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Abstract

Strategyproof mechanisms provide robust equilibria with minimal assumptions

about knowledge and rationality, but can be unachievable in combination with other

desirable properties, such as budget-balance, stability against deviations by coalitions,

and computational tractability. We thus seek a relaxation of this solution concept, and

propose several definitions for general settings with private and quasi-linear utility.

We are then able to describe the ideal mechanism according to these definitions by

formulating the design problem as a constrained optimization problem. Discretization

and statistical sampling allow us to reify this problem as a linear program to find ideal

mechanisms in simple settings. However, this constructive approach is not scalable.

We thus advocate for using the quantiles of the ex post unilateral gain from devi-

ation as a method for capturing useful information about the incentives in a mecha-

nism. Where this also is too expensive, we propose using the KL-Divergence between

the payoff distribution at truthful reports and the distribution under a strategyproof

“reference” mechanism that solves a problem relaxation. We prove bounds that re-

late such quasimetrics to our definitions of approximate incentive compatibility; we

demonstrate empirically in combinatorial market settings that they are informative

about the eventual equilibrium, where simple regret-based metrics are not.
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We then design, implement, and analyze a mechanism for just such an overcon-

strained setting: the first fully expressive, iterative combinatorial exchange (ICE).

The exchange incorporates a tree-based bidding language (TBBL) that is concise and

expressive for CEs. Bidders specify lower and upper bounds in TBBL on their value

for different trades and refine these bounds across rounds. A proxied interpretation of

a revealed-preference activity rule, coupled with simple linear prices, ensures progress

across rounds. We are able to prove efficiency under truthful bidding despite using

linear pricing that can only approximate competitive equilibrium. Finally, we apply

several key concepts from this general mechanism in a combinatorial market for find-

ing the right balance between power and performance in allocating computational

resources in a data center.
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The real price of everything, what everything really
costs to the man who wants to acquire it, is the toil
and trouble of acquiring it.

– Adam Smith

The Wealth of Nations

1
Introduction

In 2002, Google transformed sponsored search by implementing a multi-item second-

price auction, outclassing earlier first-price auctions that had been pioneered by

GoTo.com (later Overture/Yahoo!) [Jansen and Mullen, 2008]. This innovation

vastly improved the efficiency of the search engine business model, generating both

greater value for the advertiser and increased profits for Google. In the old model,

advertisers had strong monetary incentives to deviate from bidding their true value,

leading to social welfare losses and the need for constant, unending strategic tinkering

of bid amounts to respond to the actions of other advertisers. Google’s mechanism

design innovation dramatically streamlined this market, taking to heart the message

underlying the Adam Smith quotation above, that the success of markets is in large

measure determined by the ease and efficiency of the transaction itself.

Google’s improvement is one example of how mechanism design addresses the

1
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problem of achieving desirable outcomes in multi-agent systems despite the anti-

optimizing effects of private information about valuations and individual self-interest.

Mechanism design finds applications in societal contexts (e.g., school and medical-

residents matching [Abdulkadiroglu, Pathak, and Roth, 2005]) and business contexts

(e.g., sponsored search auctions [Lahaie, Pennock, Saberi, and Vohra, 2006]), while

providing a formal paradigm by which to coordinate the behavior of artificial agents

(e.g., for task and resource allocation) [Bererton, Gordon, and Thrun, 2003; Dias,

Zlot, Kalra, and Stentz, 2006; Gerkey and Mataric, 2002; Sandholm, 1993; Zlotkin

and Rosenschein, 1996].

In designing mechanisms, there are a number of properties that we would like to

achieve, such as:

Efficiency: The chosen outcome should maximize the total value for participants.

Incentive Compatibility: In equilibrium, agents should choose to behave truth-

fully.

Individual Rationality: Agent participation should be voluntary.

Budget Balance: Running the mechanism should not require a subsidy.

Core Outcome: Coalitions of participants should not wish to reject the chosen

outcome in favor of their own.

However, theory has shown that a simultaneous realization of even the first four of

these properties is not achievable [e.g. Myerson and Satterthwaite, 1983]. We argue

that properties such as budget balance and individual rationality should be taken as

fixed, as mechanisms will often be rejected without them. In some contexts it is

desirable to add the Core Outcome requirement to this list as well. Choosing the

exact set of constraints necessary for a given setting is not our purpose here. Rather,
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we address the question of how to handle the over-constrained nature of the design

problem overall. Clearly some relaxation is necessary. We argue that, given the

choice, it is generally appropriate to relax the requirements for incentive compatibility

and, thus, efficiency. Note that a mechanism that fails to induce truthful behavior in

its participants cannot be efficient, because it will not have the information necessary

to make welfare-maximizing decisions. This raises the question: How can we design

mechanisms that are as incentive-compatible as possible? This is one of the big open

questions in mechanism design, and in this thesis we offer progress on it along several

avenues.

1.1 Overview

1.1.1 Approximately Incentive-Compatible Payment Rules

In this thesis we generally restrict ourselves to settings where agents have quasi-

linear preferences, meaning that their utility is the difference between the value they

assign to a given outcome, and the price they pay to achieve that outcome (e.g., where

the outcome is an allocation of resources). We then ask the question: What payment

rule should the mechanism adopt that will best incentivize agents to be truthful in

their interactions with the mechanism? And just as importantly: What precisely do

we mean by “best”?

The gold standard for approximate incentive compatibility, as well as approxi-

mate efficiency, is behavior in Bayes-Nash Equilibrium (BNE). In BNE, each agent

picks a strategy for playing the game induced by the mechanism that is expected-case
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Figure 1.1: Overview of work in Chapters 3 and 4 on characterizing approximately
incentive compatible payment rules.

maximal over a commonly known joint distribution of other agents’ values (known as

types). However, the BNE of a mechanism is extremely difficult to calculate computa-

tionally. We thus are interested in cheaper indirect measures of approximate incentive

compatibility, that will correlate well with behavior in equilibrium. In Chapter 3, we

first define several of these based on unilateral incentives for deviation. We then ex-

amine a constructive approach for designing rules that best meet these targets. While

this is instructive about the nature of optimal payment rules at a theoretical level,

and in fact is practically achievable for small problem sizes, it will not scale to large,

complex real-world problems.

We therefore switch to an analytic approach that seeks to determine which rule

best achieves our goals from among a set of predefined, closed-form payment rules.

The question then becomes how to perform this analysis in a way that is tractable for

the complex settings we are interested in (since calculating a full BNE is so difficult).

Figure 1.1 summarizes this work on measuring approximate incentive compati-
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bility. At the top left, we have the BNE outcome. In our experimental work, we

go to considerable lengths to achieve approximations for the equilibrium play of the

mechanisms being evaluated in order to properly evaluate the design criteria we are

proposing against the gold standard. In order to do this, we limit our experiments to

problems that, while large enough to be interesting, are sufficiently small to remain

tractable.

We believe that a particular measure of the bidding behavior that we propose,

the expected ex ante unilateral incentive to deviate, should be a very good indica-

tion of equilibrium behavior. However, this too is challenging to compute because a

stochastic optimization must be done so as to limit the model of agent information

away from full information and to a distribution of the joint value space.

Instead we propose looking at the quantiles of the distribution of ex post unilateral

incentive to deviate. This measure still requires an optimization over agent behavior,

but it is a full information optimization that can often exploit the structure of the

mechanism to become a simple linear or grid search.

While this ex post quantile approach is very appealing, we recognize that in some

domains even this option may be overly complex. So we also propose using a simple

KL-Divergence to measure the distance between the distribution of profits under the

approximately incentive-compatible mechanism being evaluated, and some reference

mechanism that offers no incentives for lying, but which fails some other condition

that makes it unusable directly. We show experimentally that it correlates well with

behavior in the BNE, and offer a proof that this measure will bound the ex ante

unilateral deviation measure.
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1.1.2 The Construction of Combinatorial Markets

In domains where there are incumbents with property rights, it is necessary to

facilitate a complex multi-way reallocation of resources. Combinatorial exchanges

(CE) [Parkes, Kalagnanam, and Eso, 2001a] solve this problem by combining and

generalizing two different mechanisms: double auctions and combinatorial auctions.

In a double auction (DA), multiple buyers and sellers trade units of an identical

good [McAfee, 1992b]. In a combinatorial auction (CA), a single seller has multiple

heterogeneous items up for sale [Cramton, Shoham, and Steinberg, 2006; de Vries

and Vohra, 2003]. Each buyer in a CA may have complementarities (“I want A and

B”) or substitutabilities (“I want A or B”) between goods, and is provided with

an expressive bidding language to describe these preferences. A common goal in

the design of both DAs and CAs is to implement the efficient allocation, which is

the allocation that maximizes total social welfare. But it is known that one cannot

simultaneously maximize welfare while retaining the desirable properties of individual

rationality, budget balance and incentive compatibility, as described above.

A CE is thus an ideal environment in which to situate the payment rules we have

been examining. In addition to adopting CE’s as a domain to study the design of

payment rules, we conduct an extensive study of the design of an iterative CE. This

is primarily focused on the orthogonal question of how to elicit preferences efficiently.

The mechanism we propose, the Iterative Combinatorial Exchange (ICE), is general,

and has many other desirable properties.

Calculating the value of any individual bundle of goods that a given agent may

acquire in the market may necessitate the solution of a difficult optimization problem
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(e.g. vehicle routing, scheduling, etc). Thus we want to permit agents to reveal

only incremental information to the market, which they refine through rounds. The

process is analogous to how the price and allocation are slowly determined through

rounds in the standard single-item English auction used in public auction houses.

In order to implement this iterative process, however, we need a set of tools that

must seamlessly work in concert to produce an overall design that is computationally

tractable, has the economic properties that we require, and does not place undue

computational burdens on its participants.

First, agents require a way to bid in the system, and as their valuations are

highly complex, we need a bidding language that can capture the values of complex

combinations of bundles concisely. For this we propose the TBBL language which, as

we shall see, has extremely intuitive semantics. Moreover, as most agents will desire

to reveal information incrementally, the TBBL language permits agents to specify

only upper and lower bounds on their valuations which they then refine over time.

Second, we need a way to provide prices that agents can use to guide this infor-

mation revelation process. In the complex economy of a CE, we would need non-

anonymous non-linear prices to achieve a full competitive equilibrium. However, as

non-anonymous bundle prices are extremely hard for agents to reason about, our

design quotes linear pricing during the elicitation process, and only uses non-linear

non-anonymous payments–whose game theoretic properties we have been describing

above–at the very end, to define the terminal payments that agents actually pay. We

choose these prices extremely carefully, to ensure that they are unique, are as close to

the competitive equilibrium as possible, and that they imply these terminal payments
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as closely as possible.

Third, we need to specify activity rules which force agents to provide information

to the system. Without such rules, an agent would choose to remain silent, letting

other agents’ bidding activity provide pricing information which could then be opti-

mally exploited in the last round before the exchange closes. In response, we propose

the Modified Revealed Preference Activity rule (loosely based on the work of Ausubel,

Cramton, and Milgrom [2006]), which forces agents to make clear which trade they

most prefer at the current prices, and thus moves the allocation towards the efficient

outcome if the prices are accurate enough. As our linearized prices may not be per-

fectly accurate, we require an additional activity rule, the Delta Improvement Activity

Rule, to drive additional elicitation (though in practice our prices are typically good

enough to require only minimal use of the DIAR rule).

We evaluate ICE extensively, and are able to show the following: that it is scalable

to practical problem sizes; that its iterative nature does not produce undue computa-

tional burdens on participants; that the economic properties of its inter-round prices

are such that they provide useful feedback to bidders; and that the mechanism when

taken as a whole can quickly find the efficient choice of outcome without requiring

too many rounds or too much information revelation. The design is agnostic as to the

rule used to determine the final payments, and thus it can be used in concert with

the innovations proposed in the rest of the thesis.

Finally, we demonstrate the effectiveness of combinatorial markets in an important

specific setting: power-aware resource allocation in data centers. We show that a

carefully constructed market in this setting can enable an economically motivated
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balance between the power being consumed and the performance (and thus utility)

being generated by the data center. Additionally, the market enables the data center

operator to be principled about how he rations limited resources when the demand of

the various clients outstrips delivery capacity. We show that the market can improve

the quality of resource and power allocation in realistic scenarios, and that a market

that can be operated on a single machine can allocate the resources of 1000 others,

and thus does not induce so large an overhead as to cancel out the additional power

efficiency it creates.

1.2 Key Technical Contributions

The most important technical contributions of the work in this thesis include:

• Introduction of several indirect criteria for approximate incentive compatibility

that we argue are appropriate targets for design including the expected ex ante

and quantile ex post unilateral gain by deviating from truthful reporting.

• Formulation of the ideal mechanism according to these criteria as a constrained

optimization problem, and presentation of tractable LP approximations to this

problem via statistical sampling.

• Calculation of partially symmetric BNE approximations in a complex CE envi-

ronment.

• Identification of the KL-Divergence between the distribution of payoffs in a

given mechanism and the distribution of payoffs in a strategyproof reference as

a computationally simple way to predict behavior in the BNE.
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• Provision of a theorem that interprets this metric in terms of the earlier criterion

for approximate incentive compatibility.

• Evaluation of the ex post quartile criterion as a way to capture rich information

about approximate incentive compatibility, that while more computationally

expensive than the KL-Divergence approach, is much more tractable than a full

BNE calculation.

• Definition of unique, linear and approximately competitive equilibrium prices in

a setting that would normally require non-linear, non-anonymous prices; also,

a highly sophisticated method for computing these prices using heuristically

guided LP search with optimized constraint generation.

• Furnishing of two activity rules that together force information revelation in

the mechanism, and thus guarantee termination with the efficient allocation (at

reports) without requiring the agents to calculate or reveal their full valuation

profile, and despite using only linear prices.

• Description of a concrete combinatorial market that includes a sophisticated

model of the power usage of modern data center hardware to high fidelity.

• Creation of a bidding proxy for use in such a market that predicts buyer de-

mand, models application performance given supply and demand, and handles

conversion from long run Service Level Agreements to a short term spot market.
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1.3 Domains for Combinatorial Markets

The types of complex combinatorial mechanisms in which we are interested in this

thesis are applicable to a wide range of settings. By way of motivation, we list several

of these:

Financial Markets:

There are many potential applications of CAs or CEs to financial markets.

Firms interested in certain hedging transactions or in portfolio re-balancing

often want to execute complex combinations of trades in an all-or-nothing

way [Saatcioglu, Stallaert, and Whinston, 2001], as buying or selling these in-

struments individually opens traders to either undesirable price movements or

risk of exposure. Some brokers presently allow for bundled “multi-leg” options

trades. Such trades can be cleared using a combinatorial mechanism without

the execution risk inherent in simply disaggregating the bundles, even when the

broker has large volume and fast trades.

Multi-Agent Task Allocation:

Combinatorial markets can be used for distributed task allocation in face of

private interest and private information. They can therefore be a powerful tool

for coordination in multi-agent systems [Bererton et al., 2003; Dias et al., 2006;

Gerkey and Mataric, 2002; Sandholm, 1993; Zlotkin and Rosenschein, 1996].

Airport Slot Auctions:

Some of the earliest work on combinatorial mechanisms was motivated by the

need to allocate landing and takeoff rights at highly congested airports (such



Chapter 1: Introduction 12

as JFK, LaGuardia, O’Hare and National) [Ball, Ausubel, Berardino, Cram-

ton, Donohue, Hansen, and Hoffman, 2007; Rassenti, Smith, and Bulfin, 1982].

The airport domain is exceedingly complex. It involves multiple time scales

(long-term strategic assignments, and short-term reassignments, e.g. under

weather-induced congestion). Participants have existing property rights, typi-

cally requiring an exchange, not an auction. Agents have both powerful comple-

ments and substitutes in their valuation functions – and calculating the value

of even a single assignment profile may require execution of a computationally

expensive vehicle routing problem [Ball, Donohue, and Hoffman, 2006]. Recent

work has focused on improvements to the structure of the short term “tactical”

reassignment problem [Vossen and Ball, 2006].

Bandwidth Auctions:

Some of the most public successes of mechanism design have been in the govern-

ment auction of wireless spectrum [Kwerel and Williams, 2002]. These designs

have carefully taken into account the complements that agents typically have

over blocks of spectrum [Milgrom, 2004]. Careful design is needed to balance

the desire for efficiency with typical requirements for reasonable government

revenue [Day and Cramton, 2008]. The domain is made even more difficult

when existing property owners must be moved off their holdings (e.g. existing

analog TV stations; see [Cramton, Kwerel, and Williams, 1998]); the need to

handle such reallocation problems was the motivation for some of the work in

Chapter 5.
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Advertising Auctions:

Another highly visible application of mechanism design is to markets for spon-

sored search advertising at firms like Google, Yahoo!, and Microsoft. These

firms have settled on the Generalized Second Price auction mechanism. This

mechanism allocates the available slots in order of decreasing bid size, and then

charges a price for each slot that is a function of the bid for the next low-

est slot. This mechanism has the advantages of being simple, computationally

tractable, and high in seller revenue, which has led to its use over the theoret-

ically compelling VCG mechanism [Edelman, Ostrovsky, and Schwarz, 2007].

The framework for design that we propose in Chapter 3 is ostensibly applicable

to this setting.

The market for the sale of display advertising on various web pages is also

huge and growing (it was worth $7.7 billion in 2008 [Evans, 2009]). Most of

the premium placements (that comprise much of the dollar-weighted value in

the market) are still manually negotiated, producing inefficient outcomes. To

clear this market optimally, a multi-party matching problem must be solved

between the advertisers and the publishers. Consequently, AdECN (Microsoft),

RightMedia (Yahoo!), and DoubleClick (Google) have each implemented new

exchanges that permit adverts obtained from advertising networks (effectively

brokers acting on behalf of sets of participants from a given side of the market)

to be placed on specific web sites [Muthukrishnan, 2009]. As these exchanges

become more expressive, and with more forward planning with contracts and

commitments to particular quantities of impression types to particular adver-



Chapter 1: Introduction 14

tisers, these markets could benefit from versions of the CE design proposed in

Chapter 5.

Supply Chain Auctions:

CEs have promise as mechanisms for expressive sourcing by multiple bid-takers,

perhaps representing different profit centers within an organization, or across or-

ganizations. CombineNet has operated combinatorial auctions for supply chain

management and procurement that have sold more than $35 billion worth of

goods and services for major companies such as Walmart, Target and Proctor

& Gamble [Sandholm, 2007]. These auctions have saved the companies that

used them at least $4 billion relative to what they would have spent for the

same items at the prices they had obtained under their earlier procurement

procedures. Clearly, a better mechanism can generate a tremendous amount

of savings, and just as importantly, increase the efficiency of allocations. This

incredibly impressive performance is perhaps the best example of the actual

commercial use of combinatorial market technologies to date.

Computational Resource Allocation:

There has been considerable interest in using market techniques to allocate

computing resources either in data centers [e.g. Byde, Salle, and Bartolini,

2003; Ferguson, Nikolaou, Sairamesh, and Yemini, 1996; Preist, Byde, Bar-

tolini, and Piccinelli, 2002], or in distributed systems [e.g. Fu, Chase, Chun,

Schwab, and Vahdat, 2003; Regev and Nisan, 2000; Waldspurger, Hogg, Huber-

man, Kephart, and Stornetta, 1992]. As data centers have become ever larger

and more power-hungry, the need to intelligently allocate power has grown as
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well [Chase, Anderson, Thakar, Vahdat, and Doyle, 2001]. In Chapter 6, we

investigate the use of combinatorial mechanisms for this problem in particular.

1.4 Outline

In Chapter 2, we provide classic results from the fields of mechanism design and

microeconomics that set the stage for the work discussed in the subsequent chap-

ters. Chapter 3 proposes several indirect criteria for measuring approximate incentive

compatibility, and then shows how to formulate the problem of how to construct an

optimal payment rule under these criteria as a constrained optimization problem. In

Chapter 4, we then construct a near-BNE for a complex CE domain, and use this to

evaluate an even simpler measure for approximate incentive compatibility based on

the KL-divergence of payoffs within a given mechanism and a strategyproof reference.

We relate this distributional approach to the previously defined criteria, and show

the quantile ex post condition to be particularly attractive for design. Chapter 5 pro-

vides a complete design, implementation and evaluation of an iterative CE, including

a novel bidding language, pricing structure for bidder feedback, and activity rules.

Chapter 6 provides a case study in the application of these techniques to the particu-

lar problem of power-aware resource allocation in corporate data centers. Finally, in

Chapter 7 we offer conclusions and suggestions for future work.



Knowledge, in truth, is the great sun in the
firmament. Life and power are scattered with all its
beams.

– Daniel Webster

Address at Bunker Hill Monument, 1825

2
Background Material

In this chapter we introduce a number of important definitions, concepts and math-

ematical constructions that we will need in later chapters. In the course of these

descriptions, we survey some of the most important classical results from game the-

ory and mechanism design.

2.1 Mechanism Design

Mechanism design is the study of how to construct procedures in a setting involv-

ing multiple self-interested participants, such that when the procedures get activated

by specific inputs, the participants choose socially desirable outcomes. Important ex-

amples where money is permitted to be exchanged include auctions, stock exchanges,

and supply-chain sourcing. Recent work has also focused on settings where monetary

16



Chapter 2: Background Material 17

exchange is prohibited, including such diverse examples as municipal school choice,

kidney exchanges and university course assignments. There is an extensive and ever-

growing literature on mechanism design, but a good overview of recent advances, with

a focus on the area of auction theory with which we are concerned, is to be found

in Milgrom [2004]. The following discussion closely follows that in Parkes [2001] in

providing definitions and basic results in mechanism design.

A mechanism’s task is to determine a particular outcome o from a set of possibili-

ties O. Each of N participants (or agents) in the mechanism is said to have a specific

type θi ∈ Θi which determines his preference.

2.1.1 The Domain of Agent Preferences

The types of preferences that agents may have has a huge impact on the struc-

ture and attributes of a good design. In this thesis we will generally be concerned

with design settings where agent preferences belong to a domain with the following

properties:

Private Value Agents have private value preferences if their value for an outcome

is independent of the types of the other agents. This stands in contrast to

interdependent value preferences, where agents’ value can depend on the types

of the other agents. When agent preferences are private, then they can be

expressed in the form of a function ui(o, θi) : O × Θi → R, which specifies the

utility that agent i with type θi obtains when the outcome o is chosen by the

mechanism.

Quasi-Linearity Agent preferences are said to be quasi-linear if the agent types

specify a utility function that is separable into a valuation function vi and a
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payment pi:

ui(o, θi) = vi(κ, θi)− pi (2.1)

where outcome o specifies a result κ from a choice set K and a payment vector

p ∈ R
N which expresses a monetary transfer for each agent. Here, the agent’s

type θi determines the valuation function vi. As an example, in an auction

problem, the K are possible allocations of goods, and the p vector specifies

payments to the auctioneer. While this value structure is commonly assumed

and is reasonable in many contexts, it does have its limitations. Specifically, it

assumes that agents are both risk neutral and not budget constrained.

2.1.2 Defining a Mechanism

A strategy specifies what an agent with a given type will do in every possible

state of the game. Concretely, if the mechanism defines a game in which agents must

choose an action in various contexts, then a strategy is a function from the context

and type to an action chosen by the agent. We say that agent i adopts strategy

si(θi) ∈ Σi if this choice is deterministic, or mixed strategy σi(θi) if the choice is

randomized (i.e. σi is a probability distribution over elements of Σi). In this chapter

we restrict ourselves to deterministic strategies for expository purposes; the results

can in general be extended to mixed strategy settings.

Every participant in the mechanism has his own type. The goal in mechanism

design is to achieve some particular outcome for every possible joint type profile.

Formally, we say the goal is to achieve a particular social choice function:

Definition 2.1: A Social Choice Function f : Θ1 × . . .× ΘN → O specifies an

outcome f(θ) ∈ O given agent types θ, where θ = (θ1, . . . θN ).
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The mechanism design problem is to design a game where the outcome will be

f(θ) when the agents have types θ despite agents having private information and

being self interested. Formally we have:

Definition 2.2: A mechanism m = (Σ, g) defines the strategies available to the

players Σ = (Σ1, . . .ΣN) and an outcome rule g : Σ1 × . . .× ΣN → O, which

chooses the outcome g(s(θ)) that occurs when the participants execute the strat-

egy profile s = (s1, . . . sN).

Informally, this means that the mechanism specifies the rules that constrain what

actions and thus what strategies are available, and then determines what outcome

occurs when agents behave as they will. The question is, though, how will the agents

actually behave so we can know if our desired outcome f(θ) will actually occur? For

this we turn to game theory.

2.2 Solution Concepts

Mechanism design is situated within the larger framework of game theory [Fuden-

berg and Tirole, 1991; Nash, 1950], within which, solution concepts constitute some

of the fundamental machinery. Game Theory offers several different flavors of these

formal models of what outcome to expect in games with self-interested players. Here

we present three of the most common. To do this formally, we need a way to express

the value of a particular game structure to a given agent. Specifically, an agent can

be said to have a utility for the game as a whole, which is a function of the joint types
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and strategies of all of the participants: ui(s, θ), where s is the strategy profile of all

of the participants and θ is the type profile of all of the agents.

2.2.1 Dominant Strategy Equilibrium

In a dominant strategy equilibrium, the strategy si that every participant chooses

has the following property:

ui(〈si; s-i〉 , θ) ≥ ui(〈s
′
i; s-i〉 , θ) ∀ s

′
i 6= si, ∀ s-i ∈ Σ-i, ∀ θ (2.2)

where s-i denotes the strategies of all the participants but i, and the semicolon syntax

denotes vector composition. Informally, this says that an agent of type θi has a

dominant strategy si if the agent prefers si to all other strategies regardless of what

strategies the other participants choose.

Dominant strategy equilibria are extremely desirable in mechanism design because

agents can determine their desired strategy without an assumption of rationality on

the part of other players, or in fact without any information about what they will

do. However, despite being attractive for these reasons, it is not attainable in many

important settings.

2.2.2 Bayes-Nash Equilibrium

With dominant strategy equilibrium often unavailable, the concept of a Bayes-

Nash equilibrium (BNE) is very useful. A strategy profile s is in BNE if for every

agent we have:

E
θ-i

[ui(〈si(θi); s-i(θ-i)〉 , θ)] ≥ E
θ-i

[ui(〈s
′
i(θi); s-i(θ-i)〉 , θ)] ∀ s

′
i 6= si, ∀ θi (2.3)
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where the expectation over types is based on a common joint prior on the distribution

of agent types. Informally in a BNE, every agent chooses a strategy si that maxi-

mizes his expected utility according to the joint prior when all of the other agents

are simultaneously maximizing their own strategies with respect to the joint prior.

Note that since the agent is forming a best-response to the distribution over other

agent strategies, he may not actually be best-responding to any individual profile of

strategies.

This solution concept is more easily attained than dominant strategy equilibrium.

However, it still suffers from multiple equilibria, the assumption of the common prior,

and from participants having to assume that other players are responding rationally

with respect to it. This last assumption is perhaps the most severe: participants can

be irrational for a variety of reasons not the least of which is simply making mistakes.

2.3 Implementation

Recall that the goal ofmechanism design is to construct a mechanism that achieves

a particular social choice function f , i.e. causes a particular outcome for each possible

profile of agent types.

With definitions of both mechanisms (games with a particular structure), and sev-

eral solution-concepts (ways to characterize the kinds of strategies rational expected-

utility-maximizing agents would adopt within a given game) we are now in a position

to formalize what it means to achieve a particular mechanism design goal:

Definition 2.3: Mechanism m = (Σ, g) implements social choice function f if
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f(θ) = g(s∗(θ)) ∀ θ ∈ Θ, where s∗ is the equilibrium solution to m.

Informally, a mechanism implements a given social choice function if the outcome

stipulated by the social choice function occurs within the mechanism when the par-

ticipants are playing in an equilibrium of the mechanism. Any of the two equilibrium

concepts can be chosen for the purposes of the definition; e.g. we might say “mecha-

nism m implements social choice function f in Bayes-Nash equilibrium”.

2.4 Incentive Compatibility

Next we consider the conditions under which a mechanism provides incentives to

participants to interact in a truthful manner. For this, we first need a few definitions:

A direct revelation mechanism asks each agent to make a claim about his preferences

explicitly. Formally:

Definition 2.4: A direct revelation mechanism restricts the space of strategies for

each agent Σi to be exactly the space of possible agent types Θi. Accordingly, it

has an outcome rule g : Θ → O which chooses an outcome o from reports θ̂.

Note that in a quasi-linear environment, g will be composed of a choice rule k

and a payment rule p.

In the equilibrium strategy profile of an incentive-compatible direct revelation mecha-

nism, all agents report their true types to the mechanism without deviation. Formally,

Definition 2.5: An incentive-compatible direct revelation mechanism is one in
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which the equilibrium strategy is s∗i = I, i.e. the identity function.

Incentive compatibility is always defined with respect to a particular solution

concept. For dominant strategy equilibrium we have:

Definition 2.6: A direct revelation mechanism is Dominant Strategy Incentive-

Compatible, also called Strategyproof, if revealing the truth is the dominant

strategy equilibrium.

For a mechanism involving agents with quasi-linear preferences, strategyproofness im-

plies that it is a dominant strategy for agents to report their true valuation:

vi(g(vi, v−i))− pi(vi, v−i) ≥ vi(g(v̂i, v−i))− pi(v̂i, v−i) ∀ vi, ∀ v̂i, ∀ v−i (2.4)

Participants in strategyproof mechanisms needn’t reason about the types or strategies

of other agents at all. If they know the mechanism is strategyproof, they immediately

know that simply stating their value is the optimal behavior, and can spend all of

their time worrying about determining their own value, instead of speculating about

the behavior of their competitors.

For a Bayes-Nash equilibrium solution concept we have:

Definition 2.7: A direct revelation mechanism is Bayes-Nash Incentive Com-

patible if all agents choosing to reveal the truth is a Bayes-Nash equilibrium.

This is not as powerful a mechanism property, due to the weaker solution concept,

but it is easier to achieve.
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2.4.1 The Revelation Principle

One of the key results in mechanism design is the Revelation Principle, which

states:

Theorem 2.1: [Gibbard, 1973; Green and Laffont, 1977; Myerson, 1979; 1981] Sup-

pose there exists a mechanism m that implements the social choice function f

in dominant strategies. Then there is also a direct strategyproof mechanism m′

which also implements f .

There is also a Bayes-Nash solution concept version of the revelation principle:

Theorem 2.2: Suppose there exists a mechanismm that implements the social choice

function f in a Bayes-Nash equilibrium. Then there is a direct Bayes-Nash

incentive-compatible mechanism m′ which also implements f , if the joint dis-

tribution of the agent types is common knowledge to the center as well as to

the agents.

The intuition here is that given the true type of an agent, we can simulate the strategy

that a given agent would optimally take when playing in mechanism m. We can thus

create a new mechanism m′ that asks each agent for his truthful report, and then m′

runs this simulation of the optimal agent strategies against the original mechanism m

and implements the resulting outcome. Given the optimality of the simulator and the

choice of outcome rule, it will be in the participants’ best interest to report truthfully

to m′. We leave the formal proof to the above sources.
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The revelation principle implies that if a mechanism is implementable in a non-

direct revelation incentive-compatible mechanism, then it is also implementable in a

direct mechanism as well. However, the direct version produced by the above con-

struction may be computationally intractable. Thus, indirect mechanisms remain

highly relevant in practice [Conitzer and Sandholm, 2004a; Othman and Sandholm,

2009]. The contrapositive of the revelation principle is extremely useful: If a social

choice function is not implementable in a direct revelation incentive-compatible mech-

anism, then it isn’t implementable in a non-direct revelation incentive-compatible

mechanism either. This enables the construction of powerful impossibility results,

such the one we consider in section 2.8.

2.5 Design Properties

2.5.1 Efficient Choice Functions

We highlight one of the most important choice functions for quasi-linear pref-

erences: Welfare Maximization. Choice function k(θ) maximizes welfare (or is

efficient) when:

N∑

i=1

vi(k(θ), θi) ≥
N∑

i=1

vi(k
′(θ), θi) ∀ k

′ : Θ− > K, ∀ θ (2.5)

Such a choice maximizes the total value over all agents. Note that κ will be coupled

with a particular payment rule p to form a social choice function f(θ) ≡ (κ(θ), p(θ)).

When κ is welfare maximizing, then we say that f is welfare maximizing as well.
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2.5.2 Mechanism Properties

Given a mechanism operating under a particular solution concept, we can examine

whether the mechanism exhibits any of several desirable properties:

Efficiency A mechanism is efficient if the implemented social choice function is

welfare maximizing.

Budget Balance A mechanism is ex ante budget balanced if the net transfers in

equilibrium are zero in expectation over the joint distribution of agent types. A

mechanism is ex post budget balanced if the net transfers in equilibrium are zero

for all type profiles. These conditions can be relaxed to weak budget balance

by instead stipulating that net transfers must be non-negative, or formally:
∑

i pi(θ) ≥ 0

Individual Rationality A mechanism is individually rational when agents would

voluntarily choose to participate in the mechanism. Suppose agents can attain

a utility ũi outside of the mechanism. A mechanism implementing social choice

function f has ex ante individual rationality if agents choose to participate

before they know their own type, i.e.:

E
θ

[ui(f(θ), θi)] ≥ E
θi
ũi(θi) (2.6)

A mechanism has ex interim individual rationality if agents choose to participate

after they know their own type θi, i.e.:

E
θ-i

[ui(f(θ), θi)] ≥ ũi(θi) (2.7)

This is the most commonly used version. Lastly, a mechanism has ex post

individual rationality if agents would choose to participate for all agent types

θ:

ui(f(θ), θi) ≥ ũi(θi) ∀ θ (2.8)
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2.6 Groves Mechanisms

The Groves family of mechanisms is central to much of the recent work in the

field of mechanism design. These are efficient and strategyproof direct-revelation

mechanisms for agents with quasi-linear preferences described in a series of papers by

Vickrey [1961], Clarke [1971] and Groves [1973].

Definition 2.8: In a Groves mechanism, agents are assumed to have quasilinear

utility functions ui(κ, pi, θi) = vi(κ, θi) − pi, where κ ∈ K is the choice imple-

mented by the mechanism, and pi is the payment charged to agent i. Given

reports θ̂, a Groves outcome function is comprised of a specific choice rule

κ(θ̂) : Θ → K and a specific payment rule pi(θ̂) : Θ → R. The stipulated

choice rule maximizes the total reported value:

κ(θ̂) = argmax
κ∈K

N∑

i

vi(κ, θ̂i) (2.9)

The payment rule charges a quantity independent of the agent’s report, hi(θ̂-i),

less the total value of the economy without the agent present:

pi(θ̂) = hi(θ̂-i)−
N∑

j=1,j 6=N

vj(κ(θ̂), θ̂j) (2.10)

where hi : Θ-i → R is an arbitrary transfer function whose choice determines

which member of the Groves family we are implementing.

The hi function enables the designer to specify a tradeoff between budget balance

and individual rationality, as there are strong impossibility results stipulating that

we can’t have both along with efficiency, as we will see in Section 2.8. This said, in
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special cases, such as combinatorial auctions, there are Groves mechanisms that are

both individually rational and weak budget balanced.

Groves mechanisms are particularly important because of the following result due

to Green and Laffont and strengthened to a broader class of valuation functions by

Holmström [1979]:

Theorem 2.3: [Green and Laffont, 1977; Holmström, 1979] When agents’ possible

value functions are smoothly path connected and contain the zero function,

then the Groves mechanisms are the only direct revelation mechanisms that

are efficient, strategyproof and where there are no payments by losing bidders.

Moreover the unique Groves mechanism achieving this property is known as

the Clarke Mechanism (described below in Section 2.6.1).

We state this without proof; see Ausubel and Milgrom [2006] for a succint treatment.

The result requires the technical condition that value functions be drawn from a

set of smoothly path connected functions. A set of functions will have this property if

connecting any two of its elements there is a smoothly-parameterized family functions

that are themselves set members. More formally, between any two elements v(·; 0)

and v(·; 1), there exists a path {v(·; t)|t ∈ [0, 1]} such that v is differentiable in its

second argument and
∫ 1

0
supx |∂v/∂t v(x, t)|dt <∞. Williams [1999] has extended this

result to Bayes-Nash implementation. When coupled with the revelation principle,

this means that any incentive-compatible and efficient mechanism for smoothly path

connected valuations and quasi-linear preferences will implement a Groves outcome.
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2.6.1 The Clarke Mechanism

The most important of the Groves mechanisms is known as the Pivotal or Clarke

mechanism [Clarke, 1971]:

Definition 2.9: A Clarke mechanism is a Groves mechanism that uses the fol-

lowing transfer function:

hi(θ̂-i) =

N∑

j=1,j 6=N

vj(κ-i(θ̂-i), θ̂j) (2.11)

where

κ-i(θ̂-i) = argmax
κ∈K

N∑

j=1,j 6=N

vk(k, θ̂j) (2.12)

is the optimal choice for all the agents except agent i.

Informally, the transfer function is the value to all of the agents other than i of the

best outcome of the economy without i. This is independent of i’s report, and thus

meets the conditions for transfer functions in Groves mechanisms.

The Clarke mechanism is attractive, because it achieves both ex post Individual

Rationality and weak budget balance in often-applicable settings (i.e. it just skirts

the impossibility results we will see in Section 2.8.), which we can characterize using

the following definitions:

Definition 2.10: A choice set is monotonic if it weakly increases with additional

agents.

This condition ensures that the addition of another agent won’t prevent a ‘good’
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solution already available to the other agents from occurring. We also need:

Definition 2.11: Agent value has non-negative valuation if vi(κ-i, θi) ≥ 0

∀ θ-i, ∀ i.

This condition requries that any choice that doesn’t involve a given agent, will be at

least neutral to that agent. With these definitions, the following theorem holds:

Theorem 2.4: The Clarke mechanism is ex post individually rational, efficient and

strategyproof for domains with quasi-linear preferences that have non-negative

valuations and where choice sets are monotonic.

We state this without proof; see Parkes [2001] for a concise treatment. Importantly,

an exchange with private values will meet these conditions, and thus be subject to

the above theorem. If we add another condition:

Definition 2.12: A setting has no positive effect when adding an agent i to the

optimal outcome is at best neutral to the value of the outcome available to the

other agents.

then we obtain the following theorem:

Theorem 2.5: The Clarke mechanism has weak budget balance for domains with

quasi-linear preferences that have non-negative valuations and no positive ef-

fect, and where choice sets are monotonic.
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Again we state the theorem without proof; see Parkes [2001] for a treatment. For

our purposes, this theorem is important because it applies to auction settings where

all bidders have free disposal1, making Clarke mechanisms very attractive in these

settings, at least on paper. We will discuss some of their drawbacks in Section 2.9.1.

2.7 Combinatorial Markets

Throughout most of this thesis, we are concerned with either combinatorial auc-

tions or combinatorial exchange settings; we describe both here.

2.7.1 Combinatorial Auctions

Combinatorial Auctions (CAs) have received a lot of attention in the recent elec-

tronic markets literature, as they apply to many important real-world problems, sev-

eral of which we discussed in Chapter 1. A combinatorial auction facilitates the sale

of sets of items to buyers, each of whom expresses value over bundles of items. The

manner in which agents communicate with the system is expressive enough to enable

the specification of complements and substitutes across items. Typically a concise

language is used to enable agents to bid on multiple bundles without requiring ex-

ponential communication costs. Note, though, that even with a concise language the

bidders’ problem of providing values for all the bundles of interest may still be com-

putationally difficult without both carefully designed mechanisms and agents. Rather

than describe combinatorial auctions formally, we will instead cover their generaliza-

1Free disposal means that agents have weakly increasing value in the number of items they receive.
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tion:

2.7.2 Combinatorial Exchanges

A Combinatorial Exchange (CE) is a two-sided generalization of a combinatorial

auction. It is a mechanism that facilitates trade among multiple buyers and sellers,

each of whom expresses value over bundles of items, and each of whom is able to

express both complements and substitutes on the items within bundles. Formally we

have:

A CE is a market with multiple units of distinct, indivisible items, G = {1, . . . , k},

and multiple agents N = {1, . . . , n}, each of whom may be interested in both buying

and selling items. Each bidder has a (possibly empty) initial endowment of goods

and a valuation for different trades.

Let x0 = (x01, . . . , x
0
n) denote the initial endowment of goods, with x0i = (x0i1, . . . ,

x0im) and x
0
ij ∈ Z+ indicate the number of units of good type j ∈ G initially held by

bidder i ∈ N . The initial allocation x0i may be private to agent i. We assume that

bidders are truthful in revealing this information, which we motivate by stipulating

that participants cannot sell items that they do not actually own (or will pay a

suitably high penalty if they do). A trade λ = (λ1, . . . , λn) denotes the change in

allocation, with λi = (λi1, . . . , λim) and λij ∈ Z denoting the change in the number

of units of item j to bidder i. Let M =
∑

i∈N

∑
j∈G x

0
ij denote the total supply in the

exchange. We write i ∈ λ to denote that bidder i is active in the trade, i.e., buys or

sells at least one item.

