
A Modular Framework for
Multi-Agent Preference Elicitation

A dissertation presented

by

Sébastien Lahaie

to

The School of Engineering and Applied Sciences

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

in the subject of

Computer Science

Harvard University

Cambridge, Massachusetts

October 2007

c©2007 - Sébastien Lahaie

All rights reserved.

Thesis advisor Author

David C. Parkes Sébastien Lahaie

A Modular Framework for Multi-Agent Preference Elicitation

Abstract

I present a framework for multi-agent preference elicitation in the context of a

discrete resource-allocation problem, known as the combinatorial allocation problem

(CAP). There are several distinct, indivisible items, which must be allocated among

a set of agents. The agents value bundles rather than just individual items. Because

the number of bundles can be very large, agent preferences cannot be exhaustively

described. An elicitation scheme for the CAP must therefore carefully choose the

language in which it will model agent preferences to ensure succinct representations.

The approach I propose is to embed learning algorithms for certain preference

representations into the resource-allocation process. Preferences are elicited incre-

mentally, and at well-defined breakpoints a tentative allocation is computed. This

process is repeated to the extent needed until an efficient allocation is found. The

framework is modular in that a variety of different learning algorithms can be intro-

duced as subroutines to construct models of the individuals agents’ preferences, as

long as the subroutines interact with the agents through a standard query interface.

The current leading distributed algorithms for the CAP are iterative combinato-

rial auctions, but the iterative combinatorial auctions that can guarantee allocative

efficiency all use a single bidding language, namely XOR, that may not be appro-

iii

Abstract iv

priate for certain applications. Experimental results demonstrate that the elicitation

framework can complement current designs by allowing for alternate representations

where XOR is inappropriate, resulting in fewer queries and faster convergence.

The framework consists of elicitation, allocation, and pricing engines. The pricing

engine is also modular. I present two different methods for pricing, one of which can

also serve as a stand-alone iterative auction. The auction begins with item prices and

introduces bundle prices as needed to drive the bidding forward. This again comple-

ments existing designs which are limited to XOR or item pricing. The framework can

also be extended to compute VCG payments, to bring truthful responses to queries

into an equilibrium.

Contents

Title Page . i
Abstract . iii
Table of Contents . v
Acknowledgments . viii

1 Introduction 1

1.1 Preference Elicitation . 2
1.2 Combinatorial Auctions . 4

1.2.1 Single-Shot Designs . 5
1.2.2 Iterative Designs . 7

1.3 The Framework . 12
1.4 Incentives . 15
1.5 Model . 17
1.6 Outline . 21

2 Incentives 24

2.1 Dominant Strategies . 25
2.1.1 Solution Concept . 26
2.1.2 Implementation . 28

2.2 The Core . 31
2.2.1 Alternate Characterization . 33
2.2.2 Relation to Vickrey Payoffs 34

3 Competitive Equilibrium 39

3.1 Definition . 40
3.2 Properties . 41
3.3 Existence . 43
3.4 Relation with the Core . 50
3.5 Relation to Vickrey payoffs . 55
3.6 Communication . 57

v

Contents vi

4 Representations 68

4.1 Functionality . 70
4.1.1 Value Queries and Bidding . 70
4.1.2 Demand Queries and Pricing 72

4.2 Languages . 75
4.2.1 OR* . 75
4.2.2 OR . 76
4.2.3 XOR . 77
4.2.4 Polynomials . 78
4.2.5 Pseudo-additive . 80

4.3 Query Learning . 84
4.4 Learning Algorithms . 86

4.4.1 XOR . 86
4.4.2 OR . 92
4.4.3 Polynomials . 94

4.5 Other Languages . 96

5 Preference Elicitation 98

5.1 Framework . 100
5.2 From Learning to Preference Elicitation 102

5.2.1 Parallels between Equivalence and Demand Queries 102
5.2.2 Learning as a Subroutine for Elicitation 104
5.2.3 Incentives . 107

5.3 Communication Complexity . 108
5.4 Empirical Evaluation . 110

5.4.1 Scaling Performance . 113
5.4.2 Effect of Valuation Structure 117
5.4.3 Surplus Distribution . 119
5.4.4 Extent of Learning . 122

5.5 Discussion . 124

6 Iterative Auctions 126

6.1 Three Formulations . 129
6.2 Pattern Formulation . 133
6.3 Column Generation . 136
6.4 Cutting Planes . 141
6.5 Discussion . 147

7 Application: Internet Advertising 151

7.1 Sponsored Search . 153
7.2 Display Advertising . 159
7.3 Bidding Language . 160

Contents vii

7.3.1 Bid Trees . 160
7.3.2 Properties . 162
7.3.3 Queries . 164

7.4 Allocation . 167
7.5 Pricing . 170
7.6 Incentives . 175
7.7 Bidder Feedback . 177

8 Conclusions 180

8.1 Review . 182
8.2 Future Work . 186

Bibliography 188

Acknowledgments

I thank my advisor, David Parkes, for his constant support and guidance through-

out my graduate career. I have learned more than I could ever have expected through

his example, and this dissertation attests to his influence on my development as a

researcher.

I thank Dave Pennock for serving as a mentor during my summers at Yahoo, and

for introducing me to a wealth of fascinating and important research problems. It

will be a pleasure to keep working alongside him in the coming years.

I thank Jay Aslam for introducing me to research and computational learning

theory while I was an undergraduate. His early influence is also clearly reflected in

this thesis.

I thank the many friends and colleagues who made graduate school such an enjoy-

able and stimulating experience, especially Giro Cavallo, Florin Constantin, Jacomo

Corbo, Kobi Gal, Geoff Goodell, Shaili Jain, Laura Kang, Adam Kirsch, Konrad

Lorincz, Loizos Michael, Jill Nickerson, Tim Rauenbusch, and Pedro Sander.

I thank my parents and my extended family. Without their unconditional support

this thesis would never have been possible.

Finally, I thank my fiancée Eleni for her encouragement and support, especially

during the difficult final months of this thesis. She kept me afloat during the long

hours of coding and writing with her perspective, patience, and humor. From the

moment I knew her, things somehow started to quickly fall into place: conjectures

were resolved, experiments were completed, job offers came in, and the thesis was

written. She has given me focus and purpose.

viii

Chapter 1

Introduction

Open networks such as the Internet are today fundamentally changing the nature

of business-to-consumer and business-to-business interactions. Consumers now have

unprecedented access to a wealth of information on products and services with simple

Web browsing, and the available information keeps growing. Businesses, on the other

hand, can now keep careful track of the behavior of online consumers, opening up

possibilities for much more powerful targeting and product placement. With this

proliferation of information comes added complexity, and hence the need for efficient

methods to organize and distill information into a useful format, so that users can

act on it.

Users are increasingly turning to the online world not just to push and pull infor-

mation, but to also interact with one another in social and commercial environments.

People from all walks of life now keep up with their contacts through social networks

such as Facebook, LinkedIn, and MySpace. Blogs allow the dissemination and discus-

sion of a wide variety of opinions. Auction sites such as eBay allow individuals and

1

Chapter 1: Introduction 2

small businesses to engage in commerce with each other online. Search portals such as

Google and Yahoo let advertisers promote their products and services next to search

query results. Besides grappling with the complexity of organizing information, the

design of electronic services must then also be infused with insights into the social

and commercial implications of various design decisions.

These considerations point to the need for formal iteraction protocols that respect

the information-processing limitations of end users, as well as the principles of trust,

reputation, privacy, and honesty that lay the foundations for productive social and

commercial engagements.

1.1 Preference Elicitation

Preference elicitation is the process of creating a model of a user’s preferences to

the extent needed to make choices based on these preferences. In a single-agent set-

ting, preference elicitation schemes are typically used for decision support; examples

include travel planning [65], product recommendation [21], and sales assistance [103].

Due to cognitive limitations, a user may not be able to identify the correct choice to

make with respect to his preferences in a given setting. A decision support system

queries the user through a formal interface, in a systematic fashion, in order to re-

cover a model of his preferences [23]. The decision-making can then be automated

on behalf of the user. The model must satisfy two requirements to be effective: it

should closely and succinctly approximate the user’s preferences, and should allow for

fast computation of the optimal decision. The choice of preference model is therefore

central to the design of a decision support system.

Chapter 1: Introduction 3

In multi-agent preference elicitation, the aim is analogous. There are several

agents, and we wish to recover a model of their preferences in order to implement

an optimal system-wide outcome, where the criterion used to evaluate solutions is

context-dependent. Again, the focus is on representation: to ensure an effective

working protocol, the preference models must be carefully chosen to succinctly ap-

proximate agent preferences, and should seamlessly integrate into an algorithm for

computing system-wide solutions.

The multi-agent setting introduces several new challenges. Rather than just recov-

ering models of the individual preferences independently, a sophisticated multi-agent

protocol can and should use its knowledge of one agent’s preferences to guide the

elicitation of another’s. Given multiple preference models, it is also often more diffi-

cult to compute a system-wide solution compared to the scenario with a single agent.

Finally, whereas with a single agent the elicitation scheme is usually devoted to this

agent’s satisfaction, a multi-agent system must contend with multiple and typically

conflicting interests when implementing a system-wide solution. As a result, there

is the distinct and real possibility that agents may try adapt their input in order to

achieve a favorable outcome for themselves. The incentives of the participants must

therefore be taken into account in the protocol design.

To design an effective multi-agent preference elicitation scheme, we need to draw

on techniques from several disciplines. Structured preference models fall within the

domain of artificial intelligence [91]; examples from this literature include conditional

preference networks [18, 19] and logical bidding languages [20] (designed expressly

for multi-agent settings), to name a few. Algorithms for computing system-wide out-

Chapter 1: Introduction 4

comes draw on ideas from operations research, particularly integer programming and

combinatorial optimization [73], because of the wide applicability of these techniques.

Incentives in multi-agent environments are the purview of mechanism design, a sub-

field of microeconomics [67]. Mechanism design provides precise characterizations of

the outcomes that can be implemented when agents are self-interested.

In this dissertation, I present a framework for multi-agent preference elicitation

in the context of a discrete resource-allocation problem, called the combinatorial al-

location problem (CAP). There are several distinct, indivisible goods, which must be

allocated among a set of agents. The agents’ preferences are combinatorial: certain

goods may be superfluous in the presence of others (substitutes), while some goods

may be worth more together than individually (complements). This is a canonical

resource allocation problem, with application in domains such as bandwidth alloca-

tion [38], airport scheduling [88], and vehicle routing [61]. The framework I propose

is modular in that a variety of different subroutines can be introduced to construct

models of the individuals agents’ preferences, as long as the subroutines interact with

the agents through a standard query interface.

1.2 Combinatorial Auctions

Auctions are arguably the most classic distributed resource allocation mecha-

nisms [48]. An auction can be construed as a formalized market mechanism that

elicits value information from agents in the form of bids, and decides on an allocation

accordingly. As such, an iterative auction is a preference elicitation protocol. An

auction that allocates several distinct indivisible items is commonly called a “com-

Chapter 1: Introduction 5

binatorial” or “package” auction. The field of combinatorial auctions has burgeoned

in recent years, due to important application domains in both the public and private

sectors, such as spectrum allocation [68] and supply-chain management [108]. A re-

cent textbook edited by Cramton et al. [28] provides a compilation of research in this

area.

Today’s leading iterative combinatorial auction designs represent the state-of-the-

art in multi-agent preference elicitation for the combinatorial allocation problem,

and are the benchmark against which I will evaluate my own preference elicitation

scheme. Indeed, the preference elicitation framework given in this dissertation can be

also interpreted as an auction—or more precisely, an auction skeleton—in the sense

that it uses prices to provide agents with feedback and clear the market.

1.2.1 Single-Shot Designs

Before turning to preference elicitation in the form of iterative auctions, it is

instructive to first survey the current state of technology for single-shot auctions.

The central component of today’s single-shot combinatorial auctions is a winner-

determination engine. Given the bidders stated preferences (in the form of bids),

a typical winner-determination engine formulates the allocation as a mixed-integer

program (MIP), and then solves the MIP using established integer programming

techniques, and perhaps proprietary heuristics as well. Algorithms for the winner-

determination problem have been proposed and studied extensively in the OR and

AI literatures [93, 95, 97, 98].

Because winner-determination engines rely on MIP techniques, bidding languages

Chapter 1: Introduction 6

for single-shot combinatorial auctions are designed so that they have straightforward

conversions to MIP formulations. Indeed, all the bidding languages proposed to date

in the AI literature have this property. The XOR, OR, and OR* languages, as

well as combinations of these, all describe preferences in terms of a set of primitive

“atomic bids” (bids on single bundles), which correspond to MIP variables, together

with exclusivity constraints on these primitives, which easily translate to MIP con-

straints [74]. Languages that use logical connectives to describe complements and

substitutes have also been proposed [20, 22], and again naturally translate to MIP

formulations. Because of the general flexibility of MIP formulations, a wealth of

plausible bidding languages are available for single-shot CAs.

The fact that it is possible to express combinatorial preferences means that a

single-shot CA can achieve greater allocative efficiency than if the goods were auc-

tioned off individually. This accounts for the growing use of single-shot CAs in the

private and public sectors. The most common application of such auctions is for pro-

curement purposes. For example, bus routes in London are allocated using a CA [40].

Freight transportation services in the U.S. are commonly allocated via CA as well; a

number of companies provide commercial software for this purpose [45].

These single-shot CAs do not perform any “preference elicitation,” unless we

broaden the concept so widely as to trivialize the problem. A single-shot CA “elicits”

preferences in the sense that bids represent preferences, but does not interact with

agents through a fixed set of primitive queries, and does not provide bidder feedback.

In some instances, procurement CAs are iterated for a small number of stages, and

bidders are provided with some kind of ad-hoc feedback such as the current winning

Chapter 1: Introduction 7

bids or bidders [10]. In these cases, the burden of determining bid values and struc-

tures at each stage still lies entirely with the bidders. Nevertheless, single-shot or

rudimentary multi-stage CAs dominate the landscape, at least in the private sector.

Bichler et al. [10, 94] report that in their discussions with CA technology vendors,

none mentioned applications of clock auctions, the type of iterative auction that has

shown the most promise in laboratory experiments [87]. The reason is that clock

auctions provide the wrong kind of expressiveness: businesses prefer to specify side

constraints and volume discounts rather than place large numbers of package bids [96].

1.2.2 Iterative Designs

In contrast to single-shot CAs, many iterative CAs can rightfully be termed pref-

erence elicitation mechanisms. The typical information required at each round of an

iterative CA is the best-response set : the auctioneer quotes prices, and bidders report

their most preferred bundles at these prices. A simple query interface means that an

iterative CA design can have the potential to port to a variety of different application

domains.

Pros and Cons

There are several pros and cons to iterative auctions, compared to single-shot

alternatives. Cramton [27] provides a detailed comparison of the two paradigms. The

main microeconomic tradeoffs are summarized here.

Efficiency. The price discovery process inherent in iterative auctions leads to high

levels of efficiency [27]; it allows bidders to focus their efforts on refining those

Chapter 1: Introduction 8

parts of their preferences that are most relevant to determining an efficient

allocation. While single-shot counterparts may be efficient in theory, it can be

costly for bidders to refine every detail of their valuations, and in practice this

can result in inefficient outcomes if bidders then resort to approximations [82].

Revenue. An open, iterative auction can increase competition as participants observe

each others’ bids and subsequently try to outbid each other, leading to higher

revenues. Milgrom and Weber [70] lend theoretical rigor to this intuition in

the case where bidders’ values are affiliated. On the other hand, if there are

strong asymmetries in bidder values, weaker bidders may be discouraged from

participating in an iterative auction, since their chances of losing are virtually

guaranteed [51]. This can then result in very low revenues.

Privacy. In a single-shot auction, bidders must reveal their entire preferences to the

auctioneer. This raises privacy concerns, since preferences reveal a lot about

a bidder’s priorities or business plan. Rothkopf et al. [90] have suggested that

privacy concerns are one reason for the rarity of the Vickrey auction in practice,

as opposed to its iterative counterpart, the English auction. In constrast, iter-

ative auctions only elicit partial preferences, and full preferences are revealed

only in the worst case. Cryptographic techniques can introduce more privacy in

single-shot CAs, but have not yet been applied to auctions where bidders have

combinatorial preferences [85].

Transparency. In an open iterative auction, bidders can observe that the auction

was properly conducted and that the correct outcome was indeed implemented.

Chapter 1: Introduction 9

This gives the process some legitimacy. This is particularly important in the

public sector, where auctioneers are accountable to their respective government

agencies and to the public. Indeed, many iterative designs not only converge

to an efficient allocation, but also provide a proof of optimality in the form

of market-clearing prices (we will see in Chapter 3 how prices can serve as a

proof).

Collusion. A drawback of iterative auctions is the potential for collusive behavior.

The bidding process can turn into a communication mechanism, which the

bidders could use to coordinate and achieve lower prices. The potential for

collusion also exists in single-shot auctions, but the absence of communication

during the auction makes it harder to enforce collusion.

Taken together, these considerations show that iterative auctions can bring many

benefits compared to their single-shot counterparts, although the designs should be

carefully tailored to avoid drawbacks such as collusive behavior.

Current Designs

Table 1.1 lists several well-known iterative combinatorial auctions from the aca-

demic literature. The first three provide formal guarantees on the level of efficiency

they generate. The iBundle auction is due to Parkes [78]. This same auction with

a direct-revelation proxy interface is the Ascending-proxy auction, due to Ausubel

and Milgrom [7]. Both auctions can guarantee efficiency that is arbitratily close to

optimal. The next auction listed is due to deVries et al. (dVSV) [31], and can achieve

exact efficiency in a finite number of rounds.

Chapter 1: Introduction 10

Name Bid structure Price structure Query interface Outcome
iBundle XOR non-anon XOR demand exact
Ascending-proxy XOR non-anon XOR – exact
dVSV XOR non-anon XOR best-response exact
RAD OR linear – approximate
AkBA XOR anon XOR demand approximate
ICE TBBL linear – exact

Table 1.1: Elicitation properties of some well-known combinatorial auctions.

The next two auctions do not provide formal guarantees, but have been shown

to perform well in either laboratory experiments or computer simulations. The Re-

source Allocation Design (RAD), due to Kwasnica et al. [56], has performed well in

experiments against the simultaneous ascending auction. The latter has been used

to allocate wireless spectrum, although it is not a package auction. The Ascend-

ing k-Bundle Auction (AkBA) is due to Wurman and Wellman [110], and has the

distinction that it uses anonymous bundle pricing (i.e. each bidder sees the same

price for each bundle). The effectiveness of AkBA was validated through computer

simulations.

The Iterative Combinatorial Exchange (ICE), due to Parkes et al. [83], can be

specialized to function as an auction. It is the only instance that provides both formal

guarantees of efficiency as well as a bidding language other than XOR; however,

it retains some aspects of single-shot designs because bidders must provide a tree

structure to their valuations in order to participate, rather than just iteratively bid

on packages.

For each auction, Table 1.1 gives the representations used for bidding and pricing.

It also specifies what query interface the auction implements, if any. The final column

Chapter 1: Introduction 11

specifies whether the auction can guarantee exact or only approximate efficiency. (If

the auction can guarantee efficiency that is arbitrarily close to optimal, we term this

exact.) The efficiency guarantees hold if agents bid truthfully in the auction; we

postpone strategic considerations to Section 1.4 below.

There are several things to note about this list. First, given the variety of bidding

languages available [20, 74], it is perhaps striking that the auctions are all restricted to

the OR or XOR language—with the exception of ICE, which is a relative newcomer to

the scene. The auctions that can guarantee arbitrarily high levels of efficiency all use

the XOR language. This can be highly problematic if the bidders’ preferences cannot

be succinctly represented using XOR: Nisan and Segal [76] have shown that in the

worst-case, an efficient protocol must recover at least one bidder’s entire preferences

(up to a constant).

The selection of pricing structures used in the auctions is even more limited: all

use either an anonymous or non-anonymous version of XOR, or simple linear prices.

Linear prices—where the price of a bundle is obtained by summing the prices of its

constituent items—are simple for bidders to interpret but cannot guarantee efficiency

that is arbitrarily close to optimal. The same holds for anonymous XOR prices.

Meanwhile, Nisan and Segal [76] show that in any efficient protocol, prices must

coincide with some bidder’s preferences in the worst-case, so a non-anonymous XOR

pricing scheme is prone to the same failures as its bidding language counterpart.

The auctions also vary in the burden they place on agents to encode their pref-

erences. In keeping with the spirit of preference elicitation through simple, intuitive

interfaces, it would be ideal if bidders only had to interact with the system through

Chapter 1: Introduction 12

simple queries. In a market environment, there are two natural types of queries: value

and demand queries. On a value query, the bidder must evaluate its value for a single

bundle. On a demand query, the bidder must identify the bundle it prefers the most

given a set of prices.

Only iBundle and AkBA use a basic demand query interface. The dVSV auction

requires best-response sets at each round; this dissertation shows that best-response

queries can be simulated with value and demand queries. The remaining auctions do

not implement any clear, primitive query interface, and require bidders to perform

some pre-processing to encode their preferences in a useful format, as in single-shot

auctions. The Ascending-proxy auction requires bidders to reveal their preferences in

an XOR format up front to the proxies. The ICE protocol requires bidders to provide

a tree structure for their preferences in the TBBL [22] language up front, and only

value information is refined during the auction. Similarly, bidders must give an OR

structure to their preferences beforehand in order to participate in RAD.

1.3 The Framework

The preference elicitation scheme I propose can in principle work for a variety

of bidding languages, and it can be calibrated to achieve arbitrarily high levels of

efficiency. As such, it represents a step towards the development of iterative auctions

that could allow for representations tailored to specific application domains.

The key is to provide a learning algorithm with value and demand queries for

the bidding language of choice. Learning algorithms exist for the XOR and OR

languages, and for the language of Polynomials, whose application to elicitation is

Chapter 1: Introduction 13

novel to this work. The idea of embedding learning algorithms as subroutines for

preference elicitation was given by Lahaie and Parkes [59]. Zinkevich et al. [111] were

the first to draw connections between learning and elicitation, but they use a model

that is restricted to linear prices. As a result, they cannot guarantee efficiency except

in restricted cases, and their study focuses on possibility and impossibility results for

elicitation with this restricted functionality.

I outline the framework here in brief; a detailed description, together with theo-

retical and empirical analysis, is provided in Chapter 5. There are three components:

preference elicitation, winner determination, and pricing.

Preference elicitation. Each agent is assigned a proxy, which maintains a model

of its agent’s preferences. The model only partially agrees with the agent’s

preferences throughout the process, and is refined as needed.

Winner determination. The proxies’ models are encoded in a language that allows

for straightforward translation into a winner-determination MIP. This MIP can

then be solved to obtain a tentative efficient allocation.

Pricing. Given the preference models together with an efficient allocation, the pric-

ing engine computes market-clearing prices.

Each of these components is modular. The choice of techniques to use to quickly

solve the MIP can be varied according to context. Similarly, the choice of algorithm

used to compute market-clearing prices can be varied, and I propose two approaches

in this dissertation (in Chapters 5 and 6). Some algorithms can perform winner

determination and pricing in tandem. Finally, the learning algorithm a proxy uses to

Chapter 1: Introduction 14

Winner Determination Pricing

XOR: ṽ1 XOR: ṽ2 Polynomial: ṽ3

v1 v2 v3

ṽ1 ṽ2 ṽ3

S, ṽ

Query interface

Figure 1.1: Sketch of the framework.

derive a model of its agent’s preferences can also be adapted to the specific domain

at hand, as long as it interacts with agents through an interface of value and demand

queries.

A sketch of the framework is given in Figure 1.1. The proxies develop partial

models ṽi of the agents’ preferences vi via queries. This can be done in parallel, asyn-

chronously. At certain well-defined points, the elicitation is halted and an allocation

S together with prices p are computed through the winner-determination and pricing

engines. The allocation and prices are then returned to the agents via the proxies. If

the prices do not clear the market for the agents, the elicitation restarts. This repeats

until an efficient allocation together with market-clearing prices are reached. For the

specific instantiations of the framework that I give in this dissertation, convergence

is guaranteed.

This approach reduces the multi-agent elicitation problem to a single-agent learn-

ing problem. Also, the design is modular enough to accomodate several languages at

Chapter 1: Introduction 15

once, as Figure 1.1 suggests: if one agent’s preferences are best modeled with XOR

whereas another’s are better modeled with Polynomials, the proxies can use these

languages to recreate their respective agents’ (partial) value information during the

resource allocation process. No assumptions need to be made on the data struc-

tures the agents themselves use to encode their preferences, as long as the agents can

respond to the required queries.

1.4 Incentives

As well as ensuring that preferences can be quickly elicited via queries, a multi-

agent preference elicitation scheme must also ensure that agents will honestly respond

to these queries. If the individual agents’ interests are not aligned with the system-

wide objective, they may try to game the process.

The efficient iterative auctions mentioned previously, as well as instantiations of

the preference elicitation framework given in this dissertation, all proceed by present-

ing prices and each round, finally converging to market-clearing prices. In technical

terms, market-clearing prices are called competitive equilibrium (CE) prices. In a com-

petitive equilibrium, each agent’s allocated bundle is most preferred at the quoted

prices, and the allocation maximizes the auctioneer’s revenue at the quoted prices.

In this sense, demand equals supply and the market clears.

Since they are used as a halting criterion, it is important to understand under

what conditions CE prices even exist. In our model, prices and preferences are sym-

metric: prices may also be defined over bundles, i.e. nonlinear, and prices may be

differrent across agents, i.e. non-anonymous. In this case, CE prices always exist [13].

Chapter 1: Introduction 16

Since communicating nonlinear, non-anonymous prices is expensive, succinct “pric-

ing languages” are needed in analogy to bidding languages. Alternatively, CE prices

of lower-dimensionality may exist for certain restricted classes of agent preferences.

Adapting the price structure when preference restrictions are met can lead to sub-

stantial communications savings during the auction. The question of the existence of

CE prices in various environments is addressed in Chapter 3.

Protocols based on demand queries correctly compute an efficient outcome when

agents are myopic, i.e. act as price-takers in each round, but in general we cannot

expect this to be the case. The theory of mechanism design characterizes the kinds

of payments that must be implemented to ensure agents report their preferences

truthfully. A whole family of payment schemes exists with this property—the family

of Groves mechanisms [42]—but within this family only the VCG mechanism [25, 42,

106] ensures that losing bidders pay nothing, and that the auctioneer maximizes his

revenue under this constraint.

If the auction implements VCG payments, incentives are aligned with the system-

wide objective. In a single-shot auction, this means truthful revelation is an optimal

strategy no matter what the other agents do. In an iterative auction, this means my-

opic best-response bidding at each round is an optimal strategy if the other agents also

follow this strategy. Chapter 2 provides a formal description of the VCG mechanism

together with its incentive properties.

The iBundle auction can be extended to compute VCG payments together with

an efficient allocation. The idea, introduced by Parkes and Ungar [86], is to run the

protocol further so that it converges to a universal competitive equilibrium (UCE)

Chapter 1: Introduction 17

instead of just a CE. In a UCE, the prices not only clear the market, but would also

clear the market for any economy obtained by removing one agent from the system.

Given UCE prices, it is possible to compute discounts to the final prices, so that the

discounted price for each agent’s allocated bundle corresponds to the agent’s VCG

payment. Mishra and Parkes [71] formalize the idea further and show that it can also

be applied to the primal-dual auction of de Vries et al. [31]. In both extensions, the

bidding language remains XOR, and the prices remain non-anonymous and are also

represented using XOR.

The same idea applies to the framework proposed here. Once a CE has been

reached, the elicitation can proceed with univeral demand queries rather than simple

demand queries, which leads to a UCE. This does not complicate the query interface

because universal demand queries can be reduced to a series of simple demand queries.

The bidding language used by each proxy remains the same.

1.5 Model

There is a set of agents N and each agent is interested in acquiring items from a

set M , which is held by a single seller. Let n = |N | and m = |M | be the numbers of

agents and items. The items are indivisible, and the seller has no value for any item

or bundle of items. Each agent i is described by a valuation function over bundles

vi : 2
M → R+.

An allocation is a vector of bundles R = (Ri)i∈N , where Rj is the bundle allocated

to agent j. An allocation is feasible if Ri ∩ Rj = ∅ for i 6= j. We denote the set

of feasible allocations among agents N by Γ(N), and similarly for subsets of N . A

Chapter 1: Introduction 18

partition is a set of bundles rather than a list of bundles, so that the assignment to

the agents is not defined. We denote the set of feasible partitions of the items into

|N | bundles by Ω(N), and similarly for subsets of N .

If the allocation is R and agents are charged payments q = (qi)i∈N , then the utility

to agent j is

uj(R, q; v) = vj(Rj)− qj.

As denoted, utility functions are parametrized by the valuation profile v = (vi)i∈N ,

but this parameter will often be suppressed when clear from context.

There are several things to note about the form of the utility function. First,

each agent knows its own valuation vi, and its values do not change if it learns of

any other agent’s values, so this is a model with private values. Second, there are no

externalities, meaning that an agent only cares about the bundle it acquires, and not

what other agents obtain. Third, agents’ utilities are quasi-linear, meaning that they

can be denoted in a common currency, and utility can be transferred between agents

in the form of payments.

Throughout, we also assume that valuations are: (1) monotone, i.e. for bundles

S, T such that S ⊆ T , vi(S) ≤ vi(T); (2) normalized, i.e. the value for the empty set

is vi(∅) = 0. We call valuations that satisfy these assumptions general valuations.

Besides general valuations, the following subclasses will also be of interest. In our

model, prices are also functions from bundles to non-negative real values, so these

definitions apply equally to prices.

Chapter 1: Introduction 19

Additive An additive (also called ‘linear’) valuation satisfies

v(S) =
∑

j∈S

v(j).

When agents have additive valuations, the allocation problem reduces to the

problem of allocating each item efficiently in isolation, without regard to the

other items. Hence the allocation problem here reduces to the single-item case.

Unit-demand A unit-demand valuation satisfies

v(S) = max
j∈S

v(j).

Unit demand is perhaps the simplest interesting family of valuations in a multi-

item setting. The allocation problem in this instance is known as the assignment

problem.

Single-minded A valuation is single-minded if there is a bundle S such that

v(T) =











v(S) if T ⊇ S

0 otherwise

A bidder with a single-minded valuation is interested in acquiring all the items

in S, and no more.

Superadditive A valuation is superadditive if for any two bundles S, T such that

S ∩ T = ∅,

v(S) + v(T) ≤ v(S ∪ T).

A valuation v is subadditive if the reverse inequality holds. Superadditivity

captures the intuitive notion of complementarity: items are worth more together

than separately. Similarly, subadditivity captures the notion of substitutability.

Chapter 1: Introduction 20

Supermodular A valuation is supermodular if for any two bundles S, T we have

v(S) + v(T) ≤ v(S ∪ T) + v(S ∩ T).

A valuation v is submodular if the reverse inequality holds. Supermodular

and submodular set functions are fundamental in combinatorial optimization.

There are several alternate characterizations of these properties; in particular,

submodularity (supermodularity) captures the notion of decreasing (increasing)

marginal values with indivisible items.

Substitutes A valuation satisfies the substitutes condition if the following holds. If

S ∈ argmax v−p for a linear price function p, and p′ ≥ p where p′ is also linear,

then there exists T ∈ argmax v − p′ such that T ⊇ {j ∈ S | p(j) = p′(j)}. In

words, if the prices on some items increase, demand for the other items does not

decrease. The substitutes condition was introduced by Kelso and Crawford [50],

motivated by the problem of efficient allocation with indivisibilities. Substitutes

valuations are submodular [72].

In traditional market models, prices are usually linear. The idea of nonlinear prices

is a departure that was introduced by Bikhchandani and Ostroy [13]. It is important

to distinguish between prices and payments. The seller defines prices over bundles to

influence the agents’ decisions; payments are actual transfers from the agents to the

seller, so just a single payment is specified for each agent. If the seller quotes prices

and an agent then selects a certain bundle, the agent’s payment becomes the price

of that bundle. In Chapter 2 we focus on schemes that use payments to affect the

agents’ incentives. Chapter 3 motivates and studies the use of prices.

Chapter 1: Introduction 21

The problem at hand is to find a feasible allocation R together with payments q

that maximizes the total utility to the agents and seller:

∑

i∈N

ui(R, q) +
∑

i∈N

qi =
∑

i∈N

[vi(Ri)− qi] +
∑

i∈N

qi

=
∑

i∈N

vi(Ri).

We see that payments cancel out, and the problem of finding an allocation and pay-

ments that maximize total utility is equivalent to the problem of finding an allocation

that maximizes the total value to the agents. As mentioned earlier, this is commonly

called the combinatorial allocation problem (CAP).

1.6 Outline

The following outlines the contents and contributions of each chapter. Chap-

ter 2 provides background material on important concepts from microeconomics and

mechanism design. It introduces the relevant game-theoretic solution concepts of

dominant-strategies and Nash equillibrium, and describes the Groves family of mech-

anisms as well as the VCG mechanism. It also introduces the core, a central solution

concept in cooperative game theory, with close ties to the notion of competitive equi-

librium. Ideas from the theory of the core are used within the elicitation framework

to derive CE prices.

Chapter 3 formally defines the notion of competitive equilibrium and reviews its

fundamental properties. The chapter gives existence results for various forms of CE

prices for different valuation classes. The notion of competitive equilibrium is also

Chapter 1: Introduction 22

related to the core and the VCG mechanism. The chapter is comprised of background

material, except for the results relating to anonymous, nonlinear CE prices, which

are novel contributions. The chapter concludes with an analysis of the communica-

tion requirements of efficient auctions, and of efficient auctions that compute VCG

payments.

Chapter 4 examines representations for bids and prices in the presence of com-

binatorial preferences. It establishes the properties required of bidding and pricing

languages, and introduces several languages. The main contributions of the chapter

are learning algorithms for XOR and OR, and the novel language of pseudo-additive

representations.

Chapter 5 describes the preference elicitation framework in detail. The chapter

gives a proof of convergence for instantiations of the framework, and derives the

complexity guarantees the framework provides in terms of the guarantees given by

the underlying learning algorithms. There is also a detailed empirical evaluation.

Chapter 6 introduces a new iterative auction design that makes use of the pseudo-

additive language. The algorithm has two variants: in one variant it is suitable

as a pricing mechanism within the general elicitation framework, and in another it

functions as a stand-alone ascending-bid auction.

Chapter 7 applies the principles of combinatorial auction design to the problem

of Internet advertising. The first part of the chapter provides a survey of of the

incentive, efficiency, and revenue properties of current advertising auctions for spon-

sored search. The second part proposes an expressive auction design for advertising

over various Internet properties, including a new bidding language, together with

Chapter 1: Introduction 23

winner-determination and pricing algorithms, and a bidder-feedback mechanism.

