatorial auction, with an added twist that the optimal allocation of tasks to workers must be

optimal with respect to the time parameter as well. How would one determine the winner in this

setting, using the VCG premise of maximizing the total social utility? A natural choice would be

to cycle over all the possible alternatives and determine the sum of the social utility of each agent,

including the manager, of each alternative. Then, the optimal allocation is chosen to be the alternative

that maximizes total social utility.

The total number of bundles that workers may bid on is 2M , because it is simply the total number

of subsets over the set of subtasks. Thus, the total number of bids that workers can submt s 2MT

because for each bundle, a worker must submit bids for all possible times.

For each task, every (agent,time) pair is a viable allocation, and the allocation of 'none' is also an

19

option. As such, the total number of possible alternatives is

(NT + 1)M

So, the winner determination problem can be solved in time

O(NT)M

This is the running time of the naive brute force winner determination algorithm.

We use a dynamic programming algorithm to determine the winner more e�ciently.

6.6 Dynamic Programming for Winner Determination in Combinatorial

Auctions

We now recall the dynamic programming approach to solving winner determination in standard com-

binatorial auctions (without time) [9]. We will see in a later section how the winner determination

problem for our time-enhanced task allocation problem can be solved by invoking this dynamic pro-

gramming algorithm several times.

The dynamic programming approach to solving this problem involved starting from a "small"

subset S out of the set of all subtasks M , taking all possible splittings of the small set into two

bundles and comparing the sum of the bids over all agents for each possible splitting. The current

"optimal" splitting of S into bundles is noted, and the minimal bids and the agents corresponding

to those minimal bids are also noted. The minimal bid of the optimal splitting is compared to the

minimal bid for the bundle {S}, and the new larger set S′ is considered in the same way.

The dynamic programming algorithm iterates over possible subsets of size less than or equal to

|Tasks| = M . Beginning with subsets of size 1, it determines what the minimum bids and bidders

for each individual task are. Then, it checks all possible splittings of the subsets of size 2. Given

the minimal splittings of these subsets, it checks the subsets of size 3, and so on. Thus, for a subset

of size k, it must check all 2k splittings to determine the minimal bids and bidders for each split;

the algorithm must determine this for all possible subsets of Tasks that are of size k. There are
(
M
k

)

20

subsets of Tasks of size k. So the total number of operations the algorithm performs is

M∑
k=0

(
M

k

)
· 2k = 3M .

Thus the dynamic programming algorithm for solving combinatorial auctions runs in time 3M .

We chose the dynamic programming algorithm for winner determination in this case because, while

still exponential in the number of tasks, it provides much better running time than searching through

the space of all alternatives for the alternative that yields the highest social utility. There have been

other approaches for optimal winner determination in the CA setting, for example, a search algorithm

that utilizes expressive bidding languages and preprocesses the search space [9] and a greedy heuristic

algorithm that approximates the optimal auction outcome. However, we favor an exact optimal

allocation over an approximately optimal allocation, and we also favor minimal preprocessing of the

search space since we require that agents submit bids for every possible (bundle,time) pair. As such,

using dynamic programming for winner determination was chosen in this setting. The pseudocode is

given below.

INPUT: b(S) for all S ⊆ Tasks. If no b(S) is speci�ed in the input (no bids were received for that

S) then b(S) = 0.

OUTPUT: An optimal exhaustive partition Wopt.

1. For all x ∈ Tasks, set π({x}) := b({x}), C({x}) := {x}

2. For i = 2 to m, do:

For all S ⊆M such that |S| = i, do:

(a) π(S) := min{π(S\S′) + π(S′) : S′ ⊆ S and 1 ≤ |S′| ≤ |S|2 }

(b) If π(S) ≤ b(S), then C(S) := S∗ where S∗ minimizes the right hand side of (a)

(c) If π(S) > b(S), then π(S) := b(S) and C(S) := S

3. Wopt := {Tasks}

4. For every S ∈Wopt do:

If C(S) 6= S, then

(a) Wopt := (Wopt\S) ∪ {C(S), S\C(S)}

(b) Goto 4 and start with the new Wopt

21

Here, b(S) is the set of minimal bids for every possible bundle. Steps (1) and (2) encapsulate

�nding the optimal bids over the optimal allocation, and steps 3 and 4 involve recovering which

partition of Tasks into bundles gave these optimal bids. We de�ne π to be the smallest sum of bids

over all partitions of S. Once we make this de�nition, the dynamic program starts computing π(S)

for all S of size 1, then for all S of size 2, and so on. The main idea is that given the values of π(S′)

for all S′ of size < k, we can �nd π(S) by checking for the minimal sum over all π(S′′) + π(S′ − S′′),

for all S′′ ⊂ S′. We maintain C(S), which is the optimal partition of S into bundles that corresponds

to π(S).

