
Accelerated Implementations of the Ascending

Proxy Auction

A thesis presented

by

John K. Lai

To

Computer Science and Mathematics

in partial fulfillment of the honors requirements

for the degree of

Bachelor of Arts

Harvard College

Cambridge, Massachusetts

April 5, 2005

Acknowledgements

This senior thesis would not have been possible without the advice, direction, and

support of David Parkes. I would be hard pressed to find another mentor who is as

caring, knowledgeable, and friendly as you. Whenever I was stuck or feeling down

about the research, I would have my weekly meeting with you and be reenergized! I

would also like to thank Adi Sunderam for going through this process with me. We

made it! To Wendy, for always giving me something to look forward to – I love you.

To Jimmy and Jerry who remind me to enjoy my youth. And finally, thank you Mom

and Dad for your unconditional love and advice, for helping me focus on the bigger

picture, and for always having confidence in me.

1

Abstract

Combinatorial auctions have important applications to resource allocation problems.

These auctions allow bidders to submit bids for entire packages of goods, rather than

on single items. This rich bidder interface allows bidders to specify their prefer-

ences more precisely, and as a result, allows for more efficient allocation of resources.

However, these allowances to bidders come at a computational cost. This senior the-

sis addresses the computational issues that arise in a specific type of combinatorial

auction, the Ascending Proxy Auction. We develop a novel, accelerated algorithm

for computing the outcomes of the Ascending Proxy Auction. We also address nu-

merous computational issues that can be generalized to other combinatorial auction

algorithms. Finally, we perform extensive experimentation on the performance of

our new algorithm. We show that our new algorithm outperforms prior approaches

for certain test cases, and may prove to be a useful tool for making combinatorial

auctions a practical choice.

2

Contents

Acknowledgements 1

Abstract 2

1 Introduction 7

1.1 Contributions . 8

1.2 Outline . 9

2 Preliminaries 10

2.1 Problem Specification . 10

2.2 Definitions . 11

2.3 Properties . 12

2.4 The Winner Determination Problem 15

3 The VCG Mechanism 17

3.1 Merits of VCG . 18

3.2 Faults of VCG . 20

4 The Ascending Proxy Auction 23

4.1 Iterative Combinatorial Auctions . 23

4.2 iBundle . 24

4.2.1 iBundle(2) . 25

3

CONTENTS 4

4.2.2 iBundle(3) . 25

4.3 Ascending Proxy Auction . 26

4.4 Ascending Proxy Auction (APA) Definition 26

4.5 Properties of the Ascending Proxy Outcome 28

4.6 Potential Problems with the Ascending Proxy Mechanism 29

4.7 Approximate Accleration of Ascending Proxy 30

4.7.1 Hoffman et. al. 30

4.7.2 Day et. al. 33

4.8 Exact Acceleration of Ascending Proxy 35

4.8.1 Wurman et. al. 35

4.8.2 Parkes . 36

5 Our Accelerated Algorithm 38

5.1 A Motivating Example . 39

5.2 Preliminaries . 40

5.3 Interesting Coalitions and Interesting Bundles 41

5.4 Overview . 43

5.5 Stage Definition . 43

5.6 Calculating Behavior within the Stage (FRAC) 44

5.7 Calculating the Length of a Stage (DUR) 50

5.7.1 Demand Set Change . 50

5.7.2 Catching Up . 51

5.7.3 Duration Calculation . 52

5.8 Illustrative Examples . 52

6 Computational Issues 58

6.1 Computing the Interesting Coalitions 58

6.1.1 Precomputation . 58

CONTENTS 5

6.1.2 Conservative Generation . 59

6.1.3 Constraint Generation (FRAC-CG) 61

6.2 Avoiding the MIP (Acc-LP) . 63

6.3 Computing the Duration (DUR-CG) 64

6.4 Epsilon Introduction . 65

6.4.1 Constraint Generation . 66

6.4.2 Stage Limit . 67

7 Results 68

7.1 Experimental Setup . 68

7.2 Previous Examples in Literature . 69

7.2.1 Wurman’s Example . 69

7.3 Direct Comparison . 71

7.3.1 Setup . 71

7.3.2 Bids . 73

7.3.3 Bids Per Agent . 77

7.3.4 Goods . 80

7.4 Approximations . 82

7.4.1 εFRAC . 82

7.4.2 εDUR . 84

7.4.3 per-εFRAC . 85

7.4.4 Analysis of ε Introduction . 87

8 Concluding Remarks 89

8.1 Brief Review . 90

8.2 Summary of Results . 92

8.2.1 Bottlenecks . 92

8.3 Open Questions and Future Research 93

CONTENTS 6

8.4 Conclusion . 94

A Hoffman’s Test Cases 95

B Varying Bids 99

B.1 Acc-LP vs. Acc-MIP . 99

B.2 Acc-LP vs. Pure Proxy . 102

C Varying Goods 109

Bibliography 114

Chapter 1

Introduction

Combinatorial auctions, or auctions where bidders can bid on packages of goods

rather than single goods, have become increasingly important in resource allocation

problems. These auctions are useful in settings where there are multiple goods being

sold and the goods share complex relationships. As an example, consider an individual

who is placing bids for a flight and hotel. Depending on the arrival city of the flight,

her hotel preferences will change. In the single goods setting, in order to avoid the

risk of mismatching the flight and hotel reservation, she would have to wait for the

results of the flight auction before bidding on a hotel. However, once she wins the

flight, her value for the hotel becomes inflated because the flight is useless without

an accompanying hotel. As an alternative to single goods auctions, combinatorial

auctions allow bidding on packages of goods. In the previous example, the individual

would be able to specify bids for flight-hotel pairs whose cities correspond.

One setting where combinatorial auctions may prove useful is in the Federal Avi-

ation Administration (FAA) allocation of take-off and landing slots at congested air-

ports. Traditionally, individual airport committees have allocated take-off and land-

ing slots based on proposals from individual airlines [4]. However, as airports like

New York’s LaGuardia become increasingly congested, a fair reallocation of take-off

and landing slots must occur. A possible alternative to committee-based reallocation

is to use a combinatorial auction where the individual slots are goods and each airline

submits bids for the landing slots.

The combinatorial auction has many benefits in this setting. Instead of bidding

7

CHAPTER 1. INTRODUCTION 8

on single slots, airlines can be more specific about their needs and bid on entire sets

of slots. The combinatorial auction also eliminates the subjectivity of the airport

committees and helps maximize social surplus. The auction does so by basing the

allocation on the valuations submitted by the bidders, and those who receive the

most payoff from the slots will submit the highest bids. Some other applications

include the Federal Communications Commission’s auction of the wireless spectrum,

the privatization of London’s bus routes, negotiations in the trucking industry, and

negotiations between industrial purchasers and suppliers [6, 7, 5].

Though combinatorial auctions have some very positive properties, allowing bid-

ders to place bids on any package of goods increases the complexity exponentially.

As a result, there are numerous computational issues that arise when attempting to

implement these auctions.

We will discuss a specific type of combinatorial auction, the ascending proxy auc-

tion. This auction mechanism and its results have provable properties that make it a

promising choice for the FAA’s airport landing slots auction. However, the direct im-

plementation (Pure Proxy) of this auction involves iteratively solving an NP -complete

problem, and is feared to be intractable in practice.

1.1 Contributions

In this paper we provide both theoretical and experimental results for an accelerated

algorithm that replicates the ascending proxy auction. On the theoretical side, we

fully develop an accelerated algorithm for the ascending proxy auction. While re-

lated work has been done for accelerated implementations of similar auctions such

as iBundle(2) [22], we offer the first accelerated algorithm for the ascending proxy

auction. 1

In addition, we develop novel ways to deal with the computational issues that arise

in these exact accelerated implementations. These questions have not been addressed

previously in the literature which only provide the main theoretical underpinnings

of the accelerated algorithms. However, these computational issues prove to be the

bottleneck of the accelerated algorithms in practice, and our work provides a way to

1Ascending Proxy Auction has the same dynamics as iBundle(3) with straightforward bidding.
This is how iBundle(2) is related to APA

CHAPTER 1. INTRODUCTION 9

efficiently address these issues. The methods we develop are not algorithm specific

and can be generalized to the accelerated implementations of iBundle(2) as well.

Another important contribution is the extensive experimentation we have per-

formed. Previously, much of the work in this area has had a theoretical bias. The

experiments that were performed were based on small hand-constructed test cases. To

our knowledge, there has not been extensive experimentation using large, randomly

generated test cases. Our work presents the first extensive comparison of the perfor-

mance of accelerated algorithms with the direct Pure Proxy approach. We find that

our accelerated algorithm offers certain advantages over the Pure Proxy algorithm

and may prove to be useful in practice.

1.2 Outline

In Chapter 2, we define the combinatorial auction and important concepts. Chapter 3

develops the VCG mechanism which provides the backdrop and motivation for mech-

anisms like iBundle and the ascending proxy auction. We then formally define the

ascending proxy auction, its properties, and related work in accelerated implementa-

tions in Chapter 5. Chapter 5 gives a full description of our accelerated algorithm

with examples. Novel methods for dealing with various computational issues that

arise can be found in Chapter 6, and we provide experimental results in Chapter 7.

Chapter 2

Preliminaries

2.1 Problem Specification

In this section, we offer a formal description of the combinatorial auction problem.

A combinatorial auction problem is described by the following:

• A set of agents A = {0, 1, . . . , N}, where agent 0 denotes seller.

• A discrete set of goods G.

• Let S denote the set of all subsets of G. A valuation function v : A× S → R+

We denote this function vi(s), where vi(s) represents the value agent i has for

the set of goods described by s in monetary terms.

We assume that v satisfies:

– Free-disposal: vi(s1) ≤ vi(s2) if s1 ⊂ s2.

– Seller has 0 value for goods: v0(s) = 0 ∀ s ∈ S.

What differentiates a combinatorial auction from a single good auction is the fact

that an agent’s valuation function is across S, not just G. This formally represents

the ability for agents to provide values on entire subsets of goods rather than just

single goods. We notice also that the only requirement on the valuation function is

free-disposal. In other words, the valuation function is not necessarily linear and in

most cases is probably highly-nonlinear. Recalling the example from our introduction,

10

CHAPTER 2. PRELIMINARIES 11

the traveler’s value for the flight and hotel together is much greater than the sum of

her values for each good on its own.

2.2 Definitions

Having defined the inputs to our problem, we now give some basic terminology and

describe the notion of an outcome, or solution to the combinatorial auction problem.

Let a bundle of goods be any subset of the set of all goods, G. Notice that every

bundle of goods is contained in the set S.

Definition 1. An allocation is a tuple (s1, . . . , sN). For a given allocation (s1, . . . , sN),

agent i receives bundle si. A feasible allocation is an allocation (s1, . . . , sN) where

si ∩ sj = ∅ ∀ i 6= j. Let X denote the set of all feasible allocations.

Since an allocation assigns each agent a bundle, in order for an allocation to be

feasible, it must be the case that each good is only assigned to a single agent. This

is guaranteed by the condition si ∩ sj = ∅ ∀ i 6= j.

Let a coalition be a subset of the agent set A.

Definition 2. For a given allocation (s1, . . . , sN), the winning coalition is the set of

agents who receive non-empty bundles. A winning agent is any member of the winning

coalition.

We will use pi to denote the price that agent i pays in the auction. A solution to

the the combinatorial auction problem consists of an allocation, and a specification

of how much each agent pays for her bundle. Therefore, an outcome is an allocation

along with a price vector (p1, . . . , pN), where pi denotes the price agent i pays for

bundle si.

For the purposes of this paper, we assume that agents have quasi-linear utility

functions. In other words, an agent’s net gain is the value of the bundle obtained

minus the price paid for that bundle. In general it is plausible for agents to have

alternate utility functions, but here we limit consideration to quasi-linear utility.

In addition, we assume that agents use an XOR bidding language. Agents submit

valuations (v1, s1), (v2, s2), . . . , (vn, sn) where these bids mean that the agent is willing

to receive at most one of s1, . . . , sn for her given valuations. This allows the agent to

CHAPTER 2. PRELIMINARIES 12

specify exact values for the si without worrying about how her value changes if she

also receives some other sj. If the agent has value for bundle si ∪ sj, she can just

submit a value for that bundle as well. These assumptions are made in many of the

real world applications for which the ascending proxy auction is being considered.

Definition 3. Given an outcome with allocation (s1, . . . , sN) and price vector (p1, . . . , pN),

the payoff of agent i is defined as πi = vi(si)− pi. The payoff for the seller (agent 0)

is defined as
∑

i∈A,i6=0 pi.

Example 1. Suppose we have three agents and two goods, A, B. v1(A) = 5, v2(B) =

5, v3(AB) = 20. A possible outcome would be allocation (A, B, ∅) with price vectors

(3, 3, 0). Agent 1 pays 3 for bundle A, and agent 2 pays 3 for bundle B, and agent 3

does not receive any bundle. As a result, the payoff for agent 1 is v1(A)−p1 = 5−3 = 2,

the payoff for agent 2 is v2(B)− p2 = 5− 3 = 2, and the payoff for agent 3 is 0. Not

to forget about the seller, her payoff is the sum of the payments which is 6.

2.3 Properties

One of the desirable properties of an outcome is that it is in the core. Intuitively, an

allocation is in the core if there is no coalition other than the winning coalition that

challenges the outcome. A coalition may challenge the outcome if it could offer more

revenue to the seller than the current outcome, and if all agents in the new coalition

were willing to move to the new outcome.

Before defining the core, we formalize the notions of being better off in a new

outcome and of coalitions that may challenge a given outcome.

Definition 4. An agent i weakly-prefers outcome J1 to outcome J2 if πi(J1) ≥ πi(J2).

This is a formalization of the notion that an agent is willing to move to a new

outcome. If agent i weakly prefers outcome J1 to J2, then she is willing to move to

outcome J1.

Definition 5. Suppose the winning coalition for an outcome is coalition K, and the

winning payments are (p1, . . . , pN). A coalition L blocks this outcome if there is some

other outcome that generates more revenue to the auctioneer and is weakly-preferred

by all agents in L.

CHAPTER 2. PRELIMINARIES 13

To illustrate these new ideas, we revisit the Example 1 considered above. We have

three agents and two goods. v1(A) = 5, v2(B) = 5, v3(AB) = 20. Suppose that we

have the same outcome J1, which consists of allocation (A, B, ∅) and price vector

(3, 3, 0). In this case, the payoff for agent 3 is 0. As a result, she weakly prefers any

outcome in which she receives AB and pays at most 20. But then the outcome where

agent 3 pays 7 for bundle AB blocks outcome J1 since the seller receives more revenue

and the winning agents (in this case just agent 3) weakly prefers this outcome. But

this new outcome is again blocked. Under the new outcome, agents 1 and 2 receive

payoff 0, so they are willing to pay up to 5 for bundles A and B respectively. Therefore,

the outcome where agents 1 and 2 pay 4 for A and B respectively blocks since the

seller receives more revenue (8 rather than 7), and the winning agents (agents 1 and

2) weakly prefer this outcome.

Intuitively, we see that a blocking coalition has a valid objection to the given

outcome. If there is a blocking coalition, then that coalition can argue that they

should win since they could provide an outcome with more revenue for the seller.

Also key to the notion of blocking coalition is that this is a credible claim since all

winning agents in the new outcome are not worse off and therefore willing to switch.

Having noted that blocking coalitions are undesirable, we define the notion of the

core accordingly.

Definition 6. A core outcome is an outcome that is unblocked by any coalition.

Continuing with our Example 1, we recall that v1(A) = 5, v2(B) = 5, v3(AB) = 20.

We see that coalition {1, 2} will block any outcome in which they receive no bundles

that generates revenue less than 10 (since they could generate revenue of 10 by paying

their values for each bundle). However, they cannot block an outcome that generates

revenue greater than 10 since to generate that much revenue, either agent 1 or agent

2 would have to bid more then her value, giving her a negative payoff. Notice that

a negative payoff is worse than the zero payoff she receives when she is not winning.

Likewise, coalition {3} will block any outcome that does not include agent 3 and

generates less than 20 revenue. With these two observations, we see that the only

outcomes that are unblocked are outcomes where agent 3 receives bundle AB and

pays at least 10. These are the core outcomes of Example 1.

In order to further investigate the notion of the core, we introduce the concept

of the coalitional value function. For a given coalition K, this value is simply the

CHAPTER 2. PRELIMINARIES 14

maximum revenue that could possibly be generated by an outcome in which K is the

winning coalition. We notice that to generate the maximum revenue, all agents in

the winning coalition will pay their values for their bundles. As a result, we can view

this as finding the feasible allocation that maximizes the sum of the value of received

bundles.

Alternatively, we can think of the coalitional value for coalition K in value terms.

For a given allocation s1, . . . , sN , the value to coalition K of this allocation is
∑

i∈K vi(si).

We can think of this as summing over the values of the goods allocated, disregarding

payments. The coalitional value for K is therefore the largest value agents in K can

receive in any allocation.

Definition 7. For a given coalition K, w(K) is the coalitional value function. If 0 /∈ K,

then w(K) = 0. Otherwise:

w(K) = max
(s1,...,sN)∈X

∑
i∈K

vi(si) (2.1)

Notice that the coalitional value function is defined for every coalition. In Example

1, if we take coalition {1, 3}, the coalitional value is 20. Any feasible allocation will

only allocate bundles to either agent 1 or 3 since A and AB overlap. Therefore, since

v1(A) = 5, v3(AB) = 20, the value maximizing allocation gives AB to agent 3 and

yields value 20.

Proposition 1. For a core outcome with winning coalition K and payments (p1, ..., pN),

it must be the case
∑

i∈K pi ≥ w(L) ∀ L ∩K = ∅.

Proof: If the winning coalition is K, then it must be the case that for any i /∈ K,

πi = 0 since agent i does not receive any bundles in the outcome. As a result, any such

agent would be willing to pay her entire value for any bundle to block the outcome.

Therefore, in order for an outcome to be unblocked, it must be that the revenue

generated is greater than the maximum feasible revenue generated by all coalitions L

that consist only of non-winning bidders. The maximum feasible revenue generated

by these coalitions is just w(L).

Definition 8. Let an outcome J be in the core. J is bidder-Pareto-optimal if there is

no other core outcome that is weakly preferred by all agents to J .

Returning to our example, we recall that v1(A) = 5, v2(B) = 5, v3(AB) = 20.

We reasoned that the only core outcomes were outcomes where agent 3 wins and

CHAPTER 2. PRELIMINARIES 15

pays at least 10 for bundle AB. As a result, two possible core outcomes are agent 3

paying 15 for bundle AB, and agent 3 paying 16 for bundle AB. In this case, agent 3

prefers paying 15 since she receives payoff 5 instead of 4. Agents 1 and 2 do not care

since in both cases, they each receive zero payoff. However, even the outcome where

agent 3 pays 15 is not bidder-Pareto-optimal since paying 14 is also a core outcome.

Therefore, we see that the only bidder-Pareto-optimal core outcome is the outcome

where agent 3 pays 10 for bundle AB. She pays just enough so that the coalition

{1, 2} cannot entice the seller with more revenue.

2.4 The Winner Determination Problem

Having defined some theoretical properties of combinatorial auctions, we turn to a

central computational problem. Intimately related to combinatorial auctions is the

winner determination problem. The winner determination problem is very intuitive

and has many applications. The winner determination problem asks, given a set

of prices agents are willing to pay for packages, what is the feasible allocation that

maximizes the auctioneer’s revenue? We have already seen a function whose value

is a solution to the winner determination problem. In defining core outcomes, we

defined the coalitional value function for a given coalition. The value of this function

for a given coalition is simply the solution to the winner determination problem where

agents are willing to pay their entire values for packages.

More formally, for a coalition of agents {1, . . . , N}, with agent i willing to pay at

most pi(si) for bundle si, we seek:

max
(s1,...,sN)∈X

∑
i∈{1,...,N}

pi(si) (2.2)

A straightforward way to solve the winner determination problem is to construct an

integer linear program (IP). The variables in the program are indicator variables xis ∈
{0, 1} which tell us whether agent i is allocated bundle s in the revenue maximizing

allocation. In order to be a feasible allocation, it must be the case that each good is

only allocated once. Additionally, each agent can only be allocated a single bundle.

These constraints along with revenue maximization are captured in the following

CHAPTER 2. PRELIMINARIES 16

integer linear program:

max
∑
i∈A

∑
s∈S

pi(s)xis (2.3)

subject to
∑
i∈A

∑
s:g∈s

xis ≤ 1, ∀g ∈ G (2.4)∑
s∈S

xis ≤ 1, ∀i ∈ A (2.5)

xis ∈ {0, 1}, ∀i ∈ A, ∀s ∈ S (2.6)

Constraint 2.4 ensures that no good is allocated more than once, and Constraint

2.5 ensures that no agent receives more than one bundle. Notice that by querying the

values of the xis that maximize the objective function, we can retrieve the revenue

maximizing allocation. For a given agent, if all the xis are set to 0, then that agent

receives the null bundle. For all other agents, it must be the case that only one of the

xis = 1 (Constraint 2.5), and that agent receives the unique bundle for which xis = 1.

While the solution method presented here is simple and easy to implement, we

notice that this formulation requires the solution of an NP -complete problem, namely

integer linear programming. In fact, the winner determination problem itself has been

shown to be NP -complete [18], though much work has been done finding more efficient

algorithms for the winner determination problem [19, 20, 1, 9, 10].

Chapter 3

The VCG Mechanism

Having defined the combinatorial auction problem and the notion of a core outcome,

we proceed by discussing one of the first and most famous mechanisms for determin-

ing outcomes. The Vickrey-Clarke-Groves (VCG) mechanism is an extension of the

Vickrey auction to the combinatorial setting 1 [12]. For auctions of single goods, a

Vickrey auction asks bidders to submit the maximum amount they would be willing

to pay for the good. The outcome of the Vickrey auction is that the bidder who sub-

mitted the highest valuation wins the item, but pays the second highest valuation.

The Vickrey auction was a novel invention because the mechanism makes bidding

truthfully a dominant strategy [21]. In other words, bidders cannot do better by lying

about their true valuation, regardless of the bids of other bidders. This is because

a bidder’s submission only determines whether she wins and not the price she pays.

In terms of the core for single item settings, the Vickrey outcome is trivially in the

core since the winning bidder pays the price of the second highest bid. In order to

generate more revenue to the seller, other bidders would have to pay more than this

amount, but this would give the non-winning bidders a negative payoff.

In the single good setting, the winning bidder pays the second highest price. We

can think of this as the value of the allocation if the winning bidder were excluded.

In extending the mechanism to the combinatorial setting, we make use of the same

notions. The winning coalition is the coalition that maximizes the total value of the

allocation (the allocation that yields the coalitional value of the entire set of agents).

1Vickrey auctions are also referred to as second-price auctions

17

CHAPTER 3. THE VCG MECHANISM 18

We now have to determine the prices that the winning agents pay. Similar to the single

goods setting, we look at what happens if we exclude agent i. If we exclude agent

i, then their is some alternative allocation that maximizes value. The maximizing

value is equal to the coalitional value function over the coalition of all agents except

for agent i. However, because we include agent i, the coalition that does not include

agent i receives value that is less than this maximal value. The price agent i pays is

the difference between the maximal value to all other agents when excluding agent i

and the actual value to all other agents when including agent i.

Ausubel and Milgrom describe this as the opportunity cost of the items that each

agent wins [3]. Because agent i wins on a given bundle, all goods in the bundle can

no longer be allocated to other agents. Agent i has to pay the amount of value that

is lost by all other agents due to the removal of the goods in the bundle she wins.

More formally, we can describe this using our notion of coalitional value described

above.