Each agent i has a valuation vi(λi) ∈ R on possible trades λi = (λi1, . . . λik),
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where λij ∈ Z specifies the number of units of item j transferred to agent i. This

value can be positive or negative, and represents the change in value between the

final allocation x0i + λi and the initial allocation x0i . Agents are generally assumed to

have quasilinear utility functions, with ui(λi, pi) = vi(λi)−pi given payments p ∈ R
N

made to the mechanism. The individual payments pi can be negative, indicating that

bidder i may receive a payment for the trade. This implies that bidders are modeled

as being risk neutral and assumes that there are no budget constraints. Further,

agents are typically assumed to have free disposal, meaning that vi(λ
′
i) ≥ vi(λi) for

trade λ′i ≥ λi, i.e., for which λ′ij ≥ λij for all j. We also assume the valuation and

initial allocation information is private to each bidder, and we assume that there are

no externalities, so that each bidder’s value depends only on his individual trade.

The agent valuation function is typically expressed in a concise language; however,

for expositional purposes in this chapter we adopt the XOR language [Sandholm,

2002a], so that agents just specify the particular trades in which they are interested

and the valuation on other trades is induced by free disposal.

2.7.3 Winner Determination

An efficient CE will identify the trade that maximizes the total value across all

trades, subject to feasibility constraints (e.g. supply ≥ demand). Because of quasi-

linearity, any Pareto optimal (i.e., efficient) trade will maximize the social welfare,

which is equivalent to the total increase in value to all bidders due to the trade.

Given an instance of the CE problem, defined by tuple (v, x0), i.e., a valuation

profile v = (vi, vN) and an initial allocation x0 = (x01, . . . , x
0
n), the efficient trade λ∗,
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is defined as follows:

Definition 2.13: Given CE instance (v, x0), the efficient trade λ∗ solves the follow-

ing mixed integer program (MIP):

max
(λ1,...,λn)

∑

i

vi(λi) (2.13)

s.t. λij + x0ij ≥ 0, ∀i, ∀j (2.14)

∑

i

λij = 0, ∀j (2.15)

λij ∈ Z

Constraints (2.14) ensure that no bidder sells more items than he has in his initial

allocation. By free disposal, we can impose strict balance on the supply and demand

of goods at the solution in constraints (2.15); i.e., we can allocate unwanted items

to any bidder. We adopt F(x0) to denote the set of feasible trades, given these

constraints and given an initial allocation x0, and Fi(x
0) for the set of feasible trades

to bidder i.

Note that if, as in the above formulation, the valuation function vi explicitly rep-

resents a value for each possible trade to bidder i, the number of such trades scales

as O(sm), where s is the maximal number of units of any item in the market and

there are m different items. Represented in this way, this MIP quickly becomes in-

tractable to write down, let alone solve. In Chapter 5, where we construct a novel

CE mechanism, we will address this problem by constructing a concise winner deter-

mination formulation tied to the TBBL bidding language that we propose using (see

Section 5.2.1).
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While this concise representation allows the specification of large problems, the

winner determination problem still requires solving an NP-hard set packing problem.

We mitigate this by solving the induced MIP with a state-of-the-art solver (ILog

CPLEX 11), which uses an extremely sophisticated branch-and-cut algorithm to solve

remarkably large manifestations of the problem.

2.7.4 The Vickrey-Clarke-Groves (VCG) Mechanism

We now consider applications of the Clarke mechanism described in Section 2.6.1

to combinatorial markets.

A quick aside on naming: When applied to a CA, the Clarke mechanism is referred

to in the literature as the Generalized Vickrey Auction (GVA). One might therefore

assume that an application to a CE would be called a “Generalized Vickrey Ex-

change”, but such terminology is not standard in the literature. Following standard

practice, we therefore refer to a Clarke mechanism applied to the CE setting by the

more general term Vickrey-Clarke-Groves Mechanism (VCG) [e.g. Krishna, 2002].

Given reported valuations v̂ = (v̂i, . . . , v̂N), the VCG mechanism selects the effi-

cient trade λ∗ based on reports, to maximize the total value over all feasible trades,

as described in the previous section. Next, let V ∗(v̂) =
∑

i vi(λ
∗
i ) denote the total

value (or surplus) over all agents in this trade. Given reported valuation functions

v̂ = (v̂1, . . . , v̂N), the mechanism then collects the following payments from each

bidder:

pvcg,i = v̂(λ∗i )− (V ∗(v̂)− V ∗
-i (v̂-i)), (2.16)

where V ∗
-i (v̂-i) is the total reported value of the efficient trade in the economy without
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bidder i and where v-i = (v1, . . . , vi−1, vi+1, . . . , vn). It is helpful to re-factor the

payments as an adjustment pi = v̂i − ∆i for some discount, where ∆i ≥ 0 ensures

individual rationality so that no agent has negative utility from participation. Thus,

in subsequent chapters we refer to ∆vcg,i = V ∗(v̂)− V ∗
-i (v̂-i) as the VCG discount.

The VCG mechanism (in a CE environment) is strategyproof and individually

rational, but runs at a deficit. Specifically, we can have
∑

i pvcg,i < 0, or equivalently

that
∑

i∆vcg,i > V ∗, with more discounts to assign than there is available surplus.

Example 2.1: Consider the following example:

Agent 1 Sell A for −10

Agent 2 Sell B for −5

Agent 3 Swap A for B for +5

Agent 4 Buy A and B for +35

Agent 5 Buy A for +15

The value-maximizing trade is for Agents 1 and 2 sell their items to agent 4, producing

a surplus of 20. The payments in the VCG mechanism are:

Agent 1 Pays −10 − (20− 15) = −15

Agent 2 Pays −5 − (20− 5) = −20

Agent 4 Pays 35− (20− 15) = 30,

The sum of these payments is −5, showing that the mechanism can run at a deficit.
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2.8 Myerson-Satterwaite Impossibility Theorem

The work in Chapters 3 and 4 is strongly motivated by the famous Myserson-

Satterthwaite Impossibility theorem:

Theorem 2.6: [Myerson and Satterthwaite, 1983] It is impossible to achieve alloca-

tive efficiency, ex ante budget balance and interim individual-rationality, in

a Bayes-Nash incentive compatible mechanism, even with quasi-linear utility

functions.

Myerson and Satterthwaite [1983] prove the theorem in a simple setting where a lone

seller is offering a single good to a lone buyer. Neither player knows the other’s valua-

tion, causing uncertainty about the trade occurring. However, the theorem is general

and applies to arbitrarily complex environments that satisfy the stipulated conditions

[Williams, 1999]. From a designer’s standpoint, it is typically not possible to relax

the individual rationality desiderata, as enforcing participation is not possible or de-

sirable. Further, relaxing the desire for budget balance is generally also impossible,

as most mechanism users are unwilling to subsidize their operation.

However, in restricted settings it may be possible to substitute weak budget bal-

ance, where the mechanism can generate a surplus but not a deficit. For example,

often in a one-sided auction the excess surplus can be assigned to the seller. Thus,

for these settings it is posible for the VCG mechanism described in Section 2.7.4 to

escape the jaws of the theorem.

However, in general settings, such as the combinatorial exchange setting we in-
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troduced in Section 2.7.2, using weak budget balance is insufficient to permit efficient

and individually rational mechanism construction, as subsidies become necessary. In

these settings, we argue that it is actually best to depart from the classic VCG ap-

proach and relax the efficiency requirement, not the budget requirement. In this case,

the designer considers mechanisms that are budget balanced, ex post individually ra-

tional, but inefficient. The goal of the social choice function is then to implement

an outcome that is as efficient as possible. A characterization of the solution(s) to

this problem remains an open problem in mechanism design. However, some results

are available for domains with restricted agent preferences; see the work of McAfee

[1992b], Chu and Shen [2008] and Babaioff and Walsh [2005].

The work presented in Chapters 3 and 4 seeks to construct payment rules that

promote truthful reporting, and to choose the maximally truthful rule among several

options, respectively. While truthfulness is a desirable property in its own right,

one way to interpret this work is as a step in the search for highly efficient CE

mechanisms, because the proposed designs implement the welfare-maximizing trade

at reports, and thus will achieve efficiency in the limiting case where agents do in fact

state the truth. Chapter 5 discusses one carefully constructed mechanism designed

within this framework, which we show empirically to be highly efficient, though a

proof of optimal approximate efficiency remains elusive.
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2.9 Resistance to Defection by Coalitions of

Agents

For all of its advantages, there are some substantial problems with the VCG mech-

anism. Oft cited papers by Ausubel and Milgrom [2006] as well as Rothkopf [2007]

provide a discussion of these issues in the general case. Expanding on earlier compu-

tational work [Sandholm, 2000], Conitzer and Sandholm [2006] describe the particular

problems that appear in combinatorial markets. In such settings, the force driving

many of the problems is the potential for VCG to produce exceedingly low revenue to

the seller. Ausubel and Milgrom provide a simple example of a combinatorial auction

of two goods that shows this revenue shortfall:

Example 2.2: Suppose bidder 1 wants both items for $1, and bidders 2 and 3 want

one item each, also for $1. VCG assigns the goods to bidders 2 and 3. But it charges

them both $0! Bidder 2 pays nothing (an analysis of bidder 3 is symmetric) because

bidders 1 and 3 generate a total value of $1 regardless of whether or not bidder 2 is

playing, and VCG charges bidders their marginal impact on the rest of the players.

This lack of revenue causes several problems, including:

• Sellers may simply want more revenue. This may have contributed to Yahoo!’s

and Google’s decision to use the GSP mechanism over Vickrey [Edelman et al.,

2007].

• Agents may find it advantageous to split their identity and bid using shill players

[Yokoo, 2006; Yokoo, Sakurai, and Matsubara, 2004].
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• Revenue is not monotonic as the number of agents increase.

• Agents may defect from the outcome of the auction, as they may be able to

form a coalition of bidders who together with the seller are able to establish an

outcome that is of higher utility to these participants.

2.9.1 Core

To avoid these problems, several authors have argued for using Core payments

instead of VCG payments [Ausubel and Milgrom, 2002; 2006; Day and Cramton,

2008; Day and Milgrom, 2008; Milgrom, 2004; Milgrom and Day, 2008]. To formalize

the concept of the Core [Gillies, 1953] we first need the following definition:

Definition 2.14: The coalition value function of a quasi-linear combinatorial

auction for coalition S ⊂ N is:

w(S) = max
λ∈FS

∑

i∈S

vi(λi) (2.17)

If S contains the seller, and 0 otherwise. Here FS denotes the set of trades

that are feasible to the set S in isolation.

Informally, the coalition value function determines the value that a subset of the

agents can generate on their own. Based on this, we can define:

Definition 2.15: A blocking coalition in a quasi-linear combinatorial auction

setting is a set of players S for whom:

w(s) >
∑

i∈S

vi(λ
∗)− pi (2.18)
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where λ∗ is the trade chosen by the grand coalition, i.e. the full set of players

N .

Informally, a blocking coalition is a group of players who have exactly the condition

in the third list of problems above: by working together they can produce more utility

for themselves outside the auction than within it.

Definition 2.16: Core Outcomes, are then those which are feasible and which are

not blocked by any coalition:

Core(N,w) =

{
〈λ, p〉

∣∣∣∣∣w(N) =
∑

i∈N

vi(λi)− pi ∧

w(S) ≤
∑

i∈S

vi(λi)− pi ∀ S ⊂ N

}
(2.19)

Core Payments p are those payments contained in this core set.

The core is known to be non-empty for the combinatorial auction setting described

here. However, the VCG outcomes are generally outside of the core, and thus core

payments are generally not incentive-compatible. This opens the design question of

finding the maximally incentive compatible core payments, a topic we will return to

in Chapter 3. 2

2A technical condition known as buyers are substitutes is necessary and sufficient to have the
VCG outcome in the core.; see the work of Parkes and Ungar [2002] for details.
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2.9.2 Least-Core and Nucleolus

The core is known to be empty for general CEs. Thus if we wish to enforce core-

like constraints, we need a relaxation. A natural relaxation as defined in the work

of Yokoo, Conitzer, Sandholm, Ohta, and Iwasaki [2005] is as follows:

Definition 2.17: [Yokoo et al., 2005] An ǫ-Core Outcome is one which is feasible

and which is not within ǫ of being blocked by any coalition:

ǫ-Core(N,w) =

{
〈λ, p〉

∣∣∣∣∣w(N) =
∑

i∈N

vi(λi)− pi ∧

w(S) ≤
∑

i∈S

vi(λi)− pi + ǫ ∀ S ⊂ N

}
(2.20)

Which enables us to define:

Definition 2.18: [Yokoo et al., 2005] A Least-Core Outcome is an ǫ-Core outcome

where for all ǫ′ < ǫ, we have that the ǫ′-Core set is empty.

This definition is attractive for two reasons. First, because of the relaxation, the

Least-Core is non-empty for all coalitional value functions. Secondly, it is relatively

easy to specify through linear programming techniques, as one need only minimize

the variable representing ǫ.

However, the set of Least-Core outcomes typically will not be unique, as we place

no binding restriction on the coalitional value function of those coalitions whose re-

laxation constant need not be as large as ǫ. To obtain a unique outcome, we can

instead determine the minimal relaxation possible for every coalition in turn, lexico-
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graphically from highest to lowest. This is called the Nucleolus outcome [Schmeidler,

1969], and is guaranteed to both exist and be unique. For a formal description, see

the work of Maschler, Peleg, and Shapley [1979].

2.10 Prices

For the pricing algorithm defined in Section 5.3.4, we will also need properties of

prices in quasi-linear environments. In this thesis, we mostly talk about the payments

that agents make for some outcome choice (i.e. a monetary transfer portion of the

mechanism outcome rule). But we can also speak about prices on outcomes in general,

whether or not agents will actually pay these amounts. And mechanisms can quote

prices that are quite distinct from the payments that are ultimately made (e.g. in a

standard English auction the announced prices are less than the ultimate payments in

all rounds save the very last). A price is always a single value representing a potential

monitary transfer. In a combinatorial market setting, we also refer to a price function

p(λi) : Λi → R, which maps from a trade (e.g. to agent i) to the price for that trade.

2.10.1 Types of Prices

The prices we encounter in everyday use are anonymous linear, in that they are

additive in each additional unit. Formally we have:

Definition 2.19: A vector of Anonymous Linear Prices φ for a vector of items

being traded λi, result in a payment of p(λi) = φ · λi. Note that to make clear

which price vector we are using to define this pricing function, we often write
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this as pφ(·).

Prices can also be agent-specific, giving us:

Definition 2.20: A matrix of Non-Anonymous Linear Prices φij for a vector

of items being traded λi result in a payment of pi(λi) = φi · λi.

Prices can also be non-linear, in that they can be super- or sub-additive in the items

in a bundle. Formally:

Definition 2.21: Anonymous Non-Linear Prices p : Λi → R are bundle spe-

cific prices, that assign a payment to each possible bundle of items that could

be traded λi ∈ Λi.

And these prices can be made non-anonymous as well:

Definition 2.22: Non-Anonymous Non-Linear Prices pi : Λi → R ∀ i ∈ N

are bundle specific prices, that assign a payment to each possible bundle of

items that could be traded λi ∈ Λi separately for each agent.

2.10.2 General Competitive Equilibrium Prices

Competitive equilibrium prices with respect to a given outcome are those at which

each agent weakly prefers his portion of the outcome to all others at the given prices,

and the outcome is feasible (e.g. in the sense that supply matches demand) [Mishra
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and Parkes, 2007]. For quasi-linear bidders, we have:

Definition 2.23: A (potentially non-anonymous non-linear) price function pi(·)

specifies competitive equilibrium (EQ) prices if

vi(κ
∗)− pi(κ

∗) = max
κ∈K

vi(κ)− pi(κ) (2.21)

holds for all agents i where κ∗ is the outcome being implemented.

With this definition of competitive equilibrium prices we have the following useful

theorem, which we will need in Chapter 5.

Theorem 2.7: [Bikhchandani and Ostroy, 2002] Any trade λ supported by competi-

tive equilibrium prices p(·) is an efficient trade.

2.10.3 Linear EQ Prices in a Combinatorial Exchange

Setting

We can specialize the above definition of competitive equilibrium prices to an

exchange setting. See the work of Wurman and Wellman [1999] for a description

of how to define non-linear non-anonymous EQ prices in a combinatorial market

environment. Here we define anonymous linear EQ prices for a CE setting, as we will

need them in Chapter 5.

Linear prices, φ, define a price φj on each good so that the price to bidder i on a

trade λ is defined as pφ(λi) =
∑

j λijφj = λi · φ.

Definition 2.24: Linear prices φ are competitive equilibrium (EQ) prices for CE
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problem (v, x0) if there is some feasible trade λ ∈ F(x0) such that:

vi(λi)− pφ(λi) ≥ vi(λ
′
i)− pφ(λ′i), ∀λ′i ∈ Fi(x

0), (2.22)

for every bidder i. We say that such a trade, λ, is supported by prices φ.

2.10.4 Approximate Linear EQ Prices

In practice, exact linear EQ prices are unlikely to exist in a CE environment.

Instead, it is useful to define the concept of approximate linear EQ prices and of an

approximately efficient trade:

Definition 2.25: Linear prices φ are δ-approximate competitive equilibrium (EQ)

prices for CE problem (v, x0) and δ ∈ R≥0, if there is some feasible trade

λ ∈ F(x0) such that:

vi(λi)− pφ(λi) + δ ≥ vi(λ
′
i)− pφ(λ′i), ∀λ′i ∈ Fi(x

0), (2.23)

for every bidder i.

At δ-approximate EQ prices, there is some trade for which every bidder i is within

δ ≥ 0 of maximizing his utility. Furthermore, we say that trade λ is z-approximate if

the total value of the trade is within z of the total value of the efficient trade.

Theorem 2.8: Any trade λ supported by δ-approximate EQ prices φ is a 2min(M, n
2
)

δ-approximate efficient trade. Here M is the total supply of goods and n is the

number of agents participating, as described in Section 2.7.2.



Chapter 2: Background Material 47

Proof. Fix instance (v, x0) and consider (λ, φ). For any trade λ′ 6= λ we have

∑

i∈λ∪λ′

[vi(λi)− pφ(λi) + δ] ≥
∑

i∈λ∪λ′

[vi(λ
′
i)− pφ(λ′i)], (2.24)

by δ-EQ prices and because values and prices are zero for bidders that do not par-

ticipate in a trade. We have
∑

i∈λ∪λ′ pφ(λi) =
∑

i∈λ∪λ′ pφ(λ′i) = 0 (since
∑

i p
φλ′′i =

∑
i λ

′′
i · φ =

∑
i

∑
j λ

′′
ijφj =

∑
j φj

∑
i λ

′′
ij = 0, with

∑
i λ

′′
ij = 0 for all j, for all

λ′′i ∈ F(x0)). Then,
∑

i vi(λi) +
∑

i∈λ∪λ′ δi ≥
∑

i vi(λ
′
i). Fix λ′ := λ∗, for efficient

trade λ∗. Then,
∑

i vi(λi) + ∆ ≥
∑

i vi(λ
∗
i ), where

∆ =
∑

i∈λ∪λ′

δi ≤ min(2A#(x0), n)δ ≤ min(2min(M,n), n)δ = 2min(M,
n

2
)δ (2.25)

Here A#(x0) is the maximal number of bidders that can trade in a feasible trade

given x0. The second inequality follows because no more bidders can trade than

there are sufficiently many number of goods to trade or bidders in the market, and

thus A#(x0) ≤ min(M,n).

2.11 Summary

In this chapter we have introduced several key formalisms and results from both

Game Theory and Mechanism Design. We defined the mathematical construct of a

mechanism and discussed the design thereof. We covered the solution concepts un-

der which such designs are evaluated, and the game theoretic equilibria that underpin

them. We discussed various properties that we might like both our social choice func-

tions and our mechanisms to embody, including efficiency, individual rationality and

budget balance. We described the Myerson-Satterwaite impossibility theorem, and
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its implication that we can’t generally achieve these three properties simultaneously.

We formally defined the combinatorial market settings that will be investigated in

subsequent chapters, and related these to the impossibility result. We described the

famous VCG mechanism, and several of its advantages (strategyproofness), as well as

several of its drawbacks (often outside the core). We defined core outcomes, and why

they are desirable, as well as their approximations. And finally, we discussed compet-

itive equilibrium prices, and proved a theorem about linear approximations thereof.

With this background in hand, we can now turn to an examination of incentives in

combinatorial markets.



Truth is truth
To the end of reckoning.

– William Shakespeare

Measure for Measure, Act V, Scene 1

3
Automated Payment Design

The concept of strategyproofness was introduced formally in Section 2.4. Informally,

a mechanism is strategyproof if it is a dominant strategy equilibrium for every agent

to report its private information (or type) truthfully. Strategyproofness simplifies

participation and removes the need for counter-speculation about the behavior of

other agents. But strategyproofness can be unachievable together with other desir-

able properties [Myerson and Satterthwaite, 1983]; such properties include budget-

balance [Parkes et al., 2001a], coalitional stability or revenue properties [Ausubel

and Milgrom, 2006], simple rules [Lahaie et al., 2006], and computational tractabil-

ity [Nisan and Ronen, 2000; Sandholm, 2002b]. It is thus often necessary to adopt

approximately strategyproof mechanisms.

49



Chapter 3: Automated Payment Design 50

3.1 Motivation

In this chapter we examine the problem of designing mechanisms that are as close

to strategyproof as possible in over-constrained settings. Here, as elsewhere in this

thesis, we restrict ourselves to direct mechanisms that solicit bids from participants

and then choose an outcome according to these reports. Payments are then charged

to the participants according to a specific payment rule. With this restriction in

mechanism structure, the problem under consideration in this chapter reduces to

finding the payment rule that provides incentives to the agents that is as close to

strategyproof as possible.

The first task in this process is to provide a formal statement about what we

mean by “approximately strategyproof”. After these definitions, we will turn to a

theoretical model for the optimal mechanisms according to these definitions. Next we

will discuss how to approximate this ideal rule using Linear Programming techniques,

and the challenges therein. Finally several examples of this method will be described.

The theory offered in this chapter is applicable to most combinatorial mechanisms

though for both expository and computational reasons, the examples will be limited

to combinatorial auctions.

3.2 Preliminaries

We will reserve a full discussion of related work until Section 4.9, and instead offer

here a description of key previous contributions needed for the content that follows.

In this chapter we will be concerned with formulating a mechanism design as a form
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of constrained optimization. We therefore highlight two important bodies of previous

work in this area.

3.2.1 Minimizing the Per Instance Distance to VCG in

Settings without Full Strategyproofness

In work published in 2001, Parkes, Kalagnanam, and Eso [2001a; 2001b] pro-

posed to choose rules by finding payments that are as close to the VCG payments

described in Section 2.7.4 as possible within a given market instance. This goal is one

possible definition of minimizing ex post regret, in that it targets an agent’s utility

loss relative to what he could have achieved under a strategyproof mechanism (i.e.

VCG). They describe the rules in the context of a budget balanced combinatorial

exchange, where VCG payments are unavailable because they run at a deficit. And

consequently, when budget balance is enforced, agent regret may be quite large. The

approach can be adapted for other over-constrained design settings, such as combi-

natorial auctions with core constraints (where VCG is typically out of the core, and

thus unavailable) [Milgrom and Day, 2008]. Specifically, they propose the following

program for specifying the discounts used to define the payments:

argmin
∆

L(∆,∆vick) Min Distance (3.1)

s.t.
∑

i∈I

∆i ≤ V ∗ Budget Balance (3.2)

∆i ≤ ∆vick,i, ∀ i ∈ I Within Vickrey (3.3)

∆i ≥ 0, ∀ i ∈ I Individual Rationality (3.4)
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where ∆ is the discount vector defining the rule, I is the set of agents trading, and

V ∗ is the total surplus available.

The program defines a different payment rule for each possible distance function

L(·, ·). Parkes et. al. discuss rules defined by several different distance functions, as

summarized in the following table:1

Rule Name
Distance
Function

Discount
Definition

Description

Threshold L2, L∞ max(0,∆vick,i-C)
Allocate surplus to minimize the
maximum ∆vcg,i −∆i, subject to
∆i ≤ ∆vcg,i, ∀i ∈ N

Reverse
∏

i
∆vick,i

∆i
min(∆vick,i, C)

Allocate surplus to maximize the
minimum ∆vcg,i −∆i, subject to
∆i ≤ ∆vcg,i, ∀i ∈ N (and
allocating all of the surplus)

Small
∑

i
∆vick,i−∆i

∆vick,i

∆vick,i if
∆vick,i ≤ C

Allocate surplus from smallest
∆vcg,i to largest, never exceeding
∆vcg,i

Large

∑
i ∆vick,i

(∆vick,i-∆i)
∆vick,i if

∆vick,i ≥ C

Allocate surplus from largest
∆vcg,i to smallest, never
exceeding ∆vcg,i

Fractional
∏

i
(∆vick,i)

2

∆i
µ∆vick,i

Allocate surplus in proportion to
VCG discounts

Equal - V ∗

|I|

Split surplus equally among the
trading agents

No Discount - 0
Each agent pays its reported
value

Here the constant C is chosen to ensure that constraints 3.2-3.4 are met. Parkes et al.

identify Threshold as the most desirable of these rules, noting that it minimizes the

1 Equal and No Discount are two additional simple rules used for comparison purposes. Note
that Equal may provide more than the VCG discount to an agent
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ex post maximal incentive to manipulate when other agents play truthfully. In this

work, we use these rules as benchmarks when evaluating novel rules.

We likewise consider the ex post maximal incentive to deviate, but will argue that

other design objectives are more important. In particular, the ex post maximal incen-

tive is both a full information condition because agents have complete knowledge of

their opponents reports and a worst case condition because these reports are taken to

be those that provide the maximal incentive for strategic behavior. In Section 3.3 we

discuss alternative assumptions. Then in Chapter 4 we leverage this broader perspec-

tive to advocate for a metric that captures approximate strategyproofness based on

distributional properties of payments across instances rather than per instance, and

show that this broader approach aids the identification of mechanisms with better

equilibrium behavior.

3.2.2 Automated Mechanism Design

Automated mechanism design (AMD) is a methodology put forward by Conitzer

and Sandholm that formulates a particular class of mechanism design problems as

a type of constrained optimization [2006; 2002; 2003a; 2003b; 2004b; 2007]. Their

construction searches for a complete outcome function (e.g. a trade and payments)

simultaneously. The objective of the optimization is some goal of the designer, e.g.

social welfare; constraints are imposed on the solution, typically full strategyproofness

and individual rationality. The formulation is exponential in the number of agents,

and as such simplifications are needed to use the method even for simple cases. No

concept of approximate strategyproofness is considered; mechanisms are formulated
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to support dominant strategy or Bayes-Nash equilibria and the search is with respect

to some other desirable property, e.g. social welfare or revenue. A more complete

discussion of previous work on AMD is provided in Section 4.9.3.2.

3.3 Defining Approximate Incentive

Compatibility

3.3.1 Bayes-Nash Incentive Compatibility as a Direct Target

Bayes-Nash Equilibrium (BNE) is the best formal model available today for the

behavior of self-interested agents in incomplete games where there is no ex post or

dominant strategy equilibrium available, even though its assumptions of rationality

are strict (e.g. requiring common knowledge of types) and it’s not clear that people

actually play such equilibrium strategies. Not withstanding this concern, BNE pro-

vides as the basis for a well defined concept of what it would mean to be approximately

strategyproof. Specifically, one might want to consider D(v||v̂BN ), or some distance

D between agents’ true values and their reports in the Bayes-Nash equilibrium of the

mechanism. But there are several reasons why this is a bit problematic.

First, as soon as we are talking about an equilibrium condition, we are no longer

concerned with a single instance, and thus the description isn’t complete without

a decision about the distribution of v. Even accounting for this issue, the criterion

doesn’t establish a direct link between the detailed definition of the mechanism and its

strategic properties (without first going through an equilibrium calculation), making

it very difficult to use in driving design. Moreover, because we must calculate the
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equilibrium, the condition is computationally intractable in even marginally complex

settings; we need a method that avoids this computation in order to tackle settings

such as combinatorial exchanges. Finally, even within its scope, this distance may not

be the right target for a design. While a surplus maximizing outcome function in a

strategyproof mechanism will immediately be efficient, the ordering provided by the

distance metric on v̂BN may not be the ordering with respect to underlying allocative

efficiency in equilibrium.

Due to the complexity of calculating BNE, we face a choice. We can stick within

the direct method of an equilibrium analysis and be forced to make simplifying as-

sumptions about the complexity of the mechanism (see Empirical Mechanism Design

[Vorobeychik and Wellman, 2008] as described in Section 4.9). Or we can turn to

an indirect method for defining approximate incentive compatibility where we will

identify quantities that are designed to be predictive of the deviation from truth, de-

fined using assumptions about information and risk that imply distributional notions

that are appropriate to our performance goals. In this chapter, we characterize opti-

mal mechanisms under such an indirect goal. In Chapter 4, we will turn to a more

computationally simple method that doesn’t require complex optimization, forming

a bridge between both approaches in Section 4.7.

Next we will define the specifics of several indirect definitions of approximate in-

centive compatibility that operate by bounding the potential gain from manipulation.
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3.3.2 Bounding the Gain from Manipulation

There are a number of different ways to define the possible gain from manipulation

under a given mechanism. The definitions offered here will be used both in this chapter

and in Chapter 4.

We consider a mechanism mediating among a set of bidders N = 1, ...n each with

a general independent valuation function vi(λi) : Λi → R drawn from a space Vi,

together v. Each of these is defined over some finite and feasible outcome λi ∈ Λi,

where λi is the part of outcome λ that pertains to agent i.2

To simplify the exposition, instead of characterizing vi as a function, we will

instead consider it a vector with one dimension for each outcome in Λi (i.e. vi ∈ V ≡

R
|Λi|. This construction simplifies the analysis as it enables outcome and payment

rules to be defined as vector valued functions instead of functionals, as we will see

below and again in Section 3.4. To be clear, the valuation vector vi ∈ Vi is general,

and defines vi(λi) ∈ R for all trades λi ∈ Λi, and independently of the trades of other

agents.

We denote the function that chooses the outcome, not including the payments, as

λ = W(v), and note that here we do not require this choice to be surplus maximizing

(though this is a likely design decision). We take this function to be both fixed

and given. A payment function p : R
|Λ| → R

n from space P is a vector valued

function from the supplied bids to the payments charged to each agent. We denote

the ith component of this function by pi. Here we are taking advantage of the vector

2The definitions in this section can be generalized to infinite outcome spaces, but we focus on
finite spaces for purposes of exposition.
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representation of the bids to avoid having to describe the payment as a vector-valued

functional. It is the choice of this function that will determine the strategic properties

of the mechanism being examined.

For convenience, let’s define πi to be agent i’s profit under the payment rule p:

πi(v) = vi(W(v))− pi(v) (3.5)

Further, when agent i has true value vi and instead reports v′i, let’s define his profit

under payment rule p as:

πi(vi, v
′
i, v-i) = vi(W(〈v′i; v-i〉))− pi(〈v

′
i; v-i〉) (3.6)

where the semicolon syntax indicates a vector composition in the joint bid space using

the specified bid for agent i.

3.3.2.1 Expected Ex Ante Gain from Manipulation

We can define the ex-ante expected incentive for agent i to misreport, ǫEA,i as:

ǫEA,i = E
vi

[
max
v′i

[
E
v-i

[πi(vi, v
′
i, v-i)]− E

v-i

[πi(v)]

]]
(3.7)

The definition is ex ante in the sense that the agent only has probabilistic information

about the other agents’ reports when choosing his misreport v′i, which is consistent

with agents being poorly informed about other agents’ values in the market being

evaluated. Further it is an expected case, in the sense that an expectation is taken

over agent i’s own type.

This criterion is well-defined with respect to a joint prior that is defined within the

BNE of the mechanism. However, we typically think of the criteria as being evaluated
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at the truthful joint distribution of value. In this case it represents a unilateral

incentive to deviate away from that truth. Where the mechanism is “reasonably”

strategyproof, the two distributions will be similar, and the criterion will measure a

similar value.

Such an expectation could be critiqued in that agents generally know their own

type. However, if we consider the use of the bound by a designer that needs to

minimize the incentives to deviate across a population of potential market instances,

then such an expectation with respect to agent types is well motivated. A designer

willing to tolerate possibly extremely bad worst-case behavior, may well be able to

achieve superior expected case incentive properties by minimizing this quantity. The

better the designer’s prior information on agent value is, the better it will be able to

do in this expected sense.

3.3.2.2 Worst Case Ex Ante Gain from Manipulation

Next we consider the worst case deviation across agent i’s possible values:

ǫWA,i = max
vi

[
max
v′i

[
E
v-i

[πi(vi, v
′
i, v-i)]− E

v-i

[πi(v)]

]]
(3.8)

Note that this is equivalent to equation (3.7) where agent i’s value distribution is

replaced with a Dirac delta function, peaked at the value that creates the largest

incentive to misreport. A designer minimizing this quantity may forego low misreports

in expectation, in order to achieve good incentives in the worst case. Further, in the

special case where the v-i distribution is obtained in equilibrium instead of truth,

then as this bound goes to zero, we will have full Bayes-Nash incentive compatibility.
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3.3.2.3 The Middle Ground: A Quantile

We can create a measure that is a middle ground between equations (3.7) and

(3.8), namely the possible gain at a specific quantile.3 More formally, let

gi(vi) = max
v′i

[
E
v-i

[πi(vi, v
′
i, v-i)]− E

v-i

[πi(v)]

]
(3.9)

be the available gain when the true value for agent i is vi. Further, if fvi is the

probability density function of agent i’s value, then we can do a change of variables

to get a density for the available gain fgi:

fgi(ǫ) =

∣∣∣∣
1

g′i(g
-1(ǫ))

∣∣∣∣ · fvi(g
-1(ǫ)) (3.10)

With the corresponding cumulative distribution function:

Fgi(ǫ) =

∫ ǫ

−∞

fgi(ǫ)dǫ (3.11)

We then consider the value of a particular quantile of this distribution according to

the quantile function:

F -1
gi
(q) = inf {ǫ ∈ R : q ≤ Fgi(ǫ)} (3.12)

where q is a particular quantile, i.e. .5 for the median, or 1 to produce the same result

as in equation (3.8). Generally we will be interested in values such as as q = .75.

Thus, a given payment rule p will induce an implied F -1
gi
(q).

This approach is extremely appealing in that it allows us to focus on the median

case, worst case, or any other quantile in between. Because the median is always

within one standard deviation of the mean, it also provides a reasonable bound on

the expected case as well.

3Such quantiles are called quartiles when discretized into 4 bins, deciles for 10 bins, or percentiles
for 100 bins.
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3.3.2.4 Expected Ex Post Gain from Manipulation

We can also consider the case where agents are fully informed about the values of

other agents, and can thus optimally manipulate them based upon this information.

We might do this both because it is thought to be a better model of the environment,

and for reasons of computational tractability. In this case, equation (3.7) becomes:

ǫEP,i = E
vi

[
E
v-i

[
max
v′i

[πi(vi, v
′
i, v-i)]− πi(v)

]]
(3.13)

This formula reflects the agent’s expected regret across possible joint types: i.e., the

ex post gain he might have realized had he misreported optimally when we take an

average over the possible joint values.

3.3.2.5 Worst Case Ex Post Gain from Manipulation

We can define ex-post maximal incentive for agent i to misreport when taken as a

worst case over the full joint value space:

ǫR,i = max
v-i

max
vi

max
v′i

[πi(vi, v
′
i, v-i)− πi(v)] (3.14)

This is the standard ex post maximal regret that is often considered in the literature,

and will be zero in a dominant strategy equilibrium, should the mechanism admit

one.

The first thing to notice about this condition is that it represents a worst case over

the other agent valuations. This makes sense in settings that admit a full dominant-

strategy incentive-compatible solution that can achieve strategyproofness in even the

very worst case. But its’ not well motivated for settings where we know there will be

instances that permit gains from deviation. In these cases, we may not wish to be
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focusing on this very worst case, especially as agents may not be perfectly informed,

and as doing so may leave much room for improvement in more typical cases.

3.3.2.6 The Middle Ground: A Quantile

As we shall see in Section 4.8, there is strong reason to believe that focusing on

either expected or worst case manipulations may not be ideal, and that a criterion

that seeks a middle ground may yield mechanisms that are both reasonably robust

and nearly optimal in the common case. We can also define a quantile criterion in

a way that is similar to the ex ante case, although it turns out to be a bit more

complicated.

We start by defining a new function that is the equivalent to equation (3.9) as:

gi(v) = max
v′i

[πi(vi, v
′
i, v-i)]− πi(v) (3.15)

This is the available gain to agent i; when the joint value profile is v we need the full

joint profile, as agents have access to it under an ex post information set. However,

requiring gi to be vector-valued makes the following analysis far more difficult:

If fv is the true probability density function of the joint value profile, then we

need to perform a multivariate change of variables over a non-bijective function gi to

get a pdf of the available ex post gain fgi:

fgi(ǫ) =

∫

v∈g-1i (ǫ)

fv(v)√∑
j∈N(

∂gi
∂vj

(v))2
dv (3.16)

This integral calculates the probability mass in the image of a given quantity of gain

ǫ according to the inverse of gi function.
4 The numerator of the large fraction is a

4Equation (3.16) is included for the interested reader, but note that we do not require evaluating
this integral for our use of this criterion in practice.



Chapter 3: Automated Payment Design 62

normalizing constant, to ensure that our derived PDF integrates to 1.

We can now define the corresponding cumulative distribution function:

Fgi(ǫ) =

∫ ǫ

−∞

fgi(ǫ)dǫ (3.17)

We then consider the value of a particular quantile of this distribution according to

the quantile function:

F -1
gi
(q) = inf {ǫ ∈ R : q ≤ Fgi(ǫ)} (3.18)

While the above derivation is not amenable to easy analysis, calculating quantiles

is straightforward empirically. Thus despite this complexity, we find the ex post

quantile critera extremely appealing as it’s both easy to compute and, as we shall

see in Section 3.7.2, the F -1
gi
(q) function can be a very useful way to understand the

incentive effects of a payment rule.

3.4 Adopting These Bounds as Objectives for

Design

Let’s assume that the mechanism designer has a prior joint distribution fv on the

valuations, so expectations over possible bids are well defined. Let’s also assume for

the moment that these critera have merit when used for design. The ideal expected

case ex ante payment function (in the sense of Section 3.3.2.1, and adopted here

as an example) is then the solution to the following stochastic non-linear functional

program (i.e. a program where the optimization finds a function, not a point):
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argmin
p

max
i

E
vi
max
v′i

E
v-i

[πi(vi, v
′
i, v-i)− πi(v)] Min E Gain (3.19)

s.t. pi(v) ≤ vi(W(v)) ∀ i, v IR (3.20)

∑

i

pi(v) ≥ 0 ∀ v Weak BB (3.21)

The objective (3.19) minimizes the maximum expected profit from deviation from vi

to v′i subject to individual rationality (3.20), and weak budget balance (3.21). In this

expression, vi, v
′
i, v-i, v all specify full bids over multiple possible trades, and are value

vectors in a space with a dimension for each trade. This enables us to characterize

the payment as a vector-valued function over these vectors, instead of having to treat

it as a vector-valued functional. Similar programs can be specified for the other

definitions of gain discussed above, and various additional or alternate constraints

might be imposed depending on the mechanism setting (e.g. core constraints, etc.).

One might be tempted to try to solve for the payment function by using the calcu-

lus of variations [Dacorogna, 2008; Jost and Li-Jost, 1998] to minimize the functional

prescribed in the objective (and note that each of the gain criteria described ear-

lier corresponds to one such functional). However, this is analytically intractable for

several reasons. Most importantly, the max that occur outside of the expectations

are not consistent with classical formulations of the calculus of variations. Secondly,

the complicated winner determination process embedded within the functional is not

easily specified analytically. Moreover, even if such an analysis were possible, its

result would be a system of partial differential equations that themselves would be

very difficult to solve. We are thus left to approximate this program via numerical

methods.
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3.5 Instantiating this Agenda to Combinatorial

Auctions and Exchanges

With careful statistical sampling, discretization and formulation, we can create a

good LP approximation to the above intractable functional program. This section

describes one such approach. To this end, we now specialize to a combinatorial market

setting, as described in Section 2.7.2. We denote those trades which are feasible given

the initial endowment x0 as Fx0 ⊆ Z
n×m. Similarly, we use Fx0,i for the subset that

are feasible to agent i. We hereafter omit the implied x0 subscript. The mechanism

will choose the efficient trade λ∗ = W(v,x0) where v = (v1, ...vn) and x0 is the

endowment used to define F , here after omitted.

According to the joint prior on valuations, certain trades in F are more likely to

occur then others. We can calculate the marginal probability of the occurrence of a

given trade λ as:

fλ(λ) =

∫

v

I [W(v)=λ]fv(v)dv (3.22)

Likewise, a similar equation defines the marginal probability of the occurrence of a

given trade to a given agent fλi
(λi).