6.7 Winner Determination for Divisible Task Allocation with Time

So far, we have considered winner determination in the case where agents may submit bids on bundles

for a single time. Now, we discuss how to use the solution for a given time to solve the winner

determination problem across multiple times. We �rst show that any optimal allocation has a single

optimal time. That is, an optimal alternative as determined by the winner determination algorithm,

which is a function from Tasks to Agents× Times, is at least as optimal as the alternative de�ned as

the function from Tasks to Agents× {t∗}, where t∗ is the optimal time.

Theorem 1. An optimal allocation of tasks to agents in the scenario where time is a parameter has

the property that there is a single optimal time t∗, namely the maximum time over all (agent, time)

pairs in the optimal allocation.

Proof. Take any optimal allocation a′ : Tasks→ Agents× Times. Since a′ is optimal we know that it

maximizes social utility across all agents and the manager. That is, a′ is an assignment of bundles of

tasks to agents, with an allotted time for each bundle, such that the utility that all agents get from this

allocation is maximum. We de�ne a∗ to be the same allocation of bundles of tasks to agents, except

that agents are all now allotted the maximum time across all (bundle,time) pairs in a′ to complete

their tasks.

We want to show that a∗ : Tasks→ a∗agents × {max(a∗time)} yields at least as much social utility

as the social utility derived from allocation a′. Thus, we want to show that

∑
i∈Agents,mgr

vi(a
∗) ≥

∑
i∈Agents,mgr

vi(a
′)

22

Expanding the terms in the right hand side, we have

∑
i∈Agents,mgr

vi(a
′) = v1(a

′) + v2(a
′) + . . .+ vN (a′) + vmgr(a

′)

For every worker i ∈ a′agent, we know that his valuation on a bundle Bi consisting of a set of

(task, time) pairs is the negative of his bid for that bundle.

vi(a
′) = −pi(Bi)

whereBi = {(b, t) | a′agent(b) = i and a′time(b) = t}

We let B∗i denote the bundle Bi but with each task now being paired with time t∗, where t∗ is the

maximum assigned time over all bundles and agents.

So we have

t∗ = max
j∈Tasks

a′time(j)

and

B∗i = {(b, t∗)|(b, t) ∈ Bi}

Since the agents have bids that decrease with time, and corresponding utility that decreases with

time, we know that for all i the utility that an agent gets from being assigned a bundle Bi is less than

or equal to the utility that the agent gets from being assigned the same bundle at a higher time.

vi(B
∗
i) ≥ vi(Bi)

Taking the sum of the valuations over all agents, we have

∑
i

vi(B
∗
i) ≥

∑
i

vi(Bi)

Since

vmgr(a
∗) = vmgr(a

′)

we conclude that

23

∑
i

vi(B
∗
i) + vmgr(a

∗) ≥
∑
i

vi(Bi) + vmgr(a
′)

Restating this, we have our original claim

∑
i∈Agents,mgr

vi(a
∗) ≥

∑
i∈Agents,mgr

vi(a
′)

So the social utility derived from the same allocation of tasks to agents, except at a single maximal

time t∗ instead of the times at which the bundles may have originally been assigned, is greater than

the social utility in the previous case.

6.8 Algorithm for Optimal Allocation in Divisible Task Setting with Time

In the combinatorial auction model of the problem at hand, the optimal allocation is an assignment

of tasks to agents. However, we have established that this setting further di�ers from a normal

combinatorial auctions because the alternatives are now functions from the set of tasks to (agent,

time) pairs, and the new factor of time must be somehow incorporated when �nding the optimal

outcome. In the previous section, we were able to show that any optimal allocation in fact has only

a single optimal time. That is, in any optimal allocation, agents are assigned disjoint bundles of

subtasks, and they are all allotted a single maximal time within which to complete their assigned

bundle. Given this information, it is possible to adapt winner determination in the combinatorial

auction setting to winner determination in the combinatorial auction setting with time. We outline

the algorithm below.