Definition 9. (VCG Outcome) Suppose we have a value maximizing allocation (s∗1, . . . , s
∗
N).

Then any winning agent i pays:

w(A− {i})−
∑

j∈A,j 6=i

vj(s
∗
j) (3.1)

The left side of the expression is the maximal value to all other agents if we exclude

agent i, and the right side is the value received by all other agents in the value

maximizing allocation that includes agent i.

Example 2. Calculating the VCG outcome. Suppose we have two goods and three

agents. v1(AB) = 3, v2(A) = 2, v3(B) = 2. The allocation that yields the most value

is (∅, A,B) with value 4. To calculate the prices that agents 2 and 3 pay, we need to

look at the value maximizing allocation without agents 2 and 3. If we remove agent

2, then the value maximizing allocation is (AB, ∅, ∅). This yields value 3. However,

coalition {1, 3} receives value 2 when including agent 2. So the agent 2 pays price 1.

Symmetrically, agent 3 pays price 1.

3.1 Merits of VCG

Before addressing merits of VCG, we introduce two concepts that describe mecha-

nisms for determining outcomes for combinatorial auctions.

CHAPTER 3. THE VCG MECHANISM 19

Definition 10. (Allocative Efficiency) A mechanism is allocatively efficient if the final

allocation maximizes coalitional value.

Having defined the coalitional value function, we know that for any coalition K,

w(K) is the maximum value any allocation can yield. As a result, a mechanism is

efficient if the value of the allocation in the outcome is equal to w(A) where A is

the coalition of all agents. Notice that allocative efficiency is independent of the

payments. As long as the allocation in the outcome maximizes value, it is efficient

regardless of the payments.

Definition 11. (Strategyproofness) A mechanism is strategyproof if truthful revelation

of valuations 2 is a dominant strategy assuming that the bidder only submits these

valuations to the mechanism.

In our example of the single good Vickrey auction, we saw that bidding truthfully

was a dominant strategy. However, implicit in this assumption was that the bidders

did not know each other’s bids. If this were the case, then this opens the room

for collusion. Strategyproofness formalizes the notion of truthful reporting being a

dominant strategy when we have no knowledge of other agent’s valuations.

It turns out that the VCG mechanism is efficient and strategyproof. In terms of

efficiency, the VCG mechanism is efficient since by definition, the allocation it chooses

is the value maximizing allocation. Also, similar to the single good auction, the VCG

mechanism has the property that reporting values truthfully is a dominant strategy

for all bidders. This and other properties of the VCG mechanism are proved in [3].

Additionally, the VCG mechanism can be reduced to solving O(|A|) winner deter-

mination problems. Though the winner determination problem itself is NP -complete,

the VCG mechanism is a single shot method which generally requires much fewer win-

ner determination problems than the iterative auctions we will later consider. To see

that the number of winner determination problems required is O(|A|), recall that we

need to solve winner determination to find the value maximizing allocation. Then,

since the price a winning agent i pays is defined by the coalitional value function of

A− {i}, we need to solve the winner determination problem for each of the winning

agents.

2We assume that the bidder’s values for bundles are independent of other events in the world.

CHAPTER 3. THE VCG MECHANISM 20

3.2 Faults of VCG

Despite the various positive properties of the VCG mechanism, the mechanism has

numerous faults. Ausubel and Milgrom present the following as weaknesses of the

VCG mechanism [3]:

• low (or zero seller revenues)

• non-monotonicity of the seller’s revenues in the set of bidders and the amounts

bid

• vulnerability to collusion by a coalition of losing bidders

• vulnerability to the use of multiple identities by a single bidder

Ausubel and Milgrom provide a set of examples that illustrate each of these deficien-

cies. We include these examples here as they quickly show why the VCG mechanism

may not be a practical choice.

Example 3. Low seller revenues. Suppose we have two goods and three agents again.

We slightly modify the valuations. v1(AB) = 2, v2(A) = 2, v3(B) = 2. The allocation

that maximizes value is (∅, A,B) which yields value 4. We now solve for the prices

paid again. If we remove agent 2, then the value maximizing allocation is either

(AB, ∅, ∅) or (∅, ∅, B). In both cases, the value received is 2. However, when we

include agent 2, coalition {1, 3} receives total value 2. Therefore, the price paid by

agent 2 is 2 - 2 = 0. Symmetrically, agent 3 also pays 0. As seen in this example, the

VCG mechanism may yield 0 revenue to the seller. Because of free-disposal, the seller

would have been better off selling goods A and B together since all agents would bid

2 for AB and the seller would receive revenue 2.

Example 4. Non-monotonicity in the set of bidders and the amounts bid. We expect

that when we increase the number of bidders, the seller’s revenue should increase.

Also, when the valuations submitted by bidders increase, we expect that revenue

should increase. However, this is not the case with the VCG mechanism. Suppose

that in the Example 3 we remove agent 3. Then we have v1(AB) = 2, v2(A) = 2. One

value maximizing allocation is (AB, ∅). If we remove agent 1, then agent 2 would

receive A and value 2. However, agent 2 receives no bundles and value 0 when we

include agent 1. Therefore, agent 1 pays 2 - 0 = 2 for AB when we remove bidder 3,

CHAPTER 3. THE VCG MECHANISM 21

and the seller receives revenue 2 rather than 0. This example shows how the VCG

mechanism may counter-intuitively generate more revenue to the seller when there

are fewer bidders. Similarly, if bidder 3 reduces her bid to 1, we see that the value

maximizing allocation is still (∅, A,B). Removing agent 2 still yields maximal value

2 for agents 1 and 3, but now agents 1 and 3 only receive value 1 from the VCG

allocation. Therefore, agent 2 pays 2 - 1 = 1 instead of 0. The seller’s revenue has

increased even though agent 3 has decreased her bid.

Example 5. Vulnerability to collusion by a coalition of losing bidders. Consider the

same example as above, with modified values. v1(AB) = 2, v2(A) = 0.5, v3(B) = 0.5.

In this scenario, agents 2 and 3 do not win since the value maximizing allocation is

(AB, ∅, ∅). However, as seen from the example above, if v2(A) = v3(B) = 2, then

agents 2 and 3 win the bundle A and B and pay price 0. Thus, if agents 2 and 3 have

true valuations v2(A) = 0.5, v3(B) = 0.5, they can collude and agree ahead of time to

bid v2(A) = 2, v3(B) = 2 and arrive at the better outcome.

Notice that this does not contradict the strategyproofness of the VCG mechanism.

Given that bidders are planning individually, truthful bidding is a dominant strategy.

However, if bidders decide to collude, they can manipulate the outcome in their favor.

Example 6. Vulnerability to the use of multiple identities by a single bidder. Closely

related to the above examples, suppose we have two agents. v1(AB) = 2, v2(AB) =

1, v2(A) = 0.5. The value maximizing allocation results in agent 1 winning. However,

if agent 2 can pretend to be two bidders, then agent 2 could replicate the outcome of

Example 3. Instead of being a losing agent, by pretending to be another bidder and

submitting valuations v2(A) = 2, v3(B) = 2, agent 2 can manipulate the outcome so

that she wins both bundles and pays 0.

As seen, the VCG mechanism has many faults which make it problematic when

used in practice. Indeed, the VCG mechanism appears to be a mostly theoretical tool

that is not used in actual applications [3].

Ausubel and Milgrom argue that most of the faults arise because the VCG outcome

does not necessarily lie in the core [3]. Using the example where the seller receives 0

revenue, v1(AB) = 2, v2(A) = 2, v3(B) = 2, we see that coalition {1} will block since

agent 1 is willing to offer up to 2 for bundle AB while the VCG outcome generates 0

revenue for the seller.

CHAPTER 3. THE VCG MECHANISM 22

For the VCG outcome to lie in the core, a stronger condition on the valuations

submitted by bidders must be satisfied. This condition is known as the agents are

substitutes (AAS) condition [16].

Another aspect of the VCG mechanism that is troublesome is costly preference

elicitation. Preference elicitation refers to the process of calculating preferences and

submitting them in the auction. One of the issues that arises in preference elicitation

setting is how bidders can communicate their preferences to the auctioneer. In the

VCG mechanism, bidders need to submit their entire valuation functions. Since there

are an exponential number of possible bundles on which to bid, this process can be

intractable. Another reason for costly preference elicitation is related to the bidder.

Many times, determining a bidder’s absolute preferences may be very difficult. In

the motivating example of airport slots, airlines may need to solve complicated opti-

mization problems for routing and scheduling before knowing how much they value a

certain set of slots. Because of these faults with the straightforward VCG mechanism,

there have been attempts to find mechanisms for the combinatorial auction problem

that do not suffer from these deficiencies.

Chapter 4

The Ascending Proxy Auction

In this chapter, we develop iterative combinatorial auctions as a lead-in to the defin-

tion of the ascending proxy auction. Iterative combinatorial auctions were developed

to address costly preference elicitation, and this work led to the development of the

ascending proxy auction which focuses on producing core outcomes even when AAS

is not satisfied. We then define the ascending proxy auction and cite some of the

provable properties of its outcomes. Lastly, we discuss related work in the area of

acceleration of the ascending proxy auction.o Therefore, in describing the ascending

proxy auction, we first describe iterative combinatorial auctions as background to the

ascending proxy auction.

4.1 Iterative Combinatorial Auctions

As stated previously, one of the problems with the VCG mechanism is costly prefer-

ence elicitation. Parkes and Ungar developed iterative combinatorial auctions to help

alleviate this problem of costly preference elicitation.

In iterative combinatorial auctions, the auction proceeds in rounds. In each round,

the auctioneer declares a set of ask prices for bundles. Bidders then submit new bids

that are at least the ask prices for the bundles. The auctioneer then performs some

computation (usually the winner determination problem) and declares a new set of

winners and new ask prices. The auction proceeds until the ask prices are such that

no new bids are submitted.

23

CHAPTER 4. THE ASCENDING PROXY AUCTION 24

In this way, instead of determining their entire valuations at the beginning of the

auction, bidders can focus only on the bundles whose prices are changing. Addition-

ally, instead of being locked into their valuation functions at the beginning of the

auction, bidders can change their bids or focus based on feedback from the results

of the rounds in the auction. In fact, bidders may not even need exact values for

bundles in iterative combinatorial auctions [15, 17].

Other than addressing the preference elicitation issue, iterative combinatorial auc-

tions also offer other advantages. One way to view iterative combinatorial auctions

is as a distribution of the computational burden across bidders. Mechanisms like the

VCG mechanism require information to be gathered at a centralized source at a sin-

gle point in time. This centralized source then takes this information and performs a

lot of computation to determine the answer. Iterative combinatorial auctions spread

the computation burden across bidders. The auctioneer simply has to update the

allocation and ask prices, while bidders can take on the burden of resubmitting and

recalculating bids [15, 17].

Another advantage of iterative combinatorial auction is transparency. Because

there are many rounds taking place, bidders have an idea of how the auction pro-

gresses, and how we arrive at the final allocation. This is not the case with the VCG

mechanism, which is more like a black box which outputs the answer. Because of

transparency, bidders can verify that the outcome is fair and correct. A third poten-

tial advantage is that if goods are correlated, then the interaction between bidders in

the various rounds will allow for better outcomes [14, 15, 17].

4.2 iBundle

The particular iterative combinatorial auctions we will consider are iBundle and its

two variations. We discuss iBundle here because it is closely tied to the ascending

proxy auction. There are two versions of iBundle, iBundle(2) and iBundle(3). They

are very similar, but differ in that iBundle(2) has anonymous prices while iBundle(3)

has non-anonymous prices. By anonymous prices, we mean that the ask prices for

bundles are the same regardless of the bidder. For non-anonymous prices, the ask

prices for a specific bundle can change depending on the bidder.

CHAPTER 4. THE ASCENDING PROXY AUCTION 25

4.2.1 iBundle(2)

iBundle(2) consists of a number of rounds, indexed by t ≥ 1. At the conclusion of each

round, the auctioneer declares a provisional allocation. The provisional payments are

assumed to be the current winning bids. At the start of the next round, the auctioneer

declares new ask prices for each bundle. The bidders then resubmit their bids. A bid

is competitive if it is at least the ask price, and a bidder is competitive as long as she

submits a single competitive bid. The sole exception is for bidders who were winning

in the provisional allocation. These bidders still need to resubmit their previous bids,

but they do not need to worry about exceeding the ask price. Also, bidders can

submit a “last and final” bid which is ε below the ask price. However, this means

they cannot submit any more bids for the bundle in question.

Once bids are submitted, the auctioneer solves the winner determination problem

to determine the provisional allocation. For the next round, the ask price increases

by ε for every bundle on which a losing bidder submitted a bid. All other ask prices

stay the same. The iterative process continues until all competitive bidders are in the

provisional allocation (all non-winning bidders have not submitted any competitive

bids). At this point, the provisional allocation becomes the final allocation, and the

payments are the winning bids.

4.2.2 iBundle(3)

iBundle(3) is similar to iBundle(2), except that the ask prices are for a (package,

bidder) pair instead of simply a package. Each bundle can have a different ask price

for each bidder. The auction proceeds in the same manner as iBundle(2), except in

updating ask prices. In iBundle(3), the ask prices for each losing bidder increases by

ε. Notice that this opens the possibility for bidder-specific ask prices. As a simple

example, suppose bidders 1 and 2 both submit a bid on bundle AB, but bidder 1 is

chosen to be in the provisional allocation. Then bidder 2 experiences a price increase

on bundle AB but bidder 1 does not.

CHAPTER 4. THE ASCENDING PROXY AUCTION 26

4.3 Ascending Proxy Auction

Notice that the iBundle auctions focus on the way the auction progresses but does not

constrain what bidders can do in the course of the auction. Because of the numerous

rounds in the auction, bidders can strategize and change their bids. They may not

even know their valuations at the start of the auction. Interestingly, Ausubel and

Milgrom observed that when iBundle is paired with specific bidding strategies, the

outcomes produced have provably nice properties. This observation led to the creation

of the ascending proxy auction, which can be thought of as iBundle(3) coupled with

a specific bidding strategy. Working towards a definition of the ascending proxy

auction, we now examine some simple bidding strategies for bidders in iBundle(2)

and iBundle(3).

In straightforward bidding, the bidders have fixed valuations for the bundles in the

auction. Given their valuations and ask prices, bidders can determine which bundle

gives the highest payoff. Bidders submit bids at the ask prices for bundles that give

the highest payoff. A bidder’s demand set consists of all the bundles that give the

highest payoff at the current ask prices.

Definition 12. (Demand Set) Let pi(s) denote the ask price bidder i faces for bundle

s. A bidder’s demand set is defined as:

DS(i) = {s ∈ S : vi(s)− pi(s) = max
s′∈S

(vi(s
′)− pi(s

′)} (4.1)

Similarly, we can relax this to ε-straightforward bidding. Instead of submitting bids

only for the bundles with highest payoff, bidders submit bids for all bundles that are

within ε of the highest payoff.

Definition 13. (Epsilon Demand Set) Let pi(s) denote the ask price bidder i faces for

bundle s, A bidder’s ε-demand set is defined as:

εDS(i) = {s ∈ S : vi(s)− pi(s) + ε ≥ max
s′∈S

(vi(s
′)− pi(s

′)} (4.2)

4.4 Ascending Proxy Auction (APA) Definition

Having defined straightforward bidding, we can now define the ascending proxy auc-

tion. Though not described in terms of ask prices, the ascending proxy auction is

CHAPTER 4. THE ASCENDING PROXY AUCTION 27

equivalent to iBundle(3) with straightforward bidding. Since the bids for a given set

of ask prices are now deterministic, we no longer need an active bidder to resubmit

bids. Instead, we can have a proxy agent stand in for each bidder, as long as the

proxy agent knows the bidder’s valuations at the beginning of the auction. The as-

cending proxy auction can be thought of as iBundle(3) with ε-straightforward bidding

implemented by proxy agents.

More formally, we can describe the ascending proxy auction as follows:

• Let each round be indexed by t ≥ 1.

• Before the auction begins, each bidders submits a set of (value, bundle) pairs

to the auctioneer. We can think of this as defining the valuation function for

each bidder. Bidders cannot change their valuation functions once submitted.

After submitting their bids, each bidder will be represented by a proxy agent.

• Let ε be a pre-defined bid increment.

• Let bt
i(s) denote the highest bid agent i has submitted for bundle s in round t.

• Let πt
i(s) = vi(s)− bi(s) denote the payoff agent i receives for bundle s in round

t.

• Let the winning coalition in round t be the coalition that is winning in the

provisional allocation. A winning agent in round t is any member of the winning

coalition in round t.

• In round 0, the provisional allocation allocates the null set to every agent (no

agent is winning).

• In round t, each agent who receives the null set in the provisional allocation at

round t calculates the bundle with highest payoff s∗. Let the payoff of s∗ be

πt∗. Then the agent increases her bid by ε on all packages with payoff within ε

of πt∗. (Note: Some definitions only increase bids on the bundles with highest

payoff. This does not affect the properties of the outcome, and we will assume

our definition).

• In round t, agents who receive non-null bundles in the provisional allocation do

not change their bids.

CHAPTER 4. THE ASCENDING PROXY AUCTION 28

• Given the set of bids, the auctioneer solves the winner determination problem

and announces a new provisional allocation.

• This process repeats until we reach a round when no new bids are submitted.

4.5 Properties of the Ascending Proxy Outcome

The most important property of the ascending proxy outcome is that it is in the core.

We saw earlier the numerous problems with the VCG mechanism, many of which

were consequences of non-core outcomes.

Theorem 1. [2] The outcome determined by the ascending proxy auction is in the

core with respect to reported preferences.

We will not give a formal proof here, but the intuition is that if there were a blocking

coalition, then it must be the case that some losing agent has not finished submitting

her bids. A blocking coalition suggests there is an alternate outcome that generates

more revenue to the seller yet is weakly-preferred by all agents. Since agents submit

bids only for the maximal payoff bundles, the winning agents will not be willing to

pay more for any other bundles. Therefore, in order to generate more revenue, the

alternate outcome must have the losing agents pay more than their current bids. But

this contradicts termination of the ascending proxy because all losing agents should

be bidding their valuations.

Another nice property of the ascending proxy outcome is that given certain con-

ditions, the outcome is equivalent to the VCG outcome. While the VCG outcome

in general can be very poor, we cited that when the AAS condition is satisfied the

outcome will be in the core. With a slightly stronger condition on the coalitional

value function, the buyer-submodular (BSM) condition, the ascending proxy outcome

exactly replicates the VCG outcome (and is in the core since BSM is a stronger

condition than AAS).

Theorem 2. [2] The coalitional value function w is buyer-submodular iff for every

coalition C that includes the seller, the (restricted) VCG payoff vector is in the core.

Therefore, the ascending proxy outcome can be thought of as an improvement

on the VCG mechanism. When the VCG outcome is not in the core (AAS is not

CHAPTER 4. THE ASCENDING PROXY AUCTION 29

satisfied), the APA outcome is in the core. When the VCG outcome is in the core

for every coalition of agents (not just the coalition of all agents), the APA outcome

is equivalent to the VCG outcome. The only gap that exists is when we have AAS

but not BSM. Then both the VCG and APA outcomes are in the core, but the

APA outcome is not necessarily the same as the VCG outcome. While the APA

outcome always produces a core outcome, it has the added property that under certain

conditions when the VCG outcome is also a good outcome, APA matches VCG.

4.6 Potential Problems with the Ascending Proxy

Mechanism

Having provided a description of the ascending proxy mechanism, there is a straight-

forward direct implementation of the mechanism. We can program the steps of the

algorithm as described, and exactly simulate what happens in each round. We con-

sider this approach the Pure Proxy approach. Just as the algorithm describes, bid-

ders submit their valuations before hand, and our computer program simulates proxy

agents submitting bids on their behalf. When all new bids are submitted, the winner

determination problem is solved, a provisional allocation is declared, and new bids

are submitted.

One issue with the Pure Proxy direct implementation is that the final result of the

auction is dependent on the bid increment ε. If we choose a large bid increment, then

there will be fewer rounds, but we may cause agents to stop bidding prematurely. If

we choose a smaller bid increment, we can be more accurate but this causes prices to

increase at a slower rate and requires more rounds. Thus, there is a tradeoff between

speed and accuracy when choosing ε (see Example 8 in Chapter 5.8).

Another potential problem with the direct implementation is that each round ne-

cessitates the solving of the winner determination problem which is NP -complete.

Small values of ε would further worsen the situation as more rounds are needed to

reach the point when no new bids are submitted.

Because of the various drawbacks of direct implementation of the ascending proxy

mechanism, there has been an attempt to develop faster, accelerated algorithms that

replicate the ascending proxy results. These attempts can be separated into two

CHAPTER 4. THE ASCENDING PROXY AUCTION 30

categories. There are algorithms which focus on producing outcomes with the same

properties as APA, and there are algorithms which reproduce the exact results of

APA.

4.7 Approximate Accleration of Ascending Proxy

First, we describe related work which looks to find more efficient algorithms that

replicate the properties of the ascending proxy outcome, but not the exact outcome.

Two major efforts by Hoffman et. al. and Day et. al. have appeared in this area.

Hoffman et. al. modify the start conditions of the ascending proxy auction and

iteratively run the auction with different bid increments. Day et. al. focus on

generating outcomes with the specified properties and does not resemble or utilize

the ascending proxy auction.

4.7.1 Hoffman et. al.

Safe Start One of the proposed algorithms involves starting at non-zero prices.

While the direct implementation of the ascending proxy initializes the prices on all

bundles to 0, the concept of safe start is to start at a conservative estimate for the

prices on bundles. In other words, instead of forcing the proxy to start at a bid of 0

and incrementally increase by ε, we can start at a conservative bid and incrementally

increase by ε from there.

Because the ascending proxy outcome is in the core, we are able to determine a

lower bound for the winning bids. In order to be in the core, it must be the case that

the winning agents and bundles are one of the solutions to the winner determination

problem where the agents’ bids are simply their valuations [11]. Therefore, we can

obtain by solving the winner determination problem, the winning and non-winning

agents along with the bundles that winning agents receive.

Having determined the winning agents and allocated bundles, Hoffman et. al. offer

an observation for how to calculate a lower bound for the winning bids.

Proposition 2. If agent i is a winning agent who wins on bundle s, then pi(s) ≥ vj(s) ∀
non-winning j.

CHAPTER 4. THE ASCENDING PROXY AUCTION 31

Proof: Suppose not. Then there is some non-winning agent j who has value greater

than the price agent i is paying for bundle s. But then the coalition which swaps i

and j would block since j is willing to pay more for bundle s. We know this is feasible

since j was a non-winning agent and therefore was not already winning on some other

bundle. This contradicts the fact that the winning allocation is in the core.

For non-winning agents, it must be the case that their final bids on a given bundle

equal their valuations on that bundle. The ascending proxy only ends when all bids

have been submitted. If an agent is not winning but her bids are not equal to her

valuations, she would still have unsubmitted bids and the ascending proxy would not

terminate.

To summarize, we can solve the winner determination problem and then assign

lower bounds to agents’ bids by following:

• If agent i is winning and receives bundle s, then p∗i (s) is at least the maximal

value any non-winning agent has for bundle s. For all other bundles s′ that

agent i bids on, set p∗i (s
′) = vi(s)− p∗i (s) (the payoff agent i receives on s when

paying the conservative price).

• If agent j is not in the winning allocation, then her bids on any given bundle s

must be equal to her value for s.

Given these observations, instead of starting at bids of zero for each agent, we start

at these conservative estimates and run the ascending proxy from this initial point.

Because the bids do not have to incrementally rise from 0, this algorithm goes through

fewer rounds than the direct ascending proxy.