Chapter 8 concludes with a discussion of the preference elicitation framework as

well as other contributions in the dissertation, and outlines future research directions.

Chapter 2

Incentives

This chapter addresses the incentive issues that arise in the context of the combi-

natorial allocation problem when we asssume that agents are rational. To determine

an efficient allocation, the seller must gather information on the agents’ values, and

base its decisions on this information. The agents, being rational, will choose to re-

port their information in a way that maximizes their resulting utility. As a result,

the allocation and payment rules must be carefully chosen to ensure that the right

decision is made even if agents misreport some or all of their values.

The field of mechanism design studies precisely the problem of adjusting agent

incentives so that the desired outcome occurs despite rational, manipulative behav-

ior. In the context of the combinatorial allocation problem, fundamental methods

in mechanism design such as the VCG mechanism reveal how to set payments to

ensure agents will be truthful. Mas-Colell et al. [67] provide a good introduction to

mechanism design and its central results.

Even if individual agents are motivated to truthfully reveal their values, the cho-

24

Chapter 2: Incentives 25

sen allocation and payments may still be problematic if certain coalitions of agents

find that they could have been better off setting a different allocation and different

payments among themselves. This motivates the concept of the core. The core cap-

tures the kind of divisions of gains from trade that ensure no coalition would have

grounds to object to the outcome. In essence, then, the core captures the outcomes

that can arise as the result of negotiation procedures among the buyers and seller.

As Ausubel and Milgrom [7] argue, core outcomes may be preferable to the Vickrey

outcome in practice, because they guarantee a higher revenue for the auctioneer. Also,

when goods are not substitutes, the VCG mechanism may be vulnerable to collusive

behavior or shill bidding [92]. It is important then to understand when the Vickrey

outcome will lie in the core.

Section 2.1 casts the combinatorial allocation problem as a mechanism design

problem, and proposes the VCG mechanism as a way to ensure an efficient allocation

is chosen. Along the way, relevant concepts from game theory and mechanism design

are also introduced. Section 2.2 gives a formal treatment of the core, including a

characterization specifically suited to the single-seller model, which has the advantage

of making many results relating the core and the VCG mechanism quite transparent.

2.1 Dominant Strategies

The CAP can be cast in the framework of mechanism design. An outcome consists

of a feasible allocation together with a specification of the payment required of each

agent; formally, the set of outcomes isO = Γ(N)×RN . Note that an agent’s valuation

Chapter 2: Incentives 26

summarizes all of its relevant information.1 Let V denote the set of valuations from

which agent values are drawn (e.g. general, supermodular, additive). The triplet

(N,O,VN) describes the environment.

Recall that the seller values all bundles of items at zero, so its utility for an

outcome (R, q) is simply the revenue it obtains, namely
∑

i∈N qi. The seller’s set

of possible valuations is always this singleton, so the seller cannot misrepresent its

private information. As a result, we can effectively ignore the seller when considering

possible outcomes due to strategic behavior, as in the formulation of a “game” below.

A mechanism in our context consists of a set of actions A available to each player,

an allocation rule ξ1 : A → Γ(N), and a payment rule ξ2 : A → RN . The allocation

and payment rules together form the outcome rule ξ = (ξ1, ξ2) that maps action

profiles into outcomes. The mechanism, together with the environment, induces a

game (N,AN ,VN , ū), consisting of a set of players, a set of action profiles, a set of

valuation profiles, and a payoff function ū mapping action profiles to payoffs. Given

a realization of agent valuations v = (vi)i∈N , we have, for a ∈ AN ,

ūi(a; v) = ui(ξ(a); v) = vi(ξ
1
i (a))− ξ2i (a),

according to our assumptions on the agents’ utility functions. Because we have private

values throughout, we will often suppress the parameter v from the utility function.

2.1.1 Solution Concept

A strategy is a map from valuations to actions, s : V → A. A solution concept for

a game specifies a set of strategy profiles that could emerge as the result of strategic

1In mechanism design parlance, an agent’s valuations is its type, but we will not have any need
for this more abstract terminology.

Chapter 2: Incentives 27

interaction among the agents. This in turn specifies a set of action profiles that

can occur once valuations are realized, and hence gives a prediction of the set of

possible outcomes. The central solution concept in our context is dominant strategy

equilibrium.

A strategy profile s is a dominant-strategy equilibrium if, for any i ∈ N , v ∈ VN ,

and strategy profile s′,

ūi(si(vi), s
′
−i(v−i)) ≥ ūi(s

′
i(vi), s

′
−i(v−i)).

In words, a strategy profile is a dominant-strategy equilibrium if, once valuations are

realized, each agent’s chosen action is a best-response no matter what actions the

others choose.

In later chapters we will also make reference to ex-post Nash equilibrium, so we

introduce it here in passing. A strategy profile s is an ex-post Nash equilibrium if,

for any i ∈ N , v ∈ VN , and any strategy s′i,

ūi(si(vi), s−i(v−i)) ≥ ūi(s
′
i(vi), s−i(v−i)).

In words, a strategy profile is an ex-post Nash equilibrium if, once valuations are

realized, each agent’s chosen action is a best-response to the others’ actions.

A social choice rule (or simply ‘choice rule’) is a correspondence F : V ³ O

that assigns a set of outcomes to each valuation profile. A mechanism implements a

choice rule F if, for all possible realizations of valuations v, an equilibrium s of the

induced game leads to an outcome ξ(s(v)) ⊆ F (v). For instance, we might consider

mechanisms that implement efficient outcomes with respect to realized valuations.

The solution concept must be specified: if it is dominant-strategy equilibrium, we

Chapter 2: Incentives 28

say the mechanism implements the choice rule in dominant strategies. Similarly, if

it is ex-post Nash equilibrium, the mechanism implements the choice rule in ex-post

Nash equilibrium. Again, in this chapter, we focus on implementation in dominant

strategies.

A mechanism is direct if A = V , i.e. if the agents must report a valuation. Oth-

erwise, the mechanism is indirect. A direct mechanism is incentive-compatible if the

strategy profile defined by si(vi) = vi for all i ∈ N is an equilibrium according

to the relevant solution concept. In the special case where the solution concept is

dominant-strategy equilibrium, we call the incentive-compatible mechanism truth-

ful. The revelation principle states that for any mechanism, there is an equivalent

incentive-compatible direct mechanism that implements the same outcomes. This

principle is very useful as a theoretical tool for proving incentive properties of mech-

anisms.2

2.1.2 Implementation

Within this framework of mechanism design, we can now ask: what outcome

rules can be implemented in dominant strategies? In light of the revelation principle,

it is enough to ask what outcome rules can be implemented by a truthful direct

mechanism. In the CAP, the allocation rule is essentially given (we seek an efficient

allocation), while the payment rule is left to the discretion of the mechanism designer.

The question is then how to select the payment rule to induce the agents to reveal

2In practice, however, it may still be preferable to implement the indirect mechanism rather
than its incentive-compatible direct counterpart, because the computation and communication re-
quirements of the mechanisms may be very different. If the valuation space is high-dimensional,
for instance, then communicating a valuation is very costly. See Conitzer and Sandholm [26] for a
discussion of these matters.

Chapter 2: Incentives 29

their values truthfully.

This question was answered by the seminal work of Vickrey [106], Clarke [25], and

Groves [42] (VCG). Suppose the agents report valuation profile ṽ. A Groves mecha-

nism implements an efficient allocation R with respect to ṽ, and charges payment

−
∑

j∈N−i

ṽj(Rj) + hi(ṽ−i) (2.1)

to agent i, where hi is some arbitrary function of the reported valuations of agents

other than i. The corresponding payoff to the agent is then

(

vi(Ri) +
∑

j∈N−i

ṽj(Rj)

)

− hi(ṽ−i). (2.2)

Note that the agent has no influence over the last term, while in the first it can only

influence the choice of allocation R. The mechanism chooses an allocation that is

efficient with respect to reported values, so the first term aligns the agent’s incentives

with the mechanism designer’s objective of implementing an efficent outcome. It then

follows that it is indeed a dominant strategy for agents to report values truthfully

with such payoffs (see any of [54, 67, 69] for a rigorous argument). As a result, we

will have ṽ = v.

In fact, Green and Laffont [41] and Holmstrom [46] have shown that only payment

rules of the form (2.1) successfully lead to dominant-strategy implementation of effi-

cient outcomes, under the mild condition that the given valuation class is smoothly

path connected.3

3A valuation class is smoothly path-connected if there is a continuous and differentiable path
between any two valuations. It is simple to see that the classes of general, supermodular/submodular,
superadditive/subadditive, and additive valuations are smoothly path-connected, because they are
convex. The class of unit-demand valuations is also smoothly path-connected, because we can move
from any valuation to the zero valuation, and then to any other. It is unclear whether this condition
holds for the class of substitutes valuations, however.

Chapter 2: Incentives 30

The family of Groves mechanisms gives the designer some flexibility in choosing

the functions hi. One simple choice is hi(ṽ−i) = 0 for all i ∈ N and ṽ−i. Note, however,

that this is very costly—the designer must payout the total value many times over.

Let R′ be an efficient allocation among agents N − i. The VCG mechanism is the

Groves mechanism with

hi(ṽ−i) =
∑

j∈N−i

ṽj(R
′
j).

As a Groves mechanism, the VCG mechanism is truthful. The corresponding payment

from agent i, called its Vickrey payment, is

q̂i =
∑

j∈N−i

vj(R
′
j)−

∑

j∈N−i

vj(Rj) (2.3)

= vi(Ri)−

(

∑

j∈N

vj(Rj)−
∑

j∈N−i

vj(R
′
j)

)

, (2.4)

which gives the agent a payoff of

π̂i =
∑

j∈N

vj(Rj)−
∑

j∈N−i

vj(R
′
j), (2.5)

called the Vickrey payoff. Note that the Vickrey payoff is in fact independent of the

choice of efficient allocations R and R′. The Vickrey payment, on the other hand,

depends on the specific efficient allocation R selected because of the leading term

in (2.4) (so the payment may vary depending on how ties are broken to select among

efficient allocations).

Clearly, the Vickrey payoff (2.5) is non-negative no matter what valuation the

agent reports, so the VCG mechanism is also individually-rational. This is a desirable

property, because it ensures agents would never be unwilling to participate in the

mechanism (note that an agent gets a payoff of zero if it does not participate, because

Chapter 2: Incentives 31

it is left with the empty set). In our context, the VCG mechanism is also (weak)

budget-balanced, meaning that the total transfer to the seller is always non-negative.

To see this, note that we necessarily have

∑

j∈N−i

vj(R
′
j) ≥

∑

j∈N−i

vj(Rj)

by the choice of R′, so each agent’s Vickrey payment 2.3 is non-negative.

There may be other truthful, individual-rational, and (weak) budget balanced

mechanisms that implement efficient outcomes—these would necessarily be Groves

mechanisms—but Krishna and Perry [55] show that the VCG mechanism in fact

maximizes expected revenue among mechanisms with these properties. (The proof is

technical and omitted.)

Theorem 1 [55] Among all mechanisms for allocating items M to agents N that are

efficient, incentive-compatible, and individually-rational, the VCG mechanism maxi-

mizes the expected payment of each agent.

In light of this theorem, the VCG mechanism will be of particular interest among

the class of Groves mechanisms in the rest of this thesis.

2.2 The Core

The CAP can also be viewed as a cooperative game with players N ∪ {0}, where

0 denotes the seller. Define the coalitional value function w over subsets L ⊆ N as

w(L) = max
R∈Γ(L)

∑

i∈L

vi(Ri).

Chapter 2: Incentives 32

Here we have implicitly included the seller in the “coalition” along with the agents in

L. In our model, coalitions that do not contain the seller have value zero. The coali-

tional value function is monotone and superadditive, because the agents’ valuations

are normalized, so (N,w) correctly defines a cooperative game (see e.g. Osborne and

Rubinstein [77] for the basics of cooperative game theory).

A solution concept in this case specifies a set of possible payoffs (π0, π) ∈ R×RN

to the players. A payoff vector can be construed as a division of the gains from

trade among the agents and seller. The solution concept indirectly specifies a set of

outcomes, namely those that give the agents payoffs π that agree with the solution

concept.

A central solution concept in cooperative game theory is the core. In our context,

a payoff vector (π0, π) ∈ R×RN is in the core, denoted C(N), if

π0 +
∑

i∈N

πi = w(N) (2.6)

π0 +
∑

i∈L

πi ≥ w(L) ∀L ⊆ N (2.7)

∑

i∈L

πi ≥ 0 ∀L ⊆ N (2.8)

When restricting attention to a subset of agents L together with the seller, we similarly

denote the core with respect to this new economy by C(L). The core captures the

notion of outcomes that are in a sense “stable”. If an outcome leads to payoffs that

are not in the core, then some coalition of agents, together with the seller, would have

an incentive to reject it and instead negotiate a better outcome for itself. Hence if the

agents and seller negotiate among themselves and decide on an outcome, we would

expect it to yield core payoffs. A coalition consisting solely of buyers can of course

Chapter 2: Incentives 33

create a value of zero, so this is a lower bound for the total payoff of such coalitions,

hence inequalities (2.8).

2.2.1 Alternate Characterization

Since we always have π0 = w(N) −
∑

i∈N πi, we can define the core in terms of

constraints on the bidder payoffs only. Define the polytope C̃(N) by

∑

i∈L

πi ≤ w(N)− w(N\L) ∀L ⊆ N (2.9)

πi ≥ 0 ∀ i ∈ N (2.10)

As an alternate characterization of the core, we have the following.

Lemma 1 (π0, π) ∈ C(N) if and only if π ∈ C̃(N) and π0 = w(N)−
∑

i∈N πi.

Proof. Let (π0, π) ∈ C(N). By (2.6), π0 = w(N)−
∑

i∈N πi. Also,

∑

i∈L

πi =

(

π0 +
∑

i∈N

πi

)

−

(

π0 +
∑

i∈N

πi −
∑

i∈L

πi

)

= w(N)−



π0 +
∑

i∈N\L

πi





≤ w(N)− w(N\L),

where the second equality follows from (2.6) and the inequality from (2.7). Hence

π ∈ C̃(N).

Chapter 2: Incentives 34

Now assume π ∈ C̃(N) and π0 = w(N)−
∑

i∈N πi. By the latter (2.6) holds. Also,

for L ⊆ N ,

π0 +
∑

i∈L

πi = π0 +
∑

i∈N

πi −
∑

i∈N\L

πi

= w(N)−
∑

i∈N\L

πi

≥ w(N)− w(N) + w(L)

= w(L),

where the inequality follows from (2.9); this establishes (2.7). Because of (2.10), the

total payoff to a coalition that does not contain the seller is always zero, so (2.8)

holds. Hence (π0, π) ∈ C(N). ¤

Setting πi = 0 for each agent i ∈ N and π0 = w(N), we see from Lemma 1

that these payoffs are in the core, and hence that the core is non-empty in our model.

This core payoff point corresponds to the case where the seller extract all the available

value.

2.2.2 Relation to Vickrey Payoffs

We saw in the previous section that a mechanism is incentive-compatible in dom-

inant strategies if it implements an outcome that gives agents their Vickrey payoffs.

It is then natural to ask: when are Vickrey payoffs in the core? When we implement

Vickrey payoffs and they are also in the core, agents are motivated to report their

valuations truthfuly, and no coalition has any incentive to reject the outcome. We

first note a general relationship between Vickrey and core payoffs.

Chapter 2: Incentives 35

Proposition 1 [80, 69]

π̂i = w(N)− w(N − i) = max
π∈C̃(N)

πi

Proof. The first equality follows from the definition of Vickrey payoffs (2.5). Let

π ∈ C̃(N). Inequality (2.7) with S = {i} shows that πi ≤ w(N)− w(N − i). Taking

πi = π̂i and πj = 0 for all other bidders, we see that π satisfies inequalities (2.9)

because w is monotone, and also (2.10) because Vickrey payoffs are non-negative.

Hence we in fact have π̂i = maxπ∈C̃(N) πi. ¤

It turns out that submodularity of the coalitional value function w is key to the

relationship between Vickrey and core payoffs. Here is a useful alternate characteri-

zation of submodularity. (The characterization is standard so the proof is omitted.)

Lemma 2 [53, 107] Assume w is monotone. Then w is submodular if and only if for

all K,L ⊆M ,

w(L)− w(K) ≥
∑

i∈L\K

[w(L)− w(L− i)] (2.11)

Inequalities (2.11) with the restriction that L = N form a condition called “buyers are

substitutes” [13]. Under this condition, C̃(N) has a particularly simply description:

πi ≤ w(N)− w(N − i) ∀ i ∈ N (2.12)

πi ≥ 0 ∀ i ∈ N (2.13)

To see this, note that by summing inequalities (2.12) over all i ∈ K for any K ⊆ N

yields
∑

i∈K

πi ≤
∑

i∈K

[w(N)− w(N − i)] ≤ w(N)− w(N\K)

Chapter 2: Incentives 36

where the last inequality follows from the condition that buyers are substitutes. Hence

inequalities (2.12) imply inequalities (2.9) under this condition. Under the character-

ization given by (2.12) and (2.13), it is easy to see that C̃(N) is a lattice with respect

to the usual meet and join operations on real vectors (i.e. taking component-wise

minimums and maximums).

Proposition 2 [13] If buyers are substitutes, then C̃(N) is a lattice.

Proof. Let π, π′ ∈ C̃(N). Since (2.12) and (2.13) hold for both πi and π′i, for all

i ∈ N , they also hold for max{πi, π
′
i} and min{πi, π

′
i}. ¤

Since the core is a lattice under “buyers are substitutes”, it follows from Proposi-

tion 1 that this condition also implies the Vickrey payoff point is in the core: simply

take the meet of the elements that give the agents their Vickrey payoffs. This rea-

soning does not work when buyers are not substitutes, which leads us to the central

result relating the core and Vickrey payoffs.

Theorem 2 [13] Vickrey payoffs are in the core if and only if buyers are substitutes.

Proof. Since the Vickrey outcome is efficient, the Vickrey payoffs satisfy π̂0 +

∑

i∈N π̂i = w(N). Thus, by Lemma 1, the condition that Vickrey payoffs are in

the core and the condition that buyers are substitutes are both equivalent to

w(N)− w(N\L) ≥
∑

i∈L

[w(N)− w(N − i)]

for all L ⊆ N . ¤

Note that when buyers are substitutes, the Vickrey payoff point is the minimal

element of the core viewed as a lattice—agents receive their maximum possible payoffs

Chapter 2: Incentives 37

at this point, and the seller receives its minimum possible revenue. The core payoff

point mentioned earlier, where the seller extracts all the value, is the maximal element

of the core viewed as a lattice.

The discussion so far has centered on properties of the coalitional value function

w, but the primitives in our model are the agent valuations. Ausubel and Milgrom [7]

identify a crucial property of valuations that leads to a submodular coalitional value

function. (The proof is very technical and omitted.)

Theorem 3 [7] Let V be a class of valuations that contains the additive valuations.

Then the coalitional value function w corresponding to every profile of valuations

drawn from V is submodular if and only if each valuation in V satisfies the substitutes

condition.

Of course, to ensure that Vickrey payoffs are in the core, we only need the “buyers are

substitutes” condition, and the condition that w is submodular is stronger. Currently,

no weaker property than the substitutes condition is known that would lead to the

“buyers are substitutes” condition.

By Theorems 2 and 3, Vickrey payoffs are in the core for substitutes valuations.

This is also the case for additive and unit-demand valuations, because these are

subclasses of the substitutes valuations. Theorem 3 shows that this is not necessarily

the case for profiles drawn from the other valuation classes mentioned in Section 1.5:

general, submodular/supermodular, and subadditive/superadditive. These results

are summarized in Table 2.1.

These results are quite negative, because we will often be interested in classes

other than the substitutes valuations. In such situations, the designer must choose

Chapter 2: Incentives 38

VPP ∈ Core
Linear X

Unit-Demand X

Substitutes X

Supermodular ×
Superadditive ×
Submodular ×
Subadditive ×
General ×

Table 2.1: This table lists, for each class of valuations, whether the Vickrey payoff
point (VPP) necessarily lies in the core. The results all follow from Theorem 3 due
to Ausubel and Milgrom [7], except for the case of unit-demand valuations, which is
due to Leonard [62], and the linear case, which is immediate.

whether it is more important to implement Vickrey payoffs, so that agents have no

incentives to manipulate the system, or to implement core payoffs, so that the outcome

is robust to deviations from coalitions. As one approach to managing this tradeoff,

Parkes, Kalagnanam, and Eso [84] and Day and Milgrom [30] study the problem of

implementing core payoffs that are in a sense “closest” to the Vickrey payoff point,

the idea being that these core payoffs minimize the agents’ incentives to misreport

their preferences. In this thesis, we will look at ways to implement both the Vickrey

outcome, and core outcomes that are close to the Vickrey outcome.

Chapter 3

Competitive Equilibrium

Iterative auctions, including the preference elicitation framework proposed in this

dissertation, operate by quoting prices at each round to drive the bidding, eventually

converging to market-clearing prices. Formally, market-clearing prices are referred to

as competitive equilibrium prices. In the package assignment model, the auctioneer

may choose to quote nonlinear prices, i.e. a distinct price for each bundle that is not

simply the sum of item prices. The auctioneer may also introduce price discrimination

so that different agents face different price vectors. Depending on the structure of

prices chosen, competitive equilibrium prices may or may not exist when items are

indivisible.

Because competitive equilibrium is used as a halting criterion, it is important

to understand when competitive equilibrium prices with the relevant structure exist.

The main contributions of this chapter relate to superadditive valuations; the remain-

der serves as background. When agents have superadditive valuations, the auctioneer

does not need to introduce price discrimination to ensure existence of a competitive

39

Chapter 3: Competitive Equilibrium 40

equilibrium. Superadditive valuations correspond to the case where items are com-

plements, a common regime in package auctions (see e.g. virtually any chapter in

Cramton et al. [28]). Since package auctions find application in the public sector,

“fair” pricing that does not discriminate among bidders is often a constraint; it is

also often a concern in procurement settings [10].

Section 3.1 gives a formal definition of the concept of competitive equilibrium, and

Section 3.2 surveys the properties of allocations and prices that arise in competitive

equilibirium. Section 3.3 provides a detailed study of the structure of equilibrium

prices for various classes of valuations. Section 3.4 relates the payoffs that arise in

competitive equilibrium to the concept of the core, and Section 3.5 gives conditions

under which Vickrey payments can arise in equilibrium. Section 3.6 relates the com-

munication requirements of computing Vickrey payments to the extended notion of

a universal competitive equilibrium.

3.1 Definition

We allow for nonlinear prices, so that a distinct price may be quoted for each

bundle. Bikhchandani and Ostroy [13] also introduced the idea of non-anonymous

prices, to allow for situations where different agents are quoted different prices for

the same bundles. Hence, instead of quoting a single price function over bundles, we

may quote a different price function pi to each agent. If pi = pj for any two agents

i, j then we say the prices are anonymous.1 We identify three orders or pricing:

1This is the sole source of asymmetry between valuations and prices in our model. It is not of
much interest to talk of “anonymous” valuation profiles, because we usually expect valuations to
differ among agents.

Chapter 3: Competitive Equilibrium 41

1. Linear and anonymous.

2. Nonlinear and anonymous.

3. Nonlinear and non-anonymous.

Very little is known about linear and non-anonymous prices, and we do not consider

them in this thesis. In some cases, it is also natural to consider prices of order 0:

linear prices where all items have the same price, so that only the size of a bundle is

relevant when determining its price.

An allocation R together with prices p = (pi)i∈N constitute a competitive equilib-

rium (CE) if for all R′ ∈ Γ(N),

vi(Ri)− pi(Ri) ≥ vi(R
′
i)− pi(R

′
i) ∀ i ∈ N (3.1)

∑

i∈N

pi(Ri) ≥
∑

i∈N

pi(R
′
i) (3.2)

In a competitive equilibrium, each agent’s allocated bundle maximizes the agent’s

utility at the given prices, and the chosen allocation also maximizes the seller’s revenue

at the given prices. In this sense, supply equals demand and the market clears. We

call R a competitive equilibrium allocation and p competitive equilibrium prices. We

say that the CE prices support the CE allocation.

3.2 Properties

Let E ⊆ Γ(N) denote the set of CE allocations and P ⊆ RN×2N

the set of CE

prices (i.e. allocations and prices that appear in some competitive equilibrium). The

set of competitive equilibria is in fact a product set.

Chapter 3: Competitive Equilibrium 42

Proposition 3 [67] The set of competitive equilibria is E × P.

Proof. Let (R, p) be a competitive equilibrium, and let (R′, p′) be another. We have

∑

i∈N

vi(Ri) =
∑

i∈N

[vi(Ri)− p′i(Ri)] +
∑

i∈N

p′i(Ri)

≤
∑

i∈N

[vi(R
′
i)− p′i(R

′
i)] +

∑

i∈N

p′i(R
′
i) (3.3)

=
∑

i∈N

vi(R
′
i).

By an identical argument,
∑

i∈N vi(R
′
i) ≤

∑

i∈N vi(Ri), and so
∑

i∈N vi(Ri) =
∑

i∈N vi(R
′
i).

Hence inequality (3.3) holds with equality, and each Ri is maximizes i’s utility at

prices p′i, while R maximizes revenue at prices p. This shows that (R, p′) is a com-

petitive equilibrium. By an identical argument, (R′, p) is a competitive equilibrium.

Therefore the set of competitive equilibria is the product set E × P . ¤

Given this lemma, it makes sense to speak of “competitive equilibrium prices”

without reference to any particular allocation; this is in contrast to Vickrey payments.

Like the allocations that result from the VCG mechanism or from core outcomes, CE

allocations are efficient. This is the “first fundamental theorem of welfare economics,”

specialized to our single-seller model with indivisibilities.

Theorem 4 [13, 67] Competitive equilibrium allocations are efficient.

Proof. Let R be a CE allocation, and let p be corresponding CE prices. Given

a feasible allocation R′, summing inequalities (3.1) and (3.2) yields
∑

i∈N vi(Ri) ≥

∑

i∈N vi(R
′
i). Since R

′ was arbitrary, R is efficient. ¤

In fact, if an allocation is efficient, then there are CE prices that support it, as

the following theorem shows. This is the “second fundamental theorem of welfare

Chapter 3: Competitive Equilibrium 43

economics,” adapted to our model. It implies, in particular, that E is exactly the set

of efficient allocations.

Theorem 5 [13] For every efficient allocation R, there exist prices p such that (R, p)

is a competitive equilbrium.

Proof. Define prices pi(S) = vi(S) for all S ⊆ 2M and i ∈ N . An agent receives

utility zero from any bundle, so Ri is trivially utility-maximizing to agent i, for all

i ∈ N . Since the revenue of an allocation equals its value, R must then maximize

revenue because it is efficient. ¤

The proof of Theorem 5 shows that CE prices of order 3 always exist. Such prices

are clearly costly to quote, in terms of communication. It is therefore useful to ask

whether competitive equilibria exist with lower order prices.

3.3 Existence

Whether CE prices of lower order exist will depend on the specific valuation class

being considered. Kelso and Crawford [50] show that order 1 CE prices exist when

agents have substitutes valuations. This is then also the case when agents have

additive or unit-demand valuations.

When agents have superadditive valuations, order 2 prices exist. This result was

first given by Parkes [79], who provides an algorithmic proof. We give here a simpler,

constructive, and non-algorithmic proof.

Theorem 6 [79] There exist anonymous, nonlinear competitive equilibrium prices if

agents have superadditive valuations.

Chapter 3: Competitive Equilibrium 44

Proof. Let R be an efficient allocation. Define p(S) = maxi∈N vi(S) for S ⊆M . We

claim these are CE prices. First note, that p(Ri) = vi(Ri). To see this, assume to the

contrary that p(Ri) > vi(Ri). Then there is some j 6= i such that vj(Ri) > vi(Ri).

We then have

vi(Ri) + vj(Rj) < vj(Ri) + vj(Rj) ≤ vj(Ri ∪Rj) + vi(∅),

where the second inequality follows from the fact that vj is superadditive andRi∩Rj =

∅ (since they are part of a feasible allocation), and the fact that vi is normalized.

Hence if in allocation R we replace Ri with ∅ and Rj with Ri ∪ Rj, we obtain an

allocation with strictly greater value than R, contradicting its efficiency.

We must then have p(Ri) = vi(Ri), and the payoff to each agent under these prices

is 0. By our price construction, the utility from any other bundle to any agent is at

most 0. Hence the prices ensure the allocated bundles are utility-maximizing for the

agents.

Now among revenue-maximizing allocations, choose an allocation R′ that maxi-

mizes the number of agents that receive nothing. We claim that we cannot have two

nonempty bundles R′i and R
′
j such that p(R′i) = vk(R

′
i) and p(R

′
j) = vk(R

′
j); i.e. the

prices of both bundles cannot be derived from the same agent’s valuation. If this

were the case, we would have

p(R′i) + p(R′j) = vk(R
′
i) + vk(R

′
j) ≤ vk(R

′
i ∪R

′
j) ≤ p(R′i ∪R

′
j) + p(∅)

by the superadditivity of vk and the definition of p. We see then that replacing R′i

with R′i∪R
′
j and R

′
j with ∅ would result in an allocation with weakly greater revenue,

but with one more agent receiving nothing, which would contradict our original choice

of R′.

Chapter 3: Competitive Equilibrium 45

If R′i 6= ∅, reassign the bundle so that p(R′i) = vi(R
′
i). By our arguments above,

this is a valid reassignment of such bundles. The remaining (empty) bundles can be

reassigned to the remaining agents arbitrarily, and we then have p(R′i) = vi(R
′
i) for

all i ∈ N . Because prices are anonymous, this reassignment does not change the

revenue, and so we can assume without loss of generality that this was the original

assignment. But note now that the revenue from R′ is exactly its total value. The

revenue from R is also its total value, as we saw above, so the revenue from R is at

least the revenue from R′, because R is efficient. Because R′ maximizes revenue, so

then does R.

The constructed prices ensure that each bundle in R maximizes its respective

agent’s utility, and that the allocation maximizes revenue to the seller. Therefore

they are CE prices. ¤

It follows that order 2 prices exist for single-minded valuations as well. Note that

when a valuation is normalized, it is superadditive if it is supermodular. Hence order

2 prices exist for supermodular valuations as well. In fact, when there are just two

agents with supermodular valuations, then order 1 CE prices exist, but this fact does

not extend to more agents [32].

The following result provides a converse of sorts to Theorem 6. There may be

specific valuation profiles that allow for anonymous CE prices even though some

valuations are not superadditive. However, this cannot be guaranteed for all valuation

profiles unless valuations are only draw from the class of superadditive valuations.2

2Theorem 7 is analogous to Ausubel and Milgrom’s result for substitutes valuations [7]. They
show that the class of substitutes valuations is the largest class containing the additive valuations
that guarantees that order 1 CE prices will exist for all valuation profiles. Their result applies when
there are at least 4 bidders.

Chapter 3: Competitive Equilibrium 46

Theorem 7 Suppose that V contains the class of single-minded valuations, and that

N ≥ 3. Then nonlinear, anonymous competitive equilibrium prices exist for every

profile of valuations drawn from VN only if every valuation in V is superadditive.

Proof. Assume there is a valuation v1 ∈ V that is not superadditive. Then there

exist nonempty S, S ′ ⊆M such that S ∩ S ′ = ∅ and v1(S) + v1(S
′) > v1(S ∪ S

′). Let

v2 be a single-minded valuation with v2(T) = v1(S∪S
′) for T ⊇ S∪S ′ and v2(T) = 0

otherwise. Finally, let v3 be a single-minded valuation with v3(T) = v1(M) + v2(M)

for T ⊇M\(S∪S ′) and v3(T) = 0 otherwise. The valuations of any remaining agents

are set to 0 over all bundles.

If agent 3 is not given a superset of M\(S ∪ S ′), no value greater than v1(M) +

v2(M) can be achieved, so there exists an efficient allocation where agent 3 gets such

a superset. On the other hand, giving the agent more than items M\(S ∪ S ′) cannot

add any value, so there is an efficient allocation where it receives exactly these items.

To allocate the remaining items S ∪S ′ efficiently, note that agent 2 only gets positive

value if it obtains all these items, so it is efficient to either give the agent either all

these items or none of them. We see then that allocation (∅, S ∪ S ′,M\(S ∪ S ′)) is

efficient.

Assume there exist anonymous prices p that support this allocation. Because ∅

maximizes agent 1’s utility at these prices, we have

v1(S)− p(S) ≤ 0 (3.4)

v1(S
′)− p(S ′) ≤ 0 (3.5)

v1(S ∪ S
′)− p(S ∪ S ′) ≤ 0 (3.6)

Chapter 3: Competitive Equilibrium 47

Agent 2 must prefer its bundle S ∪ S ′ to the empty set, so we also have

v2(S ∪ S
′)− p(S ∪ S ′) ≥ 0. (3.7)

From (3.6) and (3.7) we see that p(S ∪ S ′) = v1(S ∪ S
′) = v2(S ∪ S

′). We then have

p(S) + p(S ′) ≥ v1(S) + v1(S
′)

> v1(S ∪ S
′)

= p(S ∪ S ′),

where the first inequality follows from (3.4) and (3.5). But this means that the

revenue from allocation (S, S ′,M\(S ∪ S ′)) is strictly greater than the revenue from

(∅, S ∪ S ′,M\(S ∪ S ′)); so prices p cannot in fact support the latter, which gives us

a contradiction. ¤

The following example shows that order 1 CE prices do not necessarily exist when

agents have single-minded valuations, and hence this is also the case for supermodular

and superadditive valuations.3

Example. The set of agents is N = {1, 2, 3, 4} and the set of items is M = {a, b, c}.

The agents’ valuations are single-minded. Agent 1 wants abc and values it at 4. Agent

2 wants ab and values it at 3. Agent 3 wants bc and values it at 3. Agent 4 wants

ac and values it at 3. It is efficient to give abc to agent 1 and nothing to the others.

Assume there exist order 1 CE price that support this allocation. Since agents 2, 3,

3The example is for 3 items and 4 agents. If there are less than 3 items or less than 3 agents, it
can be shown that order 1 CE prices do exist if all valuations are single-minded. So the example
has the smallest possible parameter settings.

Chapter 3: Competitive Equilibrium 48

and 4 receive nothing, we must have

p(a) + p(b) ≥ 3

p(b) + p(c) ≥ 3

p(a) + p(c) ≥ 3

from which is follows that

p(a) + p(b) + p(c) ≥ 9/2.

But in order for abc to maximize agent 1’s utility, its price must be below 4. So we

have reached a contradiction, and order 1 prices cannot exist.