1. For each time t ∈ Times do:

(a) Take as input the bids from all agents i ∈ Agents for each bundle of tasks S ⊆ Tasks for

the time t.

(b) Determine bt(S) for every S ⊆ Tasks: the minimal bids for bundles at time t

(c) Run the dynamic optimization algorithm with input bt(S)

(d) Store the output - an optimal alternative consisting of bundles of tasks to agents, and

minimal bids for each bundle - in OptAlloc[t]

(e) Compute vmgr(OptAlloc[t])−
∑
i∈Agents vi(OptAlloc[t]) and store in SocUtil[t]

24

2. Determine t∗ = t ∈ T , the time that maximizes SocUtil[t]

3. Output OptAlloc[t∗], SocUtil[t∗]

The way to optimize this kind of combinatorial auction is to treat all the bids for a given time

as bids for a single combinatorial auction. Thus an optimal allocation can be determined for each

time, and then the manager's utility can be used over all times to determine which optimal allocation

delivers the manager the most utility.

More speci�cally, an optimal allocation for a given time would mean that the agents derive most

social utility from that allocation for that time. Then, since we want to maximize total social utility

over all times, we introduce the manager's valuation for each time to determine which allocation

yields the highest social utility with the manager included. So, an algorithm for solving combinatorial

auctions would be able to solve this problem as well.

6.9 VCG Payments

Now we discuss how to allot the payments for the combinatorial auction case with time. The CA

setting takes as input agents' bids for all bundles for every possible time, so it can be considered a

generalized version of the setting where agents submit bids for each individual task for every possible

time. It is as though each bundle is a separate "task" for which an agent is revealing his valuation.

Since we determine the winning allocation in the CA setting with time using the VCG principle

of maximizing total social utility of all agents, including the manager, we use the VCG mechanism

to determine the payments for all agents involved. Recall that the VCG payment for each agent

i ∈ Agents is given by

payi = hi(v−i)−
∑
j 6=i

vj(a
∗)

where a∗ is the winning alternative and

hi(v−i) = max
α∈A

∑
j 6=i

vj(α)

where A is the space of all alternatives, is the social utility of all agents when agent i is removed from

the set of agents. The payment is calculated as follows: for every agent i, we calculate the sum of

every other player's valuation of the winning alternative a∗. This is
∑
j 6=i vj(a

∗). Then, we remove i

25

from Agents, and consequently, remove his bids from the set of all bids on bundles of tasks. Then, we

re-solve for the optimal allocation using the algorithm in 6.8; �rst we determine the optimal allocation

for each time, and then we determine the optimal allocation across all times by choosing the allocation

and time that yields the manager the highest utility. We denote this new optimal allocation without

agent i to be a′. This allocation a′ has the property that it maximizes the social utility of all agents.

The payment for i is given by the di�erence in the two:

payi =
∑

j∈Agents\{i},mgr

vj(a
′)−

∑
j∈Agents,mgr,j 6=i

vj(a
∗)

We have just described how to �nd the payment for agent i. We now discuss the properties

that this payment has, namely being greater than 0 and at least as much as the i's valuation of the

alternative a∗. We know that, by virtue of being the optimal allocation, the social utility generated

over all k ∈ Agents for a∗ is highest, and is greater than the social utility generated over all agents

(including i for a′).

That is

∑
k∈Agents,mgr

vk(a
∗) ≥

∑
k∈Agents,mgr

vk(a
′)

We further know that

∑
k∈Agents,mgr

vk(a
∗) =

∑
j∈Agents,mgr,j 6=i

vj(a
∗) + vi(a

∗)

So we have

∑
j∈Agents,mgr,j 6=i

vj(a
∗) + vi(a

∗) ≥
∑

k∈Agents,mgr

vk(a
′)

Also, since alternative a′ is chosen after i is removed from Agents, we know that i's valuation of

a′ is 0.