Incremental Scaling Another method proposed by Hoffman et. al. is incremental

scaling. This approach arises from the observation that it may not necessarily be

optimal to use the same bid increment in every round of ascending proxy. Instead,

we can use a large bid increment in early rounds when bids are small and not close

to agent’s valuations, and use progressively smaller bid increments as we get closer

to the termination point of the auction.

Based on this observation that varying the bid increment may be helpful, Hoffman

et. al. propose that we run the ascending proxy with a very large bid increment at

CHAPTER 4. THE ASCENDING PROXY AUCTION 32

first. Once we obtain the result, we can determine conservative prices for the final

allocation. Having determined these conservative prices, we can start from this point

and use a smaller increment to provide more accuracy. We continue this iterative

process until we reach an acceptably small bid increment.

As with the safe start algorithm, the incremental scaling algorithm also depends

on determining an estimated lower bound for the final prices agents pay. Suppose

the bid increment is ε. We run ascending proxy and obtain a winning allocation. For

non-winning agents, it must be the case that all bids submitted are within ε of their

value. Otherwise, the ascending proxy would end with unsubmitted bids remaining.

For the winning agents, it is possible that a large ε causes over-bidding to occur. As

an estimated lower bound for the APA payments of winning agents, we scale back

the winning bids by ε. Therefore, the non-winning agents do not change their prices

while the winning agents decrease their winning bids by ε. We use these prices as a

starting point and run ascending proxy with a smaller bid increment. This iterative

process continues until we have reached a desirably small bid increment. We notice

that in scaling back the winning bids by ε, we do not have a guarantee as with safe

start that these prices are a lower bound. Hoffman et. al. entertain this possibility

by proposing a corrective rollback method that deals with this case [11].

Safe Start with Incremental Scaling Hoffman et. al. ultimately combine their

two insights into one algorithm. They apply safe start to determine a conservative

estimate for the initial prices, and then they use incremental scaling when running

ascending proxy from these initial prices.

Properties of Outcome Hoffmann et. al. show that the outcomes of their al-

gorithm have the same properties as the outcomes of the ascending proxy auction.

In addition, their outcomes mimic the VCG outcomes when AAS holds but BSM

does not hold. Therefore, their outcomes mimic VCG when VCG is in the core, and

produces outcomes that are in the core when VCG is not in the core. Hoffman et.

al. also provide a theoretical bound on the number of integer linear programs to be

solved. They find that the number of IPs they solve is polynomial in the digits of

accuracy desired and the number of packages in the optimal allocation [11].

While the mechanism offered by Hoffman et. al. utilizes the ascending proxy as

CHAPTER 4. THE ASCENDING PROXY AUCTION 33

a basis for their algorithm, the use of multiple bid increments and starting at the

non-zero prices does not exactly mimic the progression and final payments of the

direct implementation of the ascending proxy mechanism.

Results Hoffman et. al. provide results running their algorithm on examples from

literature and other small, representative examples. They show that the safe start

and incremental scaling methods significantly decrease the number of rounds required

for termination. We will consider these test cases example further in Chapter 7 which

describes experimental results of our algorithm and compares these with previous

findings.

4.7.2 Day et. al.

Day et. al. propose another method for computing outcomes to the combinatorial

auction problem. Instead of trying to mimic the specifics of the ascending proxy

mechanism, Day et. al. focus on finding outcomes with the same properties as the

ascending proxy outcome. Their work relates to the ascending proxy only in the types

of outcomes they find, not in the way they arrive at these outcomes.

The two properties that Day et. al. focus on are core outcomes and bidder-Pareto-

optimal outcomes. Their approach is to start at a provisional allocation equal to the

VCG outcome and then ask whether this allocation is in the core. A straightforward

definition of the core contains an exponential number of constraints (since we need to

ensure that there are no blocked coalitions and there are 2n possible blocking coali-

tions). However, the Day approach uses constraint generation to avoid enumerating

this exponential number of constraints. They construct an integer linear program

which given a provisional allocation, finds the most blocking coalition if there are

any. However, this is more complicated than simply finding coalitions whose coali-

tional value exceeds the current provisional allocation. Any agent i who is winning

in the provisional allocation will not be willing to join another coalition if her payoff

decreases. Therefore, if an agent’s current payoff is πt
i(s) = vi(s)−pt

i(s), she will only

be willing to pay vi(s
′)− πt

i(s) for any other bundle s′. Day et. al. adjust their IP to

correctly account for these dynamics. The resulting IP has form similar to the winner

determination IP. Let (s1, ..., sN) denote the provisional allocation, (p1, ..., pN) denote

agent payments, and W denote the set of winning agents. The following IP finds the

CHAPTER 4. THE ASCENDING PROXY AUCTION 34

most-blocking coalition, if there are any:

max
∑
i∈A

∑
s∈S

vi(s) · xis −
∑
i∈W

(vi(sj)− pt
i(sj)) · γj (4.3)

subject to
∑
g∈s

∑
i∈A

xis ≤ 1, ∀g ∈ G (4.4)∑
s∈S

xis ≤ 1, ∀i ∈ A (4.5)∑
s∈S

xis ≤ γj, ∀i ∈ A (4.6)

xis ∈ {0, 1}, ∀s ∈ S, ∀i ∈ A (4.7)

γj ∈ {0, 1} (4.8)

Just like the winner determination IP, constraints 4.4 and 4.5 ensure that each good

is only allocated once and each agent only receives a single bundle. The extra term

in the objective function represents the previously discussed notion that agents who

are currently winning need to receive at least their current payoff. Therefore, instead

of adding their entire value, we need to subtract their current payoff vi(si) − pt
i(si).

The γj ensure that we only subtract off for currently winning agents which are also

winning in the outcome found by the IP.

After finding the most blocking coalition if one exists, Day et. al. define a new

provisional allocation. The winning agents and bundles in the provisional allocation

are determined by the IP in the same way the winner determination IP outputs

winning agents and bundles. The only remaining issue is the payment vector. Using

a linear program, payments are chosen to be the minimal payments that generate

more revenue than previous provisional outcomes and are weakly preferred by all

previously winning agents.

The iterative process of generating the most blocking coalition and new provisional

allocations and payments stops when there are no blocking coalitions. The provisional

allocation and provisional payment vector becomes the final outcome. Day et. al.

prove that this outcome is always bidder-Pareto-optimal [8].

Results Like Hoffman et. al., Day et. al. provide the results of running their

algorithm on a small example from the literature. They compare the number of IPs

and mixed integer linear programs (MIPs) solved by various algorithms, and show

CHAPTER 4. THE ASCENDING PROXY AUCTION 35

that their algorithm requires less work than other accelerated algorithms.

4.8 Exact Acceleration of Ascending Proxy

Other related work has focused on finding accelerated algorithms that exactly repli-

cating the ascending proxy auction. This work has been pioneered by Wurman et. al.

and Parkes, who suggest that iterative combinatorial auctions will proceed in stages.

Within each stage, we can compute what prices will be at the end of the stage without

directly implementing the rounds of the ascending proxy auction.

4.8.1 Wurman et. al.

Price Trajectories Wurman’s work actually provides an accelerated implementa-

tion of iBundle(2) with straightforward bidding, which provides some insights into

our algorithm for iBundle(3) with straightforward bidding and APA. We will assume

straightforward bidding when we refer to iBundle(2) and iBundle(3) in the rest of this

section. Wurman makes the observation that the auction proceeds in stage. Stages

are separated by two different types of events.

The first event is when an agent begins to submit bids on a new bundle or drops

out of the auction. An agent will start bidding on a new bundle when the agent’s

payoff on her current bundles fall below her value for a bundle on which she is not

currently bidding. An agent drops out of the auction when she is bidding her values.

The second way stages are separated is when a new coalition emerges as a potential

winner. During both iBundle(2) and iBundle(3), the coalitions that win during a

stage will be the coalitions that generate the most revenue during the stage. However,

these coalitions are declared the winner in the provisional allocation some of the time.

As a result, when these coalitions are winning, their member agents will not increase

their bids on the winning bundles. Coalitions that win during a stage therefore might

increase revenue at a slower rate due to the fact that they are winning 1. Coalitions

that never win may eventually catch up. When these collisions occur, we need to

begin a new stage [22].

1Note that this is not always true. This just notes the possibility for coalitions that do not win
to increase revenue at a higher rate and gives some intuition as to why this may occur.

CHAPTER 4. THE ASCENDING PROXY AUCTION 36

After splitting iBundle(2) into a sequence of stages, Wurman calculates the trajec-

tory of ask prices within each stage. The primary insight here is that each agent has

one unit of attention she can allocate. This attention is divided between the bundles

in her demand set, and the trajectory of the ask price of a bundle will be the sum of

the attention being paid to that bundle [22].

Wurman also notices that within a stage, the coalition that is declared the winner

alternates between a given set of coalitions that are actively competing. As with the

allocation of attention, each of these coalitions will win for a certain fraction of time.

From these fractions, we can determine how often a single agent is winning (an agent

is winning whenever the winning coalition contains that agent) [22].

By combining the notion of attention with the observation about winning coali-

tions, Wurman formulates a mixed integer linear program that solves for the trajec-

tory of bundle prices within a stage. Once these bundle trajectories are calculated,

Wurman can solve for the points at which coalitions collide and agents begin bidding

on new bundles. Thus, having determined the trajectory of prices within a stage,

Wurman calculates when to throw out these trajectories and begin the next stage

[22].

Results Wurman argues that his trajectory algorithm mimics the outcome of iBundle(2)

with straightforward bidding. He also steps through a small example with his pro-

posed algorithm.

Though Wurman’s algorithm is tailored to iBundle(2) which has anonymous prices,

many of the ideas carry over to iBundle(3) which has non-anonymous prices. We in-

deed find parallels to Wurman’s concepts in our independently developed algorithm

for iBundle(3)/APA. Specifically, the notions of stages and coalitional fractions reap-

pear in the iBundle(3)/APA setting.

4.8.2 Parkes

Unlike Wurman’s algorithm which focuses on iBundle(2) with straightforward bid-

ding, Parkes began work on accelerated implementations of iBundle(3) with straight-

forward bidding (APA). Again we assume straightforward bidding when referring to

iBundle(3) in the rest of the section. Parkes also observed that iBundle(3) could be

CHAPTER 4. THE ASCENDING PROXY AUCTION 37

split into stages, with stages separated by the entrance of new bundles into an agent’s

demand set. Having defined his notion of stages, Parkes proposed using mixed integer

linear programming techniques to describe the interaction between coalitions within

each stage [16].

Another insight that Parkes offered was that of interesting coalitions and inter-

esting bundles. Parkes noticed that during a run of the auction, only a small set

of coalitions is actually ever declared to be the winner of a provisional allocation.

Parkes proposed that we limit our attention to these interesting coalitions, and he

offered an algorithm to calculate these coalitions before beginning the accelerated

implementation.

Parkes’s work served as the foundation of our accelerated algorithm and this se-

nior thesis. By splitting the auction into stages, we were indeed able to formulate

mixed integer linear programs to determine the behavior within each stage. More-

over, the notion of interesting coalitions proved to be very useful in dealing with the

computational complexity of the accelerated implementation.

Chapter 5

Our Accelerated Algorithm

In this chapter, we offer a description of our new accelerated algorithm. As opposed

to the Pure Proxy approach, our algorithm exactly replicates the progression of prices

in APA, but does not directly implement the rules of APA. Instead, we exploit built-in

patterns in APA that result from the rules of the auction. Using the previous insight

of Parkes and Wurman, our algorithm makes use of the notion that the ascending

proxy auction is a sequence of stages, with predictable behavior within each stage.

The chief advantages of our algorithm over Pure Proxy are:

• Outcomes and runtime are independent of the bid increment. Our outcome

represents the outcome of Pure Proxy for an infinitesimally small bid increment.

• Savings in runtime due to solving fewer winner determination type problems.

Our chief advantages over Parkes’s algorithm are:

• Defining and calculating coalitional fractions and agent fractions.

• Formalization of stage definition.

• Efficient calculation of interesting coalitions (Chapter 6).

Our chief advantages over Wurman’s algorithm are:

• Extension to iBundle(3) with straightforward bidding and APA.

38

CHAPTER 5. OUR ACCELERATED ALGORITHM 39

8 7 10 4 4 2
Iteration (t) pt

1(AB) pt
2(CD) pt

3(CD) pt
4(BD) pt

5(AC) pt
5(C)

1 (1) (1) 1 1 1 0
2 1 1 2 (2) (2) 0
3 (2) 2 (3) 2 2 0
4 2 3 3 (3) (3) 1
5 (3) (4) 4 3 3 1
6 3 4 5 (4) (4) 2
7 (4) 5 (6) 4 4 2
8 (4) (6) 6 4 4 2
9 (4) 6 (7) 4 4 2
10 (4) (7) 7 4 4 2
11 (4) 7 (8) 4 4 2

Table 5.1: The first row contains the agents’ values for the bundles in the respective columns. The
parentheses around the bid value signifies that the given bid is winning. For example, in iteration
1, the winning coalition is {1, 2}. The breaks in the table represent changes in agents’ demand sets.
The first break is when agent 5 starts bidding on C, and the second break is when agents 4 and 5
bid their values of 4. The end of the chart occurs when agent 2 bids her value of 7.

• Efficient calculation of the length of each stage (Chapter 6).

• Efficient calculation of interesting coalitions (Chapter 6).

• Potential alternative to a mixed integer formulation (Chapter 6).

Experimental results can be found in Chapter 7.

5.1 A Motivating Example

Before proceeding to describe our algorithm, we provide a simple example and run

through APA on this example. This will provide a concrete basis for the description

of our algorithm.

Suppose we have five agents and four goods, {A, B, C,D}. v1(AB) = 8, v2(CD) =

7, v3(CD) = 10, v4(BD) = 4, v5(AC) = 4, v5(BC) = 2. The results of running APA

with a bid increment of 1 can be summarized in Table 5.1.

Of note in the example is that agents that were previously winning do not increase

any of their current bids. Pictorally, any agent who has a bid surrounded by a

CHAPTER 5. OUR ACCELERATED ALGORITHM 40

parenthesis will not change any of her bids in the next round. For example, in

iteration 4, the specific bid of agent 5 on bundle C is not winning, but since agent

5 is winning in the round on AC, she does not change her bid on bundle C. All

non-winning agents increase all their bids by the bid increment of 1.

Also notice that agent 5 does not begin bidding on C until her payoff on C equals

her payoff for AC. Since she has higher value for AC, AC starts out with higher

payoff. Only when her bid for AC becomes 3 does she submit a bid of 1 for bundle C

(at this point, πt
5(AC) = v5(AC)−pt

5(AC) = 4−3 = 1 and πt
5(C) = v5(C)−pt

5(C) =

2− 1 = 1).

Also, the winning bids are always chosen to maximize the seller’s revenue. We

enforce feasibility by making sure that the bundles that win do not overlap (for

example, agents 1 and 4 never win in the same iteration because their bundles both

contain goods B). We will keep referring back to this example when discussing key

concepts in our algorithm.

5.2 Preliminaries

Let an active bundle for agent i be a bundle on which the agent is actively bidding

(pi(b) 6= 0 and pt
i(b) 6= vi(b)). Recall that an agent’s demand set consists of her active

bundles. An agent is active if her demand set is not the null set.

Proposition 3. In the ascending proxy auction, the payoff an agent receives from each

of her active bundles in a round is constant with a factor of the bid increment ε.

Proof: An agent only starts bidding on a new package s when the value of s is

within ε of the maximal payoff on her current bundles. Therefore, when an agent first

starts bidding on s, the payoff on s is within ε of her maximal payoff. Additionally,

whenever the agent increases her bids by ε, she does so on all packages that have

payoff within ε of her maximal payoff. By induction, the agent’s payoffs for all of her

active bundles must be within ε of her maximal payoff.

Because of Proposition 3, we can define the payoff of an agent to be independent

of the current bundle within a factor of ε. For our accelerated algorithm, we assume

infinitesimally small ε, so the payoffs for an agent on her active bundles will always

be equal. Thus, we can denote the payoff of an agent without referring to specific

CHAPTER 5. OUR ACCELERATED ALGORITHM 41

bundles by simply πt
i , where t indexes the round.

Corollary 4. When an agent stops bidding on a single package, she stops bidding on

all packages.

Proof: When the payoff for a single package becomes 0, it must be the case that

the payoff for all packages becomes 0 because of Proposition 3.

If we look at Example 5.1, agent 5 is the only agent who bids on more than 1

bundle. However, when she is submitting bids on both bundles, it is the case that her

payoff is the same on both bundles. She only begins to submit bids for C in round

4. At this point, her payoff for AC is 4 - 3 = 1, and her payoff for C is 2 -1 = 1.

Similarly, as a demonstration of Corollary 4, agent 5 stops bidding on both of her

bundles at the same time after round 7.

5.3 Interesting Coalitions and Interesting Bundles

Definition 14. A coalition Ci is interesting if at some point during the auction, Ci is

declared the winner.

In our motivating example, we can find the interesting coalitions by looking across

each row and finding the coalitions that correspond the winning bundles. In this case,

there are three interesting coalitions, namely {1, 2}, {1, 3} and {4, 5}.

Definition 15. Let Bi(j) denote the bundle agent j is allocated when coalition Ci

wins at a given time. Then the revenue generated by coalition Ci with allocation Bi

is defined as:

rt(Ci, Bi) =
∑
j∈Ci

pt
j(Bi(j)) (5.1)

Returning to our motivating example, in round 5, the revenue generated by coali-

tion {1, 2} with allocation {AB, CD} is 3 + 4 = 7. Similarly, in the same round,

the revenue generated by coalition {4, 5} with allocation {BD,AC} is 3 + 3 = 6.

Alternatively, the revenue generated by coalition {4, 5} with allocation {BD,C} is 3

+ 1 = 4.

Proposition 5. If Ci is interesting, then Ci always wins on the same bundles. In other

words, if Ci is winning, then the agents in Ci are always allocated the same packages.

CHAPTER 5. OUR ACCELERATED ALGORITHM 42

Proof: Consider the first time that Ci is declared to be the winning coalition. Let

Bi(j) denote the package allocated to agent j when Ci is first declared the winner.

Suppose at some later time, the agents are allocated some other packages, B′
i 6= Bi.

By definition, this means B′
i generates more revenue than Bi. However, since Bi was

allocated the first time Ci won, it must have been the case that at that time, the

revenue generated by Bi must have been greater than the revenue generated by B′
i.

Since agents increase their bids equally on all packages, Bi must always generate more

revenue than B′
i. Thus, it cannot be the case that B′

i is the winning allocation at

some later time.

As a concrete example, in our motivating example, the coalition {4, 5} always

wins on bundle BD and AC. Even though agent 5 submits bids for bundle C alone,

coalition {4, 5} never wins on bundles BD and C. The logic for this is that bundle C

yield less revenue since agent 5 starts bidding on it at a later iteration. Since agent

5 increases her bids on all bundles whenever she increases her bids, bundle C will

always yield less revenue than AC, and hence {4, 5} can only win on bundles BD and

AC.

Because Ci always wins on the same bundles, we can define rt(Ci) using the bundles

Bi associated with Ci whenever Ci is winning. The revenue generated by coalition Ci

is now only a function of the coalition Ci and the current round t:

rt(Ci) =
∑
j∈Ci

pt
j(Bi(j)) (5.2)

Proposition 5 shows that whenever Ci is winning, the agents in Ci win on the same

packages.

Definition 16. We therefore define the interesting bundles associated with interesting

coalition Ci to be the unique mapping between agents in Ci and bundles defined by

the allocation whenever Ci is winning.

In the motivating example, the interesting bundles for coalitions {1, 2} and {1, 3}
are {AB, CD}, and the interesting bundles for coalition {4, 5} are {BD,CA}.

CHAPTER 5. OUR ACCELERATED ALGORITHM 43

5.4 Overview

If we look at Example 5.1, we see some very interesting behavior in the ascending

proxy. Before agents 4 and 5 stop bidding, coalitions {1, 2}, {1, 3} and {4, 5} each are

winning some of the time. After agents 4 and 5 stop bidding, only coalitions {1, 2} and

{1, 3} win. The observation of Parkes and Wurman is that these changes in dynamics

can be predicted [16, 22]. In this case, the change occurs because agents 4 and 5 have

stopped submitting new bids for their bundles. Without getting into the specifics

which follow, we can therefore think of Pure Proxy APA as proceeding in a sequence

of stages, where new stages are defined by a change in the dynamics of competition.

When viewed this way, instead of simulating every single round as in Pure Proxy,

we can perform some calculations to determine the dynamics in each stage and then

simulate all the rounds within the stage at once. Our algorithm therefore consists

of a definition of a stage, how to compute the dynamics within a stage, and how to

determine when a new stage begins.

5.5 Stage Definition

We can think of stages as being defined by events which signal the beginning of a new

stage. Within a stage, the coalitions which win do so in a cyclical manner. As seen

in Example 5.1, during the first and second stages (marked by breaks in Table 5.1),

the winning coalitions take turns winning. Therefore, the dynamics of a stage may

change when new winning coalitions emerge or when winning coalitions drop out of

competition. Two distinct types of events can cause this to occur:

• Changes in an agent’s demand set.

• A non-winning coalition catches up to the winning coalitions.

The first event that may cause a change in dynamics is a change in an agent’s demand

set. As in Example 5.1, when the demand sets of agents 4 and 5 become the null set

(they no longer submit new bids), the dynamics change as coalition {4, 5} no longer

wins. Alternatively, when an agent first begins to bid on a new bundle, it is possible

that this new bid will cause the creation of a new winning coalition.

CHAPTER 5. OUR ACCELERATED ALGORITHM 44

The second event that may separate two stages is more subtle. Within a stage,

there are coalitions that generate the top-level of revenue and win some portion of

time, while there are other coalitions that are never declared the provisional winner

since they always generate lower revenue. The coalitions that generate the top-level

of revenue compete and increase their prices together, but at a slower rate because

they may win some of the time (and hence their agents will not increase their bids

all of the time by the definition of ascending proxy). The coalitions that never win

increase their bids at a potentially faster rate since they are never winning (and hence

their agents might always be increasing their bids) 1 The second event that defines

stage boundaries is when one of these low revenue coalitions catches up to the top-tier

of revenue generating coalitions because of this difference in rates. Our motivating

example does not contain this phenomena, but Example 9 in Section 5.8 provides

such a case.

5.6 Calculating Behavior within the Stage (FRAC)

Having defined our notion of a stage, we now look to compute the dynamics within

a given stage. We call this algorithm FRAC. Because of our definition of the stage,

we can assume two facts when computing behavior within the stage:

• Agent’s demand sets stay the same.

• All winning coalitions start the stage at the highest level of revenue.

We can assume that agent’s demand sets stay the same because if not, we would be

dealing with two different stages. Similarly, a winning coalition which starts out at

a lower-level of revenue would contradict our stage definition. If a coalition did not

start at the top-level of revenue but became a winning coalition at some point in

the stage, this would mean that coalition had caught up to the competing coalitions.

This contradicts our stage definition.

1Note that this may not always be the case. For example, if a lower revenue coalition contains an
agent in common with a winning coalition, the lower revenue coalition also increases less when the
winning coalition is winning. The argument here provides an explanation for why this phenomena
might ever occur.

CHAPTER 5. OUR ACCELERATED ALGORITHM 45

Therefore, in computing the dynamics of a given stage, we can restrict our attention

to the coalitions that generate the highest amount of revenue at the start of the stage.

Definition 17. For a given stage T , the set of T -interesting coalitions is those inter-

esting coalitions which generate the highest level of revenue at the start of the stage.

We denote this set of coalitions by C∗.