The remaining question is whether there exist linear or anonymous CE prices when

agents have subadditive or submodular valuations. The following example shows

that only order 3 prices can guarantee the existence of a CE with these classes of

valuations.4 Naturally, this is then also the case with general valuations.

Example. The set of agents is N = {1, 2} and the set of item is M = {a, b, c}. The

agents’ valuations are given in the following table.

a b c ab ac bc abc
1 5 2 5 6 6 7 7
2 2 5 5 6 7 6 7

It is simple but tedious to check that these valuations are submodular. Here allocating

a to agent 1 and bc to agent 2 is efficient. Assume there are order 2 CE prices p that

4The example shows that order 3 prices may be required to guarantee the existence of CE prices
when there are 3 items and 2 agents with submodular valuations. If there are just 2 items, then
it can be shown that order 2 CE prices exist. This case is quite trivial, however, so the proof is
omitted.

Chapter 3: Competitive Equilibrium 49

CE exists References
Linear 1 Immediate
Unit-Demand 1 Koopmans and Beckmann [52]
Substitutes 1 Kelso and Crawford [50]
Single-minded 2 Parkes [79], this work
Supermodular 2 Parkes [79], this work
Superadditive 2 Parkes [79], this work
Submodular 3 Bikhchandani and Ostroy [13], this work
Subadditive 3 Bikhchandani and Ostroy [13], this work
General 3 Bikhchandani and Ostroy [13], this work

Table 3.1: This table lists, for each class of valuations, the lowest order of prices
that ensures that competitive equilibrium prices exist. The references give first the
work that shows a certain order of CE prices exists for the given valuation class, and
then the work that gives an example to show a lower order is not sufficient (except
of course for order 1 prices).

support this allocation. Since the agents’ allocations maximize their utilities at these

prices, we have

5− p(a) ≥ 7− p(bc)

6− p(bc) ≥ 5− p(b)

6− p(bc) ≥ 7− p(ac)

Summing these inequalities and rearranging, we find that

p(b) + p(ac) > p(a) + p(bc)

which contradicts the fact that allocation (a, bc) should maximize the seller’s revenue

at prices p. Hence order 2 CE prices do not exist. Order 1 prices are also anonymous,

so these do not exist either. The conclusions on the existence of various orders of

CE prices are summarized in Table 3.1.

Chapter 3: Competitive Equilibrium 50

3.4 Relation with the Core

We now turn to the relationship between competitive equilibrium and the core.

Let πi = vi(Ri) − pi(Ri) for i ∈ N and π0 =
∑

i∈N pi(Ri) be the payoffs obtained

in competitive equilibrium (R, p). We call these competitive payoffs. The following

theorem can be construed as a strengthening of Theorem 4, because core payoffs can

only arise from efficient outcomes.

Theorem 8 [67, 77] Competitive payoffs are in the core.

Proof. Let (R, p) be a competitive equilibrium. Let πi = vi(Ri) − pi(Ri) and π0 =

∑

i∈N pi(Ri) be the corresponding competitive payoffs. For any coalition of agents L,

let R′ be a corresponding efficient allocation among them, and let R′i = ∅ for i 6∈ L.

Then,

w(L) =
∑

i∈L

vi(R
′
i) =

∑

i∈L

[vi(R
′
i)− pi(R

′
i)] +

∑

i∈N

pi(R
′
i) ≤

∑

i∈L

πi + π0, (3.8)

where the inequality follows from (3.1) and (3.2). We have

∑

i∈N

πi + π0 =
∑

i∈N

vi(Ri) ≤ w(N),

and combined with (3.8) for L = N , the inequality holds with equality. Hence (π0, π)

is in the core. ¤

Since competitive payoffs are in the core, might all core payoffs be competitive?

If this is the case, we say that the core can be priced. As with the question of the

existence of competitive equilibrium, whether the core can be priced depends on the

order of prices used. Given core payoffs (π0, π) ∈ C(N), Bikhchandani and Ostroy [13]

Chapter 3: Competitive Equilibrium 51

show that prices

pi(S) = max{vi(S)− πi, 0}

yield a competitive equilibrium (R, p)—where R is any efficient allocation—that gives

the agents payoffs π and the seller revenue π0. Hence the core can always be priced

using order 3 prices.

The proof of Theorem 6 shows that payoffs πi = 0 for i ∈ N and π0 = w(N), i.e.

the seller-optimal core outcome, can be priced using order 2 prices when agents have

superadditive valuations. This suggests that order 2 prices might actually price the

core when agents have superadditive valuations, and this is indeed the case. First a

useful lemma.

Lemma 3 Let R be an efficient allocation, and let π ∈ C̃(N). If all agents have

superadditive valuations, vi(Ri)− πi ≥ vj(Ri)− πj for all i, j ∈ N .

Proof. Consider the allocation where agent i obtains ∅, j obtains Rj ∪Ri, and every

other agent k receives Rk as before. Note that

w(N − i) ≥ vj(Ri ∪Rj) +
∑

k 6=i,j

vk(Rk)

≥ vj(Ri) + vj(Rj) +
∑

k 6=i,j

vk(Rk) (3.9)

where the first inequality follows from the definition of w, and the second from the

fact that vj is superadditive. We then have

πi ≤ w(N)− w(N − i)

≤ vi(Ri)− vj(Ri)

Chapter 3: Competitive Equilibrium 52

where the first inequality follows from Proposition 1, and the second from (3.9) above

and the fact that w(N) =
∑

k∈N vk(Rk). Hence vi(Ri)−πi ≥ vj(Ri), and since πj ≥ 0,

it follows that vi(Ri)− πi ≥ vj(Ri)− πj. ¤

We are now ready to prove our central theorem on order 2 prices. The line of

argument is very similar to the proof of Theorem 6, which follows from the next

theorem as a corollary.

Theorem 9 The core can be priced with anonymous, nonlinear prices if all agents

have superadditive valuations.

Proof. Let R be an efficient allocation, and let (π0, π) ∈ C(N). Note that w(N) =

∑

i∈N vi(Ri). For all S ⊆ 2M , let

p(S) = max

{

max
i∈N

{vi(S)− πi} , 0

}

.

For each i ∈ N , we have

vi(Ri) =
∑

j∈N

vj(Rj)−
∑

j 6=i

vj(Rj)

≥ w(N)− w(N − i)

≥ πi,

where the first inequality follows from the definition of w, and the last from Propo-

sition 1. Hence vi(Ri)− πi ≥ 0 for all i. Because R is efficent and π is in the core, it

then follows by Lemma 3 that p(Ri) = vi(Ri)−πi. Hence vi(Ri)−p(Ri) = πi, and for

all S ⊆M , vi(S)− p(S) ≤ vi(S)− [vi(S)− πi] = πi by the definition of p. Therefore,

buyers maximize their utility at these prices and indeed get payoffs π.

Note that
∑

i∈N p(Ri) =
∑

i∈N vi(Ri)−
∑

i∈N πi = w(N)−
∑

i∈N πi = π0. Among

revenue-maximizing allocations, choose an allocation R′ that maximizes the number

Chapter 3: Competitive Equilibrium 53

of agents that receive nothing. We claim that we cannot have two nonempty bundles

R′i and R
′
j such that p(R′i) = vk(R

′
i)− πk and p(R′j) = vk(R

′
j)− πk; i.e. the prices of

both bundles cannot be derived from the same agent’s valuation and core payoff. If

this were the case, we would have

p(R′i) + p(R′j) = vk(R
′
i) + vk(R

′
j)− 2πk ≤ vk(R

′
i ∪R

′
j)− πk ≤ p(R′i ∪R

′
j) + p(∅)

by the superadditivity of vk and the definition of p, and the fact that πk ≥ 0. We

see then that replacing R′i with R
′
i ∪ R

′
j and R

′
j with ∅ would result in an allocation

with weakly greater revenue, but with one more agent receiving nothing, which would

contradict our original choice of R′.

If R′i 6= ∅ and p(R′i) > 0, reassign the bundle so that p(R′i) = vi(R
′
i)− πi. By our

arguments above, this is a valid reassignment of such bundles. The remaining bundles

with p(R′i) = 0 can be reassigned to the remaining agents arbitrarily. Because prices

are anonymous, this reassignment does not change the revenue, and so we can assume

without loss of generality that this was the original assignment. Let N ′ be the agents

that receive a bundle with positive price under allocation R′. The revenue from R′ is

then

∑

i∈N

p(R′i) =
∑

i∈N ′

[vi(R
′
i)− πi]

≤ w(N ′)−
∑

i∈N ′

πi

≤ π0 +
∑

i∈N ′

πi −
∑

i∈N ′

πi

=
∑

i∈N

p(Ri).

where the second inequality follows from the fact that (π0, π) is in the core. Since R′

was revenue-maximing at prices p, so is R.

Chapter 3: Competitive Equilibrium 54

The constructed prices ensure that each bundle in R maximizes its respective

agent’s utility, and that the allocation maximizes revenue to the seller. Therefore

they are CE prices which lead exactly to core payoffs (π0, π). ¤

In a single-item setting, it is straightforward to see that the core can be priced with

order 1 prices, and this extends to additive valuations. The following example shows

that order 2 prices do not necessarily price the core when agents have unit-demand

valuations (so this is also the case for order 1 prices).5

Example. Let the set of agents be N = {1, 2} and the set of items be M = {a, b}.

The agents both have unit-demand valuations, given by the following table.

a b
1 1 1
2 2 3

The efficient allocation gives item a to agent 1, and item b to agent 2, for a total

value of 4. Recall that the payoff vector where the seller extracts all the surplus

is in the core. In this case, π0 = 4, π1 = 0, and π2 = 0 is in the core. Assume

there are anonymous CE prices that yield these core payoffs. We must have p(a) = 1

and p(b) = 3 to ensure the agents get payoffs of 0 from the allocation. But at

these prices, agent 2 prefers a to b, so they cannot be CE prices, which gives us a

contradiction. Unit-demand valuations satisfy the substitutes condition, and they

are also submodular, and hence subadditive. The example therefore shows that in

general, order 3 prices are required to price the core with these valuations classes.

These conclusions are summarized in Table 3.2.
5This may seem to contradict the results of Shapley and Shubik [101]. Note, however, that the

pattern of ownership in their model is different: each item is owned by a distinct seller. Hence
no seller can extract all the surplus. In our model, there exists a core outcome where the lone
seller extracts all the surplus, and the example shows that this outcome cannot be priced using
non-anonymous prices.

Chapter 3: Competitive Equilibrium 55

CE = Core VPP ∈ CE References
Linear 1 1 Immediate
Unit-Demand 3 1 B&O [13], Leonard [62], this work
Substitutes 3 3 B&O [13]
Single-minded 2 × This work, A&M [7]
Supermodular 2 × This work, A&M [7]
Superadditive 2 × This work, A&M [7]
Submodular 3 × B&O [13], A&M [7]
Subadditive 3 × B&O [13], A&M [7]
General 3 × B&O [13], A&M [7]

Table 3.2: This table lists, for each class of valuations, the lowest order of prices that
ensures that the core can be priced, and that the Vickrey payoff point (VPP) can be
priced.

3.5 Relation to Vickrey payoffs

We have seen how core payoffs can be obtained in competitive equilibrium. It is

now natural to ask: when are Vickrey payoffs competitive? Theorem 8 shows that for

Vickrey payoffs to arise in a competitive equilibrium, the Vickrey payoff point must

lie in the core. Hence, by Theorems 2 and 3, Vickrey payoffs cannot necessarily arise

in competitive equilibrium if the agents have general, submodular/supermodular,

subadditive/superadditive, or single-minded valuations.

As for additive and unit-demand valuations, Leonard [62] shows that the Vickrey

payoff point can be priced with order 1 prices in these cases. On the other hand, when

agents have substitutes valuations, Bikhchandani and Ostroy [13] give an example

that shows order 3 prices might be required to implement Vickrey payoffs. These

conclusions are summarized in Table 3.2. The case of unit-demand valuations shows

that whether the core can be priced and whether the Vickrey payoff point can be

priced, for a given order of prices, are separate questions.

Chapter 3: Competitive Equilibrium 56

Since Vickrey payoffs cannot be achieved in competitive equilibrium for several in-

teresting classes of valuations, we might ask: when can Vickrey payments be derived

from CE prices? This leads us to the concept of a universal competitive equilib-

rium(UCE), introduced by Mishra and Parkes [71]. Prices p are UCE prices if they

support any efficient allocation of items among agents M , and also support any effi-

cient allocation among agents N − i for all i ∈ N . An efficient allocation R together

with UCE prices p form a universal competitive equilibrium.

Theorem 10 [71] Let (R, p) be a universal competitive equilibrium, and let R′ be any

revenue-maximizing allocation of the items among agents N − i. Then the Vickrey

payment to agent i is

q̂i =
∑

j∈N−i

pj(R
′
j)−

∑

j∈N−i

pj(Rj). (3.10)

Proof. Fix some i ∈ N . Let R′ be an efficient allocation of the items among agents

N − i. By definition p supports both R and R′. Hence for any j ∈ N we have

vj(Rj)− pj(Rj) = vj(R
′
j)− pj(R

′
j). (3.11)

Also, note that R′ maximizes the seller’s revenue among all allocations to agents

N − i. We then have

q̂i =
∑

j∈N−i

vj(R
′
j)−

∑

j∈N−i

vj(Rj)

=
∑

j∈N−i

[

vj(R
′
j)− pj(R

′
j)
]

+
∑

j∈N−i

pj(R
′
j)−

∑

j∈N−i

[vj(Rj)− pj(Rj)]−
∑

j∈N−i

pj(Rj)

=
∑

j∈N−i

pj(R
′
j)−

∑

j∈N−i

pj(Rj)

where the first equality is (2.3), the definition of the Vickrey payment, and the third

follows by cancelling terms according to (3.11). ¤

Chapter 3: Competitive Equilibrium 57

Theorem 10 shows that a universal competitive equilibrium contains sufficient in-

formation to construct any agent’s Vickrey payment: note that the first term in (3.10)

can be determined simply with knowledge of p, whereas the second term can obviously

be determined with knowledge of R and p.

3.6 Communication

Theorem 4 shows that knowledge of a competitive equilibrium (R, p) is enough

to determine an efficient allocation: simply take R itself. Theorem 10 shows that

knowledge of a universal competitive equilibrium is enough to determine an efficient

allocation together with corresponding Vickrey payments. We now examines the

converse of these statements. We will see that any communication protocol that

finds an efficient allocation, or an efficient allocation with Vickrey payments, must

necessarily identify a competitive or universal competitive equilibrium, respectively.

A nondeterministic communication protocol is a triple Π = (M, µ, f), whereM is

a message set, µ : VN ³M is a message correspondence, f :M³ O is the outcome

function, and the message correspondence µ has the following properties:

• Existence: µ(v) 6= ∅ for all v ∈ VN .

• Privacy preservation: µ(v) =
⋂

i µi(vi) for all v ∈ V , where µi : V −→M for all

i ∈ N .

Protocol Π realizes choice rule F : VN ³ O if h(µ(v)) ⊆ F (v) for all v ∈ V .

These definitions can be interpreted as follows. In a nondeterministic communication

protocol that realizes a choice F , the fact that the agents all accept a message m

Chapter 3: Competitive Equilibrium 58

(where i accepts m if m ∈ µi(vi)) verifies that outcome h(m) is correctly chosen,

because h(m) ∈ h(µ(v)) ⊆ F (v). (The set of outcomes here may vary according to

the rule; it does not need to be precisely a an allocation together with payments as

in Chapter 2. It may be simply an allocation, an allocation and payments, or an

allocation and prices, for instance.)

The communication requirement of a protocol is the worst-case encoding size of a

message in bits, i.e. log |M|, if the message space is discrete. If the message space is

continous, the communication requirement is defined as the dimension of the space.

The communication complexity of a choice rule is the smallest communication re-

quirement over all protocols realizing the rule.

Consider the efficient rule, which maps valuations profiles v into the corresponding

set of efficient allocations. Also, consider the competitive equilibrium rule, which maps

profiles v into the corresponding set of competitive equilibria (R, p). The following

fundamental result by Nisan and Segal [76] relates the communication complexities

of these rules.6

Theorem 11 [76] Communication protocol Π = (M, µ, f) realizes the efficient rule

if and only if there is an assignment p :M→ RN×2M

of prices to messages such that

protocol (M, µ, (f, p)) realizes the competitive equilibrium rule.

Proof. The “sufficient” direction follows from Theorem 4. For the “necessary”

direction, suppose protocol (M, µ, f) realizes the efficient rule. For each m ∈M, let

6Parkes [81] provides a similar result in a slightly less general model with a restricted communi-
cation language.

Chapter 3: Competitive Equilibrium 59

R = f(m) and define prices

pi(S) = sup
vi∈µ

−1

i (m)

[vi(S)− vi(Ri)]

for all S ⊆ M and i ∈ N . Note in particular that pi(Ri) = 0 for all i ∈ N . By

construction, the bundles in R maximize agent i’s utility for any vi ∈ µ
−1
i (m). Also

for each R′ ∈ Γ(N) we have

∑

i∈N

[pi(R
′
i)− pi(Ri)] =

∑

i∈N

sup
vi∈µ

−1

i (m)

[vi(R
′
i)− vi(Ri)]

= sup
v∈µ−1(m)

∑

i∈N

[vi(R
′
i)− vi(Ri)]

≤ 0,

where the second equality follows from privacy preservation, and the inequality follows

from the fact that Ri is efficient for any v ∈ µ−1(m), because Π implements the

efficient rule. So R also maximizes the seller’s revenue at prices p, and hence (R, p)

is a competitive equilibrium, for every v ∈ µ−1(m). ¤

Consider now the VCG rule that maps profiles v into pairs (R, q), where R is

an efficient allocation with respect to v and q the corresponding vector of Vickrey

payments. Recall that the Vickrey payment from agent i corresponding to R is

max
R′∈Γ(N−i)

∑

j∈N−i

vj(R
′
j)−

∑

j∈N−i

vj(Rj).

We would like to compare this with the universal competitive equilibrium rule that,

as the name implies, maps valuation profiles v into the corresponding set of universal

competitive equilibria (R, p). Recall that in a universal competitive equilbirium,

prices p not only support R but also any efficient allocation among agents N − i, for

any i ∈ N . The following theorem is the analog of Theorem 11 for this pair of rules.

Chapter 3: Competitive Equilibrium 60

Theorem 12 Communication protocol Π = (M, µ, (f, q)) realizes the VCG rule if

and only if there is an assignment p : M→ RN×2M

of prices to messages such that

protocol (M, µ, (f, p)) realizes the universal competitive equilibrium rule.

Proof. The “sufficient” direction follows from Theorem 10. For the “necessary”

direction, suppose protocol (M, µ, f) realizes the VCG rule. For each m ∈ M, let

R = f(m) and define prices

pi(S) = sup
vi∈µ

−1

i (m)

[vi(S)− vi(Ri)]

for all S ⊆M and i ∈ N . Note in particular that pi(Ri) = 0 for all i ∈ N . The proof

of Theorem 11 shows that prices p support R for every v ∈ µ−1(m).

Let v ∈ µ−1(m). Fix i ∈ N and let R′ be an efficient allocation among agents

N − i with respect to v−i. Assume there is an agent j 6= i such that R′j does not

maximize its utility at prices p. Since Rj does maximize agent j’s utility at prices p,

as argued above, we have

vj(R
′
j)− pj(R

′
j) < vj(Rj)− pj(Rj)

⇒ vj(R
′
j)− vj(Rj) < pj(R

′
j)

⇒ vj(R
′
j)− vj(Rj) < sup

v′j∈µ
−1

j (m)

[v′j(R
′
j)− v′j(Rj)].

Let s = supvj∈µ
−1

j (m)[vj(R
′
j) − vj(Rj)]. By the last inequality above there is some

ε > 0 such that vj(R
′
j) − vj(Rj) = s − ε. By the definition of a supremum, there

is some v′j ∈ µ−1j (m) such that v′j(R
′
j) − v′j(Rj) > s − ε = vj(R

′
j) − vj(Rj). Adding

Chapter 3: Competitive Equilibrium 61

∑

k∈N\{i,j}[vk(R
′
j)−vk(Rj)] to both sides of this inequality and rearranging, we obtain

∑

k∈N−i

vk(R
′
j)−

∑

k∈N−i

vk(Rj)

<





∑

k∈N\{i,j}

vk(R
′
j) + v′j(R

′
j)



−





∑

k∈N\{i,j}

vk(Rj) + v′j(Rj)



 .

The left-hand side is agent i’s Vickrey payment with respect to R when the valuation

profile is v. The right-hand side is at most agent i’s Vickrey payment with respect to

R when the valuation profile is (v′j, v−j). So the Vickrey payment from i differs under

these two profiles. But note that v ∈ µ−1(m) and (v′j, v−j) ∈ µ−1j (m) × µ−1−j(m) =

µ−1(m), the latter by privacy preservation. So the Vickrey payment from i must in

fact be identically qi(m) for these two profiles, from the fact that Π realizes the VCG

rule. This gives us a contradiction, and we see that R′j in fact maximizes agent j’s

utility at prices p.

We have just shown that for v ∈ µ−1(m) and R′ efficient for agents N − i with

respect to v, we have for each j ∈ N − i

vj(R
′
j)− pj(R

′
j) = vj(Rj)− pj(Rj)

⇒ pj(R
′
j) = vj(R

′
j)− vj(Rj).

Summing this over all j ∈ N − i, we have

∑

j∈N−i

pj(R
′
j) =

∑

j∈N−i

[vj(R
′
j)− vj(Rj)].

Because R′ is efficient for agents N − i, for any R′′ ∈ Γ(N − i) we then have

∑

j∈N−i

pj(R
′
j) ≥

∑

j∈N−i

[vj(R
′′
j)− vj(Rj)].

Chapter 3: Competitive Equilibrium 62

Finally, because this holds for any v ∈ µ−1(m), we have

∑

j∈N−i

pj(R
′
j) ≥ sup

v∈µ−1(m)

∑

j∈N−i

[vj(R
′′
j)− vj(Rj)]

=
∑

j∈N−i

sup
vj∈µ

−1

j (m)

[vj(R
′′
j)− vj(Rj)]

=
∑

j∈N−i

pj(R
′′
j),

where the first equality follows from privacy preservation. As this holds for any

R′′ ∈ Γ(N − i), we see that R′j maximizes the revenue to the seller among allocations

to agents N − i. This confirms that p are UCE prices for any v ∈ µ−1(m). ¤

Figure 3.1 gives the intuition behind this result for the case with two agents. Given

a message m, the figure shows all valuations that are consistent with m for agent 1

(here only v1) and for agent 2 (v′2 and v
′′
2). The valuations are normalized so that the

efficient allocation R has value 0. The conditions for a CE require that all of agent 1’s

valuations consistent withm be above all of agent 2’s valuations consistent with w. To

construct valid CE prices, we take the envelopes of agent 1 and 2’s valuations (lower

and upper, respectively). Since agent 2’s valuations are all consistent with the same

Vickrey payments, they all peak at the same level. This ensures that the envelope

of agent 2’s valuations touches these peaks, so that the constructed CE prices also

satisfy the UCE constraints.

The notions of CE and UCE prices are clearly closely related. The proof of the

next result shows how UCE prices can be constructed from CE prices from the main

economy and the marginal economies.

Theorem 13 If there exist competitive equilibrium prices of dimension d for all pro-

files of valuations drawn from VN , then there exist universal competitive equilibrium

Chapter 3: Competitive Equilibrium 63

R’ R’’

Agent 2

Agent 1

v’

v’’2

R

v

1’s Vickrey
payment

2

1

Figure 3.1: Constructing UCE prices.

prices of dimension (n+ 1)d+ n2 for all profiles of valuations drawn from VN .

Proof. Let (S−ki)i∈N−k be an efficient allocation among agents N − k (where by

convention all agents are present when k = 0), and let p−ki be supporting CE prices,

for k = 0, . . . , n. By assumption each of these supporting price vectors has dimension

at most d. Consider the following prices.

p̄i(S) = min
k=0,...,n

{

p−ki (S) + π−ki
}

(3.12)

First note that p̄i(S
−k
i) = p−ki (S−ki) + π−ki for k = 0, . . . , n. Otherwise there must be

an l 6= k such that

p−li (S−ki) + π−li < p−ki (S−ki) + π−ki

⇒ π−li < vi(S
−k
i)− p−li (S−ki)

which is a contradiction, because π−li represents the maximum utility that i can attain

Chapter 3: Competitive Equilibrium 64

at prices p−li . We thus find that

vi(S
−k
i)− p̄i(S

−k
i) = vi(S

−k
i)− pi(S

−k
i)− π−ki

= 0

for k = 0, . . . , n. Now let Si be an arbitrary bundle, and let l be the index at which

the minimum is reached for Si on the right-hand side of (3.12). We have

vi(Si)− p̄i(Si) = vi(Si)− p−li (Si)− π−li

≤ vi(S
−l
i)− p−li (S−li)− π−li

= 0

= vi(S
−k
i)− p̄i(S

−k
i)

for k 0, . . . , n, where the inequality follows from the fact that S l
i maximizes agent i’s

utility at prices p−li . Since Si was arbitrary, S
−k
i maximizes agent i’s utility at prices

p̄i for k = 0, . . . , n.

Finally, fix k ∈ {0, . . . , n} and let S = (Si)i∈N be an arbitrary feasible allocation

among agents N − k. We have

∑

i∈N−k

p̄i(Si) ≤
∑

i∈N−k

pi(Si) +
∑

i∈N−k

π−ki

≤
∑

i∈N−k

pi(S
−k
i) +

∑

i∈N−k

π−ki

=
∑

i∈N−k

p̄i(S
−k
i)

Hence S−k maximizes revenue among allocations to agents N − k at prices p̄, for

k 0, . . . , n. This shows that p̄ are universal CE prices. The dimension of prices p̄ is

(n+ 1)d+ n2, which proves the theorem. ¤

Chapter 3: Competitive Equilibrium 65

To verify a universal competitive equilibrium, we simply need to broadcast the

efficient allocations for the marginal economies and main economy together with UCE

prices. The agents then accept the message if and only if their allocated bundle in each

economy maximizes their utility at the given prices. That the allocations maximize

the auctioneer’s revenue can be checked simply with knowledge of the prices. The

allocations vector has dimension n2, which leads us to the next result.

Theorem 14 The communication requirements of the VCG rule and the universal

competitive equilibrium rule are at most (n + 1)d + n2, where d + n are the commu-

nication requirements of the efficient rule.

Theorem 12 can be used to prove lower bounds on the communication require-

ments of realizing the VCG rule, just as Nisan and Segal [76] use Theorem 11 to prove

lower bounds for the efficient rule. The following result gives an example of this for

the case where the items are identical and the agents’ valuations exhibit decreasing

marginal values.

Proposition 4 Suppose the items are identical and each agent’s valuation exhibits

decreasing marginal values. Then an efficient protocol requires a message space of

dimension no more than 1, whereas a protocol that verifies the VCG rule has a message

space of dimension at least min{n− 1,m}.

Proof. Let agents 1, . . . , n − 1 have unit-demand valuations, so that the marginal

value of any item beyond the first is 0. We can describe these valuations by the

marginal value of the first unit, denoted vi for agent i. Agent n has an additive

valuation, and the marginal value of any item is vn. Consider the set of valuation

Chapter 3: Competitive Equilibrium 66

profiles

F = {(vi)i∈N |v1 > v2 . . . > vn−1, vn > v1} .

For profiles drawn from this set, it is efficient to give all items to agent n. However,

if agent n is removed, it is efficient to give one item to each of agent 1, . . . , k and

discard the rest, where k = min{n− 1,m}.

A single real number p describing the marginal price for any item is sufficient to

support the efficient allocation: taking v1 ≤ p ≤ vn yields a CE. By Theorem 11,

the (nondeterministic) communication requirements of the efficient rule is therefore

at most 1.

We claim that any two profiles v, v′ ∈ F that differ in any of the first k components

must lead to different UCE prices. To see this, note that by our arguments above,

UCE prices must simultaneously make both 0 and 1 units utility-maximizing for the

first k agents. Letting i be one of these agents, we must then have vi · 1 − pi(1) =

vi · 0 − pi(0) = 0, and hence pi(1) = vi. So the vector of UCE prices must coincide

with the vector of valuations in the first k components. By Theorem 12, we then see

that

(n− 2, n− 1)× . . .× (n− k + 1, n− k)× {n− k + 1} × . . .× {1} × {n− 1}

is a fooling set of dimension k for the VCG rule, i.e. any two profiles from this set

require different messages to correctly realize the VCG rule, because they must lead

to distinct UCE prices. To verify the VCG rule, the message space must therefore

have dimension at least k. ¤

Although the increase in communication required by the VCG rule in this case

is only polynomial, this is the first result to quantify the strict increase in commu-

Chapter 3: Competitive Equilibrium 67

nication implied by verifying Vickrey payments together with the efficient outcome.7

Recall that the VCG mechanism is the mechanism of choice for aligning incentives

in our context, because of its revenue properties. Proposition 4 reveals that aligning

incentives in this way may, however, come at an extra communication cost.

Fadel and Segal [36] consider the increase in communication implied by incentive-

compatibility in general, and they also consider deterministic protocols. They give

a simple example in which computing an efficient outcome requires 3 bits of com-

munications, while computing transfers to induce truthfulness necessarily requires a

protocol that uses more than 3 bits. Proposition 4 is able to provide a stronger sep-

aration because it focuses on the VCG mechanism rather than incentive-compatible

mechanisms more generally.

7Note that this is a worst-case result. In some instances (e.g. with unit-demand valuations), it
may be the case that no added communication is required to verify Vickrey payments.

Chapter 4

Representations

In a combinatorial auction, a bidder would need 2m − 1 numbers to exhaustively

describe its valuation function. This is impractical for even moderately-sized m such

as 15, so bidders need to communicate their values using a more succinct encod-

ing. This motivates the use and study of bidding languages to represent valuations.

Formally, a language consists of syntax and semantics. The syntax specifies which

sequences of symbols are valid elements of the language; the semantics specify how

to interpret sequences as values for bundles.

The formal study of bidding languages for combinatorial auctions was initiated

by Nisan [74]. Nisan’s main focus is on the expressiveness of various languages. He

examines which languages can succinctly represent natural valuation classes such as

the additive and single-minded valuations. He argues that bidding languages should

strike a balance between two goals:

1. There needs to be effective ways to solve the allocation problem when valuations

are expressed in the chosen language.

68

Chapter 4: Representations 69

2. Common valuations should be easy to express in the chosen language.

To address the first point, in this chapter we provide a general description of

the properties of bidding languages that make them suitable for bidding and winner

determination in our context. This then motivates analogous requirements for lan-

guages that are used for pricing rather than bidding. Such “pricing languages” have

not been examined in the academic literature because expressive bidding has only

been developed for single-shot auctions to date, whereas iterative designs have been

restricted to linear or XOR prices, as we saw in Section 1.2.2. Expressive pricing

is necessary to guarantee efficiency, because Nisan and Segal [76] have shown that

prices must equal valuations (up to a constant) in the worst case, for any efficient

combinatorial auction faced with general valuations.

As for the second point, Nisan explains that “easy to express” means both that

common valuations should have succinct encodings, and also that it should be easy

for bidders to express their valuations in the chosen language, either directly or via

agent programs. The encoding size of various valuations in various languages is the

focus of his study. On the other hand, he does not address how bidders should go

about encoding their valuations or how “ease of encoding” should be measured. One

way to view the translation problem is through the lens of computational learning

theory [49]. A bidder can be construed as a black box that can respond to certain well-

defined types of queries about their valuations, and we then need an algorithm that

can reconstruct the bidder’s valuation in the language of choice given access to this

black box. The complexity of the translation problem is then the query complexity

of the learning problem, i.e. the number of different types of queries that must be

Chapter 4: Representations 70

performed. In this chapter, we propose learning algorithms for several common and

novel languages.

Section 4.1 describes the typical query functionality required of languages in the

context of one-shot and iterative auctions, introducing value and demand queries.

Section 4.2 introduces several representation classes in terms of their syntax and

semantics. Some are drawn from the literature on CAs, some are novel. For each

class we discuss the complexity of responding to value and demand queries, and

whether the representation is suitable for bidding and pricing. Section 4.3 introduces

the query learning model that provides a measure of performance for algorithms that

encode valuations into specific representations. Section 4.4 then goes on to provide

learning algorithms for several representation classes. Section 4.5 concludes with a

discussion of other bidding languages and learning algorithms in the literature that

were not covered earlier in the chapter.

4.1 Functionality

4.1.1 Value Queries and Bidding

The most basic functionality required of a language is the value query.

Value query. A bundle S is input and the value v(S) of the bundle is returned,

according to the valuation represented by the language.

Ideally, an algorithm to evaluate value queries should be provided with each language.

Mathematical programming methods find widespread use in the practice of combi-

natorial auctions, so one way to ensure a practical algorithm exists is to specify the

Chapter 4: Representations 71

value query problem as a mathematical program. Typically this will be an integer or

mixed-integer program. A wealth of effective algorithms and heuristics may then be

applied to the problem [73].

We say that a language is suitable for bidding if the problem of evaluating a value

query can be formulated as a mixed-integer program whose size is polynomial in t, the

size of the given representation, and whose objective is a maximization. Specifically,

let y = (yj)j∈M be a 0-1 indicator vector for a bundle. There should be matrices A

and B, as well as vectors b and c such that the value of the program

max
x

c′x

s.t. Ax+By ≤ b

gives the value of the bundle corresponding to y. Here y is a constant vector of size

m and x is a vector of auxiliary variables whose size is polynomial in t. The size of

b should also be polynomial in t, and the sizes of A, B, and c should agree with the

other vectors. Some components of x may be restricted to be integer.

Besides providing a way to evaluate value queries, the MIP formulation also

makes it simple to incorporate the represented valuation into the auctioneer’s winner-

determination problem—hence the phrasing “suitable for bidding.” Given (Ai, Bi, bi, ci)

for each agent i ∈ N , the winner-determination problem can be formulated as

max
x,y

∑

i∈N

c′ixi

s.t. Aixi +Biyi ≤ bi (i ∈ N) (4.1)

∑

i∈N

yij ≤ 1 (j ∈M) (4.2)

Chapter 4: Representations 72

Here yi is now the indicator vector for the bundle allocated to agent i, and it becomes

a choice variable. The entries of the vector must lie in {0, 1}. Constraints (4.2) ensure

that the computed allocation is feasible. The remaining MIP logic is separable into

the formulations corresponding to the instances of the agents’ languages.