Thus we know that ∑
k∈Agents,mgr

vk(a
′) =

∑
j∈Agents\{i},mgr

vj(a
′)

Putting this together, we have

26

∑
j∈Agents,mgr,j 6=i

vj(a
∗) + vi(a

∗) ≥
∑

j∈Agents\{i},mgr

vj(a
′)

and �nally

payi =
∑

j∈Agents\{i},mgr

vj(a
′)−

∑
j∈Agents,mgr,j 6=i

vj(a
∗) ≤ vi(a∗)

So, we know that player i will have to pay at least vi(a
∗). However, since the valuations are in fact

negative, this means that agent i will recieve a positive amount that is at least his valuation of the

optimal alternative. What about agents that are not "winners"? If an agent is not allocated any task

in the winning alternative, then if he is removed from the set of Agents the winning allocation and

time will be the same. Consequently, the sum of all other agents' valuations of the original optimal

allocation and the new allocation (which is the same as the original) is the same, and the payment

for any agent that is not assigned a task, the payment will be 0.

Now we discuss the payment demanded from the manager. It is well known that the VCG mech-

anism fails with regards to achieving a balanced set of payments. Here, the manager is included in

determining the alternative that maximizes social utility across time, because the time parameter is

of utmost importance in terms of his utility. If we use VCG to determine the manager's payments, it

is possible that we incur a budget de�cit [7]. When handing out the payments, the manager must step

back into the role of auctioneer and make up for any imbalance in the payments. Thus the manager's

role is to deliver the payments required to all agents that are assigned bundles in the �nal allocation.

To summarize, from the players' perspective this mechanism yields the same payments as given by

VCG and hence is incentive compatible from their point of view. Furthermore, the net social utility

(including the manager's) is maximized. However the mechanism is not incentive compatible from the

manager's perspective, but this is simply a result of the manager assuming a double role of a utility

maximizing agent and the auctioneer. Nevertheless, we see that since players can never get negative

utility, and so the manager's lack of incentive compatibility cannot cause unrestrained damage.

7 Simulations

In order to compare the true e�ectiveness of allowing for complementarity of subtasks, we simulate

the model using speci�c utility functions for agents and managers, and generate random data that

27

we feed into our models. We model valuation functions for all agents and also for the manager. We

�rst describe the shape of the utility functions for the agents and manager in the case where agents

are submitting bids on individual tasks for various times. Next, we describe the shape of the utility

functions for agents and manager in the case where the tasks are subtasks of a composite job to be

completed, and agents can submit bids on complementary bundles of tasks. We use these utility

functions to generate bids and utilities, and run our optimization algorithm to determine optimal

allocations given these valuations. The best measure of the advantage of complementarity is to

compare social utility in cases with and without complementarity.

7.1 Modeling Bids for Individual Tasks

We can think of the manager as the consumer in this setting, and the workers o�ering their skills as

the product. As such, if a worker is considering the bid for completing a given task in a longer period

of time, he must account for having a longer amount of time to complete the same job. We therefore

want agents' bids to be decreasing as a function of time. Similarly, the manager's utility is dependent

on how e�ciently the task is completed, so his utility is also decreasing as a function of time.

We model an agent i's bid for a single task j at time t to be

pi(j, t) = aij +
bij

C · t+ cij

where aij , bij , cij are chosen randomly for every (agent, task) pair, and C is some constant. Similarly,

we model the manager's valuation function of time t to be

m(t) = amgr +
bmgr

C · t+ cmgr

7.2 Modeling Bids for Bundles

In this section, we describe how agents submit bids on bundles of subtasks that they believe have some

degree of complementarity. How should we model complementarity? We consider that each agent has

an individual notion of how complementary they think bundles of tasks, and we let this be a number

ci for agent i. We refer to ci as the complementarity measure, and also as the agent's c − value.

28

Then we can say that agent i's valuation of a bundle B = {(taska, ta), (taskb, tb), . . . (taskk, tk)} over

some subset {taska, . . . , taskk} ∈ P(S) of all subtasks is

[
∑

j∈Btasks

pi(j, t)
ci]1/ci

We refer to this value as the agent's c − bid for bundle B. Why does this capture complementarity?