These T -interesting coalitions will each take turns being named the winner. This is

necessarily true because when a coalition is the named the winner, the other coalitions

increase their prices while the winning coalition stays stagnant. This will eventually

cause a new coalition to be named the winner. We want to figure out how often each

coalition is declared the winner within each stage.

The key observation is that given any sequence of iterations during the APA, we

can look back after the fact and say that each coalition was winning for a specific

number of rounds out of the total number of rounds elapsed. When we sum these

ratios over all coalitions, they must sum to one since only one coalition wins in a round,

and some coalition wins in every round. When we consider infinitesimally small bid

increments, these discrete ratios become fractions and the number of rounds becomes

a continuous time interval. Therefore, if coalition Ci wins for a fraction fCi
, this

means that for a given time interval D, Ci is winning fCi
D of the time. As in the

discrete case, these fractions must sum to 1.

If we have a variable fCi
for each coalition Ci, this is equivalent to the expression:∑

Ci∈C∗

fCi
= 1 (5.3)

Notice that we can restrict our attention to C∗ since the stage definition allows us to

assume that all winning coalitions within stage T are T -interesting. Also notice that

the fCi
≥ 0, but some of the fCi

could be equal to zero, meaning coalition Ci never

wins during the stage. We distinguish the coalitions that win from the coalitions that

never win with the following definition.

Definition 18. Within a stage, a competitive coalition Ci is one for which fCi
> 0.

Referring back to Example 5.1, in the first stage (before agent 5 starts bidding

on C), the winning alternates between coalitions {1, 2}, {1, 3} and {4, 5}. These

coalitions are the only competitive coalitions. Each of these coalitions wins 1/3 of

the time during the first stage. Indeed, if we look at any set of rows of Table 5.1,

CHAPTER 5. OUR ACCELERATED ALGORITHM 46

every coalition wins for a well-defined fraction of time. This is simply because only

one coalition wins in each iteration. Also, due to the way we construct the fractions,

they must sum to 1.

Given the fCi
, we can then derive the fraction of time that a given agent is winning

within the time interval in terms of the fCi
. The amount of time a single agent is

winning will simply be the sum of the fCi
of the coalitions in which the agent takes

part. An exception to this rule occurs when an agent is no longer active. An inactive

agent never changes her bids. We can model this by saying that she is winning all of

the time.

Definition 19. Formally, we can define the fraction of time that agent j is winning to

be the agent fraction:

fAj
=

∑
Ci∈C∗ s.t. j∈Ci

fCi
∀ active j (5.4)

fAj
= 1 ∀ non-active j (5.5)

Because of the structure of APA, we can use these agent fractions to calculate how

much prices are changing for every coalition. In APA, an agent does not increase

her bid when she is winning, and increases her bid by ε on all packages in her ε-

demand set when she is not winning. In the limit as ε goes to 0, an agent who is

winning a fraction fAi
of the time will increase her bid (1 − fAi

)D of the time for a

given duration D. Similarly, since coalitions are just collections of agents, the revenue

increase a coalition experiences is equal to the sum of the price increases of its agents.

For a given time interval D, a coalition’s generated revenue increases by:∑
j∈Ci

(1− fAj
)D (5.6)

Definition 20. We define this multiplier of the duration as the price increase for a

coalition. The price increase kCi
of a coalition Ci is:

kCi
=

∑
j∈Ci

1− fAj
(5.7)

Applying these concepts to the first stage of our motivating example, we see that

agent 1 wins 2/3 of the time since she is a member of coalitions {1, 2} and {1, 3}
each of which wins 1/3 of the time. Agent 2,3,4,5 each win 1/3 of the time. Now

CHAPTER 5. OUR ACCELERATED ALGORITHM 47

that we have these fractions, we can backtrack and calculate the price increase for

{1, 2}, {1, 3} and {4, 5}. {1, 2} consists of agents 1 and 2. Agent 1 wins 2/3 of the

time, so she increases her bid 1/3 of the time. Agent 2 wins 1/3 of the time, so

she increases her bid 2/3 of the time. Therefore, the price increase for {1, 2} is 1.

Similarly, the price increase for {1, 3} is 1. For coalition {4, 5}, the price increase is

2/3 + 2/3 = 4/3.

The price increase is a very important concept for determining behavior within a

stage. The key observation is that in the discrete case, in order for coalitions to take

turns winning, they must generate about the same amount of revenue. That is, their

revenue must rise at approximately the same rate. When we take the limit as the bid

increment goes to 0, this forces coalitions to have the same price increase.

Proposition 6. For any pair of competitive coalitions Ci, Cj, we have kCi
= kCj

.

Proof: Suppose not. Then wlog, kCi
> kCj

. However, this means that for every

positive duration D, Cj will generate more revenue than Ci. Thus, Cj will never be

winning. But this contradicts the competitiveness of Cj. It must be the case that

kCi
= kCj

.

Corollary 7. For any pair of coalitions Ci, Cj, if Ci is competitive and Cj is non-

competitive, then kCi
≥ kCj

.

Thus, we see that we have a second set of conditions on the values of the fCi
:

kCi
= kCj

∀ Ci, Cj with fCi
, fCj

> 0 (5.8)

kCi
≥ kCj

∀ Ci, Cj with fCi
> 0, fCj

= 0 (5.9)

Notice that in our motivating example, the price increases for the competitive

coalitions are not equal. This is due to the non-trivial bid increment we chose to

decrease the number of rounds in the example. When the bid increment is non-trivial,

the price increases will be equal within a factor dependent on the bid increment. Since

our algorithm represents the limit of APA as the bid increment goes to 0, the price

increases for the competitive coalitions need to be exactly equal. When the bid

increment goes to 0, the price increase represents the continuous rate at which the

revenue generated by a coalition increases. In order to be competitive with other

coalitions (be chosen as the winner a nonzero amount of time), it must be the case

that the price increases are equal. Otherwise, the unequal price increase is manifested

in every positive duration, and the coalition with smaller price increase will never win.

CHAPTER 5. OUR ACCELERATED ALGORITHM 48

We are now ready to calculate the price trajectories for a given stage. We seek

the fi that satisfy Equations 5.3 and 5.8. Suppose we are considering n coalitions.

For now we assume that they are all competitive, that is fCi
> 0. Since they are

all competitive, we have a system of n linear equations in the fCi
. Equation 5.3

contributes one constraint, while Equation 5.8 contributes n − 1 equations since we

need that the kCi
are all equal (once we set one, we fix the n − 1 others). We have

not been able to prove the linear independence of this system of equations. However,

intuitively, increasing one coalition’s winning fraction should affect the price increase

of that coalition more than the other coalitions, which leads us to believe the solution

is unique. In summary, our system of n-linear equations with n unknowns is (NSYS):∑
Ci

fCi
= 1 (5.10)

kC1 = kC2 = . . . = kCn (5.11)

This system of equations is linear in fCi
since the kCi

are linear functions of the

fCi
. Notice, however, in order to solve the system of equations, we cannot place a

constraint on the values of the fCi
. If we enforce such a condition, then we are not

guaranteed a solution. Indeed, the solution to the set of equations may result in

a negative fraction for one of the coalitions. While this does not make sense in our

setting, intuitively, this symbolizes the inability of a given coalition to compete within

a stage. For instance, because of the way the ascending proxy is structured, larger

coalitions will experience larger bid increments. Whenever a coalition is not winning,

the size of its bid increase is proportional to the size of the coalition. Larger coalitions

may overwhelm smaller coalitions, making it impossible for the smaller coalitions to

satisfy Equation 5.8 (see Example 8 in Section 5.8).

Since negative fractions do not make sense in our setting (the minimum fCi
hat is

sensible is 0), we need to do some extra work in order to obtain the correct fCi
. We

cannot solve the n-dimensional linear equation while enforcing positivity on the fCi

because some coalitions are non-competitive (they have fCi
= 0). However, if we only

considered the competitive coalitions, which by definition are those with fCi
> 0, the

solution to the linear equations would be valid (no fCi
< 0). Thus, if we can find the

correct subset of coalitions that are competitive, we could just solve NSYS restricted

to those coalitions to obtain the correct fCi
. All non-competitive coalitions would

have fCi
= 0. We can find the correct subset and the resulting fractions in one step

CHAPTER 5. OUR ACCELERATED ALGORITHM 49

using a mixed integer linear program (FRAC-MIP):

max
∑

Ci∈C∗

kCi
(5.12)

subject to
∑

Ci∈C∗

fCi
= 1 (5.13)

fAj
=

∑
Ci s.t. j∈Ci

fCi
, ∀ active j (5.14)

fAj
= 1 ∀ non-active j (5.15)

kCi
=

∑
j∈Ci

1− fAj
(5.16)

kCi
− kCj

+ NaCj
≤ N (5.17)

fCi
≤ aCi

(5.18)

aCi
∈ {0, 1}, fCi

≥ 0, Ci ∈ C∗, N > kCi
− kCj

∀ i, j (5.19)

Here, we have indicator variables aCi
denoting whether or not Ci is competitive

during the given round. aCi
= 1 indicates that Ci is competitive, and aCi

= 0 indicates

that Ci is not competitive. If Ci is not competitive, then fCi
= 0, which is enforced

by constraint 5.18. If we do indeed have the correct competitive coalitions, then it

must be the case that kCi
≤ kCj

for all competitive coalitions Cj. We enforce this

by using the Constraint 5.16. If aCj
= 1, then Constraint 5.16 forces kCi

− kCj
≤ 0

or alternatively, kCi
≤ kCj

. However, if aCj
= 0, this constraint is non-binding if we

choose N to be large enough (greater than the largest possible difference between kCi

and kCj
). As a result, if we choose a coalition Ci to be competitive, it must be the

case that all other coalitions have price increase less than or equal to the revenue

generated by Ci.

We notice that the objective in FRAC-MIP has been chosen to be the sum of

the price increase over all coalitions. We have included this objective because we

do not have theoretical results on the uniqueness of the solution to this system of

equations with constraints (if we knew the solution were unique, we would not need

an objective). Intuitively, it seems that there should be a unique point at which the

competitive coalitions experience the same price increase that is at least the price

increase of the non-competitive coalitions. If we increase the coalitional fraction of

one coalition, we need to decrease the coalitional fraction of some other coalition

because of Constraint 5.13. This should cause the price increase of the first coalition

CHAPTER 5. OUR ACCELERATED ALGORITHM 50

to decrease and the price increase of the second to increase, resulting in unequal price

increases. However, when we look at changing more than two coalitional fractions,

the effects are more complicated. Theoretical results on this uniqueness may be an

area of future work.

5.7 Calculating the Length of a Stage (DUR)

By solving FRAC-MIP, we obtain coalitions for which fCi
> 0 along with the exact

values of the fCi
. All other coalitions will have fCi

set to 0. We now have a way to

update agent’s bids. By Equation 5.4 which gives the fAi
in terms of the fCi

, we can

calculate the fraction of time agents are increasing their bids. Because we compute

everything in fractions, to determine the actual price increase, we need a duration,

D. Given a duration D, agent i’s bids will increase by (1 − fAi
)D. We can think of

the duration D as a unit of time, and the fAi
as a rate.

We therefore need to determine the duration D for which the rates from the first

part of our algorithm are valid. We call this portion of the algorithm DUR. Recall

that there are two restrictions on our duration D, notably, the two events that define

our notion of a stage. Ruling out these two events created assumptions that played

key roles in our determination of the fAi
. As a result, we can only run the stage while

these two events do not occur.

5.7.1 Demand Set Change

The first event that does not occur within is stage is a change in agent’s demand sets.

This assumption could possibly be violated when an agent begins bidding on a new

package or when an agent stops bidding. In the first case, an agent starts bidding on

a new bundle when her payoff from her current bundle equals the value of the new

bundle. Let πT
i denote the payoff for agent i at the start of stage T . For each agent,

we let the minimal price increase before a demand set change be δT
i . We have that:

δT
i ≤ πT

i − max
s s.t. pT

i (s)=0
vi(s) (5.20)

For the case where agent i is already bidding on all of her bundles, we need to

know when it will stop bidding (the prices on bundles reach the agent’s value). In

CHAPTER 5. OUR ACCELERATED ALGORITHM 51

this case, the agent just stops bidding when her payoff becomes 0:

δT
i ≤ πT

i (5.21)

We see that the second constraint is included in the first (since if the agent is

bidding on all her packages, there will be no packages s.t. pT
i (s) = 0). We therefore

have that:

δT
i ≤ πT

i − max
s s.t. pT

i (s)=0
vi(s) (5.22)

Since each agent bids up by 1− fAi
for a duration of 1, the time it takes to bid up

by δT
i is

δT
i

1−fAi
. Thus:

D ≤ min
i∈A

δT
i

1− fAi

(5.23)

5.7.2 Catching Up

The second event that does not occur within a stage is the emergence of a new

winning coalition. It is possible that while the winning coalitions are competing at

the top-revenues (and therefore winning some portion of the time), coalitions which

originally generated lower revenues may catch up (because they are losing all the time

and hence may always increasing their bids) 2.

Therefore, we have to end the current stage if we ever find that some coalition

which previously generated lower revenue has caught up to the top-tier of competing

coalitions. Recall that a coalition Ci by definition yields revenue rT (Ci) at the start

of stage T . Therefore, the amount of time Dj required for a lower revenue coalition

Cj to catch up to a maximal revenue coalition Ci satisfies:

rT (Cj) + Dj · kCj
= rT (Ci) + Dj · kCi

⇒ Dj =
rT (Ci)− rT (Cj)

kCj
− kCi

(5.24)

The Dj is only meaningful if kCj
> kCi

. If kCi
= kCj

, then we divide by zero,

implying it will take an infinite amount of time to catch up. This makes sense since

2As noted previously, this is one possible scenario and is not true for every coalition that generates
lower revenue

CHAPTER 5. OUR ACCELERATED ALGORITHM 52

two coalitions that are increasing at the same rate but start at different revenues will

never cross. Similarly, if kCi
< kCj

, then Dj < 0, which means it takes a negative

amount of time to catch up. This is meaningless for our interpretation of the Dj.

Therefore, the duration D has to be less than minimal time required for coali-

tions Cj with kCj
greater than the competitive kCi

to catch up. If we let Ci be a

representative of the competitive coalitions, we have the constraint:

D ≤ min
Cj /∈C∗,kCj

>kCi

rT (Ci)− rT (Cj)

kCj
− kCi

(5.25)

5.7.3 Duration Calculation

Thus, we can now find the maximum duration for which we can use our fractions

calculated by FRAC by taking the minimum of the two maximum durations above.

Let Ci be any competitive coalition. Then the maximum duration for which our

fractions from FRAC are valid will be:

D = min(min
Cj /∈C∗,kCj

>kCi

rT (Ci)− rT (Cj)

kCj
− kCi

, min
i∈A

δT
i

1− fAi

) (5.26)

After simulating the auction for this duration (updating the bids of each agent

based on fAi
and D), we can repeat the process for the next stage. We continue this

staged implementation until there is only one competitive coalition, and there are no

coalitions that generate lower revenue that could possibly catch up to this coalition.

5.8 Illustrative Examples

Example 7. Recall Example 1. We have three agents 1, 2, 3 bidding on goods A and

B. Each agent values a single bundle. v1(A) = 5, v2(B) = 5, v3(B) = 20. Intuitively,

the result here will have agent 3 winning and paying a price of 10 for bundle AB.

This is due to the fact that agents 1 and 2 will drop out once the prices of A and B

reach 5. In order to be more appealing than the coalition of {1, 2}, agent 3 must bid

at least 10 for AB.

We first notice that the interesting coalitions will be {1, 2} and {3}. There cannot

be coalitions consisting of 1 and 3 or 2 and 3 because their goods overlap. A coalition

CHAPTER 5. OUR ACCELERATED ALGORITHM 53

consisting of either 1 or 2 by itself is non-competitive since {1, 2} will always yield

more revenue. Let C1 = {1, 2} and C2 = {3}. Using Equations 5.4 and 5.8, we have

the following expressions in terms of the fCi
:

fA1 = fC1

fA2 = fC1

fA3 = fC2

kC1 = 1− fA1 + 1− fA2 = 2− 2fC1

kC2 = 1− fA3 = 1− fC2

fC1 + fC2 = 1

Solving for the fCi
subject to the constraint fC1 + fC2 = 1 and kC1 = kC2 , we

obtain fC1 = 2/3, fC2 = 1/3. This means that coalition C1 is winning 2/3 of the time

and C2 is winning 1/3 of the time. This makes sense since every time C1 is losing, its

generated revenue increases by 2ε while C2 only increases its generated revenue by ε

each time it is losing (C1 has two members while C2 has one member). Therefore, in

order to generate the same revenue, C2 must be losing twice as often, which is indeed

the case.

Having computed these fractions, we now need to know when to stop the stage.

In this case, there are no coalitions that started the stage with lower revenue, so we

do not need to check for catching-up. We do need to compute the δ for each agent.

(We drop the superscript for the stage since we know we are in the first stage). Since

the agents only submitted bids for a single bundle, δi will just be the agent’s values.

δ1 = 5, δ2 = 5, δ3 = 20. For every time increment, agent 1 increases her bid by

1− fA1 = 1− fC1 = 1− 2/3 = 1/3. The same is true for agent 2. Agent 3 increases

her bid by 1 − fA3 = 1 − fC2 = 1 − 1/3 = 2/3. Therefore, agents 1 and 2 can no

longer bid when the duration exceeds 5 / (1/3) = 15, and agent 3 can no longer bid

when the duration exceeds 20 / (2/3) = 30. We therefore simulate the stage for a

duration of 15, arriving at prices p1(A) = 5, p2(B) = 5, p3(AB) = 10. At this time,

agents 1 and 2 have submitted their valuations, and have no bids left to submit. As

a result, coalition {3} is declared the winner, paying a price of 10 for bundle AB.

This example is the same as Example 1, and we showed in Chapter 2 that the core

outcomes were those outcomes in which agent 3 receives AB and pays price 10. Here

we see that our accelerated implementation arrives at a core outcome as expected (in

CHAPTER 5. OUR ACCELERATED ALGORITHM 54

fact it is bidder-Pareto-optimal).

Example 8. An example of non-competitiveness. More concretely, suppose we have

seven agents each with single bundle valuations. v1(A) = 10, v2(B) = 1, v3(C) =

1, v4(A) = 10, v5(B) = 1, v6(C) = 1, v7(ABC) = 50.

We see that there will be 23 possible coalitions with 3 agents (two choices for

agents bidding on A, two choices for agents bidding on B, two choices for agents

bidding on C). There is also one coalition C9 consisting of agent 7 alone. Suppose

that C9 never wins during the stage. Then the price increase of C9 will be ε for each

time increment (agent 7 is always increasing her bid since C7 never wins). Looking

at C1, ..., C8, the coalitions with three agents, we notice that as a whole they are

symmetric. Therefore, fC1 = fC2 = ... = fC8 ⇒ fC1 = ... = fC8 = 1/8. For a given

agent in {1, 2, ..., 8}, that agent will be in 4 coalitions of three agents (if the agent

bids on bundle b, then there are two choices of other agents for each of the two other

bundles). Thus, fAj
= (1/8) · 4 = 1/2 for 1 ≤ j ≤ 6. The price increase kCi

for any

of these eight coalitions kCi
will be:

kCi
=

∑
j∈Ci

(1− fAj
) = 3(1− 1/2) = 3/2

Therefore, we see that even if we assume C9 never wins, kCi
= 3/2 for 1 ≤ i ≤ 8,

and kC9 = 1. Since C9 increases its price most rapidly when it is never winning, this

shows that it is impossible for C9 to compete during this stage . Indeed, when we solve

the system of linear equations to obtain the fCi
, we see that fC9 = −1/5, fCi

= 3/20

for 1 ≤ i ≤ 8. When we set these fractions, we see that fAi
= (3/20) · 4 = 3/5 for

1 ≤ i ≤ 6 and fA7 = −1/5, giving:

kC1 =
∑
j∈C1

(1− fAj
) = 3(2/5) = 6/5

kC9 =
∑
j∈C9

(1− fAj
) = 1− fA7 = 1− fC7 = 1− (−1/5) = 6/5

As we have seen in this example, there are times when coalitions cannot compete

since the size of the increase in generated revenue is proportional to the number of

agents in the coalition. In this case, a coalition with a single agent cannot compete

with coalitions with three agents. As seen, if we just try to solve the system of n

linear equations (NSYS, Equations 5.10 and 5.11) with C9 included, then we get a

CHAPTER 5. OUR ACCELERATED ALGORITHM 55

negative fraction for fC9 which is meaningless. Instead, the output of FRAC-MIP

will tell us that C9 is not competitive and will give the fractions that equalize the

price increases of the competitive coalitions C1, . . . , C8. Because FRAC-MIP tells us

C9 is not competitive, we know to set fC9 = 0.

However, even though C9 starts out non-competitive, the coalitions with three

agents actually quickly bid up the price and reach their valuations. In later rounds,

C9 will catch up and ultimately become the winner of the auction.

Example 9. An example of catching-up. Let us continue with Example 8. v1(A) =

10, v2(A) = 10, v3(B) = 1, v4(B) = 1, v5(C) = 1, v6(C) = 1, v7(ABC) = 50. The

first stage of the auction is as described in Example 8. Again, we have nine total

coalitions that could possibly compete. There are eight coalitions consisting of three

agents each, and there is one coalition consisting of only agent 7. Let C1, ..., C8 denote

the eight coalitions consisting of three agents each, and C9 denote {7}. In the first

stage, we will have the same agent fractions as Example 8. Agents 1,2,...,6 will be

winning 1/2 of the time, while agent 7 is never winning.

We stopped our analysis in Example 8 at this point since we saw that C9 was

not competitive. We now continue stepping through our algorithm. Moving into the

DUR portion of the algorithm, we can calculate the δi for each agent. Recall that δi

is the maximum duration for which agent i’s active bundles do not change. In this

example, since each agent only submits values for a single bundle, we calculate the

maximum duration until the agent’s prices exceed their values:

δ1 = v1(A)/(1− fA1) = 10/(1/2) = 20

δ2 = v2(A)/(1− fA2) = 10/(1/2) = 20

δ3 = v3(B)/(1− fA3) = 1/(1/2) = 2

δ4 = v4(B)/(1− fA4) = 1/(1/2) = 2

δ5 = v5(C)/(1− fA5) = 1/(1/2) = 2

δ6 = v6(C)/(1− fA6) = 1/(1/2) = 2

δ7 = v7(ABC)/(1− fA7) = 50/1 = 50

Since all coalitions start out generating 0 revenue, we cannot have the catching-up

phenomena occurring in the first stage. Therefore, our duration will be the minimum

of the δi, which is 2. After running for duration 2, we update the prices for each

agent by multiplying the duration by the fraction of time the agent is increasing her

CHAPTER 5. OUR ACCELERATED ALGORITHM 56

bid. p1(A) = 2 · (1/2) = 1, p2(A) = 1, p3(B) = 1, p4(B) = 1, p5(C) = 1, p6(C) =

1, p7(ABC) = 2 ·1 = 2. We notice that at this point, agents 3,4,5, and 6 are no longer

active since they have reached their valuations. However, since agents 1 and 2 are

still active, they still compete on behalf of C1, ..., C8.

Notice that after running the first stage, C9 only generates revenue 2 to the auc-

tioneer, while the three agent coalitions generate revenue 3. As a result, in the

second stage, C9 is not T -interesting and we assume that fC9 = 0. By symmetry

again, we see that the fC1 = fC2 = . . . = fC8 . Since these fractions must sum to one,

fCi
= 1/8 for 1 ≤ i ≤ 8.. Agent 1 participates in exactly half of these coalitions,

so fA1 = 1/2. By symmetry, fA2 = 1/2. Since agents 3,4,5,6 have reached their

valuations, fA3 = fA4 = fA5 = fA6 = 1 (we assume these agents are always winning

and hence never increase their bids as required). fA7 = fC9 = 0 since within this

stage, C9 is never winning because it starts out generating lower revenue.