We then let G ⊆ F be the set of trades most likely to occur according to fλ; the

size of this set we leave as a parameter to our approximation.5 We then augment this

set with the optimal trade at the actual bids: G∗ = G ∪ {λ∗}. Let G∗
i be those trades

in G∗ where agent i trades.

5It is acceptable to let G = ∅, which will significantly simplify what follows, at the expense of
fidelity. Regardless, we expect |G| to be small.
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3.5.1 Discretizing the Bids

Next we need to define discrete versions of the agent’s value function which we

can use to drive our LP formulation. To do this we specify a set of bins that will

be associated with each possible agent trade under consideration, Ξ ⊂ Z+ (e.g.

{1 = Low, 2 = Medium, 3 = High}).6

There are many different ways one might establish the bin boundary locations

for these bins, and we can choose to adopt any such method. Here we describe one

good possible choice, which is also the one used in the experiments presented later

in the chapter: systematic inverse transform sampling [Devroye, 1986; Steinbrecher

and Shaw, 2008]. This will put equal probability mass on each bin for a given agent

trade. More formally, the boundary below (1 indexed) bin ξ for trade λi and agent i

will be given by:7

bi(λi, ξ) = F -1
λi

(
ξ − 1

|Ξ|

)
(3.23)

Where F -1
λi

is the quantile function of the agent specific trade distribution. Similarly,

the boundary above is given by:

bi(λi, ξ) = F -1
λi

(
ξ

|Ξ|

)
(3.24)

If the reported bids are v̂, then we define the reported bins as v̂ ∈ V : v̂ ∈ [b(v̂), b(v̂)].
For these bins we choose the actual values, −b(λi, ξ) = v̂, as a representative point.

Note that this means that a distinct version of the LP needs to be solved for any

given market instance, as we customize the representative points for those bins that

6The size of this set is an approximation parameter.

7For clarity of exposition, we omit the agent subscript to the boundary constants bi, −bi and bi
where it is clear from context
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correspond to the reports. This stands in contrast to AMD which doesn’t customize

its optimization problem to a specific instance. For all the other bins, we also choose

a representative point given by the bin median:8

−bi(λi, ξ) = F -1
λi

(
ξ − 1/2

|Ξ|

)
(3.25)

In the bins containing the reported values, we use these values as the representa-

tive points directly, in order to ensure such points satisfy the Individual Rationality

conditions. However, if the bin size is large, then this dependence on the reported

values may introduces a small additional manipulative opportunity. One way to mit-

igate this potential problem is to slightly relax the IR constraints and use the median

point for all of the bins, including those containing reports. If no IR relaxation is

permissible and large bin sizes are still required, then a compromise can be obtained

by using min(v̂i,−bi(λi, ξ)), which will always satisfy IR, but uses the non-manipulable

median point where possible.

With the bin boundaries defined, we can define the space of discretized bids agent

i can make among the subset of trades that we are considering. In particular, by

assuming a fixed ordering of these trades we can represent a discretized version of bid

vi ∈ V ≡ R
|Fi| as vi ∈ Vi ≡ Ξ|G∗

i |. Note the dimensionality reduction here: we are

collapsing the trades in Fi − G∗
i into an omitted equivalence class. By construction,

we then have:

b(λi, vi[λi]) ≤ vi[λi] ≤ b(λi, vi[λi]) ∀ λi ∈ G∗
i (3.26)

In subsequent sections we drop the bracketed indexes when referencing the bin bound-

aries so that e.g. b(λi, vi[λi]) becomes b(λi, vi).

8Other choices for the representative points are possible.
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It is worth pointing out that this method of reducing the trades under considera-

tion to only those that are most likely to occur is distinct from the methods used in

constrained AMD. Here we gain tractability by limiting the fidelity of the environ-

ment being designed for (by limiting the trades under consideration), and through

discretization of the payment function. Implementations of constrained AMD by

contrast generally gain tractability by limiting the mechanisms being designed to a

particular parametrized subclass known to have desirable properties (e.g. known to

be completely strategyproof), and then attempting to optimize only over this sub-

class [Likhodedov and Sandholm, 2005].

We note that the determination of the G∗ set is a second dependency of the LP

on the current market instance, so we must run the optimization on every instance

not only because the representative points can be instance-specific, but also because

the decision as to which trades are included can be instance-specific as well.

3.5.2 Defining Distributions Over the Bins

Now that we have discretized the value space, we will need to represent our prior

in terms of this discretization. First we specify the probability of a sample bid from

agent i occurring:

fvi(vi) =

∫

v-i

∫

vi∈Ω(vi)

I [Wi(v)⊆G∗

i ]
fv(v)dvidv-i (3.27)

Where Ω(vi) indicates that portion of agent i’s bid space that is covered by vi ac-

cording to equation (3.26).

Next we specify the probability of being in a particular discretization of other
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agents’ bids, given that agent i has made a given discretized bid:

fv-i(v-i|vi) = 1

fvi(vi)

∫

v∈Ω(v) I [Wi(v)⊆G∗

i ]
fv(v)dv (3.28)

where Ω(v) indicates that portion of the joint bid space that is covered by bins

indicated by v.
3.5.2.1 Inverse Transform Sampling as a Copula

In the special case where the bin boundaries have been chosen by the particu-

lar method we proposed in Section 3.5.1, the bins for a given trade will have equal

marginal probability mass by construction. That is, this choice of discretization con-

verts the joint value distribution into a copula [Nelsen, 1999]. Consequently, because

equation 3.27 is the marginal of this copula it will reduce to a uniform distribution

giving us:

fvi(vi) =
1

|Ξ||G
∗

i |
(3.29)

The joint distribution (i.e. the copula itself) is not similarly constrained, and thus

neither is the conditional distribution in equation 3.28.

To build up these probability distributions empirically, as we do for the exper-

iments in sections 3.6 and 3.7, requires care. Typical instance generators, such as

those in CATS [Leyton-Brown, Pearson, and Shoham, 2000], do not make a dis-

tinction between randomly drawing a specification of the environment from which

valuation samples are drawn, and the drawing of the samples themselves. For the

method proposed here,we need the value samples to be drawn from a distribution

with consistent agent identities, endowments, buyer interest in items (or ‘demand-

ments’), and any other data that is specific to the environment, e.g. common values,
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geographic data etc. To overcome this, the generators we use to drive our experi-

ments first draw a random ‘world’ that is held constant. Then an arbitrary number

of valuation instances that are applicable to this world can be drawn, and it is these

that are used to create our empirical distributions.

3.5.3 The Linear Program Formulation

With the definitions in the preceding sections, we are now in a position to construct

an LP approximation to the ideal rule by assuming that only trades in G∗ will occur.

We implement the payment vector
⇀
p v̂ derived from the following program (described

in detail below):

argmin Cγγ + Cδδ + Cββ Core, IC, Balance (3.30)

s.t. δ = max
i∈N

δi Max over agents (3.31)

δi =
∑

vi∈Vi

δi,vifvi(vi) Expected value (3.32)

δi,vi = max
v
′

i∈Vi\vi
δi,vi,v′i Max over i’s report (3.33)

δi,vi,v′i =
∑v-i∈V-ifv-i(v-i|vi) π(vi, v

′
i, v-i)

−π(vi, vi, v-i)  Expected other bids (3.34)

π(vi, x, v-i) → 



−b(λx, vi)− px;v-i,i if λx ⊆ G∗
i

0 otherwise

where λx = W−b(x; v-i) Profit definition (3.35)
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γ +
∑

i∋W−b(v)∧i/∈Cpv,i ≥∑i∈C −b(W−b(vC), vi)
−−b(W−b(v), vi) ∀v,C∈℘(N) Core (3.36)

ζ + β ≥ pv̂,i ≥ ζ − β ∀ i Reported Balance (3.37)

pv,i ≤−b(W−b(v), vi) ∀ v, i Individual Rationality (3.38)

∑

i

pv,i = 0 ∀ v Budget Balance (3.39)

β, δ, γ ∈ R+, δ∗, p∗, ζ ∈ R Variable Domains (3.40)

Cγ ≫ Cδ ≫ Cβ Constants (3.41)

Where W−b(v) is the optimal trade at the representative values −b for the bins in v,
i ∋ W(v) denotes that agent i trades at the efficient solution to bids v, vC is the

value profile with only coalition C present, and ℘() denotes the power set.

We note that the formulation does not require the input values v̂ to be truthful.

However, the input values are used to focus the fidelity of the solution through the

selection of G∗ and through the Balance and Individual Rationality constraints.

3.5.3.1 The Objective

The program tries to achieve three potentially competing goals in equation (3.30).

Firstly, it minimizes a relaxation to the core constraints γ. For environments where

the core constraints can be met exactly, this relaxation can be omitted. For the

others, we target the Least-Core as a simple approximation for the Nucleolus prices

described in Section 2.9.2 [Yokoo et al., 2005]. Secondly, the program minimizes

the discretized incentive to deviate from truthful bidding according to the available

information, δ. Lastly, it minimizes the distance between the charged payments, β,
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as a tie-breaking measure. The condition in equation (3.41) ensures that we pick

payments for proximity to core first, then for their incentive to deviate, and lastly to

break ties. The relative size of Cγ and Cδ could be reversed in environments where

coalitions were known to be unable to form.

3.5.3.2 Incentive Compatibility

First, we minimize the maximal incentive to deviate across the various agents in

equation (3.31). Next we take advantage of our prior on agent i’s value, fvi , to specify

the expected profit from deviation in equation (3.32). In equation (3.33) we consider

the alternative reports that agent i might make, choosing the one that maximizes his

profit from deviation. Then in equation (3.34) we define this profit from deviation,

by taking the average over all the other agents’ bids according to our prior on the

conditional distribution fv-i . In the course of specifying the profitable deviation, we

need to calculate the available profit for a given agent reporting x when his true value

is in vi and everyone else has bid v-i. The formula for this discretized profit is given

in equation (3.35), and takes advantage of the representative points for each bin.

We note that when constructing the LP, certain combinations of counter-factual

representive values will cause a given agent to fail to win his bundle in equation (3.35).

In these cases the corresponding payment is known to be zero ahead of time (via IR),

and can thus be omitted from the formulation. In fact, when the formulation is for

worst-case analysis instead of an expected-case analysis (e.g. equation (3.8) instead of

equation (3.7)), careful examination of the relative sizes of the representative points

can show constraints corresponding to winning counter-factuals in equation (3.35) as
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dominated. This is similar to the omission of dominated values from formulations of

the AMD problem [Conitzer, 2006]. However, because the constraints are all relaxed

in this setting, and because payments can be non-monotonic in value, we obtain less

power by pruning the formulation in this way, as can be obtained in AMD.

3.5.3.3 Core

In settings, such as combinatorial auctions, where we may desire stability against

the threat of sets of agents breaking away from the mechanism, we may consequently

want to enforce core constraints. Equation (3.36) is a γ-relaxed version of such con-

straints, enabling it to find Least-Core prices that approximate nucleolus prices with-

out requiring lexicographic search (see 2.9.2, [Yokoo et al., 2005]). Because the relax-

ation enables us to leave the core itself, we can find payments that are applicable to

combinatorial exchange settings, where the core may be empty. Following the method

proposed by Day and Cramton [2008], we enforce that the payments made by win-

ning agents outside the coalition must be greater than the additional amount that

agents inside the coalition could make by breaking off on their own. This condition

is enforced for all bid profiles being considered, and all agent coalitions.

3.5.3.4 Balance

The objective defined so far is not sufficient to ensure a unique payment vector.

We therefore break ties by choosing prices that are as similar as possible. Specifically,

we minimize the distance between the payments and a centroid point ζ , as specified

in equation (3.37). Notice that this definition only applies to the price vector corre-

sponding to the reported bins v̂, as we only require uniqueness in the vector we are
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actually going to implement.

3.5.3.5 Constraints

We need to ensure that the various prices are Individually Rational. We therefore

include equation (3.38), which ensures that all of the prices specified are weakly less

then the corresponding representative value for the associated bin. Additionally, we

ensure that price vectors associated with each hypothetical report profile are budget

balanced in equation (3.39), and specify the variable domains in equation (3.40).

3.5.4 Alternative Formulations

In addition to the ex ante formulation just given, we can also define the other ob-

jectives described in Section 3.3. For example, equation (3.32) specifies the expected

gain of each agent. If we replace the summation with a maximization, we obtain the

worst case instead.

3.5.4.1 Percentile

We can target a given percentile of the gain distribution instead of the expected

case analysis above. This requires converting our linear program into a mixed integer

program by replacing equation (3.32) with:

δi = Pρ ({〈fvi(vi), δi,vi〉 : vi ∈ Vi}) (3.42)

Where Pρ(·) represents the ρ percentile of the given probability-weighted set of vari-

ables, as defined below.



Chapter 3: Automated Payment Design 74

3.5.4.2 Formulating Percentiles in a MIP

To make this conversion, we need a mixed integer formulation for calculating the ρ-

th percentile (expressed ρ ∈ [0, 1]) of a set of probability-weighted program variables

xk with corresponding probabilities ωk. Specifically, we provide a formulation for

xρ = F -1
Y (ρ), where the random variable Y =

⇀
ω ∗

⇀
x and ∗ is the element-wise product

of two vectors. That is, we calculate the inverse CDF or quantile function of the

distribution of Y .

We introduce |K| binary variables βk, that specify which variables in K are less

then the given percentile. To define these variables we enforce two big-M constraints

per variable in K:

Mkβk + xk ≤Mk + xρ ∀ k ∈ K (3.43)

where Mk = xk −minj∈k xj. And:

Mkβk + xk ≥ xρ ∀ k ∈ K (3.44)

where Mk = maxj∈k xj − xk.

With the βk variables defined, we can ensure that the variable xρ will correspond

to (approximately) the desired percentile, by enforcing:

∑

k∈K

ωkβk ≥ ρ (3.45)

Here we assume the calculated percentile variable xρ will be minimized; if it will

be maximized, then we must reverse the inequality in (3.45). Note that in this

formulation we have not attempted to interpolate between the data points, which

would increase fidelity when |K| is small.
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3.5.4.3 Ex Post

In the formulation given above the determination of the optimal deviation is made

with respect only to expected information about the bids of the other agents. As such

it represents an ex ante optimization as defined in Section 3.3.2.1. If we swap the

chaining in equations (3.33) and (3.34), we will obtain an ex post optimization as in

Section 3.3.2.4.

3.5.5 Extensions

In the above formulation we define joint, albeit bucketed, bid profiles across all

the agents. For large numbers of agents and complex bids, this is very expensive. To

decrease the formulation size we can make a further approximation in the joint bid

space, an extension we leave for future work. Specifically, instead of a full Cartesian

product of individual agent bid profiles, one could reduce the number of trades under

consideration in the set V-i. That is, use a large number of trades only for agent i,

while only a small number of trades (and possibly only the implemented trade) for

all agents other than i.

3.6 Example 1: Two Buyers, One Good

To make the formulation presented in Section 3.5 clear, we illustrate it with a

simple example. Suppose we have a basic auction with a no-reserve seller offering a

single item and two buyers. Further, we take the prior distribution on buyer value for

the item as uniform [0, 1]. Now consider a particular market instance where: agent 1
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Figure 3.2: Agent 2 payments by re-
port and bin

has a true value of 1/3, and agent 2 has a true value of 2/3. In this simple setting the

efficient trade is for agent 2 to win, and VCG would charge a payment from agent 2

equal to the bid of agent 1.

3.6.1 Actual Payments

With this setup, we can consider the profile of payments charged to each agent

as they vary reports. Figures 3.1 and 3.2 show the payments charged to agent 1 and

2 respectively, when the expected case ex ante LP is formulated with 4, 8 and 12

bins. The LP is run ‘on the fly’ for different inputs, each input corresponding to one

point on the ‘reported value’ axis of the graph. The VCG payments are included for

comparison purposes.

With very small numbers of bins there is some fidelity loss, and for some reports

the agents may indeed have an incentive to deviate. However as the number of

bins becomes large enough (i.e. 12), the formulation finds the optimal solution and
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Figure 3.3: L1 distance to VCG payments by number of bins

recreates the VCG payments exactly.

Thus, the example allows for a direct examination of the relationship between the

number of bins and the fidelity of the induced approximation, because it admits a

fully strategyproof mechanism, namely VCG. To illustrate this, we can draw 100 value

profiles from our setup (i.e. 100 buyer pairs, each drawn U [0, 1]). For each of these

instances, we then solve for both the VCG payments and the automated payments

with various numbers of bins. We can then calculate the L1 distance between the

automated and VCG payments. This is plotted in Figure 3.3 as a function of the

number of bins in the approximation.

We can see that the fidelity is improving rapidly, and that ultimately exactly

matching payments are found with only a relatively modest number of bins. In more

complex scenarios the VCG solution is not admissible (because it’s e.g. out of the
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Figure 3.4: Counter-factual payments for agent 1

core, or not budget balanced), so we won’t have a gold standard available for such

direct comparisons, but a modest number of bins is still likely to obtain a result of

reasonable fidelity.

3.6.2 Counter-factual Payments

It is important to realize that the formulation calculates payment vectors not only

at the reported values, but also for many other high-probability bids according to the

prior distribution. In this simple domain, we can show these counter-factual payments

directly. Figures 3.4 and 3.5 show the counter-factual payment calculated for each

agent as a function of the counter-factual joint report of the agents. These are pay-

ments calculated by the LP specifically formulated for the given reports, (1/3, 2/3),

shown by the translucent planes in the figure. The line at the planes’ intersection
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Figure 3.5: Counter-factual payments for agent 2

corresponds to the payment that is actually chosen.

The graph shows the scenario exactly as above, but with 50 bins per agent to

increase the graph resolution. A single payment variable is simultaneously calculated

for each non-zero intersection of the grid shown. It is worth noting that in the dark

triangular area with zero height there are no corresponding payment variables in the

formulation. This is because the agent’s reported values in that range are too small

to win the trade being considered; and as this is known a priori, these payments are

known to be zero without the need to explicitly include variables in the formulation.

In this example, this observation makes the LP formulation about half the size it

might otherwise be – and in general the optimization significantly reduces the size of

the formulation.
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3.6.3 Scalability in Number of Bins

The formulation is exponential in the number of bins, so we expect computational

time to increase accordingly. This is confirmed by the graph in Figure 3.6 which

shows computational time on a dual quad-core 2.83GHz Xeon workstation with 8GB

of memory. The time shown is the time needed to specify the LP to ILOG CPLEX

11.1 via its Java APIs, and then the time needed to solve the LP. While it is a multi-

core machine, CPLEX was not configured to run extra threads, so this represents

serial computational time. Note that the considerable time needed to compute the

probability distribution by sampling to reasonable fidelity is performed in parallel

and is not included in the graph. It is assumed that in any practical use, such a prior

would be available directly from historical data, and so such data would not need to
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be generated on the fly. As is evident from the graph, simply specifying the large

LPs involved represents significant computational burden. If we seek a solution that

is best in either the expected or worst cases, we end up with an LP formulation (as

shown in the graph). If instead we seek the solution at a given percentile we end up

with a MIP. Solving an LP is in theory polynomial in its size, but our size is growing

exponentially in the number of bins, so the solve time grows exponentially in the

number of bins even when we use an LP solution. Thus going to the MIP formulation

is necessary, for the percentile formulation may not represent a huge additional burden

in practice.

3.7 Example 2: Three Buyers, Two Goods

Next we consider the more complex domain examined by Erdil and Klemperer

in their recent economics theory paper [2010]: a combinatorial auction of two goods,

A and B. In addition to the no-reserve seller, we have three buyers; buyer 1 desires

good A, buyer 2 desires good B and buyer 3 desires the bundle AB. Again we assume

agent’s values are drawn from U [0, 1], and that we have access to an accurate prior.

In a given instance, we’ll refer to the buyer’s bid vector as (v1, v2, v3).

3.7.1 Other Rules in this Setting

In order to evaluate our automated design rule in this expanded setting, we bench-

mark it against several other rules from the literature. All of the following rules are

identical when v3 > v1+v2: buyer 3 wins the bundle and pays v1+v2. The interesting

case is when buyers 1 and 2 win:
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3.7.1.1 Reference

Erdil and Klemperer [2010] propose a Reference rule specifically for (and their

analysis is limited to) this two-goods auction setting. They propose choosing a refer-

ence point (r1, r2). Then, in the case where buyers 1 and 2 win, their rule stipulates

that buyer 1 should pay min(v1, r1) and that buyer 2 should pay min(v2, r2). The

exact choice of the reference point is left open, but v3/2 is suggested, and is thus used

here.

3.7.1.2 Euclidean

An alternative is to minimize the Euclidean distance to VCG. In this setting this

reduces to the following rule when buyers 1 and 2 win: define a discount budget as

β = v1 + v2 − v3. Then charge agent 1 v1 − β/2 and agent 2 v2 − β/2. In this

two-goods setting, several rules from the literature collapse to this rule. In particular

the Threshold, Reverse, Fractional, Equal rules proposed Parkes et al. [2001b] and

described in Section 3.2.1 are in this class.

3.7.1.3 Extreme

Section 3.2.1 also described the Small and Large rules defined by Parkes et al.

[2001b]. In this setting and when buyers 1 and 2 win, these rules collapse to the

following:



Chapter 3: Automated Payment Design 83

With probability 1/2: Buyer 1 pays v3 − v2,

Buyer 2 pays v2

And probability 1/2: Buyer 1 pays v1,

Buyer 2 pays v3 − v2

3.7.1.4 Balance

We also consider a rule that attempts to ‘balance’ the payments. That is, it

attempts to equalize the payments (and not the payoffs) while respecting the budget

balance, individual rationality and core constraints. Specifically:

If v1 ≥ v3/2 and v2 ≥ v3/2: Buyers 1 and 2 both pay v3/2

Otherwise: If v1 > v2 : Buyer 1 pays v3 − v2,

Buyer 2 pays v2

Otherwise: Buyer 1 pays v1,

Buyer 2 pays v3 − v1

3.7.2 An Ex Post Analysis

We would now like to compare our Automated rule to these various alternatives

within this small CA domain. Interestingly, we now have a question as to what the

best way of making such a comparison might be. We might choose to calculate the full

BNE under each rule, and make a comparison that way. But this is extremely com-

putationally expensive, especially since the Automated rule must solve an expensive

optimization, unlike more typical closed-form rules. We therefore reserve performing

a full equilibrium analysis until Chapter 4, where we will approximate a BNE in an

even more complex setting (but without rules as complex as Automated).
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So instead, at the risk of a circularity of argument, we might choose to evaluate

the Automated rule according to any of the same criteria defined in Section 3.3 as

our means for making the comparison. There is reason to like the expected-case ex

ante criterion as structurally closest to a full BNE. However, its calculation is also

difficult, as the calculation of optimal best responses under the ex ante information

regimen require solving a very large stochastic optimization problem. We thus choose

the quantile ex post criteria, as it is computationally tractable, and as we shall see,

highly informative of the incentive structure of a mechanism.

This choice will mean that agents have full information when deciding whether and

how to misreport, and in particular they know the other agents’ valuations. As such,

it is a pessimistic analysis in the sense that agents will often have far less information

in practice, and thus they will not be able to manipulate as effectively.

In order to study the distribution of quantiles of the ex post gain experimentally,

we need a way to determine ex post best responses in a given market instance. We

can find this quantity by first replacing the agent’s bid by a single-minded bid for his

winning trade. Then, we search across all possible value reports the agent might make

on this trade, while holding all the other agents constant. In the experiment presented

here, this linear search operation is accomplished with a Brent maximization [2002],

set to find a solution within 5% of optimal.

By sampling 100 market instances we obtain a collection of possible gains from

deviation. One way to evaluate these is to examine the maximum gain over the sample

set (i.e. 100th percentile). Parkes’ et. al. Threshold rule [2001b] (i.e. the Euclidean

rule in this setting) is known to minimize the maximum gain, and thus will have the
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Figure 3.7: Percentile of ex post gain available under each rule

smallest gain at the 100th percentile for any reasonable sample size. While consistent

with the worst case analysis typically considered in prior approximate-strategyproof

analysis, this view does not consider any of the instances other than the very worst

one. Instead, we might consider the mean gain under a given rule, but nuances in

the behavior outside of the worst case are made even more manifest by considering

the quantiles of the gain distribution instead (as suggested in Section 3.3.2.3). The

quantiles of a given distribution are the values of the inverse cumulative distribution

function.

Accordingly, Figure 3.7 shows the percentiles of the unilateral gain distribution

under each of the rules described above as well as the Automated rule evaluated at the

expected case ex ante objective and 10 discrete bins The percentile plot is constructed
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by graphing a Gaussian kernel-smoothed version of the empirical inverse cumulative

distribution function. The kernel smoothing helps to increase the fidelity of the graph

where there are discontinuities in the empirical CDF due to rare events and thus low

data density.

The graph shows the strong performance of the Erdil and Klemperer Reference

rule. This is perhaps unsurprising as it was developed explicitly for its performance

specifically in this domain and with this prior. More interesting, however, is that

nearly identical performance of the Balance and Automated rules despite the approx-

imations in the latter. In this setting, the Extreme rules are clearly doing very poorly

in comparison to the other rules. As expected the Euclidean (or Threshold) rule is

optimal at the worst case (100th percentile), but in this setting, it is inferior every-

where else. Thus, contrary to earlier work, this argues that looking at the worst case

may not be the best criterion for either designing or choosing a rule, a topic we return

to in Chapter 4.

3.7.3 Distance from Reference

While Figure 3.7 shows the the near identical performance of Reference, Balance

and Automated, it does not provide insight as to the similarity of the payments

actually charged. As it turns out these three rules choose nearly identical payments

in this setting, as indicated by the L1 distances from payments charged by each of

the rules to that charged by the reference rule provided in table 3.1.
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Rule L1/|N |

Balance 0.0010

WC Automated Ex Post 0.0042

WC Automated Ex Ante 0.0048

Euclidean 0.1605

Extreme 0.3023

Table 3.1: L1 distance to the reference rule

The table shows the distance for the Automated rule under both an expected ex

ante and expected ex post criterion are very similar. Thus in this setting probabilistic

information about other agents valuations is sufficient to design a highly effective

rule. However, this similarity is unlikely to remain in more complex settings.

3.8 Observations

We have examined ways to formalize what we mean by “approximately strat-

egyproof” in over-constrained mechanism design settings. In particular, we have

identified two orthogonal criteria to consider in such a definition:

• Information available to agents: Agents that are fully informed about the

market in which they are bidding, and in particular about the values of the

other bidders, are in a very strong position when behaving strategically. A

mechanism resilient to these types of agents has ex post approximate incentive

compatibility. By contrast, agents that have only probabilistic information
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about other agents bids are in a weaker position. A mechanism resilient to

these types of agents has ex ante approximate incentive compatibility, which

is characterized by tending to a Bayes-Nash equilibrium, as the approximation

goes to zero and in the special case where the value distributions are drawn

from equilibrium data. Despite additional computational requirements ex ante

quantities are likely to be relevant because agents are often poorly informed.

When using our criteria constructively, as we do in this chapter, there is little

loss in using an ex ante mode if one believes agents to be poorly informed – the

computation is expensive either way. However, if we are using the criteria for

evaluating existing rules, we must calculate best responses. As calculating ex

ante best responses requires stochastic optimization this is far more expensive

than an ex post analysis, and in this case, we therefore argue for using the ex

post criterion together with quantiles.

• Worst/Expected Case: Do we consider the maximum gain from deviation

that is possible across all possible agent values? Or, do we consider the expected

gain from deviation under our prior over agent values? A risk neutral mechanism

designer may choose to sacrifice the worst case in order to have a lower expected

gain. We also propose considering a quantile (e.g. 75th percentile) of gain from

deviation instead. Such a choice balances the desire to have good expected case

behavior, against robustness under the most extreme value profiles. We show

how to formulate such an objective in an Automated rule search.

While all three approaches are valid, we belive the quantile aproach holds

tremendous value. It enables examination of the tradeoff between good be-
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havior in the common case, and robustness to bad instances. Moreover, when

forced to use an ex post critera for computational reasons when performing a

comparison between rules, the additional power of the quantile analysis enables

considerable nuance in understanding the incentive properties of a mechanism

by relaxing away from the absolute worst case that one obtains under a regret

critera in an extremely useful way.

Having defined these objectives, we can formulate the choice of maximally incent-

ive-compatible payment rules as an optimization problem. This optimization problem

is related to the Automated Mechanism Design work of Conitzer and Sandholm (See

Section 4.9.3.2). However, it differs in significant ways. We search for the most strat-

egyproof mechanism subject to design constraints (e.g. Budget Balance, Individual

Rationality, Core, etc.), instead of searching for the design that leads to the highest

social welfare, subject to a strategyproofness constraint. We are thus solving a fun-

damentally different constrained optimization problem. Secondly, we do not optimize

over the outcome trade selection, instead preferring to hold this fixed, e.g. at the

efficient trade for the reported values.

While we have written down a theoretically optimal constrained optimization

problem according to our chosen approximate incentive compatibility criterion, it

was an optimization over a space of functions, and not scalars. There are no known

techniques for analytically solving such complex functional optimization problems.

So instead we proposed to approximate the problem using standard linear or mixed

integer programming. The practical formulation of such approximation programs re-

quires special techniques, including inverse transform sampling for value discretization
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and various approximations notably the careful selection of which trades to consider.

We have shown that these approximations can yield good results – recreating

known optimal rules in the simple domains for which they are tractable. However,

even with the approximations proposed, solving for the approximately optimal rule is

expensive, as we saw in Section 3.6.3. So rather then explicitly solving for the optimal

mechanism, we may instead wish to use closed form rules that are inexpensive to

calculate; but to do so we need a way to compare proposed mechanisms with respect

to their approximate incentive compatibility that is also inexpensive. This will enable

us to consider far more complex domains including full combinatorial exchanges, as

we will see next.



Uniformity in [the] currency, weights, and measures
[of the United States] is an object of great
importance, and will, I am persuaded, be duly
attended to.

– George Washington

First State of the Union Address, 1790

4
Quantifying the Incentive

Properties of Payments

4.1 Motivation

As we have seen in chapter 3, formulating and solving the optimization problem

necessary to find approximately incentive compatible payment rules is computation-

ally expensive because formulations tend to grow exponentially in the number of

agents. So for reasonably sized problems in such settings we will want to use an

easy to calculate closed-form payment rule that is not necessarily strategyproof. Ac-

cordingly, in order to select among several such rules, we seek a method for rule

comparison according to approximate incentive compatibility.

Thus, we introduce as a metric the normalized Kullback-Lieber (KL) Divergence

91
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between the distribution of payoffs in a mechanism and a distribution induced by a

strategyproof “reference” mechanism, where these payoffs (or utilities) are evaluated

given truthful bids (i.e. out of equilibrium), and are restricted to agents affected

by the outcome (either positively or negatively.)1 Consequently, the metric requires

that there exist a strategyproof reference mechanism for some natural relaxation of

the problem. The motivating hypothesis is that the closer a given mechanism is to

the strategyproof reference in distribution, the more strategyproof it will be. We

contrast this approach with earlier work that has focused on per instance measures

of strategyproofness. This approach of evaluating already-defined rules also stands in

contrast to the constructive, and thus expensive, approach we took in chapter 3.

The particular metric that we develop is applicable to general mechanisms which

select outcomes separately from the payments that they charge. This enables us to

hold the outcome rule constant between the reference and the mechanism being eval-

uated, and concentrate solely on the payment rule. Combinatorial Exchanges are a

motivating member of this class, and the one focused on throughout this chapter.2 For

such a setting, the Vickrey-Clarke-Groves (VCG) mechanism is revenue-maximizing

amongst individually rational, strategyproof and efficient mechanisms, as discussed

in Section 2.7.2 [Holmström, 1979]. While it is strategyproof and efficient, it typically

runs at a deficit precluding its direct use – but it is an ideal reference mechanism on

1Throughout this chapter, we for simplicity refer to the KL-divergence as a metric. However, by a
strict mathematical definition this measure of distance between two distribution functions is a quasi-

metric, not a true metric because it is not symmetric. This lack of symmetry has no consequence
for our use.

2While we focus on budget balanced combinatorial exchanges in this chapter, the other settings
discussed in chapter 3 are also applicable to this methodology. These include core-constrained
combinatorial auctions [Ausubel and Milgrom, 2006], and mechanisms constrained by their need for
simplicity, such as sponsored search generalized second price (GSP) auctions [Lahaie et al., 2006].
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which to use our metric.

In this chapter we evaluate the KL-divergence, and a number of other regret-based

metrics, on a family of approximately strategyproof mechanisms that were proposed

in Parkes et al. [2001a] and described in Section 3.2.1. In providing validation re-

sults, we need to adopt an approximate method to compute equilibrium in different

CE mechanisms because there is no computationally tractable method to compute

exact Bayesian-Nash equilibrium in CEs. For this, we compute restricted, partially-

symmetric equilibria.

As we shall see, the KL-divergence metric has a significant and strongly positive

correlation with a parametrization of the amount by which the equilibrium deviates

from truthful reports (in approximate Bayes-Nash equilibrium), and a strongly neg-

ative correlation with the allocative efficiency in equilibrium. The metric identifies

the Small rule from Parkes et al. [2001a] as the best mechanism, and it is indeed this

rule that provides highest efficiency and least bid-shaving in equilibrium. In testing

the power of the metric for mechanism design, we show that it is effective in guiding

a search through a set of mechanisms and identifying a highly efficient mechanism

based only on observed data.

4.1.1 A Heuristic Mechanism Design Paradigm

By way of motivating the need for a metric to quantify approximate strategyproof-

ness, consider the following heuristic approach to mechanism design:3 there is a space

of non-strategyproof mechanisms M, each of which has the same outcome rule and

3 While the form being advanced here is distinct, other approaches to heuristically designing
mechanisms were advocated by Parkes [2009].
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good properties when agents are truthful, and with properties that degrade as agents

becomes less truthful in equilibrium. Given this set of mechanisms, adopt as the goal

that of selecting the mechanism in M that is maximally strategyproof. For exam-

ple, these could be mechanisms in which outcome rule W(v) ∈ argmaxa∈A
∑

i vi(a)

but vary in their payment rules, so that if agents are truthful the mechanism is ef-

ficient; i.e., maximizing the total value through its choice of alternative. In doing

so, we seek a metric on approximate strategyproofness that provides explicit design

guidance because the space of mechanisms may be too large to enumerate, and that

works without requiring the computing of the equilibrium of a candidate mechanism

because this is computationally expensive.

A standard answer would be to select a mechanism that minimizes the worst-

case ex post regret from behaving truthfully, across all agents and across all in-

stances [Schummer, 2001]. The regret of agent i when valuations are v = (v1, . . . , vn)

is regret i(v) = maxv̂i [vi(W(v̂i; v-i)) − pi(v̂i; v-i)] − (vi(W(v)) − pi(v)). Complexity

aside, we can also question whether this is the right answer. Does this lead to a

mechanism in which an agent’s equilibrium bids are closer to truthful, on average,

than in the other mechanisms in M?

In the formalism we introduced in Section 3.3, maximal regret measures the ab-

solute worst case ex post gain. In chapter 3 we showed for simple domains that by

focusing on the worst case behavior we potentially traded away the opportunity for

decreasing the incentive to misreport in the rest of the cases. The logical question to

ask is if this behavior extends to the more complex combinatorial exchange setting

considered here.
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4.2 The Setup

4.2.1 The Design Space

The approximately strategyproof payment rules proposed by Parkes et al. [2001a]

and described in Section 3.2.1 will play the role of the design space M in this chapter

(with one addition, to be described shortly). Each mechanism adopts the same allo-

cation rule as in VCG (and therefore has good properties when agents are truthful)

but defines payments that are exactly balanced. Conceptually, the payment rules all

discount the amount an agent i will pay relative to its reported valuation v̂i(λ
∗) for the

selected trade. In the VCG mechanism, this discount is ∆vcg,i(v̂) = V ∗(v̂)−V ∗(v̂−i),

but in each of these new mechanisms the discounts are constrained so that
∑

i ∆i(v̂) =

V ∗(v̂), providing
∑

i pi(v̂) =
∑

i(v̂i(λ
∗)−∆i(v̂)) = V ∗(v̂)−V ∗(v̂) = 0 and no-deficit,

where V ∗ =
∑

i vi(Wi(v)) is the total surplus generated at the optimal trade. The

deviation from the payments of the VCG mechanism opens up the possibility that an

agent can gain by deviating from its truthful report. Each mechanism in M adopts

a different method to allocate the available surplus to agents. The regret of agent

i is exactly regret i(v̂) = ∆vcg,i − ∆i(v̂), i.e. the amount by which the discount is

less than that in the VCG mechanism. The Threshold rule has been considered of

particular interest because it defines payments that minimize the maximal regret to

agents, given the no-deficit constraint.

In addition to the rules described in Section 3.2.1 we also introduce a new rule:

the “TwoTriangle” rule allocates half of the surplus by Threshold and then overlays

the remainder by Small. This results in a rule that performs nearly as well as Small,
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Figure 4.1: Stylized sketch of the discounts provided by the TwoTriangle rule, as a
function of reported value. Note that this picture treats the total avail-
able surplus as constant, when it in fact will change, as it is dependent
on the report. While this effect can be important in practice, the sketch
gives a good intuition for the behavior of the rule.

but without the undesirable property that agents with the largest discounts receive

no profit at all, unless they are untruthful. The name derives from the tendency of

the rule to exhibit a discount shape characterized in Figure 4.1. When the report

is large relative to the critical value, the bid will fall in the triangular area on the

right, and have a discount provided by the Threshold rule. When the report is small

relative to the critical value, the bid will fall in the area to the left and have a discount

provided by the small rule. Depending on the specifics of the instance, agents in the

middle may receive a modest discount, or none at all. The version of TwoTriangle

evaluated here splits the available surplus to be distributed 50%-50% between Small

and Threshold. The amount given to each rule to allocate could be assigned in any

other proportion according to the designers’ choice in the trade-off between the good

equilibrium incentive properties of Small and the more desirable treatment of agents

with large discounts exhibited by Threshold.
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4.2.2 The Multi-Dimensional KL-Divergence

Given the complexity of the approaches in the previous chapter, here we propose

a metric that adopts a strategyproof reference mechanismm∗, and seeks a mechanism

m that induces payoffs that are close in distribution to m∗. The reference mechanism

will be outside of M (the set of mechanisms meeting our design objectives), and with

the same outcome rule but a payment rule that makes the mechanism strategyproof.

A good reference mechanism should be strategyproof and as close to satisfying the

properties of M as possible.

For a particular instance, let πm(v) = (π1(v), . . . , πn(v)) define the payoff to each

agent in m, i.e. πi(v) = vi(W(v)) − pi(v). Similarly, let π∗(v) = (π∗
1(v), . . . , π

∗
n(v))

define the payoff to each agent in the reference mechanism m∗. Let π ∈ Π be a

feasible joint payoff vector and let Hm(π), H∗(π) be the joint distribution of payoffs

under mechanism m and m∗ respectively, as induced by a distribution on valua-

tions. Then consider the full multivariate KL-divergence between these distributions:

∫
π∈Π

H∗(π) log( H∗(π)
Hm(π)

)dπ.

However such an approach is complex, and requires a lot of data to have sufficient

density in the empirical joint distribution space. So, to keep things relatively simple,

we will consider in this paper a projection of these multi-dimensional distributions

down to one-dimensional payoff distributions. To do this, one could obtain a single-

variate metric based on the payoff distribution of each agent independently, and then

take a summary statistic over these agent-specific measures. But this introduces an

extra layer of indirection between our final metric and the multi-variate distribution.

So instead, we choose to simply combine the single agent payoff distributions, and
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then compute a single univariate metric across all of the agents at once. This is

effectively a projection in the probability space, and we have found it to be effective.

4.2.3 Normalized KL-Divergence

In the CE environment, we specialize the general multivariate KL-divergence to a

KL-divergence on normalized payoff, where the payoff πm
i (v) to each agent in instance

v is normalized by V ∗(v). Specifically, the normalized KL-divergence for mechanism

m is defined as:

KLnorm(m) =

∫ ∞

0

Ĥ∗(π)log

(
Ĥ∗(π)

Ĥm(π)

)
dπ, (4.1)

where Ĥ∗(π) is the univariate distribution of the normalized payoff
π∗

i (v)

V ∗(v)
under the

reference mechanism, given the distribution on instances, and Ĥm(π) is similarly

defined for the mechanism being considered. We further restrict these distributions

to payoffs associated with agents that are active in the efficient trade. Note that the

distribution on payoffs is that induced by the true distribution on valuations, not by

the equilibrium distribution. We also consider an unnormalized KL-divergence.

Special care must be taken in applying the KL-divergence to settings where the

distributions that it is measuring may place zero probability mass on certain out-

comes, as this can either result in a log(0) or a division by zero. This can pose a

particular experimental problem in that certain portions of the support of the dis-

tribution may not have received any samples, even when the true distribution places

mass at these locations. This can be compounded by numerical integration methods

used to compute Equation (4.1). To overcome these problems we generate empirical
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PDFs that have full support by using a Gaussian kernel to smooth the density of raw

samples we have obtained.