If an agent considers that some group of tasks are complementary to one another, then the agent

believes that completing these tasks together enables more e�cient completion than if they were to be

completed separately. For example, the result of completing one task may be of great use in completing

another. Given this, an agent should expect payment for a complementary bundle of subtasks to be

less than the sum of his bids for the individual subtasks. Using ci as the "complementarity measure"

enables this, because for any bundle of tasks, taking the c-bid of the bundle yields a bid that is greater

than the maximum bid for any individual (task,time) pair, but at the same time is less than the sum

of the agent's bids over all separate (task,time) pairs. The c-bid also has the property that if a bid

for a (task,time) pair in the bundle is much greater than all other individual bids (say that some task

requires much more e�ort than the others and consequently has a higher bid), the c-bid for the bundle

will be closer to this maximum value. If ci = 1 for some agent, then we note that the c−value for any

bundle will be exactly the sum of the individual bids for each (task,time) pair in the bundle. When

ci = 1

[
∑

j∈Btasks

pi(j, t)
ci]1/ci = [

∑
j∈Btasks

pi(j, t)
1]1

=
∑

j∈Btasks

pi(j, t)

Thus, ci = 1 for any agent represents the situation where the agent does not believe any tasks are

complementary in completion of the major task. Furthermore, as ci tends to in�nity, it is known that

the c-bid for a bundle lies between the maximum bid for any individual (task,time) pair in the bundle

and the sum of all individual bids, and approaches the maximum bid. This is also a useful in our

model, because it captures the idea that if as an agent tends to view the tasks as very complementary,

then his bid for any bundle should be lower relative to his valuation of the sum of each task in the

bundle individually. Since the bundle together seems to be easier for him to complete, its bid should

be more on the order of a bid for an individual task (but still take into account that he is bidding on

a group of tasks).

29

8 Results and Discussion

8.1 Varying c-Values

We �rst looked at the e�ect of varying the complementarity measure for the workers in our setting.

We assigned each agent a random c-value from the four ranges [1,1.5], [1.5,2], [2,4], and [4,10]. We

then ran 40 trial auctions, reassigning new utility functions to the agents and the manager with the

form discussed in the previous section. The output was an optimal allocation, an optimal time, the

payments to all the agents, the net payment required of the manager, and the social utility of all

agents. Thus, for any trial, we �rst assigned all agents brand new utility functions. Then, we assigned

all agents a c-value from within the speci�ed range. We ran our dynamic optimizer in this setting and

recorded the output. Within the same trial , we re-solved for the optimal setting after resetting all

agents' c-values to 1 (recall that an agent having a c-value of 1 indicates no complementarity). We

ran 40 such trials for each range of c-values. We let N = 10, M = 6, and T = 12.

8.1.1 E�ect on Social Utility

For each range, we measured the bene�t of allowing complementarity as follows: we took the ratio of

the social utility in the complementarity case over the social utility in the no-complementarity case

(shown in the graphs as COMP Social Utility/ No-COMP Social Utility). This provided a scaled

measure of the advantage of introducing complementarity.

The graphs have the complementary bene�t ratio on the x-axis, with the trial number on the

y-axis. We sorted the ratios in ascending order, and disregarded the data points where there was

negative social utility (in this case the social utility is maximized by the task not being allocated).

The complementarity bene�t is the ratio of social utility There are several trends that can be observed.

First, for the range of the c-value lying within [1,1.5], we see that there are more results with the

complementarity bene�t being closer to 1. The maximum bene�t observed is approximately 1.25, and

most ratios tend to fall between 1 and 1.1.

For the range [1.5, 2], the maximum bene�t is a ratio of 1.43, with more than half the data points

passing the ratio 1.1.

For the range [2,4] the maximum ratio observed is 1.4, with more than half the points passing 1.1,

and a signi�cant number of points passing 1.2.

Finally, for the range [4,10] the maximum bene�t is 1.9, with a signi�cant number of points passing

30

Figure 1: Social Utility Advantage Complementarity between 1 and 1.5

Figure 2: Social Utility Advantage Complementarity between 1.5 and 2

by the ratios 1.2, 1.3, and 1.4.

So, we see that the maximum bene�t observed tends to increase as the agent's c-values increase, and

that higher social utility is observed more often as complementarity increases. From these results, we

can observe a general trend in an increase in overall social utility as agents' measure of complementarity

increases. As we expected, the allowance of complementarity causes an increase in social utility overall.