Having in hand our agent fractions, we can now calculate the deltas in order to

determine the correction duration of this stage:

δ1 = π1(A)/fA1 = (v1(A)− p1(A))/(1/2) = 18

δ2 = π2(A)/fA2 = (v2(A)− p2(A))/(1/2) = 18

3δ3 = δ4 = δ5 = δ6 = πj(s)/(1− fAj
) = πj(s)/0 = ∞

δ7 = π7(ABC)/fA7 = (v7(ABC)− p7(ABC))/(1/2) = 96

Notice that δ3 = δ4 = δ5 = δ6 = ∞ since agents 3,4,5,6 are no longer active. If we

take the minimum of the δi, we find that our minimum duration is 18. However, unlike

the first stage, we now have to make sure the catching-up phenomena does not occur

since C9 starts the stage generating lower revenue than the competitive coalitions,

C1, ..., C8. C9 starts out generating revenue 2, while C1, ..., C8 generate revenue 3.

However, any one of C1, ..., C8 only contains either agent 1 or agent 2 (they both bid

on good A). Since agents 3,4,5,6, are no longer active, the price increase of C1, ..., C8

is simply the price increase of agent 1 or agent 2. They both win half the time, so

kC1 = kC2 = ... = kC8 = 1/2. On the other hand, C9 never wins so agent 7 never wins

and is always increasing her prices. Since C9 consists solely of agent 7, this means the

price increase of C9 is also 1, so kC9 = 1. Since C9 is increasing its price faster than

the competitive coalitions, it is possible that the revenue generated by C9 catches up

to the competitive coalitions before any change in agents’ active bundles. To solve

CHAPTER 5. OUR ACCELERATED ALGORITHM 57

for this duration D, we set up the following equation. We can choose C1 to represent

the competitive coalitions since they are symmetric.

r(C1) + kC1D = r(C9) + kC9D

⇒ D = (r(C9)− r(C1))/(kC1 − kC9)

⇒ D = (2− 3)/(0.5− 1) = 2

We see that after a duration of 2, C9 will catch-up to the competitive coalitions. This

is smaller than the minimum of the δi which is 18. Therefore, our fAi
are only valid

for duration 2, and after updating the prices using the current fAi
and a duration of

2, we need to recalculate the fAi
since C9 has become competitive.

Even though C9 started the stage generating less revenue than the competitive

coalitions, it was able to catch-up. In this case, C9 had a larger price increase than

the competitive coalitions and was able to make up the original difference in revenue

before a change in agents’ active bundles.

Chapter 6

Computational Issues

6.1 Computing the Interesting Coalitions

In the description of the Algorithm FRAC (Section 5.6), we assumed that there was

some way to determine the T -interesting coalitions at the start of stage T . However,

in practice, determining these T -interesting coalitions is non-trivial and can be the

bottleneck of the indirect method. We provide several methods for computing these

T -interesting coalitions.

6.1.1 Precomputation

After introducing the notion of interesting coalitions, Parkes suggests an algorithm for

precomputing all of the interesting coalitions before we run the indirect algorithm [16].

Parkes proposes an iterative process for determining the possible winning coalitions.

First we solve the winner determination problem, where agents’ bids are simply their

valuations. On the first solution to the winner determination problem, we will obtain

some winning coalition. This coalition will be competitive. However, the fact that

this coalition is the solution to the winner determination problem means that no

coalition including all the agents in this coalition can be a winning coalition. We use

the dynamics of the ascending proxy auction to prove this result.

Proposition 8. If a coalition K is the designated unique winner after solving the

winner determination problem, then no proper superset of K is ever a provisional

58

CHAPTER 6. COMPUTATIONAL ISSUES 59

winner.

Proof: Suppose K is the coalition that solves the winner determination problem

where agent’s bids are their valuations. Suppose that there is some strict superset

K ′ ⊃ K that wins at some point during the ascending proxy. Then consider the first

time that coalition K ′ is declared the provisional winner. At this point, it must be the

case that rt(K ′) ≥ rt(K) since K ′ is declared the provisional winner. By definition of

payoffs and the coalitional value function, the coalitional value of a coalition, w(K),

is the current revenue generated plus the sum of current payoffs for agent in K.

Thus, w(K ′) = rt(K ′) +
∑

i∈K′ πt
i and w(K) = rt(K) +

∑
i∈K πt

i . Subtracting, we see

that w(K ′)− w(K) = rt(K ′)− rt(K) +
∑

i∈K′ πt
i −

∑
i∈K πt

i . Since rt(K ′) ≥ rt(K ′),

w(K ′)− w(K) ≥
∑

i∈K′ πt
i −

∑
i∈S πt

i =
∑

j∈K′,j /∈K πt
j. Since payoffs are always non-

negative and K ⊂ K ′, w(K ′) ≥ w(K), meaning that K ′ yields at least as much

value as K. This contradicts the choice of K as the unique winner of the winner

determination problem.

Given this result, Parkes offers a conservative estimate for the interesting coalitions.

If we find that K is the solution to the winner determination problem, we know that

no strict superset of K can be interesting. Removing both K and all supersets of K

from our search space, we again solve the winner determination problem. Like before,

we remove the results K ′ and all supersets of K ′ from the search space. We do this

exhaustively until we have eliminated all possibilities.

Once we have the set of all possible interesting coalitions, we no longer have to think

about any other coalitions. While this approach may drastically reduce the number

of coalitions we keep track of when running our algorithm, it may be intractable to

enumerate all interesting coalitions at time 0. Without more knowledge about the

problem, the number of interesting coalitions could be exponential in the number of

agents.

6.1.2 Conservative Generation

Instead of enumerating all of the interesting coalitions at time 0, we can progressively

compute the interesting coalitions as the staged mechanism proceeds. At the begin-

ning of stage T , we need the T -interesting coalitions. As a conservative estimate for

the T -interesting coalitions, we could compute all coalitions that generate the top

CHAPTER 6. COMPUTATIONAL ISSUES 60

level of revenue at the start of stage T .

IP Generation One way to generate these T -interesting coalitions is to iteratively

use an integer linear program to find new coalitions that generate the highest level of

revenue. Our basic IP that finds coalitions that generate the maximal revenue:

max
∑
i∈A

∑
s∈S

pi(s)xis (6.1)

subject to
∑

s∈S,g∈s

∑
i∈A

xis ≤ 1, ∀g ∈ G (6.2)∑
s∈S

xis ≤ 1, ∀i ∈ A (6.3)

xis ∈ {0, 1} (6.4)

This IP is the same as the winner determination IP, except that the objective function

sums over the price of bundle s rather than the value of bundle s.

To obtain all of the coalitions that generate the highest level of revenue, we can

solve this IP once to obtain the highest level of revenue R. After that, we can

iteratively run the IP with added constraints to make sure we do not rediscover a

previously found coalition. This can be done by adding the following constraint for

each discovered interesting coalition Cj with corresponding interesting bundles Bj:∑
i∈Cj

xj(Bj(i)) < |Cj| (6.5)

With this constraint, we are guaranteed that the IP will not output Cj since not

all of the xj(Bi(j)) can be set to one (or else they would sum to at least |Cj|).

Therefore, to obtain a conservative estimate of the T -interesting coalitions, we

iteratively grow the set of T -interesting coalitions and add the corresponding con-

straint to the IP until the IP outputs a coalition which generates less than R revenue.

By adding in constraints that do not allow the IP to regenerate previously output

coalitions, we are sure that this process will terminate.

Wurman’s Approach Wurman suggests another way of keeping track of these

coalitions. Namely, we know that from stage to stage that the only new winning

coalitions come from events that separate the stages. Therefore, if a coalition catches

CHAPTER 6. COMPUTATIONAL ISSUES 61

up, we just need to add that single coalition to the set of T -interesting coalitions. If

an agent’s demand set increases, then we need to add all new T -interesting coalitions

and allocations that include the agent and her new bundle[22].

There are two issues with this approach. First, at the beginning of the algorithm,

we need to enumerate all feasible coalitions since all coalitions start at revenue 0, and

hence all coalitions are T -interesting. Second, it may take a lot of effort to generate

all new coalitions that are formed when an agent’s demand set changes.

Summary The advantage of both of these methods of conservative generation is

that we will be guaranteed to have all of the T -interesting coalitions at the end of

this process. Unfortunately, this can also be a disadvantage, as the entire set of

T -interesting coalitions can still be exponential in size, and it is intractable to fully

enumerate all of these coalitions.

6.1.3 Constraint Generation (FRAC-CG)

Recognizing the disadvantage of our first two methods, we suggest an alternative

method which utilizes the constraint generation paradigm. Instead of explicitly cal-

culating all of the T -interesting coalitions, we generate a small subset of T -interesting

coalitions, run Algorithm FRAC on this subset to obtain agent fractions, and check

to make sure the fractions generated are correct. The hope is that if we take a small

subset of the T -interesting coalitions, we will be able to capture all of the competitive

dynamics in the system without having to explicitly deal with every T -interesting

coalition.

The motivating observation is that we can check if a given set of coalitional frac-

tions are valid. A set of coalitional fractions fCi
will define the agent fractions fAi

.

These agent fractions then define the price increase for every coalition. If the fAi

are correct, then the competitive coalitions will all have equal price increase, and

the non-competitive coalitions (fCi
= 0) will not have greater price increase than the

competitive coalitions (Proposition 6 and Corollary 7).

Because we have this verification process, we can use the constraint generation

paradigm. We run algorithm FRAC on a subset Y of the T -interesting coalitions.

This generates a set of fractions fCi
for the coalitions in Y . We assume that all

CHAPTER 6. COMPUTATIONAL ISSUES 62

coalitions outside of Y are non-competitive and have fCi
= 0. We then use these

fractions to compute the fAi
and in turn, the price increases for every coalition. We

check that these price increases satisfy Proposition 6 and Corollary 7. If they do, we

have the correct set of agent fractions and we can move onto algorithm DUR. If not,

we enlarge the set Y and try again. We iteratively do this until the agent fractions

we obtain are valid.

We can use Algorithm FRAC to generate the fCi
for some subset Y . In order to

check the validity of the derived fAi
, we can use an IP that is similar to the winner

determination IP. As with Section 6.1.2, we are looking for coalitions that satisfy

certain characteristics. In Section 6.1.2, the characteristic was the revenue generated.

Here, we are concerned with the price increase defined by a given set of fAi
. Let R be

the level of revenue generated by the T -interesting coalitions. We can use a slightly

modified IP to find the T -interesting coalition with maximal price increase:

max
∑
i∈A

∑
s∈S

xis(1− fAi
) (6.6)

subject to
∑
i∈A

∑
s∈S

pi(s)xis = R (6.7)∑
s∈S,g∈s

∑
i∈A

xis ≤ 1, ∀ g ∈ G (6.8)∑
s∈S

xis ≤ 1, ∀ i ∈ A (6.9)

xis ∈ {0, 1}

Again, we have constraints that ensure each good is allocated once and each agent

receives at most one bundle (Constraints 6.8 and 6.9). We have a new constraint 6.7

that ensures the coalition generated is T -interesting. The objective function maxi-

mizes the price increase of a coalition.

Suppose the IP has objective value J . J represents the maximal price increase

of any T -interesting coalition. We can also calculate the maximal price increase K

of any coalition in Y by just taking the price increase of any competitive coalition

in Y . If J ≤ K, then using Y to generate the fAi
does not violate Proposition 6 or

Corollary 7 and we can move on. However, if J > K, then using Y to generate the fAi

violates Corollary 7 since there is some coalition with higher price increase than the

competitive coalitions. Therefore, we need to add more T -interesting coalitions to Y .

CHAPTER 6. COMPUTATIONAL ISSUES 63

In line with the constraint generation paradigm, we add the most-violated coalition.

In this case, this will be the coalition with the maximal price increase. This can be

retained from the solution of the IP by examining the value of the indicator variables

xis.

6.2 Avoiding the MIP (Acc-LP)

Another computational issue that arises is solving FRAC-MIP. This is a rather large

mixed integer linear program, and can possibly be the bottleneck of our accelerated

algorithm. MIPs are slow in practice, and we need to solve FRAC-MIP each time

we derive the correct coalitional fractions and agent fractions. Here we propose a

different method that iteratively solves a number of linear programs instead of solving

the much harder MIP. Linear programs are known to be in P whereas mixed integer

linear programs are NP -complete. As a result, we may be better off solving a number

of LPs rather than a single MIP.

The observation that influenced this approach was that we can solve the n-dimensional

set of linear equations (NSYS, Equations 5.10 and 5.11) to obtain a set of frac-

tions that equalizes the price increase of any given set of coalitions. Solving an

n-dimensional linear equation can be done with an LP rather than a MIP. However,

the problem is that in order to guarantee a solution, we cannot place constraints on

the fractions (we may obtain negative fractions). With the MIP, we are essentially

able to find the set of coalitions that are positive, and then solve for the fractions on

this restricted subset. Instead of using the MIP to do this, we can iteratively solve

the LP. We use an LP to solve the n-dimensional linear equation. If this produces

negative fractions, then we remove the coalitions that are assigned negative fractions.

We continue this process of removing coalitions from our system of equations and

resolving until we obtain all positive fractions.

Once we obtain these fractions, we use the constraint generation methods discussed

in section 6.1.2 to check if these are the correct fractions. Notice that unlike the MIP

approach, given a set of T -interesting coalitions, we are not guaranteed to find the

fractions for these coalitions that satisfy Proposition 6 and Corollary 7. We label this

algorithm FRAC-CG.

When we remove coalitions from the system of equations, we no longer enforce any

CHAPTER 6. COMPUTATIONAL ISSUES 64

conditions on the price increase of the removed coalitions. Therefore, this approach

can be thought of as a heuristic whereas the MIP approach will always be correct.

We take the fact that coalitions are assigned negative fractions to be an indicator of

the fact that they will not be competitive during the given stage. We then assume

they are not competitive by removing them from our system of equations. However,

this assumption may be incorrect since we have no theoretical guarantee that being

assigned a negative fraction implies non-competitiveness. For instance, suppose we

have a large set Y of coalitions. We solve for the fractions that equalize the price

increase for all of these coalitions, and find that coalitions K1 and K2 are assigned

negative fractions. Does this mean that both K1 and K2 are always non-competitive?

It could be that K1 would be competitive if we removed K2 and vice versa.

Another possible issue is one of convergence. Because we remove coalitions from

consideration, it is possible that in the constraint generation process, these removed

coalitions reenter into our set. We have not been able to prove theoretical properties

of this heuristic, but in practice, we see both very good convergence and a significant

performance improvement over the MIP approach. More details on experimental

results can be found in Chapter 7.

6.3 Computing the Duration (DUR-CG)

Another computational issue arises in Algorithm DUR. We observe that in computing

the duration, we take the minimum across all coalitions Ci /∈ C∗. Since C∗ is a

select subset of the entire space of coalitions, this expression is a minimum over an

exponentially large set. Directly computing this minimum is intractable in practice.

Instead, we again use constraint generation. First, we compute the maximum

duration D until an agent begins bidding on a new bundle or drops out of the bidding,

as described by Expression 5.22. Given this duration, we can use an integer linear

program to see if there are any violations. In other words, we suppose that the

maximum duration calculated in Expression 5.22 is the correct duration, and we use

a MIP to tell us whether this is the case. In addition, using the value of the variables

in the MIP that maximize the objective, we can determine what the correct duration

CHAPTER 6. COMPUTATIONAL ISSUES 65

should be. Consider the following MIP:

max
∑
i∈A

∑
s∈S

xis(p
t
i(s) + (1− fAi

)D) (6.10)

subject to
∑
i∈A

∑
s∈S

xis ≤ 1 (6.11)∑
g∈G

∑
s∈S

xis ≤ 1 (6.12)

xis ∈ {0, 1} (6.13)

The purpose of this IP is to output the coalition which reaches the highest price

level given as input a duration, the current prices, and the agent fractions (fAi
).

As with the winner determination IP, the variables xis are indicator variables. The

objective function maximizes the revenue generated by a coalition after running for

duration D with the fAi
.

If it is the case that the maximal revenue reached after duration D is equivalent to

the revenue reached by the competitive coalitions, then we have the correct duration.

If this is not the case, then some coalition must have caught up to the competitive

coalitions. Otherwise, it would not be possible that after duration D there are coali-

tions that generate revenue more than the competitive coalitions. In this case, the

IP will tell us what coalition caught up to the competitive coalitions so that we can

refine our duration. We can use the calculation shown in Expression 5.24 to obtain

the smaller duration that reflects when this violating coalition will catch up to the

competitive coalitions. We can run this IP iteratively until there are no violating

coalitions. At that point, we are sure that we have obtained the correct duration,

without explicitly minimizing over the exponential number of all possible coalitions.

We label this algorithm DUR-CG.

6.4 Epsilon Introduction

Having developed an alternate process by which we can arrive at the APA outcome,

we try to introduce an ε into our algorithm that parallels the ε bid increment of

the Pure Proxy algorithm. By introducing an ε, we can trade off the accuracy of

our outcome with the runtime required. Our hope is that introducing ε into the

accelerated implementation will allow us to outperform comparable ε bid increments

CHAPTER 6. COMPUTATIONAL ISSUES 66

in Pure Proxy. In this manner, we can accelerate the computation of outcomes for

both exact Pure Proxy (very small bid increments) and more relaxed Pure Proxy

(larger bid increments).

6.4.1 Constraint Generation

εFRAC, εDUR One natural place to introduce an ε into the accelerated imple-

mentation is in the constraint generation phases. We have two constraint generation

phases consisting of checking for the correct agent fractions (FRAC-CG) and check-

ing for the correct duration (DUR-CG). In each of these cases, we can introduce an

ε. In FRAC-CG, we we check to make sure no T -interesting coalitions have larger

price increase than the competitive T -interesting coalitions. In DUR-CG, we check

to make sure no coalitions end at higher revenue if we run the stage for the given

duration. Therefore, for FRAC-CG we can introduce an ε which means “As long as

the maximal price increase is within ε of the competitive coalitions, we assume this

is not a violation.” Similarly, for DUR-CG, we can introduce an ε which means “As

long as the revenue reached after duration D is within ε of that of the competitive

coalitions, we assume this is not a violation.” As a first cut, we can have these ε

values be constant. We label these methods εFRAC and εDUR for checking of the

fractions and duration respectively.

per-εFRAC As hinted at above, it may not be the best choice to just take a con-

stant ε. During some stages, it may be the case that the competitive coalitions are

increasing at a slow rate, and therefore, a small constant ε might be meaningful. How-

ever, when the competitive coalitions are increasing at a high rate, a small constant

ε may not result in a savings at all. Therefore, it may be better to have ε represent

a fraction of the price increase of the competitive coalitions. However, we need to

be careful here because we may get into a situation where the price increase of the

competitive coalitions is very small (and hence a fraction of this price increase will

also be very small). To cope with this, we combine the ε1 fraction with a minimal ε2.

When we run constraint generation, if the competitive price increase is k∗, as long as

the maximal price increase is within max(ε1k
∗, ε2), we assume there are no violations.

CHAPTER 6. COMPUTATIONAL ISSUES 67

6.4.2 Stage Limit

An alternate way of introducing error into our exact accelerated algorithm is to place

a cap on the number of constraint generation phases we enter when calculating the

fractions for competitive coalitions. We keep entering constraint generation phases as

long as we do not have the correct coalitional fractions, but intuitively, after a fixed

number of iterations, we should have a good picture of what the correct fractions

actually are. Therefore, placing a cap may give a good approximation for what the

true fractions are and avoid costly iterations which only result in small perturbations

to the fractions. We will refer to this method as STAGE-LIMIT.

Chapter 7

Results

In addition to developing the algorithm for an accelerated version of APA, we have

implemented this algorithm in order to compare it with the direct implementation of

iBundle(3) with straightforward bidding / APA. To our knowledge, this has been the

only extensive experimentation of accelerated implementations of APA with large,

randomly generated test cases. Previously, the work of Hoffman et. al., Day et. al.,

and Wurman et. al. only considered small, hand constructed test cases.

7.1 Experimental Setup

For our experiments, we implemented the proposed accelerated algorithm using iBundle(3)

as a starting point. Our experiments were performed on the deas blades (node-3 and

node-4) servers. To solve the mixed integer linear programs that arose in our algo-

rithm, we used CPLEX version 8.1. In order to maintain uniformity throughout, we

switched iBundle(3) to use CPLEX to solve its winner determination problems as

well.

For our tests, we implemented two versions of the accelerated algorithm. For

the first version, we use FRAC-MIP to determine the coalitional fractions for in

Algorithm FRAC. We will label this approach Acc-MIP. We also tried the heuristic

LP approach described in Section 6.2. Instead of using FRAC-MIP to solve for the

coalitional fractions, we solve the system of linear equations (Equations 5.10 and

5.11) iteratively with an LP. We will label this approach Acc-LP. In both of these

68

CHAPTER 7. RESULTS 69

A B AB C AC BC ABC
Buyer 1 10 3 18 2 18 10 20
Buyer 2 4 9 15 3 12 18 20
Buyer 3 1 3 11 9 16 17 25
Buyer 4 7 7 16 7 16 16 20

Table 7.1: Wurman’s Example. By looking across each row, we can determine agent’s values for
the given bundles. For instance, v1(A) = 10, v3(B) = 3, v1(AB) = 18.

implementations, we use the constraint generation algorithms to dynamically generate

T -interesting coalitions and to check for the correct duration (FRAC-CG and DUR-

CG). We will label the direct implementation by Pure Proxy. Note that when we refer

to rounds these will have different meanings for the accelerated implementations and

Pure Proxy. For the accelerated implementations, a round refers to an entire stage,

while for Pure Proxy, a round refers to a single iteration in the direct implementation.

7.2 Previous Examples in Literature

We first begin with previous small examples that can be found in the literature.

Wurman et. al. offer a single small example, and Hoffman et. al. offer a set of six

small test cases.

7.2.1 Wurman’s Example

We begin with the example from Wurman et. al.[22]. We can represented the sub-

mitted XOR bids as a chart in Table 7.1.

Of note in Table 7.2 is that the result of Acc-LP and Acc-MIP is equivalent to the

result of Pure Proxy. Though it looks like the final allocation is different, if we look

closer, we see that this is just a case of tie-breaking. The result of Pure Proxy and

the result of Acc-MIP and Acc-LP generate the same revenue (25.00). We now check

to make sure all agents receive equal payoffs. Agent 1 receives the same payoff since

she receives the same bundle for the same price in both outcomes. Agent 2 receives

payoff v2(B) − 8 = 1 in Pure Proxy, and she receives payoff v2(BC) − 17 = 1 in

Acc-MIP and Acc-LP. Agent 3 receives payoff v3(C)− 9 = 0 in Pure Proxy, and she

CHAPTER 7. RESULTS 70

Method Rounds Allocation
{Agent-
Package}

Prices ($) Revenue
($)

Value
($)

Pure Proxy 3234 {1-A, 2-B, 3-C} {8.01,8.01,9.00} 25.02 28.00
Safe Start 51 {1-A, 2-BC} {7.51, 17.51} 25.02 28.00
Incremental Scaling 39 {1-A, 2-BC} {7.51, 17.51} 25.02 28.00
Incremental Scaling w/ Safe
Start

11 {1-A, 2-BC} {7.51, 7.51} 25.02 28.00

Wurman et. al. 11 {1-A, 2-BC} {8.00, 17.00} 25.00 28.00
Vickrey Payments - {1-A, 2-BC} {7.00, 17.00} 24.00 28.00
Day et. al. 5 {1-A, 2-BC} {7.50, 17.50} 25.00 28.00
Acc-MIP 19 (23, 21)* {1-A, 2-BC } {8.00, 17.00} 25.00 28.00
Acc-LP 19 (28, 23, 21)* {1-A, 2-BC} {8.00, 17.00} 25.00 28.00

Table 7.2: Results on Wurman’s Example. For Acc-MIP, we have (i, c), where i is the number
of times we run FRAC-CG, and c is the number of times we run DUR-CG. For Acc-LP, we have
(l, i, c) where i and c are the same and l denotes the number of linear programs we solved (number
of solutions to NSYS).

receives no bundles in Acc-MIP and Acc-LP so she also receives payoff 0. Therefore,

we see that the result does actually mimic Pure Proxy APA.