4.2.4 Regret Based Metrics

In addition, we study a number of traditional, regret-based, metrics:

L1(m) =

∫

v

||π∗
+(v), π

m
+ (v)||1fv(v)dv (4.2)

L1norm(m) =

∫

v

||
π∗
+(v)

V ∗(v)
,
πm
+ (v)

V ∗(v)
||1fv(v)dv (4.3)

L2(m) =

∫

v

||π∗
+(v), π

m
+ (v)||2fv(v)dv (4.4)

L2norm(m) =

∫

v

||
π∗
+(v)

V ∗(v)
,
πm
+ (v)

V ∗(v)
||2fv(v)dv (4.5)

L∞(m) =

∫

v

||π∗
+(v), π

m
+ (v)||∞fv(v)dv (4.6)

L∞norm(m) =

∫

v

||
π∗
+(v)

V ∗(v)
,
πm
+ (v)

V ∗(v)
||∞fv(v)dv (4.7)

where fv(v) is the PDF on valuation instances v (for the truthful distribution),

π∗
+(v) and πm

+ (v) indicate the payoff vectors restricted to agents that are active in

the trade, and L1(·, ·), L2(·, ·), L∞(·, ·) are standard L1, L2 and L∞ metrics. These

metrics are evaluated on a per-instance basis. The integration above simply evaluates

the raw metric over multiple (and at the limit, an infinite number of) sample instances.

So, although all of the metrics above are defined over a continuous valuation space,

practical evaluation will require numerical integration over specific samples.

The L1 metric calculates the summed absolute difference between the payments

provided by the rule being examined and the reference. In the budget-balanced

combinatorial-exchange examples we are about to consider, the budget constraint
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will render this summed difference identical across the rules for a fixed report (e.g.

truth). This prevents L1 from being useful for design, a point that we will show

experimentally in Section 4.5. The L∞ metric specifically targets the worst case

within a given instance, and in a prior-free manner. It is thus the consistent standard

regret-based condition that we discussed in Section 3.3.2.5. We therefore expect rules

designed with this condition in mind, such as Threshold, to do well with respect to

this metric.

4.3 Evaluation in Three CE Scenarios

We consider three CE instance generators, and thus three different problem scenar-

ios. Two are variations on the combinatorial auction generators (Decay and Uniform)

introduced in Sandholm [2002a]. To make these work in an exchange setting, we first

fix the set of available goods and then distribute them to the selling agents, and the

demand for them among the buying agents. With these endowments and ‘demand

sets’ specified, we then choose negative seller (reserve) values, and positive buyer

values for XOR bundles of items restricted to these endowments and ‘demand sets’,

according to Sandholm’s rules. The third is a new generator (Super), specifically

designed for CEs, and with features carefully crafted for super-additive valuations.

Here every good g ∈ G is assigned a uniform random common value c(g) ≥ 0, and a

uniform random private value specific to agent i, yi(g) ≥ 0. Agent i then has a value

for an individual good wi(g) = βyi(g)+(1−β)c(g), for some β (.5 in our experiments).

The value to agent i for all bundles of items S ⊆ Gi is then (
∑

g∈S wi(g))
γ, for some
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Figure 4.2: Distribution of surplus in the main economy and in the winning marginal
economies using the Super generator; Also, an MLE fit of the GEV
family to these distributions

γ > 1, where Gi is the endowment/‘demand set’ for agent i.4 As above, this value

forms a negative (reserve) value for sellers and a positive value for buyers.5

It is instructive to consider the distribution of V ∗(v), V ∗(v-i), and the VCG

payoff V ∗(v) − V ∗(v-i) for trading agents that is induced by these generators. See

Figures 4.2 and 4.3 for the Super distribution (the others are qualitatively similar).

We can precisely identify the form of these distributions. Fix instance v. Consider the

set Λ of feasible trades in a given market instance. Each λ ∈ Λ has a corresponding

total value V (λ, v), and V ∗(v) is by definition the maximum over these. Thus the V ∗

distribution is that of the extreme values of the underlying distribution of V . Such

4Note that we clear our markets with free disposal, with an implicit value for a bundle of items
S′ ⊇ S equal to the value of S, unless explicitly specified as being worth more.

5We do not use CATS [Leyton-Brown and Shoham, 2006] for the generation of our data sets
because its algorithms are explicitly designed for auctions and it is not straightforward to extend
its distributions in a way that appropriately balances buyers and sellers. In the absence of such
reference distributions, we have opted for these simpler existing generators, coupled with our own
new generator.
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Figure 4.3: Distribution of VCG payoffs using the Super generator; Also, an MLE
fit of the Exponential and Pareto families to this distribution

extreme value distributions have been extensively studied in the statistics literature,

and can be precisely modeled by the Generalized Extreme Value Distribution (GEV)

PDF

1

σ
(1 + ξ

(x− µ)

σ
)−1/ξ−1e−(1+

ξ(x−µ)
σ

)−1/ξ

, (4.8)

parametrized by µ (location), σ (scale), and ξ (shape) [Coles, 2001]. Figure 4.2 shows

the excellent fit of the GEV that can be produced for both V ∗ and V ∗
−i via maximum

likelihood estimation (MLE). The VCG payoff distribution is the distribution of ex-

ceedences (by V ∗) over V ∗
−i, and is well-modeled by a Generalized Pareto Distribution

(GPD), though this model is typically motivated in cases of exceedences over a fixed

threshold. The GPD has a PDF

1

σ
(1 +

ξ(x− µ)

σ
)−(1/ξ+1), (4.9)
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Figure 4.4: Distribution of agent payoffs in each mechanism

using a similar parametrization.6 The MLE fit of the GPD is illustrated in Figure 4.3,

along with the fit of a simple Exponential distribution (which is generalized by the

GPD), indicating that the extra parameters of the GPD are improving the fit.

We can immediately consider how well each of the mechanisms performs at mim-

icking this distribution of payoffs. Figure 4.4 shows an empirical CDF of the payoff to

trading agents under each of the mechanisms, when agents behave truthfully (again

for the Super generator, the others being similar). One can visually confirm that the

Small rule is the one best tracking the VCG payoffs in distribution. Table 4.1 evaluates

the normalized metrics on each mechanism, computed over all three scenarios. Con-

sistent with Figure 4.4, we can observe that Small has the smallest KLnorm metric.

On the other hand, Threshold has the smallest L2norm and L∞norm (regret-based)

metrics. Notice that the L1norm metric is identical across all rules except No Dis-

6Taking the cross-correlation between the distributions of V ∗ and V ∗
−i will give the distribution

of the difference under an assumption of independence, but independence will not hold here.
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Mechanism KLnorm L1norm L2norm L∞norm

Two Triangle 0.0735 0.5914 0.3170 0.1917

Threshold 0.0472 0.5914 0.2355 0.1016

Reverse 0.1251 0.5914 0.3066 0.2210

Small 0.0452 0.5914 0.4208 0.3527

Large 0.0559 0.5914 0.3110 0.2070

Fractional 0.0741 0.5914 0.2528 0.1513

Equal 0.3043 0.8037 0.3727 0.2576

No Discount 0.6372 1.5876 0.6679 0.4030

Table 4.1: Metric value at truth averaged across all three CE scenarios. Minimal
metric values in bold

count and Equal. This is because the other mechanisms always allocate all available

surplus as payoff to agents.7

4.4 Equilibrium Analysis

Computing the equilibrium of the various mechanisms presents a challenge be-

cause this is an infinite game of incomplete information, with a continuum of possi-

ble valuations and thus possible agent strategies. The game also has combinatorial

structure. There are at present no tractable methods to compute the exact Bayes-

Nash equilibrium for such problems. The state of the art approach is to search for

7The L1norm metric differs for Equal only because it sometimes allocates an agent more payoff
than the VCG payoff.
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parametrized strategy profiles that constitute a restricted equilibrium through iter-

ated best-response dynamics [Vorobeychik and Wellman, 2008].8 We adopt a varia-

tion on this, where we place a heuristically-guided and annealing best-response search

within a sampling procedure for determining the joint-strategy profile.

4.4.1 Computing Restricted Bayes-Nash Equilibrium

One simple restriction that one could impose is that every agent shaves its valu-

ation by α ≥ 0, and thus seek a symmetric Bayes-Nash equilibrium. In the context

of a CE, agents would report valuations (1− α)v and (1 + α)v for buyers and sellers

respectively (note that sellers have negative values.) This simplification realizes a

one-dimensional, continuous strategy space.

We compute a more fine-grained equilibrium by also running experiments in which

we adopt two or three shave factors. With multiple shave factors, we associate each

agent in an instance endogenously with a valuation class depending on its valuation

function. For example, with three shave factors α1, α2, and α3, we sort agent valua-

tions into “low,” “medium” and “high” valuation classes, with an agent in each class

associated with shave factor α1, α2 and α3 respectively. We then search for an equi-

librium defined in terms of these three parameters. To sort agent valuations, we first

draw a number of samples of otherwise unused agents from the same distribution that

defines the CE scenario, and for each of these agents, we record the 95th percentile of

value across the trades that define its valuation function. An agent’s valuation class is

identified by comparing the value at the 95th percentile on the trades in its valuation

8An exact solver exists only for two-player games with one-dimensional private valuations, based
on a piecewise-linear strategy representation [Reeves and Wellman, 2004].
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with the sampled values, and assigning a class according to placement in the lower,

middle, or upper third (tritile) of this sampled distribution. This self classification

process corresponds to an information assumption: agents have a good idea about

which tritile of the value distribution to which they belong.

Our algorithm for finding the equilibrium begins with provisional shave factors

{α̂k} (e.g., for k ∈ {1, 2, 3}) set to 0. It then repeatedly generates a set of CE instances

from the particular distribution (Uniform, Decay or Super), and for each instance,

each agent is placed into a valuation class. In each iteration t of the algorithm, and

for each agent i, a grid search is performed on α-values to find its best-response value

α̃i, while using provisional α-values assigned to the other agents. For each valuation

class, the provisional α̂k are then updated as α̂t+1
k := θα̂t

k + (1 − θ)αt
k, where θ = .5

and αt
k is the mean of the best response values (α̃i) in iteration t calculated for each

agent associated with the class k. The width of the grid search in period t + 1 is

chosen endogenously, with 10 points covering a span of |α̂t
k − αt

k|. This span is also

used as an error estimation and search stops when it falls below a fixed constant,

0.001 in the experiments.

4.4.2 Equilibrium: Results

Table 4.2 shows the results with one-dimensional and three-dimensional strategy

spaces (respectively “one class” and “three classes”), for all three generators. In the

case of three classes, the reported shave factor is the average across {α1, α2, α3}. The

best mechanisms in each case are indicated in bold. Surprisingly, the Threshold

mechanism, which has theoretical support in minimizing the ex post regret across all
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One Equilibrium Class Three Equilibrium Classes

Shave Factor Efficiency (%) Shave Factor Efficiency (%)

Rule Dec. Uni. Sup. Dec. Uni. Sup. Dec. Uni. Sup. Dec. Uni. Sup.

VCG 0.0 0.0 0.0 100 100 100 0.0 0.0 0.0 100 100 100

Two Triangle 0.1 0.2 0.6 99.99 100 99.99 0.1 0.4 5.6 99.99 100 97.95

Threshold 12.0 28.7 10.7 99.09 97.43 98.01 14.6 27.2 11.2 93.64 81.09 89.74

Reverse 14.9 57.7 52.3 98.70 83.38 51.52 13.0 65.8 57.6 98.99 77.30 56.08

Small 0.1 0.2 0.3 99.99 100 100 0.0 0.1 0.2 99.99 100 100

Large 2.6 2.3 9.8 99.96 99.99 98.26 2.8 2.9 67.1 99.96 99.98 78.83

Fractional 71.2 71.1 53.0 59.39 67.34 49.07 62.7 81.9 62.0 37.12 63.09 56.77

Equal 75.4 77.6 52.5 51.96 55.76 51.01 62.2 78.3 66.8 33.35 54.21 52.19

No Discount 75.6 76.0 53.2 51.56 59.01 48.23 62.3 80.9 72.4 34.15 50.11 48.21

Table 4.2: Restricted Bayes-Nash equilibrium: Shave Factor and Allocative Effi-
ciency in Each Mechanism

these mechanisms, does not perform nearly as well as the Small mechanism, either

in terms of the size of shave factor (close to zero indicates approximate incentive-

compatibility) or the resulting allocative efficiency. Recall that the Small mechanism

is also the one with the lowest KL-divergence metric.9

9One interesting anomaly in the data is for Large between the “one class” and “three class”
analysis. With one class, a balance must be made in the equilibrium between those agents with high
valuations (likely to receive their full discount without any shave under Large) vs. those with low
valuations (unlikely to receive any discount without shaving). In this case, the former constrains
the latter and agents choose not to shave much in equilibrium. But with three shave factors there
is increased discrimination, and the optimal shave for those with small valuations becomes very
extreme. This, coupled with the fact that there are large numbers of small discounts relative to a
few large discounts, decreases the efficiency of the Large rule in equilibrium.
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Figure 4.5: Profit gain by unilateral misreport

4.4.2.1 Unilateral Deviation

To understand the effect of the Small payment rule, which allocates payment

preferentially to agents with a small VCG payoff, we can study an individual agent’s

incentive to deviate. Figure 4.5 shows the profit gained by a single agent in a rep-

resentative single instance drawn from the Super scenario, as the agent reports VR

compared to truth VT for its winning trade and 0 for all other trades, under each of

the mechanisms. The profit is normalized to its maximal possible profit, i.e. its VCG

profit, and the experiment considers only unilateral deviation by this agent with all

other agents reporting truthfully. The agent in question has a large payoff under

VCG, which the Large mechanism fully allocates. As the agent deviates he suffers

a loss under the Large mechanism. Under all the other mechanisms (except VCG)



Chapter 4: Quantifying the Incentive Properties of Payments 109

−80 −60 −40 −20 0
−10

−5

0

5

10

15

20

25

30

Reported value below truth (%): (VR −VT )/VT

P
ro

fi
t

in
cr

ea
se

(%
):

(π
(V

R
)
−

π
(V

T
))

/V
T

 

 

VCG
TWOTRIANGLE
THRESHOLD
REVERSE
LARGE
SMALL
FRACTIONAL
EQUAL
NODISCOUNT

Figure 4.6: Expected profit by unilateral mis-report

there is at least some gain from deviation. Unlike the other rules, though, the Small

mechanism exhibits a flat plateau once the agent deviates by a small amount. Thus

the incentives to deviate significantly can be quite low under Small, even for agents

whose payoff in VCG is quite large.

This analysis represents only a single agent in a single instance. In order to get

a more comprehensive picture we can average several thousand such single-instance

trajectories, as shown in Figure 4.6. Here we see that mis-reporting makes an agent

strictly worse-off under VCG, as expected. But importantly, we see that the Small

mechanism provides only a small expected gain from deviation, and the maximal

expected gain occurs with less shaving than the other mechanisms. While still a

non-equilibrium analysis (other agents are truthful), this is suggestive of the good

equilibrium performance under Small.
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Figure 4.7: Conditional profit by unilateral mis-report

In determining a good strategy, an agent is in essence making an ex ante trade-off

between potential gain from a successful manipulation and potential loss given an

unsuccessful manipulation. By further conditioning on those mis-reports that are

successful (i.e., when an agent still trades) and unsuccessful, we arrive at Figures 4.7

and 4.8. We see that Small is near the bottom of the pack for both conditional gain

and conditional loss, indicating that success brings relatively less gain while failure

brings relatively more pain than in other mechanisms. In comparison, an unsuccess-

ful manipulation does not hurt an agent as much under the Threshold mechanism,

contributing to its weaker equilibrium performance.

Remark. Unlike Small, the Threshold mechanism tends to allocate payoff to

fewer agents, and with very few (if any) agents receiving their maximal payoff. This

is driving the divergence from the VCG payoff distribution and also this larger loss
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Figure 4.8: Conditional loss by unilateral mis-report

in payoff, conditioned on an unsuccessful manipulation. By making the distribution

on payoffs close to the reference, VCG mechanism, the Small mechanism makes the

expected payoff, conditioned on success and failure, both relatively close to the profile

under VCG (compared to the other mechanism rules); i.e., close to zero for success and

close to forfeiting the maximal payoff for failure. Since the VCG payoff distribution is

skewed such that many agents have only small opportunities for gain (see Figure 4.3),

then many of these opportunities can be addressed by the Small mechanism with the

remaining opportunities for gain entailing significant risk.

However, Small has some rather perverse properties as well. In particular, those

agents that under VCG would be entitled to the largest discounts receive no discount

at all. This means that these agents will be asked to pay significantly more than their

marginal contribution to the outcome, as VCG would charge. This interpretation of
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VCG is particularly appealing, as a payment of your marginal impact would seem

in some profound sense highly appropriate – and Small violates this significantly.

However, perhaps even more importantly, Small offers high discount players zero

profit as it charges them exactly their bid (i.e. gives them no discount) and, if they

have reported truthfully, their discount will be the profit on their trade. This means

that when agents bid truthfully it will offer those agents that ostensibly should be

making the most profit, zero profit, and those who should be making the least profit

their full measure. While we have shown this to result in good incentive properties,

this may come as little solace to a trader forced to break even on a trade that under

other rules would be hugely profitable.

4.5 Metric Analysis

In this section we adopt the correlation between each metric and the equilibrium

shave factor and efficiency as a measure of the informativeness of the metric in quan-

tifying the degree of strategyproofness of a mechanism. The correlation is determined

over a data set of several thousand instances. For each generator (Uniform, Decay

and Super) there are 6 mechanisms10 and 3 different equilibrium analyses (for 1, 2

and 3 shave factors.) This provides 3 x 6 x 3 = 54 data points, with the average

efficiency, average shave factor, and metric computed for each and enabling a correla-

tion to be computed. The results are presented in Table 4.3. We only present results

for normalized metrics throughout this section because they dominate in terms of

10We drop Equal, No Discount and VCG from this correlation analysis; No Discount and VCG are
not in the candidate class of mechanisms, and Equal is outside the class we are especially interested
in because it sometimes allocates an agent more than its VCG payoff.



Chapter 4: Quantifying the Incentive Properties of Payments 113

Correlation with Efficiency at Truth

Metric Corr. ρ-value Significant?

KLnorm -0.3814 0.0044 Y

L1norm -0.1698 0.2197 N

L2norm 0.0154 0.9120 N

L∞norm 0.0220 0.8745 N

Correlation with Mean Shave at Truth

Metric Corr. ρ-value Significant?

KLnorm 0.3794 0.0047 Y

L1norm 0.1610 0.2447 N

L2norm -0.1001 0.4712 N

L∞norm -0.1147 0.4087 N

Table 4.3: Correlation between metrics evaluated at truth and both efficiency and
the amount of shaving, considering all 54 conditions (Significance at 0.05
level)

statistical significance. We see that the KL-norm metric is negatively correlated with

efficiency and positively correlated with the equilibrium shave factor. In both cases

this correlation is significant at the 0.05 level, whereas the correlation for the other,

regret-based metrics is not significant. This finding is consistent with the theoretical

reasoning that will be developed in Section 4.7.2.

Although of secondary importance, we can also consider the informativeness of

each metric in validating how close to truthful an equilibrium is, based only on ob-

served data in the equilibrium. This is interesting, for example, in evaluating the
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Correlation with Efficiency in Equilibrium

Metric Corr. ρ-value Significant?

KLnorm -0.4989 1.2292e-04 Y

L1norm -0.6460 1.3269e-07 Y

L2norm -0.5119 7.6150e-05 Y

L∞norm -0.3762 0.0051 Y

Correlation with Mean Shave in Equilibrium

Metric Corr. ρ-value Significant?

KLnorm 0.2702 0.0482 Y

L1norm 0.5870 3.0820e-06 Y

L2norm 0.4615 4.4464e-04 Y

L∞norm 0.3738 0.0054 Y

Table 4.4: Correlation between metrics evaluated at equilibrium and both the effi-
ciency and the amount of shaving, considering all 54 conditions (Signifi-
cance at 0.05 level)

degree of strategyproofness of a mechanism based only on observed, equilibrium be-

havior. The correlation data, evaluated over the same 54 conditions but now in

equilibrium for each mechanism, is presented in Table 4.4. We find that the L1norm

is more informative, in equilibrium, than the KLnorm and other metrics. A strong,

and significant correlation is also found for the L2norm metric. The L1norm mea-

sures the average (normalized) regret of an agent. Our hypothesis for why the average

equilibrium regret is effective in this regard, is that the further a mechanism is from

being strategyproof, the further agents will deviate from truthful bidding in equilib-
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Mechanism KLnorm L1norm L2norm L∞norm

Two Triangle 0.0820 0.6096 0.3271 0.1976

Threshold 0.0556 0.6991 0.2984 0.1367

Reverse 0.1421 0.9415 0.4896 0.3104

Small 0.0452 0.5903 0.4208 0.3534

Large 0.0668 0.8269 0.4494 0.2916

Fractional 0.1303 1.1456 0.5683 0.3477

Equal 0.2033 1.3758 0.7291 0.4919

No Discount 0.3114 1.9962 1.0311 0.6721

Table 4.5: Metric value at equilibrium averaged across all three scenarios and val-
uation classes. Minimal values are in bold

rium, and the more mistakes (ex post) will occur. Note, though, that the L1norm

metric does not provide guidance for design because it requires a designer to reason

about properties in equilibrium. In fact, for a fixed distribution on agent reports (e.g.,

at truth) almost all of the mechanisms have the same L1norm metrics (see Table 4.1).

In Table 4.5 we present the various metrics evaluated at the equilibrium of each

mechanism over the 54 conditions. Here, it is apparent that Small is most effective

at minimizing L1norm, i.e., in minimizing the average regret faced by agents in

equilibrium.

In contrast, and counter to accepted wisdom, the Threshold rule (which is designed

to minimize maximal regret given reports) has higher average regret in equilibrium.

The Threshold rule is most effective in minimizing the L2norm and L∞norm metrics,

which is perhaps unsurprising given its design.
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4.6 Online Mechanism Selection

In this section, we adopt a straw-man experiment to understand the effectiveness

of the various metrics in guiding an online search for the best mechanism, using only

information that is available to an observer in equilibrium play. Note that a simpler

question about heuristic design was already answered earlier: the Small mechanism

has the best KLnorm metric, and thus would be adopted as the best mechanism design

under this lens. But here we ask a different question: given observed equilibrium play,

is the KLnorm metric effective in suggesting a new mechanism to switch to? The set-

up is one of online search. We do not get to evaluate the counter-factual equilibrium

that would exist under each candidate equilibrium, nor the true, underlying efficiency

of an equilibrium. The only data that is available is based on observing the equilibrium

bids, allocations and payments in a current mechanism.

The online search is instantiated for a particular metric and proceeds as follows.

The search takes place over a sequence of epochs, with a single mechanism deployed

in each epoch and an epoch consisting of a fixed number of CE instances. The search

is initialized somehow (here we always initialize to the No Discount mechanism.)

An epoch provides two kinds of data. For the mechanism that is used, it provides

distributional information about the equilibrium, bids and the metric can be evaluated

on the (revealed) payoffs received by agents. But it is also possible to take the

same distribution on bids, and evaluate the metric for each of the other available

mechanisms. That is, take the bids as fixed and simply evaluate the metric on the

payoffs that would be induced by the other mechanisms (and ignoring that the input is

actually the equilibrium for the current mechanism, and not the truthful distribution).



Chapter 4: Quantifying the Incentive Properties of Payments 117

At the end of each epoch, we evaluate each metric based on the data collected

in the equilibrium of the current mechanism and switch to the mechanism with the

lowest metric. In evaluating the metrics, we retain data from previous runs of the same

mechanism as adopted in the current epoch, enabling ever more accurate metrics to

be calculated. The only caveat is that we check for cycles and break them as follows:

e.g., suppose we are presently using mechanism A and the metric over the data under

A indicates mechanism B to be best, but B has been selected in the past and the data

under mechanism B indicates that mechanism A is best. If such a cycle is found, then

the online search proceeds by evaluating the metric on A and B over the combined

data set from running both A and B in the past and selecting the best. We expect

the data obtained from within the play of a mechanism itself to be the best indicator

of its performance, and thus we use this combined data set only for breaking such

cycles.

Figure 4.9 shows the results of running this algorithm for each of the three different

CE scenarios and for both 1 and 3 agent classes in defining the simulated equilibrium.

We compare the performance of the algorithm with the KLnorm and L1norm (average

regret) metrics. Each graph shows the epoch on the x-axis and the efficiency of the

chosen rule as a fraction of the ideal rule (Small) on the y-axis; the epoch size was

set to 100 for these experiments. Online search with the KLnorm metric very quickly

chooses a good rule, and with performance that tends to dominate that of search with

the L1norm metric. Performance of the L2norm and L∞norm is nearly identical to

that of L1norm, and is thus omitted for clarity. The online search performs least well

in the Super scenario 3 class case, where it chooses to leave the Small rule for Large
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(a) Decay, 1 Class
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(b) Uniform, 1 Class
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(c) Super, 1 Class
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(d) Decay, 3 Class
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(e) Uniform, 3 Class
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Figure 4.9: Online selection: choosing the mechanism algorithmically. The labels
along the x-axis indicate the rule chosen in a given epoch under the
KLnorm and L1norm rules respectively

based on the data available after epoch 3 and then fails to return. From within its

own equilibrium the Large rule looks promising and the ideal Small rule is extremely

different in effect and distribution– making escaping the Large local-maxima difficult.

4.7 Metrics as Bounds

We now turn to integrating the metric-based approach covered so far in this chap-

ter with the design criteria we proposed in Chapter 3. In this section, we offer a proof

that the KL-Divergence formally bounds one of these target criteria.

Suppose we are choosing an approximately strategyproof mechanism, and let’s
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assume we, as the designer, have access to a prior over the joint distribution of

agent values (from an analytic model, or backed out from historical data). As a

designer, we seek to either minimize the sum of expected gain from equations (3.7)

or (3.13), or the sum of the worst case deviations from equations (3.8) or (3.14) As

we have a full distribution, as a ‘risk-neutral’ designer we will adopt as a goal good

performance in expectation, and therefore we choose the expected case over the worst-

case approximate incentive-compatibility criterion. And thus we take the expected

case ex ante as the target in what follows, as we believe it to be a very good proxy

for full BNE behavior.

4.7.1 Bounding Unilateral Gain with a Reference Mechanism

Suppose we have an individually rational mechanismm = (W, p), with an outcome

rule W and a payment rule p(v) ∈ R
n, that we know is not strategyproof for agent

i. Further, suppose we also have a strategyproof reference mechanism m∗ = (W, p∗)

with the same outcome rule but a different payment rule. This mechanism is optimal

with respect to the incentive property, but fails some other other property of m that

we find desirable (e.g. budget balance). Further, we assume that m is reference-

bounded by m∗, meaning that pi(v) ≥ p∗i (v) ∀ v. We note that all of the rules defined

by Parkes et al. [2001a] (see Section 3.2.1) obey this property in the CE environment

when using VCG as the reference. While there are clearly rules outside of this class,

this restriction does not appear particularly onerous. Intuitively, one obvious way

for mechanisms to achieve incentive compatibility is to ‘pay’ agents to be truthful by

careful construction of the agent discounts, which is one way to interpret what the
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VCG payment rule does. With these definitions we can state the following theorem:

Theorem 4.1: Given a strategyproof reference mechanism m∗ and an individually

rational reference-bounded mechanism m with an identical outcome rule that is

non-strategyproof for agent i, the expected ex ante gain in profit from unilateral

deviation for agent i, in the sense of equation (3.7), is bounded from above by

agent i’s expected excess profit in m∗ over m. Formally:

ǫEA,i ≡ E
vi

[
max
v′i

[
E
v-i

[πi(vi, v
′
i, v-i)]− E

v-i

[πi(v)]

]]
≤ E

v
[π∗

i (v)]−E
v
[πi(v)] (4.10)

Proof. First we expand:

E
vi

[
max
v′i

[
E
v-i

[vi(W(v′i; v-i))− pi(v
′
i; v-i)]− E

v-i

[vi(W(v))− pi(v)]

]]

≤ E
v
[vi(W(v))− p∗i (v)]− E

v
[vi(W(v))− pi(v)] (4.11)

Now we rearrange the expectations:

E
vi

[
max
v′i

[
E
v-i

[vi(W(v′i; v-i))− pi(v
′
i; v-i)]

]]
− E

v

[vi(W(v))]− E
v

[pi(v)]

≤ E
v

[pi(v)]− E
v

[p∗i (v)] (4.12)

Or:

E
vi

[
max
v′i

[
E
v-i

[vi(W(v′i; v-i))− pi(v
′
i; v-i)]

]]

+ E
v

[p∗i (v)]− 2E
v

[vi(W(v))]− E
v

[pi(v)] ≤ 0 (4.13)

Because equality can always be achieved by setting v′i = vi, we have:

E
vi

[
max
v′i

[
E
v-i

[vi(W(v′i; v-i))− pi(v
′
i; v-i)]

]]
≥ E

v

[vi(W(v))− pi(v)] (4.14)
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Now add (4.13) and (4.14):

E
v

[p∗i (v)]− 2E
v

[vi(W(v))]− E
v

[pi(v)] + E
v

[vi(W(v))]− E
v

[pi(v)] ≤ 0 (4.15)

And simplify:

E
v

[p∗i (v)]− E
v

[vi(W(v))]− 2E
v

[pi(v)] ≤ 0 (4.16)

Or:

E
v

[p∗i (v)− pi(v)] ≤ E
v

[πi(v))] (4.17)

Now because m is reference-bound by m∗ the left side must be weakly less than zero.

The right side is the expected profit under m, which must be weakly greater than

zero as m is individually rational.11

This theorem indicates that simply taking the difference in expected profit between

a reference mechanism and a mechanism under evaluation should be informative of

the ex ante unilateral gains available in the mechanism.

4.7.2 Bounding Excess Profit Between Mechanisms with a

Metric

Suppose we have two mechanisms mA = (WA, pA) and mB = (WB, pB), with

possibly different outcome functions and payment rules. Now, consider the quantity:

ǫA:B,i ≡ E
v

[πA,i(v)− πB,i(v)] (4.18)

which is the expected difference in profit for agent i between the two mechanisms

while being truthful.

11As a corollary of Theorem 4.1, we also get that Evi

[
maxv′

i
[Ev-i

[πi(vi, v
′
i,v-i)]]

]
≤ Ev [π

∗
i (v)]

under the same conditions by subtracting Ev [πi(v)] from both sides of (4.10).
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We can define versions of the profit functions that are functions solely of agent i’s

report by embedding the expectations:

π̆A,i(vi) = E
v-i

[πA,i(v)] (4.19)

π̆B,i(vi) = E
v-i

[πA,i(v)] (4.20)

Next, by using the PDF of the value distribution for agent i, fvi , we can find the

PDFs of π̆A,i and π̆B,i, using the same change-of-variables technique as in (3.10):

fπ̆A,i
(x) =

∣∣∣∣∣
1

π̆′
A,i(π̆

-1
A,i(x))

∣∣∣∣∣ · fvi(π̆
-1
A,i(x)) (4.21)

fπ̆B,i
(x) =

∣∣∣∣∣
1

π̆′
B,i(π̆

-1
B,i(x))

∣∣∣∣∣ · fvi(π̆
-1
B,i(x)) (4.22)

where the prime denotes the derivative operator and z-1 denotes the inverse of function

z. These are the probability distributions of the profit for being truthful when other

agents bid according to v-i, under each mechanism. We can further define CDFs for

these distributions as:

Fπ̆A,i
(x) =

∫ x

0

fπ̆A,i
(x)dx (4.23)

Fπ̆B,i
(x) =

∫ x

0

fπ̆B,i
(x)dx (4.24)

where we start the integration at 0 because we know that the profit distributions will

only have positive support. Applying these definitions to equation (4.18) we obtain:

ǫA:B,i =

∫ ∞

0

xfπ̆A,i
(x)dx−

∫ ∞

0

xfπ̆A,i
(x)dx (4.25)

Next we take advantage of the following lemma:12

12For CDFs with full support, which we don’t need here, we have: E(X) =
∫∞

−∞
tfX(t)dt =

−
∫ 0

−∞
FX(t)dt+

∫∞

0
1− FX(t)dt.
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Lemma 4.2: For all random variables X with non-negative support, PDF fX and

CDF FX , we have: E(X) =
∫∞

0
tfX(t)dt =

∫∞

0
[1− FX(t)] dt.

Proof. We start with the standard formula for integration by parts

∫ b

a

fgdx =

[
f

∫
gdx

]b

a

−

∫ b

a

(∫
gdx

)
df

Now let GX(t) = 1 − FX(t) so G
′
X(t) = −fX(t) and let H(t) = t so H ′(t) = 1. Then

we can substitute GX for f and H ′ for g:

∫ b

a

GX(t)H
′(t)dt =

[
GX(t)

∫
H ′(t)dt

]b

a

−

∫ b

a

(∫
H ′(t)dt

)
G′

x(t)

or
∫ b

a

GX(t)H
′(t)dt =

[
GX(t)H(t)

]b

a

−

∫ b

a

G′
x(t)H(t)

By substituting back for the original functions we obtain:

∫ b

a

1− FX(t)dt =

[
tGX(t)

]b

a

+

∫ b

a

tfX(t)dt

Expanding the first term on the right side we obtain:

[
tGX(t)

]b

a

= bGX(b)− aGX(a)

As FX is a CDF we have:

lim
a→0

aGX(a) = 0 and lim
b→∞

bGX(b) = 0

So the term goes to zero when we are dealing with a probability distribution and we

choose appropriate limits, obtaining:

∫ ∞

0

[1− FX(t)] dt =

∫ ∞

0

tfX(t)dt
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Example 4.1: Exponential Distribution

fX(t) = λe−λt FX(t) = 1− e−λt

E[X ] =

∫ ∞

0

tfX(t)dt
?= E[X ] =

∫ ∞

0

[1− FX(t)] dt

=

∫ ∞

0

t(λe−λt)dt ?= =

∫ ∞

0

[
1−

(
1− e−λt

)]
dt

=
1

λ

∫ ∞

0

ue−udu ?= =

∫ ∞

0

e−λtdt

=
1

λ
(1) ?= = −

1

λ
(0− 1)

=
1

λ
= =

1

λ

�

Applying this lemma to equation (4.25), we obtain:

ǫA:B,i =

∫ ∞

0

[
1− Fπ̆A,i

(x)
]
dx−

∫ ∞

0

[
1− Fπ̆B,i

(x)
]
dx (4.26)

Or:

ǫA:B,i =

∫ ∞

0

[
Fπ̆A,i

(x)dx− Fπ̆B,i
(x)
]
dx (4.27)

Note that the brackets here are important: the infinite integral of a CDF is infinite.

We can insert an absolute value by relaxing to an inequality:

ǫA:B,i ≤

∫ ∞

0

∣∣Fπ̆A,i
(x)dx− Fπ̆B,i

(x)
∣∣ dx (4.28)

Which is the definition of the 1-Wasserstein metric W(µ, ν) (sometimes called the

Kantorovich metric) for 1 dimensional distributions µ, ν [Villani, 2009], obtaining:

ǫA:B,i ≤ W1(fπ̆A,i
, fπ̆A,i

) (4.29)
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The Wasserstein metric is equivalent to the minimal transport problem, or ‘earth-

mover-distance’. If we envision the PDFs of each distribution as a pile of dirt, the

Wasserstein metric is the amount of dirt that needs to be moved times the distance it

must be moved to convert one pile into the other. For one-dimensional distributions

it takes on this simple form involving only the CDFs M and N of µ and ν:

W1(µ, ν) =

∫ ∞

−∞

|M(x)−N(x)|dx

For multi-dimensional distributions its calculation is far more involved, requiring us

to find the minimal coupling between the distributions:

Wk(µ, ν) =
k
√
inf E[|M −N |k]

where the infimum is over all joint distributions of M and N , where the marginal on

M is µ and the marginal on N is ν.

Gibbs and Su [2002] relate the Wasserstein metric to the better known KL-

divergence K(µ, ν) for probability functions on a bounded domain Ω (where Ω ⊂ R

for the 1 dimensional case):

W ≤
√

K/2 · Ω (4.30)

Which gives us:

Theorem 4.3: Given two mechanisms A and B, we have:

ǫA:B,i ≡ E
v

[πA,i(v)− πB,i(v)] ≤ W(fπ̆A,i
, fπ̆B,i

) ≤
√

K(fπ̆A,i
,fπ̆B,i

)/2 · vi (4.31)

where vi is the maximum bid possible for the agent; and this holds for either

ordering of the KL-divergence.
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While useful theoretically, the constants in this bound are sufficiently large so as

to not provide much insight as to the relative benefits of using the Wasserstein versus

the KL-divergence, or some other similar metric. Still, we have thus bounded the

difference in expected profit of two distinct mechanisms using a distribution metric.

4.7.3 Combining the Bounds

We can now put together the result we had from Theorem 4.1’s equation (4.10)

and Theorem 4.3’s (4.31), giving us:

Theorem 4.4: Given a strategyproof reference mechanism m∗ and an individually

rational reference-bounded mechanism m with identical outcome rule that is

non-strategyproof for agent i, the expected ex ante gain in profit from unilateral

deviation for agent i, in the sense of equation (3.7), is bounded from above by

the KL-divergence in agent i’s profit distribution in mechanisms m∗ and m.

Formally:

ǫEA,i ≡ E
vi

[
max
v′i

[
E
v-i

[πi(vi, v
′
i, v-i)]− E

v-i

[πi(v)]

]]
≤
√

K(fπ∗

i
,fπi)/2 · vi (4.32)

Proof. Immediate from Theorem 4.1 and Theorem 4.3, as the upper bound on the

former is equal to the lower bound on the latter when we substitute mechanisms m∗

and m for mechanisms A and B.

We have thus bounded the ex ante expected unilateral gain from deviation using

a metric on the payoff distributions of a mechanism and its reference evaluated at

truth. We consider this an interesting theoretical result, and one which lends support
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Figure 4.10: Quantiles of ex post gain in a CE with 10 goods and 10 agents and a
uniform distribution on bundle value

to the idea that payoff distribution metrics can be useful in the analysis of incentives.

4.8 Quantiles of ex post Gain

So far in this chapter we have been advocating for a very simple metric based on

the distribution of payoffs. In this section we argue that if the designer is willing to

invest in some additional computation, he can reap rewards by instead considering

quantiles of the ex post gains from deviation.

Figures 4.10 and Figure 4.11 show the quantiles of unilateral gain available to

an agent in a full-fledged CE with 10 goods, 10 agents, and the uniform and decay

value distributions respectively. The methodology for the creation of the graphs is

similar to that in Section 3.7.2. If we focus on the worst case behavior (i.e. the 100th
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Figure 4.11: Quantiles of ex post gain in a CE with 10 goods and 10 agents and the
decay distribution on bundle value

percentile), we can see that the Threshold rule is doing best. This is expected, as it

minimizes the ex post maximal incentive to deviate. And, in fact, the rule does very

well through at least the 90th percentile in both experiments. However, for the rest

of the quantiles, the other rules do better, and often far better. We can see that the

Small rule offers almost no incentive for deviation into the 70th percentile. So in the

median case, one is clearly better off with this rule. And since the median and mean

are always within one standard deviation of each other, the Small rule should also do

very well in the expected case.

This expected case gain comes at a price however: the worst case behavior of

Small is as bad as the case where we give out no discount at all (and given that Small

gives no discount to those agents with the largest discount this behavior is expected
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too).

Thus we see a huge tradeoff between worst case and expected case optimal behav-

ior. The novel TwoTriangle rule that will be described in Section 4.2.1 has reasonably

robust behavior under both criteria, performing well in typical cases, and in the mid-

dle of the pack in the worst case.

This analysis gives us powerful information about the relative merits of the various

rules under different optimality criteria. Further, and intriguingly, the rule rankings

that follow from the mid-quantiles of the analysis will turn out to match well the

rankings we saw from a restricted equilibrium analysis in Table 4.2. This indi-

cates that by simply moving away from a worst case analysis (while still retaining ex

post reasoning) we can already gain considerable traction in the analysis of strategic

behavior.

This ex post criterion requires us to calculate optimal unilateral deviations when

agents are given full information about other agents’ value. For most mechanisms

of interest this analysis can be made tractable through rudimentary analysis of the

mechanism, e.g. by having the agent issue an optimal single-minded bid for the

outcome they would truthfully win. Thus, the analysis does not require us to be

at all sophisticated about the structural form of the equilibrium in order to readily

produce the pertinent data.

This said, the analysis does require performing a search (and/or analysis), that

while typically tractable, may nonetheless be undesirable to perform. Moreover, com-

pelling as it may be, the analysis is limited to a unilateral deviation from truthful

bidding, not a full Bayes-Nash equilibrium where all the agents simultaneously make
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their best-response deviation. Thus in this chapter, we seek a metric that requires

only data available from historical instances directly, without requiring optimization

to find counter-factual minimal regret bidding behavior. And we seek to analyze this

metric in a close approximation to a BNE, not merely under unilateral deviations

from the truth. We’re interested in a measure that can well approximate this one,

but only based on observed reports, e.g. in the equilibrium of the mechanism.