31

Figure 3: Social Utility Advantage Complementarity between 2 and 4

Figure 4: Social Utility Advantage Complementarity between 4 and 10

Higher complementarity values mean that agents tend to think that the e�ort expended in doing

complementary bundles of tasks is much less than the sum of e�ort expended by doing the tasks in

the bundles individually. As a result, tasks will be assigned more in bundles, and workers will tend to

think that they can complete the tasks at less cost to themselves. This correlates with higher social

utility.

32

8.1.2 E�ect on Manager Payment

We also looked at the trend in the manager's payments as we increased the c-values overall. On the

x-axis, we graphed the social utility in the setting with complementarity with a range of (0,80), and

on the y-axis, we graphed the social utility in the setting without complementarity with a range of

(0,12). In order to compare across the di�erent ranges for the c-values, we look at the trend in the

slopes of these points.

Figure 5: Manager Payments for COMP vs No-COMP with c-Value between 1 and 1.5

We observe the folllowing:

For the range [1,1.5] the slope is much closer to 1, indicating that the manager's payments For the

range [4,10] the slope is much higher than 1. From the four graphs, we observe the general trend that

the manager has to pay less in the setting where we allow for complementarity, and the di�erence

in the amount the manager has to pay in the Comp. setting vs. No-Comp is increasing as the c-

values increase. This is also expected, because as agents think that more bundles are complementary,

their bids for bundles will be much less than the sum of the bids for each tasks in that bundle, and

the manager's payment to the winning agents will consequently be less. The di�erence will be more

pronounced as complementarity increases because the di�erence between the bids for a complementary

bundle of tasks and the sum of the individual bids for the tasks in the same bundle is increasing as

the c-values increase.

33

Figure 6: Manager Payments for COMP vs No-COMP with c-Value between 1.5 and 2

Figure 7: Manager Payments for COMP vs No-COMP with c-Value between 2 and 4

8.2 Varying the Number of Agents

We observed the e�ect of the bene�t of complementarity as N , the number of agents, changes. We

varied N in the range [2, 3, 4, 5, 10, 15, 20, 25, 30]. We said the number of subtasks M was 6 and

the number of times T was 12. For each value of N , we ran 40 trials, reinitializing utility functions of

the manager and the agents at the beginning of each run. For each trial, we �rst ran the optimization

34

Figure 8: Manager Payments for COMP vs No-COMP with c-Value between 4 and 10

algorithm for c-values in the range [1,3] (COMP), and next ran the optimization with c-values equal

to 1 (No-COMP). We then recorded the net social utility of each allocation at the end of the run,

both for the COMP and No-COMP settings, and graphed the complementarity advantage ratio (as

described earlier) against N .

Figure 9: E�ect on varying Number of Agents on Complementarity Advantage ratio

35

We observe higher bene�ts of complementarity for lower values of agents. We see that the maximum

bene�ts are observed whenN = 4 and 2. The results indicate that when there are fewer agents involved

in the scheme, the advantage of allowing agents to bid on bundles of tasks is more pronounced. When

there are many agents, it is more likely that the minimum bidders for individual tasks are di�erent.

That is, if there are M tasks, it is more likely that the tasks will be allocated in singletons to di�erent

agents (or at least, in small bundles to many agents). When there are few agents, then agents are

more likely to get assigned bigger bundles of tasks. The likelihood that the minimum bidders for

separate tasks are the same agent is higher in this case.

8.3 Varying the Number of Subtasks

In a similar manner to the above setting, we observed the e�ect of the bene�t of complementarity as

M , the number of substasks, changes. We varied M in the range [2,8]. We said the number of agents

N was 10 and the number of times T was 12. For each value of M , we ran 40 trials, reinitializing

utility functions of the manager and the agents at the beginning of each run. For each trial, we �rst

ran the optimization algorithm for c-values in the range [1,3] (COMP), and next ran the optimization

with c-values equal to 1 (No-COMP). We then recorded the net social utility of each allocation at

the end of the run, both for the COMP and No-COMP settings, and graphed the complementarity

advantage ratio (as described earlier) against M .