We also observe that the Pure Proxy results given assume a given bid increment.

It is possible that this bid increment is very small, and this is why Pure Proxy takes

so many rounds. Indeed, in our later experiments, we will try to take as a large as

bid increment as possible as long the result is still efficient.

Comparisons In comparing our algorithm with the others, we should really look

at the number of winner determination type problems being solved since the meaning

of rounds is different for each algorithm. Acc-MIP solves 23 + 21 = 44 problems

that are as hard as the winner determination problem along with 19 MIPs which are

harder than the winner determination problem. Acc-LP also solves 44 problems that

are as hard as winner determination, but solves 28 pure LPs instead of 19 MIPs.

In comparing with Safe Start and Incremental Scaling, we see that we solve around

the same number of winner determination problems. Safe Start with Incremental

Scaling appears to do better than our algorithm. Wurman only takes eleven rounds,

but within each round, Wurman solves a MIP that is harder than the FRAC-MIP

in Acc-MIP. Additionally, we hypothesize that Wurman’s algorithm would need to

employ the constraint generation techniques from Chapter 6 in order to efficiently

generate interesting coalitions and find the acceptable duration. This would result in

CHAPTER 7. RESULTS 71

the solving for more winner determination type problems for Wurman’s algorithm.

Therefore, Wurman’s algorithm requires comparable if not more computation than

Acc-LP and Acc-MIP. Day’s method only requires five problems as hard as winner

determination, which is fewer than both our algorithms.

We also observe from this example the fact that Acc-MIP and Acc-LP directly

replicate the APA outcome. Hoffman’s and Day’s methods both arrive at different

outcomes even in this small example. Wurman’s algorithm arrives at the same out-

come, but this is a special case where iBundle(2) and iBundle(3) happen to arrive at

the same result. Because our result replicates the Pure Proxy result, we expect that

our algorithm will take longer than the others which only approximately replicate the

result or focus on replicating properties of the result.

We have provided similar charts based on the example set provided by Hoffman et.

al. in the Chapter A. In general, we find that we exactly replicate the results of Pure

Proxy APA in far fewer rounds. In these examples, auctions that took thousands

of rounds take fewer than ten rounds. In comparing with the other algorithms, we

do better than Safe Start or Incremental Scaling alone, and do slightly worse than

Safe Start with Incremental Scaling. We do not have results of the Wurman and

Day algorithms on these other small examples. As stated above, in making these

comparisons, we should keep in mind that Acc-LP and Acc-MIP exactly replicate the

APA outcomes whereas Hoffman and Day’s approaches offer an approximation.

7.3 Direct Comparison

7.3.1 Setup

Aside from running our algorithm on the small examples found in the literature,

we have run extensive tests on problems from the Combinatorial Auction Test Suite

(CATS) developed by Leyton-Brown et. al.[13]. CATS provides a number of dis-

tributions which are representative of classes of problems that are related to com-

binatorial auctions. The distributions include paths, matching, scheduling, regions,

arbitrary and various legacy distributions indexed by Li where i is an integer. The

named distributions are described in [13] while the legacy distributions were taken

CHAPTER 7. RESULTS 72

from previous work on tests for combinatorial auctions. The paths distribution rep-

resents settings where the goods in question are paths in space. Trucking routes is a

good example of this distribution. The matching distribution represents goods which

have complementarities in time, such as airport slots. The scheduling distribution

represents a formulation of the job-scheduling problem in terms of auctions. The

regions distribution describes goods that have a spatial relationship such as rights to

oil fields. Finally, the arbitrary distribution represents goods which may have weak

relationships that cannot be categorized into the others [13].

For our experiments, we compared Pure Proxy APA with our accelerated im-

plementations. The performance of Pure Proxy was highly dependent on the bid

increment chosen, so we show results for multiple bid increments. For each set of

results, we chose the bid increment to be a percentage of the average submitted bid

for the given problem. We decided to use a percentage instead of a fixed value since

the effect of the bid increment depends on the exact magnitude of the bids submitted.

The points in our graphs represent the average runtime over ten random inputs

from a given distribution. We define runtime to be the sum of the CPU time used for

each algorithm. By using CPU time, we avoid dealing with variations due to system

conditions. We annotate each of our graphs with the efficiency of the outcome, which

is defined as the value of the outcome divided by the maximal value. For each of our

charts, we give an average efficiency for the algorithms. These averages efficiencies

were within 0.01 of the true efficiency for all data points for a given algorithm. For

algorithms whose efficiencies vary, we annotate the graphs with the efficiencies for

each data point.

In choosing bid increments for Pure Proxy, we tried to find the largest possible

bid increments that still yielded the desired efficiencies. This offers a fair comparison

with the accelerated algorithms. Instead of choosing arbitrarily small bid increments

for Pure Proxy (which would make Pure Proxy run for a very long time), we ex-

perimentally calibrated to find the largest bid increments that still yield the desired

efficiency levels.

CHAPTER 7. RESULTS 73

7.3.2 Bids

One set of experiments we performed was on the effect of varying the number of

bids in our test cases. We use these experiments to shed light on two comparisons.

The first comparison is between Acc-MIP and Acc-LP, and the second comparison is

between the accelerated implementations and Pure Proxy.

Acc-MIP vs. Acc-LP When we performed experiments on Acc-MIP and Acc-LP,

we found that Acc-MIP took significantly more time. For many of the distributions,

Acc-MIP took so much longer that graphing its runtime on the same plot would make

it difficult to discern the runtime of Acc-LP and the Pure Proxy algorithms. As an

example, we consider experiments on the matching distribution.

Table 7.3 gives the runtime and various counts to help describe the amount and

kinds of computations taking place. Notice that we do not include the number of

stages in the chart because the number of stages are equal for Acc-LP and Acc-MIP

(the work required within a stage differs, but the number of stages are equal).

As seen in Table 7.3, the runtime of Acc-MIP is significantly larger than the runtime

of Acc-LP. In addition to the runtime comparison, the number of calls to fractional

constraint generation (FRAC-CG) recorded in Table 7.3 are very interesting. We

see that Acc-LP actually calls FRAC-CG fewer times than Acc-MIP. This implies

that by using the heuristic of removing the coalitions which are assigned negative

fractions, we actually converge to the correct set of fractions faster than when using

the theoretically correct MIP formulation. We see that this is the case with other

distributions as well (Appendix B.1). Therefore, it appears that the LP approach is

able to zero in on the competitive coalitions faster than the MIP. This accounts for

the signficantly worse performance of Acc-MIP. Each time constraint generation is

called for the coalitional fractions, we need to resolve the MIP. Therefore, the number

of MIPs solved is equal to Frac-CG for Acc-MIP. For the matching distribution, the

MIP is actually called more times than the corresponding LP in Acc-LP because of

the faster convergence of Acc-LP. Since MIPs are much slower than LPs, based on

the counts, there is no way that the runtime of Acc-MIP can compete with that of

Acc-LP.

CHAPTER 7. RESULTS 74

Runtime(s) Frac-CG LPs Solved
Bids Acc-MIP Acc-LP Acc-MIP Acc-LP Acc-LP
100 1.4 0.7 38.0 31.2 47.6
200 9.9 2.8 114.3 86.1 125.8
300 120.5 15.1 229.2 155.4 222.8
400 185.1 14.0 346.8 225.2 314.0
500 650.6 18.5 458.6 272.8 370.8

Table 7.3: Frac-CG denotes the number of times constraint generation was called to check the
coalitional fractions. LPs solved only applies to Acc-LP and refers to the number of times we solve
the system of equations (Equations 5.10 and 5.11).

Acc-LP vs. Pure Proxy Having compared Acc-LP against Acc-MIP when vary-

ing the number of bids, we now compare Acc-LP with Pure Proxy, mindful of the fact

that Acc-MIP is much worse than Acc-LP. When comparing these results, we make

two observations:

• Pure Proxy’s performance relative to Acc-LP is dependent on the bid increment.

For bid increments that always yield efficiency 1, Pure Proxy is worse. For bid

increments that yield average efficiency .99, Pure Proxy does better.

• Acc-LP appears to have a greater dependency on the number of bids than Pure

Proxy.

As seen in Figure 7.1, Acc-LP performs better than Pure Proxy with bid increment of

one percent, while Acc-LP performs worse than Pure Proxy with a bid increment of

ten percent. This shows that Acc-LP arrives at a fully efficient outcome faster than

Pure Proxy, since Pure Proxy is only faster when we relax the efficiency to 0.99. Also,

for the L6 distribution, Acc-MIP does not perform nearly as bad as for the matching

distribution, though it still appears to be worse than Acc-LP. To examine the effect of

increasing the number of bids, we refer to Table 7.4 which gives a fuller description of

the number of winner determination type problems solved for each algorithm. Notice

that both constraint generation phases for Acc-LP require the solution of a winner

determination type problem (actually slightly harder because of added constraints).

At first, if we only look at the number of rounds in Table 7.4, it looks like we are

saving a lot in Acc-LP. However, each round in Acc-LP requires the solving of multiple

winner determination type problems along with a number of LPs. When we refine

CHAPTER 7. RESULTS 75

 0

 20

 40

 60

 80

 100

 120

 0 100 200 300 400 500 600 700 800

T
im

e
(s

)

Bids

L6 Distribution Runtime

Acc-MIP
Acc-LP
Pure Proxy 0.01
Pure Proxy 0.1

Figure 7.1: L6 Distribution varying Number of Bids. Goods = 50. Bids Per Agent = 10. Efficiency
of Acc-MIP = 1. Efficiency of Acc-LP = 1. Efficiency of Pure Proxy(0.01) = 1. Efficiency of Pure
Proxy(0.10) = 0.99.

Acc-LP Pure(0.01) Pure(0.1)
Bids LPs Frac-CG Dur-CG Total Catch Rounds Rounds Rounds
100 22.7 15.4 9.6 25.0 0.8 8.8 541.0 50.8
200 54.8 35.6 31.2 66.8 6.8 24.4 770.2 75.0
300 81.7 53.1 49.5 102.6 10.9 38.6 721.8 69.6
400 118.2 75.8 81.7 157.5 24.0 57.7 648.2 65.0
500 135.9 88.9 89.5 178.4 23.1 66.4 907.6 90.6
600 171.7 110.3 119.6 229.9 32.9 86.7 855.6 84.4
700 195.1 124.9 131.5 256.4 33.8 97.7 964.6 93.6
800 219.0 140.0 149.7 289.7 37.7 112.0 853.6 84.6

Table 7.4: L6 Distribution, Goods = 50, Bids Per Agent = 10. LPs = number of times we solve for
coalitional fractions. Frac-CG = number of times constraint generation called to check coalitional
fractions. Dur-CG = number of times constraint generation called to check duration. Total =
Frac-CG + Dur-CG. Catch = number of times a catching-up occurs.

CHAPTER 7. RESULTS 76

our observations, we see that as expected, the number of winner determination type

problems solved by Acc-LP falls in between Pure Proxy(0.01) and Pure Proxy(0.1).

We also notice from Table 7.4 that the number of rounds for Pure Proxy grows

slower with the number of bids than the number of stages for Acc-LP. For 100 bids,

Acc-LP solves 25 winner determination problems while for 700 bids, Acc-LP solves

around 250, a ten-fold increase. Alternatively, for 100 bids, Pure Proxy(0.01) solves

541.0 winner determination problems while for 700 bids, it solves 964.6 winner deter-

mination problems, a 2-fold increase. The same is true of Pure Proxy(0.1). It appears

that workload of Acc-LP is much more dependent on the number of bids.

This makes sense when we think about the dependencies of each algorithm. For

Pure Proxy, as long as the magnitude of the bids and the bid increment stay the

same, the number of rounds should not grow significantly as the number of bids

increase. An increase in bids may cause more complex competition, but each round

still sees bidders increase their bids by the bid increment. If the bid magnitude does

not change (as with this test case), the number of rounds should not increase linearly

in the number of bids.

However, for the accelerated implementation, the number of rounds is proportional

to the number of bids submitted. This is due to the fact that a new stage begins

whenever a change in an agent’s demand set occurs. Every new bid that does not

yield maximal value for its agent will manifest itself as a demand set change. This

is because agents will only bid on the maximal value bundles at the start of the

auction. A change in the demand sets will occur when agents actually start bidding

on these bundles. Since the number of stages in the accelerated implementation

is proportional to the changes in agent’s demand set, the number of stages in the

accelerated implementation is proportional and constrained by the number of bids.

On the other hand, the rounds in Pure Proxy are less dependent on the number of

bids. As a result, as we increase the number of bids, we see that the accelerated

implementation’s work load increases more.

It is also worth noting here that while increasing the bid increment may not affect

efficiency, it does affect the final price vector of the outcome. Therefore, even though

we may arrive at an equally efficient outcome, there are still benefits to using smaller

bid increments and hence, the accelerated implementations (which has infinitesimally

small bid increments).

CHAPTER 7. RESULTS 77

Frequency of Catching Up in Acc-LP One interesting observation about Acc-

LP that can be seen in Table 7.4 and tables in Appendix B.2 is the number of actual

coalitions that catch up in comparison to the number of rounds. In general, we see

that the number of stage changes caused by catching-up is very small. In Table 7.4,

about one-fourth of the stage changes are caused by catching-up. On the extreme end,

if we look at the chart for the scheduling distribution (Appendix Table B.8), we see

that there are virtually zero stage changes caused by catching-up. This implies that

when we go through constraint generation to check if we have the correct duration, we

will find that there are no violations. However, we have absorbed the cost of running

one MIP to obtain this information. Since the number of stage changes caused by

collisions is small, it may be beneficial to try to first decide if there is a violation,

and only afterwards find the violating coalition. We tried this preliminarily with an

LP-relaxation, but this did not seem to help much. Investigating efficient algorithms

which simply tell us whether there is a violation could be an area of future research.

7.3.3 Bids Per Agent

In addition to charting the variation of runtime with increasing number of bids,

we also tested the effect of increasing the number of bids per agent for the legacy

distributions. A bids per agent value is necessary for the legacy distributions because

those distributions simply generate bids assuming each agent is single-minded and

only submits a single bid.

When we varied the number of bids, we saw that Acc-LP performed better than

always efficient Pure Proxy for bids per agent values greater than six, but performed

significantly worse for very small bids per agents values. As with the dependencies

on the number of bids, this suggests differing dependencies on the number of bids per

agent.

Similar to the results we saw with varying the number of bids, we found that

varying the number of bids per agent has more of an effect on the accelerated im-

plementation than on Pure Proxy. As seen in Figure 7.2, a small number of bids

per agent (meaning a large number of agents) caused a larger slow down in Acc-LP

than in Pure Proxy. Even though always efficient Pure Proxy is slower than Acc-LP

for larger bids per agent values, Acc-LP is slower for small bids per agent values.

This is also reflected in Table 7.5 which details the number of stages and winner

CHAPTER 7. RESULTS 78

 0

 50

 100

 150

 200

 250

 0 2 4 6 8 10 12 14 16 18 20

T
im

e
(s

)

Bids / Agent

L4 Distribution Runtime

Acc-LP
Pure Proxy 0.01
Pure Proxy 0.1

Figure 7.2: L4 Distribution varying Bids per Agent. Goods = 50, Bids = 420. Efficiency of Acc-LP
= 1. Efficiency of Pure Proxy(0.01) = 1. Efficiency of Pure Proxy(0.1) = 0.99.

CHAPTER 7. RESULTS 79

Acc-LP Pure(0.01) Pure(0.05)
Bids / Agent Rounds LPs Total-CG Rounds Rounds

2 373.8 1294.0 1440.8 789.8 156.6
4 200.3 523.6 661.6 753.8 149.6
6 115.5 296.3 367.1 689.8 136.6
10 60.3 145.7 178.5 578.2 114.8
12 46.2 116.6 140.4 644.8 127.2
14 34.3 88.4 102.9 540.4 106.2
20 21.9 55.5 65.3 560.4 110.0

Table 7.5: L4 Distribution varying Bids Per Agent. Goods = 50, Bids = 420. LPs = number
of times we solve for coalitional fractions. Total-CG = total number of times we call constraint
generation (to check fractions and durations).

determination-like problems solved in each stage. Increasing the bids per agent dras-

tically decreases the number of stages in Acc-LP from between 200 and 300 to less

than 30. Alternatively, for both Pure Proxy runs, increasing bids per agent has a

much less significant impact on the number of rounds.

This again can be attributed to the different dependencies of Acc-LP and Pure

Proxy. The number of rounds in Acc-LP is dependent on the number of bids submitted

and the coalitional structure. A large number of coalitions means there will be more

collisions and more violations when we perform constraint generation to check the

duration. Since the duration of each stage depends on the number of collisions, a

more complicated coalitional structure means that the duration for each stage in

Acc-LP is likely to be smaller. Therefore, it makes sense that a small number of

bids per agent (a large number of agents) will cause a significant increase in runtime.

On the other hand, Pure Proxy is much less dependent on the coalitional structure.

Pure Proxy is not as dependent on the coalitional structure because at each round,

some coalition wins and all non-winning agents increase their bids. The algorithm

terminates when there are no more bids. Regardless of the coalitional structure,

from round to round, most bids in Pure Proxy are increasing by the bid increment.

Of course the coalitional structure affects the hardness of the winner determination

problems solved and the frequency of winning for coalitions, but this effect appears

to be much less significant than the impact on Acc-LP.

CHAPTER 7. RESULTS 80

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120 140 160

T
im

e
(s

)

Goods

regions Distribution Runtime

Acc-LP
Pure Proxy 0.01
Pure Proxy 0.05

Figure 7.3: regions Distribution varying Goods. Bids = 300. Efficiency of Acc-LP = 1. Efficiency
of Pure Proxy(0.01) = 1. Efficiency of Pure Proxy(0.05) = 0.98.

7.3.4 Goods

We also performed experiments when varying the number of goods in the test cases.

As was the case with varying the number of bids and varying the number of bids per

agent, the runtime for Acc-LP falls in between always efficient Pure Proxy and 0.99

efficiency Pure Proxy (see Figure 7.3). However, differing from the previous two cases

where Acc-LP was affected more by the changes in variables, it appears that Pure

Proxy is affected more when we vary the number of goods.

When we look at the winner determination counts as we did before, we see that

Acc-LP is less affected by an increase in the number of goods than Pure Proxy. As

seen in Table 7.6, the number of rounds for Pure Proxy doubles when the goods move

from 20 to 120 whereas the total winnder determination problems solved by Acc-LP

increases by about less than a factor of 1.5. Though this difference is not as drastic

as the differences when we varied the number of bids and bids per agent, the number

of goods does appear to have a more substantial effect on the performance of Pure

CHAPTER 7. RESULTS 81

Acc-LP Pure(0.01) Pure(0.05)
Goods Rounds LPs Total-CG Rounds Rounds

20 90.1 177.4 231.2 398.6 78.8
40 99.1 209.8 276.8 509.0 99.4
60 103.3 232.5 296.7 606.4 120.8
80 120.1 284.1 365.25 712.8 141.0
100 110.4 253.8 330.0 663.4 132.2
120 113 259.8 339.3 691.2 136.2

Table 7.6: regions Distribution varying Goods. Bids = 300. LPs = number of times we solve
for coalitional fractions. Total-CG = total number of times we call constraint generation (to check
fractions and durations).

Proxy. Along the same lines, the number of rounds for Acc-LP does not appear to

be significantly increasing with the number of goods.

Again, we can think of these findings with respect to the computations required by

each mechanism. When the number of goods increases, it is more likely that bidders

are bidding on different goods. Hence, the coalitions that are formed will be larger.

This would make Pure Proxy take more rounds since larger coalitions means more

agents are winning in each round. This means it will take longer for agents to reach

the point when they bid their entire valuations since they are winning more often. For

Acc-LP, the effect of increasing the number of goods is not as strong. Acc-LP depends

more on the coalitional structure and the number of bids. It does not matter as much

to Acc-LP the size of the coalitions since this will affect the specific magnitude of the

fractions generated but not the duration or the number of stages.

We have seen with the direct comparisons that Acc-LP performs better than always

efficient Pure Proxy, but when Pure Proxy is given some leeway for efficiency, Pure

Proxy performs better. Also, we have identified the different dependencies of the

algorithms. Acc-LP is dependent on the number of bids and the number of agents

while Pure Proxy is more dependent on the number of goods and the magnitude of

bids.

CHAPTER 7. RESULTS 82

7.4 Approximations

As discussed in Section 6.4.1, there are natural ways that we can introduce error into

constraint generation. The three different epsilons that we discussed were εFRAC,

εDUR, and per-εFRAC. We present results for some experimentation with each of

these error introducing methods. We were unfortunately unable to test out the

STAGE-LIMIT technique also mentioned in Section 6.4.1. All of our tests are per-

formed on Acc-LP. For each ε type, we fixed ten random test cases on which we

ran Acc-LP for different ε values. We first present results of trials on the arbitrary

distribution.

7.4.1 εFRAC

The first ε that we discussed was εFRAC. This was the constant ε introduced into

the constraint generation that checked the coalitional fractions. As seen in Figure

7.4, the ε values we try will be proportional to the sizes of the competitive coalitions.

In general, the reasoning behind this is that the price increase of a coalition will be

proportional to the number of agents. Therefore, since FRAC-CG checks for violation

of price increase, the magnitude of ε will be similar to coalitional sizes.

In Figure 7.4, it appears that increasing ε does not bring about a significant savings

in runtime. However, when we investigate further, we see that the ε is indeed having

an effect. From Table 7.7, we can see that as we increase ε, the number of times

we call constraint generation decreases monotonically. The ε is indeed lessening the

workload of Acc-LP. However, we see that this ε can only help so much. A lower

bound on the number of times we call FRAC-CG is the number of stages. As seen in

the chart, as we increase ε, the number of calls to FRAC-CG approaches this lower

bound. This embodies the fact that even if we tolerate a large error, we still have to

run the costly IP once to find out that we are not in violation. As a result, we do not

see a large savings in runtime because we still check in each stage to make sure we

are not in violation. The number of stages does not decrease significantly since this ε

does not have an impact on either the duration of the stage nor the entrance of new

bundles in agent’s demand sets. Since these are the events that define new stages,

this ε will not have a marked effect on the number of stages.

We also notice from Figure 7.4 that the efficiency does not seem to be affected

CHAPTER 7. RESULTS 83

 0

 10

 20

 30

 40

 50

 60

 70

 0 2 4 6 8 10 12 14

T
im

e
(s

)

epsilonFRAC

arbitrary Distribution Runtime

1.0
1.0

1.0 1.0

1.0
1.0 0.98 0.98

Acc-LP
Pure Proxy 0.01

Pure Proxy 0.08

Figure 7.4: arbitrary Distribution varying ε-FRAC. Goods = 50, Bids = 300. Efficiency of Acc-LP
is labeled. Efficiency of Pure Proxy(0.01) = 0.99. Efficiency of Pure Proxy(0.1) = 0.98.