4.9 Related Work

In this section we will first show several existing methods from the literature for

defining approximate strategyproofness. Then we will list some important domains

where these notions are relevant. Finally, several existing approaches to automated

design will be described.

4.9.1 Approximate Strategyproofness

A standard measure of approximate strategyproofness is regret, namely the loss in

utility to an agent from reporting its true type compared to its best possible misreport,

given reports of other agents. An ǫ-strategyproof mechanism is one in which truthful

reporting achieves within ǫ > 0 of the best possible utility, for all possible reports

of other agents and all agent types. Schummer [2001] was the first to consider ǫ-

strategyproof mechanisms and this approach was also considered by Kothari, Parkes,

and Suri [2005] in the design of multi-unit auctions. This concept is meaningful when

ǫ is small, for example smaller than the cost an agent incurs in reasoning about how

to manipulate, because it is reasonable that agents will then behave truthfully.
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This approach advocates worst-case regret as a metric of approximate strate-

gyproofness, namely the worst-case loss in utility from behaving truthfully over all

possible reports of other agents. But, as the maximal regret gets large it is not clear

that regret provides the appropriate metric by which to quantify the degree of strat-

egyproofness of a mechanism or guide mechanism design. If the setting is known to

require mechanisms that have a certain amount of regret, we may forego significant

opportunity to mitigate strategic behavior in the common cases, by targeting only

the worst case. Another related notion of approximate strategyproofness is that of

strategyproof with high probability [Archer, Papadimitriou, Talwar, and Tardos, 2004],

which is similar in that it is well motivated only in places where the approximation

bound can be made arbitrarily small. As we have seen, we instead want a criterion

that captures a desire for the mechanism to be “as truthful as possible, as often as

possible”.

Budish [2009] recently advocated “strategyproofness in a large-market” as a cri-

terion for selecting amongst two non-strategyproof mechanisms. This asks whether

the mechanism will become strategyproof for a replica economy, in the limit as each

agent becomes one of a continuum of agents with the same type. While a very useful

design criterion, this does not by itself meet our needs of providing a metric with

which to quantify approximate strategyproofness; rather, it is a binary classification.

Erdil and Klemperer [2010] suggest that mechanisms that have a low ‘marginal

incentive’ for deviation will be highly strategyproof. Specifically, they suggest exam-

ining the derivative of the payoff function at the true report. When this derivative is

small, perturbations in report are unlikely to result in a gain for the agent. Again,
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the concept is well motivated for small perturbations, but does not offer much help in

analyzing settings where large profitable deviations may of necessity remain available

to participants.

Our approach is also related to the work of Pathak and Sönmez [2009]. These

authors propose a binary comparison between mechanisms, where mechanism φ is

considered more manipulable than mechanism ψ if φ can be manipulated whenever ψ

can, and in at least one context where it can’t. This is a very general concept which

does not rely on the existence of payments, and can thus be used by the authors

to compare mechanisms for assignment problems without payments. However, the

concept does not take into account either the degree of manipulability, or the proba-

bility of a given manipulation occurring. Thus while theoretically helpful in analyzing

certain competing mechanisms, it does not provide design guidance for the complex

mechanisms we wish to study here.

4.9.2 Over-Constrained Mechanism Design Settings

4.9.2.1 Budget Constrained Combinatorial Exchanges

One major motivation for the line of inquiry in this chapter is the desire to im-

pose budget balance on payment rules used in the combinatorial exchange settings

described in Section 2.7.2. For such a setting, the Vickrey-Clarke-Groves (VCG)

mechanism provides the unique, strategyproof design [Holmström, 1979]. Thus be-

cause VCG may run at a deficit, no CE mechanism exists that is efficient, no deficit

and individual rational [Myerson and Satterthwaite, 1983]. Moreover, no “second

best” mechanism has been designed to date that maximizes expected efficiency by
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maximizing incentive compatibility while yet retaining individual-rationality and no

deficit properties.

The notions of approximate incentive compatibility introduced in Chapter 3 are

intended as a step in this direction; in this chapter we then applied these concepts

to the domain explicitly, and constructed a metric that can be useful in the search

for approximately incentive-compatible CEs. Chapter 5 will next introduce a full CE

mechanism that can be built on top of any such rule choice.

4.9.2.2 Core Constrained Combinatorial Auctions

In addition to being concerned with the structure of the incentives presented to

participants in a mechanism, we can also examine the extent to which the mecha-

nism encourages subgroups of participants to defect from the dictated outcome and

establish their own. As described in Section 2.9.1, payments that provide no impetus

towards this type of defection are said to be in the core. The set of core payments

may be empty for a combinatorial exchange setting. However, combinatorial auctions

can support core payments. Consequently, there have been several recent papers on

payment schemes for combinatorial auctions that impose core constraints.

Day and Raghavan [2007] argue that the bidder-Pareto-optimal core payments

should be preferred within the core set, and offer a constraint generation technique

for computing core payments using a linear program solver. Day and Milgrom [2008]

offer additional theoretical analysis of minimal revenue core mechanisms in a full

information setting, and draw connections with the matching mechanism literature.

Day and Cramton [2008] note that the minimal revenue condition is not sufficient
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to uniquely specify payments. They propose to further minimize the L2 distance to

the VCG payments, and offer a quadratic program to do so. While the intuition

that being close to the VCG payments seems reasonable, and parallels the distance

metric approach described in Section 3.2.1, we have seen in Section 3.7.2 that it

may not in fact result in the best incentive properties. These papers do, however,

make a compelling case that the core constraints are very useful in mitigating the

low revenue problem inherent in VCG payments, and that such mechanisms can be

useful in practice: in particular, in recent UK bandwidth auctions.

Erdil and Klemperer [2010] argue for a payment rule that picks a vector in the

minimum revenue core, but which is closest to a “reference” point, rather then to

the Vickrey payments. The reference point for a given participant can be picked

according to any function which does not depend on his bid. The specifics of this rule

are provided in Section 3.7.1.1. Their analysis is restricted to a two-item setting, and

we use it as a benchmark in Chapter 3 only; it has not been demonstrated in more

general settings such as the one covered in this chapter.

4.9.2.3 Generalized Second Price Auctions

The Generalized Second Price (GSP) auctions described by Edelman et al. [2007]

and used to sell on-line advertising at Google and Yahoo! also fit within this paradigm.

Agents bid for slots, and those with the highest bids win the highest slots: i.e. the

auction is cleared at the efficient trade. However, the price charged is that of the

next lower slot, rather than the full VCG payment. This choice has a number of

advantages: it is simpler than VCG (both computationally, and for participants to
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understand), it increases revenue over the VCG outcome, and importantly, the price

charged tends to be locally insensitive to changes in report (low ‘marginal incentive’

for deviation). Further, Pathak and Sönmez [2009] use their binary relation between

mechanisms to show that GSP is less manipulable than its first-price equivalent.

Slot auction design is another domain where strategic incentives are important

but where we are constrained from using the VCG mechanism directly, in this case

because we want both the mechanism and its bidding language to be simple. The

techniques presented here and in the following chapter are notionally applicable to

this settings as well, though the difficultly of defining a formal notion of ‘simplicity’

has led us to focus on other settings.

4.9.3 How to Automate Design

Several authors have considered mechanisms that deliberately choose inefficient

outcomes in order to achieve strategyproofness. See early work by Myerson and

Satterthwaite [1983], McAfee [1992a], and Barbera and Jackson [1995] for exam-

ples. However, the most pertinent work, described below, does choose the surplus-

maximizing trade. In Chapter 3 we were interested in viewing the design problem as

a form of constrained optimization. Several related approaches exist in the literature:

4.9.3.1 Minimizing Per Instance Regret

We can cast the rules described in Section 3.2.1 as a particular form of automated

design. In particular Parkes et al. [2001a], define rules by minimizing the per instance

distance between the payments chosen and those chosen by the VCG mechanism.
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Different choices for the distance metric result in different rules but the net effect

is to minimize regret. Because the VCG discount reflects the profit agents might

achieve under an optimal misreport of the alternative mechanisms, the per instance

criterion measures not only the distance to a strategyproof outcome, but also the

potential gain of an optimal instance-specific misreport (i.e. if they had reported

the critical value). However, we note that this is optimal only with respect to the

current instance. The optimal misreport for one instance can easily cause the agent

to lose the trade in other instances; thus, as we have shown, agents with less than

full information will not adopt a strategy of attempting to report the critical value

exactly. And thus minimizing the potential gain of such a misreport is the wrong goal

in most settings.

With this said, the minimization of per-instance regret, which is the same crite-

rion as ǫ-strategyproofness, is widely used in the literature due to its amenability to

theoretical analysis and its direct interpretation.

Recent work by Lahaie along these lines leverages kernel methods from machine

learning to construct approximate universal competitive equilibrium prices for a com-

binatorial auction [2010]. A particular constant for ǫ-strategyproofness is then derived

in terms of properties of the kernel. This can be interpreted as the traditional measure

of the strategyproofness of the mechanism. But intriguingly, it can also be viewed

as using machine learning as a method for automating design by casting the optimal

design problem as the search embedded in a machine learning kernel method. By

searching to find the most separating prices the method is implicitly getting better

strategic properties, in the per-instance sense, too.
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4.9.3.2 Automated Mechanism Design

Conitzer and Sandholm [2002; 2003b] have proposed the paradigm of Automated

Mechanism Design (AMD). In this approach, the complete mechanism is constructed

as the result of an optimization problem. The system is fed the number of agents,

and a prior distribution over their types. It then solves an optimization problem to

find the non-manipulable mechanism with respect to some objective (such as social

welfare). A succinct description of the AMD problem is provided by Guo and Conitzer

[2010]. At its most fundamental, AMD formulates the design problem as the following

optimization problem:

argmax
m

∑

⇀
θ ∈Θn

fΘn(
⇀

θ )
∑

i∈N

ui(θi, m(
⇀

θ )) Expected social welfare (4.33)

s.t. ui(θi, m(
⇀

θ )) ≥ ui(θi, m(θ′i;
⇀

θ -i))

∀ i ∈ N,
⇀

θ∈ Θn, θ′i ∈ Θ

Strategyproofness (4.34)

where the optimization is over a mechanism m : Θn → O, a function from a vector

of types to an outcome, fΘn is a prior distribution over types and ui(θi, o) gives the

utility of an agent with a given type under a given outcome. If the domain and

range of function m are finite, a randomized mechanism can be found by formulating

the above as a linear program with m specified by a set of probability variables

pm(o|
⇀

θ ) ∀
⇀

θ∈ Θn, o ∈ O. If a deterministic mechanism is desired, then restricting

the pm(·) to be 0-1 variables yields the appropriate MIP.

Conitzer and Sandholm [2003a] implement AMD and solve several small design

problems empirically showing automated design’s applicability and scalability. Later

[2004b], the authors consider the situation where the designer herself is self interested,
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but must obey the individual rationality constraints of participants. The authors

also propose a computational framework [2007] that incrementally improves a mech-

anism, making it more and more strategyproof in each iteration. Conitzer’s Ph.D.

thesis [2006] includes longer descriptions of each of these methods. Likhodedov and

Sandholm [2004a] formulate an AMD auction problem where they find the maximally

efficient mechanism subject to the seller obtaining a required revenue (as well as the

standard incentive constraints).

The authors consider the computational requirements of the optimization problem

in several settings. In particular, they prove that if agents’ preferences are quasi-

linear and the objective is social welfare, then the mechanism design problem can

be formulated as the above linear program and thus be polynomial if the joint type

space is polynomial. And, by contrast, if payments are not allowed, then the problem

becomes NP-hard. However, if the type space is exponential in the number of agents

(as is typical), then the design problem will likewise become exponential because the

formulation grows exponentially in both variables and constraints – even for a single

item setting.

Several previous works have attempted to circumvent this computational com-

plexity problem by restricting the AMD search space to a parametrized space of

possible outcome and/or payment functions. Likhodedov and Sandholm [2004a;b;

2005] parametrize a VCG-style mechanism by considering all linear transformations

of bidders’ reports, then they optimize for maximal revenue over these linear factors.

Guo and Conitzer [2009a;b] address the setting of redistribution mechanisms, where

payments made by winning bidders must be redistributed to the participants. The
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authors consider both a class of linear redistribution mechanisms and a more general

class of discretizedmechanisms. They use AMD to search the parameter space of these

classes to find mechanisms that redistribute the maximum value while maintaining

strategyproofness, either in the worst case or in the expected case. Separately, they

have considered the application of AMD to the problem of assigning m goods to two

players without payments, defining a parametrized mechanism space over which to

search with AMD [2010]. Constantin and Parkes [2007] consider a dynamic auction

setting with interdependent values and use similar techniques to find the revenue-

optimal mechanism over a restricted set of possible IC mechanisms. In all of these

works, the search is over a parametrized space of mechanisms that is known to be

strategyproof, meaning that the optimization formulation need not explicitly include

incentive constraints. In Chapter 3, we do not restrict the space of mechanisms in

this way, and thus must explicitly reason about incentive properties in our optimiza-

tion. These existing approaches consider all possible trades, and gain tractability by

looking at a restricted set of mechanisms. An important distinction is that we allow a

very broad class of mechanisms, and instead limit the trades over which we optimize

to those that are likely to occur in order to obtain computational tractability.

The work presented in Chapter 3 has much in common with AMD, in that it

formulates the design problem as an optimization problem, and solves to find the

best solution. It also shares the property of inherently requiring a prior (though this

can of course be uniform if no knowledge is available). However, the work presented

here differs in both the objectives and the constraints. Instead of requiring incentive

compatibility and solving for the mechanism that best meets some goal (such as so-
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cial welfare), we instead restrict the mechanism to a particular setting via constraints

and then optimize to find the mechanism that is as close to incentive compatible as

possible. For instance, in the examples presented in sections 3.6 and 3.7 we consider

the class of mechanisms that chooses the efficient trade at reports for the winner

determination method and then requires the payments to be in the core; other mech-

anism classes can easily be implemented instead. Problems of this form require a

method for quantifying a notion of approximate incentive compatibility that is not

in Automated Mechanism Design, as we considered in Section 3.3. In this chapter

we took a different approach where we didn’t need to reason directly about the joint

type space and thus achieved far greater computational tractability.

4.9.3.3 Empirical Mechanism Design

Our work also relates to methods of empirical mechanism design [Vorobeychik,

Kiekintveld, and Wellman, 2006; Vorobeychik, Reeves, and Wellman, 2007], in which

one couples search through a parametrized mechanism space with an empirical met-

hodology for solving the induced games. Approximate solutions to the full Bayes-Nash

equilibrium are considered, the complexity of which limits the ease with which the

method can be applied.

4.10 Summary

There are many important mechanism design settings that are over-constrained in

the sense that we cannot simultaneously achieve strategyproofness while maintaining

other desirable properties (e.g. budget balance). In these cases we may wish to
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Table 4.6: Indirect approximate incentive compatibility conditions. Circled num-
bers indicate increasing computational cost. Filled circles are the two
criteria we find most compelling.

enforce the satisfaction of these other properties, while designing mechanisms that

are maximally approximately strategyproof.

4.10.1 Approximate Strategyproofness

In Section 3.3.1 we discussed how straightforward measures of approximate incen-

tive compatibility, such as the distance agents manipulate in Bayes-Nash equilibrium,

are problematic for the purposes of design. We have also argued that the standard

measure, minimization of regret over all possible instances, is the wrong target when

we know the regret to be of necessity quite substantial. For these cases, we instead

proposed several criteria for approximate strategyproofness that we have argued are

both more appropriate and more useful in design. We summarize these criteriia in

Table 4.6, and note that the ex ante and quantile versions assume the designer has

access to a prior on agent value.

The expected ex ante criterion is structured to well-match a Bayes-Nash equilib-

rium, even when evaluated at the true distribution and not the equilibrium distribu-
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tion. However, ex ante conditions are extremely difficult to calculate as they require

a stochastic optimization over a sampling of the joint value space in order to prop-

erly capture the information available to agents. By contrast ex post conditions are

much easier to compute, and we believe that a quantile view of ex post data can be

particularly informative at a modest computational cost.

In this analysis, we have been assuming that the designer has access to a prior

distribution. If instead the designer does not have access to such information he can

simply use a uniform distribution – which may be sufficient to provide reasonable

fidelity in some cases. But the designer may instead choose to use the standard

condition of minimizing regret in the worst possible instance across the entire joint

value profile. This corresesponds the to the row labeled “robust” in the table. Note

that the Worst Case Ex Ante condition as an appropriate choice for the designer to use

when he doesn’t have access to a prior himself, but he believes the participants will

nonetheless be acting according to one. This forces the designer to adopt a Uniform

prior for fv-i
in his calculation of ex ante gain.

In the end, despite its simplicity, we believe that the regret condition focuses on

such rare conditions that it is generally the wrong target. We believe that designers

do generally have access to at least some form of prior, and that for complex markets

it can be highly beneficial to use this information.

4.10.2 Computational Properties

Calculating even approximations to Bayes-Nash equilibria is extremely computa-

tionally expensive. Approaches to computational design that require such calcula-
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tions, such as Empirical Mechanism Design, therefore have to limit both the com-

plexity of the mechanisms and the scope of the agent strategies they consider. In-

stead, in Chapter 3 we proposed a constructive approach to designing approximately

incentive-compatible mechanisms by formulating the problem as a type of constrained

optimization. While of theoretical interest and practical applicability for small prob-

lems, and even with several approximations that we introduced, this method proves

infeasible for large problems because of exponential growth of the formulation in the

joint type space of the problem.

To gain traction in larger problem instances, we therefore adopted closed-form

payment rules, and turned our attention to methods for comparing them. We can

apply the same conditions for strategyproofness, now analytically instead of con-

structively. Unfortunately, though, ex ante conditions also prove computationally

expensive, as they require calculating expectations over the joint type space. While

this may be feasible with intelligent sampling approaches, we believe that by using a

quantile analysis, in a far simpler-to-calculate ex post condition can, provide highly

valuable information. While such methods do still require an optimization to find the

best unilateral misreport, for many important domains such a search can be made

with comparatively little effort by an appropriate linear or grid search algorithm.

However, even this computation may be too much for very large instances, or if

we need a fast turnaround (e.g. in an online setting). In this chapter, we therefore

considered simpler metrics that are based solely on the distribution of payoffs provided

by the various rules. We evaluated these metrics both at equilibrium (as might be

available from historical data) and at truth (as might be available via analytical
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analysis). We showed that despite their low computational burden, these measures

can still provide useful information about the equilibrium properties of the mechanism

being evaluated.

To summarize, we believe the expected case ex ante criterion is likely to be the

proxy for the BNE with the highest fidelity. But it is also unattractive computation-

ally. However, the quantiles of the ex post criteria are far easier to calculate, and

provide highly informative about the incentive structure of a mechanism. We thus

advocate for their use, where they are feasible to calculate. When even this computa-

tional burden is too high, we claim the KL-Divergence between the payoff distribution

of the mechanism being evaluated and a strategyproof reference mechanism is both

computationally simple, and an effective predictor of equilibrium behavior.

4.10.3 Quantification via the KL-Divergence

The particular measure of equilibrium behavior that we advocate when compu-

tation is at a premium is a form of the KL-divergence. Specifically, it is one defined

based on the difference between a distribution on agent payoffs in a mechanism and

that under a reference, strategyproof mechanism, both evaluated with respect to the

true distribution on agent valuations. This metric is shown to be more informative,

in terms of correlating with the deviation from truthful bidding in equilibrium, than

other regret-based metrics. In the context of CEs, our results establish that by seeking

to match the payoffs in a reference mechanism in distribution, a mechanism designer

can achieve a mechanism that is maximally strategyproof in the sense of minimizing

the amount by which agents will deviate from truthful bidding in equilibrium with
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only historical (or analytic) data and minimal computation.

4.10.4 Observations Regarding Payment Rules

We observe that minimizing maximal ex post regret (given truthful bids) does

not necessarily lead to optimal designs; e.g., the Threshold mechanism is designed

this way, but the Small mechanism generates a better (closer to truthful) equilibrium

while also minimizing average regret in equilibrium. Despite its strong equilibrium

behavior, we point out that the Small rule may be undesirable from the perspective of

the zero profit it assigns to precisely those agents who would nominally be destined to

receive the most. Accordingly we propose a new rule, TwoTriangle, which is an affine

mixture of the Small and Threshold rule, and which appears to have good equilibrium

properties like Small, but which provides some profit margin to the ’larger’ winners

like Threshold.

In the end, the best rule will need to be determined by the specifics of the domain:

how informed the participating agents are, the risk tolerance of the designer when

it comes to the incentives he’s providing, and most importantly, the structure of

the type space itself. We have provided several tools for evaluating those influences

empirically, using data pertinent to the environemts where we seek a design.



I would not give a fig for the simplicity this side of
complexity, but I would give my life for the
simplicity on the other side of complexity.

– Oliver Wendell Holmes

Supreme Court Justice, 1902–1932

5
ICE: An Iterative Combinatorial Exchange

5.1 Motivation

This chapter presents the design of the first fully expressive, iterative combinatorial

exchange (ICE). In designing an iterative exchange, we share the motivation of earlier

work on iterative CAs: we wish to mitigate elicitation costs by focusing bidders, in

this case through price discovery and activity rules, on their values for relevant trades.

This is important because determining the value on even a single potential trade can

be a challenging problem in complex domains [Compte and Jehiel, 2007; Sandholm

and Boutilier, 2006]. Moreover, bidders often wish to reveal as little information as

possible to avoid leaking information to competitors. In describing the central design

principles that support the ICE mechanism, we highlight the following aspects:

• A bidder interacts with ICE by first defining a structured representation of

146
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his valuation for different trades. Defined in the tree-based bidding language

(TBBL), this concisely defines the set of trades of interest to the bidder. The

bidder must annotate the tree with initial lower and upper bounds on his value

for different trades.

• Having lower and upper bounds on valuations allows the exchange to identify

both a provisional trade and provisional payments in each round, and to gen-

erate a provisional clearing price on each item in the market. In each round of

ICE, each bidder is required to tighten the bounds on his TBBL bid so as to

make precise which trade is most preferred given the current prices.1

• ICE is a hybrid between a demand-revealing process and a direct-revelation

mechanism, with simple (linear) prices guiding preference elicitation, but with

bids submitted through direct claims about valuation functions in the TBBL

language, and these expressive bids used ultimately to clear the exchange.

When ICE terminates, a payment rule is used to determine the payments made,

and received, by each participant. While suggesting that these payments be defined

in a way that seeks to mitigate opportunities for manipulation in the exchange, ICE

is agnostic to the particular payment rule that is adopted. For a given rule, the prices

that are quoted in each round are defined in part to approximate these payments,

when aggregated across the provisional trade suggested for a bidder.

For concreteness, we adopt the Threshold rule [Parkes et al., 2001a] in defining

final payments, which minimizes the ex post regret for truthful bidding across all

1See early work by Parkes [1999; 2005] for the use of bounds in single item auctions, and Hudson
and Sandholm [2004] for application to CAs. Here we use bounds in the context of a fully expressive
CE.
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budget-balanced payment rules, when holding the bids from other participants fixed;

any of the rules discussed in the previous two chapters could be used instead. The

choice of payment rule is orthogonal to the design of ICE and thus not the focus

here. However, we do propose novel activity rules, which are themselves designed to

mitigate opportunities for strategic behavior.

We highlight the following technical contributions made in this work:

• The tree-based bidding language (TBBL) extends earlier CA bidding languages

to support bidders who wish to simultaneously buy and sell, the specification of

valuation bounds, and the use of generalized ‘choose’ operators to provide more

concise representations than OR* and LGB [Boutilier and Hoos, 2001; Nisan,

2006]. TBBL can be directly encoded within a mixed-integer programming

(MIP) formulation of the winner determination problem.

• Despite quoting prices on items and not bundles of items, ICE is able to con-

verge to the efficient trade with straightforward (i.e., non-strategic) bidders.

Efficiency is established through duality theory when prices are sufficiently ac-

curate. Otherwise, a direct proof based on reasoning about the upper and

lower valuation bounds is always available, even when the combinatorics of the

instance preclude a duality-based proof.

• Preference elicitation is performed through the combination of two novel ac-

tivity rules. The first is a modified revealed-preference activity rule (MRPAR),

and requires each bidder to make precise which trade is most preferred in each

round. The second is a delta improvement activity rule (DIAR), and requires
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each bidder to refine his bid to improve price accuracy or prove that no im-

provement is possible. When coupled together these rules ensure that useful

progress towards determining the efficient trade is made in each round.

To summarize, there are three main reasons to prefer explicit value representations

over repeated demand reports in the context of an iterative CE: (a) a provisional

allocation can be computed from round 1, since both upper and lower bounds on

value are available; (b) the combinatorics of the domain can be directly handled in

clearing the exchange and efficiency is not limited by adopting simple (linear) prices;

(c) proofs of (approximate) efficiency are available by reasoning directly with bounds

on valuations and despite adopting simple (linear) prices.

The exchange is fully implemented in Java (with a C-based MIP solver). We

present scalability results showing performance across a wide number of bidders,

goods and valuation complexity. Additionally, we provide benchmarks that enable

both a quantitative and a qualitative understanding of the characteristics of our

mechanism. Our experimental results (with straightforward bidders) show that the

exchange quickly converges to the efficient trade, taking an average of only 7 rounds for

an example domain with 100 goods of 20 different types and 8 bidders with valuation

functions containing an average of 112 TBBL nodes. In this same domain, we find

that bidders can leave upwards of 62% of their maximum attainable value undefined

when the efficient trade is known, and 56% once final payments are determined,

indicating that bidders are able to leave large amounts of their value space unrefined.

The exchange terminates on these problems in an average of 8.5 minutes on a 3.2GHz

dual-processor dual-core workstation with 8GB of memory. This includes the time for
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all winner determination, pricing, and activity rules, as well as the time to simulate

agent bidding strategies.

Outline

Section 5.2 defines a sealed-bid CE, introducing TBBL and providing the MIP that

is used to solve winner determination. Section 5.3 extends TBBL to allow for valuation

bounds and defines the MRPAR and DIAR activity rules. The main theoretical results

are also described as well as our method to determine price feedback in each round.

Section 5.4 gives a number of illustrative examples of the operation of ICE. Section 5.5

presents our main experimental results. Works related to this topic are discussed in

Section 5.6. We summarize the results in Section 5.7.

5.2 Step One: A TBBL-Based Sealed-Bid

Combinatorial Exchange

We first flesh out the details for a non-iterative, TBBL-based CE in which each

bidder submits a sealed bid in the TBBL language.

5.2.1 Bidding Language

The tree-based bidding language (TBBL) is designed to be expressive and concise,

to be entirely symmetric with respect to buyers and sellers, and to easily accomodate

bidders who are both buying and selling goods simultaneously (i.e., bidders carrying

on transactions ranging from swaps to highly complex trades). Bids are expressed

as annotated bid trees, and define a bidder’s change in value for all possible trades.
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The main feature of TBBL is that it has a general “interval-choose” logical operator

on internal nodes coupled with a rich semantics for propagating values within the

tree. Leaves of the tree are annotated with traded items and all nodes are annotated

with changes in values (either positive or negative). In working through numerous

examples we frequently found it very cumbersome to capture even simple trades in

languages that specified values on allocations, as is the case with all existing lan-

guages. TBBL is designed such that these changes in value are expressed on trades

rather than with respect to the total value of allocations. Examples will shortly be

provided in Figures 5.1 and 5.2, and discussed below.

Consider bid tree Ti from bidder i. Let β ∈ Ti denote a node in the tree, and let

vi(β) ∈ R denote the value specified at node β (perhaps negative). Let Leaf (Ti) ⊆ Ti

be the subset of nodes representing the leaves of Ti and let Child(β) ⊆ Ti denote

the children of node β. All nodes except leaves are labeled with the interval-choose

operator ICy
x(β). Each leaf β is labeled as a buy or sell, with units qi(β, j) ∈ Z for

the good j associated with leaf β, and qi(β, j
′) = 0 otherwise. The same good j may

simultaneously occur in multiple leaves of the tree, given the semantics of the tree

described below.

The IC operator defines a range on the number of children that can be, and must

be, satisfied for node β to be satisfied: an ICy
x(β) node (where x and y are non-

negative integers) indicates that the bidder is willing to pay for the satisfaction of at

least x and at most y of his children. With suitable values for x and y the operator

can include many logical connectors. For instance: ICn
n(β) on node β with n children

is equivalent to an AND operator; ICn
1 (β) is equivalent to an OR operator; and IC1

1(β)
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is equivalent to an XOR operator.2

We say that the satisfaction of an ICy
x(β) node is defined by the following two

rules:

R1 Node β with ICy
x(β) may be satisfied only if at least x and at most y of its

children are satisfied.

R2 If some node β is not satisfied, then none of its children may be satisfied.

One can consider R1 as a “first pass” that defines a set of candidates for satisfaction.

This candidate set is then refined by R2. Besides defining how value is propagated,

by virtue of R2 our logical operators act as constraints on what trades are acceptable

and provide necessary and sufficient conditions.3

Given a tree Ti, the (change in) value of a trade λ is defined as the sum of the

values on all satisfied nodes, where the set of satisfied nodes is chosen to provide the

maximal total value. Let sat i(β) ∈ {0, 1} denote whether node β in tree Ti of bidder

i is satisfied, with sat i = {sat i(β), ∀β ∈ Ti}. For solution sat i to be valid for tree

Ti and trade λi, written sat i ∈ valid(Ti, λi), then rules R1 and R2 must hold for all

internal nodes β ∈ {Ti\Leaf (Ti)} with ICy
x(β):

x sat i(β) ≤
∑

β′∈Child(β)

sat i(β
′) ≤ y sat i(β) (5.1)

Equation (5.1) enforces the interval-choose constraints, by ensuring that no more

2This equivalence implies that TBBL can directly express the XOR, OR and XOR/OR lan-
guages [Nisan, 2006; Sandholm, 2002a;b].

3R1 naturally generalizes the approach taken in LGB , where an internal node is satisfied according
to its operator and the subset of its children that are satisfied. The semantics of LGB , however,
treat logical operators only as a way of specifying when “added value” (positive or negative) results
from attaining combinations of goods. Our use of R2 also imposes constraints on acceptable trades.
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and no less than the appropriate number of children are satisfied for any node that

is satisfied. The constraint also ensures that any time a node other than the root is

satisfied, its parent is also satisfied. We further require, for sat i ∈ valid(Ti, λi), that

the total increase in quantity of each item across all satisfied leaves is no greater than

the total number of units awarded in the trade:

∑

β∈Leaf (Ti)

qi(β, j)sat i(β) ≤ λij, ∀j ∈ G (5.2)

By free disposal, we allow here for a trade to assign additional units of an item

over and above that required in order to activate leaves in the bid tree. This works

for sellers as well as buyers: for sellers a trade is negative, and this requires that the

total number of items indicated as sold in the tree be at least the total number of

items “traded away” from the bidder in the trade.

Given these constraints, the total value of trade λi, given bid-tree Ti from bidder

i, is defined as the solution to an optimization problem:

vi(Ti, λi) = max
sat i

∑

β∈Ti

vi(β)sat i(β) (5.3)

s.t. (5.1), (5.2)

Example 5.1: Consider an airline operating out of a slot-controlled airport that al-

ready owns several morning landing slots, but none in the evening. In order to expand

its business the airline wishes to acquire at least two and possibly three of the evening

slots. However, it needs to offset the cost of this purchase by selling one of its morning

slots. Figure 5.1 shows a TBBL valuation tree for expressing this kind of swap.



Chapter 5: ICE: An Iterative Combinatorial Exchange 154

AND

IC3
2

Buy 4pm $1 Buy 6pm $4 Buy 8pm $3

XOR

Sell 5am $-2 Sell 7am $-9 Sell 9am $-5

Figure 5.1: A simple TBBL tree for an airline interested in trading landing slots.

5.2.2 Winner Determination

The problem of determining an efficient trade given bids is called the winner

determination (WD) problem (see Section 2.7.3. The WD problem in CAs (and thus

also in CEs) is NP-hard [Rothkopf, Pekeč, and Harstad, 1998]. The approach we

adopt here is to formulate the problem as a mixed-integer program (MIP), and solve

with branch-and-cut algorithms [Nemhauser and Wolsey, 1999]. A similar approach

has proved successful for solving the WD problem in CAs [Boutilier, 2002; de Vries

and Vohra, 2003; Sandholm, 2006].

Given some tree Ti, it is useful to adopt notation β ∈ λi to denote a node β ∈ Ti

that is satisfied by trade λi. We can now formulate a TBBL specific form of the WD

problem for bid trees T = (T1, . . . , Tn) and initial allocation x0:

WD(T, x0) : max
λ,sat

∑

i

∑

β∈Ti

vi(β)sat i(β)

s.t. (2.14), (2.15)

sat i ∈ valid(Ti, λi), ∀i

sat i(β) ∈ {0, 1}, λij ∈ Z,

where sat = (sat1, . . . , satn). The tree structure is made explicit in this MIP formu-

lation: we have decision variables to represent the satisfaction of nodes and capture
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the logic of the TBBL language through linear constraints; a related approach has

been considered in application to LGB [Boutilier, 2002]. By doing this, there are

O(nB +mn) variables and constraints, where B is the maximal number of nodes in

any bid tree. The formulation determines the trade λ while simultaneously determin-

ing the value to all bidders by activating nodes in the bid trees.

5.2.3 Payments

If we are willing to run our CE at a potential budget deficit, we can use the VCG

payment scheme covered in Section 2.7.4. However, if we need budget balance we

will need to choose another rule, such as those proposed by Parkes et al. [2001a], and

described in Section 3.2.1 and analyzed in Chapter 4. Here, by way of example, we

adopt the Threshold rule. To reiterate, this rule charges:

pthresh,i = v̂i(λ
∗
i )−∆thresh,i, (5.4)

where the discounts ∆thresh,i are picked to minimize maxi(∆vcg,i−∆thresh,i) subject to

∆thresh,i ≤ ∆vcg,i for all i and
∑

i ∆thresh,i ≤ V (v̂). Threshold payments are exactly

budget-balanced and minimize the maximal deviation per instance from the VCG

outcome across all balanced rules.

Example 5.2: Consider the two bidders in Figure 5.2. Bidder 1 will potentially sell

one of his items (A or B) if he can get Bidder 2’s item, C, at the right price. Bidder

2 is interested in buying one or both of Bidder 1’s items and also in selling his own

item. We consider each of the possible trades: If Bidder 1 trades A for C he gets $2

of value and Bidder 2 gets $7. If Bidder 1 trades B for C he gets $-2 of value and
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Bidder 1

AND

XOR

Sell A $-4 Sell B $-8

Buy C $6

Bidder 2

IC3
1

Buy A $10 Buy B $5 Sell C $-3

Figure 5.2: Two bidders and three items {A,B,C}. The efficient trade is for bidder
1 to sell A and buy C.

Bidder 2 gets $2. And if no trade occurs, both bidders get $0 value. Therefore the

efficient trade is to swap A for C.

Because the efficient trade creates a surplus of $9 and removing either bidder

results in the null trade, both bidders have a Vickrey discount of $9. Thus if we

use VCG payments, Bidder 1 pays $2-$9=$-7 and Bidder 2 pays $7-$9=$-2, and

the exchange runs at a deficit. The Threshold payment rule chooses payments that

minimally deviate from VCG while maintaining budget balance. This minimization

reduces the discounts to $4.50, and thus Bidder 1 pays $2-$4.50=$-2.50 and Bidder

2 pays $7-$4.50=$2.50.

5.3 Step Two: Making the Exchange Iterative

Having defined a sealed-bid, TBBL-based exchange we can now modify the design

to make it iterative. Rather than provide an exact valuation for all interesting trades,

a bidder annotates a single TBBL tree with upper and lower bounds on his valuation.

The ICE mechanism then proceeds in rounds, as illustrated in Figure 5.3.

ICE is a proxied design in which each bidder has a proxy to facilitate his valuation
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Figure 5.3: ICE system overview

refinement. In each round, a bidder responds to prices by interacting with his proxy

agent in order to tighten the bounds on his TBBL tree and meet the activity rules.

The exchange chooses a provisional valuation profile (denoted vα = (vα1 , . . . , v
α
n) in the

figure), with the valuation vαi for each bidder picked to fall within the bidder’s current

valuation bounds (and to tend towards the lower valuation bound as progress is made

towards determining the final trade). Then, the exchange computes a provisional

trade λα and checks whether the conditions for moving to a last-and-final round

are satisfied. Approximate equilibrium prices are then computed based on valuation

profile vα and trade λα and a new round begins. In the last-and-final round, the final

payments and the trade are computed in terms of lower valuations; the semantics of

these lower bounds guarantee that a bidder will be willing to pay at least this amount

(or receive a payment of this amount) in order to complete the trade.

5.3.1 An ICE Round

Let vi and vi denote the lower and upper valuation functions reported by bidder i

in a particular round of ICE, and let us adopt WD(v) to denote the WD problem for
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valuation profile v = (v1, . . . , vn). ICE is parameterized by a target approximation

error ∆∗ ∈ (0, 1], which requires that the total value from the optimal trade λ given

the current lower-bound valuation profile (i.e., λ solves WD(v)) is close to the total

value from the efficient trade λ∗i :

EFF(λ) =

∑
i vi(λi)∑
i vi(λ

∗
i )

=
v(λ)

v(λ∗)
≥ ∆∗ (5.5)

However, the true valuation v and thus the trade λ∗ are uncertain within ICE and

therefore we will later introduce techniques to establish this bound.

In each round, ICE goes through the following steps:

1. If this is the last-and-final round, then implement the trade that solves WD(v)

and collect Threshold payments defined on valuations v. STOP.

ELSE,

2. Solve WD(v) to obtain λ. Use valuation bounds and prices to determine a

lower-bound, ωeff , on the allocative efficiency EFF(λ) of λ. If ωeff ≥ ∆∗ then

the next round will be designated the last-and-final round.

3. Set α ∈ [0, 1], with α tending to 1 as ωeff tends to 1, and provisional valuation

profile vα = (vα1 , . . . , v
α
n), where v

α
i (λi) = αvi(λi)+(1−α)vi(λi), expressed with

a TBBL tree in which the value on node β ∈ Ti is v
α
i (β) = αvi(β)+(1−α)vi(β).

4. Solve WD(vα) to find provisional trade λα, and determine Threshold payments

for provisional valuation profile, vα.

5. Compute linear prices, φ ∈ R
m
≥0, that are approximate CE prices given val-

uations vα and trade λα, breaking ties to best approximate the provisional
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Threshold payments and finally to minimize the difference in price between

items.

6. Report (λαi , φ) to each bidder i ∈ N , and whether the next round is last-and-

final.

In transitioning to the next round, the proxy agents are responsible for guiding

bidders to make refinements to their lower- and upper-bound valuations in order to

meet activity rules that ensure progress towards the efficient trade across rounds. In

what follows, we (a) extend TBBL to capture lower and upper valuation bounds, (b)

describe our two activity rules, (c) explain how we compute price feedback, and (d)

offer our main theoretical results. In developing theoretical and experimental results

about ICE, we assume straightforward bidders, so that bidders refine upper and lower

bounds on valuations to keep their true valuation consistent with the bounds.

5.3.2 Extending TBBL to Allow Upper and Lower Bounds

We first extend TBBL to allow bidder i to report a lower and upper bound

(vi(β), vi(β)) on the value of each node β ∈ Ti, which in turn induces valuation

functions vi(Ti, λi) and vi(Ti, λi), using the exact same semantics as in (5.3). The

bounds on a trade can be interpreted as limmiting the payment that the bidder con-

siders acceptable. The bidder commits to complete the trade for a payment less than

or equal to the lower-bound and to refuse to complete a trade for any payment greater

than the upper-bound. The exact value, and thus true willingness-to-pay, remains

unknown except when vi(β) = vi(β) on all nodes. We say that bid-tree Ti for bid-

der i is well-formed if vi(β) ≤ vi(β) for all nodes β ∈ Ti. In this case we also have
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Bidder 1

AND

XOR

Sell A $-3
$-4

Sell B $-5
$-10

Buy C $8
$3

Bidder 2

IC3
1

Buy A $12
$9

Buy B $7
$3

Sell C $-1
$-4

Figure 5.4: Two bidders, each with partial value information defined on their bid
tree. One can already prove that the efficient trade is for bidder 1 to
sell A and buy C.

vi(Ti, λi) ≤ vi(Ti, λi) for all trades λi. We refer to the difference vi(β)− vi(β) as the

value uncertainty on node β. The efficient trade can often be determined with only

partial information about bidder valuations. Consider the following simple variant

on Example 5.2:

Example 5.3: The structure of the bidders’ trees in Figure 5.4 is the same as in

Example 5.2 but the nodes are annotated with bounds. Let x ∈ [3, 8] denote Bidder

1’s true value for “buy C” and y ∈ [−4,−1] denote Bidder 2’s true value for “sell

C.” The three feasible trades are: (1) trade A and C, (2) trade B and C, (3) no

trade. The first trade is already provably efficient. Fixing x and y, its minimal value,

is −4 + 9 + x− y, and this is at least −5 + 7 + x− y, the value of the second trade.