Bid shifts

It can often be useful to shift valuations down by a constant α, so that we rep-

resent the valuation max{vi − α, 0} rather than vi. This is particularly useful when

computing bidder-optimal core payoffs. We adapt the MIP formulation of a bidding

language to introduce a downward shift of α as follows.

max
x

c′x− αz

s.t. Ax+By ≤ b

z ≥ yj (j ∈M)

z ∈ {0, 1}

This does not quite represent the shifted valuation, because some bundles will have

negative values. For our purposes, though, this is irrelevant, because an instance of

a bidding language is always used in an allocation context. A winner-determination

algorithm will always allocate the empty set rather than a bundle with negative value:

note that the empty set has value 0 by our constraints on the auxiliary z variable.

4.1.2 Demand Queries and Pricing

Value queries and bidding languages are relevant in the context of one-shot auc-

tions. In iterative designs, it is often useful that agents respond to prices.

Chapter 4: Representations 73

Demand query. A bundle S together with prices p are input. If S maximizes the

agent’s utility at prices p, it replies yes; otherwise some other utility-maximizing

bundle is returned.

We make no assumptions on the returned bundle if the agent does not reply yes; for

example, it may be chosen adversarially.

The prices themselves must of course also be represented using some language, and

there needs to be an effective algorithm for evaluating a demand query. This can be

tricky, because the algorithm must incorporate information from the agent’s valuation

together with the price information. Again, mathematical programming methods

provide an elegant way to formulate the problem. We say that a language is suitable

for pricing if the problem of evaluating a value query1 can be formulated as a mixed-

integer program whose size is polynomial in t, the size of the given representation,

and whose objective is a minimization. The structure of the formulation parallels the

structure for bidding: letting (Ā, B̄, b̄, c̄) be the corresponding matrices and vectors,

the program is

min
x

c̄′x̄

s.t. Āx̄+ B̄y ≥ b̄

To see how this structure allows one to evaluate demand queries, suppose the

valuation is represented by (A,B, b, c) in a language suitable for bidding, and that

the prices are represented by (Ā, B̄, b̄, c̄) in a language suitable for pricing. The MIP

1A more intuitive name in this case would perhaps be ‘price query’ rather than ‘value query,’ but
we use the latter to underline the equivalence between bidding and pricing language functionality in
this case. Some languages can function both as bidding and pricing languages.

Chapter 4: Representations 74

to evaluate a demand query is then

max
x,y

c′x− c̄′x̄

s.t. Ax+By ≤ b

Āx̄+ B̄y ≥ b̄

Note that in this case the y vector is a choice variable.

Price shifts

It can often be useful to shift prices down by a constant. For instance, recall from

Section 3.4 that if v = (vi)i∈N are the bidder valuations and π = (πi)i∈N their core

payoffs, then the prices defined by

pi(S) = max{vi(S)− πi, 0}

are CE prices that yields core payoffs π. We can adapt the MIP formulation of a

pricing language to introduce a price shift α as follows.

min
x,z

z

s.t. Āx̄+ B̄y ≥ b̄

z ≥ c̄′x̄− α

z ≥ 0

If we can represent each agent’s valuation in a pricing language, it is then possible to

quote order 3 CE prices that give the agents core payoffs π.

Chapter 4: Representations 75

4.2 Languages

We now describe several languages in terms of how they can serve as a bidding or

pricing language for a single agent.

4.2.1 OR*

The OR* language was introduced by Fujishima et al. [39] and studied in depth by

Nisan [74], who showed that it was as succinct for expressing various interesting kinds

of valuations as other common languages. We describe it here because it generalizes

the OR and XOR languages below. An atomic bid is a bundle-value pair (S, v). The

bundle may consist of items from M , and also of “dummy items” drawn from a set

M+. The dummy items are agent-specific. The syntax of an OR* bid is simply a list

of atomic bids, where in each bid S ⊆ M ∪M+. To evaluate the value of a bundle

T ⊆M , we find the maximum packing of bundles from atomic bids into T ∪M+.

Example. Suppose we have items A and B. Consider the valuation that is 1 if at

least one item is obtained, and 0 otherwise. We introduce dummy item a, and the

OR* representation is then

(Aa, 1); (Ba, 1)

The dummy item ensures that the value of AB will be subadditive.

The OR* language is suitable for bidding. The integer program that computes

the answer to a value query is as follows. Let B be the set of bundles that appear in

Chapter 4: Representations 76

atomic bids. There is a variable xS for each S ∈ B.

max
xb

∑

S∈B

vSxS

s.t.
∑

S3j

xS ≤ yj (j ∈M) (4.3)

∑

S3j

xS ≤ 1 (j ∈M+) (4.4)

xS ∈ {0, 1} (S ∈ B)

We know of no way to formulate OR* semantics as a minimization, so OR* is cur-

rently unsuitable for pricing.2 In this instance, computing the solution to the integer

program is NP-hard by reduction from weighted set packing [89], so enumerative ap-

proaches such as branch-and-bound are required to obtain the solution. There is a

significant amount of research into effective algorithms and heuristics for the kind of

packing problem represented by OR* instances [2, 39, 74, 93].

OR* can represent any valuation from the class of general valuations. Nisan [74]

shows that OR* is as succinct for representing such valuations as the OR and XOR

languages given below.

4.2.2 OR

The OR language is simply the OR* language with no dummy items. It was

introduced by Sandholm [93]. Since it is a special case of OR*, OR is also suitable

for bidding. The integer program that gives the answer to a value query is identical

2This is because we require MIP formulations for value queries to be polynomial in the size of
the price representation. It would be possible to formulate a MIP with an exponential number of
constraints and use a constraint-generation approach, but this would be very inefficient in and of
itself, and would be impractical given the large number of value queries certain elicitation schemes
could require.

Chapter 4: Representations 77

to the one for OR*, except that we take M+ = ∅ so that there are no dummy items.

Solving the integer program still remains NP-hard, for the same reasons. Again, we

know of no way to formulate OR logic as a minimization MIP, so OR is currently

unsuitable as a pricing language.

OR cannot represent all general valuations; in particular, it cannot represent

valuations that are strictly subadditive. However, it is still relevant in our context

because it is well-suited to complementarities: it is not hard to show that the class

of valuations that can be represented by the OR language is exactly the class of

superadditive valuations [74].

4.2.3 XOR

The XOR language, also introduced by Sandholm [93], is the OR* language with

a unique dummy item that is shared among all atomic bids. This means that only

one atomic bid can be selected. Therefore the problem of computing the value of

a bundle is no longer NP-hard. In fact, we simply need to scan all atomic bundles

that are subsets of the given bundle and take the maximum value of these, so a value

query can be computed in linear time.

The integer program for value queries is identical to that for OR*, except that

there is always just a single dummy item shared by all atomic bids. Constraints (4.4)

therefore consist of the single constraint

∑

b∈B

xb ≤ 1.

The XOR value query logic can also be captured by a minimization MIP, so the XOR

language is also suitable as a pricing language. Let B be the set of bundles that

Chapter 4: Representations 78

appear in atomic bids. There is a variable xS for each S ∈ B.

min
xS ,z

z

s.t. xS − 1 ≥
∑

j∈S

yj − |S| (S ∈ B)

z ≥ vSxS (S ∈ B)

xS ∈ {0, 1} (S ∈ B)

z ≥ 0

XOR can represent exactly the class of general valuations. (XOR cannot represent

other valuations that do not satisfy free-disposal.) It is useful when a bidder has

distinct values for only a few bundles. In other cases, such as the additive valuation,

the XOR representation needs to be exponential in size [74].

4.2.4 Polynomials

A polynomial is a sum of terms, where a term is a product of variables, e.g. y1y3y4,

times some coefficient drawn from the real numbers. As usual, the yj here are 0-1

indicator variables for the items. Lahaie and Parkes [59] first proposed polynomials

to represent valuation functions. Each valuation from the class of general valuations

has a unique representation as a polynomial [99]. (However, polynomials can also

represent valuations that do not satisfy free-disposal.)

Example. Suppose there are two items A and B, and that the valuation is v(A) = 1,

v(B) = 2, and v(AB) = 2. Then the polynomial representation is

(A, 1); (B, 2); (AB,−1)

Chapter 4: Representations 79

Here we have described terms as atomic bids. An atomic bid is selected if it is a

subset of the given bundle. The coefficients of all selected atomic bids are added to

give the bundle’s value.

Polynomials are suitable as a bidding and pricing language. The following integer

program selects exactly those terms that are subsets of the given bundle. Let B be

the set of bundles that appear in the terms (atomic bids) of the representation. There

is a variable xS for each S ∈ B.

∑

S3j

xS ≤ yj (j ∈M) (4.5)

xS − 1 ≥ |S| −
∑

j∈S

yj (S ∈ B) (4.6)

Constraints (4.5) ensures that a term cannot be selected unless all its items are present

in the given bundle S ′. Constraints (4.6) ensure that a term is selected if all its items

appear in S ′. The unique solution is therefore exactly the set of all terms that are

subset of S ′.

To complete the integer program formulation, we append the objective
∑

S∈B vSxS,

and we use a maximization or minimization depending on whether the representation

is used for bidding or pricing, respectively. Since the solution to the constraints is

unique, the direction of the objective is in fact irrelevant.

To get an idea of the succinctness of polynomials as a bidding language, consider

the single-item valuations presented by Nisan [74]. In the single-item valuation, all

bundles have value 1, except ∅ which has value 0 (i.e. the agent is satisfied as soon as

it has acquired a single item). It is not hard to show that the single-item valuation

requires polynomials of size 2m−1, while polynomials of size m suffice for the additive

Chapter 4: Representations 80

valuation. This is in contrast to the XOR language, where the reverse situation holds.

Polynomials are thus appropriate for valuations that are “mostly additive,” with a

few substitutabilities and complementarities that can be introduced by adjusting

coefficients.

4.2.5 Pseudo-additive

We introduce here a new language suitable for bidding and pricing which we call

pseudo-additive representations. This language will prove useful for describing prices

in the auction scheme developed in Chapter 6. This language can also be described in

terms of atomic bids, but, as with polynomials, the constraints that dictate which bids

should be selected are very different from the constraints that arise with OR*, OR, and

XOR. The language can describe any general valuation (and in fact even valuations

that do not satisfy free-disposal), and can succinctly express additive valuations.

To describe the language, we first need the notion of a pattern. A pattern is simply

an ordered list of bundles B, with no bundle being repeated. A decomposition of a

bundle S into bundles from B is a set of pairwise disjoint bundles from B that are all

contained in S. A pattern implies a decomposition of any bundle into bundles from

the pattern according to Algorithm 1. We say that bundle S1 clutters bundle S2 if

S1 ∩ S2 6= ∅ and S1 6⊂ S2. We write S1 ¦ S2 to denote that S1 clutters S2.

The time required to compute the decomposition of a bundle is quadratic in the

size of the pattern in the worst-case. Note that if the pattern contains all singletons

{j} for j ∈M , then the resulting decomposition {S1, . . . , Sk} will satisfy
⋃k

l=1 Sl = S.

Also, if S ∈ B, then the decomposition of S according to B is the singleton {S}.

Chapter 4: Representations 81

Input: A pattern B and a bundle S.

Output: A decomposition of S into bundles from B.

Let D := ∅.

foreach T ∈ B such that T ⊆ S (in order) do

if there is no T ′ ∈ D such that T ′ ¦ T then

Add T to D.

Remove all subsets of T from D.

end

end

Algorithm 1: Decomposing a bundle according to a pattern.

To complete the description of a valuation, we associate a value to each bundle

in the pattern, which gives us atomic bids. The value of a bundle is the sum of the

values associated with the bundles in its decomposition.

Example. Suppose there are three items A, B, and C, and that the valuation is as

follows.

S A B C AB AC BC ABC
v(S) 1 1 1 3 1 2 4

In this case, the pseudo-additive representation is

(A, 1); (B, 1); (C, 1); (AB, 3); (AC, 1)

The pattern is (A,B,C,AB,AC). The decomposition of bundle ABC according to

Algorithm 1 is {AB,C}, which leads to a value of 4 as required. Note that the order

of the bundles in the pattern is crucial. If we switched bundles AB and AC in the

order, the decomposition of ABC would become {AC,B} and the value of ABC

according to the pseudo-additive instance would become 2.

Chapter 4: Representations 82

In valuation v, the value of AB is superadditive because its constituent items are

complements, whereas the value of AC is subadditive because its constituent items

are substitutes. The value of BC is additive, which is why it does not need to be

explicitly listed in the pattern. Its decomposition is {B,C} which gives a value of 2,

in agreement with v.

Like polynomials and unlike XOR, the pseudo-additive language can succinctly

represent additive valuations: the pattern simply consists of the items and their

individual values, in any order.

The decomposition of a bundle is given as the unique solution to the following

set of constraints. Here we have a 0-1 variable xS for each S ∈ B, and the usual

indicator vector y to denote the bundle whose value is queried. We write S1 ≤ S2

for S1, S2 ∈ B to denote that S1 appears before S2 in the pattern (or S1 = S2). Let

l(S) = {S ′ < S | S ′ ¦ S}, the set of bundles that appear before S in the pattern and

that clutter S. Let s(S) = {S ′ ≥ S | S ′ ⊇ S}, the set of bundles that appear after S

and that contain S (including S itself).

∑

S3j

xS ≤ yj (j ∈M) (4.7)

∑

S′∈s(S)

xS′ − 1 ≥
∑

j∈S

yj − |S| −
∑

S′∈l(S)

xS′ (S ∈ B) (4.8)

xS ∈ {0, 1} (S ∈ B) (4.9)

Since it is not obvious that this formulation gives the correct solution, we prove this

now.

Lemma 4 Constraints (4.7)–(4.9) have a unique solution, which is the indicator

vector of the decomposition according to Algorithm 1 of the bundle indicated by y .

Chapter 4: Representations 83

Proof. Constraints (4.7) ensure that the resulting decomposition will consist of

mutually disjoint bundles that are all subsets of T . The term
∑

j∈S yj − |S| in the

constraint for S in (4.8) renders the constraint obsolete if not all items from S are

present in T : in this case, the left-hand side is necessarily at least -1 whereas the right-

hand side is at most -1. If S ⊆ T , on the other hand, the term is 0. So in evaluating

the solution to the program, we can ignore those constraints (4.8) for which S 6⊆ T ,

and among those that remain ignore the term
∑

j∈S yj − |S|.

For simplicity, we first assume that the pattern B contains all singletons {j} for

j ∈ M listed a the beginning. Note that this does not affect the remaining bundles

chosen for any decomposition; however, it ensures that the union of the resulting will

be exactly T .

In the base case, the decomposition D of bundle T consists only of items. Then

by constraints (4.8) all items j ∈ T must have x{j} = 1 and by constraints (4.7)

items j 6∈ T must have x{j} = 0. The unique solution to the constraints is then the

decomposition of T into its constituent items, which is exactly D.

For the induction step, consider the first non-singleton bundle S in pattern B

that is a subset of T . When Algorithm 1 encounters S, it adds it to the current

decomposition. As a result the items in S will appear in the same bundle in the

final decomposition, because S clutters any bundle that it not a strict superset or

disjoint. We can therefore redefine S as a new “item” and proceed with the algorithm

accordingly. Similarly, the right-hand side of constraint S in (4.8) evaluates to 0,

because as S is the first non-singleton no previous bundle can clutter it. Hence either

it or a superset must be set to 1 in the final solution. Again we can redefine S to

Chapter 4: Representations 84

be an item and set to 0 the variables corresponding to bundles that S clutters, and

eliminate their corresponding constraints from (4.8). Hence pattern B now consists

of at least one less non-singleton. Eventually, we reach the base case.

When the base case is reached, we have a unique solution as explained. In this

solution, xS = 1 if and only if the items in S appear together in D, so the solution

indeed corresponds to the decomposition computed by Algorithm 1. ¤

We complete the formulation by appending the objective
∑

S∈B vSxS. The direc-

tion of the objective is irrelevant since the solution to the constraints is unique. By

convention, we use a maximization for bidding and a minimization for pricing.

4.3 Query Learning

The query learning model we consider here is called exact learning from member-

ship and equivalence queries, introduced by Angluin [3]. In this model, the learning

algorithm’s objective is to exactly identify an unknown target function f : X → Y

via queries to an oracle. The target function is drawn from a function class C that

is known to the algorithm. Typically the domain X is some subset of {0, 1}m, and

the range Y is either {0, 1} or some subset of the real numbers R. As the algorithm

progresses, it constructs a manifest hypothesis f̃ which is its current estimate of

the target function. Upon termination, the manifest hypothesis of a correct learning

algorithm satisfies f̃(x) = f(x) for all x ∈ X.

It is important to specify the representation that will be used to encode the man-

ifest hypothesis, since the learning algorithm must be designed with respect to some

representation. Let size(f) be the size of the encoding of function f with respect to

Chapter 4: Representations 85

the chosen representation. Most representations have a natural measure of encoding

size; e.g. the size of a DNF formula is the number of terms in the formula.

Two types of queries are commonly used for exact learning: value3 and equivalence

queries. Value queries were described in Section 4.1.1.

Equivalence query. The learning algorithm presents its manifest hypothesis f̃ . The

oracle either replies yes if f̃ = f , or returns a counterexample x such that

f̃(x) 6= f(x).

An equivalence query is proper if size(f̃) ≤ size(f) at the time the query is made.

We are naturally interested in efficient learning algorithms, that run in time poly-

nomial in all the relevant parameters. The following definition is drawn from Kearns

and Vazirani [49]:

Definition 1 The representation class C is efficiently exactly learnable from value

and equivalence queries if there is a fixed polynomial p(·, ·) and an algorithm L with

access to membership and equivalence queries of an oracle such that for any target

function f ∈ C, L outputs in time p(size(f),m) a function f̃ ∈ C such that f̃(x) =

f(x) for all instances x.

Here m is the dimension of the domain. Since the target function must be recon-

structed, we also necessarily allow polynomial-time dependence on size(f).

3Value queries are sometimes called ‘membership queries’ in the computational learning theory
literature. The reason for this is that the target functions are usually boolean, so instances are either
members of the target concept (target function value of 1) or not (target function value of 0).

Chapter 4: Representations 86

4.4 Learning Algorithms

The query learning model applies directly to the problem of encoding bidder valu-

ations. In our context, the function class is the valuation class from which a bidder’s

valuation is drawn. The target function is the bidder’s valuation. We will refer to

the intermediate estimate of the target valuation as a learning algorithm is run as the

manifest valuation.

The languages mentioned in Section 4.2 all have natural measures of encoding

size: the size of an XOR, OR, or OR* bid is the number of atomic bids; the size

of a polynomial is the number of terms; and the size of a pseudo-additive bid is the

number of bundles in the pattern.

The question then is whether there exists a learning algorithm that will recover

the target valuation in the language of our choice. In the algorithms given below,

we allow for value and equivalence queries as in the usual query learning model.

We also allow for demand queries, because these are natural in an auction context.

Equivalence queries are unnatural in this context, but we will see later in Chapter 5

that they can be replaced with demand queries in iterative schemes. Hence it is still

useful to develop algorithms that use equivalence queries.

4.4.1 XOR

Lahaie and Parkes [59] give a learning algorithm for XOR representations that uses

value and demand queries. The algorithm is closely related to Angluin’s algorithm

for monotone DNF [4], which is itself an adaptation of an algorithm by Valiant [104].

Chapter 4: Representations 87

Given: A value and demand query oracle for the valuation.

Output: The minimal XOR representation of the target valuation.

Let v be the XOR bid ∅.

(Throughout, v has XOR semantics.)

repeat

Present ∅ together with prices v as a demand query.

Record the response S.

Set T := S, or T := ∅ if response was yes.

foreach j ∈ T do

Perform value queries on T and T − j.

if the values are equal then

Set T := T − j.

end

end

Let w be the value of T .

Set v := v ∪ (T,w).

until response is yes

Return v as an XOR representation.

Algorithm 2: Learning algorithm for the XOR language.

Lemma 5 Algorithm 2 outputs the minimal XOR representation of the target valu-

ation.

Proof. Assume by induction that all atomic bids in the manifest valuation are also

present in the target valuation’s minimal XOR representation. This is true initially,

when the manifest valuation is set to the empty XOR representation. The manifest

Chapter 4: Representations 88

valuation thus lower bounds the true valuation of any bundle, by XOR semantics. If

all atomic bids have been discovered, the empty set maximizes utility and yes will be

returned upon a demand query, and the algorithm correctly halts. Otherwise, some

other bundle is returned, and some subset of this bundle must necessarily appear in

some undiscovered atomic bid, by XOR semantics.

Let S be the returned bundle and let T ⊆ S be the undiscovered atomic bundle

that gives S its value; i.e. (T, v(T)) is an atomic bid in the target XOR valuation,

and of all atomic bids whose bundles are subsets of S, it has the greatest value. In

the innermost loop, any element of T\S will be removed because the value remains

unchanged: (T, v(T)) still remains the atomic bid that gives the resulting bundle

its value. No element of T can be removed unless there is some other atomic bid

(T ′, v(T ′) such that T ′ ⊆ S and v(T ′) = v(T) = v(S). In this case the proof proceeds

by replacing atomic bid (T, v(T)) with (T ′, v(T ′)). As a result, the loop terminates

with a bundle T that appears in an undiscovered atomic bid. We then add (T, v(T))

to the manifest valuation, and the induction hypothesis still holds. ¤

In the algorithm, the demand queries have the same effect as equivalence queries.

Because the manifest valuation always maintains a subset of the actual set of atomic

bids, it is always a lower bound on the target valuation. As a result, presenting

the manifest together with the empty set in a demand query will always identify a

counterexample unless all atomic bids have been identified.

The proof of correctness shows that the innermost loop identifies a new atomic bid

in O(m) time. This is repeated t times, where t is the number of atomic bids in the

target valuation, so the worst-case runtime is polynomial in the relevant parameters.

Chapter 4: Representations 89

This result should be contrasted with Blum et al.’s negative results ([15], Theorem

2) stating that monotone DNF (and hence XOR representations) cannot be learned

efficiently when the demand queries are restricted to linear and anonymous prices

over the goods.

Best-response sets

The learning algorithm for XOR is significant because it can be applied within

established combinatorial auction designs such as Parkes’ iBundle [78], Ausubel and

Milgrom’s ascending-proxy auction [7], or de Vries et al.’s auction based on primal-

dual methods [31]. At each round of each these auctions, bidders must provide their

ε-best-response sets to the current prices, which are encoded with XOR. Here ε > 0

is the price increment, meaning that if two bundles differ in price, the difference is a

positive multiple of ε. The best-response sets should contain only bundles that appear

in atomic bids of the valuations’ XOR representations, and possibly the empty set.

This is simple if bidders already have their valuations encoded with XOR. If not,

then bidders need to translate their valuation information into the proper bid. An

approach along the lines of Algorithm 2 allows one to do this using value and demand

queries. It is given as Algorithm 3.

Lemma 6 Algorithm 3 outputs the ε-best-response set with respect to prices p, such

that each bundle in the set appears in an atomic bid of the target valuation’s minimal

XOR representation.

Proof. The algorithm only adds bundles that are in the XOR representation of the

target valuation to set b, by the same arguments as for Algorithm 2. Clearly, it also

Chapter 4: Representations 90

Given: A value and demand query oracle for the valuation.

An XOR representation of prices p.

Output: The bundles in the ε-best-response set.

Let b = ∅.

Present ∅ and prices p as a demand query.

Find the utility (value minus price) ū of the response via a value query.

repeat

Present ∅ together with prices p as a demand query.

Record the response S, or set S := ∅ if response was yes.

Find the utility u of S via a value query.

if u ≥ ū− ε then

Set T := S.

foreach j ∈ T do

Perform value queries on T and T − j.

if the values are equal then

Set T := T − j.

end

end

Add T to b.

Set p := p ∪ (T, p(T) + ε).

end

until u < ū− ε

Return the set b.

Algorithm 3: Learning algorithm for ε-best-response sets.

Chapter 4: Representations 91

only adds to b bundles that are ε-best-responses, by the if-condition. So we must

argue that all ε-best-responses are recovered by the algorithm.

Note that a bundle can only be added at most two times to set b. (Because b is a

set, the second time a bundle is added, it is ignored.) Each time a bundle is added,

its price increases by ε, so after two additions the bundle’s utility with respect to the

new prices must be 2ε less than ū. If the bundle is again encoutered beyond that

point, the algorithm halts.

We say a bundle is “atomic” if it appears in an XOR bid of the target valuation,

represented as XOR. We argue that a price increase does not rule out any atomic

bundle except the one that sees the increase: if an atomic bundle T is an ε-best-

response with respect to the initial p before the price increase on some atomic bundle

S 6= T , then T is still an ε-best-response with respect to the initial p after the increase.

To see this, first note that the price increase on bundle S does not change the price

of T if T 6⊃ S. If T ⊃ S, then it must be that v(T) > v(S) since both are atomic

bundles in the minimal XOR representation. As S was chosen over T by the demand

query, the price of T must be strictly greater than the price of S. Since prices differ

by multiples of ε, the price of T is then at least p(S) + ε. This is the price of S after

the increase, so the price of T cannot have changed.

This invariance means that every ε-best-response will be discovered at some point

during the algorithm, which completes the proof. ¤

By using this subroutine within an auction such as iBundle [78], it then becomes

possible to compare the query complexity of the auction with the query complexity

of other elicitiation schemes, such as the one we give in Chapter 5.

Chapter 4: Representations 92

4.4.2 OR

Lahaie et al. [58] give a learning algorithm for OR representations that uses value

and demand queries. At any given point in the algorithm, the atomic bids in the

manifest valuation are a subset of the atomic bids in the target valuation’s minimal

OR representation.

Lemma 7 Algorithm 4 outputs the minimal OR representation of the target valua-

tion.

Proof. Assume by induction that all atomic bids in the manifest valuation are also

present in the target valuation’s minimal OR representation. This is true initially,

when the manifest valuation is set to the empty OR representation. The manifest

valuation thus lower bounds the true valuation of any bundle, by OR semantics. If

all atomic bids have been discovered, the empty set maximizes utility and will be

returned upon a demand query, and the algorithm correctly halts. Otherwise, some

other bundle S is returned. By OR semantics, the atomic bids that are selected to

derive the value of S must contain at least one undiscovered atomic bid.

There are two cases. The first is where (S, v(S)) is an undiscovered atomic bid,

and there are no undiscovered atomics (T, v(T)) such that T ⊆ S. By the construction

of prices v′, no bundle that is not a strict subset of S can be preferred to the empty

set. Since all atomics (T, v(T)) such that T ⊆ S have been discovered, no bundle

that is a strict subset of S can be preferred to the empty set. Hence the empty set

must be returned at this point, and (S, v(S)) is correctly added as a new atomic bid,

and the induction hypothesis still holds.

Chapter 4: Representations 93

Given: A value and demand query oracle for the valuation.

Output: The minimal OR representation of the target valuation.

Let v be the OR bid ∅.

(Throughout, v has OR semantics.)

repeat

Present ∅ together with prices v as a demand query.

Record the response S, or set S := ∅ if response was yes.

Set T := S.

repeat

Let v′ := {({j},+∞) | j 6∈ T} ∪ (T,+∞) ∪ v.

Present ∅ together with prices v′ as a demand query.

if the response is yes then

Record as w the result of a value query on T .

Set v := v ∪ (T,w).

Set T to ∅.

end

else

Set T to the response.

end

until T is ∅

until S is ∅

Return v as an OR representation.

Algorithm 4: Learning algorithm for the OR language.

In the second case, there is an undiscovered atomic bid (T, v(T)) such that T ⊂ S.

When prices v′ are presented in the demand query, only strict subsets of S can have

Chapter 4: Representations 94

positive value. Bundle T itself gives positive utility, so some counterexample S ′ ⊂ S

must be returned. Since the size of the counterexamples keeps strictly decreasing, at

some point we must reach the first case. (Note that ∅ can never be a counterexample).

¤

The proof of correctness shows that the innermost loop identifies a new atomic bid

in O(m) time. This is repeated t times, where t is the number of atomic bids in the

target valuation, so the worst-case runtime is polynomial in the relevant parameters.

Unfortunately, this algorithm is problematic because is requires us to present an

OR bid as prices each time it performs a demand query. Recall that OR is unsuitable

for pricing as of yet. Nevertheless, the algorithm is of theoretical interest because it is

the only known learning algorithm for this language, and may prove useful in special

cases where responding to OR demand queries is feasible (e.g. if we are willing to use

a constraint-generation approach to evaluate prices in the OR language).

4.4.3 Polynomials

Schapire and Sellie [99] give a learning algorithm for sparse multivariate polyno-

mials that uses value and equivalence queries. The equivalence queries made by the

algorithm are all proper. Specifically, their algorithm learns the representation class

of t-sparse multivariate polynomials over the real numbers, where the variables may

take on values either 0 or 1. A t-sparse polynomial has at most t terms. A polyno-

mial “over the real numbers” has coefficients drawn from the real numbers. So this

corresponds exactly to the language described in Section 4.2.4.

The learning algorithm for polynomials makes at most mt+2 equivalence queries

Chapter 4: Representations 95

and at most (mt + 1)(t2 + 3t)/2 value queries to a bidder, where t is the sparcity

of the polynomial representing the bidder’s valuation [99]. Because the algorithm

makes equivalence queries, it is not ideal for use as a pre-processing step to encode

a valuation before a one-shot auction. It can be applied in iterative schemes by

switching the equivalence queries to demand queries, as described in Chapter 5.

In practice the algorithm can run slowly, because it requires a large number of

value queries (cubic in the worst-case). However, there are ways to accelerate it.

The algorithm repeatedly runs two important subroutine called AddElement and

EasyCounterexample (see Schapire and Sellie [99] for the details of these subrou-

tines). The first modifies the manifest valuation given a counterexample. The second

searches for counterexamples to the manifest valuation by using only value queries

(i.e. without performing an equivalence query). Each time a counterexample from an

equivalence query is obtained, the manifest valuation is modified using AddElement,

and then other counterexamples are obtained and incorporated by repeatedly running

EasyCounterexample until no more counterexamples can be found via this method.

The manifest valuation is then said to be ‘stable.’

One way to speed up the computation is to only stabilize the manifest valuation

after several equivalence queries are made, rather than after every single one. This

means that certain equivalence queries may no longer be proper, but in practice this

does not seem to be a concern—see the experimental evaluation in Chapter 5.

Chapter 4: Representations 96

4.5 Other Languages

Nisan [74] lists several other languages such as XOR-of-OR, OR-of-XOR, and

general OR/XOR formulae. These representations are natural next candidates for

learning algorithms. However, the OR* language is as succinct as any of these [74],

so the ideal would be to develop a learning algorithm for this language. Using the

techniques of Chapter 5, this could then lead to powerful new methods for preference

elicitation. A more immediate question though is whether there exists a learning

algorithm for OR that does not require demand queries with OR prices.

The notion that a bidding language should allow for a MIP formulation of the value

query problem is common in the literature. Boutilier [17] and Boutilier and Hoos [20]

give bidding languages that use logical connectives to describe allowable combinations

of atomic bids; the languages have natural formualtions as integer programs. The

TBBL language by Cavallo et al. [22], suited to combinatorial exchanges [83], was

also designed with an IP formulation in mind. These languages were all designed for

bidding, but not for pricing.

Zinkevich et al. [111] were the first to apply the learning theory framework to the

problem of encoding valuations. They consider the representation classes of read-once

formulae and Toolbox DNF. Read-once formulae can represent certain substitutabil-

ities, but not complementarities, whereas the opposite holds for Toolbox DNF. Since

their work is also grounded in learning theory, they allow dependence on the size of

the target valuation as we do (though read-once valuations can always be succinctly

represented anyway). Their work only makes use of value queries, which are quite

limited in power. Because we allow ourselves demand queries with expressive prices,

Chapter 4: Representations 97

we are able to derive learning algorithms for the XOR and OR languages, which cover

broader valuation classes than read-once formulae or Toolbox DNF.

Chapter 5

Preference Elicitation

We have seen how prices can be used as a market-clearing mechanism, and how

learning algorithms can be used to efficiently encode agents’ valuations. We are now

in a position to leverage these tools for preference elicitation. For our purposes,

“preference elicitation” refers to the process of extracting value information from the

agents to the extent needed so that resources can be efficiently allocated, using a

pre-defined, restricted set of query types. Note that this need not mean learning the

valuations in full.

There are clear parallels between query learning and preference elicitation. In

learning theory, the goal is to learn a function via various types of queries, such as

value and equivalence queries. In preference elicitation, the goal is to elicit enough

partial information about preferences to be able to compute an optimal allocation.

Though the frameworks of learning and preference elicitation differ somewhat—the

first involves a single agent, whereas the second occurs in a multi-agent setting—it

is clear that these problems share similar structure, and it should not be surprising

98

Chapter 5: Preference Elicitation 99

that techniques from one field should be relevant to the other.

In this chapter, we show that any exact learning algorithm with value and equiv-

alence queries can be converted into a preference elicitation algorithm with value

and demand queries. The resulting elicitation algorithm guarantees elicitation in a

polynomial number of value and demand queries. Here we mean polynomial in the

number of goods, agents, and the sizes of the agents’ valuation functions in a given en-

coding scheme. Preference elicitation schemes have not traditionally considered this

last parameter. We argue that complexity guarantees for elicitation schemes should

allow dependence on it. Introducing this parameter also allows us to guarantee poly-

nomial worst-case communication complexity, which usually cannot be achieved in

the number of goods and agents alone. The conversion procedure can be used to

generate combinatorial auction protocols from learning algorithms for XOR, OR, and

polynomial representations, using the learning algorithms from the previous chapter.

Learning theory is not concerned with incentives, because there is no larger goal

of implementing an outcome. When moving to the setting of preference elicitation,

incentives become relevant and we may want to extract enough information not only

to implement an efficient outcome, but also to implement payments such as Vickrey

payments to ensure agents are honest in responding to queries.

Section 5.1 introduces the preference elicitation framework, providing a formal

definition of the notion of efficient elicitation. Section 5.2 then describes how learn-

ing algorithms can lead to elicitation algorithms, first by drawing a key analogy be-

tween equivalence and demand queries, and then by showing how learning algorithms

can be embedded as subroutines into a preference elicitation protocol. The section

Chapter 5: Preference Elicitation 100

concludes with a way to implement the Vickrey outcome (allocation and payments)

rather than the efficient allocation alone, as a way to induce agents to respond truth-

fully to queries. Section 5.3 discusses the communication requirements of preference

elicitation protocols based on learning algorithms, in terms of the properties of those

algorithms. Section 5.5 concludes the chapter with a discussion of the modularity of

the whole approach.

5.1 Framework

In the intermediate rounds of a preference elicitation protocol, the auctioneer will

have elicited information about the agents’ valuation functions via various types of

queries. She will thus have constructed a set of manifest valuations ṽ1, . . . , ṽn.
1 The

values of these functions may correspond exactly to the true agent values, or they

may be upper or lower bounds on the true values, depending on the types of queries

made. They may also simply be default or random values if no information has been

acquired about certain bundles. The goal in the preference elicitation problem is to

construct a set of manifest valuations such that

argmax
S∈Γ

∑

i∈N

ṽi(Si) ⊆ argmax
S∈Γ

∑

i∈N

vi(Si).