Epsilon Frac-CG Dur-CG Total-CG Rounds
0 97.2 96.1 193.3 77.5
2 82.0 100.6 182.6 79.3
4 79.8 97.2 177.0 77.8
6 75.8 90.1 165.9 74.5
8 75.6 89.3 164.9 74.5
10 72.3 83.5 155.8 71.8
12 71.9 82.7 154.6 71.7
14 71.1 81.7 152.8 71.1

Table 7.7: arbitrary Distribution varying εFRAC. Goods = 50, Bids = 300. Frac-CG = total
number of times we call constraint generation to check fractions. Dur-CG = total number of times
we call constraint generation to check durations.

CHAPTER 7. RESULTS 84

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 200 400 600 800 1000 1200 1400

T
im

e
(s

)

epsilonDUR

arbitrary Distribution Runtime

1.0

0.99 0.99 0.99
0.97 0.97 0.97 0.97

Acc-LP
Pure Proxy 0.01
Pure Proxy 0.08

Figure 7.5: arbitrary Distribution varying εDUR. Goods = 50, Bids = 300. Efficiency of Acc-LP
is labeled. Efficiency of Pure Proxy(0.01) = 0.99. Efficiency of Pure Proxy(0.08) = 0.98.

much by an increase in ε. This is probably due in part to the small effect of the ε,

but it also points to the robustness of the accelerated implementation. Even if we

do not have the exactly correct coalitional fractions, it appears that the outcome will

still be reasonably efficient.

7.4.2 εDUR

Another error introduction we discussed was inserting an ε into the constraint gener-

ation process for checking duration (DUR-CG). If the coalition with maximal revenue

after the proposed duration is within ε of the maximal revenue competitive coalition,

we assume that this is not a violation. Notice that these ε values will have magnitude

proportional to the magnitude of bids submitted since the unit of concern here is rev-

enue. As seen in Figure 7.5, increasing this ε value does indeed improve the runtime

at the cost of lower efficiency. We see a runtime savings of around ten seconds, or

twenty-five percent when moving from an ε of 0 to an ε of 200. This drop is reflected

CHAPTER 7. RESULTS 85

Epsilon Frac-CG Dur-CG Total-CG Rounds
0 106.5 110.9 217.4 83.9

200 99.0 61.2 160.2 60.9
400 98.7 60.7 159.4 60.6
600 98.7 60.7 159.4 60.6
800 98.6 60.5 159.1 60.5
1000 98.6 60.5 159.1 60.5

Table 7.8: arbitrary Distribution varying εDUR. Goods = 50, Bids = 300. Frac-CG = total
number of times we call constraint generation to check fractions. Dur-CG = total number of times
we call constraint generation to check durations.

in Table 7.8 which shows the significant decrease in the number of rounds and calls

to constraint generation as we move from a 0 ε to an ε of 200.

In this case, we see a significant decrease in the number of stages due to introducing

ε. This makes sense since ε−DUR deals with DUR-CG, and therefore, adding more

leeway here allows for longer durations. However, once again, we see that increasing ε

further does not improve the runtime since we run into the same problem of reaching

the lower bound. For large ε in this case, we see that the number of times we call

constraint generation for the duration is exactly the number of stages. Again, even

though there are no violations, we still have to call constraint generation for the

duration once in each stage.

In terms of efficiency, we again see that larger ε values decrease the efficiency, but

the efficiencies for extremely large values are still reasonably good (0.97). One expla-

nation for this would be that the impact of the ε is buffered by the lower bound on

computation described above. Alternatively, it may be that the accelerated imple-

mentation has built-in robustness to these errors we have introduced.

7.4.3 per-εFRAC

We also discussed introducing error into the checking of coalitional fractions by using

a fractional ε instead of a constant. The amount of error we will tolerate now becomes

a fraction of the current price increase of the competitive coalitions. As a result, this

ε1 will have units that represent what percent of the current price increase we are

willing to tolerate. In Section 6.4.1, we describe a second ε2 to be used in combination

CHAPTER 7. RESULTS 86

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 0.5 1 1.5 2

T
im

e
(s

)

per-epsilonFRAC

arbitrary Distribution Runtime

1.0
1.0

1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0

Acc-LP
Pure Proxy 0.01
Pure Proxy 0.08

Figure 7.6: arbitrary Distribution varying per-εFRAC. Goods = 50, Bids = 300. Efficiency of
Acc-LP is labeled. Efficiency of Pure Proxy(0.01) = 0.99. Efficiency of Pure Proxy(0.08) = 0.98.

with the percentage epsilon. For our experiments, we choose a minimal ε2 to isolate

the effects of varying ε1. A value of 0.5 for ε1 means that we are willing to tolerate

price increase that are 1.5 times the current competitive price increase.

From Figure 7.6, we see once again that increasing ε does not have a significant

impact on the runtime. This follows from our analysis for εFRAC since this ε also

affects only FRAC-CG and does not impact the duration of the stage or the number

of stages.

When we examine Table 7.9, we see that increasing ε does decrease the amount of

work performed, though not significantly enough to make a big difference in runtime.

We also notice from Table 7.9 that we seem to hit a wall once we raise ε beyond 1.

This makes sense since it is not very likely that we will find in FRAC-CG coalitions

that have price increase that is twice as large as the current competitive price increase.

As was the case with εFRAC and εDUR, per-εFRAC also does not appear to have a

significant impact on efficiency.

CHAPTER 7. RESULTS 87

Epsilon Frac-CG Dur-CG Total-CG Rounds
0.0 107.6 109.0 216.6 84.5
0.2 90.6 113.6 204.2 85.7
0.4 88.4 112.3 200.7 85.3
0.6 86.4 108.4 194.8 83.7
0.8 85.8 107.7 193.5 83.4
1.0 83.9 104.1 188.0 81.9
1.2 83.9 104.1 188.0 81.9
1.4 83.9 104.1 188.0 81.9
1.6 83.9 104.1 188.0 81.9
1.8 83.9 104.1 188.0 81.9
2.0 83.9 104.1 188.0 81.9

Table 7.9: arbitrary Distribution varying per-εDUR. Goods = 50, Bids = 300. Frac-CG = total
number of times we call constraint generation to check fractions. Dur-CG = total number of times
we call constraint generation to check durations.

7.4.4 Analysis of ε Introduction

From our tests, we see that the ε errors we introduced did not have significant ef-

fects on efficiency. We did see some effects on runtime, especially with εDUR which

impacted the duration of the stages.

By further investigating the amount of work performed, we saw that our error

introductions were indeed decreasing the number of IPs solved. However, we saw

that we reached a lower bound which prevented our methods from further increasing

runtime. Namely, constraint generation requires a single call even when there are no

violations. Therefore, for every stage, we need to solve two IPs (one in each constraint

generation phase) even if there are no violations. The errors we introduced did not

affect the number of stages, so we did not see drastic improvements in runtime. If

we look at Table 7.10 copied from the Appendix, we see that starting out, we do not

find many violations in constraint generation when using the arbitrary distribution.

For our test case of 300 goods, we see that the average number of stages was 83.9,

and there were 105.5 calls to constraint generation for coalitional fractions and 110.4

calls to constraint generation for the duration. This means that more often than not

constraint generation tells us there are no violations. Hence, there is not much room

for improvement by trying to increase our tolerance for violation since most of the

them are not violating. Indeed, by looking at the charts in Appendix B.2, we see

that many distributions show this behavior. This may explain why the errors we

CHAPTER 7. RESULTS 88

Acc-LP Pure(0.01) Pure(0.08)
Bids LPs Frac-CG Dur-CG Total Catch Rounds Rounds Rounds
100 54.6 36.3 33.1 69.4 6.2 26.9 520.0 62.6
200 107.7 71.7 70.3 142.0 14.2 56.1 648.2 77.6
300 157.9 105.5 110.4 215.9 26.5 83.9 578.6 70.6
400 200.2 132.4 138.8 271.2 31.7 107.1 596.4 72.6
500 270.0 174.5 189.8 364.3 47.5 142.3 645.8 80.0

Table 7.10: arbitrary Distribution varying Bids. Goods = 50. LPs = number of times we solve for
coalitional fractions. Frac-CG = number of times constraint generation called to check coalitional
fractions. Dur-CG = number of times constraint generation called to check duration. Total =
Frac-CG + Dur-CG. Catch = number of times a catching-up occurs.

introduced did not have significant impacts on the runtime.

This suggests three areas that may be researched further. The first is to find

problems where constraint generation finds more violations. This would allow the ε

introductions to play a larger role since we would be able to decrease the number

of violations. The second potential area is to develop efficient algorithms that can

simply tell us “yes” or “no” as to whether there are any violations. Our IP in FRAC-

CG and DUR-CG tell us “yes” or “no” in addition to giving us the actual coalition

that violates. This extra effort is costly when there are no violating coalitions most of

the time. If we had a more efficient algorithm to determine if there are violations, we

would only have to incur the cost of the FRAC-CG and DUR-CG IP after knowing

that there are violating coalitions. The third direction is to try to find some way to

decrease the number of stages. This may potentially be done by placing a lower limit

on the duration of a stage or introducing an ε into agent’s demand sets.

Chapter 8

Concluding Remarks

Combinatorial auctions remain a promising area which may have widespread practical

applications. By allowing the bidder to specify more information than simply her

valuation on single goods, combinatorial auctions can allow for better outcomes and

give bidders more power to express their preferences. With these benefits however

comes the cost of computing the outcomes in combinatorial auctions. Because the

number of possible bundles is exponential in the number of goods, the computations

associated with combinatorial auctions are non-trivial.

In this thesis, we focused on one type of combinatorial auction, the ascending

proxy auction or iBundle(3) with straightforward bidding. This auction exemplified

the tradeoffs between the quality of our outcome and computational efficiency. The

ascending proxy auction always terminates with a core outcome (no set of agents

can dispute the outcome), yet the direct implementation requires solving numerous

NP -complete problems to arrive at this outcome. This thesis provided an alternative

to the direct implementation, and we have shown that for given problem sizes and

types, our accelerated algorithm performs better than the direct implementation. We

hope that addressing the computational issues of combinatorial auctions will help

make them practical choices for resource allocation.

89

CHAPTER 8. CONCLUDING REMARKS 90

8.1 Brief Review

In Chapter 1 we introduced some settings where combinatorial auctions may have

potential applications as motivation. We saw that combinatorial auctions may be

used in resource allocation problems such as the auctioning of take-off and landing

slots at airports and the planning of trucking routes. In Chapter 2, we defined the

combinatorial auction problem that we address in this thesis. We provided a formal

framework in which to abstractly model the combinatorial auction problem. Having

defined the problem, we also developed the notion of core outcomes, and showed

why this notion may be a good indicator of the quality of an outcome. Finally, we

presented the NP -complete winner determination problem, which is at the center of

the computational issues related to combinatorial auctions. The winner determination

problem embodies the inherent computational difficulties of this setting.

In Chapter 3, we introduced one of the first and most famous combinatorial auction

mechanisms, the VCG mechanism. We drew an analogy to the single good setting

Vickrey auction or second-price auction, and showed that the VCG mechanism was

the natural extension to the combinatorial setting. We developed the notions of al-

locative efficiency and strategyproofness, and saw that VCG outcomes were always

efficient and the mechanism was strategyproof. However, we also cited how the VCG

mechanism could produce counter-intuitive outcomes. Some of these included zero

seller revenue (the agents receive goods for free) and the susceptibility to collusion

by multiple bidders. We noticed that the reason for these deficiencies was that the

VCG outcome is not always a core outcome. Additionally, we introduced the no-

tion of preference elicitation and saw that the VCG mechanism suffered from costly

preference elicitation.

Having seen the various issues that arise in designing combinatorial auctions through

the VCG mechanism, we moved to a newer set of combinatorial auctions in Chapter

4. We first introduced iterative combinatorial auctions which address the problem

of costly preference elicitation. We then developed the ascending proxy auction as

a particular iterative combinatorial auction coupled with a straightforward bidding

strategy. We proceeded to a formal definition of the ascending proxy auction, and

discussed its various properties. Most importantly, we saw that APA outcomes are

always in the core.

CHAPTER 8. CONCLUDING REMARKS 91

Having developed APA theoretically, we then proceeded to discuss its actual im-

plementation. We looked at the straightforward direct implementation of APA (Pure

Proxy). We saw that it was dependent on the chosen bid increment and required

iteratively solving a number of winner determination problems. Because of the in-

tractability of winner determination problems, we motivated the development of ac-

celerated algorithms that avoided these large amounts of computation. We discussed

related work that approximately replicated the ascending proxy outcome. Finally, we

turned to the work of Wurman and Parkes in accelerated exact replication of APA.

As this thesis grew out of Parkes’s ideas about exact replicatio, this naturally led

to a description of our algorithm in Chapter 5. The key notions that we developed

early in this chapter were the notions of interesting coalitions and stages. Interesting

coalitions allowed us to focus on only those coalitions that contributed to the dynamics

of the auction. The notion of the stage served as the foundation for our accelerated

algorithm. By splitting the auction into stages, we could simulate a large number

of rounds at once by performing some pre-computation. This led to a description

of FRAC, which was our algorithm for determining dynamics within a stage. Once

we had the output of FRAC, we needed to determine when the stage would end.

To address this issue, we introduced Algorithm DUR. At the end of this chapter we

provided some illustrative examples that show some of the more complicated aspects

of our algorithm.

Having described our algorithm on a theoretical level, Chapter 6 addressed some

of the computational issues that arise from our algorithm. We showed how we could

compute the interesting coalitions dynamically as needed using constraint generation

(FRAC-CG). We also introduced a heuristic method for computing the coalitional

fractions which replaced a the costly mixed integer linear program (FRAC-MIP)

with an efficient a linear program. We then also applied constraint generation to

computing the durations of each stage (DUR-CG). Finally, in order to mirror the ε bid

increment in Pure Proxy, we hypothesized about some possible ways to systematically

introduce error into our algorithm. Chapter 7 contained experimental results which

are summarized below.

CHAPTER 8. CONCLUDING REMARKS 92

8.2 Summary of Results

We first compared the heuristic LP based approach with the theoretically correct

MIP approach. We found that the LP based approach significantly outperformed the

MIP approach. Not only were we solving easier problems (LPs instead of MIPs),

there were instances in which we were solving fewer LPs. While the MIP approach

provides a good theoretical foundation for the accelerated algorithm, the LP approach

fares much better in practice.

We also compared our LP based approach with the direct Pure Proxy approach.

Our findings in this area were very interesting as the two algorithms which produce

the same result have very different dependencies. The accelerated approach was

highly dependent on the number of bids and the number of agents while the Pure

Proxy approach was highly dependent on the number of goods and the magnitude

of bids. The accelerated approach was more dependent on the number of coalitions

whereas the Pure Proxy was more dependent on the size the coalitions. These different

dependencies suggest settings where the accelerated algorithm would be preferred over

Pure Proxy and vice versa.

8.2.1 Bottlenecks

In experimenting with the accelerated algorithm and especially with error introduc-

tion in Section 7.4, we have also been able to get a feel for the bottlenecks in the

algorithm. As seen in the experimentation with error introduction, one of the bot-

tlenecks we found was that constraint generation could be wasteful when we do not

have any violations. The constraint generation paradigm requires that we run an IP

at least once even if there are no violations. In practice, the catching-up phenomena

does not occur that often. If we had an efficient way to check whether a violation

exists, this would greatly improve the runtime.

Additionally, another bottleneck of the accelerated algorithm is a small stage du-

ration. We put a lot of work into computing the coalitional fractions, but it may

be that these coalitional fractions only apply for a short duration. Then we need to

recalculate the coalitional fractions which is expensive. The accelerated algorithm

works best when there are few stages and each stage lasts for a long duration. Since

CHAPTER 8. CONCLUDING REMARKS 93

computing coalitional fractions is more expensive than solving the winner determina-

tion problem, if our durations are smaller than the bid increment in Pure Proxy, we

would be better off just using Pure Proxy.

A final bottleneck was the number of stages that we were required to go through.

As discussed, the number of stages grows linearly in the number of bids since each

bid that is not of maximal value will cause a demand set change will cause a new

stage in the accelerated algorithm.

8.3 Open Questions and Future Research

Our work has created many open questions and potential areas for future research.

They include:

• Exploration of whether the coalitional fractions that equalize price increase are

unique.

• Exploration of the convergence of the LP based heuristic approach. Theoretical

bounds on the expected convergence time.

• The meaning of a negative coalitional fraction. How can this information help

us improve the accelerated algorithm?

• Attempt to develop a “yes” or “no” algorithm that tells us whether or not a

violation occurs. This would allow for the avoidance of expensive constraint

generation even when there are no violations.

• Experiment with more ways to introduce error into the algorithm. Specifically,

we should focus on the bottlenecks of short stage duration and large number

of stages. How can we systematically enforce long stage durations without

completely changing the dynamics of the algorithm? Related to this question

is whether there is some way to systematically decrease the number of stages.

• Improvements to the exact accelerated algorithm. Figure out how we can make

stage durations longer. Perhaps some changes in agent’s demand sets are not

as significant as others. Maybe some changes do not affect the competitive

CHAPTER 8. CONCLUDING REMARKS 94

dynamics at all. In general, how can we relax the stage definition so that stages

can last longer yet still exactly replicate the ascending proxy auction.

8.4 Conclusion

The accelerated algorithm offers an exciting new set of open questions since its de-

pendencies and characteristics are very different than Pure Proxy. At this point, we

have seen that the accelerated implementation is useful if we want to be guaranteed

to have fully efficient outcomes. Additionally, the accelerated implementation will

perform well in situations with a large number of goods and relatively sparse bids.

Moreover, the accelerated implementation removes the need to calibrate since it is

independent of epsilon. To run Pure Proxy, it is necessary to run preliminary calibra-

tion trials to determine what bid increments to use to attain a desired efficiency level.

Of course we could always use incredibly small bid increments, but this drastically

increases the runtime of Pure Proxy. In cases where calibration may be expensive,

the accelerated implementation may prove to be very useful. While it may not be a

completely dominant algorithm, our new accelerated algorithm offers an alternative

to direct Pure Proxy and may be more appropriate for certain problem instances and

settings.

Appendix A

Hoffman’s Test Cases

In this section, we give a complete record of running Acc-LP and Acc-MIP on the

examples from Hoffman et. al. [11]. For each of the test cases, the efficient allocation

is indicated by an asterisk next to the package. Also, for Acc-LP and Acc-MIP

we include extra counts in parenthesis next to the round counts. For Acc-LP, we

include (l, f, c) where l stands for the number of LPs solved, f is the number of times

constraint generation is called for checking coalitional fractions, and c is the number

of times constraint generation is called for checking for collisions. For Acc-MIP, we

include (f, c) since we we do not use an LP in that formulation. Unlike Acc-LP, for

Acc-MIP, the number of times we solve the MIP is equal to the number of times

constraint generation is called for checking coalitional fractions. For Acc-LP, it might

be the case that we solve more than one LP for each call to constraint generation

since we need to resolve after deleting all negative fractions.

95

APPENDIX A. HOFFMAN’S TEST CASES 96

Table A.1: Case 1: AAS satisfied, BSM satisfied
Agent 1 2 3 4

Package AB* AB C* AB AB C
Value 15 14 5 9 10 4

Optimal Allocation {1-AB, 2-C}; Optimal Value = 20, Optimal Revenue = 17.02
Method Rounds Revenue Prices paid by winning agents

Agent 1, {AB} Agent 2, {C}
Pure Proxy 2450 17.02 13.01 4.01
Safe Start 1 17.01 13.00 4.01

Incremental Scaling 31 17.02 13.01 4.01
Incremental Scaling w/ Safe Start 7 17.02 13.01 4.01

Vickrey Payments - 17 13.00 4.00
Acc-MIP 4(11,4) 17 13.00 4.00
Acc-LP 4(16,11,4) 17 13.00 4.00

Table A.2: Case 2: AAS satisfied, BSM not satisfied
Agent 1 2 3 4 5

Package AB BC C C* AB*
Value 21 35 14 20 22

Optimal Allocation {4-C, 5-AB}; Optimal Value = 42, Optimal Revenue = 35.02
Method Rounds Revenue Prices paid by winning agents

Agent 4, {C} Agent 5, {AB}
Pure Proxy 4025 36.76 15.75 21.01
Safe Start 1 35.02 14.01 21.01

Incremental Scaling 38 35.01 14.00 21.01
Incremental Scaling w/ Safe Start 6 35.02 14.01 21.01

VCG Payments - 35 14.00 21.00
Acc-MIP 4(8,4) 35 15.75 21.00
Acc-LP 4(12,8,4) 35 15.75 21.00

APPENDIX A. HOFFMAN’S TEST CASES 97

Table A.3: Case 3: AAS satisfied, BSM not satisfied
Agent 1 2 3 4 5

Package AB* CD CD* BD AC
Value 10 20 25 10 10

Optimal Allocation {1-AB, 3-CD}; Optimal Value = 35, Optimal Revenue = 20.02
Method Rounds Revenue Prices paid by winning agents

Agent 1, {AB} Agent 3, {CD}
Pure Proxy 3250 27.52 7.51 20.01
Safe Start 1 20.02 0.01 20.01

Incremental Scaling 18 20.02 0.01 20.01
Incremental Scaling w/ Safe Start 7 20.02 0.01 20.01

Vickrey Payments - 20.00 0.00 20.00
Acc-MIP 3(6,3) 27.50 7.50 20.00
Acc-LP 3(9,6,3) 27.50 7.50 20.00

Table A.4: Case 4: AAS not satisfied
Agent 1 2 3

Package A* B A B* AB
Value 16 16 8 8 10

Optimal Allocation {1-A, 2-B}; Optimal Value = 24, Optimal Revenue = 10.02
Method Rounds Revenue Prices paid by winning agents

Agent 1, {A} Agent 2, {B}
Pure Proxy 1500 10.02 5.01 5.01
Safe Start 401 10.02 6.01 4.01

Incremental Scaling 19 10.02 5.01 5.01
Incremental Scaling w/ Safe Start 9 10.02 6.01 4.01

Vickrey Payments - 2 2.00 0.00
Acc-MIP 2(4,2) 10 5.00 5.00
Acc-LP 2(6,4,2) 10 5.00 5.00

APPENDIX A. HOFFMAN’S TEST CASES 98

Table A.5: Case 5: AAS not satisfied
Agent 1 2 3 4 5

Package AB* C BC B AC C AB C*
Value 15 5 15 5 12 3 12 6

Optimal Allocation {1-AB, 5-C}; Optimal Value = 21, Optimal Revenue = 17.02
Method Rounds Revenue Prices paid by winning agents

Agent 1, {AB} Agent 2, {C}
Pure Proxy 1890 17.02 12.01 5.01
Safe Start 101 17.00 13.00 4.00

Incremental Scaling 23 17.01 12.00 5.01
Incremental Scaling w/ Safe Start 6 17.02 13.01 4.01

Vickrey Payments - 15 12.00 3.00
Acc-MIP 7(12,7) 17.11 12.00 5.10
Acc-LP 7(17,12,7) 17.11 12.00 5.10

Table A.6: Case 6: AAS not satisfied
Agent 1 2 3 4

Package AB BC* AC A*
Value 20 26 24 16

Optimal Allocation {2-BC, 4-A}; Optimal Value = 42, Optimal Revenue = 24.02
Method Rounds Revenue Prices paid by winning agents

Agent 2, {BC} Agent 4, {A}
Pure Proxy 3100 24.02 12.01 12.01
Safe Start 801 24.02 16.01 8.01

Incremental Scaling 20 24.02 17.01 7.01
Incremental Scaling w/ Safe Start 15 24.02 16.01 8.01

Vickrey Payments - 8.00 8.00 0.00
Acc-MIP 3(5,3) 24.00 12.00 12.00
Acc-LP 2(7,5,3) 24.00 12.00 12.00

Appendix B

Varying Bids

Here we provide the results of varying bids on distributions other than L6 distribution

which was contained the main text. For the most part, we see the same trends in all

of these graphs and charts. For the graphs where including the runtime of Acc-MIP

would cause distortion (Acc-MIP’s runtime was signficantly larger than all others) we

do not include Acc-MIP. We see that:

• Acc-MIP has worse asymptotics than Acc-LP as expected.