Figure 10: E�ect on varying Number of Subtasks on Complementarity Advantage ratio

36

The graph depicts that as M increases, the complementarity bene�t tends to increase. There

are some extremely high ratios observed at M = 5 and M = 6, indicative of this overall trend.

Additionally, there are many data points clustered at higher ratios (the number of ponts with high

complementarity bene�t ratios is increasing as M increases). An explanation for this is as follows. If

there is a large number of subtasks, then it is more likely that bigger bundles will get allocated in the

optimal outcome. (For example, withM tasks and and N agents, then there will be a bundle of size at

least M/N that will be allocated; as M increases with respect to N , this value also increases.) Since

the e�ect of complementarity is more pronounced in bigger bundles, the e�ect of complementarity is

more pronounced.

9 Piecewise Constant Utility Functions

In addition to modeling agents' utility functions as described in Section 7.2, we also modeled agents'

utilities using a more discrete piecewise "threshold" function. The threshold valuations pi(j, t) were

as follows:

For agent i, we de�ne his bids for singletons using the formula

pi(j, t) = aij , t < THRESHij

pi(j, t) = bij , t ≥ THRESHij

where aij is chosen uniformly at random from (1, Cthresh) and bij is chosen uniformly at random

from (0, aij) for every (agent, task) pair, and some THRESHij chosen uniformly between (0,T). The

valuations for bundles are then obtained using the c− bids method, for random ci ∈ (1, 2).

We model the manager's valuation function of time t to be

m(t) =M [
Cthresh
N

(1− t/T) + Cthresh
2N

(t/T)]

(We got this function by linearly interpolating between the expected minimum bids at t = 0 and

t = T .)

We ran the optimizer with the piecewise utilities and the output is pasted below (we made Cthresh

= 50).

37

Maximum Social Utility for each possible time:

Time: 0 Social Utility: 11.644213098937083

Time: 1 Social Utility: 11.638824221996927

Time: 2 Social Utility: 15.872576130227621

Time: 3 Social Utility: 14.771674753583138

Time: 4 Social Utility: 13.521674753583138

Time: 5 Social Utility: 13.271674753583138

Time: 6 Social Utility: 14.882270005906502

Time: 7 Social Utility: 14.250263512762741

Time: 8 Social Utility: 14.559589055725334

Time: 9 Social Utility: 13.309589055725334

Time: 10 Social Utility: 12.059589055725334

Time: 11 Social Utility: 10.809589055725334

Winning Allocation:

Winning Time 2

Bundle: (0,) Agent Assigned this bundle: 8

His bid for this bundle at this time: 3.0000000000000004

Bundle: (3, 4) Agent Assigned this bundle: 3

His bid for this bundle at this time: 4.14909862335552

Bundle: (1, 2, 5) Agent Assigned this bundle: 9

His bid for this bundle at this time: 4.478325246416862

Payments:

Agent 0 gets paid: -0.0

Agent 1 gets paid: -0.0

Agent 2 gets paid: -0.0

Agent 3 gets paid: 6.475295487441215

Agent 4 gets paid: -0.0

38

Agent 5 gets paid: -0.0

Agent 6 gets paid: -0.0

Agent 7 gets paid: -0.0

Agent 8 gets paid: 3.990306124321119

Agent 9 gets paid: 16.04157583368189

Manager pays: 26.507177445444224

Manager's utility for this time: 27.500000000000004

10 Conclusion

In this thesis, we consider the problem of e�cient task allocation in the scenario where time is a

�exible parameter. Suppose that there is a manager who has a major task to complete, and he has

several workers to whom he may assign the task. The workers have the ability to complete the task

at di�erent speeds with di�erent utilities. We design an auction based mechanism which incentivizes

the workers to reveal true utilities and thus maximizes overall utility of the manager and the workers.