That is, the manifest valuations provide enough information to compute an allocation

that is optimal with respect to the true valuations. Note that we only require one

such optimal allocation.

1This view of preference elicitation protocols is meant to parallel the learning setting. In many
combinatorial auctions, for example, manifest valuations are not explicitly maintained but rather
simply implied by the history of bids.

Chapter 5: Preference Elicitation 101

Two typical queries used in preference elicitation are value and demand queries,

introduced in the previous chapter.2 We make the following definition to parallel the

query learning setting and to simplify the statements of later results:

Definition 2 The representation classes V1, . . . ,Vn can be efficiently elicited from

value and demand queries if there is a fixed polynomial p(·, ·) and an algo-

rithm L with access to value and demand queries of the agents such that for any

v = (vi)i∈N ∈ V1 × . . . × Vn, L outputs after p(size(v),m) queries an allocation

S ∈ argmaxS′∈Γ
∑

vi(S
′
i).

There are some key differences here with the query learning definition. We have

dropped the term “exactly” since the valuation functions need not be determined

exactly in order to compute an optimal allocation. We also simply require a polyno-

mial number of queries rather than polynomial time overall. Computing an optimal

allocation of goods even when given the true valuations is NP-hard for a wide range

of valuation classes. It is thus unreasonable to require polynomial time in the defi-

nition of an efficient preference elicitation algorithm. We are happy to focus on the

communication complexity of elicitation because this problem is widely believed to

be more significant in practice than that of winner determination [74].

Since the valuations need not be elicited exactly it is less clear whether the poly-

nomial dependence on size(v) is justified in this setting. We address this in the next

section.

2Our definition of equivalence query differs slightly from the definition provided by Blum et al. [15]
Their demand queries are restricted to linear prices over the goods. In contrast our demand queries
allow for nonlinear prices. This is why the lower bound in their Theorem 2 does not contradict our
results that follow.

Chapter 5: Preference Elicitation 102

5.2 From Learning to Preference Elicitation

5.2.1 Parallels between Equivalence and Demand Queries

We have described the query learning and preference elicitation settings in a man-

ner that highlights their similarities. Both settings share value queries, and it turns

out that equivalence and demand queries are analogs. Th key is to use CE prices.

We saw in Chapter 3 that CE prices always exist for the CAP, although they may

need to be non-anonymous and nonlinear. By Theorem 4, once we have identified an

allocation together with supporting CE prices, the CAP is solved.

Recall from Chapter 3 that if π is a vector of core payoffs, then setting prices to

pi(S) = max{0, ṽi(S)− πi} (5.1)

for all i ∈ N and S ⊆ M yields valid CE prices. These prices leave every agent

indifferent across all bundles with positive price. Thus, both equivalence and demand

queries can communicate the manifest valuations, the first explicitly and the second

in the guise of discounted prices. Of course, CE prices do not necessarily have to be

shifted valuations; for instance, linear CE prices may happen to exist. The following

lemma shows how to obtain counterexamples to equivalence queries through demand

queries.

Lemma 8 Suppose an agent i replies with a preferred bundle S ′ when proposed a

bundle S and supporting competitive equilibrium prices pi(S) (supporting with respect

to the the agent’s manifest valuation). Then either ṽi(S) 6= vi(S) or ṽi(S
′) 6= vi(S

′).

Chapter 5: Preference Elicitation 103

Proof. We have the following inequalities:

ṽi(S)− pi(S) ≥ ṽi(S
′)− pi(S

′)

⇒ ṽi(S
′)− ṽi(S) ≤ pi(S

′)− pi(S) (5.2)

vi(S
′)− pi(S

′) > vi(S)− pi(S)

⇒ vi(S
′)− vi(S) > pi(S

′)− pi(S) (5.3)

Inequality (5.2) holds because the prices support the proposed allocation with respect

to the manifest valuation. Inequality (5.3) holds because the agent in fact prefers S ′

to S given the prices, according to its response to the demand query. If it were the

case that ṽi(S) = vi(S) and ṽi(S
′) = vi(S

′), these inequalities would contradict each

other. Thus at least one of S and S ′ is a counterexample to the agent’s manifest

valuation. ¤

Finally, we justify dependence on size(v) in elicitation problems. Intuitively, this

is because we must learn valuations exactly when performing elicitation, in the worst-

case. Nisan and Segal (Proposition 1, [75]) and Parkes (Theorem 1, [81]) show that

supporting Lindahl prices must necessarily be revealed in the course of any preference

elicitation protocol which terminates with an optimal allocation—see Theorem 11

for the exact statement and proof. Furthermore, Nisan and Segal (Lemma 1, [75])

state that in the worst-case agents’ prices must coincide with their valuations (up

to a constant), when the valuation class is rich enough to contain “dual valuations”

(as will be the case with several interesting classes such as general or submodular

valuations). Since revealing CE prices is a necessary condition for establishing an

optimal allocation, and CE prices contain the same information as valuation functions

Chapter 5: Preference Elicitation 104

(in the worst-case), allowing for dependence on size(v) in elicitation problems is

entirely natural.

5.2.2 Learning as a Subroutine for Elicitation

The key to converting a learning algorithm to an elicitation algorithm is to sim-

ulate equivalence queries with demand and value queries until an optimal allocation

is found. Given candidate CE prices, if all agents reply ‘YES’ to a demand query

(i.e. accept the bundle proposed to them), then we have found an optimal allocation,

analogous to the case where an agent replies ‘YES’ to an equivalence query when the

target function has been exactly learned. Otherwise, we can obtain a counterexample

to an equivalence query given an agent’s response to a demand query.

Theorem 15 The representation classes V1, . . . ,Vn can be efficiently elicited from

value and demand queries if they can each be efficiently exactly learned from value

and equivalence queries.

Proof. The algorithm that uses learning algorithms as subroutines for preference

elicitation is given as Algorithm 5. Consider step 4. If all agents accept their proposed

bundles, then these bundles maximize the agents’ utilities at the given prices. The

allocation also maximizes the auctioneer’s revenue at the given prices, because the

prices support the allocation with respect to the manifest vlauations. Thus an optimal

allocation has been found, by Theorem 4. Otherwise, at least one of Si or S
′
i is a

counterexample to ṽi, by Lemma 8. We identify a counterexample by performing value

queries on both these bundles, and provide it to Li as a response to its equivalence

query.

Chapter 5: Preference Elicitation 105

Given: Efficient exact learning algorithms (Li)i∈N for valuations classes

(Vi)i∈N respectively.

Output: An efficient allocation together with supporting CE prices.

repeat

Run algorithms Li for all i ∈ N in parallel until each requires a response to

an equivalence query, or has halted with the agent’s exact valuation.

Compute an optimal allocation S = (Si)i∈N and supporting CE prices p

with respect to the manifest valuations (ṽi)i∈N determined so far.

To each i ∈ N , present (Si, p) as a demand query.

if all reply yes then

Output (S, p) and halt.

end

else

foreach agent i that did not reply yes do

Let S ′i be the reply.

Perform value queries on Si and S
′
i to identify a counterexample.

Provide counterexample to Li.

end

end

until there is a signal to halt

Algorithm 5: Converting learning algorithms to an elicitation algorithm.

This procedure will halt, since in the worst-case all agent valuations will be learned

exactly. The procedure performs a polynomial number of queries, since L1, . . . , Ln

are all efficient learning algorithms. ¤

Chapter 5: Preference Elicitation 106

Zero initial

valuations

Compute efficient

allocation S

(with respect to ṽ)

Derive supporting prices p

(with respect to S and ṽ)

Update manifest

valuations ṽ

Agents all happy

with allocation S

at prices p?

Output (S, p)

NO

YES

Figure 5.1: Flowchart of the elicitation and allocation process.

A flowchart of the resulting elicitation process is given in Figure 5.1. Note that

the conversion procedure indeed results in a preference elicitation algorithm, not a

learning algorithm. The resulting algorithm does not simply learn the valuations

exactly, then compute an optimal allocation. Rather, it elicits partial information

about the valuations through value queries, and periodically tests whether enough

information has been gathered by proposing an allocation to the agents through

demand queries. It is possible to obtain a competitive equilibrium for valuations v =

(vi)i∈N using an allocation and prices derived using manifest valuations ṽ = (ṽi)i∈N ,

and finding an optimal allocation does not imply that the agents’ valuations have

been exactly learned. The use of demand queries to simulate equivalence queries

enables this early halting once an optimal allocation has been found. We would not

obtain this property with equivalence queries based on manifest valuations.

Chapter 5: Preference Elicitation 107

5.2.3 Incentives

As explained in Chapter 2, the VCG mechanism can be used to induce agents to

respond truthfully to queries, while ensuring the auctioneer gets the highest possible

revenue under the constraints that the allocation be efficient and that losing bidders

pay nothing (recall Theorem 1). A näıve way to compute VCG payments is simply

to run the protocol once with all agents, then once with each agent removed for a

total of n + 1 runs. We would then determine the value of the efficient allocation

in each run via value queries. This gives us sufficient information to compute VCG

payments.3

In light of Theorem 10, we can instead modify the general elicitation framework

to converge to UCE prices. In the first stage we run the standard elicitation protocol,

until CE prices and an efficient allocation are determined. The second stage uses

universal demand queries, a straightforward variant of demand queries.

Universal demand query. Bundles (S0, S1, . . . , Sn) together with prices p are in-

put. The agent replies yes if all bundles presented maximize utility at prices

p; otherwise some other utility-maximizing bundle is returned.

Whenever all the individual learning algorithms are stalled waiting to perform an

equivalence query, we determine manifest allocations in the main economy (with

agents N) and also in each of the marginal economies (with agents N − j, for all j).

In addition, we determine (manifest) universal CE prices, p (for instance, we can take

the manifest valuations themselves). We can then issue a universal demand query to

3Some care would be required to ensure consistency across runs, and also to “mix” queries up so
that agents do not know the current run. Notice that an agent is indifferent in all runs except the
one with all agents.

Chapter 5: Preference Elicitation 108

each agent i, by presenting the UCE prices together with the agent’s allocation in the

main economy and the marginal economies. If all agents reply yes, we have a UCE

and can derive and implement VCG payments according to Theorem 10. Otherwise,

by the same reasoning as in Lemma 8, we obtain counterexamples to push forward

the individual learning algorithms.

As a result, we obtain an elicitation protocol that derives UCE prices and hence

Vickrey payments in just one pass, rather than using n+ 1 iterations of the original

protocol. This approach is also interesting for experimentation purposes: the role of

the queries performed in the second stage is precisely to compute Vickrey payments,

so they represent the added query complexity of aligning incentives with the VCG

mechanism.

5.3 Communication Complexity

We now turn to the issue of the communication complexity of elicitation. As

mentioned, Nisan and Segal [75] show that for a variety of rich valuation spaces

(such as general and submodular valuations), the worst-case communication burden

of computing an efficient allocation is exponential in the number of goods, m. The

communication burden is measured in terms of the number of bits transmitted be-

tween agents and auctioneer, in the case of discrete communication, or in the number

of real numbers transmitted, in the case of continuous communication.

In such cases, it may still be possible to create preference elicitation protocols that

make only a polynomial number of queries in m alone. However, these guarantees

would be quite artificial because some of the queries themselves would have to contain

Chapter 5: Preference Elicitation 109

an exponential number of bits or real numbers. On the other hand, converting an

efficient learning algorithm produces a preference elicitation algorithm whose queries

have sizes polynomial in the parameters n, m, and size(v), if the base learning algo-

rithm’s equivalence queries are all proper. Recall that an equivalence query is proper

if size(f̃) ≤ size(f) at the time the query is made, where f is the target function and

f̃ is the manifest hypothesis.

The size of any value query is O(m): the message consists solely of the queried

bundle. To communicate CE prices to agent j, it is sufficient to communicate the

agent’s manifest valuation function and possibly a price shift πj; thus, if the base

learning algorithm uses only proper equivalence queries, communicating the manifest

valuation requires size O(size(vi)). The surplus πj to agent j cannot be any greater

than maxS⊆M ṽj(S), so communicating this value also requires size O(size(vi)). We

must also communicate to j its allocated bundle, so the total message size for a

demand query is O(size(vi) +m). Clearly, an agent’s response to a value or demand

query is always O(size(vi) +m). The above discussion leads to the following result:

Theorem 16 The representation classes V1, . . . ,Vn can be efficiently elicited from

value and demand queries with polynomial communication complexity, in the parame-

ters n, m, and size(v), if they can each be efficiently exactly learned from membership

and proper equivalence queries.

Elicitation algorithms that depend on the size(v) parameter sidestep Nisan and Se-

gal’s [75] negative results on the worst-case communication complexity of efficient

allocation problems. They provide guarantees with respect to the sizes of the in-

stances of valuation functions faced at any run of the algorithm. These algorithms

Chapter 5: Preference Elicitation 110

will fare well if the chosen representation class provides succinct representations for

the simplest and most common of valuations, and thus the focus moves back to one

of succinct yet expressive bidding languages.

5.4 Empirical Evaluation

An empirical evaluation of the framework provides several important insights.

First, the theoretical results given above only provide worst-case bounds on query

and communication complexity. In practice, the framework’s performance may be

better than these bounds suggest. Second, the theory gives no guidance on how to

choose representations to use in the framework if we do not have detailed knowledge

of the agents’ valuations (the expected regime), so to do this we must appeal to

intuition and empirical evidence. Third, the framework leaves open the possibility

that valuations will not be fully learned before an efficient allocation is found. We

would like to confirm that this indeed occurs, because otherwise the iterative approach

would have little elicitation advantages over single-shot auctions.

To evaluate the empirical performance of the elicitation framework, I implemented

it along with learning algorithms for the XOR and Polynomials languages (see Sec-

tions 4.4.1 and 4.4.3) for use by the proxies. The code is written in Java 1.5. I wrote

the code with transparency and modularity in mind, and I did not perform any pro-

filing or other such optimization beyond caching of value query responses, and the

use of the server virtual machine rather than the client (-server option).4 In the in-

stantiated framework, winner determination is formulated as an integer program and

4The source code is available upon request.

Chapter 5: Preference Elicitation 111

solved using CPLEX 8.110. The experiments were run on a machine with a 1.86GHz

Intel Core 2 Duo processor and 1GB of RAM, running Linux 2.6.9.

I generated agent valuations using benchmark distributions drawn from the lit-

erature on winner determination algorithms. This is appropriate because the distri-

butions were designed to generate hard winner determination instances, or instances

that are economically motivated, and the elicitation framework in essence provides

a distributed algorithm for winner determination. The first three distributions gen-

erate an OR valuation for each individual agent by successively generating atomic

bids until the desired size is reached. They differ only in how the size of an atomic

bundle is determined. Once the size is fixed, the bundle’s items are chosen uniformly

at random without replacement. The value of the atomic bid is then drawn uniformly

from a range that depends on the size of the atomic bundle.

Decay [2, 93, 32]. Repeatedly draw a number uniformly on [0, 1] and increment the

size k of the bundle until the random number exceeds a parameter α ∈ (0, 1).

The value of the atomic bid is drawn uniformly from [1, 1000k].

Exponential [2, 39]. The size of a bundle is k with probability Ce−k/q, where C is a

normalizing constant and q is a parameter that equals the expected size. The

value of the atomic bid is drawn uniformly from [500, 1500k].

Binomial [2, 39]. The size of a bundle is k with probability
(

m
k

)

pk(1 − p)n−k. Here

p ∈ [0, 1] is a parameter and m is the number of items. This is equivalent to

including each item in the bundle with probability p. The value of the atomic

bid is drawn uniformly from [500, 1500k].

Chapter 5: Preference Elicitation 112

An OR valuation is obtained by drawing atomic bids according to the chosen

distribution until the representation is of the desired size. I also ensured that there

were no redundant atomic bids, i.e. that the OR representation is minimal. To do

this, we simplify the OR representation by removing each atomic bid in turn. We

then check whether the value of its bundle remains unchanged; if so, the atomic bid is

redundant and can be discarded. We then generate more atomic bids to again reach

the desired size, and repreat the process until we obtain a minimal OR representation.

This post-processing is more rigorous than simply removing “dominated” bids, which

are bids (S1, v1) for which there exists another bid (S2, v2) such that S2 ⊆ S1 but

v2 ≥ v1 (this is standard post-processing [64]). Removing dominated bids may not

result in a minimal representation with OR; on the other hand, it does guarantee a

minimal representation with XOR.

The Quadratic distribution proposed by de Vries and Vohra [32] generates Poly-

nomial representations of valuations. The representations consist of terms of size 1

and 2:
∑

j∈M

vjyj +
1

2

∑

j,k∈M ′:k 6=j

vjkyjyk,

where M ′ is a “synergy set” whose items are all complements of each other. The

synergy set is obtained by drawing items uniformly without replacement until a set

of size µ is reached, where µ is a parameter of the distribution. Thus the size of the

polynomial representation increases as µ is increased, as there are more pairs of items

that complement each other. Once M ′ is constructed, the coefficients vj are drawn

uniformly from [0, 1] and vjk = vjvk. In proposing this valuation model, deVries

and Vohra [32] were guided by Ausubel et al.’s [6] description of the FCC spectrum

Chapter 5: Preference Elicitation 113

allocation problem.

Finally, I generated XOR representations using the Arbitrary distribution from

Leyton-Brown et al.’s [64] CATS test suite. CATS provides several other distributions

for generating XOR representations, and among these Arbitrary generates relatively

hard instances [63]. As the name suggests, this distribution is meant to generate

valuations that exhibit “arbitrary” complementarities and substitutabilities between

bids. Unlike the previous distributions described, Arbitrary does not generate agent

valuations individually; it can only generate several valuations at a time, given the

total number of atomic bids desired across all representations. As a result, I cannot

tune the number of agents or representation sizes with this distribution, only the

total number of bids. The agent structure can be recovered because each atomic bid

contains a “dummy item” specific to each agent. CATS only generates undominated

bids, so the resulting XOR representations are minimal.

The instantiations of the framework all issued ε-demand queries, where ε was cal-

ibrated to achieve 99% efficiency on average for each vector of parameter settings.

The data points in all plots are averages over 10 runs. I used 20 items for all experi-

ments. A time limit of 1 hour was set for each run. If any of the 10 runs for a data

point exceeded the time limit, computation was aborted and the data point was not

plotted.

5.4.1 Scaling Performance

We first examine the query and runtime scaling properties of the framework with

Polynomial representations at the proxy level, when the agents’ underlying valuations

Chapter 5: Preference Elicitation 114

are generated with the Quadratic distribution and hence have a concise Polynomial

representation.5 I ran both “bidder-optimal” and “seller-optimal” versions. In the

bidder-optimal version, valuations at each round were discounted by a bidder-optimal

core payoff vector, and then quoted as prices. In the seller-optimal version valuations

were quoted back directly as prices, corresponding to core payoffs where the seller

extracts all the surplus.

Figure 5.2(a) reveals that the query complexity of the elicitation process scales well

with the size of the valuation’s representation. The value queries per term decrease as

the representations grow in size, whereas the demand queries remain essentially con-

stant. This is much better than the cubic worst-case guarantees reported in Chapter 4

would suggest. Figure 5.2(b) shows that the runtime scales about linearly with the

problem size (recall that as µ is scaled linearly, the instance sizes scale quadratically).

This means winner-determination does not become substantially harder within the

range µ = 1, . . . , 10.

The qualitative trends when scaling agents are shown in Figures 5.2(c)–(d), and

are as expected. The number of queries, normalized by the number of terms, does not

change as agents are scaled since the framework still performs about the same number

of queries per agent. The runtime of the bidder-optimal version does not scale as well

with the number of agents, because computing a bidder-optimal core payoff requires

solving a winner-determination problem for the main and marginal economies.

5It is important to understand that in the implementation, we use Polynomials only to model how
the agents would respond to value and demand queries, and do not assume that the agents themselves
are aware of these Polynomial representations. Proxies only obtain valuation information from the
agents through an “oracle” interface of value and demand queries (this is an actual interface in the
Java implementation). The same applies for agent valuations represented with OR or XOR as a
result of different distributions.

Chapter 5: Preference Elicitation 115

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 3 4 5 6 7 8 9 10

qu
er

ie
s

/ t
er

m
s

µ

(a) Query complexity, quadratic

distribution, scaling µ, with 3 agents.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1 2 3 4 5 6 7 8 9 10

ru
nt

im
e

(m
)

µ

(b) Runtime, quadratic distribution,

scaling µ, with 3 agents.

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 2 4 6 8 10 12 14 16 18 20

qu
er

ie
s

/ t
er

m
s

agents

(c) Query complexity, quadratic

distribution, scaling the number of

agents, with µ = 7.

 0

 5

 10

 15

 20

 25

 30

 2 4 6 8 10 12 14 16 18 20

ru
nt

im
e

(m
)

agents

(d) Runtime, quadratic distribution,

scaling the number of agents, with µ = 7.

seller-optimal, value

seller-optimal, demand

bidder-optimal, value

bidder-optimal, demand

seller-optimal

bidder-optimal

Figure 5.2: Scaling properties of the elicitation framework with Polynomial represen-
tations, with the quadratic distribution generating Polynomial representations of the
bidders’ valuations.

Chapter 5: Preference Elicitation 116

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 5 10 15 20 25 30 35 40 45 50

qu
er

ie
s

/ b
id

s

bids (100)

(a) Query complexity, arbitrary

distribution, scaling total bids.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 5 10 15 20 25 30 35 40 45 50

ru
nt

im
e

(m
)

bids (100)

(b) Runtime, arbitrary distribution,

scaling total bids.

seller-optimal, value

seller-optimal, demand

bidder-optimal, value

bidder-optimal, demand

seller-optimal

bidder-optimal

Figure 5.3: Scaling properties of the elicitation framework with XOR representa-
tions, with the arbitrary distribution generating XOR representations of the bidders’
valuations.

I tried the same kind of scaling experiment with XOR representations, when the

agents had valuations generated from the Arbitrary distribution. This means the

agents’ valuations had concise XOR representations. The trends are largely similar

to those for Polynomials, and are given in Figure 5.4.1. The number of queries per

bid remains constant when scaling the number of bids, which means that queries

scale linearly in the size of the instances. This agrees with the linear worst-case

query complexity bounds for the XOR learning algorithm given in Section 4.4.1. The

bidder-optimal version does not scale as well as the seller-optimal version in terms of

runtime, because the number of agents grows large with the number of bids with the

Chapter 5: Preference Elicitation 117

Arbitrary distribution.

I also implemented iBundle(3), which uses nonlinear, non-anonymous prices, and

gathered the same set of statistics. The results were extremely similar to the perfor-

mance of the elicitation scheme with XOR representations, so they are not plotted

for the sake of clarity. The close relationship is not surprising: the XOR elicitation

scheme recovers the atomic bids of the agents’ XOR representations in basically the

same order as iBundle.

5.4.2 Effect of Valuation Structure

The previous section examined the performance of the framework when the rep-

resentations were ideally chosen: Polynomial representations when the agents them-

selves had valuations with concise Polynomial representations, and the analogous

situation with XOR. A more realistic scenario is for the proxies’ representations to

be chosen based on just an intuitive understanding of the general structure of agent

preferences. Here we examine the performance of the framework with Polynomial and

XOR representations when the agents’ valuations have concise OR representations.

If the bundles in an OR representation are relatively small, then there are many

possibilities for combining them because many will be disjoint. We would therefore

expect the resulting valuation to have more of an “additive” flavor, which could be

succinctly represented with Polynomials. At the other extreme, if the bundles tend

to be large, then they cannot be combined and we would expect the valuation to

have a concise XOR representation. Though this intuition is quite crude, it agrees

surprisingly well with the empirical findings. Figure 5.4(a)–(d) records the results.

Chapter 5: Preference Elicitation 118

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

qu
er

ie
s

α

(a) Query complexity, decay distribution

 0

 1

 2

 3

 4

 5

 6

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ru
nt

im
e

(m
)

α

(b) Runtime, decay distribution

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 2 4 6 8 10 12 14 16 18 20

qu
er

ie
s

q

(c) Query complexity, exponential

distribution

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10 12 14 16 18 20

ru
nt

im
e

(m
)

q

(d) Runtime, exponential distribution

Polynomial, value

Polynomial, demand

XOR, value

XOR, demand

Polynomial

XOR

Figure 5.4: Performance of the elicitation framework (seller-optimal version), with
XOR and Polynomial representations, under different distributions for generating
OR representations of the bidders’ valuations. There are 3 agents and 15 atomic bids
per agent.

With Decay, we see that Polynomials perform well when α is small—corresponding to

small bundles—and even for larger settings such as 0.7, whereas XOR performs well

Chapter 5: Preference Elicitation 119

beyond 0.8. Polynomials complement XOR very well. I ran the elicitation scheme

with XOR on α = 0.1 with no time limit, and it had not terminated after 24 hours.

One finding that I did not anticipate was that Polynomials also did well for settings

of α beyond 0.9. In retrospect, it seems plausible that OR representations with such

large bundles would correspond to valuations that also have succinct Polynomial rep-

resentations: the atomics in an OR representation could be terms in the Polynomial,

and then there are just a few possible higher-order terms that might be needed to

complete the representation.

Both did poorly at α = 0.75. If we could use OR representations, the resulting

elicitation scheme would clearly perform well for all α, since the underlying OR repre-

sentations are small. Recall that we cannot as of now use the OR learning algorithm

within the framework because OR is not a suitable pricing language.

With the Exponential distribution, the same intuition applies, except that the

elicitation scheme with XOR performs better than the version with Polynomials over

a wider range of paramters. The results for the Binomial distribution were similar to

those for the Exponential distribution and are omitted for brevity.

5.4.3 Surplus Distribution

The scaling results given above may be more favorable for the seller-optimal ver-

sions of the elicitation schemes, but note that they are only valid under the assumption

of myopic best-response bidding. In the seller-optimal versions, the seller extracts all

the surplus if agents bid myopically, so we would not expect this to happen. Further

elicitation would have to be done to converge to UCE prices, from which we could

Chapter 5: Preference Elicitation 120

then derive VCG payments, and bring myopic best-responses into an equilibrium

(see Section 5.2.3). The bidder-optimal versions do not bring myopic best-response

bidding into an equilibrium either. On the other hand, we discussed in Chapter 3

how implementing bidder-optimal core payoffs could minimize the agents’ incentives

to misreport their preferences, so a bidder-optimal version may have adequate in-

centive properties in some settings even without extension to UCE prices, whereas a

seller-optimal version would never have good incentive properties.

-0.05
 0

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 2 4 6 8 10 12 14 16 18 20

pa
yo

ff

agents

(a) Total agent payoff (as a percent of

total surplus), scaling agents, with µ = 7.

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 1 2 3 4 5 6 7 8 9 10

ro
un

ds

µ

(b) Total rounds, scaling µ, 3 agents.

seller-optimal

bidder-optimal

Figure 5.5: Bidder payoffs and total rounds in the elicitation framework with Poly-
nomial representations, with the quadratic distribution generating Polynomial repre-
sentations of the bidders’ valuations.

To illustrate the advantage of bidder-optimal payoffs, consider Figure 5.5. As

expected, the seller extracts all the surplus in the seller-optimal version of the elic-

itation scheme with Polynomial valuations. With the bidder-optimal version, the

Chapter 5: Preference Elicitation 121

bidders may be able to obtain around 30% of the total surplus when their number is

small, i.e. 2–5. The seller-optimal version needs much fewer rounds, however. This

is because more information is elicited at each round: in the bidder-optimal version,

there is a greater chance for agents to be satisfied with their allocations at any given

round, in which case no further information is elicited, even though it may be required

at a later round anyway.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 5 10 15 20 25 30 35 40 45 50

pa
yo

ff

bids (100)

(a) Total agent payoff (as a percent of

total surplus), scaling bids.

 6.92

 6.94

 6.96

 6.98

 7

 7.02

 7.04

 7.06

 7.08

 5 10 15 20 25 30 35 40 45 50

ro
un

ds

bids (100)

(b) Total rounds, scaling bids.

seller-optimal

bidder-optimal

Figure 5.6: Bidder payoffs and total rounds in the elicitation framework with XOR
representations, with the arbitrary distribution generating XOR representations of
the bidders’ valuations.

Figure 5.6 gives the same statistics for the elicitation scheme that uses XOR

representations. In this case, though, the possible bidder surplus is very small. The

reason is that with thousands of bids, the Arbitrary distribution implicitly generates

a very large number of agents, so the degree of competition precludes much surplus

Chapter 5: Preference Elicitation 122

going to the bidders. The number of rounds, on the other hand, stays constant. This

is the case because even though the number of bids and agents scales up, the typical

size of an agents’ XOR valuation under the Arbitrary distribution remains constant,

and this is what affects the number of rounds.

5.4.4 Extent of Learning

The elicitation framework allows for the possibility that valuations may not be

learned entirely before an efficient allocation (together with supporting prices) is

found. If valuations were learned entirely, there would be no real improvement over

the single-shot case: valuations could just as well be learned beforehand as a pre-

processing step for a single-shot auction. To evaluate whether valuations are learned

entirely, I ran the elicitation framework using Polynomial and XOR representations,

with valuations generated with the Quadratic and Arbitrary distributions, respec-

tively. Once each run was finished, the proxies then learned their agents’ valuations,

starting from the manifest valuations they ended up with after the elicitation had

halted.6

Figure 5.7 presents the results for bidder-optimal instantiations of the framework.

The fact that valuations need not be learned entirely is clear from Figure 5.7(a): a

nontrivial amount of value and demand queries are needed to learn the valuations

beyond the manifests obtained through elicitation. The number of additional value

6Alternatively, we could run the elicitation and learning algorithms separately. This turns out
to be problematic for comparison purposes, because the learning may in fact require less queries
than the elicitation. The reason for this is that the sequences of value and demand queries may be
very different in the two approaches. The responses in the learning scheme may happen to be less
adversarial than in the elicitation scheme, resulting in fewer queries. The opposite case may also
occur.

Chapter 5: Preference Elicitation 123

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 1 2 3 4 5 6 7 8 9

qu
er

ie
s

µ

(a) Polynomial representations, quadratic

distribution, 3 agents, scaling µ.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 5 10 15 20 25 30

qu
er

ie
s

bids (100)

(b) XOR representations, arbitrary

distribution, 3 agents, scaling bids.

elicitation, value

elicitation, demand

learning, value

learning, demand

Figure 5.7: Additional learning queries required beyond the queries performed in the
elicitation framework.

queries required is particularly informative. At µ = 1, learning requires 17% more

value queries beyond elicitation, and the gap increases so that at µ = 9, 44% more

value queries are needed. This kind of improvement is particularly important if

responding to value queries is difficult for agents, e.g. if it involves solving an NP-

hard optimization problem.

In Figure 5.7(b), on the other hand, we see no improvement at all (only two lines

seem to appear because the value queries for elicitation and learning coincide, and

similarly for the demand queries). This does not seem to be a defect of elicitation with

XOR, but rather an artifact of the Arbitrary distribution. As we scale the number of

bids, the XOR representations generated do not grow in size, but rather more agents

Chapter 5: Preference Elicitation 124

are created. In fact, the distribution tends to create small XOR representations,

including a large number of single-minded valuations. If valuations are small there is

a good chance they will be learned almost entirely in the elicitation phase, especially

since a large number of agents implies that there will be a large number of losing

bidders.

5.5 Discussion

We have seen that exact learning algorithms with value and equivalence queries

can be used as a basis for preference elicitation algorithms with value and demand

queries. At the heart of this result is the fact that demand queries may be viewed as

modified equivalence queries, specialized to the problem of preference elicitation. The

result allows us to apply the wealth of available learning algorithms to the problem

of preference elicitation.

A learning approach to elicitation also motivates a different approach to design-

ing elicitation algorithms that decomposes neatly across agent types. If the designer

knowns beforehand what types of preferences each agent is likely to exhibit (mostly

additive, many substitutes, etc...), she can design learning algorithms tailored to each

agents’ valuations and integrate them into an elicitation scheme. The resulting elicita-

tion algorithm makes a polynomial number of queries. If the base learning algorithms’

equivalence queries are all proper, the elicitation algorithm also has polynomial com-

munication complexity.

I do not claim that agent valuations can be learned with value and demand queries;

equivalence queries can only be simulated up to the point where an optimal allocation

Chapter 5: Preference Elicitation 125

has been computed. This is the preference elicitation problem. Theorem 15 implies

that elicitation with value and demand queries is no harder than learning with value

and equivalence queries, but does not provide any asymptotic improvements over the

learning algorithms’ complexity. It would be interesting to find examples of valuation

classes for which elicitation is easier than learning. Blum et al. [15] provide such an

example when considering value queries only (their Theorem 4).

Chapter 6

Iterative Auctions

The standard preference elicitation scheme for the combinatorial allocation prob-

lem is the iterative auction. Iterative auctions operate by issuing demand queries,

or variants of demand queries where entire best-response sets are reported. In this

chapter, we design an iterative auction that begins with linear prices and introduces

nonlinearities into the price formulation as required in order to ensure the existence of

a competitive equilibrium. The auction quotes pseudo-additive prices at each round.1

Since the pseudo-additive language can represent some prices succinctly when the

XOR language cannot (the most immediate example being linear prices), our auction

design complements existing designs such as Parkes’ iBundle [78], Ausubel and Mil-

grom’s ascending-proxy auction [7], and deVries et al.’s auction based on primal-dual

methods [31].

The CAP can be formulated as a mathematical program. The advantage of this

is that certain algorithms for solving the program can then be given auction inter-

1See Section 4.2.5 for a description of the pseudo-additive language.

126

Chapter 6: Iterative Auctions 127

pretations [11, 31, 32]. Bikhchandani et al. [11] outline and illustrate the approach.

First, the CAP is formulated as a linear program that has an integer optimal solu-

tion. The dual variables of the formulation have natural interpretations as prices;

therefore, decentralized dual methods for the LP that reach an integer solution can

be given auction interpretations. de Vries et al. [31] give an auction interpretation to

the primal-dual algorithm on an LP formulation for the CAP due to Bikhchandani

and Ostroy [13], and note that iBundle [78] (or equivalently, the ascending-proxy auc-

tion [7]) is a subgradient algorithm for this same formulation. In fact, the design of

iBundle was inspired by a primal-dual algorithm of Bertsekas [8] for the assignment

problem, which he called the “auction algorithm.”