Moreover, its worst-case value is −4 + 9 + 3− 4 ≥ 0, the value of the null trade.

5.3.3 Activity Rules

Activity rules are used to guide the preference elicitation process in each round of

ICE. Without an activity rule, a rational bidder would likely wait until the very last
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moment to revise his valuation information, free-riding on the price discovery enabled

by the bids of other participants. If every bidder were to behave this way, the exchange

would reduce to a sealed-bid mechanism and lose its desirable properties.4Thus, ac-

tivity rules are critical in mitigating opportunities for strategic behavior.5

ICE employs two activity rules. In presenting these rules, we will not specify the

explicit consequences of failing to meet an activity rule. One simple possibility is that

the default action is to automatically set the upper valuation bound on every node in

a bid tree to the maximum of the “provisional price on a node”6 and the lower-bound

value on that node. This is entirely analogous to when a bidder in an ascending-clock

auction stops bidding at a price: he is not permitted to bid at a higher price again

in future rounds.

5.3.3.1 Modified Revealed-Preference Activity Rule (MRPAR)

The first rule, MRPAR, is based on a simple idea. We require bidders to refine

their valuation bounds in each round, so that there is some trade that is optimal

(i.e., maximizes surplus) for the bidder given the current prices and for all possible

valuations consistent with the bounds. MRPAR is loosely based around the revealed-

preference-based activity rule, advocated for in the clock-proxy auction in a one-sided

CA [Ausubel et al., 2006].

4This problem has been evocatively described as the “snake in the grass” problem. See Kwerel’s
forward in Milgrom’s book 2004.

5There is no conflict here with our assumption about straightforward bidding: we design for
the strategic case despite assuming straightforward bidding to provide for tractable theoretical and
experimental analysis; moreover, the presence of activity rules helps to motivate straightforward
bidding.

6The provisional price on a node is defined as the minimal total price across all feasible trades
for which the subtree rooted at the node is satisfied.
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Let v′i ∈ Ti for TBBL tree Ti denote that valuation v′i is consistent with the value

bounds in the tree. If the bounds are tight everywhere, then v′i is exactly the valuation

function defined by tree Ti. A simple variant (RPAR), requires that there be enough

information in valuation bounds to establish that one trade is weakly preferred to all

other trades at the prices, i.e.7

∃λ̆i ∈ Fi(x
0) s.t. v′i(λ̆i)− pφ(λ̆i) ≥ v′i(λ

′
i)− pφ(λ′i), ∀v′i ∈ Ti, ∀λ

′
i ∈ Fi(x

0)

(RPAR)

Note that a bidder can always meet this rule by defining an exact valuation

v̂i and tight value bounds on every node in his bid tree; in this case, trade λ̆i ∈

argmaxλi∈Fi(x0)[v̂i(λi) − pφ(λi)] satisfies RPAR. We say that prices φ are strict EQ

prices for (vα, λα) when:

vαi (λ
α
i )− pφ(λαi ) > vαi (λ

′
i)− pφ(λ′i), ∀λ′i ∈ Fi(x

0) \ {λαi } , (5.6)

for every bidder i ∈ N .

Theorem 5.1: If prices φ are strict EQ prices for provisional valuation profile vα

and trade λα, and every bidder i retains vαi in his bid tree after meeting RPAR,

then trade λα is efficient when all bidders are straightforward.

Proof. Fix bidder i. Let λ̆i denote the trade that satisfies RPAR. Because vαi is

consistent with the revised bid tree of bidder i, we have:

vαi (λ̆i)− pφ(λ̆i) ≥ vαi (λ
′
i)− pφ(λ′i), ∀λ′i ∈ Fi(x

0). (5.7)

7For consistancy with notation need in describing the pricing rule, we denote the payment made
under linear prices φ as pφ
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Buyer

XOR

Buy A $8 Buy B
$4
$4
$2

Seller

OR

Sell A
$-6
$-9
$-20

Sell B
$-2
$-6
$-10

Figure 5.5: An example to illustrate the failure of the simple RPAR rule without
strict EQ prices. True values are shown in bold and are such that the
efficient outcome is no trade.

Moreover, we must have λ̆i = λαi , because v
α
i (λ

α
i )− pφ(λαi ) > vαi (λ

′
i)− pφ(λ′i) by the

strictness of prices. Instantiating RPAR with this trade, and with true valuations

vi ∈ Ti (since bidders are straightforward), we have:

vi(λ
α
i )− pφ(λαi ) ≥ vi(λ

′
i)− pφ(λ′i), ∀λ′i ∈ Fi(x

0), (5.8)

from which prices pφ are EQ prices with respect to true valuations. The efficiency

claim then follows from the welfare theorem, Theorem 2.7.

In particular, the provisional trade is efficient given strict EQ prices when every

bidder meets the rule without modifying his bounds in any way. Strict EQ prices are

required to prevent problems involving ties, as illustrated in the following example:

Example 5.4: In the TBBL trees shown in Figure 5.5 no trade will occur at the

truthful valuation (which is indicated in bold between the value bounds). However,

suppose α = 0 so that at the provisional valuations it is efficient for A to be traded.

Prices φ = (6, 2) are EQ (but not strict EQ) prices given vα and λα, with the buyer

indifferent between buying A and buying B and the seller indifferent between selling

A, selling A and B, or making no sale. The buyer passes RPAR without changing
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his bounds because the bounds already establish that he (weakly) prefers A to B, and

prefers A to no trade, at all possible valuations. Similarly, the seller passes RPAR

without changing his bounds because the bounds establish that he weakly prefers no

trade to selling any combination of A and B given the current prices. Thus, we have

no activity even though the current provisional trade is inefficient.

In order to better handle these sorts of ties, we slightly strengthen RPAR to

modified RPAR (MRPAR), which requires that there exists some λ̆i ∈ Fi(x
0) such

that

θφi (λ̆i, λ
′
i, v

′
i) ≥ 0, ∀v′i ∈ Ti, ∀λ

′
i ∈ Fi(x

0) (5.9)

and either λ̆i = λαi or θφi (λ̆i, λ
α
i , v

′
i) > 0, ∀v′i ∈ Ti. (5.10)

where θφi (λi, λ
′
i, v

′
i) = v′i(λi)−p

φ(λi)−(v′i(λ
′
i)−p

φ(λ′i)) denotes the increase in profit to

bidder i for trade λi over λ
′
i given v

′
i and prices φ. (5.9) is RPAR, and the additional

requirements enforce that the satisfying trade λ̆i is either λ
α
i or strictly preferred to

λαi . This need to show a strict preference over λαi prevents the deadlock shown in

Example 5.4. The seller has shown only a weak preference for not trading over selling

A. With MRPAR, the seller must also show that he strictly prefers λ̆i, in this case

by reducing the upper-bounds on both A and B, thus ensuring progress.

The actual rule adopted in ICE is δ-MRPAR, parameterized with accuracy pa-

rameter δ ≥ 0, and providing a relaxation of MRPAR which is useful even when there

are no exact EQ prices defined with respect to (λα, vα) in some round.

Definition 5.1: Given provisional trade λα, linear prices φ, and accuracy parameter
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δ ≥ 0, δ-MRPAR requires that every bidder i refines his value bounds so that

his TBBL tree Ti satisfies:

θφi (λ
α
i , λ

′
i, v

′
i) ≥ −δ, ∀v′i ∈ Ti, ∀λ

′
i ∈ Fi (5.11)

or, that there is some λ̆i ∈ Fi(x
0) such that

θφi (λ̆i, λ
′
i, v

′
i) ≥ 0, ∀v′i ∈ Ti, ∀λ

′
i ∈ Fi(x

0) (5.12)

θφi (λ̆i, λ
α
i , v

′
i) > δ, ∀v′i ∈ Ti (5.13)

It is a simple matter to check that δ-MRPAR reduces to MRPAR for δ = 0.

Phrasing the description to allow for the rule to be interpreted with and without the

δ relaxation, δ-MRAPR requires that each bidder must adjust his valuation bounds to

establish that the provisional trade is [within δ of] maximizing profit for all possible

valuations (5.11), or some other trade satisfies RPAR (5.12) and is strictly preferred

[by at least δ] to the provisional trade (5.13). Just as for RPAR, one can show that

a bidder can always meet δ-MRPAR (for any δ) by defining an exact valuation.8

In analyzing the properties of the δ-MRPAR rule, the following lemma will be

useful:

Lemma 5.2: If every bidder i meets δ-MRPAR without precluding vαi from his up-

dated bid tree, and prices φ are δ-approximate EQ prices with respect to provi-

sional valuation profile vα and trade λα, and bidders are straightforward, then

the provisional trade is a 2min(M, n
2
)δ-approximate efficient trade.

8Let vi denote this valuation. In the case where δ-MRPAR is not satisfied via (5.11) then λ̆i ∈
argmaxλi∈Fi(x0)[vi(λi)− pφ(λ)] will satisfy δ-MRPAR as follows: It satisfies (5.12) by construction.

Now, let λ′i denote the trade with vi(λ
′
i)− pφ(λ′i) > vi(λ

α
i )− pφ(λαi ) + δ. We have vi(λ̆i)− pφ(λ̆i) ≥

vi(λ
′
i)− pφ(λ′i) > vi(λ

α
i )− pφ(λαi ) + δ, and (5.13).
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Proof. Fix bidder i. By δ-EQ, we have θφi (λ
α
i , λ

′
i, v

α
i ) ≥ −δ for all λ′i ∈ Fi(x

0). Con-

sider any λ̆i 6= λαi . Because v
α
i remains in the bid tree, we must have θφi (λ̆i, λ

α
i , v

α
i ) ≤ δ

and δ-MRPAR cannot be satisfied via (5.12) and (5.13). Therefore, δ-MRPAR is sat-

isfied for every bidder via (5.11) and with provisional trade λα the satisfying trade.

Therefore we prove that prices, φ, are δ-approximate EQ prices for all valuations,

including the true valuation, since bidders are straightforward and this is within their

bounds. The efficiency of the trade follows from Theorem 2.8from Section 2.10.3.

This in turn provides a simple proof for the efficiency of ICE when approximate

CE prices exist upon termination. Suppose that ICE is defined to terminate as soon

as prices are δ-accurate and vα is retained in the bid tree by all bidders in meeting

the activity rule, or when quiescence is reached and no bidder refines his bounds

in meeting the rule. In this variation, the provisional trade λα is the trade finally

implemented.

Theorem 5.3: ICE with δ-MRPAR is 2min(M, n
2
)δ-efficient when prices are δ-

accurate with respect to (vα, λα) upon termination and bidders are straightfor-

ward.

Proof. When ICE terminates, either (a) prices are δ-accurate and vα is retained in

the bid tree by all bidders, and we can appeal directly to Lemma 5.2, or (b) no bidder

refines his bounds in meeting δ-MRPAR, in which case vαi remains in the space of

valuations consistent with the bid tree for each bidder.

We also have the following simple corollary, which considers the property of ICE
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XOR

Buy A $8
$2

Buy B $5
$4

(a) Passes δ-MRPAR

XOR

Buy A $8=v
$2=x

Buy B $8=y
$4=w

(b) Fails δ-MRPAR

Figure 5.6: δ-MRPAR where the provisional trade is “Buy A”, φA = 3, φB = 4 and
δ = 2

for a domain in which approximately accurate EQ prices exist:

Corollary 5.4: ICE with δ-MRPAR is 2min(M, n
2
)δ-efficient when δ-accurate com-

petitive equilibrium prices exist for all valuations in the valuation domain and

when all bidders are straightforward.

Specializing to domains in which exact EQ prices exist (e.g., for unit-demand

preferences as in the assignment model of Shapley and Shubik, 1972; see also the

work of Bikhchandani and Mamer, 1997), then ICE with MRPAR is efficient for

straightforward bidders.

Example 5.5: To illustrate the δ-MRPAR rule consider a single bidder with a valua-

tion tree as in Figure 5.6a. Suppose the provisional trade λαi allocates A to the bidder,

and with prices φA = 3, φB = 4 and δ = 2. Here the bidder has satisfied δ-MRPAR

because the guaranteed $2-$3=$-1 payoff from A is within δ of the possible $5-$4=$1

payoff from B. Now consider Figure 5.6b, with a relaxed upper-bound on “buy B” of

$8. Now the bidder fails δ-MRPAR because the guaranteed $-1 payoff from A is not

within δ of the possible payoff from B of $8-$4=$4. Let [x, v] and [w, y] denote the

lower and upper bounds, on “buy A” and “buy B” respectively, as revised in meeting
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the rule. To pass the rule, the bidder has two choices:

• Demonstrate λαi is the best response. To do so the bidder will need to adjust x

and y to make x− 3 ≥ y − 4− 2 ⇒ y − x ≤ 3; e.g., values x = $2, y = $5 solve

this, as in Figure 5.6a, as do many other possibilities.

• OR Demonstrate that another trade (e.g., “buy B”) is more than $2 better than

λαi , i.e., w − 4 > v − 3 + 2 ⇒ w − v > 3, and “buy B” is weakly better than

the null trade, i.e., w − 4 ≥ 0. For instance, if the bidder’s true values are

vA = $3, vB = $8 then x ≤ 3 ≤ v and w ≤ 8 ≤ y and the rule cannot be satisfied

in the first case. But, the buyer can establish that “buy B” is his best-response,

e.g., by setting v = $4, w = $7, or v = $3, w = $6.

5.3.3.2 MRPAR Computation and Bidder Feedback

The definition of MRPAR by a naive interpretation suggests that checking for

compliance requires explicitly considering all valuations v′i ∈ Ti and all trades λ′i ∈

Fi(x
0). Fortunately, this is not necessary. In this section we present a method for

checking MRPAR given prices φ, provisional trade λαi and bid tree Ti, by solving

three MIPs. Moreover, we explain that the solution to these MIPs also provides nice

feedback for bidders. ICE can automatically identify a set of nodes at which a bidder

needs to increase his lower bound and a set of nodes at which a bidder needs to

decrease his upper bound in meeting MRPAR. The details of how our agents use this

information are described in Section 5.5.1.

We begin by considering the special case of δ = 0. The general case follows almost
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immediately. Define a candidate passing trade, λLi , as:

λLi ∈ argmax
λi∈Fi(x0)

vi(λi)− pφ(λi) (5.14)

breaking ties

(i) to maximize vi(λi)− vi(λi)

(ii) in favor of λαi

This can be computed by solving one MIP to maximize vi(λi)−p
φ(λi), followed by

a second MIP in which this objective is incorporated as a constraint and vi(λi)−vi(λi)

becomes the objective.

Next, we will find it useful to define the perturbed valuation with respect to

a trade λi on a bid tree Ti, by assigning the following values to each node β:

ṽi(β) =





vi(β) , if β ∈ sat i(λi)

vi(β) , otherwise,

(5.15)

where β ∈ sat i(λi) if and only if node β is satisfied in tree Ti at the lower bound

valuations vi on nodes for the trade λi. This valuation function, ṽi, is minimizes the

value on nodes satisfied by trade λi and maximizes the value on other nodes.

Now, given perturbed valuation ṽi, defined with respect to trade λLi (as in Sec-

tion 5.3.2), we can define a witness trade, λUi , as:

λUi ∈ arg max
λi∈Fi(x0)

ṽi(λi)− pφ(λi). (5.16)

This can be found by solving a third MIP. Given prices φ, provisional trade λαi

and bid tree Ti, the computational MRPAR rule (C-MRPAR) for the case of δ = 0

can now be defined as:
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(1) vi(λ
L
i )− pφ(λLi ) ≥ ṽi(λ

U
i )− pφ(λUi ) ,and

(2) λLi = λαi , or vi(λ
L
i )− pφ(λLi ) > ṽi(λ

α
i )− pφ(λαi )

We now establish that C-MRPAR is equivalent to MRPAR, as defined by (5.11)–

(5.13).

Lemma 5.5: Given trades λi and λ
′
i, prices φ, and tree Ti, we have θφi (λi, λ

′
i, v

′
i) ≥

0, ∀v′i ∈ Ti if and only if vi(λi)− pφ(λi) ≥ ṽi(λ
′
i)− pφ(λ′i), where ṽi is defined

with respect to trade λi.

Proof. Direction (⇒) is immediate since ṽi ∈ Ti. Consider direction (⇐) and suppose,

for contradiction, that vi(λi)− pφ(λi) ≥ ṽi(λ
′
i)− pφ(λ′i) but there exists some v′i ∈ Ti

such that v′i(λi) − pφ(λi) < v′i(λ
′
i) − pφ(λ′i). Subtract

∑
β∈λi∩λ′

i
[v′i(β) − vi(β)] from

both sides, where β ∈ λi indicates that node β is satisfied by trade λi, to get

∑

β∈λi\λ′

i

v′i(β) +
∑

β∈λi∩λ′

i

v′i(β)−
∑

β∈λi∩λ′

i

v′i(β) +
∑

β∈λi∩λ′

i

vi(β)− pφ(λi)

<

∑

β∈λ′

i\λi

v′i(β) +
∑

β∈λi∩λ
′

i

v′i(β)−
∑

β∈λi∩λ
′

i

v′i(β) +
∑

β∈λi∩λ
′

i

vi(β)− pφ(λ′i) (5.17)

⇒
∑

β∈λi\λ
′

i

vi(β) +
∑

β∈λi∩λ
′

i

vi(β)− pφ(λi) <
∑

β∈λ′

i\λi

vi(β) +
∑

β∈λi∩λ
′

i

vi(β)− pφ(λ′i) (5.18)

⇒ vi(λi)− pφ(λi) < ṽi(λ
′
i)− pφ(λ′i) (5.19)

which is a contradiction.
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Lemma 5.6: Given trade λi, prices φ, and tree Ti then θφi (λi, λ
′
i, v

′
i) ≥ 0, ∀v′i ∈ Ti,

∀λ′i ∈ Fi(x
0), if and only if vi(λi) − pφ(λi) ≥ ṽi(λ

U
i ) − pφ(λUi ), where ṽi is

defined with respect to trade λi and λ
U
i is the witness trade.

Proof. Direction (⇒) is immediate since ṽi ∈ Ti and λ
U
i ∈ Fi(x

0). Consider direction

(⇐) and suppose, for contradiction, that vi(λi)− pφ(λi) ≥ ṽi(λ
U
i )− pφ(λUi ) but there

exists some λ′i ∈ Fi(x
0) and v′i ∈ Ti such that θφi (λi, λ

′
i, v

′
i) < 0. By Lemma 5.5, this

means vi(λi)− pφ(λi) < ṽi(λ
′
i)− pφ(λ′i). But, we have a contradiction because

vi(λi)− pφ(λi) ≥ ṽi(λ
U
i )− pφ(λUi ) (5.20)

= max
λ′′

i ∈Fi(x0)
ṽi(λ

′′
i )− pφ(λ′′i ) ≥ ṽi(λ

′
i)− pφ(λ′i) (5.21)

Theorem 5.7: C-MRPAR is equivalent to δ-MRPAR for δ = 0.

Proof. Comparing (5.9) and (5.10) with C-MRPAR, and given Lemmas 5.5 and 5.6,

all that is left to show is that it is sufficient to check λLi , as the only candidate to pass

MRPAR. That is, we need to show that if there is some λ̆i ∈ Fi(x
0) that satisfies

MRPAR then λLi satisfies MRPAR. We argue as follows:

1. Trade λ̆i must solve maxλi∈Fi(x0)[vi(λi) − pφ(λi)]. Otherwise, there is some λ′i

with vi(λ
′
i)− pφ(λ′i) > vi(λ̆i)− pφ(λ̆i). A contradiction with (5.9).

2. Trade λ̆i must also break ties in favor of maximizing vi(λi) − vi(λi). Other-

wise, there is some λ′i with the same profit as λ̆i at vi, with vi(λ
′
i) − vi(λ

′
i) >

vi(λ̆i)−vi(λ̆i). This implies vi(λ
′
i)−vi(λ̆i) > vi(λ

′
i)−vi(λ̆i), and θ

φ
i (λ

′
i, λ̆i, vi) >
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θφi (λ
′
i, λ̆i, vi). But, since λ

′
i has the same profit as λ̆i at vi we have θ

φ
i (λ

′
i, λ̆i, vi) =

0 and so θφi (λ
′
i, λ̆i, vi) > 0. This is a contradiction with (5.9).

3. Proceed now by case analysis. Either λ̆i = λαi , in which case we are done,

because this will be explicitly selected as candidate passing trade λLi . For the

other case, let ΛL
i denote all feasible solutions to (5.14) and consider the difficult

case when |ΛL
i | > 1. We argue that if λ̆i ∈ ΛL

i satisfies MRPAR, then so does

any other trade λ′i ∈ ΛL
i , with λ

′
i 6= λ̆i. By MRPAR, we have θφi (λ̆i, λ

′
i, v

′
i) ≥ 0,

∀v′i ∈ Ti. In particular, ṽi(λ̆i) − pφ(λ̆i) ≥ ṽi(λ
′
i) − pφ(λ′i), where ṽi is defined

with respect to λ̆i, and equivalently,

vi(λ̆i)− pφ(λ̆i) ≥ ṽi(λ
′
i)− pφ(λ′i). (5.22)

On the other hand,

vi(λ̆i)− pφ(λ̆i) = vi(λ
′
i)− pφ(λ′i), (5.23)

since both are in ΛL
i . Taking (5.22) together with (5.23), we must have that

λ′i satisfies no uncertain value nodes in Ti not also satisfied in λ̆i. Moreover,

since vi(λ̆i)− vi(λ̆i) = vi(λ
′
i)− vi(λ

′
i), both trades must satisfy exactly the same

uncertain value nodes. Finally, by (5.23) the profit from all fixed value nodes

in Ti must be the same in both trades. We conclude that the profit is the same

for all v′i ∈ Ti for λ̆i and λ′i at the current prices and MRPAR is satisfied by

either trade.

To understand the importance of the tie-breaking rule (i) in selecting the candidate
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passing trade, λLi , in C-MRPAR, consider the following example for MRPAR with

δ = 0:

Example 5.6: A bidder has XOR(+A,+B) and a value of 5 on the leaf +A and

a value range of [5,10] on leaf +B. Suppose prices are currently 3 for each of A

and B and λαi = +B. The MRPAR rule is satisfied because the market knows that

however the remaining value uncertainty on +B is resolved the bidder will always

(weakly) prefer +B to +A and +B is λαi . Notice that both +A and +B have the

same pessimistic utility, but only +B can satisfy MRPAR. But +B has maximal

value uncertainty, and therefore this is selected over +A by C-MRPAR.

To understand the importance of selecting, and evaluating, λUi with respect to ṽi

rather than vi, consider the following example (again for δ = 0). It illustrates the

role of “shared uncertainty” in the tree, which occurs when multiple trades share a

node with uncertain value and the value, although uncertain, will be resolved in the

same way for both trades.

Example 5.7: A bidder has XOR(+A,+B) and value bounds [5, 10] on the root node

and a value of 1 on leaf +A. Suppose prices are currently 3 for each of A and B and

λαi = +B. The MRPAR rule is satisfied because the bidder strictly prefers +A to +B,

whichever way the uncertain value on the root node is ultimately resolved. C-MRPAR

selects λLi as “buy A”, with payoff vi(λ
L
i )− pφ(λLi ) = 5 + 1− 3 = 3. At valuation vi,

the witness trade “buy B” would be selected and have payoff 10− 3 = 7 and seem to

violate MRPAR. But, whichever way the uncertain value at the root is resolved it will
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affect +A and +B in the same way. This is addressed by setting ṽi(β) = vi(β) = 5 on

the root node, the same value adopted in determining the payoff from λLi . Evaluated

at ṽi, the witness is “buy A” and (1) of C-MRPAR is trivially satisfied while (2) is

satisfied since 3 > 5− 3 = 2.

For δ-MRPAR with δ > 0, we adopt a slight variation, with a δ-C-MRPAR

procedure defined as:

(1) Check θφi (λ
α
i , λ

′
i, v

′
i) ≥ −δ for all v′i ∈ Ti, all λ

′
i ∈ Fi(x

0) directly, by application

of Lemma 5.6 with valuation ṽi defined with respect to trade λαi , and test

vi(λ
α
i )− pφ(λαi ) ≥ ṽi(λ

U
i )− pφ(λUi )− δ (5.24)

(2) If this is not satisfied then fall back on C-MRPAR to verify (5.12) and (5.13),

with candidate passing trade λLi modified from (5.14) to drop tie-breaking in

favor of λαi and with the second step of C-MRPAR modified to require vi(λ
L
i )−

pφ(λLi ) > ṽi(λ
α
i )− pφ(λαi ) + δ, again with ṽi defined with respect to λLi .

The argument adopted in the proof of Theorem 5.7 remains valid in establishing

that it is sufficient to consider λLi , as defined in δ-C-MRPAR, in the case that λαi does

not pass the activity rule.

5.3.3.3 Delta Improvement Activity Rule (DIAR)

With only δ-MRPAR, it is quite possible for ICE to get stuck, with all bidders

satisfying the activity rule without changing their bounds, but with the prices less

than δ accurate (with respect to (λα, vα)). Therefore, we need an activity rule that
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will continue to drive a reduction in value uncertainty, i.e., the gap between upper

bound values and lower bound values, even in the face of inaccurate prices, and ideally

in a way that remains “price-directed” in the sense of using prices to determine which

trades (and in turn which nodes in TBBL trees) each bidder should be focused on.

We introduce for this purpose a second (and novel) activity rule (DIAR), which

fills this role by requiring bidders to reveal information so as to improve price accuracy

and, in the limit, full information on the nodes that matter. Defined this way, the

DIAR rule very nicely complements the δ-MRPAR rule. Because we can establish

the efficiency of the provisional trade directly via the valuation bounds, as we will

see in Section 5.3.5, we do not actually need fully accurate prices in order to close

the exchange. Thus, the DIAR rule does not imply that bidders will reveal full

information. Rather, the presence of DIAR ensures both good performance in practice

as well as good theoretical properties. In our experiments we enable DIAR in all

rounds of ICE, and it fires in parallel with δ-MRPAR. In practice, we see that most

of the progress in refining valuation information occurs due to δ-MRPAR, and that

all the progress in early rounds occurs due to δ-MRPAR. Experimental support for

this is provided in Section 5.5.9

Before providing the specifics of DIAR, we identify a node β ∈ Ti in the bid tree

of bidder i as interesting for some fixed instance (v, x0), when the node is satisfied in

some feasible trade. We have the following simple lemma:

9In a variation on the way ICE is defined, DIAR could be used only in rounds in which the price
error for the provisional valuation and trade is greater than the error associated with δ-MRPAR.
This is because δ-MRPAR is sufficient for approximate efficiency when prices are accurate enough.
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Lemma 5.8: If there is no value uncertainty on any interesting nodes in the bid

trees of any bidders, and bidders are straightforward, then λα is efficient.

Proof. An absense of value uncertainty and thus the presence of exact information

about the value on all interesting nodes implies that the difference in value is exactly

known between all pairs of feasible trades because for all uninteresting nodes, either

the node is never satisfied in any trade (and thus its value does not matter) or the

node is satisfied in every trade and thus its actual value does not matter in defining

the difference in value between pairs of trades. Only the difference in value between

pairs of trades is important in determining the efficient trade.

DIAR focuses a bidder on interesting nodes associated with trades for which the

pricing error is large, and where this error could still be reduced by refining the

valuation bounds on the node. Given prices φ and provisional trade λαi , the main

focus of DIAR is the following upper-bound δ
k

i , on the amount by which prices φ

might misprice some trade λki ∈ Fi(x
0) with respect to bidder i’s true valuation:10

δ
k

i = max
v′i∈Ti

[v′i(λ
k
i )− pφ(λki )− (v′i(λ

α
i )− pφ(λαi ))] (5.25)

We call this the “DIAR error on trade λki ”, and note that it depends on the current

prices as well as the current bid tree and provisional trade, but not the true valuation,

which is unknown to the center. The DIAR error provides an upper bound on the

additional payoff that the bidder could achieve from trade λki over trade λαi . If we

order trades, λ1i , λ
2
i , . . ., so that λ1i has maximal DIAR error, then δ

1

i ≥ δi, where

10Related ideas for preference elicitation in CEs can be found in the early the work of Smith,
Sandholm, and Simmons [2002].
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Figure 5.7: Stylized effect of MRPAR and DIAR on the bounds of the λαi and λ∗i
trades

δi = maxλ′

i∈Fi(x0)[v
α
i (λ

′
i)−pφ(λ′i)− (vαi (λ

α
i )−pφ(λαi ))] is the pricing error with respect

to the provisional trade and provisional valuation profile. This is the error that the

pricing algorithm is designed to minimize in each round, and the same error that is

used in Theorem 2.8 in reference to δ-accurate prices. Thus, we see that the maximal

DIAR error also bounds the amount by which prices are approximate EQ prices, and

that if δ
1

i ≤ 0 for all bidders i then the current prices φ are exact EQ prices with

respect to (λα, vα).

To satisfy DIAR a bidder must reduce the DIAR error on the trade with the

largest error for which the error can be reduced (some error may just be intrinsic

given the current prices and not because of uncertainty about the bidder’s valuation),

or establish by providing exact value information throughout the tree that none of

the DIAR error on any trades is due to value uncertainty. Figure 5.7 illustrates the

difference between MRPAR and DIAR. A bidder can satisfy MRPAR by making it

clear that the lower bound on payoff from some trade is greater than the upper bound

on all other trades, but still leave large uncertainty about value. DIAR requires that

a bidder also refine this upper bound if it is on a node that corresponds to a trade

for which the DIAR error (and thus potentially the actual approximation in prices)
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Figure 5.8: Bidder i’s trades, ordered such that DIAR error decreases from left to
right. The bidder must reduce, by at least ǫ, the DIAR error on the
trade with the greatest error for which such a reduction is possible and
prove (via valuation bounds) that it is impossible to improve by ǫ any
trades with larger error.

is large. The rule is illustrated in Figure 5.8. DIAR is parameterized by some ǫ ≥ 0.

We refer to the formal rule as ǫ-DIAR:

Definition 5.2: To satisfy ǫ-DIAR given provisional trade λαi and prices φ, the

bidder must modify his valuation bounds to:

(a) reduce the DIAR error on some trade, λji ∈ Fi(x
0), by at least ǫ and

(b) prove that error δ
k

i cannot be improved by ǫ for all trades λki ∈ Fi(x
0) for 1 ≤

k < j,

or (c) establish that δ
k

i cannot be improved by ǫ on any trade λki ∈ Fi(x
0).

In particular, even if the bidder is in case (c) above, he will still be forced to narrow

his bounds and progress will be made towards bounding efficiency. In practice, we

define the ǫ parameter to be large at the start and smaller in later rounds.

Example 5.8: Consider the tree in Figure 5.9a when the provisional trade is “buy

A”, prices φ = ($4, $5, $6) and DIAR parameter ǫ = 1. The DIAR error on each



Chapter 5: ICE: An Iterative Combinatorial Exchange 179

XOR

Buy A
$6
$4
$2

Buy B
$8
$5
$3

Buy C
$10
$10
$4

(a) Fails DIAR

XOR

Buy A
$6
$4
$2

Buy B
$7
$5
$3

Buy C
$10
$10
$9.01

(b) Passes DIAR

Figure 5.9: Respecting DIAR where the provisional trade is “Buy A”, φA = 4, φB =
5, φC = 6 and ǫ = 1

trade, defined via (5.25), and listed in decreasing order, are:

C → δ
1
= ($10− $6)− (−$2) = $6

B → δ
2
= ($8− $5)− (−$2) = $5

∅ → δ
3
= ($0− $0)− (−$2) = $2

A→ δ
4
= ($2− $4)− (−$2) = $0,

where −$2 = $2− $4 is the worst-case profit from the provisional trade. Now, we see

that δ
1
cannot be made smaller by lowering the upper-bound on leaf “buy C” because

this bound is already tight against the truthful value of $10. Instead the bidder must

demonstrate that a decrease of ǫ = 1 is impossible by raising the lower bound on “buy

C” to 9.01. However δ
2
can be decreased by ǫ = 1, by reducing the upper-bound on

“buy B” from 8 to 7, giving us the tree in Figure 5.9b.

Lemma 5.9: When ICE incorporates DIAR, a straightforward bidder must eventu-

ally reveal complete value information on all interesting nodes in his bid tree

as ǫ→ 0.

Proof. Fix provisional trade λαi and consider trade, λ1i ∈ Fi(x
0) 6= λαi , with the
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maximal DIAR error. Continue to assume straightforward bidders. Recall that vi(β)

denotes a bidder’s true value on node β in his TBBL tree. By case analysis on nodes

β ∈ Ti, meeting the DIAR rule on this trade as ǫ→ 0 requires:

(i) Nodes β ∈ λ1i \λ
α
i . Decrease the upper-bound to vi(β), the true value, to reduce

the error. Increase the lower-bound to vi(β) to prove that further progress is

not possible.

(ii) Nodes β ∈ λαi \ λ
1
i . Increase the lower-bound to vi(β), the true value, to reduce

the error. Decrease the upper-bound to vi(β) to prove that further progress is

not possible.

(iii) Nodes β ∈ λαi ∩ λ1i . No change is required.

(iv) Nodes β /∈ λ1i ∪ λ
α
i . No change is required.

Continue to fix some λαi , and consider now the impact of DIAR as ǫ → 0 and as

the rule is met for successive trades, moving from λ1i to λ2i and onwards. Eventually,

the value bounds on all nodes β /∈ λαi but in at least one other feasible trade are driven

to truth by (i), and the value bounds on all nodes β ∈ λαi but not in at least one other

feasible trade are driven to truth by (ii). Noting that the null trade is always feasible,

the bidder will ultimately reveal complete value information except on nodes that are

not satisfied in any feasible trade.

Putting this together we have the following simple theorem, which considers the

convergence property of ICE when DIAR is the only activity rule.
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Theorem 5.10: ICE with the ǫ-DIAR rule will terminate with the efficient trade

when all bidders are straightforward and as ǫ→ 0.

Proof. Immediate by Lemma 5.8 and Lemma 5.9.

In practice, we use both δ-MRPAR and DIAR, and the role of DIAR is to ensure

convergence in instances for which there do not exist good, supporting EQ prices.

The use of DIAR does not lead, in any case, to full revelation of bidder valuations

because we can prove efficiency directly in terms of valuation bounds on different

trades (see Section 5.3.5).

5.3.3.4 DIAR Computation and Bidder Feedback

In this section we present a method to check ǫ-DIAR given prices φ, provisional

trade λαi , the bidder’s bid tree from the past round and proposed new bid tree, by

solving two MIPs. Moreover, the solution to these MIPs also provides nice feedback

for bidders. ICE can automatically identify the trade, and in turn the corresponding

nodes in the bid tree, for which the bidder must provide more information. The

details of how our agents use this information are described in Section 5.5.1.

The first optimization problem identifies the trade with maximal DIAR error for

which the current bounds refinement has improved this error by at least ǫ:

∆P
i = max

λi∈Fi(x0)
[ṽ0i (λi)− pφ(λi)− (v0i (λ

α
i )− pφ(λαi ))] (5.26)

s.t. (ṽ0i (λi)− pφ(λi)− (v0i (λ
α
i )− pφ(λαi )))

− (ṽ1i (λi)− pφ(λi)− (v1i (λ
α
i )− pφ(λαi ))) ≥ ǫ (5.27)
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= −C + max
λi∈Fi(x0)

ṽ0i (λi)− pφ(λi) (5.28)

s.t. ṽ0i (λi)− v0i (λ
α
i )− ṽ1i (λi) + v1i (λ

α
i ) ≥ ǫ, (5.29)

where ṽ0i and ṽ
1
i are defined with respect to λαi , v

0 and v1 represent valuations defined

before and after the bidder’s refinement respectively, and C = v0i (λ
α
i )− pφ(λαi ). Note

that the problem could be infeasible, in which case we define ∆P
i := −∞.

The second optimization identifies the trade with maximal DIAR error for which

v1 still allows for the possibility of valuation bounds that provide an ǫ error reduction

over v0:

∆F
i = max

λi∈Fi(x0)
[ṽ0i (λi)− pφ(λi)− (v0i (λ

α
i )− pφ(λαi ))] (5.30)

s.t. (ṽ0i (λi)− pφ(λi)− (v0i (λ
α
i )− pφ(λαi )))

− (v1i (λi)− pφ(λi)− (v̆1i (λ
α
i )− pφ(λαi ))) ≥ ǫ (5.31)

= −C + max
λi∈Fi(x0)

ṽ0i (λi)− pφ(λi) (5.32)

s.t. ṽ0i (λi)− v0i (λ
α
i )− v1i (λi) + v̆1i (λ

α
i ) ≥ ǫ, (5.33)

where ṽi is defined with respect to λαi , and v̆i is similarly defined with respect to λi.

The second term in (5.31) recognizes that it remains possible to decrease the value

on λi to the new lower-bound v1i (λi), while increasing the value on λαi to the new

upper-bound v1i (λ
α
i ) except on those nodes that are shared with λi, giving v̆

1
i (λ

α
i ).

We see that (5.33) is equivalent to:

∑

β∈λi\λα
i

[v0i (β)− v1i (β)] +
∑

β∈λα
i \λi

[v1i (β)− v0i (β)] ≥ ǫ,

which calculates the amount of refinement that is still possible in service of reducing

the DIAR error. Note the problem could be infeasible, in which case we define
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∆F
i := −∞. We ultimately compare the two solutions, and the bidder passes DIAR if

and only if ∆P
i ≥ ∆F

i .

5.3.4 Generating Linear Prices

Given the provisional trade λα, provisional valuations vα, and given that provi-

sional payments have also been determined (according to the payment rule, such as

Threshold, adopted in the exchange), approximate clearing prices are computed in

each round according to the following rules:

I: Accuracy (ACC) First, we compute prices that minimize the maximal error

in the best-response constraints across all bidders. (Detailed in Section 5.3.4.1.)

II: Fairness (FAIR) Second, we break ties to prefer prices that minimize the

maximal deviation from provisional payments across all bidders. (Detailed in

Section 5.3.4.1.)

III: Balance (BAL) Third, we break ties to prefer prices that minimize the max-

imal difference in price across all items. (Detailed in Section 5.3.4.1.)

Taken together, these steps are designed to promote the informativeness of prices

in driving progress across rounds. Balance is well motivated in domains where items

are more likely to be similar in value than dissimilar, preferring prices to be similar

across items and rejecting extremal prices. Note that these prices may ascend or

descend from round to round — but that they will in general tend towards increasing

accuracy, as we shall see experimentally in Section 5.5.

Example 5.9: Consider the example in Figure 5.10 with one buyer interested in

buying AB and one seller interested in selling AB. Here the buyer’s and seller’s

values for each item are 8 and -6 respectively. The efficient outcome given these
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Buyer

AND

Buy A $8 Buy B $8

Seller

AND

Sell A $-6 Sell B $-6

Figure 5.10: A simple example to illustrate pricing. ACC prices AB between $12
and $16, FAIR narrows this to $14 and BAL requires A = $7, B = $7

values is for the trade to complete. ACC requires 12 ≤ φA+φB ≤ 16, and thus allows

a range of prices. The Threshold payment splits the difference, so that the buyer pays

14 to the seller and so FAIR adds the constraint φA+φB = 14. Finally, BAL requires

φA = φB = 7.

5.3.4.1 The Three Pricing Stages

Leaving aside the idea of lexicographical minimization for a moment, we first

define the objectives of each of the three stages.

Accuracy

Given provisional trade, λα, and valuation profile, vα, we define maximally accu-

rate approximate-EQ prices as those that solve the following LP:

δ∗acc = min
φ,δacc

δacc

s.t. vαi (λ
′
i)−

∑

j

φjλ
′
ij ≤ vαi (λ

α
i )−

∑

j

φjλ
α
ij + δacc, ∀i, ∀λ′i ∈ Fi(x

0) (5.34)

δacc ≥ 0,

φj ≥ 0, ∀j ∈ G
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These prices minimize the maximal loss in payoff across all bidders for trade λα

compared to the trade that a bidder would most prefer given provisional valuation vα;

i.e., minimize the maximal value of θφi (λ
∗
i , λ

α
i , v

α
i ), where λ

∗
i = argmaxλi∈Fi(x0)[v

α
i (λi)−

pφ(λi)]. Prices that solve this LP are then refined lexicographically, fixing the worst-

case pricing error (ACC) and then working down to try to additionally minimize the

next largest pricing error and so on. Given maximally accurate prices, this then trig-

gers a series of lexicographical refinements to best approximate the payments (FAIR)

without reducing the pricing accuracy, and eventually a series of lexicographical re-

finements to try to maximally balance prices across distinct items (BAL). In addition

to further improving the quality of the prices, this process also ensures uniqueness of

prices.