Our mechanism was an adaptation of the VCG mechanism to this scenario. We then introduced the

notion of complementarity of tasks,which is that some groups of tasks might be easier to complete

in conjunction. Using the notion of complementarily, we allowed that agents may bid on bundles of

tasks. In order to tackle the winner determination problem, we proposed an algorithm that can �nd

the optimal allocation given agent's bids and manager's valuations over di�erent times. This algorithm

is faster than naive brute force search algorithm. We then evaluated the output of this algorithm in

a simulation enviroment where complementarity is allowed, and analyzed the results when we varied

the measure of complementarity, the number of agents, and the number of subtasks. Thus, we showed

that in this new setting with the addition of the time parameter, our mechanism can e�ectively exploit

complementarity. In particular, this results in better pro�ts for the manager and an overall bene�t

in social utility. Therefore, we conclude that in real life task allocation problems, such mechanisms

that are sensitive to time, or more generally, mechanisms that are sensitive to quality, could prove

extremely useful.

39

References

[1] Chi-Kong Chan and Ho-Fung Leung. Multi-auction approach for solving task allocation problem.

In Dickson Lukose and Zhongzhi Shi, editors, PRIMA, volume 4078 of Lecture Notes in Computer

Science, pages 240�254. Springer, 2005.

[2] Vincent Conitzer and Tuomas Sandholm. Revenue failures and collusion in combinatorial auctions

and exchanges with vcg payments. In Proceedings of the 5th ACM conference on Electronic

commerce (EC-04), pages 266�267, New York, May 1�8 2004. ACM Press.

[3] Peter Cramton, Yoav Shoham, and Richard Steinberg. Combinatorial Auctions.

[4] Panagiotis G. Ipeirotis. Analyzing the amazon mechanical turk marketplace. ACM Crossroads,

17(2):16�21, 2010.

[5] Benjamin Lubin, Adam I. Juda, Ruggiero Cavallo, Sébastien Lahaie, Je�rey Shneidman, and

David C. Parkes. ICE: An expressive iterative combinatorial exchange. J. Artif. Intell. Res.

(JAIR), 33:33�77, 2008.

[6] Parkes, Cavallo, Elprin, Juda, Lahaie, Lubin, Michael, Shneidman, and Sultan. ICE: An iterative

combinatorial exchange. In CECOMM: ACM Conference on Electronic Commerce, 2005.

[7] David C. Parkes, Jayant Kalagnanam, and Marta Eso. Achieving Budget-Balance with Vickrey-

Based payment schemes in exchanges. In Bernhard Nebel, editor, Proceedings of the seventeenth

International Conference on Arti�cial Intelligence (IJCAI-01), pages 1161�1168, San Francisco,

CA, August 4�10 2001. Morgan Kaufmann Publishers, Inc.

[8] Simon Parsons. Algorithmic game theory by noam nisan, tim roughgarden, éva tardos and vijay

V. vazirani, cambridge university press, 754 pp, ¿32.00, ISBN 0-521-87282-0. Knowledge Eng.

Review, 26(1):71�72, 2011.

[9] Sandholm. Algorithm for optimal winner determination in combinatorial auctions. AIJ: Arti�cial

Intelligence, 135, 2002.

[10] Tuomas Sandholm, Subhash Suri, Andrew Gilpin, and David Levine. Winner determination in

combinatorial auction generalizations. In AAMAS, pages 69�76. ACM, 2002.

40

[11] Kai Zhang, Emmanuel G. Collins Jr., and Adrian Barbu. A novel stochastic clustering auction

for task allocation in multi-robot teams. In IROS, pages 3300�3307. IEEE, 2010.

41

	Introduction
	Related Work
	Allocation of a Single Task with Multiple Times
	Model for Auction of Single Task with Multiple Times
	Winner Determination
	Vickrey Clarke Groves Mechanism
	VCG Payments
	Payment for Winner
	Payment for Non-Winner Workers
	Manager Payment

	Incentive Compatibility
	Divisible Task with Multiple Times
	Modeling Complementarity
	Formal Model of Problem
	Divisible Task Setting as an Extension of Single Task Setting
	Valuation Functions
	Winner Determination
	Dynamic Programming for Winner Determination in Combinatorial Auctions
	Winner Determination for Divisible Task Allocation with Time
	Algorithm for Optimal Allocation in Divisible Task Setting with Time
	VCG Payments

	Simulations
	Modeling Bids for Individual Tasks
	Modeling Bids for Bundles

	Results and Discussion
	Varying c-Values
	Effect on Social Utility
	Effect on Manager Payment

	Varying the Number of Agents
	Varying the Number of Subtasks

	Piecewise Constant Utility Functions
	Conclusion