We will use the LP approach to design our auction. In the approach given by

Bikhchandani et al. [11], an integral LP formulation is given a priori. The problem

is that without detailed knowledge about the underlying valuations (e.g. knowledge

about substitutes or complements properties), there may be no choice but to use a

very general formulation, which implies a high-dimensional price space. For instance,

suppose the agents all have additive valuations. Then a simultaneous ascending

auction is efficient and finds a CE with linear prices. But if the auctioneer cannot

be sure that the valuations are all additive, he may resort to iBundle [78] instead

to ensure efficiency. As a result, the auction could require a very large amount of

communication, because the XOR best-response sets at each round could be huge:

the XOR representation of an additive valuation is exponential in m, and in the

worst-case an entire valuation may be discovered.2

One solution to achieve a compact representations for prices may be to use the

2This follows from Theorem 11 due to Nisan and Segal [76].

Chapter 6: Iterative Auctions 128

method of the previous chapter. However, this method does not work if a proxy’s

manifest is represented in a bidding language but not a pricing language (e.g. in the

OR language). Also, the method may be problematic due to privacy concerns: if the

prices are made public (e.g. for the purpose of proving that the final allocation is

indeed efficient), then everyone is aware of a succinct representation of each bidder’s

partial value information.

What we would like is a way to compute a succinct representation of CE prices

that does not necessarily bear relation to the proxies’ representations. In the example

mentioned above, it would be ideal to begin with linear prices, and have the option

to introduce nonlinearities as needed to ensure existence of a CE. Our idea in this

chapter is to use the simplex method with column generation—which can be given

an auction interpretation—to solve an LP formulation for the CAP, and then to use

cutting planes to strengthen the formulation if the solution is not integer. This is

equivalent to gradually introducing nonlinearities in the price space, where prices are

represented in the pseudo-additive language. de Vries and Vohra [32] introduced both

the ideas of using column generation and cutting-plane techniques in combinatorial

auction design. Here we apply these ideas to obtain a specific auction design. In one

variant, the design works as a stand-alone auction, and in another it can be used as a

subroutine to compute CE prices at each round in the preference elicitation method

of the previous chapter.

Section 6.1 introduces three LP formulations that form the basis of auctions that

use order 1, 2, and 3 prices. Section 6.2 then uses the notion of a pattern (see

Section 4.2.5) to define intermediate formulations between orders 1 and 2. Section 6.3

Chapter 6: Iterative Auctions 129

describes how to solve the LP formulations using the simplex method with delayed

column generation, and how this can be interpreted as an auction. Section 6.4 explains

how cutting planes can be introduced to strengthen a pattern formulation, and how

this changes the price representation. Section 6.5 concludes with a discussion of other

auctions and how they relate to the concepts in this chapter.

6.1 Three Formulations

Following the approach outlined by Bikhchandani et al. [11], the first step is

to formulate the CAP as a linear program.3 Figure 6.1 gives three separate LP

formulations for the CAP together with their duals. These formulations were first

given by Bikhchandani and Ostroy [13]. In all programs, variable yi(S) is used to

indicate whether agent i receives bundle S. In the second program we also have a

variable z(ω) to indicate whether the items are partitioned according to ω ∈ Ω, and

similarly in the third formulation there is a variable z(γ) to indicate that allocation

γ ∈ Γ is chosen.

The first constraint in all primal programs matches supply with demand, ensuring

that the agents do not obtain any more than what is supplied. The next constraints

are demand-side constraints that ensure each agent only gets at most one bundle.

Finally, the last constraint in the second and third formulations ensures that only

one partition or allocation is chosen.

In the duals, the variables corresponding to the first set of constraints in the

3This chapter makes use of several standard facts from linear programming theory. See any
introductory linear programming textbook for a reference to these results [9, 24, 66].

Chapter 6: Iterative Auctions 130

max
yi(S),z(ω)

∑

S⊆M

∑

i∈N

vi(S)yi(S)

s.t.
∑

S3j

∑

i∈N

yi(S) ≤ 1 (j ∈M)

∑

S⊆M

yi(S) ≤ 1 (i ∈ N)

yi(S) ≥ 0 (i ∈ N,S ⊆M)

(A) order 1 primal

min
πi,pj

∑

i∈N

πi +
∑

j∈M

pj

s.t. πi ≥ vi(S)−
∑

j∈S

pj (i ∈ N,S ⊆M)

πi ≥ 0 (i ∈ N)

(a) order 1 dual

max
yi(S),z(ω)

∑

S⊆M

∑

i∈N

vi(S)yi(S)

s.t.
∑

i∈N

yi(S) ≤
∑

ω3S

z(ω) (S ⊆M)

∑

S⊆M

yi(S) ≤ 1 (i ∈ N)

∑

ω∈Ω

z(ω) ≤ 1

yi(S) ≥ 0 (i ∈ N,S ⊆M)

z(ω) ≥ 0 (ω ∈ Ω)

(B) order 2 primal

min
πi,πs,p(S)

∑

i∈N

πi + πs

s.t. πi ≥ vi(S)− p(S) (i ∈ N,S ⊆M)

πs ≥
∑

S∈ω

p(S) (ω ∈ Ω)

πi ≥ 0 (i ∈ N)

πs ≥ 0

(b) order 2 dual

max
yi(S),z(γ)

∑

S⊆M

∑

i∈N

vi(S)yi(S)

s.t. yi(S) ≤
∑

γ:γi=S

z(γ) (i ∈ N,S ⊆M)

∑

S⊆M

yi(S) ≤ 1 (i ∈ N)

∑

γ∈Γ

z(γ) ≤ 1

yi(S) ≥ 0 (i ∈ N,S ⊆M)

z(γ) ≥ 0 (γ ∈ Γ)

(C) order 3 primal

min
πi,πs,pi(S)

∑

i∈N

πi + πs

s.t. πi ≥ vi(S)− pi(S) (i ∈ N,S ⊆M)

πs ≥
∑

i∈N

pi(γi) (γ ∈ Γ)

πi ≥ 0 (i ∈ N)

πs ≥ 0

(c) order 3 dual

Figure 6.1: Three orders of linear programming formulations for the CAP and their
duals.

Chapter 6: Iterative Auctions 131

primals can be interpreted as prices. We call the formulations “order 1, 2, and 3”

formulations because we see from Figure 6.1 that the order k primal leads to order k

prices in the dual, for k ∈ {1, 2, 3}. The objective in the dual is to set prices so as

to minimize the total surplus to the bidders and auctioneer, where the surplus to a

bidder is the maximum utility it can obtain over all bundles, and the surplus to the

auctioneer is the maximum revenue it can obtain over all allocations. In the order 1

formulation, all allocations that give away all the items maximize revenue because we

have order 1 prices, whereas in the order 2 formulation, any two allocations that are

permutations of each other yield the same revenue because we have order 2 prices.

Any feasible allocation γ has a corresponding feasible integer solution to the LP in

each formulation. We set yi(S) = 1 if i obtains S in the allocation, and 0 otherwise.

In the order 2 formulation, we set z(ω) = 1, where ω is the partition induced by γ,

and in the order 3 formulation we set z(γ) = 1. All other z variables are set to 0.

Conversely, every feasible integer solution can be mapped to the allocation that gives

S to i if and only if yi(S) = 1. The order 1 and 2 formulations do not necessarily

have an optimal integer solution, whereas the third does. The question of whether

there exists an optimal solution for each formulation is closely related to the question

of whether there exists CE prices of the corresponding order.

Proposition 5 [12, 13] The order k primal formulation has an integer optimal so-

lution if and only if order k CE prices exist for the given profile of valuations, for

k ∈ {1, 2, 3}.

Proof. We prove the proposition for the order 2 formulation. The other cases are

entirely analogous. Let (x, z) and (π, y) be feasible solutions to the primal and dual

Chapter 6: Iterative Auctions 132

problem, respectively, and assume that (x, z) is integer. The solutions are optimal

for the two respective problems if and only if they satisfy the primal complementray

slackness conditions,

p(S) > 0⇒
∑

i∈N

yi(S) =
∑

ω3S

z(w) (S ⊆M) (6.1)

πi > 0⇒
∑

S⊆M

yi(S) = 1 (i ∈ N) (6.2)

πs > 0⇒
∑

ω∈Ω

z(ω) = 1 (6.3)

as well as the dual complementray slackness conditions,

yi(S) > 0⇒ πi = vi(S)− p(S) (i ∈ N,S ⊆M) (6.4)

z(ω) > 0⇒ πs =
∑

S∈ω

p(S) (ω ∈ Ω) (6.5)

So assume (x, z) is an integer optimal primal solution and (π, y) an optimal dual

solution. Consider the allocation where agent i gets S if yi(S) = 1, and gets ∅ if yi is

the zero vector. We can assume that the partition ω for which z(ω) = 1 corresponds

to this allocation, because the solution is feasible in this case and still optimal (note

that only y variables appear in the primal objective). If all yi are zero, then we can

also take z to be the zero vector. By condition (6.4), agent i’s bundle maximizes the

agent’s utility at prices p, for all i ∈ N . By condition (6.5), the chosen partition

maximizes the auctioneer’s revenue at prices p. Hence prices p support the allocation

just constructed.

Conversely, assume there exist supporting CE prices p for an allocation. We set

yi(S) = 1 if agent i receives S in the allocation, and the remaning components of yi

to 0. We set z(ω) = 1 for the partition ω that corresponds to our allocation, and

the remaining components of z to zero. Finally, we set πi = maxS⊆M [vi(S)− p(S)]

Chapter 6: Iterative Auctions 133

and πs = maxω∈Ω
∑

S∈ω p(S). Clearly, these primal and dual solutions are feasible.

By construction of the primal solution, condition (6.1) holds. Condition (6.2) holds

because πi = 0 if i receives ∅, from the fact that p supports the allocation. Similarly,

condition (6.3) holds because πs = 0 if the auctioneer allocates nothing. The dual

complementary slackness conditions hold by the fact that p are supporting prices.

Hence the primal and dual are optimal, and the primal has an integer optimal solution.

¤

Referring back to the results in Table 3.1, we see then that the order 1 formu-

lation has an integer optimal solution if the bidders have substitutes valuations, the

order 2 formulation has an integer optimal solution if the bidders have superadditive

valuations, and the order 3 formulation has an integer optimal solution if the bidders

have general valuations (i.e. always, in our model).

Note that there is a large gap, however, between the order 1 and 2 formulations.

The first has a polynomial number of constraints, whereas the second has a number

of constraints that is exponential in m. To obtain prices of a more manageable size,

we need a formulation that is in some sense “intermediate” between the order 1 and

2 formulations.

6.2 Pattern Formulation

Patterns can be used to describe CAP formulations that are intermediate between

orders 1 and 2. With a slight abuse of notation, let B(S) denote the decomposition

of bundle S according to pattern B, following Algorithm 1. For T ∈ B, let B−1(T)

be the set of bundles S such that T ∈ B(S), i.e. those bundles that have T in their

Chapter 6: Iterative Auctions 134

decomposition. The linear programming formulation is as follows.

max
yi(S),z(ω)

∑

S⊆M

∑

i∈N

vi(S)yi(S)

s.t.
∑

S∈B−1(T)

∑

i∈N

yi(S) ≤
∑

ω:ω∩B−1(T)6=∅

z(ω) (T ∈ B) (6.6)

∑

S⊆M

yi(S) ≤ 1 (i ∈ N) (6.7)

∑

ω∈Ω

z(ω) ≤ 1 (6.8)

yi(S) ≥ 0 (i ∈ N,S ⊆M)

z(ω) ≥ 0 (ω ∈ Ω)

For any pattern B, this formulation has an integer solution corresponding to each

feasible allocation S = (Si)i∈N . We set yi(Si) = 1 and all other components of yi to

0, for all i ∈ N . We set z(ω) = 1 for ω = {Si}i∈N and all other components of z to 0.

Clearly this solution satisfies constraints (6.7) and (6.8). Let T ∈ B and consider the

constraint corresponding to T in (6.6). This constraint cannot have both yi(Si) and

yj(Sj) on the left-hand side, for i 6= j. If it did, then T would be in the decompositions

of both Si and Sj, and hence we would have Si ∩ Sj ⊇ T 6= ∅, contradicting the fact

that S was a feasible allocation. If the left-hand side has just yi(Si) for some i ∈ N ,

the right-hand side has z(ω), because Si ∈ ω and Si ∈ B
−1(T). Hence the constructed

integer solution is feasible.

The pattern formulation specializes to the order 1 and 2 formulations mentioned

previously. Taking the pattern that consists solely of the singletons {j} for j ∈ M

yields the order 1 formulation, because each bundle is decomposed into its constituent

items (in this case the order of the singletons in the pattern is irrelevant). Taking the

pattern that consists of all bundles S ⊆M yields the order 2 formulation, because each

Chapter 6: Iterative Auctions 135

bundle decomposes to itself (again the order of the bundles in the pattern is irrelevant

in this case). When specializing to the order 1 formulation, the z(ω) variables always

appear all together, so constraint (6.8) can be dropped and the right-hand-side of

constraints (6.6) simplifies to 1.

The dual of the CAP formulation for a generic pattern B is as follows.

min
πi,πs,p(T)

∑

i∈N

πi + πs

s.t. πi ≥ vi(S)−
∑

T∈B(S)

p(T) (i ∈ N,S ⊆M) (6.9)

πs ≥
∑

S∈ω

∑

T∈B(S)

p(T) (ω ∈ Ω) (6.10)

πi ≥ 0 (i ∈ N)

πs ≥ 0

Note that the patterns that lead to the order 1 and 2 formulations lead to order 1

and 2 prices in the dual, as expected.

By incrementally adding bundles to a pattern, starting with just the singletons {j}

for j ∈M and ending with all bundles, we obtain a series of formulations intermediate

to the order 1 and 2 formulations. This leads to a dynamic way to adapt the price

representation in an auction so as to ensure that a competitive equilibrium exists.

First, however, we need to address to problem of solving the LP for a fixed pattern

B.

Chapter 6: Iterative Auctions 136

6.3 Column Generation

Note that in the pattern formulation of the previous section, as well as in the

order 1, 2, and 3 formulation given above, there is an exponential number of variables

(exponential in the number of items m). Clearly, the formulation itself cannot be

kept in memory for even moderately-sized m. We can assume, on the other hand,

that the number of constraints |B| + n + 1 is manageable. A standard technique for

solving such programs is column generation. In the simplex method, not all variables

(columns) need to be kept in memory; in principle, at each iteration we only need to

keep the basic variables in memory, and then identify new variables with appropriate

reduced cost to enter the basis. The problem of finding variables with positive reduced

cost is generally known as the “separation problem,” and in our context it can be

given a bidding interpretation: the variables that should enter the basis are precisely

those that maximize the bidders’ utilities at the given prices (i.e. dual solution). For

the auctioneer, the variables that should enter the basis are those that correspond to

revenue-maximizing partitions.

The connection between column generation and auction algorithms was first noted

by de Vries and Vohra [32]. Here we elaborate further on this connection by describing

the column generation method for the pattern formulation. We also give an alternate

approach in which coefficients in the objective are incrementally increased, rather than

set to their actual true values as soon as a column is generated. The advantage of

the latter approach is that it does not require value queries, and so value information

for any given bundle is only elicited incrementally from the bidders. The approach is

also closely connected to the subgradient method and Parkes’ iBundle [78] as well as

Chapter 6: Iterative Auctions 137

Ausubel and Milgrom’s ascending-proxy auction [7], as we discuss in Section 6.5.

Suppose we formulate the LP using a restricted set of columns and then solve it,

which gives us prices p in the dual. A variable enters the basis if its reduced cost is

positive, because the primal is a maximization problem. As we can see from the dual,

the reduced cost of variable yi(S) is

vi(S)−
∑

T∈B(S)

p(T)− πi.

Let yi(S
∗) be a basic variable. The reduced cost of a variable in the basis is 0. Hence,

if the reduced cost of yi(S) is positive, we have

vi(S)−
∑

T∈B(S)

p(T)− πi > 0

⇒ vi(S)−
∑

T∈B(S)

p(T)− πi > vi(S
∗)−

∑

T∈B(S∗)

p(T)− πi

⇒ vi(S)−
∑

T∈B(S)

p(T) > vi(S
∗)−

∑

T∈B(S∗)

p(T)

Therefore, to find a variable yi(S) to enter the basis, for each agent i ∈ N , we identify

a bundle S∗ such that yi(S
∗) is a basic variable (if there is no such bundle then ∅

should be used because this is what the agent receives), and present it in a demand

query to agent i along with the prices p. We can repeat this for every agent to find a

set of at most n new columns. Note that the demand queries identify variables with

maximal reduced cost.

Similarly, the reduced cost of variable z(ω) is

∑

S∈ω

∑

T∈B(S)

p(T)− πs.

Let ω∗ be a partition for which z(ω∗) is a basic variable (again, if there is no such

variable the empty partition should be chosen, but this should never occur if agents

Chapter 6: Iterative Auctions 138

have nonzero valuations). Variable z(ω) is introduced only if its reduced cost is

positive, which is the condition that

∑

S∈ω

∑

T∈B(S)

p(T)− πs > 0

⇒
∑

S∈ω

∑

T∈B(S)

p(T)− πs >
∑

S∈ω∗

∑

T∈B(S)

p(T)− πs

⇒
∑

S∈ω

∑

T∈B(S)

p(T) >
∑

S∈ω∗

∑

T∈B(S)

p(T)

To find a variable z(ω) to introduce, we find the partition ω that maximizes the

auctioneer’s revenue at prices p. Since the prices are given in a pseudo-additive rep-

resentation and the pseudo-additive language is a bidding language, this problem can

be formulated as an integer program (i.e. a winner determination MIP), as described

in Section 4.2.5. Solving the program does not involve any queries to the agents.

The process of solving the primal LP via the simplex method with column gener-

ation can thus be given the following auction interpretation. At each round, we have

a restricted set of columns. We solve the LP, obtaining solutions to the primal and

dual with just these columns. We then identify a partition ω in our set of columns

such that z(ω) is a basic variable. If ω does not maximize the auctioneer’s revenue at

prices p, we identify a partition that does maximize revenue and introduce it as a new

column. This process is repeated until the basic solution found genuinely contains a

revenue-maximizing partition, at which point we turn to the bidders. (The auctioneer

and bidder phases alternate until a solution is reached.)

For each i ∈ N we identify an Si such that yi(Si) is a basic variable in the solution

to the primal. We present each Si together with prices p, the solution to the dual,

Chapter 6: Iterative Auctions 139

as a demand query.4 The interpretation is that the agent either accepts the bundle

at the given prices, or else “bids” on another by replying with a different bundle.

There are two variants at this point, that differ in how coefficients in the objective

are updated.

1. We perform a value query on agent i’s replied bundle to determine its column’s

coefficient in the objective.

2. We increase the coefficient on agent i’s replied bundle by a fixed increment

ε > 0.

In the second variant, we maintain a coefficient of ṽi(S) in the objective for column

yi(S), which throughout the auction satisfies

ṽi(S) < vi(S) + ε. (6.11)

The coefficients are set to 0 initially so the condition holds at the outset. We then use

an ε-demand-query at each round to generate new columns. If the proposed bundle

S∗ is not accepted, then the replied bundle S must satisfy

vi(S)−
∑

T∈B(S)

p(T) > vi(S
∗)−

∑

T∈B(S∗)

p(T) + ε

> ṽi(S
∗)−

∑

T∈B(S∗)

p(T)

and hence

vi(S) > ṽi(S
∗)−

∑

T∈B(S∗)

p(T) +
∑

T∈B(S)

p(T).

4The allocation (Si)i∈N may not be feasible, but this is of no consequence. The auction still pro-
ceeds correctly. The choice of Si for each agent corresponds to a rounding of the fractional solution.
The final solution to the LP will eventually be integer after enough constraints are generated, and
in this case the corresponding allocation will be feasible.

Chapter 6: Iterative Auctions 140

It follows that if we set

ṽi(S) = ṽi(S
∗)−

∑

T∈B(S∗)

p(T) +
∑

T∈B(S)

p(T) + ε (6.12)

then condition (6.11) is maintained. Also, note that because yi(S
∗) was a basic

variable, we originally had

ṽi(S)−
∑

T∈B(S)

p(T) ≤ ṽi(S
∗)−

∑

T∈B(S∗)

p(T)

⇒ ṽi(S) ≤ ṽi(S
∗)−

∑

T∈B(S∗)

p(T) +
∑

T∈B(S)

p(T)

and comparing with (6.12) we see that the coefficient ṽi(S) has been strictly increased

as ε > 0.

In this second variant, the replied bundle S may already have a corresponding

column in the LP formulation. In this case, only the coefficient is updated. Clearly,

this gives us a finite procedure for solving the LP. Each time a bundle S is bid on

its coefficient in the objective is increased. By condition (6.11), this can occur only a

finite number of times. Otherwise, the algorithm proceeds just like the usual column-

generation approach.

In column generation, various heuristics are possible to choose which columns

should be retained in memory. At one extreme, every column generated can be

retained for the remainder of the procedure; in order for this to work, we have to be

certain that the LP will be solved before too many columns are generated. At the

other extreme, only the current basic columns can be kept in memory, and the rest

discarded. In this case care needs to be taken to avoid cycling, by using, for example,

standard methods such as Bland’s rule [14].

Chapter 6: Iterative Auctions 141

6.4 Cutting Planes

Once the LP formulation has been solved by column generation, the result may

be a fractional solution. What we seek is an integer solution that defines a specific

feasible allocation, together with CE prices that support it. As a step toward this,

we need to strengthen the current LP formulation in order to eliminate the fractional

solution from the feasible set. The process of strengthening the formulation and then

solving it once again by column generation can then be repeated until an integer

solution is obtained. A standard technique for strengthening the formulation is the

use of cutting planes (see for example any of [9, 73, 109]). This involves introducing

new constraints into the formulation that cut off a fractional solution from the feasible

set, while leaving the integer solutions within the feasible set. Adding a constraint in

the primal means an additional variable is introduced in the dual, which changes the

price representation.

Again, de Vries and Vohra [32] were the first to note that cutting planes could

be used to strengthen formulations for auction algorithms, with the interpretation

that this increases the dimensionality of the price space. They suggested that column

generation could be used within the context of a branch-and-price scheme [35] to give

an auction protocol that dynamically updates the price representation, thus ensuring

that a competitive equilibrium is reached. Here we show how extending the pattern

that defines a pattern formulation can be interpreted as a cutting-plane method that

strengthens the formulation as required.

We break the exposition into a series of lemmas. First we give a lemma about

decompositions according to Algorithm 1. In words, it says that if T is a subset of S

Chapter 6: Iterative Auctions 142

such that no bundle in the decomposition of S clutters T (meaning that if T were to

be considered next, it would become part of the decomposition for bundle S), then

the bundles in B(S) that are subsets of T are exactly those in the decomposition

B(T).

Lemma 9 If T ⊆ S and there is no T ′ ∈ B(S) such that T ′ ¦ T , then

B(T) = {T ′ ∈ B(S) | T ′ ⊆ S}.

Proof. Suppose the first k elements T ′ ⊆ T that are considered are selected or

rejected identically in the decompositions of T and S. Clearly this is true when

k = 0. If the next element T ′ ⊆ T is rejected for the decomposition of T , this means

that some element in T ’s decomposition so far clutters T ′. As this element also

appears in the current decomposition of S, T ′ is also rejected for this decomposition.

If the next element T ′ is accepted for the decomposition of T but not S, then

there must be some S ′ ⊆ S that clutters T ′. Clearly S ′ must be ranked lower than

T ′. Hence we cannot have S ′ ⊆ T because otherwise it would have cluttered T ′ for

the decomposition of T as well. Since S ′ ¦ T ′ and T ′ ⊆ T , we have S ′ ∩ T 6= ∅.

But because S ′ 6⊆ T , we then have S ′ ¦ T . But this contradicts the fact that in the

final decomposition of S, no bundle clutters T . Hence element T ′ is also rejected or

accepted identically for the decompositions of both S and T .

Because no element in B(S) clutters T , the decomposition contains no element that

is a strict superset of T . This, combined with the fact that every bundle considered

for the decomposition of T is accepted or rejected identically as for the decomposition

of S, proves the lemma. ¤

Chapter 6: Iterative Auctions 143

In the lemmas that follow, B is the original pattern, and B̄ is the pattern obtained

by appending bundle T to B, where T 6∈ B.

Lemma 10 If T ′ 6∈ B(T), then the constraint corresponding to T ′ ∈ B in the pattern

B formulation also appears in the pattern B̄ formulation.

Proof. There are three cases.

1. T ′ ¦ T . Then we have B(S) = B̄(S) for each S ∈ B−1(T ′), because T cannot be

added to these bundles’ decompositions. Also, T ′ cannot be removed from their

decompositions. As a result, the constraint corresponding to T ′ also appears in

the pattern formulation with pattern B̄.

2. T ′ ∩ T = ∅. In this case, T ′ remains in the decomposition of each S ∈ B−1(T ′)

whether T is added to the decomposition or not. Hence the constraint corre-

sponding to T ′ remains intact after we append T to B.

3. T ′ ⊆ T . In this case, adding T cannot change the decomposition of any S ∈

B−1(T ′), because this would contradict Lemma 9. Any S ∈ B−1(T ′) has T ′ in

its decomposition, and if T ′ 6∈ B(T), then the conclusion of the lemma does not

hold. This means some element of B(S) must clutter T .

¤

The previous lemma identified which constraints remain intact in the formula-

tion after adding T to the pattern. The next two lemmas show that the remaining

constraints are broken up into two distinct constraints when moving to pattern B̄.

Lemma 11 If T ′ ∈ B(T), then S ∈ B−1(T ′) if and only if S ∈ B̄−1(T ′) or S ∈

B̄−1(T).

Chapter 6: Iterative Auctions 144

Proof. Assume S ∈ B−1(T ′). If T can be added to the decomposition of S, then

S ∈ B̄−1(T). Otherwise T ′ remains in the decomposition of S. This proves the

forward direction.

If S ∈ B̄−1(T ′), then we must have had S ∈ B−1(T ′) because T ′ cannot become

part of a bundle’s decomposition by adding T when it was not there already. If

S ∈ B̄−1(T), then we could add T to the decomposition of bundle S. By Lemma 9,

this means all bundles in B(T) were originally in the decomposition of S, in particular

T ′. Hence S ∈ B−1(T ′). This proves the reverse direction. ¤

Lemma 12 If T ′ ∈ B(T), then {S | S ∈ B̄−1(T ′)} ∩ {S | S ∈ B̄−1(T)} = ∅.

Proof. T ′ ∈ B(T) implies T ′ ⊆ T , so T and T ′ cannot both appear in the decompo-

sition of the same bundle. ¤

We are now ready to prove our main result. The idea is that all the constraints in

the original formulation with pattern B are either present or implied by the constraints

in the new formulation B̄.

Theorem 17 Appending a bundle to a pattern leads to a stronger pattern formulation

than the original.

Proof. Note that the two formulations share the same variables, and share con-

straints (6.7) and (6.8). By Lemma 10, those constraints (6.6) that correspond to

T ′ ∈ B such that T ′ 6∈ B(T) also appear in the formulation corresponding to the new

pattern B̄. By Lemmas 11 and 12, the constraint corresponding to T ′ ∈ B such that

T ′ ∈ B(T) in the original formulation is the sum of the constraints corresponding to

Chapter 6: Iterative Auctions 145

T ′ and T in the enw formulation. Hence every constraint in the pattern B formulation

are either present or implied in the pattern B̄ formulation. ¤

Given these results, we see that adding a bundle T to a pattern is equivalent to

adding a set of new constraints to the formulation, namely

∑

S∈B−1(T ′)

∑

i∈N

yi(S) ≤
∑

ω:ω∩B−1(T ′)6=∅

z(ω) (T ′ ∈ B(T))

∑

S∈B−1(T)

∑

i∈N

yi(S) ≤
∑

ω:ω∩B−1(T)6=∅

z(ω)

The constraints corresponding to T ′ ∈ B(T) in the original formulation become re-

dundant and can be dropped.

We now assume that agents have superadditive valuations, so that order 2 CE

prices exist. By the results of Section 3.3, it is sufficient to consider the following

formulation.

max
y(S),z(ω)

∑

S⊆M

v(S)y(S)

s.t.
∑

S∈B−1(T)

y(S) ≤
∑

ω:ω∩B−1(T)6=∅

z(ω) (T ∈ B)

∑

S⊆M

y(S) ≤ n

∑

ω∈Ω

z(ω) ≤ 1

y(S) ≥ 0 (S ⊆M)

z(ω) ≥ 0 (ω ∈ Ω)

Here y(S) is positive if some agents obtains S, and

v(S) = max
i∈N

vi(S).

Chapter 6: Iterative Auctions 146

A fractional solution to the original program gives a fractional solution to the latter

program, whereas given an integer solution to the latter program, we can derive an

integer solution to the original program. To do this, if y(S) = 1, then we allocate S

to the agent i that maximizes vi(S) (in case of ties we would need to solve a bipartite

matching problem). This is correct by the results of Section 3.3.

The following result explains how to cut off a fractional solution (y∗, z∗).

Proposition 6 Let (y∗, z∗) be an extreme point fractional solution for the formulation

corresponding to pattern B. If we append the set of bundles

Q = {S | y∗(S) > 0} ∪ {S | S ∈ ω for some ω s.t. z∗(w) > 0}

to B, in any order, then the formulation is strengthened and (y∗, z∗) is no longer

feasible.

Proof. Suppose we append the bundles from Q to pattern B, in any order. By

Theorem 17, this strengthens the formulation. Note now that the decomposition of

any bundle S such that y∗(S) > 0 is {S} itself. Also, the decomposition of any

S ∈ ω such that z∗(ω) > 0 is again {S} itself. Now assume that (y∗, z∗) is still a

feasible extreme point solution to the resulting formulation. Since the formulation

was strengthened, the solution must still be optimal. But note that there is now a

unique positive y ∗ (S) variable on the left-hand side of any constraint, as well as a

unique positive z∗(ω) variable on the right-hand side of any constraint. This means

that y∗ represents a convex combination of partitions, and since (y∗, z∗) was optimal,

each of these partitions must also be optimal. But this contradicts the fact that

(y∗, z∗) was an extreme point solution to the original program. ¤

Chapter 6: Iterative Auctions 147

To summarize, if we obtain a fractional extreme point solution (y∗, z∗), then ap-

pending the bundles in Q to the pattern cuts off the solution while strengthening the

formulation. The simplex method, with or without column generation, always finds

an extreme point solution. Note that the bundles in Q do not have to be added all at

once. We can add them one at a time, each time checking whether the fractional so-

lution is still feasible. In the worst-case all bundles will be added, thus ensuring that

the fractional solution is cut off. The size of Q is at most the number of basic variables

in the feasible solution, which is at most the number of constraints |B|+ n+1. Also,

note that we have the freedom to use various heuristics to choose the order in which

bundles from Q are appended to B. For instance, we may favor smaller or larger

bundles, depending on any insights we may have on the structure of the problem.

6.5 Discussion

In this chapter, we gave a distributed algorithm for the CAP based on column

and constraint generation. A flowchart of the combined process is given in Figure 6.2.

Because the algorithm interacts with agents via demand queries, it has a clear auc-

tion interpretation: at each round, an allocation and prices are computed; these are

presented to the agents, who bid on something else if they are not satisfied; the

process repeats. The auction expands the expressiveness of the price representation

incrementally. The auction adds nonlinearities into the price space as the rounds

progress in order to ensure that a CE exists. This gives us prices that are in some

sense intermediate between order 1 and 2 prices. Parkes’ iBundle(d) auction [78]

uses an approach that is similar in spirit: the auction moves from order 2 to order 3

Chapter 6: Iterative Auctions 148

Initial empty

formulation

Compute primal solution x

and dual solution p

Round x to

allocation S

Receive bids and

generate columns

Agents all happy

with allocation S

at prices p?

Generate constraints Is S feasible?

Output (S, p)

NO

YES

NO

YES

Figure 6.2: Flowchart of the column and constraint generation procedures.

prices gradually, introducing price discrimination for individual agents when this is

necessary to ensure the existence of CE prices. We restricted ourselves to the case of

superadditive valuations to focus on the issue of nonlinearity in pricing rather than

discrimination. To handle general valuations, we would need an auction that handles

both aspects, and this is an important next step for future work. In principle, the

cutting-plane approach should apply to the general case as well. The question is how

to detect that discrimination should be introduced rather than nonlinearity when we

are faced with a fractional solution.

Chapter 6: Iterative Auctions 149

The column-generation approach explained here in detail is closely related to

the subgradient method and iBundle(3) [78] (equivalently, the ascending-proxy auc-

tion [7]) in particular. If we use the column-generation approach with the order

3 formulation from the outset, we recover a protocol that is extremely similar to

iBundle. In our design, the LP coefficients can be construed as the agents’ bids. The

prices (dual solutions) may or may not agree with these bids, so prices and bids are

decoupled. If we use the order 3 formulation from the outset, however, we can simply

use the current coefficients as order 3 CE prices, making the prices equal to the bids

as in iBundle. Note that with the order 3 formulation, no cutting planes are ever re-

quired. The only remaining difference is then that with iBundle, entire best-response

sets are provided at each round, whereas in our design just a single element of each

set is needed. Moreover, our design would also work if entire best-response sets were

provided: we could simply generate a new column for some or all of the bundles in the

set. Conversely, it is simple to adapt iBundle so that less than the full best-reponse

set is required: revelation of a best-response set can simply be spread out over several

rounds [7].

In the worst-case, our auction may start with linear prices, and end up with a

formulation where prices are completely nonlinear. It is important to stress that in

this case, the final formulation is not the same as the formulation used for iBundle, so

the two auctions always remain distinct. Prices remain pseudo-additive throughout,

and this is a different language than XOR. The key difference is that in the pseudo-

additive language, a bundle’s decomposition can be computed without considering

any bundle’s value. In contrast, the atomic bid that gives a bundle its value in the

Chapter 6: Iterative Auctions 150

XOR language is precisely the subset that has highest value. Essentially, valuations

succinctly represented in the pseudo-additive language can be viewed as generaliza-

tions of additive valuations, whereas valuations succinctly represented in the XOR

language can be viewed as generalizations of unit-demand valuations.

Chapter 7

Application: Internet Advertising

Advertising has emerged as a dominant business model for Internet services, ac-

counting for a significant portion of the revenue of companies such as Google and

Yahoo. The two main forms of online advertising are sponsored search and dis-

play advertising. Sponsored search is the practice of listing advertisements alongside

search results. Display advertising refers to the placement of banner advertisements

on various websites.

In sponsored search, advertisers bid for placement on the page in an auction-style

format where the larger their bid the more likely their listing will appear above other

advertisements on the page. By convention, sponsored search advertisers generally

bid and pay per click, meaning that they pay only when a user clicks on their ad-

vertisement, and do not pay if their advertisement is displayed but not clicked. The

advertisements appear in a separate “sponsored” section of the page above or to the

right of the algorithmic results. The sponsored results are displayed in a format simi-

lar to algorithmic results: as a list of items each containing a title, a text description,

151

Chapter 7: Application: Internet Advertising 152

and a hyperlink to a web page. Auctions in sponsored search are commonly called

‘slot auctions’ or ‘position auctions’ (we adopt the latter term).