Fairness

Second, we break the remaining ties to prefer fair prices: choosing prices that

minimize the worst-case error in utility for each bidder with respect to the utility

that would be achieved given Threshold payments at provisional valuation profile vα.

The fairness tie-breaking method is formulated as the following LP:
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δ∗fair = min
φ,δfair

δfair [FAIR]

s.t. vαi (λ
′
i)−

∑

j

φjλ
′
ij ≤ vαi (λ

α
i )−

∑

j

φjλ
α
ij + δ∗acc, ∀i, ∀λ′i ∈ Fi(x

0) (5.35)

δfair ≥ Uvcg,i −
∑

j

φjλ
α
ij, ∀i (5.36)

δfair ≥
∑

j

φjλ
α
ij − Uvcg,i, ∀i (5.37)

δfair ≥ 0, φj ≥ 0, ∀j ∈ G,

where Uvcg,i denotes the utility to bidder i in the VCG outcome given valuations vαi

and trade λαi . The objective here is the same as in the Threshold payment rule:

minimize the maximal error between bidder payoff (at vα) for the provisional trade

and the VCG payoff (at vα). For computational speed, rather than compute the

Threshold payments separately, and then define prices to best approximate these

payments, we do both in one step by using this formulation.

Balance

Third, we break the remaining ties to prefer balanced prices: choosing prices that

minimize the maximal price difference across all items. For this, we solve a lexi-

cographic sequence of LPs, alternating between minimization and maximization of

all prices not yet pinned down. For instance, the minimization LP is formulated as
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follows (the maximization LP is an exact mirror):

min
φ,δbal

δbal [BAL]

s.t. vαi (λ
′
i)−

∑

j

φjλ
′
ij ≤ vαi (λ

α
i )−

∑

j

φjλ
α
ij + δ∗acc, ∀i, ∀λ

′ ∈ F(x0) (5.38)

δ∗fair ≥ Uvcg,i −
∑

j

φjλ
α
ij , ∀i (5.39)

δ∗fair ≥
∑

j

φjλ
α
ij − Uvcg,i, ∀i (5.40)

δbal ≥ φj, ∀j (5.41)

φj ≤ minmax δ∗bal + ǫ, ∀j ∈ G (5.42)

φj ≥ maxmin δ∗bal, ∀j (5.43)

δbal ≥ 0, φj ≥ 0, ∀j ∈ G,

Here, minmax δ∗bal and maxmin δ∗bal represent the minimum δbal value and the

maximum δbal value from all previous BAL maximization and minimization MIPs

respectively. These two constraints serve to bind the prices into a progressively nar-

rowing range that tends towards the center.

5.3.4.2 Lexicographical Refinement

For all three pricing stages, we also perform lexicographical refinement (with re-

spect to bidders in ACC and FAIR, and with respect to goods in BAL). In addition to

further improving the quality of the prices this also ensures uniqueness. For instance,

in ACC we successively minimize the maximal error across all bidders. Given an ini-

tial solution we first “pin down” the error on all bidders for whom constraint (5.34)
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is binding. For such a bidder i, the constraint is replaced with

vαi (λ
′
i)−

∑

j

φjλ
′
ij ≤ vαi (λ

α
i )−

∑

j

φjλ
α
ij + δ∗acc,i, ∀λ′i ∈ F(x0), (5.44)

and ACC is resolved with variable δacc included in Constraints (5.45) for bidders not

yet pinned-down, so that further progress is made in lexicographically minimizing the

maximal error. Eventually, the sequence of ACC LPs terminate with a best-case error

δ∗acc,i defined for each bidder. ACC then passes this vector δ∗acc = (δ∗acc,1, . . . , δ
∗
acc,n),

to FAIR. Constraints (5.35) in FAIR are replaced with an individualized constraint,

reflecting δ∗acc,i, for each bidder. A similar lexicographical optimization process is

then used for FAIR, with constraints (5.36) and (5.37) replaced with δ∗fair,i ≥ Uvcg,i −

∑
j φjλ

α
ij and δ

∗
fair,i ≤

∑
j φjλ

α
ij−Uvcg,i as bidders i are “pinned down” and the payment

error δ∗fair,i is lexicographically minimized for each bidder.

Upon termination of FAIR, the vector, δ∗acc = (δ∗acc,1, . . . , δ
∗
acc,n), is passed together

with δ∗fair = (δ∗fair,1, . . . , δ
∗
fair,n) from FAIR into BAL. In addition to constraints (5.38),

constraints (5.39) and (5.40) are also fixed in BAL, to enforce these δ∗fair,i values for

each bidder. Finally, BAL proceeds lexicographically as well, but over all goods G.

The result of this three-stage price generation algorithm is a set of unique linear prices

that are not guaranteed to be accurate, fair or balanced — but they are “as close as

possible” to having these properties given the limited power of linear prices.

5.3.4.3 Constraint Generation

Problems ACC, FAIR and BAL all have an exponential number of constraints

because the price accuracy constraints (5.34) are defined for all trades λ′ ∈ F(x0)

and all bidders i. It is unfeasible to even write this problem down. Rather than
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solve it explicitly we use constraint generation [e.g. Bertsimas and Tsitsiklis, 1997]

and dynamically generate a sufficient subset of constraints. Constraint generation

(CG) considers a relaxed program that contains only a manageable subset of the

constraints, and solves this to optimality. Given a solution to this relaxed program,

a subproblem is used to either prove that the solution is optimal to the full program,

or to find a “violated constraint” in the full problem that is then introduced allowing

the (now strengthened) relaxed program to be resolved.

We illustrate this process for ACC. Let Fi denote a manageable subset of all pos-

sible feasible trades to bidder i. Then, a relaxed version (called ACC’) is formulated

by substituting constraints (5.34) with:

vαi (λ
′
i)−

∑

j

φjλ
′
ij ≤ vαi (λ

α
i )−

∑

j

φjλ
α
ij + δacc, ∀i, ∀λ

′
i ∈ Fi, (5.45)

where Fi is only a subset of trades that are feasible for bidder i given the other bids.

We also maintain the trades in this set across pricing stages and across rounds of

the exchange. Using this subset F instead of the full set of trades, F(x0), has let us

tractably specify the ACC MIP, but the MIP may not produce the correct solution

unless we ensure that the necessary trades are included in F .

How can we identify the important additional trades to include (i.e. those that

correspond to the binding constraints of the original MIP)? Let φ∗ denote the solution

to relaxed problem, ACC’. We can solve n subproblems, one for each bidder, of the

form:

max
λ′

i

vαi (λ
′
i)−

∑

j

φ∗
jλ

′
ij, [R-WD(i)]

s.t. λ′i ∈ F(x0) (5.46)
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to check whether solution (φ∗, δ∗acc) to ACC’ is also a feasible solution to ACC.

Problem R-WD(i), the “restricted winner-determination problem for bidder i”, is

a specialization of the WD problem, where the objective is modified to maximize

the payoff of a single bidder at the given prices, rather than the total value across

all bidders. It is solved as a MIP, by rewriting the objective in WD(T, x0) as

max{vi(β) · sat i(β) −
∑

j p
∗
j · λij} for bidder i. Thus, the structure of TBBL is ex-

ploited in generating new constraints, because this subproblem can be solved as a

concise MIP. The trees submitted by bidders i′ 6= i are used to define the space of

feasible trades.

Let λ̆i denote a solution to R-WD(i). We check condition:

vαi (λ̆i)−
∑

j

φ∗
j λ̆ij ≤ vαi (λ

α
i )−

∑

j

φ∗
jλ

α
ij + δ∗acc, (5.47)

and if this condition holds for all bidders i, then solution (φ∗, δ∗acc) is optimal for

the full program ACC. Otherwise, trade λ̆i is added to constraint set, Fi, for the

bidders i for which constraint (5.47) is violated and we re-solve ACC’ with the new

set of constraints. A similar constraint generation process is also used in the Fairness

and Balance stages, as illustrated in Figure 5.11. Because constraint generation can

only complete when it has established an adequate constraint sets Fi, we endeavor to

appropriately fill Fi as fast as possible as follows:

1. In the first round we employ a heuristic seed to establish an initial Fi set. (In

addition to including both the provisional trade and the null trade).

2. In subsequent rounds we carry forward all trades already added to Fi in previous

rounds of the exchange.
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Figure 5.11: Using constraint generation to calculate prices. The constraint set
(indicated F in the figure) is maintained across rounds and propa-
gated across the stages. A restricted WD problem (R-WD) checks for
violated constraints.

5.3.4.4 Heuristic Seeding of Constraint Sets

By maintaining the set of constraints generated in earlier rounds we place most

of the computational cost on computing prices in the very first round of ICE, when

the trade set, F, is empty. To speed-up computation we use a heuristic method to

seed F. We heuristically guess what the prices should be, and then solve an R-WD(i)

subproblem for each agent in order to back out appropriate trades to add to F. We

use a heuristic that sets the price on a good to its average contribution to the value

of the provisional trade:
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function midPointPrice(λα, T )
for all goods g traded in λα do

bCount := 0, sCount := 0, bVal := 0, sVal := 0
for all bidders i ∈ I do

B := buy nodes in Ti active in λα for good g
S := sell nodes in Ti active in λα for good g
bCount += |B|, sCount += |S|
bVal += pathVal(B), sVal += pathVal(S)

end for
pg := max(0, 0.5 · (bV al/bCount) + 0.5 · (sV al/sCount))

end for
for all goods g not traded in λα do

bVal = maxβ∈Buys(g) pathVal(β)/quantity(β)
sVal = maxβ∈Sells(g) pathVal(β)/quantity(β)
pg := 0.5 · bV al + 0.5 · sV al

end for
end function
function pathVal(N)

v := 0
for all nodes n in N do

for all ancestors a of n do
v += vα(a) / avgActiveDescendents(a)

end for
end for
return v

end function

Here, avgActiveDescendents(β) denotes the average of the minimum number and the

maximum number of descents of β that can be activated subject to the IC constraints.

5.3.4.5 Streamlining of Computation

Within a given pricing stage (i.e., ACC, FAIR or BAL) we must perform CG

together with lexicographical refinement. We have streamlined this computation with

two techniques:
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Provisional Locking There are two types of mathematical programs we solve in

pricing: LPs that solve for prices and IPs that generate additional constraints.

The LPs can be solved significantly faster then the IPs, but several IPs can be

run in parallel because they optimize over a single agent rather then globally.

As a consequence, rather then performing our lexicographic ordering in each

stage by locking one value at a time, we greedily run a sequence of LPs without

CG, provisionally locking down at least mlock ≥ 1 values (e.g., δ∗acc values in

ACC, for a sequence of agents), before checking for violating constraints. The

best choice for mlock depends on the relative speed with which the LPs and

IPs can be solved. In our experiments, we have found that choosing mlock to

be aggressive (i.e. close to 100% of the number of values), so that nearly all

decisions are made before checking the constraints, works well.

Lazy Constraint Checks When performing CG, we choose not to check the va-

lidity of current prices for every bidder every time. Instead, once a bidder i has

been found to pass, we optimistically assume that the error δi computed for that

bidder remains valid, only running the expensive IP check for the bidders which

continue to fail. Only once there are no such failing bidders, do we perform an

additional check of all bidders to ensure that the prices have remained stable

enough for the validity of the skipped bidders to have been maintained. If this

check fails for any bidder, then CG must continue. Eventually, when all bidders

pass simultaneously, we make the provisional locks permanent, and continue on

to the next set of provisional locks in the lexicographic refinement. This process

is illustrated for ACC in Figure 5.12. The other two stages follow similarly.
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Figure 5.12: Streamlined computation for interleaving constraint generation with
lexicographical optimization in the ACC pricing stage

Together these techniques can significantly improve the performance of the linear

pricing engine, as illustrated in Figure 5.13.

5.3.5 Establishing Bounds on Efficiency

Consider some round t in ICE. The round starts with the announcement of prices—

let us denote them φt—and the provisional trade. The round ends with every bidder

having met the δ-MRPAR and ǫ-DIAR activity rules. The question to address is: what
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Figure 5.13: Effect of lacy constraint checks and provisional locking on the speed
of pricing rounds.

can be established about the efficiency of the trade defined on lower-bound valuations

at the end of the round? It is perhaps unsurprising that MRPAR by itself is sufficient

to provide efficiency claims when prices are suitably accurate. What is interesting is

that the coupling of MRPAR with DIAR ensures that ICE converges to a provably

efficient trade in all cases, with efficiency often established independently of prices

by reasoning directly about lower and upper valuation bounds. For the theoretical

analysis of convergence to efficiency, we assume straightforward bidders, by which we

mean a bidder that always retains his true valuation within the valuation bounds. (All

results could equivalently be phrased in terms of efficiency claims with respect to

reported valuations.)

At the closing of each round, ICE makes a determination about whether to move

to the last-and-final round. Bidders are notified when this occurs. This last-and-final
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round provides a concluding opportunity for bidders to update their lower valuation

bound information (without exceeding their upper bounds). The exchange finally

terminates with the efficient trade and payments determined with respect to the lower

valuation bounds: it is these lower bounds that can be considered to be the ultimate

bid submitted by each bidder when ICE terminates. Let λ ∈ argmaxλ∈F(x0)

∑
i vi(λi)

denote the trade that is optimal given the lower bound valuations. As explained in

Section 5.3.1, ICE is parameterized by a target approximation error, ∆∗, providing a

lower-bound on the relative efficiency of λ to the efficient trade λ∗ for true valuations.

The challenge is to obtain useful bounds on the relative efficiency EFF(λ) of trade

λ. We provide two methods, one of which is price-based and uses duality theory, and

the second of which directly reasons about the bounds on bidder valuations. We now

consider each in turn.

5.3.5.1 A Price-Based Proof of Efficiency

We have already seen in Section 5.3.3.1 that a bound on the efficiency of provisional

trade λα can sometimes be established via prices. This provides a simple method to

establish a bound on the efficiency of trade λ. Fix some δ ≥ 0. For vα denoting

the provisional valuation profile at the start of round t, and λα the corresponding

provisional trade, we know that if

(a) bidders meet δ-MRPAR while leaving vα within their bounds,

(b) prices φt were δ-approximate EQ prices for vα and λα, and

(c) λα is equal to λ, i.e., the efficient trade given the refined lower bound valuations,

then trade λ is a 2min(M, n
2
)δ-approximation to the efficient trade λ∗ by Theorem 2.8.
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We have
∑

i vi(λi) + 2min(M, n
2
)δ ≥

∑
i vi(λ

∗
i ), and then,

EFF(λ) =

∑
i vi(λi)∑
i vi(λ

∗)
≥ 1−

2min(M, n
2
)∑

i vi(λ
∗
i )

δ ≥ 1−
2min(M, n

2
)

maxλ∈F(x0)

∑
i vi(λ)

δ, (5.48)

which we define as ωprice. Conditioned on (a–c) being met, so that the bound is

available, it will satisfy ωprice ≥ ∆∗ for a small enough δ parameter. When the bound

is not available we set ωprice := 0.

5.3.5.2 A Direct Proof of Efficiency

We also provide a complementary, direct, method to establish the relative effi-

ciency of λ by working with the refined valuation bounds at the end of round t. To

establish this bound we need the definition of perturbed valuations that was introduced

formally in Section 5.3.3.1. Informally, a perturbed valuation for a given TBBL tree is

defined to be the lower bound value at all the nodes satisfied by a specific trade, and

the upper bounds everywhere else. Using this concept we can establish the following

efficiency bound directly from the valuation bounds in the TBBL trees:

EFF(λ) =
v(λ)

v(λ∗)
≥ min

v′∈T,λ′∈F(x0)

[
v′(λ)

v′(λ′)

]
= min

λ′∈F(x0)

[
ṽ(λ)

ṽ(λ′)

]
=
v(λ)

ṽ(λ̃)
≡ ωdirect (5.49)

where notation ṽ = (ṽ1, . . . , ṽn), and λ̃ is the trade that maximizes
∑

i ṽi(λi) across

all feasible trades. The first inequality holds because the domain of the minimization

includes v ∈ T and trade λ′ = λ∗. The first equality holds because for any λ′ 6= λ,

the worst-case efficiency for λ occurs when the value v′ ∈ T is selected to minimize

the value on nodes λ \ λ′, maximize the value on nodes λ′ \ λ, and minimize the

value on shared nodes, λ′ ∩ λ. Whatever the choice of λ′, this valuation is arrived

at through perturbed valuation ṽ. For the final equality, ṽ(λ) = v(λ) by definition,
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Figure 5.14: Determining an efficiency bound based on lower and upper valuations.

and the optimal trade λ′ is that which maximizes the value of the denominator, i.e.,

trade λ̃. Figure 5.14 schematically illustrates the various trades and values used in

this bound, and in particular provides some graphical intuition for why ṽ(λ̃)−v(λ) ≥

ṽ(λ∗)− v(λ) = maxv′∈T [v
′(λ∗)− v′(λ)] ≥ v(λ∗)− v(λ).

5.3.5.3 Combining the Bounds Together

Given the above methods we can establish lower-bound ωeff = max(ωprice, ωdirect)

on the relative efficiency of trade λ. ICE is defined to move to the last-and-final round

when either of the following hold:

(a) the error bound ωeff ≥ ∆∗

(b) there is no trade even at optimistic (i.e., upper-bound) valuations.

Combining this with Theorem 5.10, we immediately get our main result.

Theorem 5.11: When ICE incorporates δ-MRPAR and ǫ-DIAR and when all bid-

ders are straightforward, then the exchange terminates with a trade that is
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within the target approximation error ∆∗, for any ∆∗ ≥ 0 as ǫ→ 0.11

The use of ǫ-DIAR by itself is sufficient to establish this result. However, it is

the use of prices and MRPAR that drives most elicitation in practice, particularly as

we fix δ in δ-MRPAR to a tiny constant in actual use. Empirical support for this,

along with the quality of the price-based bound and the direct efficiency bounds, is

provided in Section 5.5. For the ǫ parameter in ǫ-DIAR, we find that a simple rule:

ǫ :=
1

2n

∑

i

∑

β∈Ti

vi∈N(β)− vi(β)

|Ti|
, (5.50)

works well. This tends towards zero as more value information is revealed by partic-

ipants.

One last element of the design of ICE is the precise method by which the provi-

sional valuation profile vα = αv+ (1−α)v is constructed. This is important because

it is then used to determine the provisional trade and price feedback. A simple ap-

proach that works well is to define α := max(0.5, ωeff). We find that the lower bound

of 0.5 is a useful heuristic for early rounds when ωeff is likely to be small, making

ICE adopt a provisional valuation in the middle of the valuation bounds when not

much is known. The effect is then to push α towards 1 and thus vα towards v as the

efficiency bound ωeff improves.12

11In practice, we choose ǫ endogenously, reducing it only when progress is not being made and
efficiency can not yet be proven. Theoretically ǫ may need to approach zero to reach efficiency. But
in all observed instances it remains a reasonably large positive constant.

12In some domains, it may also be important to require that payments (rather than just the
efficiency of trade λ) be accurate enough before moving to the last-and-final round. A bound on
payments can be computed in an analogous way to that on efficiency. Whether this is required
in practice is likely domain-specific and to depend, for instance, on whether the payments tend to
be accurate anyway by the time the trade is approximately accurate, and also on the impact on
strategic behavior.
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5.4 Illustrative Examples

In this section we illustrate the behavior of the exchange on two simple examples.

These examples are furnished to give a qualitative feel for its behavior. To construct

the examples we populate ICE with very simple, automated bidding agents. These

agents use MIP-guided heuristics to minimize the amount of information revealed in

the course of passing the activity rules, while maintaining their true value within their

lower- and upper-bounds (i.e., they act in a ‘straightforward’ way). Their reluctance

to reveal information models a basic tenet of our design: that it is costly for partic-

ipants to refine and then reveal information about their values for different trades.

We defer a detailed discussion of the operation of these agents until Section 5.5.

In this section, and also in presenting our main experimental results, we do not

move to a last-and-final round. Rather, the bidding agents are programmed to con-

tinue to improve their bids past the round at which efficiency is already proved (and

when a last-and-final round would ordinarily be declared), and until payments are

within some desired accuracy tolerance. We do this to avoid the need to program

agents with a strategy for how to bid in the last-and-final round.
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Figure 5.15: AgentA: A $8, AgentB: B $8, AgentAB: A AND B $10. In these
graphs the horizontal axis stipulates the round of the mechanism, nor-
malized so that termination occurs at 100%. For experimental pur-
poses, we hold ICE open until the payments charged match those that
would occur at truth. In actual use, the exchange would likely be
closed at the point where the efficient trade can be determined, here
indicated by the vertical dashed line.

Example 5.10: Consider a market with a no-reserve seller of two items A and B,

and three buyers. AgentA demands A with a value of $8, AgentB demands B with

a value of $8, and AgentAB demands A AND B with a value of $10. Figure 5.15a

shows that very quickly the exchange discovers the correct trade. A price between $5

and $8 will be accurate in this situation, and we can see that the prices in Figure

5.15b quickly meet this condition. Fairness drives the prices towards $6, which will

be the eventual Threshold payments to AgentA and AgentB. Balance ensures that the

prices remain the same for the two items.
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Figure 5.16: Seller A -$10, Swapper: swap B for A $8, Buyer B $4

Example 5.11: Consider an example with a Seller offering A for a reserve of $10,

a “Swapper” who is willing to pay $8 if he can swap his B for A, and a Buyer willing

to pay $4 for B. In this more complex example, it takes 4 rounds, as illustrated in

Figure 5.16a, for a trade to be found in the pessimistic valuation. Revelation drives

progress towards a completed trade, and as we can see in Figure 5.16b, this is reflected

in falling prices on the goods. Thus we can see that the price feedback is providing

accurate information to the participants: only when the price eventually becomes low

enough do the buying bidders actually want a trade to occur — and that is also when

the exchange’s provisional trade switches. It is also worth noting that the greater

valuations the Seller and Swapper place on good A result in a net higher price than

that for good B.
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5.5 Experimental Analysis

In this section we report the results of a set of experiments that are designed

to provide a proof-of-concept for ICE. The results illustrate the scalability of ICE

to realistic problem sizes and provide evidence of the effectiveness of the elicitation

process and the techniques to bound the efficiency of the provisional trade.

5.5.1 The Automated Bidding Agents and Bidder Feedback

The bidding agents that are used for the simulation experiments are designed to

minimize the amount of information revealed in order to pass the activity rules all the

while remaining straightforward so that the true valuation is consistent with lower

and upper valuations. In summarizing the behavior of the bidding agents, there are

three things to explain: (a) the method that we adopt in place of the last-and-final

round; (b) the feedback that is provided by ICE to bidders in meeting MRPAR and

DIAR; and (c) the logic that is followed by the bidding agents.

Rather than define a method for bidding agents to adjust their bounds in a last-

and-final round, we keep ICE open in simulation past the point in which it would

ordinarily go to last-and-final. Past this point, the bidding agents continue to re-

fine their bounds and ICE terminates when the payments are within some desired

accuracy. Each bidding agent in this phase reduces its uncertainty by some multi-

plicative factor on all nodes that are active in the current provisional trade or in any

of the provisional trades for the economies with bidder i removed. This is adopted

for simulation purposes only.

Our bidding agents operate in a loop, heuristically modifying their valuation
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bounds in trying to meet MRPAR and DIAR and querying the proxy for advice.

The proxy provides guidance to help the bidding agent further refine its valuation so

it can meet the activity rule. For both MRPAR and DIAR, the optimization prob-

lems that are solved in checking whether a bidder has satisfied the activity rule also

provide information that can guide the bidder. First consider MRPAR and recall that

λLi is the candidate passing trade and λUi is the witness trade. The following lemma

is easy, and stated without proof:

Lemma 5.12: When MRPAR is not satisfied for the current valuation bounds, a

bidder must increase a lower bound on at least one node in {λLi \ λUi }, or

decrease an upper bound on at least one node in {λUi \ λLi }, in order to meet

the activity rule.

Once a simple bidder makes some changes on some subset of these nodes, the

bidder can inquire if he has passed the activity rule. The proxy can then respond

“yes” or can revise the set of nodes on which the bidding agent should refine its

valuation bounds. A similar functionality is provided for DIAR. This time the trade

that solves the second MIP (with DIAR error ∆F
i ) is provided as feedback, together

with information about how much the bidder must either further reduce the error, or

further constrain the possibilities on this trade, to satisfy DIAR. The bidding agent

can determine from this information which nodes it must modify, and by how much

in total, and is free to decide how much to modify each node to satisfy the rule. The

key to our agent design is the following lemma:
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Lemma 5.13: The trade with which a straightforward bidder passes MRPAR (for

δ = 0) must be a trade that is weakly preferred by the bidder to all other trades

for his true valuation.

Proof. By contradiction. Suppose true valuation vi ∈ Ti and trade λ̆i meets MRPAR

but is not a weakly preferred trade at the true valuation and prices φ. Then, there

exists a trade λ∗i ∈ Fi(x
0) such that θφi (λ

∗
i , λ̆i, vi) > 0. But, this is a contradiction

with MRPAR, since θφi (λ̆i, λ
′
i, v

′
i) ≥ 0 for all v′i ∈ Ti and all λ′i ∈ Fi(x

0), including

v′i = vi and λ
′
i = λ∗i .

We use this observation to define a procedure UpdateMRPAR by which a bidder

can intelligently refine his valuation bounds to meet MRPAR. Let λ̆i be the trade with

which we hope to pass MRPAR, and define ui(λi, φ) = vi(λi) − pφ(λi), ui(λi, φ) =

vi(λi) − pφ(λi), ũi(λi, φ) = ṽi(λi) − pφ(λi), where ṽi is defined with respect to the

candidate passing trade λ̆i. The high-level approach is as follows:

function UpdateMRPAR

λ̆i ∈ argmaxλi∈Fi(x0) ui(λi, φ)

if ui(λ̆i, φ) < 0 then
reduce slack on λ̆i by ui(λ̆i, φ)

end if
λUi ∈ argmaxλi∈Fi(x0) ũi(λi, φ)

while ui(λ̆i, φ) < ũi(λ
U
i , φ) do

Heuristically reduce upper bounds on λUi \ λ̆i by ũi(λ
U
i , φ)− ui(λ̆i, φ)

If remaining slack heuristically reduce lower bounds on λ̆i \ λ
U
i

λUi ∈ argmaxλi∈Fi(x0) ũi(λi, φ)
end while
if λ̆i 6= λαi then

while ui(λ̆i, φ) ≤ ũi(λ
α
i , φ) do

Heuristically reduce upper bounds on λαi \ λ̆i by ũi(λ
α
i , φ)− ui(λ̆i, φ)

If remaining slack heuristically reduce lower bounds on λ̆i \ λ
α
i

end while
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end if
return λ̆i

end function

The bidding agent makes use of a couple of optimization modalities that are

exposed by the proxy to the bidder. The procedure first chooses the most preferred

trade at truth as the trade to pass MRPAR with λ̆i; the bidding agent requests that

the proxy find this trade by solving a MIP. If the trade has negative profit, then

the bidding agent attempts to demonstrate positive profit for this trade. Next, the

bidding agent enters a loop, wherein it repeatedly requests the proxy to run a MIP

that calculates a witness trade λUi with respect to λ̆i. As long as this witness has

more profit than that of what should be the most preferred trade, the bidding agent

adjusts bounds so as to reverse this mis-ordering. Lastly, because the bidding agent

must pass MRPAR, not merely RPAR, the bidding agent attempts to show a strict

preference for λ̆i over λ
α
i when they are not identical.

In meeting DIAR, the bidding agent responds to the ∆F ≥ 0 and ǫ ≥ 0 parameter

provided by the proxy as follows. Let λF be the trade chosen in the maximization

that calculates ∆F . The high-level approach is as follows:

function updateDIAR

while Proxy says we still have not passed DIAR do
if λF or λα can be modified to reduce DIAR error by ǫ over last round then

Heuristically reduce the upper-bound slack in λF \ λα

Heuristically reduce the lower-bound slack in λα \ λF

else
Heuristically reduce the upper-bound slack in λα \ λF

Heuristically reduce the lower-bound slack in λF \ λα

end if
end while

end function
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The bidding agent attempts to make the current failing trade pass DIAR if possible

by reducing the error with respect to that trade. Otherwise, it reduces bounds to

prove that DIAR could not be made to pass on that trade and loops on to the next

trade.

5.5.2 Implementation

First, a brief aside on our experimental implementation. ICE is approximately

20,000 lines of extremely tight Java code, broken up into the functional packages

described in Table 5.1.13 The prototype is modular so that researchers may easily

replace components for experimentation. Because of ICE’s complexity, it is essential

that the code be constructed in a rigid hierarchy that avoids obscuring the high level

logic behind the details of generating, running and integrating the results of MIPs.

To this end, the system is written in a series of progressively more abstract “mini-

languages” each of which defines a clean, understandable API to the next higher level

of logic. Our hierarchy provides a way to hide the extremely delicate steps needed

to handle the numerical issues that arise in trying to repeatedly solve coupled opti-

mization problems, where the constraints in one problem may be defined in terms of

slightly inaccurate results from an earlier problem. Most of the constraints presented

in this chapter must be carefully relaxed and monitored in order to handle these nu-

merical precision issues. At the bottom of this hierarchy the MIP specification is fed

into our generalized back-end optimization solver interface14 (we currently support

13Code size is measured in physical source line of code (SLOC).

14http://www.eecs.harvard.edu/econcs/jopt

http://www.eecs.harvard.edu/econcs/jopt
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Component Purpose Lines

Agent Strategic behavior and information revelation decisions 2001

Model XML support to load goods and true valuations 1353

Bidding Language Implements TBBL 2497

Exchange Driver & Communication Controls exchange, and coordinates agent behavior 1322

Activity/Closing Rule Engines MRPAR, DIAR and Closing Rules 1830

WD Engine Logic for WD 685

Pricing Engine Logic for three pricing stages 1317

MIP Builders Translates from engines into our optimization APIs 2206

Framework & Instrumentation Wire components together & Gather data 2642

JOpt Our Optimization API wrapping CPLEX 2178

Instance Generator Random Problem Generator 497

Table 5.1: Exchange components and code breakdown

CPLEX and the LGPL-licensed LPSolve), that handles machine load-balancing and

parallel MIP/LP solving. This concurrent solving capability is essential, as we need

to handle tens of thousands of comparatively simple MIPs/LPs.

5.5.3 Experimental Setup

In the experiments, the δ-parameter in MRPAR is set to near zero and both the

MRPAR and DIAR activity rule fire in every round. The rule used to define the ǫ-

parameter in DIAR is exactly as described in Section 5.3.3.3. In simulation, we adopt

the Threshold payment rule and terminate ICE when the per-agent error in payment

relative to the correct payment is within 5% of the average per-agent value for the

efficient trade. In typical instances, this incurs an additional 4 rounds beyond those
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that would be required if we had a last-and-final round. All timing is wall clock time,

and does not separately count the large number of parallel threads of execution in the

system. The experiments were run on a dual-processor dual-core Pentium IV 3.2GHz

with 8GB of memory and CPLEX 10.1. All results are averaged over 10 trials.

5.5.4 Problem Instance Generator

Because we need CE and not CA instances, and because we need these instances

specified in our concise TBBL language, we cannot use existing problem generators

such as CATS [Leyton-Brown et al., 2000]; instead we must create our own. Our

instance generator begins by generating a set G of good types. Next, for each j ∈ G it

creates s ≥ 1 copies of each good type, forming a total potential supply in the market

of s|G| goods (exactly how many units are in supply depends on the precise structure

of bid trees). Each unit is assigned to one of the bidders uniformly at random. The

generator creates a bid tree Ti for each bidder by recursively growing it, starting from

the root and adopting two phases. For the tree above depthLow, each node receives

a number of children drawn uniform between outDegreeLow and outDegreeHigh (a

percentage of which are designated as leaves), resulting in an exponential growth in

the number of nodes during this phase. By the width at some depth we refer to the

number of nodes at that depth. Below this point, we carefully control the expected

number of children at each node in order to make the expected width conform to a

triangle distribution over depth from depthLow to depthMid to depthHigh: we linearly

increase the expected width at each depth between depthLow and depthMid to a fixed

multiple (ξ) of the width at depthLow, and then linearly decrease the expected width
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back to zero by depthHigh.15 This provides complex and deep trees without inherently

introducing an exponential number of nodes.

Each internal node must be assigned the parameters for its interval choose op-

erator. We typically choose y with a high-triangle distribution between 1 and the

number of children and x with a low-triangle distribution between 1 and y. This

will bias towards the introduction of IC operators that permit a wide choice in the

number of children. Each internal node is also assigned a bonus drawn according to

a uniform distribution. Each leaf node is assigned as a “buy” node with a probability

ψ ∈ [0, 1], and then a specific good type for that node is chosen from among those

good types for sale in the market. The node is assigned a quantity by drawing from

a low-triangle distribution between 1 and the total number in existence.16 A unit

value for the node is then drawn from a specific “buy” distribution, typically uni-

form, which is multiplied by the quantity and assigned as the node’s bonus. The leaf

nodes assigned as “sell” nodes have their goods and bonuses determined similarly,

this time with goods selected from among those previously assigned to the bidder.17

15Note that by setting depthLow=depthMid=depthHigh one can still grow a full tree of a given
depth by eliminating phase 2.

16The total number of goods of a given type in existence may not actually be available for purchase
at any price given the structure of seller trees. Thus a bias towards small quantities in “buy” nodes
and large quantities in “sell” nodes produces more interesting problem instances.

17 In our experiments, we vary 2 ≤ |G| ≤ 128, 1 ≤ d ≤ 128, 2 ≤ |N | ≤ 20, 2 ≤ outDegreeLow ≤ 8,
2 ≤ outDegreeHigh ≤ 8, 2 ≤ depthLow ≤ 6, 2 ≤ depthMid ≤ 6, 2 ≤ depthHigh ≤ 8, set a balanced
buy probability ψ = 0.5, and set width multiplier during the second phase to ξ = 2. In these
examples, buy node bonuses were drawn uniformly from [10, 100], sell nodes bonuses were drawn
uniformly from [−100,−10] and internal nodes bonuses uniformly from [−25, 25].
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Figure 5.17: Effect of the number of bidders on the run-time of ICE

5.5.5 Experimental Results: Scalability

The first set of results that we present focuses on the computational properties

of ICE. Figure 5.17 shows the runtime performance of the system as we increase the

number of bidders while holding all other parameters constant. In this example, 100

goods in 20 types are being traded by bidders with an average of 104 node trees.

The graph shows the total wall clock time for all parts of the system. While we see

super-linear growth in solve time with the number of bidders, the constants of this

growth are such that markets with large numbers of bidders can be efficiently solved

(solving for 20 bidders in around 40 minutes). The error bars in all plots are for the

standard error of the statistic.

In Figure 5.18 we can see the effect of varying the number of types of goods
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Figure 5.18: Effect of the number of good types on the run-time of ICE

(retaining 5 units of each good in the supply) on computation time. For this example

we adopt 10 bidders, and the same tree generation parameters. A likely explanation

for eventual concavity of the run-time performance is suggested by the decrease in

the average (item) price upon termination of ICE as the number of types of goods

are increased (see Figure 5.19). The average price provides a good proxy for the

competitiveness of the market. Adding goods to the problem will initially make the

winner determination problem more difficult, but only until there is a large over-

supply, at which point the outcome is easier to determine.

Figures 5.20 and 5.21 illustrate the change in run time with the size of bid trees.

Here we use only the first phase of our tree-generator to avoid confounding the

effects of size with structural complexity. In both experiments, 100 goods in 20 types
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Figure 5.19: Effect of the number of goods on the average item price upon termi-
nation of ICE.

were being traded by 10 bidders. In Figure 5.20 we vary the number of children of

any given node while in Figure 5.21 we vary the depth of the tree. Increasing the

branching factor and/or tree depth results in an exponential growth in tree size, which

necessarily corresponds to an exponential growth in runtime. However, if we account

for this by instead plotting against the number of nodes in the trees, we see that

both graphs indicate a near-polynomial increase in runtime with tree size. We fit a

polynomial function to this data of the form y = Axb, indicating that this growth is

approximately of degree 1.5 in the range of tree sizes considered in these experiments.
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Figure 5.20: Effect of bid-tree size on run-time of ICE: Varying the node-out degree.

5.5.6 Empirical Results: Economic Properties

The second set of results that we present focus on the economic properties of ICE:

the efficiency of trade across rounds, the effectiveness of preference elicitation, and

the accuracy and stability of prices. For this set of experiments we average over 10

problem instances, each with 8 bidders, a potential supply of 100 goods in 20 types,

and bid trees with an average of 104 nodes.

Figure 5.22 plots the true efficiency of the trades computed at pessimistic (lower

bounds v), provisional (α-valuation vα) and optimistic (upper bounds v) valuations

across rounds. In this graph and those that follow, the x-axis indicates the number

of rounds completed as a percentage of the total number of rounds until termination
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Figure 5.21: Effect of bid-tree size on run-time of ICE: Varying the tree depth.

which enables results to be aggregated across multiple instances, each of which can

have a different number of total rounds.18 The vertical (dashed) line indicates the

average percentage complete when the trade is provably 95% efficient. The exchange

remains open past this point while payments converge (and because we simulate the

outcome of the last-and-final round by continuing progress with our straightforward

bidding agents). The two lines on either side represent one standard error of this

statistic.

In Figure 5.22, we see that the exchange quickly converges to highly efficient

trades, taking an average of 6.8 rounds to achieve efficiency. In general, the opti-

18Each data point represents the average across the 10 instances, and is determined by averaging
the underlying points in its neighborhood. Error-bars indicate the standard error (SE) of this mean.
Thus, the figures are essentially a histogram rendered as a line graph.
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Figure 5.22: Efficiency of the optimistic, provisional, and pessimistic trades across
rounds.

mistic trade (i.e., computed from upper bounds v) has higher (true) efficiency than

the pessimistic one (i.e., computed from lower bounds v), while the efficiency of the

provisional trade λα is typically better than both. This justifies the design decision to

adopt the provisional valuations and provisional trade in driving the exchange dynam-

ics. It also suggests that exchanges with the traditional paradigm of improving bids

(i.e., increasing lower bound claims on valuations) would allow little useful feedback

in early rounds: the efficiency of the pessimistic trade—all that would be available

without information about the upper-bounds of bidder valuations—is initially very

poor.

Figure 5.23 shows the average amount of revelation caused by MRPAR and DIAR
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Figure 5.23: Average reduction in value uncertainty due to each rule.

in each round of ICE. Revelation is measured here in terms of the absolute tightening

of upper and lower bounds, summed across the bid trees. The MRPAR activity rule

is the main driving force behind the revelation of information and the vast majority

of revelation (in absolute terms) occurs within the first 25% of rounds. DIAR plays a

role in making progress towards identifying the efficient trade but only once MRPAR

has substantially reduced the value uncertainty and despite firing in every round.

One can think of MRPAR as our rocket’s main engine, and DIAR as a thruster for

mid-course correction. ICE determines the efficient trade when the average node in

a TBBL tree still retains a gap between the upper and lower bounds on value at the

node equal to around 62% of the maximum (true) value that a node could contribute

to a bidder’s value, roughly the maximum marginal value contributed by a node over
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Figure 5.24: Price trajectory: Closeness of prices in each round to the final prices

all feasible trades. We see that ICE is successful in directing preference elicitation to

information that is relevant to determining the efficient trade.

We now provide two different views on the effectiveness of prices. Figure 5.24

shows the mean percentage absolute difference between the prices computed in some

round and the prices computed in the final round. Prices quickly converge. In our

experiments we have driven the exchange beyond the efficient solution in order to

converge to the Threshold payments, but we see that most of the price information

is already available at the point of efficiency. Figure 5.25 provides information about

the quality of the price feedback. We plot the ‘regret’, averaged across bidders and

runs, from the best-response trade as determined from intermediate prices in com-

parison to the best-response to final prices, where the regret is defined in terms of
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Figure 5.25: Regret in best-response by bidders due to price inaccuracy relative to
final prices.

lost payoff at those final prices. Define the regret to bidder i for his best response

λ′i = argmaxλi∈Fi(x0)[vi(λi)− pφ̂(λi)], to prices φ̂, given that the final prices are φ, as:

Regreti(λ
′
i, φ) =


1−

vi(λ
′
i)− pφ(λ′i)

max
λi∈Fi(x0)

vi(λi)− pφ(λi)


× 100%. (5.51)

As the payoff from trade λ′i, when evaluated at prices φ, approaches that from the

best-response trade at prices φ, then Regreti(λ
′
i, φ) approaches 0%. Figure 5.25 plots

the average regret across all bidders as a function of the number of rounds completed

in ICE. The regret is low: 11.2% when averaged across all rounds before the efficient

trade is determined and 7.0% when averaged across all rounds. That regret falls

across rounds also shows that prices become more and more informative as the rounds
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Figure 5.26: Comparison between the actual efficiency of the pessimistic trade and
the ωdirect bound.

proceed.