• Acc-LP falls in between Pure Proxy that is always efficient and Pure Proxy that

has average efficiency .99.

B.1 Acc-LP vs. Acc-MIP

In this section, we include charts similar to the one included in the main text for distri-

butions other than matching. Notice that in all cases, Acc-MIP takes more time than

Acc-LP. Also, it looks like Acc-MIP goes through more constraint generation phases

to check fractions than Acc-LP. This again indicates that Acc-LP converges faster

than the Acc-MIP by using the heuristic of throwing out non-competitive coalitions.

99

APPENDIX B. VARYING BIDS 100

Runtime(s) Frac-CG LPs Solved
Bids Acc-MIP Acc-LP Acc-MIP Acc-LP Acc-LP
100 0.261 0.213 11.2 11.1 16.4
200 1.587 1.438 35.4 33.6 50.5
300 5.893 3.668 60.1 56.4 90.3
400 42.551 9.464 110.0 104.6 170.0
500 45.564 15.515 128.1 107.6 173.2

Table B.1: L4 Distribution varying Bids. Goods = 50, Bids per Agent = 10. Frac-CG denotes the
number of times constraint generation was called to check the coalitional fractions. LPs solved only
applies to Acc-LP and refers to the number of times we solve the system of equations (Equations
5.10 and 5.11).

Runtime(s) Frac-CG LPs Solved
Bids Acc-MIP Acc-LP Acc-MIP Acc-LP Acc-LP
200 2.527 2.193 37.4 35.6 54.8
400 14.773 9.881 77.4 75.8 118.2
600 57.002 25.075 120.6 110.3 171.7
800 101.297 52.824 149.4 140.0 219.0

Table B.2: L6 Distribution varying Bids. Goods = 50, Bids per Agent = 10. Frac-CG denotes the
number of times constraint generation was called to check the coalitional fractions. LPs solved only
applies to Acc-LP and refers to the number of times we solve the system of equations (Equations
5.10 and 5.11).

Runtime(s) Frac-CG LPs Solved
Bids Acc-MIP Acc-LP Acc-MIP Acc-LP Acc-LP
200 0.322 0.215 10.8 10.8 15.6
400 0.988 0.473 24.5 20.1 30.2
600 2.158 0.878 62.8 26.4 41.4
800 3.365 1.339 88.8 34.0 54.5
1000 4.473 1.705 109.9 36.7 58.3

Table B.3: scheduling Distribution varying Bids. Goods = 50. Frac-CG denotes the number of
times constraint generation was called to check the coalitional fractions. LPs solved only applies
to Acc-LP and refers to the number of times we solve the system of equations (Equations 5.10 and
5.11).

APPENDIX B. VARYING BIDS 101

Runtime(s) Frac-CG LPs Solved
Bids Acc-MIP Acc-LP Acc-MIP Acc-LP Acc-LP
100 5.603 4.42 45.0 42.1 63.1
200 24.083 18.94 86.1 88.3 137.3
300 77.312 39.114 142.7 131.1 206.8
400 132.797 61.639 204.6 176.7 280.4
500 515.186 110.221 266.0 240.3 381.0

Table B.4: regions Distribution varying Bids. Goods = 50. Frac-CG denotes the number of times
constraint generation was called to check the coalitional fractions. LPs solved only applies to Acc-LP
and refers to the number of times we solve the system of equations (Equations 5.10 and 5.11).

Runtime(s) Frac-CG LPs Solved
Bids Acc-MIP Acc-LP Acc-MIP Acc-LP Acc-LP
100 4.824 3.344 37.6 36.3 54.6
200 24.261 14.614 76.3 71.7 107.7
300 52.147 35.022 112.5 105.5 157.9
400 134.963 65.108 142.8 132.4 200.2
500 310.433 120.075 191.5 174.5 270.0

Table B.5: arbitrary Distribution varying Bids. Goods = 50. Frac-CG denotes the number of
times constraint generation was called to check the coalitional fractions. LPs solved only applies
to Acc-LP and refers to the number of times we solve the system of equations (Equations 5.10 and
5.11).

Runtime(s) Frac-CG LPs Solved
Bids Acc-MIP Acc-LP Acc-MIP Acc-LP Acc-LP
20 0.373 0.223 13.4 12.6 18.9
40 2.633 1.051 59.5 44.8 68.0
60 17.701 2.233 105.7 74.4 112.7
80 107.646 4.629 201.3 137.4 202.3
100 263.481 7.11 225.3 151.8 220.5

Table B.6: paths Distribution varying Bids. Goods = 10. Frac-CG denotes the number of times
constraint generation was called to check the coalitional fractions. LPs solved only applies to Acc-LP
and refers to the number of times we solve the system of equations (Equations 5.10 and 5.11).

APPENDIX B. VARYING BIDS 102

B.2 Acc-LP vs. Pure Proxy

In this section, we provide graphs and charts similar to the comparisons we made

using the L6 distribution in the main text. Notice here that Acc-LP usually falls

in between Pure Proxy with different bid increments. There are certain exceptions

to this such as the paths and scheduling distributions. Also, when we look at the

number of coalitions that actually catch up in the charts, we see that very few of the

stages end because of catching up. The charts also show that Acc-LP is much more

dependent on the number of bids than Pure Proxy.

APPENDIX B. VARYING BIDS 103

 0

 5

 10

 15

 20

 25

 50 100 150 200 250 300 350 400 450 500

T
im

e
(s

)

Bids

L4 Distribution Runtime

Acc-LP
Pure Proxy 0.01
Pure Proxy 0.1

Figure B.1: L4 Distribution varying Number of Bids. Goods = 50. Bids Per Agent = 10. Efficiency
of Acc-LP = 1. Efficiency of Pure Proxy(0.01) = 1. Efficiency of Pure Proxy(0.10) = 0.99.

Acc-LP Pure(0.01) Pure(0.1)
Bids LPs Frac-CG Dur-CG Total Catch Rounds Rounds Rounds
100 16.4 11.1 4.5 15.6 0.0 4.5 627.2 59.8
200 50.5 33.6 22.9 56.5 4.6 18.3 703.6 67.0
300 90.3 56.4 49.8 106.2 15.1 34.7 574.2 54.2
400 170.0 104.6 104.8 209.4 39.3 65.5 695.0 69.0
500 173.2 107.6 110.1 217.7 37.0 73.1 650.2 62.8

Table B.7: L4 Distribution, Goods = 50, Bids Per Agent = 10. LPs = number of times we
solve for coalitional fractions. Frac-CG = number of times constraint generation called to check
coalitional fractions. Dur-CG = number of times constraint generation called to check duration.
Total = Frac-CG + Dur-CG. Catch = number of times a catching-up occurs.

APPENDIX B. VARYING BIDS 104

 0

 2

 4

 6

 8

 10

 12

 14

 100 200 300 400 500 600 700 800 900 1000

T
im

e
(s

)

Bids

scheduling Distribution Runtime

Acc-MIP
Acc-LP
Pure Proxy 0.01
Pure Proxy 0.25

Figure B.2: scheduling Distribution varying Number of Bids. Goods = 50. Efficiency of Acc-LP
= 1. Efficiency of Pure Proxy(0.01) = 1. Efficiency of Pure Proxy(0.25) = 0.98.

Acc-LP Pure(0.01) Pure(0.25)
Bids LPs Frac-CG Dur-CG Total Catch Rounds Rounds Rounds
200 15.6 10.8 5.8 16.6 0.0 5.8 438.4 18.8
400 30.2 20.1 11.1 31.2 0.0 11.1 503.2 25.8
600 41.4 26.4 17.2 43.6 0.0 17.2 543.6 26.6
800 54.5 34.0 23.8 57.8 0.1 23.7 584.4 26.2
1000 58.3 36.7 27.9 64.6 0.0 27.9 584.6 31.4

Table B.8: scheduling Distribution varying Bids. Goods = 50. LPs = number of times we solve for
coalitional fractions. Frac-CG = number of times constraint generation called to check coalitional
fractions. Dur-CG = number of times constraint generation called to check duration. Total =
Frac-CG + Dur-CG. Catch = number of times a catching-up occurs.

APPENDIX B. VARYING BIDS 105

 0

 5

 10

 15

 20

 25

 50 100 150 200 250 300 350 400 450 500

T
im

e
(s

)

Bids

matching Distribution Runtime

Acc-LP
Pure Proxy 0.01
Pure Proxy 0.2

Figure B.3: matching Distribution varying Number of Bids. Goods = 40. Efficiency of Acc-LP =
1. Efficiency of Pure Proxy(0.01) = 1. Efficiency of Pure Proxy(0.2) = 0.99.

Acc-LP Pure(0.01) Pure(0.2)
Bids LPs Frac-CG Dur-CG Total Catch Rounds Rounds Rounds
100 47.6 31.2 12.7 43.9 0.7 12.0 214.0 30.2
200 125.8 86.1 26.4 112.5 1.0 25.4 360.0 36.4
300 222.8 155.4 40.7 196.1 0.1 40.6 662.0 37.0
400 314.0 225.2 56.4 281.6 0.5 55.9 566.0 38.0

Table B.9: matching Distribution varying Bids. Goods = 40. LPs = number of times we solve for
coalitional fractions. Frac-CG = number of times constraint generation called to check coalitional
fractions. Dur-CG = number of times constraint generation called to check duration. Total =
Frac-CG + Dur-CG. Catch = number of times a catching-up occurs.

APPENDIX B. VARYING BIDS 106

 0

 100

 200

 300

 400

 500

 600

 100 150 200 250 300 350 400 450 500

T
im

e
(s

)

Bids

regions Distribution Runtime

Acc-MIP
Acc-LP
Pure Proxy 0.01
Pure Proxy 0.1

Figure B.4: regions Distribution varying Number of Bids. Goods = 50. Efficiency of Acc-LP = 1.
Efficiency of Pure Proxy(0.01) = 1. Efficiency of Pure Proxy(0.1) = 0.99.

Acc-LP Pure(0.01) Pure(0.1)
Bids LPs Frac-CG Dur-CG Total Catch Rounds Rounds Rounds
100 63.1 42.1 38.7 80.8 8.8 29.9 530.0 48.8
200 137.3 88.3 85.4 173.7 22.3 63.1 602.0 57.6
300 206.8 131.1 130.7 261.8 36.8 93.9 649.8 69.6
400 280.4 176.7 185.6 362.3 59.4 126.2 602.2 66.8
500 381.0 240.3 243.7 484.0 79.2 164.5 639.4 60.2

Table B.10: regions Distribution varying Bids. Goods = 50. LPs = number of times we solve for
coalitional fractions. Frac-CG = number of times constraint generation called to check coalitional
fractions. Dur-CG = number of times constraint generation called to check duration. Total =
Frac-CG + Dur-CG. Catch = number of times a catching-up occurs.

APPENDIX B. VARYING BIDS 107

 0

 50

 100

 150

 200

 250

 300

 350

 50 100 150 200 250 300 350 400 450 500

T
im

e
(s

)

Bids

arbitrary Distribution Runtime

Acc-MIP
Acc-LP
Pure Proxy 0.01
Pure Proxy 0.08

Figure B.5: arbitrary Distribution varying Number of Bids. Goods = 50. Efficiency of Acc-LP =
1. Efficiency of Pure Proxy(0.01) = 1. Efficiency of Pure Proxy(0.08) = 0.99.

Acc-LP Pure(0.01) Pure(0.08)
Bids LPs Frac-CG Dur-CG Total Catch Rounds Rounds Rounds
100 54.6 36.3 33.1 69.4 6.2 26.9 520.0 62.6
200 107.7 71.7 70.3 142.0 14.2 56.1 648.2 77.6
300 157.9 105.5 110.4 215.9 26.5 83.9 578.6 70.6
400 200.2 132.4 138.8 271.2 31.7 107.1 596.4 72.6
500 270.0 174.5 189.8 364.3 47.5 142.3 645.8 80.0

Table B.11: arbitrary Distribution varying Bids. Goods = 50. LPs = number of times we solve for
coalitional fractions. Frac-CG = number of times constraint generation called to check coalitional
fractions. Dur-CG = number of times constraint generation called to check duration. Total =
Frac-CG + Dur-CG. Catch = number of times a catching-up occurs.

APPENDIX B. VARYING BIDS 108

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10 20 30 40 50 60 70 80 90 100

T
im

e
(s

)

Bids

paths Distribution Runtime

Acc-LP
Pure Proxy 0.01
Pure Proxy 0.25

Figure B.6: paths Distribution varying Number of Bids. Goods = 10. Efficiency of Acc-LP = 1.
Efficiency of Pure Proxy(0.01) = 1. Efficiency of Pure Proxy(0.25) = 0.99.

Acc-LP Pure(0.01) Pure(0.25)
Bids LPs Frac-CG Dur-CG Total Catch Rounds Rounds Rounds
20 18.9 12.6 5.0 17.6 0.0 5.0 41.4 17.2
40 68.0 44.8 15.9 60.7 0.0 15.9 48.4 17.6
60 112.7 74.4 24.1 98.5 0.0 24.1 43.2 15.8
80 202.3 137.4 40.8 178.2 0.0 40.8 48.4 19.2
100 220.5 151.8 41.7 193.5 0.0 41.7 44.0 17.6

Table B.12: paths Distribution varying Bids. Goods = 10. LPs = number of times we solve for
coalitional fractions. Frac-CG = number of times constraint generation called to check coalitional
fractions. Dur-CG = number of times constraint generation called to check duration. Total =
Frac-CG + Dur-CG. Catch = number of times a catching-up occurs.

Appendix C

Varying Goods

Here we provide the results of varying goods on distributions other than regions

distribution which was contained the main text. For the most part, we notice the same

trends across all distributions. Mainly, we see that Pure Proxy is more dependent

on the number of goods than Acc-LP. Also, as with varying the number of bids and

bids per agents, Acc-LP performs in between fully efficient Pure Proxy and 0.99

efficiency Pure Proxy. The exception these is the scheduling distribution which seems

to become easier as the number of goods increases. This may be because increasing

the number of goods decreases competition and agents can all be part of the winning

coalition when there are more goods. For this section we do not have results from

the matching, paths, and arbitrary distributions.

109

APPENDIX C. VARYING GOODS 110

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 10 20 30 40 50 60 70 80 90 100

T
im

e
(s

)

Bids

L4 Distribution Runtime

Acc-LP
Pure Proxy 0.01
Pure Proxy 0.1

Figure C.1: L4 Distribution varying Goods. Bids = 300, Bid per Agent = 10. Efficiency of Acc-LP
= 1. Efficiency of Pure Proxy(0.01) = 1. Efficiency of Pure Proxy(0.10) = 0.99.

Acc-LP Pure(0.01) Pure(0.1)
Goods LPs Total-CG Rounds Rounds Rounds

10 62.6 77.3 32.3 428.8 42.0
20 79.4 99.4 37.4 540.4 52.6
30 95.2 114.1 39.7 523.0 49.0
40 84.1 100.4 35.1 649.4 63.4
50 85.1 100.6 33.6 586.2 57.6
60 94.3 117.5 39.1 715.4 69.2
70 86.2 107.1 33.3 736.8 71.6
80 98.4 124.4 38.2 791.6 75.8
90 79.7 93.6 28.1 678.6 66.0
100 82.6 97.7 28.7 726.2 69.6

Table C.1: L4 Distribution varying Goods. Bids = 300, Bid per Agent = 10. LPs = number
of times we solve for coalitional fractions. Total-CG = total number of times we call constraint
generation (to check fractions and durations).

APPENDIX C. VARYING GOODS 111

 0

 5

 10

 15

 20

 25

 30

 35

 10 20 30 40 50 60 70 80 90 100

T
im

e
(s

)

Bids

L6 Distribution Runtime

Acc-LP
Pure Proxy 0.01
Pure Proxy 0.1

Figure C.2: L6 Distribution varying Goods. Bids = 300, Bid per Agent = 10. Efficiency of Acc-LP
= 1. Efficiency of Pure Proxy(0.01) = 1. Efficiency of Pure Proxy(0.10) = 0.99.

Acc-LP Pure(0.01) Pure(0.1)
Goods LPs Total-CG Rounds Rounds Rounds

10 63.5 84.5 34.7 407.8 40.4
20 71.3 92.6 36.3 617.8 61.4
30 75.1 100.7 39.6 647.8 61.4
40 83.9 105.6 39.3 665.0 66.0
50 84.2 106.0 38.9 720.0 70.0
60 79.9 100.1 37.3 710.6 69.4
70 85.5 110.3 40.2 883.6 85.4
80 90.0 115.7 40.5 920.8 90.8
90 101.5 130.5 44.3 932.0 91.0
100 100.3 129.2 44.0 727.2 73.2

Table C.2: L6 Distribution varying Goods. Bids = 300, Bid per Agent = 10. LPs = number
of times we solve for coalitional fractions. Total-CG = total number of times we call constraint
generation (to check fractions and durations).

APPENDIX C. VARYING GOODS 112

 0

 5

 10

 15

 20

 25

 30

 35

 10 20 30 40 50 60 70 80 90 100

T
im

e
(s

)

Bids

scheduling Distribution Runtime

Acc-LP
Pure Proxy 0.01
Pure Proxy 0.25

Figure C.3: scheduling Distribution varying Goods. Bids = 800. Efficiency of Acc-LP = 1.
Efficiency of Pure Proxy(0.01) = 1. Efficiency of Pure Proxy(0.25) = 0.99.

Acc-LP Pure(0.01) Pure(0.25)
Goods LPs Total-CG Rounds Rounds Rounds

10 399.4 450.4 163.4 256.4 194.8
20 148.5 161.6 64.3 557.2 71.0
30 86.3 95.0 40.8 690.8 28.6
40 59.2 64.8 27.7 596.4 48.4
50 50.2 53.6 22.3 565.0 26.4
60 42.8 45.3 18.1 574.0 29.0
70 37.5 39.3 15.1 509.8 24.8
80 35.7 37.3 14.1 615.2 26.6
90 32.2 33.5 12.3 556.4 42.4
100 30.3 31.4 11.2 553.0 25.6

Table C.3: scheduling Distribution varying Goods. Bids = 300. LPs = number of times we solve
for coalitional fractions. Total-CG = total number of times we call constraint generation (to check
fractions and durations).

APPENDIX C. VARYING GOODS 113

 0

 20

 40

 60

 80

 100

 120

 10 20 30 40 50 60 70 80 90 100

T
im

e
(s

)

Bids

arbitrary Distribution Runtime

Acc-LP
Pure Proxy 0.01
Pure Proxy 0.08

Figure C.4: arbitrary Distribution varying Goods. Bids = 300. Efficiency of Acc-LP = 1. Effi-
ciency of Pure Proxy(0.01) = 1. Efficiency of Pure Proxy(0.08) = 0.99.

Acc-LP Pure(0.01) Pure(0.08)
Goods LPs Total-CG Rounds Rounds Rounds

10 63.5 84.5 34.7 407.8 40.4
20 71.3 92.6 36.3 617.8 61.4
30 75.1 100.7 39.6 647.8 61.4
40 83.9 105.6 39.3 665.0 66.0
50 84.2 106.0 38.9 720.0 70.0
60 79.9 100.1 37.3 710.6 69.4
70 85.5 110.3 40.2 883.6 85.4
80 90.0 115.7 40.5 920.8 90.8
90 101.5 130.5 44.3 932.0 91.0
100 100.3 129.2 44.0 727.2 73.2

Table C.4: arbitrary Distribution varying Goods. Bids = 300. LPs = number of times we solve
for coalitional fractions. Total-CG = total number of times we call constraint generation (to check
fractions and durations).

Bibliography

[1] Arne Andersson, Mattias Tenhune, and Fredrik Ygge. Integer programming for

combinatorial auction winner determination. pages 39–46, 2000.

[2] Lawrence M. Ausubel and Paul Milgrom. Ascending auctions with package bid-

ding. Frontiers of Theoretical Economics, 1(1):Article 1, 2002.

[3] Lawrence M. Ausubel and Paul Milgrom. Combinatorial Auctions, chapter 1.

MIT Press, 2006. forthcoming.

[4] Michael O. Ball, George L. Donohue, and Karla Hoffman. Combinatorial Auc-

tions, chapter 20. MIT Press, 2006. forthcoming.

[5] Martin Bichler, Andrew Davenport, Gail Hohner, and Jayant Kalagnanam. Com-

binatorial Auctions.

[6] Estelle Cantillon and Martin Pesendorfer. Combinatorial Auctions, chapter 22.

MIT Press, 2006. forthcoming.

[7] Chris Caplice and Yossi Sheffi. Combinatorial Auctions, chapter 21. MIT Press,

2006. forthcoming.

[8] Robert W. Day and S. Raghavan. Bidder-pareto-optimal core solutions and a

constraint generation pricing algorithm for combinatorial auctions, 2005.

[9] Yuzo Fujishima, Kevin Leyton-Brown, and Yoav Shoham. Taming the compu-

tational complexity of combinatorial auctions: Optimal and approximate ap-

proaches. In IJCAI ’99: Proceedings of the Sixteenth International Joint Con-

ference on Artificial Intelligence, pages 548–553, 1999.

114

BIBLIOGRAPHY 115

[10] Rica Gonen and Daniel Lehmann. Optimal solutions for multi-unit combinational

auctions. In ACM Conference on Electronic Commerce, pages 13–20, 2000.

[11] Karla Hoffman, Dinesh Menon, Susara van den Heever, and Thomas Wilson.

Combinatorial Auctions, chapter 17. MIT Press, 2006. forthcoming.

[12] Matthew O. Jackson. Mechanism theory, 2000.

[13] Kevin Leyton-Brown, Mark Pearson, and Yoav Shoham. Towards a universal test

suite for combinatorial auction algorithms. In ACM Conference on Electronic

Commerce, 2000.

[14] Paul Milgrom and Robert J. Weber. A theory of auctions and competitive bid-

ding. Econometrica, 50:1089–1122, 1982.

[15] David C. Parkes. Iterative Combinatorial Auctions: Achieving Economic and

Computational Efficiency. PhD thesis, University of Pennsylvania, 2001.

[16] David C. Parkes. Notes on indirect and direct implementations of core outcomes,

2002. Technical report, Division of Engineering and Applied Sciences, Harvard

University, 2002.

[17] David C. Parkes and Lyle H. Ungar. Iterative combinatorial auctions: Theory

and practice. In AAAI/IAAI, pages 74–81, 2000.

[18] Michael H. Rothkopf, Aleksandar Pekec, and Ronald M. Harstad. Computation-

ally manageable combinatorial auctions. Management Science, 44:1131–1147,

1998.

[19] Tuomas Sandholm. Algorithm for optimal winner determination in combinatorial

auctions. Artificial Intelligence, 135(1-2):1–54, 2002.

[20] Tuomas Sandholm and Subhash Suri. BOB: Improved winner determination

in combinatorial auctions and generalizations. Artificial Intelligence, 145:33–58,

2003.

[21] William Vickrey. Counterspeculation, auctions and competitive sealed tenders.

Journal of Finance, 16(1):8–37, 1961.

BIBLIOGRAPHY 116

[22] Peter R. Wurman, Jie Zhong, and Gangshu Cai. Computing price trajectories in

combinatorial auctions with proxy bidding. Electronic Commerce Research and

Applications, 2004. to appear.