In display advertising, it is still common to use a posted price, which varies de-

pending on the website and also the size of the banner advertisement. Google, Yahoo,

and MSN also provide matching functions that will display banners throughout web-

sites in a network of affiliates. Here the matching is based on the content of the

advertisement, and a bid provided by the advertiser. Advertisers generally pay per

impression, meaning that they pay each time their banner is viewed. The trend in

display advertising is to allow advertisers to specify what kinds of users they are tar-

geting, e.g. by geographic location, interests, and even online behavior. This points

to the need for auctions that can allow bidders to express complicated, even combi-

natorial, valuations over user attributes.

This chapter first surveys the academic literature on sponsored search, covering

the relevant solution concepts for position auctions as well as the questions of effi-

ciency and revenue under these concepts. It then turns to the problem of allocating

advertisements among different websites, i.e. display advertising. I propose an expres-

sive auction design for this environment. The core of the design is a bidding language

that allows bidders to specify values for websites according to the sites’ attributes

(e.g. topic or geographic location of user), and also to place volume constraints on

impressions to control exposure. The bidding language allows for fast demand queries,

as well as fast allocation and pricing algorithms. I also propose a bidder feedback

mechanism that can recommend bid increases to agents who would like to achieve

greater volume. The expressive auction design is not an instance of the preference

Chapter 7: Application: Internet Advertising 153

elicitation framework given in earlier chapters, but shares the same core design prin-

ciple: providing an intuitive interface for bidders while representing valuations in a

way that allows for effective allocation and pricing algorithms.

Section 7.1 surveys the model, solution concepts, and central results on efficiency

and revenue for position auctions in sponsored search. Section 7.2 then turns to

the model for display advertising. Section 7.3 describes a bidding language for this

domain, analyzing the kinds of valuations it describes, and giving the complexity of

value and demand queries on instances of the language. Sections 7.4 and 7.5 discuss

various methodologies for allocation and pricing, respectively. Section 7.6 addresses

the incentives bidders would have to adjust bids. Section 7.7 describes the bidder

feedback mechanism.

7.1 Sponsored Search

For sponsored search, we focus on the problem of allocating the slots next to

search results for a single keyword among the advertisers. There arem positions to be

allocated among n bidders. It is common to assume that the (expected) click-through

rate of bidder i in position j is of the form αiγj, i.e. separable into an advertiser effect

αi ∈ [0, 1] and position effect γj ∈ [0, 1]. We have γ1 > γ2 > . . . > γk > 0 and let

γj = 0 for j > k. We will sometimes refer to αi as the relevance of bidder i.

Bidder i has value vi for each click. Bidders have quasi-linear utility, so that the

utility to bidder i of obtaining position j at a price of p per click is

αiγj(vi − p).

Chapter 7: Application: Internet Advertising 154

The auctioneer observes the advertiser effects, but the bidders’ values remain private.

A weight wi is associated with agent i, and agents bid for position. If agent i bids

bi, his corresponding reported score, or simply his score, is si = wibi. His true score is

ri = wivi. Agents are ranked by score, so that the agent with highest score is ranked

first, and so on. Note that the weights may depend on the advertiser effects, but not

on the bidder values, because the latter remain unobservable.

For clarity of notation, in this section agents are numbered such that agent i

obtains position i, unless mentioned otherwise. An agent pays per click the lowest

bid necessary to retain his position, so that the agent in position j pays
wj+1

wj
bj+1. We

refer to this payment rule as “second pricing.”

The second-price payment rule is reminiscent of the second-price (Vickrey) auction

used for selling a single item. Recall that in a Vickrey auction it is a dominant strategy

for a bidder to reveal his true value for the item [106]. However, it is well-known that

using a second-price rule in a position auction does not yield an incentive-compatible

mechanism, either in dominant strategies or ex post Nash equilibrium [1, 57]. With

second-pricing, there is no incentive for a bidder to bid higher than his true value per

click, but there may be an incentive to shade the true value.

Given that second pricing is not strategy-proof, it is natural to ask whether there

exists a payment rule that, together with a given weighting scheme, makes it a domi-

nant strategy for the agents to bid their true values. If we rank agents by score, then

charging agent i a total payment of

n
∑

j=i+1

(αiγj−1 − αiγj)
wjbj
wi

(7.1)

makes truthful reporting a dominant strategy. To reduce this to a payment per click,

Chapter 7: Application: Internet Advertising 155

simply divide by αiγi. Lahaie [57] applied Holmstrom’s Lemma [46] to derive the

strategyproof payment rules for models of Yahoo and Google’s position auctions,

which coincide with the special cases where wi = 1 and wi = αi, respectively. Iyengar

and Kumar [47] independently derived these rules using similar techniques. Aggarwal

et al. [1] derived payment rule (7.1) and confirmed uniqueness from first principles,

which gives some economic insight into why the rule works.

In typical position auctions such as those run by Yahoo and Google, bidders can

adjust their bids up or down at any time. As Börgers et al. [16], Edelman et al. [33],

and Varian [105] have noted, this can be viewed as a continuous-time process in

which bidders constantly readjust their bids to obtain the position that gives them

the highest surplus. If the process stabilizes the result can then be modeled as a Nash

equilibrium in pure strategies of the static one-shot game of complete information,

since each bidder will be playing a best-response to the others’ bids.

To simplify the statement of results, for the remainder of this section we assume

that there are as many positions as bidders. In a Nash equilibrium, each agent prefers

his own position to the others given the bids, so the following inequalities must be

satisfied:

πi = αiγi(ri − si+1) (i ∈ N) (7.2)

πi ≥ αiγj(ri − sj+1) (i ∈ N, j > i) (7.3)

πi ≥ αiγj(ri − sj) (i ∈ N, j < i) (7.4)

Here πi can be interpreted as the agent in position i’s weighted utility. Agent i’s

weighted utility for position j at price b per click is defined simply as wiαiγj(vi − b).

Börgers et al. [16] show that there can be a multitude of pure-strategy Nash

Chapter 7: Application: Internet Advertising 156

equilibria in a position auction. To get an idea of the allocations that can arise in

Nash equilibrium, we can ask, given an allocation of positions to bidders together with

bidder values, whether there exist a vector of scores s such that inequalities (7.2)–

(7.4) are satisfied. The question can be answered using linear programming methods

to test for the feasibility of the inequalities (7.2)–(7.4). Lahaie [57] also gives some

simple necessary conditions for the answer to be affirmative.

The multiplicity of possible equilibrium allocations makes it difficult to provide

precise results on efficiency or revenue in Nash equilibrium. Varian [105] introduced

a refinement of the Nash equilibrium concept for position auctions which he called

“symmetric equilibrium.” Edelman et al. [33] independently introduced this refine-

ment and called it “locally envy-free equilibrium.” With a slight modification we can

make the Nash equilibrium inequalities above resemble those that arise in the assign-

ment problem. In inequalities (7.4), we replace sj by sj+1. For clarity of notation we

let pi = si+1. A symmetric NE then satisfies

πi = αiγi(ri − pi) (i ∈ N) (7.5)

πi ≥ αiγj(ri − pj) (i ∈ N, j 6= i) (7.6)

Varian [105] shows that symmetric equilibrium is indeed a refinement of Nash equi-

librium, and that a symmetric equilibrium always exists. In addition, in symmetric

equilibrium, agents are necessarily ranked by true score.

The set of symmetric equilibria forms a lattice [101, 105]. In particular, it has

minimal and maximal elements, which minimize and maximize the auctioneer’s rev-

enue among the set of symmetric equilibria, respectively. The maximal and minimal

elements have simple closed-form expressions, namely the upper- and lower-recursive

Chapter 7: Application: Internet Advertising 157

solutions for symmetric equilibria given by Varian [105] and Edelman et al. [33]. The

form of the minimal element is particularly interesting:

n
∑

j=i+1

αi(γj−1 − γj)
wjvj
wi

. (7.7)

(See Varian [105] or Lahaie and Pennock [60].) Note that payment (7.7) agrees

exactly with (7.1). This is not an accident: the set of symmetric equilibria coincides

with the set of dual solutions to the linear programming formulation of the position

auction as an assignment problem, and Leonard [62] has shown that the minimal dual

solutions in the assignment problem coincide with Vickrey payments. Hence minimal

symmetric equilibrium bids should coincide with Vickrey payments, or, in the case of

a position auction, the weighted equivalents of Vickrey payments, which are given by

Holmstrom’s lemma. As a result, minimal symmetric equilibria and strategy-proof

position auctions are revenue-equivalent, a point first made by Aggarwal et al. [1].

We now turn to the question of efficiency under each of these solution concepts:

dominant strategies, Nash equilibrium, and symmetric equilibrium. To maximize

total value, we need to order the agents according to some permutation σ such that

the inner product of the vectors (ασ(j)vσ(j))j∈K and (γj)j∈K is maximized. Because

γ1 > γ2 > . . . > γk, it is efficient to rank agents in decreasing order of αivi, by

standard results on rearrangements (see Hardy et al. [44] and also Lahaie [57]).

When using the strategy-proof payment rule (7.1), agents reveal their true values

and therefore are ranked by true score. Hence, if we take wi = αi, the resulting

equilibrium allocation is efficient. This fact applies to the symmetric equilibrium

concept as well, because in symmetric equilibrium agents are ranked by true score.

As for Nash equilibrium, Lahaie [57] provides a constant-factor bound on the possible

Chapter 7: Application: Internet Advertising 158

deviation from efficiency. We denote the total value of an allocation σ of positions to

agents by κ(σ) =
∑k

j=1 γjrσ(j). Let

L = min
j=1,...,k−1

min

{

γj+1

γj
, 1−

γj+2

γj+1

}

Let η be the permutation such that rη(1) ≥ . . . ≥ rη(k). The bound is as follows.

Proposition 7 For an allocation σ that results from a pure-strategy Nash equilibrium

of a position auction, we have κ(σ) ≥ Lκ(η).

For the common exponential decay model of γi = δ1−i for δ > 1, the factor

becomes L = min{1
δ
, 1− 1

δ
}. Feng et al. [37] report that an exponential decay model

with δ = 1.428 fits their Overture click-through rate data well. In this case, L ≈

1/3.34. Though being a factor of more than 3 away from the efficient value may seem

unacceptable, we stress that this is a worst-case bound, and we would expect actual

deviations to be much less than this in practice.

As for revenue, again, because multiple different allocations can arise in Nash

equilibrium, it is difficult to give a precise characterization of equilibrium revenue.

Revenue in minimal symmetric equilibrium is amenable to analysis, on the other

hand, and this selection is also relevant because it provides a lower bound on the

revenue in any symmetric equilibrium. Recall also that dominant-strategy equilib-

rium is revenue-equivalent to minimal symmetric equilibrium in position auctions, as

explained above.

Lahaie and Pennock [60] provide a mathematical program whose solution gives the

revenue-optimal ranking rule for a position auction given a distribution F over bidder

values and relevance (with corresponding density f), assuming the minimal symmet-

Chapter 7: Application: Internet Advertising 159

ric equilibrium is played. According to their analysis, bidders should be ranked by

“virtual score” αiψ(αi, vi) to optimize revenue, where

ψi(αi, vi) = vi −
1− Fi(vi|αi)

fi(vi|αi)
.

However, we are constrained to ranking rules that correspond to a certain weighting

scheme wi ≡ g(αi). In general it is not possible to reproduce virtual valuations via a

weighting scheme, but a revenue-optimal ranking rule can be implemented in certain

special cases, e.g. if the bidders’ values are distributed uniformly and uncorrelated

with relevance.

7.2 Display Advertising

We now turn to the problem of allocating advertisements across different sites,

rather than within a single webpage, and adapt the model accordingly. The model we

give is best suited to the domain of online display advertising, rather than sponsored

search. Let N be the set of bidders and let M be the set of sites. Let n = |N | and

m = |M | be the numbers of bidders and sites, respectively. We assume that each site

has exactly one position available for an advertisement.

We denote the set of real-valued vectors with entries indexed by elements of M

by RM . The analogous set of integer-valued vectors is denoted by ZM . A non-

negative element of ZM represents a set of impressions on the various sites. Each

bidder i has a valuation defined over sets of impressions, vi : Z
M
+ → R+. We consider

valuations over impressions because the display advertising domain typically prices

impressions rather than clicks; the model could be easily adapted to per-click pricing

Chapter 7: Application: Internet Advertising 160

by introducing advertiser effects as in Section 7.1.

We will only need to consider linear prices, so prices are elements of RM . (The

reason for this restriction is that linear competitive equilibrium prices will always

exist in our model, as explained in Section 7.3.2.) For x ∈ ZM , we denote the entry

corresponding to site j by x(j), and similarly for elements of RM . The total price of

a set of impressions x ∈ ZM
+ at prices p ∈ RM is the inner product 〈p, x〉, where

〈p, x〉 =
∑

j∈M

p(j)x(j).

Bidders have quasi-linear utilities, so that the utility to bidder i of impressions x ∈ ZM
+

at prices p ∈ RM is vi(x)− 〈p, x〉.

7.3 Bidding Language

We first describe the bidding language in terms of the data structures that would

be used to encode its instances, and then turn to the properties of the valuations it

describes.

7.3.1 Bid Trees

To encode valuations, we propose “bid trees” that enable advertisers to specify

values for various kinds of impressions, where impressions are differentiated according

to certain attributes (e.g. geographic location).1 The attributes and their possible

values are determined by the auctioneer.

1Tree-based languages have been proposed for combinatorial auctions, e.g. the LGB language of
Boutilier and Hoos [20], as well as for combinatorial exchanges, e.g. TBBL by Cavallo et al. [22].
The language proposed here represents a smaller class of valuations than either of those languages,
but is specially tailored to the domain of display advertising.

Chapter 7: Application: Internet Advertising 161

$.0

$.0

CA

$.5

{auto,sports}

$-.1

news

$.1

blog

$.2

FL

(a) Bid tree.

$.0

$.0

CA

$.5

{auto,sports}

$-.1

news

$.1

blog

$.0 0

fashion

$.2 50

FL

(b) Capacitated bid tree.

Figure 7.1: Instances of the bidding language for keyword auctions.

For instance, suppose a car manufacturer wishes to run an online campaign to

advertise a new truck model. The campaign should only run in California and Florida.

In Florida, the campaign should have a limited exploratory run across a variety of

sites, to see what demographics respond best to the new model. In California, the

campaign should project a “rugged” image for the truck. The company therefore

decides to run its banner ad next to content with an “automotive” or “sports” theme,

and to avoid any content with a “fashion” theme. It also decides to value exposure

on blogs and devalue mainstream news sites, because it would like the campaign to

have “grassroots” appeal.

A candidate bid tree for this kind of valuation is given in Figure 7.1(a). The root

node represents all impressions over all sites in the publishing network. The value of

an impression from a certain source is evaluated by traveling down the tree following

attributes that apply, starting at the root, and summing the values in the nodes along

Chapter 7: Application: Internet Advertising 162

the way. (A bidder may branch on a set of attributes for succinctness.) Here, any

impression that is not from CA or FL has value $0. In FL, impressions have value

$.2. In CA, impressions have value $.5, but only if they are from automotive or sports

sites. Finally, impressions from automotive or sports sites in CA are valued $.1 more

if they are on blogs, but $.1 less if they are on news sites.

However, we argue that there is still a disconnect between the bid tree in Fig-

ure 7.1(a) and the company’s valuation. Exposure outside of CA or FL is worthless,

but does not do any harm if it occurs, so it indeed has value $0. On the other hand,

exposure on fashion sites in CA does do harm, because it goes against the brand im-

age the advertiser is trying to project in that state. Also, there is no telling how many

impressions will come from FL, even though the run there should be limited. Hence

we further allow advertisers to annotate nodes with capacities. In Figure 7.1(b), there

is a new node for fashion sites in CA, with a capacity of 0 to ensure no impressions.

The FL node now has a capacity of 50,000 to ensure the campaign there is limited to

this amount of exposure.2

7.3.2 Properties

The value functions encoded by bid trees can be described formally as follows.

In the site listing M , sites that are identical across all attributes may be considered

equivalent, and their available impressions can be aggregated. The auctioneer decides

which combination of attributes each site exhibits, and makes the categorizations

2A capacity of 50,000 also ensures that the advertising budget in FL will not exceed $10,000
because the auction design will never charge an advertiser more than its value per impression.
Capacity and budget constraints are not equivalent, however. With a budget constraint, the effective
volume constaint varies as prices change. I will not handle budget constraints of this form.

Chapter 7: Application: Internet Advertising 163

public to the bidders.

Given a bid tree, we can define a family T of subsets of M corresponding to each

node. For instance, for the tree of Figure 7.1 we would have the set of all sites that

appear in CA, the set of all automitive or sports sites in CA, the set of all automotive

or sports blogs in CA, etc. It is straightforward to see that, because of the tree format,

this family is laminar ; i.e. for any T, T ′ ∈ T , either T ⊆ T ′, T ′ ⊆ T , or T ∩ T ′ = ∅.

To each T ∈ T is associated an integral capacity cT (possibly +∞) and a bid bT .

Define the indicator functions

vT (r) =











bT r if 0 ≤ r ≤ cT

−∞ otherwise

for each T ∈ T . Here r is a non-negative scalar, representing a certain number of

impressions.

The agent’s value for a set of impressions x ∈ ZM is then

v(x) =
∑

T∈T

vT (x(T)) (7.8)

where x(T) is shorthand for
∑

j∈T x(j), i.e. the sum of all impressions over all sites

in T .

Danilov et al. [29] show that functions of the form (7.8), where T is laminar and

each vT exhibits decreasing marginal values over some interval (and is −∞ outside

this interval), satisfy the substitutes condition.3 (In our case the marginal values are

constant up to a threshold, not just weakly decreasing.) Recall from Section 3.3 that

order 1 CE prices exist when the agents have substitutes valuations—this justifies

3Danilov et al. call functions that satisfy the substitutes condition “M\-concave.” The “substi-
tutes condition” is terminology from the microeconomics literature.

Chapter 7: Application: Internet Advertising 164

our restriction to linear prices. However, the question of whether bidders would bid

truthfully with an appropriate choice of order 1 CE prices remains—incentive concerns

are addressed later in Section 7.6.

We chose bid trees as a language in part because the associated value functions

satisfy the substitutes condition. Not only does the condition guarantee the existence

of order 1 CE prices, it also allows for fast allocation and pricing algorithms. The bid

tree language is indeed suitable for bidding, in the sense of Chapter 4. Let y ∈ ZM

be a set of impressions whose value is queried. The integer program to evaluate a

value query is as follows.

max
∑

T∈T

∑

j∈T

bTy(j)

s.t.
∑

j∈T

y(j) ≤ cT (T ∈ T) (7.9)

This program is somewhat artificial because it has no choice variables, but recall that

when it is embedded within a winner-determination MIP, the y vector becomes a

choice variable. The objective evaluates the total value of the impressions following

the semantics of the bid tree. However, if any of the capacity constraints are violated,

the program is infeasible, which is a flag that indicates the value is −∞. When this

formulation is embedded within a multi-agent allocation program, the auctioneer will

never allocate sets of impressions that violate capacity constraints.

7.3.3 Queries

As explained in Chapter 4, there are two fundamental queries that are typically

made on bidding languages in auction-style algorithms: value and demand queries.

Chapter 7: Application: Internet Advertising 165

Clearly, the time to evaluate the response to a value query is at most the depth of

the bid tree. This is at most t = |T |, the size of the bid tree, but can be around the

order of log t if the tree is balanced.

For a valuation of the form (7.8) derived from a bid tree, the response to a demand

query (given linear prices) can be computed using Algorithm 6, which is a greedy

algorithm. For j ∈ M , χj denotes the unit vector with entry j being 1 and all

others 0. Let 0 be the zero vector. Let vj =
∑

T3j bT be the marginal value from

an impression on site j, and let π(j) = vj − p(j) be the marginal surplus. (We can

refer to the marginal value of an impression without reference to impressions that

have already been obtained, because the marginal values described by a bid tree are

always constant as long as volume constraints are not violated.)

Algorithm 6 computes a response to a demand query, given prices and a proposed

set of impressions. It is a greedy algorithm. It considers impressions in decreasing

order of marginal utility, and collects each impression considered unless the addition

violates a volume constraint. After sorting the elements, the greedy algorithm runs

in linear time for a worst-case bound of O(m logm+mt logC), where t is the size of

the bid tree and C the maximum capacity over all nodes in the tree.4 We record the

correctness of the algorithm as a lemma.

Lemma 13 Algorithm 6 correctly outputs a set of impressions x ∈ argmax v− p, or

yes if x0 maximizes utility.

Proof. Let x be a set of impressions with v(x) > −∞. If x(j) > 0 but π(j) < 0,

4Murota [72] gives a steepest ascent algorithm that can compute the response to demand queries
in time O(tm2C) for any valuation that satisfies the substitutes property (here t is the time required
for an oracle to answer value queries). Bid tree valuations have a more special structure that allows
for the faster, linear-time greedy algorithm given here.

Chapter 7: Application: Internet Advertising 166

Input: A set of impressions x0 ∈ ZM and linear prices p ∈ RM .

Output: A utility-maximizing set of impressions x ∈ ZM , or yes if x0

maximizes utility.

Set x := 0.

For each T ∈ T , set dT := cT .

Discard the elements j ∈M that have π(j) < 0.

Sort the remaining elements according to π. In case of a tie, break arbitrarily.

foreach j ∈M in order do

Set k := min{T∈T | T3j} dT .

Set x := x+ kχj.

foreach T ∈ T such that T 3 j do

Set dT := dT − k.

end

end

if v(x0)− 〈p, x0〉 = v(x)− 〈p, x〉 then

Output yes.

end

else

Ouput x.

end

Algorithm 6: Greedy algorithm for demand queries on bid trees.

then we can increase utility while respecting volume constraints by setting x(j) := 0.

So we can safely restrict our attention to the set of sites j such that π(j) ≥ 0, as

Algorithm 6 does. Let U be the set of such sites. We consider the restriction of

vU of v to such sites. By Theorem 6.13 of Murota [72] this restriction still satisfies

Chapter 7: Application: Internet Advertising 167

the substitutes condition, and so does the function vU − pU , where pU denotes the

restriction of p to U .

Since vU − pU satisfies the substitutes condition, the set of x such that vU(x) −

〈pU , x〉 > −∞ is a matroid, by Proposition 6.1 of Murota [72]. Therefore, by a

result of Edmonds [34] (see also Theorem 13.20 in Korte and Vygen [53]), the greedy

algorithm correctly identifies a maximum weight basis, which in this case corresponds

to a utility-maximizing bundle x. The final if-statement ensures that yes is returned

if x0 maximizes utility. ¤

Because our bidding language only represents substitutes valuations, demand

queries with linear prices can be evaluated in polynomial time. Among the bid-

ding languages introduced in Section 4.2, only XOR had this feature; for the others,

evaluating a demand query is NP-hard [74]. The XOR language does not seem ap-

propriate for this domain, however. It does not provide the ability to specify volume

constraints, and cannot succinctly represent the additive valuation, which is plausible

in this domain.

7.4 Allocation

A natural way to allocate impressions in an online fashion is to give each arriving

impression to the advertiser who values it most among those advertisers for whom the

extra impression would not violate any volume constraints. We note that this scheme

is not efficient in our context. Volume constraint are the source of the complication,

as the following example illustrates.

Chapter 7: Application: Internet Advertising 168

Example. There are two bidders {a, b} and two impressions available, one from Mas-

sachusetts (MA) and one from California (CA). The valuations as bid trees are

a : 2 1 b : 0

1

MA

If the MA impression comes before the CA impression, the greedy scheme assigns

MA to a and CA to b, for a value of 2. But it is optimal to assign MA to b and CA

to a, for a value of 3.

To better allocate impressions over time, we assume the auctioneer has an esti-

mate of the number of impressions available (over some fixed time period) on each

site. (Again, a site can be construed as a distinct combination of attributes, and we

aggregate the impressions over sites that are identical over all attributes.) Let z(j)

be the average number of views received by site j.

The efficient allocation problem can be formulated as a linear program. We dis-

tinguish between the nodes, bids, and capacities of different bidders by indexing the

variables by their corresponding agent i. The linear programming formulation is then

max
x

∑

i∈N

∑

T∈Ti

∑

j∈T

biTxi(j)

s.t.
∑

j∈T

xi(j) ≤ ciT (T ∈ Ti, i ∈ N) (7.10)

∑

i∈N

xi(j) ≤ z(j) (j ∈M) (7.11)

xi(j) ≥ 0 (i ∈ N , j ∈M)

where (7.10) enforces the bidder’s capacity constraints and (7.11) ensures that the

number of impressions does not exceed the supply.

Chapter 7: Application: Internet Advertising 169

Because the agents’ valuations satisfy the substitutes condition, this linear pro-

gram in fact has an integer optimal solution. In our context this is not important,

because the zs are estimates anyway, and presumably large. However, this fact does

make the auction design suitable to situations where there is a small, fixed number

of impressions available (e.g. in a television station’s daily programming schedule),

so we record it as a proposition.

Proposition 8 When agents submit their valuations as bid trees, the corresponding

allocation LP has an integer optimal solution.

Proof. The primal is clearly feasible and bounded, and hence so is the dual. From

Lemma 14 below, optimal primal and dual solutions x and (π, p) imply that (x, p) is a

competitive equilibrium, where the allocation x is possibly fractional. So a fractional

CE exists. Because the bidders all have substitutes valuations, if then follows from

Theorem 11.14 of Murota [72] that there exists a CE (x′, p) where x′ is integer.

Applying Lemma 14 once again, we see that x′ is an integer optimal solution to the

primal. ¤

There are several algorithms available to solve the allocation LP. Any variant of

simplex method would likely be effective [9, 24]. In this case, though, there are also

purely combinatorial algorithms, which may be easier to implement. Kelso and Craw-

ford’s [50] original ascending-price auction for substitutes valuations can be adapted

to this setting, and leads to an approximately optimal solution. The approximation

can be improved to the extent needed by decreasing the bid increment (which in-

creases the runtime as well). Ausubel [5] gives an ascending-auction procedure that

can terminate at the smallest or largest CE price vectors, although it involves solv-

Chapter 7: Application: Internet Advertising 170

ing a submodular function minimization at each round, which could be costly (this

is polynomial time, but the worst-case exponents are very high—see Chapter 45 of

Schrijver [100]). Since demand queries are quick to evaluate, the primal-dual method

may hold the greatest promise if we need an exact solution.

7.5 Pricing

The linear programming approach to the allocation problem is useful because it

also provides prices for various kinds of impressions. Let p(s) be the dual variable

corresponding to the constraint for s in (7.11) in the LP, and let πiT be the dual

variable corresponding to the constraint for i and T ∈ Ti in (7.10). The dual of the

LP is as follows.

min
π,p

∑

i∈N

∑

T∈Ti

πiT ciT +
∑

j∈M

p(j)z(j)

s.t.
∑

{T∈Ti | T3j}

πiT ≥
∑

{T∈Ti | T3j}

biT − p(j) (i ∈ N , j ∈M) (7.12)

πiT ≥ 0 (i ∈ N , T ∈ Ti)

p(j) ≥ 0 (j ∈M)

We claim that for a dual solution (π, p), the p component represents competitive

equilibrium prices. In this context, we have a CE if for any efficient allocation (x∗i)i∈N ,

we have for all i ∈ N and xi ∈ RM ,

vi(x
∗
i)− 〈p, x

∗
i 〉 ≥ vi(xi)− 〈p, xi〉,

and any j such that
∑

i∈N x
∗
i (j) < z(j) has p(j) = 0; this last condition ensures that

the allocation maximizes the auctioneer’s revenue. Competitive equilibrium prices

Chapter 7: Application: Internet Advertising 171

are also always non-negative.

Lemma 14 There is a vector π such that x and (π, p) are optimal primal and dual

solutions to the allocation LP if and only if (x, p) is a competitive equilibrium.

Proof. Let x and (π, p) be optimal primal and dual solutions, respectively. By

the dual constraints, p ≥ 0. By complementary slackness, p(j) > 0 implies that

∑

i∈N xi(j) = z(j), and the contrapositive of this fact implies that any site j whose

impressions are not fully allocated has p(j) = 0. This shows that the allocation x

maximizes revenue for the seller.

By complementary slackness, if xi(j) > 0 then

∑

{T∈Ti | T3j}

πiT =
∑

{T∈Ti | T3j}

biT − p(j).

Summing over all j ∈M yields

∑

j∈M

∑

{T∈Ti | T3j}

πiTxi(j) =
∑

j∈M

∑

{T∈Ti | T3j}

biTxi(j)−
∑

j∈M

p(j)xi(j). (7.13)

The right-hand side of this equality is the surplus to bidder i from outcome (x, p).

Let x′ be any feasible allocation. Summing constraints (7.12) yields

∑

j∈M

∑

{T∈Ti | T3j}

πiTx
′
i(j) ≥

∑

j∈M

∑

{T∈Ti | T3j}

biTx
′
i(j)−

∑

j∈M

p(j)x′i(j). (7.14)

The right-hand side of this inequality is the surplus to bidder i from outcome (x′, p).

The left-hand side of (7.13) can be re-written as

∑

j∈M

∑

{T∈Ti | T3j}

πiTxi(j) =
∑

T∈Ti

πiT

(

∑

j∈T

xi(j)

)

,

and the right-hand side of (7.14) can be rewritten analogously. By complementary

slackness, πiT > 0 implies that
∑

j∈T xi(j) = ciT , so the vector x maximizes the last

Chapter 7: Application: Internet Advertising 172

expression, given the primal feasibility constraints. Hence

∑

j∈M

∑

{T∈Ti | T3j}

πiTxi(j) ≥
∑

j∈M

∑

{T∈Ti | T3j}

πiTx
′
i(j). (7.15)

Combining (7.13), (7.14), and (7.15) shows that x maximizes bidder i’s surplus at

prices p. Hence (x, p) is a competitive equilibrium.

Now let (x, p) be a competitive equilibrium. We define a vector π by doing the

following for each i ∈ N . First, set πiT = 0 for each T ∈ Ti such that
∑

j∈T xi(j) < ciT .

From the remaining T ∈ Ti, for each j ∈M such that xi(j) > 0, let Tj be the minimal

element of Ti such that T 3 j. Because Ti is laminar, this choice is unique. The family

{Tj}j∈M is also laminar. For each element Tj in this family, let T̄j be the minimal

element of the family that is a subset of Tj. Again, because of the laminar property,

this element is either well-defined or does not exist. We set

πiTj
=

∑

{T∈Ti | T3j}

biT − pj − πiT̄j
,

where if T̄j does not exist, πiT̄j
= 0. This is a recursive definition: we can evaluate

the πi vector by visiting the elements of {Tj}j∈M from maximal to minimal. By

construction, we have

∑

{T∈Ti | T3j}

πiT =
∑

{T∈Ti | T3j}

biT − p(j)

for each j such that xi(j) > 0. If xi(j) = 0, then let Tk be a minimal element from

our family that contains j. If there is no such k, the surplus from each unit of j must

be zero, because otherwise x would not maximize agent i’s utility (we could take an

additional unit of j without violating any volume constraints). Now, the marginal

utility of j must be less than the marginal utility of k, because otherwise we could

Chapter 7: Application: Internet Advertising 173

switch one unit of k for one unit of j, which would strictly increase utility without

violating any constraints, a contradiction. Hence, we have

∑

{T∈Ti | T3k}

πiT =
∑

{T∈Ti | T3j}

πiT

=
∑

{T∈Ti | T3j}

biT − p(j)

≥
∑

{T∈Ti | T3k}

biT − p(j).

So the constructed vector π is feasible. Finally, note that if p(j) > 0, we must have

∑

i∈N xi(j) = zj, or else the allocation would not maximize the seller’s revenue. As

x and (π, p) are feasible primal and dual solutions that satisfy the complementary

slackness conditions, they are optimal. ¤

In fact, because each agent’s valuation satisfies the substitutes condition, the set

of competitive equilibrium prices is a lattice under the usual meet and join operations

for real vectors, defined as

(p ∨ q)(j) = max{p(j), q(j)}

(p ∧ q)(j) = min{p(j), q(j)}

for all j ∈ M . We record this as a proposition; it will be relevant when we discuss

incentives later.

Proposition 9 The set of competitive equilibrium prices is a lattice when valuations

are described by bid trees.

Proof. From Proposition 8 and Lemma 14, there exists a CE (x, p) where x is integer.

Because the bidders’ valuations all satisfy the substitutes condition, it follows from

Chapter 7: Application: Internet Advertising 174

Theorem 11.16 of Murota [72] that the set of CE prices forms a lattice (see also Gul

and Stachetti [43]). ¤

The lattice property allows the auctioneer to be consistent in his choice of prices.

Since a lattice has a unique minimal element p
¯
and a unique maximal element p̄,

the auctioneer may choose to consistently implement either of these. The minimal

element gives the most possible surplus to the bidders, while the maximial element

gives the most possible revenue to the seller, among the set of CE prices. Because the

set of dual solutions to an LP is convex, so is the set of CE prices, and so αp
¯
+(1−α)p̄

is also a vector of CE prices, for any α ∈ [0, 1]. This allows the auctioneer to modulate

the allocation of surplus between the bidders and seller.

To compute a maximal or minimal CE price vector, we replace the objective in

the dual with
∑

j∈M

p(j)z(j)

i.e. it becomes simply the auctioneer’s revenue. We also introduce the constraint

∑

i∈N

∑

T∈Ti

πiT ciT +
∑

j∈M

p(j)z(j) = OPT

where OPT is the optimal value of the primal program (or equivalently the original

dual program, by strong duality). This ensures that the solution for the new program

will be optimal for the original dual program. To compute minimal CE prices, we use

a minimization in the objective, because the vector of CE prices that minimizes the

auctioneer’s revenue is the minimal element of the lattice. To compute the maximal

element, we use a maximization in the objective. This approach to computing the

maximal and minimal elements was suggested by Parkes [80], and it works for any

Chapter 7: Application: Internet Advertising 175

integral LP formulation of the CAP. In our case, because bid trees represent sub-

stitutes valuations, there also exist purely combinatorial algorithms; Chapter 12 of

Murota [72] shows how the problem of computing either element can be formulated

as the dual of a shortest path problem.

Competitive equilibrium prices are useful because they ensure a certain stability

in the bids. If agents act purely as price takers, then they are satisfied with the given

allocation, because it maximizes their utility. The auctioneer is also satisfied because

no impression that could have generated more revenue goes unallocated.