Finally, we present experimental results that relate to the two methods that ICE

employs to bound the final efficiency of the pessimistic trade. The total pricing error

across all bidders in each round as determined within pricing in terms of (λα, vα),

and normalized here by the total true value of the efficient trade, is already small (at

8.5%) in initial rounds and falls to around 3% by final rounds of ICE. This suggests

that a price-based bound is quite informative, although note that this is defined in

terms of the error given (λα, vα) and does not immediately map to a price-based

accuracy claim for true valuations and for the current trade λ defined on lower bound

valuations. Figure 5.26 compares the actual efficiency of the pessimistic trade λ in
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each round with that estimated by the ωdirect bound on efficiency that is available

to the exchange. This confirms that the direct bound is reasonably tight, and very

effective in bounding the true efficiency regardless of the accuracy of the prices.

5.6 Related Work

Many ascending-price one-sided CAs are known in the literature [Ausubel and

Milgrom, 2002; de Vries, Schummer, and Vohra, 2007; Mishra and Parkes, 2007;

Parkes and Ungar, 2000a; Wurman andWellman, 2000]. Direct elicitation approaches,

in which bidders respond to explicit queries about their valuations, have also been

proposed for one-sided CAs [Conen and Sandholm, 2001; Hudson and Sandholm,

2004; Lahaie and Parkes, 2004; Lahaie, Constantin, and Parkes, 2005; Sandholm

and Boutilier, 2006]. Of particular relevance here are the ascending CAs that are

designed to work with simple prices on items [Dunford, Hoffman, Menon, Sultana,

and Wilson, 2003; Kwasnica, Ledyard, Porter, and DeMartini, 2005]. In computing

(approximately competitive) linear prices, we generalize and extend these methods.

Building on the work of Rassenti et al. [1982], these earlier papers consider bids on

bundles individually, and find prices that are exact on winning bids and minimize

the pricing error to losing bids. Generalizing to the TBBL expressive language, we

propose instead to compute prices that minimize the worst-case pricing error over

all bidders (rather than bids on individual trades), considering the most preferred

trade consistent with the TBBL bid of each bidder. As in the work of Dunford et al.

[2003] and Kwasnica et al. [2005] we incorporate additional tie-breaking stages, in

our case to lexicographically minimize the error and then to find prices that closely
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approximate the provisional payments. This latter step appears to be novel.

Linear prices are important in practical applications. Such prices are adopted by

the FCC in their wireless spectrum auctions [Cramton, 2006], within clock auctions for

the procurement of electricity generation [Cramton, 2003], and are an essential part

of the proposed design for an airport landing slot auction at Laguardia airport [Ball

et al., 2007]. Linear competitive equilibrium prices exist in two-sided markets with

indivisibilities for the assignment problem in which each agent will buy or sell a single

item (but may be interested in multiple different items) [Shapley and Shubik, 1972].

But in general, linear, competitive equilibrium prices will not exist in combinatorial

markets with nonconvexities; see the work of Kelso and Crawford [1982], Bikhchan-

dani and Mamer [1997], Bikhchandani and Ostroy [2002], and O’Neill, Sotkiewicz,

Hobbs, Rothkopf, and Stewart [2005] for related discussions.

ICE has a “proxied” architecture in the sense that bidders submit and refine

bounds on TBBL bids directly to the exchange, with this information used to drive

price dynamics and ultimately to clear the exchange. Earlier work has considered

proxied approaches, but in application to one-sided ascending-price CAs [Ausubel

and Milgrom, 2002; Parkes and Ungar, 2000b]. Given its focus on simple, linear

prices, ICE can be considered to provide a two-sided generalization of the clock-proxy

design of Ausubel, Cramton, and Milgrom, which has an initial stage of linear price

discovery followed by a “best-and-final” sealed-bid stage [2006]. Activity rules have

been shown to be very important in practice. For instance, the Milgrom-Wilson

activity rule that requires a bidder to be active on a minimum percentage of the

quantity of the spectrum for which it is eligible to bid is a critical component of the
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auction rules used by the FCC for wireless spectrum auctions [Milgrom, 2004]. ICE

adopts a variation on the clock-proxy auction’s revealed-preference activity rule.

It is well known that exact efficiency together with budget balance is not possible

because of the Myerson-Satterthwaite impossibility result [Myerson and Satterth-

waite, 1983]. Given this, Parkes et al. [2001a] study sealed-bid combinatorial ex-

changes and introduced the Threshold payment rule; see the work of Milgrom [2007]

and Day and Raghavan [2007] for a recent discussion. Double auctions in which

truthful bidding is in a dominant strategy equilibrium are known for unit demand

settings [McAfee, 1992b] and also for slightly more expressive domains [Babaioff and

Walsh, 2005; Chu and Shen, 2008]. However, no truthful, budget-balanced mecha-

nisms with useful efficiency properties are known for the general CE problem.

Voucher-based schemes have been proposed as an alternative method to extend

one-sided CAs to exchanges [Kwerel and Williams, 2002]. Such mechanisms collect

all goods from sellers and then run a one-sided auction in which sellers can “buy-

back” their own goods with vouchers used to provide a seller with a share of the

revenue collected on their own goods. Although voucher-based schemes can facilitate

the design of exchanges through one-sided auction technology, the ICE design offers

the nice advantage of providing equal and symmetric expressiveness to all partici-

pants. We are not aware of any previous studies of fully expressive iterative CEs.

Smith, Sandholm, and Simmons previously studied iterative CEs, but handle only

limited expressiveness and adopt a direct-query based approach with an enumerative

internal data structure that does not scale [2002]. A novel feature in their earlier

design (not supported here) is item discovery, where the items available to trade need
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not be known in advance. Earlier work has also considered sealed-bid combinatorial

exchanges for the purpose of contingent trades in financial markets, including aspects

of expressiveness and winner determination [Saatcioglu et al., 2001].

Several bidding languages for CAs have previously been proposed, arguably the

most compelling of which allow bidders to explicitly represent the logical structure

of their valuation over goods via standard logical operators. We refer to these as

“logical bidding languages” [Nisan, 2006]. Closest in generality to TBBL is the LGB

language [Boutilier and Hoos, 2001], which allows for arbitrarily nested levels, combin-

ing goods and trades by the standard propositional logic operators, and also provides

a k-of operator, used to represent a willingness to pay for any k trades it quantifies

over; see also the work of Rothkopf et al. [1998] for a restricted tree-based bidding

language. In a key insight, Boutilier specifies a MIP formulation for Winner Deter-

mination (WD) using LGB , and provides positive empirical performance results using

a commercial solver, suggesting the computational feasibility of moving to this more

expressive logical language [2002]. TBBL shares some structural elements with the

LGB language but has important differences in its semantics. In LGB , the semantics

are those of propositional logic, with the same items in an allocation able to satisfy

a tree in multiple places. Although this can make LGB especially concise in some

settings, the semantics that we propose provide representational locality, so that the

value of one component in a tree can be understood independently from the rest of

the tree.
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5.7 Discussion

In the work described in this chapter we designed and implemented a scalable

and highly expressive iterative combinatorial exchange. The design includes many

interesting features, including: a new tree-based language for combinatorial exchange

environments, a new method to construct approximate linear prices from expressive

languages, a proxied architecture with optimistic and pessimistic valuations coupled

with price-based activity rules to drive preference elicitation, and a direct method to

estimate the final efficiency of the trade in terms of valuation bounds. By adopting

proxy agents that receive direct, expressive claims on upper and lower valuations

bounds we are able to form claims about efficiency despite using only linear prices.

These bounds also allow for good progress in early rounds, and even when there

is no efficient trade at lower bound (pessimistic) values. Experimental results with

automated, simple bidding agents indicate good behavior in terms of both scalability

and economic properties.



There can be no economy where there is no
efficiency.

– Benjamin Disraeli

UK Prime Minister, 1868–1880

6
An Expressive Power-Based

Market for Data Center Resources

6.1 Introduction

In 2006, US data centers used about 61 billion kWh; that is, 1.5% of the 4 trillion

kWh consumed in total. This is the amount of energy used by 5.8 million average

US households (5% of all households). Producing this power resulted in 37 million

metric tons of CO2, or 0.6% of the 5.9 billion metric tons released from all sources.

This is roughly 16% of the total produced by the burning of jet fuel and more than

that used to power TVs. This electricity cost US $4.5 billion and required a peak

load capacity of about 7GW, more than double the level of consumption in 2000.

Peak load capacity is expected to have doubled again by 2011 to 12GW, requiring

226
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the construction of 10 additional 500MW power plants [DOE; EIA; EPA]. Given the

rapid, unabated rise in electrical power consumption and the associated financial and

environmental costs, data center operators realize that the established practice of

running large numbers of significantly under-utilized servers is no longer acceptable,

and are eager for energy-saving solutions.

Market paradigms have often been proposed as useful ones paradigm for allocating

limited computational resources and satisfying multi-criteria objectives. The earliest

work on such markets was for time sharing on the PDP-11 in the 1960s by Sutherland

[1968]. In the intervening years there have been proposals to use such methods in

high performance computing, grid computing, as well as in data centers. However,

existing proposals have deficiencies that can render them impractical for modern data

centers. We propose a general method for overcoming these concerns, and illustrate

this method’s applicability to one specific environment. We offer a:

Realistic model of resources: We support a finer granularity of computational

entity (e.g. core vs. server, which is especially important as multi-core ma-

chines become the norm) and finer control over power state of machines (e.g.

Dynamic Voltage and Frequency Scaling (DVFS), not just on/off). We also

handle heterogeneous applications running on heterogeneous classes of servers.

Realistic representation of goals: We use a less restricted form of utility function

that supports distributional (and percentile) considerations, not just means.

These functions are derived from standard long-term Service Level Agreements

(SLAs) that are programmatically interpreted as short-term utility functions in

a dynamic environment.

Principled optimization: We use Mixed Integer Programming, and, unlike previ-

ous systems, we do not rely on heuristic solvers but instead present a carefully
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formulated MIP model that can scale to large problem sizes.1

We show that a market-based approach provides a natural, feasible, and advanta-

geous framework for representing the milieu of physical and computational resources,

and the applications that consume these resources, in modern-day data centers. Ex-

perimental results indicate that our system can robustly and scalably improve net

profits of our data center prototype by up to 137%. For large instances of 1000 ma-

chines and 10 applications (each associated with a separate customer), we achieve an

average solve time of 5.16 minutes when limiting MIP solve time to an absolute max-

imum of 10 minutes (an approximation that imposes a tiny efficiency loss on those

instances that do timeout). Thus a single machine is capable of optimizing the usage

on 1000 others, giving us a very acceptable 0.1% overhead factor.

This domain is a compelling place to apply the techniques that we have been

studying in the preceding chapters of this thesis. Data centers present a complex

combinatorial allocation problem to solve, with multiple self-interested participants

whose conflicting goals need to be reconciled. While they do not constitute the focus

of the particular work presented here, the incentive effects discussed in Chapters 3

and 4 do apply here. But perhaps even more importantly, the design principals and

techniques that we presented in the general ICE mechanism in the last chapter, we

can now simplify and reify in order to construct the specific mechanism proposed

here.

1 We leverage recent advances in MIP solving that enable complex combinatorial markets to be
solved quickly in practice, even though they address NP-hard problems [Sandholm, 2007].
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6.2 A Market Model of Data Center Allocation

Typical data centers have hundreds to thousands of servers, many of which will

share the same hardware and software configuration. We call such equivalence classes

‘machine groups’ and assume that this partitioning is performed by a separate offline

process. The owner of a data center typically contracts (either internally or externally)

to provide these resources to a set of applications (each associated with a customer),

each with time-varying load and utility and a range of resource requirements and

importance.

In present use, each application is associated with an SLA that is negotiated

between customer and data-center provider. Such an agreement specifies a price, a

performance objective (e.g. a cap on the 95th percentile of response time), and a

penalty for failing to meet the objective. The SLA is useful for assigning a relative

importance to the applications, but despite its quantitative feel it is generally used

at present in only a qualitative way, as a guideline for personnel when manually

configuring data-center operations. Yet, SLAs suggest a direction towards application

utility functions that are highly relevant to obtaining reasonable performance in a

power-constrained environment [Kephart and Das, 2007; Steinder, Whalley, Hanson,

and Kephart, 2008]. In the present work, we introduce a system that adapts SLAs

for the purpose of utility-based optimization of resource configurations.

When allocating resources in the data center we seek to optimize the operator’s

business value for the data center: i.e., the revenue net of costs. This means assigning

(portions of) the machines from discrete machine groups to the various applications as

well as specifying the power for each machine, and thus restraining overall consump-
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Figure 6.1: The data center market model

tion. For this, we use a sophisticated model of the power-saving modes available

to modern servers and assume access to monitors of both power consumption and

application demand.

Our market allocates goods (cores of machines from the various machine groups)

to applications, as illustrated in Figure 6.1. The market is repeatedly cleared over

brief periods, by using predictions about future supply and demand to translate

applications’ long-term SLAs into short-term bids.

The winner-determination problem for this market requires optimization, and is

potentially solved in many different ways. We choose to formulate it as a Mixed

Integer Program and solve it via ILog CPLEX 11.1. The form of the buyer’s (or

customer’s) value model and seller cost model have been chosen to ease formulation

of the problem as a MIP, as sketched below.2

2 The size of the formulation will grow linearly with the number of applications and machine
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For each period, we use a myopic net revenue maximization objective:

argmax
∑

a∈A

Va − κEtotal −Htotal,

where Va is the value of the chosen allocation of machines to application (associated

with a particular buyer) a ∈ A, κ is the dollar cost of a kW-hour of energy, Etotal is

the total energy used to establish and maintain the chosen allocation for the current

period, and Htotal is the dollar cost for the hardware. The objective is thus quite

straightforward–the complexity comes from the constraints. We begin by defining the

buyer value, Va, i.e. the value associated with application a of some buyer.

6.2.1 Buyer Valuation Model

Today, the contracts signed for data center provisioning are typically in terms of

SLAs. We model a per-application SLA contract as a piecewise linear function for

the value of receiving a given response time at a given demand percentile. Figure 6.2

shows an example of an SLA value curve of this form for two different applications

A and B. A bidding proxy represents each application within the market, and takes

such an SLA and combines it with supply and demand prediction and an application

performance model, to represent the SLA as a short-term bid; i.e. a bid that is

appropriate for the period of time for which the market is cleared.

The bidding proxy needs a model of how a given supply of machines (and thus

transaction capacity) and application demand for the next planning episode will trans-

groups. However, it will grow with the square of the number of power modes (since it encodes a
transition matrix from one mode to the next). Fortunately, polynomial growth in the size of the
MIP need not imply exponential growth in practical computation time, and we examine scalability
in Section 6.3.1.
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Figure 6.2: SLAs as provided by two different applications

late to the long-term response time distribution (and in turn to, e.g., its 95th per-

centile), and thus to the value curve associated with an SLA. Here, as a very simple

example, we consider that transaction processing is described as an M/M/1 queue

(exponential inter-arrival and service times). In this case, the response time distribu-

tion is exponential with mean response time 1/(µ−λ), where µ is the supply and λ is

the demand, both in transactions per unit time. The fraction of response times above

a percentile P is given by the exponential quartile function: − ln(1−P )
(µ−λ)

. The proxy

composes the customer’s SLA (Figure 6.2) with this response time model, resulting

in a value function over both supply and demand at, e.g., the 95th percentile (Figure

6.3).3

Next the bidding proxy needs a predictive model of application demand over the

3The value is also scaled by the demand relative to the mean, aligning the one-period bid with
the long-term (SLA) statistics.
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Figure 6.3: Application value by supply and demand

next period. We have found it sufficient to simply use statistics gathered over a

small window of previous periods to provide a Gaussian model of the distribution of

possible demand in the next period via a Maximum Likelihood Estimation (MLE)

prediction of mean and standard deviation. The bidding proxy draws equal weighted

samples from this Gaussian demand prediction model and takes a slice from the

value model (Figure 6.3) for each. Then, these slices are averaged to produce a

single supply-value curve, under our demand model. By taking a piecewise linear

approximation of this curve (obtained by chaining the control points of the originally

supplied response-time/value curve through these transformations) we arrive at the

utility curve provided to the market in a given period as a bid, an example of which

is shown in Figure 6.4.

If we apply this function to the cycles provided by a potential allocation, then we

have specified a utility function as needed by the winner determination algorithm,
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and with a significant dimensionality reduction:4

Va = Fa(Qa),

for application a, where Fa is this piecewise linear function and Qa is the quantity of

cycles provided to application a by the chosen allocation. To formulate this function,

any standard MIP representation for a piecewise linear function can be used, which

will induce auxiliary constraints and variables in order to account for the various

segments of the function.

In turn, the total quantity of cycles provided to application a can in a period be

defined as:

Qa =
∑

g∈Ga

∑

f∈Mg

∑

t∈Mg

γg,t(τ − δg,f,t)C
sold
g,f,t,a ∀ a ∈ A

4Our queuing model permits a reduction from the |Ga ×Mg ×Mg| variables to the single vari-
able Qa. More complex models may require additional dimensions, though in general a significant
diminution should be possible.
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where Ga is the set of machine groups that can support application a, Mg is the

set of power modes available to machines in group g, γg,t(∆) is the number of cycles

provided by a machine from group g in mode t over a period of time ∆, τ is the amount

of time in the current period, δg,f,t is the amount of time it takes to transition from

mode f to mode t and each Csold
g,f,t,a variable defines a quantity of cores (i.e. goods)

allocated from group g that were in mode f and are now in mode t (described in

more detail below).

6.2.2 Defining The Goods in the Market

Within each machine group, we track only the number of cores in each power

state. An allocation of some quantity of such cores is ultimately mapped into an

assignment of cores on physical machines in post-processing.5This avoids the creation

of immaterial distinctions that would only complicate winner determination. How-

ever, to properly encode the data-center cost model, described in the next section,

we need a representation that captures power-state transitions enabling us to account

for resultant changes in energy usage, cycle loss and increases in failure rate. Conse-

quently, the Csold
g,f,t,a variables capture the number of cores in a given machine group

starting in mode f in the last period, transitioning to (the possibly identical) mode

t in the current period for a given application a.

Constraints are defined to ensure that an allocation of these goods will be physi-

cally implementable; e.g., on present-day platforms it is required that all cores on the

5We currently use a fast but potentially only approximate greedy assignment; however, more
sophisticated methods could be used if the identities of machines in a group has importance.
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same physical machine be at the same power level:

|coresg|
∑

f∈Mg

M sold
g,f,t =

∑

f∈Mg

∑

a∈A

Csold
g,f,t,a + CpartUnsold

g,t

|coresg|
∑

f∈Mg

Munsold
g,f,t =

∑

f∈Mg

Cunsold
g,f,t − CpartUnsold

g,t

∀ t ∈Mg ∀ g ∈ G

where |coresg| is the number of cores per machine in group g, Cunsold
g,f,t are variables

counting the unassigned cores, M sold
g,f,t and Munsold

g,f,t count sold and unsold machines

respectively and CpartUnsold
g,t count the unsold cores on partially sold machines. Ad-

ditionally, we need to restrain available supply, through the machine counts:

|machinesg| =
∑

f∈Mg

∑

t∈Mg

M sold
g,f,t +Munsold

g,f,t ∀ g ∈ G

where |machinesg| is the number of machines in group g.

6.2.3 Seller Cost Model

On the supply side of the market, we explicitly model both the hardware and

energy costs of running the data center’s machines in their various power states. Our

model captures the power consumed and performance attained by each machine as a

function of the number of active and inactive cores, as measured empirically on an

IBM BladeCenter HS21 Server (Figures 6.5a and 6.5b). Modern Dynamic Voltage

and Frequency Scaling (DVFS) enabled machines can have their most efficient state

at less than full power: e.g. a maximum of 64 vs. 50 MCycles/Watt with 4 cores

active (taking the ratio of the curves in each figure).
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Figure 6.5: Power and speed under low and high power

We define the energy requirements (i.e. power over the time period) of the active

cores as follows (omitting that for idle hardware in the interest of space):

Esold =
∑

g∈G

∑

f∈Mg

∑

t∈Mg

emult(etrans
g,f,t + e

base,active
g,τ ,t )M sold

g,f,t

+
∑

g∈G

∑

f∈Mg

∑

t∈Mg

∑

a∈A

emulte
core,active
g,τ,t Csold

g,f,t,a

where etrans
g,f,t is the energy required to go from power-state f to t, ebase,active

g,τ ,t is the base

power for an active machine, and e
core,active
g,τ,t is the incremental energy needed to run

a fully loaded core in this power-state. Here emult accounts for the typically two- to
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three-fold increase in energy needed to run power supply units, uninterruptible power

supplies, network switches and storage, and most importantly, cooling equipment.

We stipulate the hardware costs for active cores (again omitting the similar ex-

pression for idle hardware) as follows:

Hsold =
∑

g∈G

∑

f∈Mg

∑

t∈Mg

(hbase
g,τ ,g + htransition

g,f,t )M sold
g,f,t

where hbase
g,τ ,g is the pro-rated cost for each core, and includes not only the amortized

server cost, but also supporting equipment, buildings and personnel; and htransition
g,f,t

accounts for the cost associated within an increased failure rate upon a state transition

due to e.g. spinning up/down hard drives. We expect each of these numbers to be

easily obtainable through a principled evaluation of existing business practices and

capital investments.

Episodic formulations have a common problem in that they may not bear large

transition costs when they create a temporary loss, despite a long-term gain. Con-

sequently, we also find it useful to include a predictor on the sell side that tracks

the allocation over previous periods (similarly to the buyer demand prediction) and

tweaks the optimizers’ view of the power state prior to the new period to better match

the predicted demand than the actual power state as selected in the previous period.

Specifically, we optimistically discount the transition costs for the present time period

if the long-term demand level is expected to rise significantly.

A system administrator might, in addition, wish to specify additional restrictions

on the allocation to ensure implementability. Considerable flexibility is possible; some

examples include: min/max cores/machines for a given application, min/max energy

used in a given machine group or for a given application, and max cores in a given
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machine group that can be allocated to a given application if a certain number are

already allocated to specific alternative application (anti-colocation).

6.3 Experimental Results

We have evaluated our market-based system in a set of simulation experiments to

show both computational tractability and to show effective allocative behavior over

a wider range of environments. Each experiment has been performed on a 3.2GHz

dual-processor dual-core workstation with 8GB of memory and CPLEX 11.1. Each

data point is the mean of 10 randomly generated time-dependent demand traces.

Our realistic but synthetic traces are the sum of two sinusoid curves (e.g. 1-day

period with 9000 peak transactions/minute plus 1-week period with 36000 peak trans-

actions/minute) and a noise term drawn from a Gaussian with a standard deviation

equal to 25% of the signal. These match well with real customer traces, where request

density is time-dependent and oscillates over both days and weeks.6 Each transaction

is assumed to use 300 MCycles, which is representative of the processing needed to

e.g. produce a custom report. Lastly, each allocation period is 10 minutes, which is

fast enough to react to dynamic changes in the load but without thrashing.

Because no allocator in the literature has comparable capabilities, we adopt as a

benchmark a sophisticated greedy allocator, which operates as follows:

1. Put all the machines in their highest efficiency state.

2. Determine the target supply for each application by calculating what is required

to produce its ideal response time at its 95th percentile of demand.

6Unlike in actual captured data, robustness to load-structure can be tested.
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Figure 6.6: Energy used and response time as a function of the price of energy under
market and heuristic algorithms.

3. Allocate cores (from feasible machine groups) to the applications, weighted by

the marginal value of supply to each application. If an application’s supply

of high efficiency cores is exhausted, then instead bump one of the machines

supporting it into a higher power state. Stop when either all the targets have

been met or all the cores/states have been allocated.

4. Consider each application in turn and trim the allocation until the expected

value at the 95th percentile of demand is greater than or equal to the expected

cost.

5. Place remaining machines in their lowest power state.

For exposition purposes we consider a simple scenario with two applications (i.e.

two customers) and three machine groups (each capable of supporting the first, second

and both applications respectively), for a simulated week of time-varying demand.

Figure 6.6 shows the effect of varying the price of energy under both the market and
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Figure 6.7: Buyer value and seller cost as a function of the price of energy under
market and heuristic algorithms.

the static allocation algorithm. We can see that, as expected, under both algorithms

the energy used falls and consequently the mean response time rises as the price

of energy is increased. However, bidding proxies in the market find it profitable

to purchase enough energy to maintain a near-optimal response-time until the price

finally reaches such a point that such high energy usage can no longer be sustained,

and more energy-frugal allocations are chosen. In Figure 6.7, we see the impact of

the choice of these allocations on buyer (i.e. customer) and seller value, as judged by

SLAs and revenue net of cost respectively. The greedy allocation is cheaper to provide

because of the static power levels, but also results in significantly lower buyer value

over a wide range of prices. The maximum revenue net cost improvement is 137%

higher in the market model, though margins become slim when energy is expensive.
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under market and heuristic algorithms.

It is also important to consider distributive effects to customers in the data-center

setting. In this scenario, the ‘A’ application induces a larger load then ‘B’, but

with a smaller marginal value for cycles. Consequently, as energy prices rise, the

static allocator quickly devotes the limited resources that can be consigned to the ‘B’

allocation, thereby starving the ’A’ application, as seen in Figure 6.8. The market

allocation maintains the allocation for the ‘B’ application, but also recognizes that

some resources can profitably be given to ‘A’. This is made possible by switching

machines between their most efficient modes to conserve energy, and their high-power

modes to track spikes in demand. Figure 6.9 shows that in this setting the static

allocator has placed all of the machines in the high efficiency ‘Low Power’ mode,

whereas the market has made use of both modes. When the price for power is low,
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Figure 6.9: Allocation grouped by power mode as a function of the price of energy
under market and heuristic algorithms.

the most efficient allocation is to maintain quite a few machines in the high power

state. However, as the price crosses 40 cents a kWh, there is a phase change and it

becomes much more efficient to run mostly in the low-power mode. Beyond about

60 cents per kWh, it becomes impossible to afford the energy needed to maintain a

supply sufficient to keep a low response time, and the optimal allocation shrinks.

6.3.1 Scalability and Complexity

To evaluate the scalability of our MIP formulation we evaluated ten instances of

a scenario with 200 quad-core machines in each of five groups, for a total of 1000

machines. We configured ten applications, each with a demand for some 2700 trans-

actions a second, to draw upon these resources with each group supporting three of
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Figure 6.10: Mean runtime by the complexity of the bipartite graph between ap-
plications and machine groups.

the applications in a ring topology. We restricted the optimizer to no more then

ten minutes of computation per instance, taking advantage of the anytime nature of

modern MIP solvers. Including the four instances thus capped, the average solve time

was 5.16 minutes, well within the time of a single period. Further, the approximation

resulted in only a 0.08% revenue loss when compared to the optimal solution, which

would have taken an additional 29 minutes on average for these difficult cases. Thus

a single machine is capable of optimizing the usage on 1000 others, giving us a very

acceptable 0.1% overhead factor. For a data center with many more machines, one

could then decompose them into multiple machine pools, each of size around 1000.

We have also investigated the effect on run-time of the structure of the bipartite

graph that defines which application can be supplied by each machine group. For this,
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Figure 6.11: 95th percentile of response time by the complexity of the bipartite
graph between applications and machine groups.

we use a scenario with five applications and five machine groups, where supply is set so

as to be just sufficient to meet demand. The complexity of the winner-determination

problem rises as a sigmoid as we vary the number of edges in the bipartite graph, as

shown in Figure 6.10. A graph with 30% of the edges (already highly connected for

current data centers) takes only 3.8% of the time needed to clear the market with a

complete graph. With 50% connectivity the computation time has risen to 58.8%, and

by 60% connectivity the timing has already risen to 86.6%. Further, the increasing

complexity is matched by a corresponding decrease in application response time, as

shown if Figure 6.11. With 60% of the edges, we are only 8% above the response time

of the complete graph.
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6.4 Related Work

Chase et al. [2001] present a compelling market-based system for data center

resource allocation, and are able to experimentally demonstrate significant energy

savings over static allocations. However, their greedy clearing mechanism imposes

restrictions on the form of utility that can be modeled, SLAs are not directly rep-

resented, and demand/utility computations occur with respect to the mean, not to

distributional information. Their model does not handle the heterogeneity of data-

center machines or modern power-throttling architectures (instead, simply turning

machines on and off), and their allocation is at the level of servers and not cores.

The non-linear costing model that we use is related to the one provided by Chen,

Das, Qin, Sivasubramaniam, Wang, and Gautam [2005]. But rather than identi-

fying total-value maximizing allocations with respect to SLAs, they treat SLAs as

constraints and attempt to find the cheapest allocation subject to meeting implied

quality constraints.

Recent work on resource allocation in data centers has focused on Utility Com-

puting, which seeks to provide access to the data center in a way analogous to that of

a public utility (e.g., gas, water, power) [Byde, 2006; Low and Byde, 2006]. In gen-

eral, Utility Computing views computational resources as more fungible than in the

present work, where we assume that only particular machines are suitably configured

for, and capable of running, certain applications. Rather than argue for a more radi-

cal shift in how computation is bought, sold, and deployed, in this work we propose a

more gradual evolutionary step by creating a market that handles this heterogeneity

in present data centers and which encompasses and generalizes the present contract
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format (SLAs). There is an extensive literature on using market-based methods in re-

lated contexts, including Computational Grids and in High Performance Computing.

Yeo and Buyya [2006] and Broberg, Venugopal, and Buyya [2007] are good surveys

of this work, which can be informative for the data center domain as well.

6.5 Summary

We have established that suitably designed combinatorial markets can find practi-

cal application to power-managed resource allocation in corporate data centers. Fur-

ther, it is possible to inject revenue-based utility functions directly into the present

data center business/allocation model without the large changes associated with Util-

ity Computing, a requirement for rapid industry adoption. Such markets facilitate

agent information isolation, quantifying the trade-offs of multi-objective optimiza-

tion, and facilitate the use of combinatorial optimization in a scalable way, provided

carefully-designed models are used.



An experiment is a question which science poses to
Nature, and a measurement is the recording of
Nature’s answer.

– Max Planck

Scientific Autobiography (1949) page 110

7
Conclusion

7.1 Summary

In this thesis we confronted two key problems in the construction of mechanisms

for extremely complex settings such as combinatorial auctions:

First, we addressed the issue of how to design around the strong Myerson--

Satterthwaite impossibility theorem [Myerson and Satterthwaite, 1983], which states

that we cannot simultaneously achieve efficiency, budget balance, individual rational-

ity and incentive-compatibility, even in Bayes-Nash equilibrium and when agents have

quasi-linear utilities. We argue that the appropriate response is to relax the incentive

compatibility requirement (and thus efficiency as well). Following this agenda, we

identified a series of approximate incentive-compatibility measures with which to find

mechanisms constructively, or with which to evaluate existing mechanisms tractably.
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Second, we addressed the difficulty of agent participation in complex markets

and in complex domains. To that end, we designed, implemented, and tested an

iterative exchange for combinatorial settings. The iteration permits agents to reveal

information incrementally and to keep large amounts of their value profile uncertain.

We identified a bidding language with straightforward semantics, and carefully con-

structed easy-to-interpret linear prices that help agents interpret how to behave in a

complicated economy. Finally we showed how one can apply these concepts to de-

velop a sophisticated market solution to the difficult resource allocation problem of

assigning hardware and power in a corporate data center.

7.2 Key Contributions

We highlight the following main contributions of this work:

Defining Approximate Incentive Compatibility: We derived several useful

distribution-based criteria for approximate incentive compatibility. The crite-

ria measure the gain that can be achieved under an optimal deviation from

truthful reporting under various information assumptions. The conditions are

full measures of gain from the BNE, when the distribution is drawn from the

equilibrium. But the measures are also well defined for a distribution based on

truthful reports of other agents, so we can leverage this simplification in order

to avoid having to calculate a full BNE. We also show that the criteria can be

used constructively to create optimal mechanisms for simple problems.



Chapter 7: Conclusion 250

Quantiles of Ex Post Gain: Of these criteria, the quantile ex post stands out

as highly informative, while being easy to compute. The 100th percentile cor-

responds to the traditional measure of regret. But as an absolute worst case

analysis, regret tells you little about how expectation-maximizing agents will

behave. By looking at smaller quantiles, we get far superior information about

the likely equilibrium outcome.

KL-Divergence on Payoff Distributions: We offered a computationally simpler

way to predict equilibrium behavior: the KL-Divergence between the distribu-

tion of payoffs in a given mechanism versus that in a strategyproof “reference”

mechanism. We showed that this has a strong positive correlation with the de-

gree to which agents deviate from the truth in a combinatorial exchange setting,

along with a strong negative correlation with the efficiency of the consequent

outcome. We also offered a theorem that relates this divergence to the ex ante

expected case criterion that we had developed earlier.

The TBBL Language: We presented the TBBL bidding language, which permits

the concise representation of highly complex valuation functions in a straight-

forward manner. The ability to have the same item appear in multiple parts

of the tree coupled with the semantics of the connective operators is very in-

tuitive; in contrast to the situation with existing logical languages, here one

need not examine a distant part of the tree to quantify the value of a given

sub-tree. Additionally, the language is capable of directly specifying bounds as

is required for the iterative combinatorial exchange design, instead of a fixed

value function.
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Linear Approximate Competitive Equilibrium Pricing:

In a combinatorial exchange environment, full non-anonymous non-linear prices

are needed to establish competitive equilibrium. However, such prices are very

unwieldy for agent reasoning. Instead, in the construction of the ICE mech-

anism, we use linear, anonymous price vectors to drive elicitation. We use a

combination of heuristics, lexicographic refinement, and constraint generation

to establish a set of unique prices that approximate as closely as possible full

competitive equilibrium prices, as well as the payments that will be charged

when the exchange closes.

Activity Rules for a Combinatorial Exchange: We propose two new activity

rules. The first, MRPAR, is a modified form of the revealed preference rule

proposed by Ausubel et al. [2006]. It asks agents to make clear which trade

they most prefer at given prices, but degrades gracefully when the linear prices

we use are non-discriminating. In this case, we fall back on our second rule,

DIAR, which is defined so as to guarantee the ability to drive progress. We

prove that together these activity rules will cause the exchange to terminate

at the efficient trade with respect to the reported valuations. We also show

empirically that agents are not forced to narrow their bounds excessively in

order to find this efficient trade.

Trading Performance for Power: Finally, we design a market for allocating

resources and energy in a data center environment. We show that by provid-

ing tools that can quantify the monetary value for performance, and the true

amount (and thus cost) of energy use, we can enable a rational balancing of the
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competing objectives of high performance and low power consumption.

7.3 Future Work

There are a number of directions for future work that flow out of this thesis. One

striking result is that the quantiles of the ex post distribution of unilateral incentives to

deviate are highly informative about the incentive structure of mechanism equilibrium

behavior. This immediately suggests that new metrics that exploit the quantiles of

such distributions may be useful. But the agenda is perhaps broader than that. Real

agents want a balance between obtaining good behavior in the typical case, and some

robustness to bad cases. Quantiles are a very nice way to achieve this: particularly if

one has the ability to tailor the shape of the overall quantile curve, within the bounds

of feasibility.

Game theory has generally focused on expected-case best responders. However, in

the 1970s a few papers considered the use of quantiles in the context of game theory.

De Vries [1974] examines strategy choice based on quantile information in two-person

matrix games, and a restricted n-player formulation is given by Walsh and Kelle-

her [1970]. There are known techniques for stochastic optimization using quantiles

[Kibzun and Kan, 1996] and for using them in decision theory [Rostek, 2010]. How-

ever, there has not been an attempt to apply these approaches to mechanism design.

There is potential for some exciting new mechanism design theory that incorporates

quantile optimization as a first-class construct. In particular, one might be interested

in either or both of two approaches: a) using quantiles as a new solution concept,

based on this earlier game theory work, and/or b) finding mechanisms that maximize
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quantile objectives in closed form. There is also the related goal of finding closed-form

mechanisms that are optimal for our simpler KL-Divergence criteria.

Another question that arises out of our work on approximate incentive compati-

bility is how to deal with the multiple-dimension aspect of the payoff (or gain) distri-

butions. In the work presented here we do a projection down to a single-dimensional

setting, and our proof that the KL-Divergence bounds the ex ante unilateral gain from

deviation is in terms of a single agent. But we know there to be a strong coupling in

these distributions—it is precisely this coupling which leads to the exponential space

requirements of the LP formulations introduced in Chapter 3. The coupling flows

primarily through the budget and core constraints. It would be interesting to see if

careful consideration of the true underlying multi-dimension distributions can lead to

either improved approximate incentive criteria, or better designs directly.

Another avenue of future work will be to expand the domains for which the types of

analysis offered here are performed. It will be interesting to examine settings where

the VCG mechanism can still provide the strategyproof benchmark, such as spon-

sored search with constraints that mandate “simple” payment rules. And, perhaps

more challengingly, it would likewise be useful to apply the techniques to domains

where the VCG mechanism cannot provide a strategyproof benchmark, for example

redistribution mechanisms [Cavallo, 2006].

There are many intriguing opportunities for future work arising out of the ICE

mechanism. It will be especially interesting to instantiate special cases of the ICE

design to domains for which there exist strategyproof, static (two-sided) combinatorial

market designs. This would bring straightforward bidding strategies into an ex post
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Nash equilibrium. For example, it should be possible to integrate methods such as

trade-reduction [McAfee, 1992b] and its generalizations [Babaioff and Walsh, 2005;

Chu and Shen, 2008] in domains with restricted expressiveness. We can also consider

ICE as a combinatorial auction rather than as an exchange, meaning a direct appeal

to VCG payments would provide incentive compatibility (except in the presence of

core constraints). The other two major directions for future work are to: (a) modify

the design to allow bidders to refine the TBBL tree structure each round, not just

their valuation bounds; and (b) extend ICE to work in a dynamic environment with

a changing bidder population (e.g. maintaining linear price feedback and periodically

clearing). Recent progress in on-line mechanism design includes truthful, dynamic

double auctions for very simple expressiveness [Blum, Sandholm, and Zinkevich, 2006;

Bredin, Parkes, and Duong, 2007], but does not extend to the kind of expressiveness

and price sophistication present in ICE; see the work of Parkes [2007] for a recent

survey.

Lastly, there is enormous potential for further work that leverages mechanism

design to allocate computation resources. Some topics that warrant further efforts

include: richer Service Level Agreement models, hierarchical allocation schemes, dis-

tributed implementation of winner allocation schemes, modeling of multiple time

scales simultaneously, attempting to combine flexibility of spot markets with the

stability of scheduled futures markets, and perhaps most importantly, the ability to

balance even more asset types, over and above power and CPU, including bandwidth,

memory, and disk access.
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7.4 Final Thoughts

Combinatorial markets offer the possibility of significant social benefit, through

increases in efficiency. Efficiency gains are possible because the markets offer bidding

languages that are expressive enough to capture both participants’ non-linear value

functions and complex domain specific combinatorial constraints. However, to realize

these benefits a design must cope with several difficult problems:

The bidding language needs to be not only expressive but also concise to prevent

a requirement for exponential bid size. Moreover, conciseness is not enough on its

own since agents may still have too high a cognitive burden if they must determine

their entire (exponentially sized) valuation function in order to participate. Iterative

mechanisms can help mitigate this problem, by permitting agents to reveal partial

information through rounds and by providing price feedback to guide agent reasoning.

With a bidding procedure in hand, the center still needs to be able to tractably

determine both the winning trade, and the appropriate prices – both of which can be

NP-hard problems. Time also plays an important role in design: is the mechanism

for a single-shot allocation of goods, or will these goods be reallocated continuously?

Are the goods being allocated for an indefinite period of time (spot) or for particular

blocks of time (scheduled)?

With the requirement to solve these difficult design problems, there is a tension

between general and fully expressive mechanisms (such as ICE), and those which

take advantage of domain-specific features to customize the design (as in the last

chapter). While the former has wide applicability and re-usability, there is much to

gain by specialization.
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The efficiency gains that are the draw of combinatorial mechanisms cannot be

realized if participants do not provide truthful information to the mechanism. This

has justified the central importance of incentive compatible design in the literature,

but the construction of such strategyproof mechanisms is generally not possible when

we move from auction to exchange settings (or in concert with other desirable features

such as core pricing). This motivates the design of the maximally incentive compatible

payment rules that were discussed in Chapters 3 and 4. Such rules stand to not only

increase efficiency, but just as importantly, to reduce the wasteful agent cognition

that arises from the gaming opportunities permitted by simpler approaches.

This thesis has offered both theoretical analysis and concrete proposals for a set of

solutions to the myriad practical concerns that arise when implementing these com-

plex mechanism designs; and then applied these lessons to one particular application:

power-aware computational resource allocation. There are many other potential ap-

plications including bandwidth allocation, airspace contention, advertising sales, and

energy markets. While much remains to be learned, the increased efficiency and de-

creased participatory cost offered by these new mechanisms makes their theoretical

and practical development highly worthwhile.
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Sébastien Lahaie and David C. Parkes. Applying learning algorithms to preference
elicitation. In Proc. 5th ACM Conf. on Electronic Commerce (EC ’04), pages
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