Of course, agents may realize that they are not in fact price-takers, and that the

prices—being dual variables of the allocation LP—should vary as the bid trees are

changed, either in structure or value. It is therefore instructive to consider what

incentives the agents may have to alter their bid trees. Ideally, we would like to reach

a scenario where the agents are satisfied with their current bid trees as far as the

allocation and prices that result. In this kind of equilibrium situation, the bid trees

remain static, which lessens the burden on the system. The next section addresses

this design issue.

7.6 Incentives

To achieve an ex post Nash equilibrium, we should implement Vickrey payments.

Unfortunately, it may not be possible to achieve Vickrey payments in a competitive

equilibrium, as the following example shows.

Example. There are two bidders {a, b} and two identical impressions available. The

Chapter 7: Application: Internet Advertising 176

valuations are:

a : 2 b : 3 1

The efficient allocation gives 1 impression to each, for a total value of 5. The only

possible CE price is p = 2: any p < 2 makes agent a desire 2 units, whereas any p > 2

makes it desire 0 units. But under the VCG mechanism, agent a makes a surplus of 2

because this is its marginal contribution to efficiency, and hence its Vickrey payment

of must be 0.

In this model, Vickrey payments cannot be priced because the price space is

not rich enough—we only consider order 1 prices. We saw in Section 3.5 that with

substitutes valuations, only order 3 prices can always price the Vickrey payoff point.

One possibility would be to have a concise representation of such order 3 prices. For

instance, we could simply quote the bid trees back to the bidders together with a

discount, as in the elicitation scheme of Chapter 5.

This does not seem appropriate for this domain, because bidders can enter or

leave the system at any time in a typical online ad auction, and so it is necessary

to provide informative prices to new arrivals. Order 1 prices are very informative:

they are easy to interpret, and apply to everyone. Order 3 prices, on the other hand,

mean that there is no useful information for new entrants: they have to develop a

bid tree and submit it to see if they can afford anything at all. Order 1 prices also

have the advantage that they can be easily integrated into optimization problems on

the bidder side—for instance, the problem of answering a demand query—especially

if the optimizations rely on linear programming methods.

An alternative then is to quote the order 1 prices that minimize the incentives for

Chapter 7: Application: Internet Advertising 177

bidders to switch positions. This may be a good compromise if bidders are bounded-

rational and would not notice or bother to switch when this would yield just a small

improvement in payoff. In this case, Day and Milgrom [30] have shown that the CE

prices that minimize the seller’s revenues (and hence maximize the bidders’ surplus)

maximize the incentives for truthful reporting (see also Parkes et al. [84] for a related

result in the context of combinatorial exchanges). Therefore, implementing the small-

est order 1 CE price vector p
¯
leads to the most stable system, if we restrict ourselves

to linear prices.

7.7 Bidder Feedback

Expressive bidding is appealing to advertisers because they can precisely specify

their values for different kinds of impressions. On the other hand, it may prove

daunting for certain advertisers to figure out how to update their bid trees to obtain

more volume. In this section, we describe a simple bidder feedback mechanism that

can suggest bid tree updates to bidders who want to increase their volume for certain

kinds of impressions.

Suppose bidder i wants to receive at least diT impressions from sites in T ⊆ M ,

where T ∈ Ti is a node in bidder i’s bid tree. For example, the advertiser with the

bid tree in Figure 7.1(b) may only receive 10,000 impressions from FL, and want to

increase FL impressions to 20,000. Naturally, the advertiser should first ensure that

the volume constraint for the node is ciT ≥ diT . If this change still does not give the

desired volume, the bid biT should be increased.

Chapter 7: Application: Internet Advertising 178

Suppose we introduce the constraint

∑

j∈T

xi(j) ≥ diT (7.16)

into the linear program given in Section 7.4 to find an efficient allocation. Let λ be

the dual variable corresponding to this constraint. The following lemma confirms

that λ is informative feedback to the bidder.

Lemma 15 Suppose bidder i increases biT to biT + λ in its bid tree, and leaves the

bids in the other nodes unchanged. Then there exists an efficient allocation, with

respect to the new profile of bid trees, in which i receives at least diT impressions from

T ⊆M .

Proof. Consider the primal program with constraint (7.16) added. By strong duality,

a solution x is primal optimal for this program if and only if it is feasible and optimal

for the program obtained by dualizing constraint (7.16). This latter program has the

objective

max
∑

i∈N

∑

S∈Ti

∑

j∈T

b′iSxi(j)− λdiT

where

b′iS =











biS + λ if S = T

biS otherwise

We can drop the trailing constant λdiT from the objective, which recovers the original

allocation LP, except that the bid vector b has been replaced with the updated bid

vector b′. Hence x is an optimal solution when bidder i increases biT by λ, and since

it was feasible for the original program, it satisfies (7.16). ¤

The lemma shows that, just as bids can be specified at various levels of granularity,

local updates to the bid tree can affect volumes at different levels of granularity. For

Chapter 7: Application: Internet Advertising 179

instance, if a bidder wishes to increase overall impressions regardless of origin, the

feedback scheme would suggest an appropriate bid increase at the root node.

The feedback mechanism only advises on how to update values within a bid tree,

not on how to update the tree’s structure. One way to elicit structure, in line with

the approach of the preference elicitation framework, would be to develop a learning

algorithm for bid trees using value and demand queries. This is an important next

step for future work.

Chapter 8

Conclusions

The combinatorial allocation problem abstracts the resource allocation problems

of several domains in both the private and public sector, such as bandwidth allocation,

vehicle routing, spectrum allocation, and industrial procurement. Internet advertising

is also a domain where complicated preferences increasingly need to be modeled,

as advertisers demand more control over the targeting of their online campaigns.

This dissertation described, instantiated, and implemented a preference elicitation

framework for the CAP that in principle allows for a variety of representations for

agent preferences.

The central idea is to embed learning algorithms for the various representations

into the process of resource allocation. The approach is not to simply learn the

valuations, then solve the winner determination problem. An instantiation of the

framework will incrementally recover the agents’ preferences, and periodically com-

pute an allocation together with tentative competitive equilibrium prices to check

whether enough value information has been elicited to solve the allocation problem.

180

Chapter 8: Conclusions 181

In general, winner determination is solved each time the underlying learning algo-

rithms need to issue equivalence or demand queries.

In the framework, prices can equal manifest valuations, but the two can also be

decoupled. We can present discounted valuations as prices, or use a different pricing

engine entirely. This decoupling is similar in spirit to auctions such as RAD [56]

that compute approximate linear CE prices at each round to provide feedback, while

the agents provide package bids. The framework allows for nonlinear prices, which

motivates the notion of a pricing language to succinctly represent prices, in parallel

to the notion of a bidding language. Other package auctions that use nonlinear prices

include iBundle [78] and dVSV [31], but these are restricted to the XOR language to

represent prices, because they equate prices with bids. In the proposed framework,

preference elicitation corresponds to a “bid update,” and the prices then get updated

accordingly when the pricing engine recomputes them. This allows for flexibility in

the choice of representations.

In the introduction we saw that iterative auctions have many advantages over their

single-shot counterparts, including the potential for improved efficiency, transparency,

and privacy. However, adoption of iterative combinatorial auctions has been slow

in industry, in part because current designs do not provide a convenient language

for representing valuations. The preference elicitation framework proposed in this

dissertation is an early step towards the development of iterative package auctions

that could allow for representations tailored to the relevant application domains.

Chapter 8: Conclusions 182

8.1 Review

Multi-agent preference elicitation lies at the interface of artificial intelligence, op-

erations research, and microeconomics. In the process of instantiating the framework,

this dissertation provided contributions that fall within each of these areas and that

are interesting in their own right.

Chapter 2 presented background results on the VCG mechanism and the core.

VCG payments align the agents’ incentives with the system-wide objective, ensur-

ing that agents truthfully respond to queries about their valuations in equilibrium

(dominant-strategy equilibrium for single-shot auctions, ex post Nash equilibrium for

iterative auctions). This fact motivated an extension to the elicitation framework

for computing VCG payments in Chapter 5. The core captures the feasible gains

from trade that could plausibly occur if the agents negotiated an allocation amongst

themselves. In the context of the preference elicitation framework, the concept arises

because competitive equilibrium prices can be derived from the agents’ valuations

and core payoffs.

Chapter 3 presented results on competitive equilibrium with indivisibilities when

agents have superadditive valuations, a common regime in applications of package

auctions. The three main contributions related superadditive valuations and order 2

pricing: (1) I gave a constructive, non-algorithmic proof that anonymous, nonlinear

competitive equilibrium prices exist when bidders have superadditive valuations—

this fact was first shown by Parkes [79], whose proof relied on the properties of the

iBundle(d) auction; (2) I strengthened the latter result to show that with superaddi-

tive valuations, anonymous, nonlinear competitive equilibrium prices price the core;

Chapter 8: Conclusions 183

and (3) I established that the class of superadditive valuations is a maximal class con-

taining the single-minded valuations that ensures anonymous, nonlinear competitive

equilibrium prices exist. These results fill a gap in our understanding of competitive

equilibrium with indivisibilities; analogous results already existed for order 1 and 3

pricing.

Chapter 3 also gives results on the communication requirements of computing the

VCG outcome (an efficient allocation together with Vickrey payments). It showed

that the nondeterministic communication complexity of computing the VCG out-

come was equal to the nondeterminstic communication complexity of computing UCE

prices: any protocol that computes the VCG outcome also (implicitly) computes UCE

prices. This parallels Nisan and Segal’s [76] result that equates the communication

complexities of computing an efficient allocation and a competitive equilbrium. I also

showed how UCE prices can be constructed from CE prices for the main and marginal

economies, and gave an example to show that computing Vickrey payments on top

of the efficient allocation can strictly increase communication requirements.

In Chapter 4 we surveyed learning algorithms for the XOR, OR, and Polynomials

languages that use value, demand, and equivalence queries; the algorithms for XOR

and OR were novel. Chapter 4 also introduced the notion of a pricing language.

Pricing languages are relevant in preference elicitation schemes for the CAP, and

XOR is the only pricing language that has been used to date besides linear prices. I

proposed Pseudo-additive representations as a novel pricing language, and made use

of it in the iterative auction of Chapter 6.

Chapter 5 described the preference elicitation framework. If the underlying learn-

Chapter 8: Conclusions 184

ing algorithms are polynomial-time, the elicitation process has polynomial communi-

cation complexity. These guarantees are formulated in terms of the number of items

and agents, and also in terms of the minimal size of the agents’ valuations in the cho-

sen representations; this latter parameter allows for relevant complexity guarantees

that focus the design problem on the choice of representation.

An empirical evaluation showed that Polynomial representations complement XOR

representations, in the sense that the resulting elicitation process performs well with

Polynomials when it performs poorly with XOR, and vice-versa, on standard bench-

mark distributions. This is convenient because XOR has been the only expressive

language used in iterative auctions in the academic literature to date. These findings

were all the more significant because the underlying agent valuations were represented

not with Polynomials or XOR but with the OR language, and they agreed with basic

intuition into which representations would perform better under different distribu-

tion settings. The scaling properties of the elicitation framework in terms of total

queries and runtime were better than the worst-case guarantees suggested, when us-

ing the language of Polynomials while underlying valuations had succinct Polynomial

representations, and similarly for XOR.

Chapter 6 presented an iterative auction that begins with linear prices, and intro-

duces nonlinearities into the price space as needed to ensure a competitive equilibrium

exists. The main insight was that the notion of a pattern can allow for LP formulations

of the combinatorial allocation problem that are intermediate between Bikhchandani

and Ostroy’s [13] order 1 and 2 formulations. Adding bundles to a pattern leads to

successively stronger formulations, and can be interpreted as adding cutting planes.

Chapter 8: Conclusions 185

The iterative auction only uses demand queries, but there is also a variant that issues

value queries to elicit value information over fewer rounds.

The latter variant can be used within the preference elicitation framework as

a pricing engine, because responses to value queries are readily available from the

proxies. This could be a favorable alternative to the pricing method used in the

implementation described in Chapter 5. Recall that the implementation provides

discounted valuations back as prices, which could be undesirable from privacy per-

spective: if prices are made public in the interest of transparency, then the bidders

would all have succinct representations of each others’ valuations, up to additive con-

stants. This could be problematic in certain domains. If the bidders were firms in

a procurement auction, for example, the structure of the price representations might

reveal sensitive information about the structures of the firms’ business plans. The

iterative auction of Chapter 6 computes a pseudo-additive representation of prices,

which may differ from the representations used by the proxies.

Chapter 7 applied the principles of expressive auction design to the domain of

Internet advertising. We first surveyed the properties of current position auctions

for sponsored search. I then proposed a bidding language for advertisers to express

their valuations over sets of impressions for display advertising. The bid tree bidding

language is convenient because it allows advertisers to specify values according to

different attributes of the impresssions, at varying levels of granularity, and also to

specify volume constraints to control exposure. The language was developed with

the insights of Chapter 3 in mind: bid trees represent substitutes valuations, which

implies that order 1 CE prices exist, as does a concise LP formulation of the alloca-

Chapter 8: Conclusions 186

tion problem (whose dual gives prices). Linear pricing is appropriate for this domain

because online advertisers range from multi-national corporations to small local busi-

nesses, so simple, informative price feedback is crucial. The constant arrival and exit

of new advertisers in an online advertising system also means that allocations have

to be recomputed very quickly, ideally close to real time.

8.2 Future Work

There are several immediate directions for future work. One outstanding problem

is to provide a better lower bound on the communication requirements of the VCG

mechanism. The lower bound does not yet match the upper bound of an n-fold in-

crease in communication. I suspect that a fooling set involving substitutes valuations

could give a tight lower bound.

The framework was only evaluated empirically on myopic best-response agents. It

would be informative to test the extended version that converges to UCE prices rather

than just CE prices, to get a sense of the added communication that VCG payments

entail. It would also be informative to test the effect of anonymous prices on the

number of queries, rounds, and the runtime. If the underlying representations are OR

(which is the case with several benchmark distributions), valuations are superadditive

and there exist anonymous prices. In this case, we could use the anonymous price

construction of Chapter 3 to compute CE prices in the framework.

A broader research program is to develop a wider variety of bidding and pricing

languages together with learning algorithms for use in the framework. For instance,

a learning algorithm for the Pseudo-additive language is still lacking. Kernel meth-

Chapter 8: Conclusions 187

ods [102] could also find application within the framework: given a set of bids, we

could run a support vector machine with various kernels to obtain a concise repre-

sentation of an agent’s valuation.

Another line of investigation involves the choice of pricing language, and its effect

on query complexity and the speed of elicitation. The näıve approach of quoting

discounted valuations as prices works when there are few bidders, but as the number

of bidders grows so does the number of losing bidders. The näıve approach will

learn the valuations of these losing bidders entirely. With large numbers of bidders,

however, core convergence results state that linear prices should almost clear the

market, so approaches such as the cutting-plane auction of Chapter 6 should perform

well. This intuition remains to be validated empirically.

Bibliography

[1] Gagan Aggarwal, Ashish Goel, and Rajeev Motwani. Truthful auctions for pric-
ing search keywords. In Proceedings of the 7th ACM Conference on Electronic
Commerce, Ann Arbor, MI, 2006.

[2] Arne Andersson, Mattias Tenhunen, and Fredrik Ygge. Integer programming
for combinatorial auction winner determination. In Proceedings of the 4th In-
ternational Conference on Multiagent Systems, Boston, MA, 2000.

[3] Dana Angluin. Learning regular sets from queries and counterexamples. Infor-
mation and Computation, 75:87–106, 1987.

[4] Dana Angluin. Queries and concept learning. Machine Learning, 2:319–342,
1987.

[5] Lawrence M. Ausubel. An efficient dynamic auction for heterogeneous com-
modities. American Economic Review, 2006. Forthcoming.

[6] Lawrence M. Ausubel, Peter Cramton, R. Preston McAfee, and John McMillan.
Synergies in wireless telephony: Evidence from the broadband PCS auction.
Journal of Economics and Management Strategy, 6(3):497–527, 1997.

[7] Lawrence M Ausubel and Paul R Milgrom. Ascending auctions with package
bidding. Frontiers of Theoretical Economics, 1:1–42, 2002.

[8] Dimitri P. Bertsekas. The auction algorithm: a distributed relaxation method
for the assignment problem. Annals of Operations Research, 14:105–123, 1988.

[9] Dimitris Bertsimas and John N. Tsitsiklis. Introduction to Linear Optimization.
Athena Scientific, Belmont, MA, 1997.

[10] Martin Bichler, Andrew Davenport, Gail Hohner, and Jayant Kalagnanam.
Industrial Procurement Auctions, chapter 23, pages 593–612. MIT Press, 2006.

[11] Sushil Bikhchandani, Sven de Vries, James Schummer, and Rakesh V. Vohra.
Linear programming and Vickrey auctions. In Brenda Dietrich and Rakesh
Vohra, editors, Mathematics of the Internet: E-Auction and Markets, pages

188

Bibliography 189

75–116. IMA Volumes in Mathematics and its Applications, Springer-Verlag,
2001.

[12] Sushil Bikhchandani and John W. Mamer. Competitive equilibrium in an ex-
change economy with indivisibilities. Journal of Economic Theory, 74:385–413,
1997.

[13] Sushil Bikhchandani and Joseph M. Ostroy. The package assignment model.
Journal of Economic Theory, 107:377–406, 2002.

[14] Robert G. Bland. New finite pivoting rules for the simplex method. Mathematics
of Operations Research, 2:103–107, 1977.

[15] Avrim Blum, Jeffrey Jackson, Tuomas Sandholm, and Martin Zinkevich. Pref-
erence elicitation and query learning. In Proceedings of the 16th Annual Con-
ference on Computational Learning Theory, Washington, DC, 2003.

[16] Tilman Börgers, Ingemar Cox, Martin Pesendorfer, and Vaclav Petricek. Equi-
librium bids in auctions of sponsored links: Theory and evidence. Working
paper, November 2006.

[17] Craig Boutilier. Solving concisely expressed combinatorial auction problems.
In Proceedings of the 19th National Conference on Artificial Intelligence, pages
359–366, 2002.

[18] Craig Boutilier, Ronen I. Brafman, Carmel Domshlak, Holger H. Hoos, and
David Poole. CP-nets: Tool for representing and reasoning with conditional ce-
teris paribus preference statements. Journal of Artificial Intelligence Research,
2003.

[19] Craig Boutilier, Ronen I. Brafman, Christopher W. Geib, and David Poole.
A constraint-based approach to preference elicitation and decision making. In
AAAI Spring Symposium on Qualitative Decision Theory, pages 19–28, Palo
Alto, CA, 1997.

[20] Craig Boutilier and Holger H. Hoos. Bidding languages for combinatorial auc-
tions. In Proceedings of the 18th International Joint Conference on Artificial
Intelligence (IJCAI), pages 1211–1217, 2001.

[21] Robin D. Burke, Kristian J. Hammond, and Edwin Cooper. Knowledge-based
navigation of complex information spaces. In Proceedings of the 13th National
Conference on Artificial Intelligence, pages 462–468, 1996.

[22] Ruggiero Cavallo, David C. Parkes, Adam Juda, Adam Kirsch, Alex Kulesza,
Sébastien Lahaie, Benjamin Lubin, Loizos Michael, and Jeffrey Shneidman.

Bibliography 190

TBBL: A tree-based bidding language for iterative combinatorial exchanges. In
IJCAI Multidisciplinary Workshop on Advances in Preference Handling, 2005.

[23] Li Chen and Pearl Pu. Survey of preference elicitation methods. Technical
report, Ecole Polytechnique Fédérale de Lausanne, 2004.

[24] Vašek Chvátal. Linear Programming. W. H. Freeman, New York, NY, 1983.

[25] E. H. Clarke. Multipart pricing of public goods. Public Choice, 11:17–33, 1971.

[26] Vincent Conitzer and Tuomas Sandholm. Computational criticisms of the rev-
elation principle. In Proceedings of the 5th ACM Conference on Electronic
Commerce, New York, NY, 2004.

[27] Peter Cramton. Ascending auctions. European Economic Review, 42(3–5):745–
756, 1998.

[28] Peter Cramton, Yoav Shoham, and Richard Steinberg, editors. Combinatorial
Auctions. MIT Press, 2006.

[29] Vladimir Danilov, Gleb Koshevoy, and Kazuo Murota. Discrete convexity and
equilibria in economies with indivisible goods and money. Mathematical Social
Sciences, 41(3):251–273, 2001.

[30] Robert Day and Paul Milgrom. Core-selecting auctions. International Journal
of Game Theory, 2007. Forthcoming.

[31] Sven de Vries, James Schummer, and Rakesh V. Vohra. On ascending Vick-
rey auctions for heterogeneous objects. Journal of Economic Theory, 2005.
Forthcoming.

[32] Sven de Vries and Rakesh V. Vohra. Combinatorial auctions: A survey. Informs
Journal on Computing, 2002. Forthcoming.

[33] Benjamin Edelman, Michael Ostrovsky, and Michael Schwarz. Internet adver-
tising and the Generalized Second Price auction: Selling billions of dollars worth
of keywords. American Economic Review, 2005. Forthcoming.

[34] Jack Edmonds. Matroids and the greedy algorithm. Mathematical Program-
ming, 1:127–136, 1971.

[35] Márta Eső. Parallel Branch and Cut for Set Partitioning. PhD thesis, School
of Operations Research and Industrial Engineering, Cornell University, 1999.

[36] Ronald Fadel and Ilya Segal. The communication cost of selfishness. Journal
of Economic Theory, 2007. Forthcoming.

Bibliography 191

[37] Juan Feng, Hemant K. Bhargava, and David M. Pennock. Implementing spon-
sored search in web search engines: Computational evaluation of alternative
mechanisms. INFORMS Journal on Computing, 2005. Forthcoming.

[38] Donald F. Ferguson, Christos Nikolaou, Jakka Sairamesh, and Yechiam Yemini.
Economic models for allocating resources in computer systems, chapter 7, pages
156–183. World Scientific Publishing Company, 1996.

[39] Yuzo Fujishima, Kevin Leyton-Brown, and Yoav Shoham. Taming the compu-
tational complexity of combinatorial auctions: Optimal and approximate ap-
proaches. In Proceedings of the 16th International Joint Conference on Artificial
Intelligence, pages 548–553, Stockholm, Sweden, 1999.

[40] Stephen Glaiser and Michael Beesley. Bidding for tendered bus routes in Lon-
don. Transportation Planning and Technology, 15:349–366, 1991.

[41] Jerry Green and Jean-Jacques Laffont. Characterization of satisfactory mechan-
sims for the revelation of preferences for public goods. Econometrica, 45:427–
438, 1977.

[42] Theodore Groves. Efficient collective choice when compensation is possible.
Review of Economic Studies, 46:227–241, 1979.

[43] Faruk Gul and Ennio Stacchetti. Walrasian equilibrium with gross substitutes.
Journal of Economic Theory, 87:95–124, 1999.

[44] Godfrey H. Hardy, John E. Littlewood, and George Pólya. Inequalities. Cam-
bridge University Press, 1934.

[45] Gail Hohner, John Rich, Ed Ng, Grant Reid, Andrew Davenport, Jayant
Kalagnanam, Ho Soo Lee, and Chae An. Combinatorial and quantity discount
procurement auctions with mutual benefit at Mars, inc. Interfaces, 33:23–35,
2003.

[46] Bengt Holmstrom. Groves schemes on restricted domains. Econometrica,
47(5):1137–1144, 1979.

[47] Garud Iyengar and Anuj Kumar. Characterizing optimal keyword auctions. In
Proceedings of the 2nd Workshop on Sponsored Search Auctions, Ann Arbor,
MI, 2006.

[48] Ralph Cassady Jr. Auctions and Auctioneering. University of Califrnia Press,
Berkeley, CA, 1967.

[49] Michael J. Kearns and Umesh V. Vazirani. An Introduction to Computational
Learning Theory. MIT Press, 1994.

Bibliography 192

[50] Alexander S. Kelso and Vincent P. Crawford. Job matching, coalition formation,
and gross substitutes. Econometrica, 50:1483–1504, 1982.

[51] Paul Klemperer. Almost common value auctions: the ‘wallet game’ and its
applications to takeover battles and airwaves auctions. European Economic
Review, 42, 1998.

[52] Tjalling C. Koopmans and Martin Beckmann. Assignment problems and the
location of economic activities. Econometrica, 25(1):53–76, January 1957.

[53] Bernhard Korte and Jens Vygen. Combinatorial Optimization. Springer, 2002.

[54] Vijay Krishna. Auction Theory. Academic Press, 2002.

[55] Vijay Krishna and Motty Perry. Efficient mechanism design. Technical report,
Pennsylvania State University, 2000.

[56] Anthony M. Kwasnica, John O. Ledyard, David Porter, and Christine DeMar-
tini. A new and improved design for multiobject iterative auctions. Management
Science, 51:419–434, 2005.

[57] Sébastien Lahaie. An analysis of alternative slot auction designs for sponsored
search. In Proceedings of the 7th ACM Conference on Electronic Commerce,
Ann Arbor, MI, 2006.

[58] Sébastien Lahaie, Florin Constantin, and David C. Parkes. More on the power
of demand queries in combinatorial auctions: Learning atomic languages and
handling incentives. In Proceedings of the 19th International Joint Conference
on Artificial Intelligence, Edinburgh, Scotland, 2005.

[59] Sébastien Lahaie and David C. Parkes. Applying learning algorithms to pref-
erence elicitation. In Proceedings of the 5th ACM Conference on Electronic
Commerce, pages 180–188, New York, NY, 2004. ACM Press.

[60] Sébastien Lahaie and David M. Pennock. Revenue analysis of a family of ranking
rules for keyword auctions. In Proceedings of the 8th ACM Conference on
Electronic Commerce, San Diego, CA, 2007.

[61] John O. Ledyard, Mark Olson, David Porter, Joseph A. Swanson, and David P.
Torma. The first use of a combined value auction for transportation services.
Technical report, California Institute of Technology, 2000.

[62] Herman B. Leonard. Elicitation of honest preferences for the assignment of
individuals to positions. The Journal of Political Economy, 91(3):461–479, 1983.

Bibliography 193

[63] Kevin Leyton-Brown, Eugene Nudelman, Galen Andrew, Jim McFadden, and
Yoav Shoham. Learning the empirical hardness of optimization problems: the
case of combinatorial auctions. In CP, pages 556–572, 2003.

[64] Kevin Leyton-Brown, Mark Pearson, and Yoav Shoham. Towards a univer-
sal test suite for combinatorial auction algorithms. In Proceedings of the sec-
ond ACM Conference on Electronic Commerce, pages 66–76, Minneapolis, MN,
2000.

[65] Greg Linden, Steve Hanks, and Neal Lesh. Interactive assessment of user prefer-
ence models: the automated travel assistant. In Proceedings of User Modeling,
1997.

[66] David G. Luenberger. Linear and Nonlinear Programming. Wiley, New York,
NY, 1984.

[67] Andreu Mas-Colell, Michael D. Whinston, and Jerry R. Green. Microecononmic
Theory. Oxford University Press, 1995.

[68] John McMillan. Selling spectrum rights. Journal of Economic Perspectives,
8:145–162, 94.

[69] Paul Milgrom. Putting Auction Theory to Work. Cambridge University Press,
2004.

[70] Paul Milgrom and Robert J. Weber. A theory of auctions and competitive
bidding. Econometrica, 50:1089–1122, 1982.

[71] Debasis Mishra and David C. Parkes. Ascending price Vickrey auctions for
general valuations. Journal of Economic Theory, 2005. Forthcoming.

[72] Kazuo Murota. Discrete Convex Analysis. SIAM, 2003.

[73] George L. Nemhauser and Laurence A. Wolsey. Integer and Combinatorial
Optimization. Wiley, 1988.

[74] Noam Nisan. Bidding and allocation in combinatorial auctions. In Proceedings
of the second ACM Conference on Electronic Commerce, pages 1–12, Minneapo-
lis, MN, 2000.

[75] Noam Nisan and Ilya Segal. The communication requirements of efficient al-
locations and supporting Lindahl prices. Working Paper, Hebrew University,
2003.

[76] Noam Nisan and Ilya Segal. The communication requirements of efficient allo-
cations and supporting prices. Journal of Economic Theory, 2006. Forthcoming.

Bibliography 194

[77] Martin J. Osborne and Ariel Rubinstein. A Course in Game Theory. MIT
Press, 1994.

[78] David C. Parkes. iBundle: An efficient ascending price bundle auction. In
Proceedings of the first ACM Conference on Electronic Commerce, pages 148–
157, Denver, CO, 1999.

[79] David C. Parkes. Iterative Combinatorial Auctions: Achieving Economic and
Computational Efficiency. PhD thesis, Department of Computer and Informa-
tion Science, University of Pennsylvania, May 2001.

[80] David C. Parkes. Notes on indirect and direct implementations of core outcomes
in combinatorial auctions. Technical report, Harvard University, 2002.

[81] David C. Parkes. Price-based information certificates for minimal-revelation
combinatorial auctions. In Padget et al., editor, Agent-Mediated Electronic
Commerce IV, LNAI 2531, pages 103–122. Springer, 2002.

[82] David C. Parkes. Auction design with costly preference elicitation. In Spe-
cial Issues of Annals of Mathematics and AI on the Foundations of Electronic
Commerce, 2003. Forthcoming.

[83] David C. Parkes, Ruggiero Cavallo, Nick Elprin, Adam Juda, Sébastien Lahaie,
Benjamin Lubin, Loizos Michael, Jeffrey Shneidman, and Hassan Sultan. ICE:
An iterative combinatorial exchange. In Proceedings of the 6th ACM Conference
on Electronic Commerce, pages 249–258, Vancouver, Canada, 2005. ACM Press.

[84] David C. Parkes, Jayant Kalagnanam, and Márta Eső. Achieving budget-
balance with Vickrey-based payment schemes in exchanges. In Proceedings of
the 17th International Joint Conference on Artificial Intelligence, pages 1161–
1168, Seattle, WA, 2001.

[85] David C. Parkes, Michael O. Rabin, Stuart M. Shieber, and Christopher
Thorpe. Practical secrecy-preserving, verifiably correct and trustworthy auc-
tions. Technical report, Harvard University, 2007.

[86] David C. Parkes and Lyle H. Ungar. An ascending-price generalized Vickrey
auction. Technical report, Harvard University, 2002.

[87] David Porter, Stephen Rassenti, Anil Roopnarine, and Vernon Smith. Com-
binatorial auction design. Proceedings of the National Academy of Sciences,
100:11153–11157, 2003.

[88] Stephen J. Rassenti, Vernon L. Smith, and Robert L. Bulfin. A combinatorial
mechanism for airport time slot allocation. Bell Journal of Economics, 13:402–
417, 1982.

Bibliography 195

[89] Michael H. Rothkopf, Aleksandar Pekeč, and Ronald M. Harstad. Computa-
tionally manageable combinatorial auctions. Management Science, 44(8):1131–
1147, 1998.

[90] Michael H. Rothkopf, Thomas J. Teisberg, and Edward P. Kahn. Why are
Vickrey auctions rare? Journal of Political Economy, 98:94–109, 1990.

[91] Stuart Russell and Peter Norvig. Artificial Intelligence: a Modern Approach.
Prentice Hall, 2002.

[92] Yuko Sakurai, Makoto Yokoo, and Shigeo Matsuraba. A limitation of the gener-
alized Vickrey auction in electronic commerce: Robustness against false-name
bids. In Proceedings of the 19th National Conference on Artificial Intelligence,
San Jose, CA, 2004.

[93] Tuomas Sandholm. An algorithm for optimal winner determination in combi-
natorial auctions. In Proceedings of the 13th International Joint Conference on
Artificial Intelligence, Stockholm, Sweden, 1999.

[94] Tuomas Sandholm. Expressive commerce and its application to sourcing: How
we conducted $35 billion of generalized combinatorial auctions. In Proceedings of
the Conference on Innovative Applications of Artificial Intelligence, Vancouver,
Canada, 2007.

[95] Tuomas Sandholm and Subhash Suri. BOB: Improved winner determination in
combinatorial auctions and generalizations. Artificial Intelligence, 145:33–58,
2003.

[96] Tuomas Sandholm and Subhash Suri. Side constraints and non-price attributes
in markets. Games and Economic Behavior, 55:321–330, 2006.

[97] Tuomas Sandholm, Subhash Suri, Andrew Gilpin, and David Levine. CABOB:
A fast optimal algorithm for combinatorial auctions. In Proceedings of the
17th International Joint Conference on Artificial Intelligence, pages 1102–1108,
Seattle, WA, 2001.

[98] Tuomas Sandholm, Subhash Suri, Andrew Gilpin, and David Levine. Win-
ner determination in combinatorial auction generalizations. In Proceedings of
the International Conference on Autonomous Agents and Multi-Agent Systems,
pages 69–76, Bologna, Italy, 2002.

[99] Robert Schapire and Linda Sellie. Learning sparse multivariate polynomials over
a field with queries and counterexamples. Journal of Computer and Systems
Sciences, 52(2):201–213, 1996.

[100] Alexander Schrijver. Combinatorial Optimization. SIAM, 2003.

Bibliography 196

[101] Lloyd S. Shapley and Martin Shubik. The assignment game I: The core. Inter-
national Journal of Game Theory, 1:111–130, 1972.

[102] John Shawe-Taylor and Nello Cristianini. Kernel Methods for Pattern Analysis.
Cambridge University Press, 2004.

[103] Hideo Shimazu. Expertclerk: Navigating shoppers’ buying process with the
combination of asking and proposing. In Proceedings of the 17th International
Joint Conference on Artificial Intelligence, Seattle, WA, 2001.

[104] Leslie Valiant. A theory of the learnable. Communications of the ACM,
27(11):1134–1142, November 1984.

[105] Hal R. Varian. Position auctions. International Journal of Industrial Organi-
zation, 2006. Forthcoming.

[106] William Vickrey. Counterspeculation, auctions and competitive sealed tenders.
Journal of Finance, 16:8–37, 1961.

[107] Rakesh V. Vohra. Advanced Mathematical Economics. Routledge, 2005.

[108] William E. Walsh, Michael P. Wellman, and Fredrik Ygge. Combinatorial auc-
tions for supply-chain formation. In Proceedings of the second ACM Conference
on Electronic Commerce, pages 260–269, Minneapolis, MN, 2000.

[109] Laurence A. Wolsey. Integer Programming. John Wiley & Sons, 1998.

[110] Peter R. Wurman and Michael P. Wellman. Akba: A progressive, anonymous-
price combinatorial auction. In Proceedings of the second ACM Conference on
Electronic Commerce, pages 21–29, Minneapolis, MN, 2000.

[111] Martin Zinkevich, Avrim Blum, and Tuomas Sandholm. On polynomial-time
preference elicitation with value-queries. In Proceedings of the 4th ACM Con-
ference on Electronic Commerce, San Diego, CA, June 2003.

