
Utility-Based Bandwidth Allocation and Link
Scheduling in Wireless Networks: Linear Programming

and Market-Oriented Approaches

A Thesis presented

by

Qicheng Ma

to

The Department of Computer Science

and

The Department of Economics

in partial fulfillment of the honors requirements

for the degree of

Bachelor of Arts

Harvard College

Cambridge, Massachusetts

April, 2006

c©2006 - Qicheng Ma
All rights reserved.

Thesis Advisors:

Professor David Parkes

Professor Matt Welsh

Professor Jerry Green Qicheng Ma

Utility-Based Bandwidth Allocation and Link Scheduling in
Wireless Networks: Linear Programming and Market-Oriented

Approaches

Abstract

In this thesis, we address the problem of bandwidth allocation and link scheduling in

order to maximize aggregate user utilities in wireless ad-hoc networks. Unlike previous

works that aimed to maximize aggregate throughput or some artificial utility metrics, our

goal will be to optimize the true aggregate utility as reported by the applications them-

selves.

We first develop and implement two centralized scheduling algorithms: The OPT algo-

rithm solves the optimal TDMA schedule directly by formulating an Integer Program and

invoking the CPLEX optimizer. The ORL-CSMA algorithm first solves a relaxed version

of the full optimization problem to obtain an upper-bound to the optimal schedule, then

employs a best-effort CSMA scheme to ensure schedulability. Moreover, we develop a

market-oriented approach MARKET with a tatonnement process and demonstrate its abil-

ity to effectively price bottleneck resource in the network and thereby approximate the

optimal solution with much reduced complexity.

Finally we present detailed study of the behavior of MARKET algorithm, and perfor-

mance comparisons between all three algorithms developed, as well as the NAIVE-CSMA

scheduler. Our experimental results suggest that: 1) OPT, though able to achieve the most

amount of utility, is computationally intractable in practice; 2) ORL-CSMA approximates

the optimal results well in practice within reasonable run time; 3) MARKET offers further

approximation of the optimal solution, with even less runtime complexity and other prop-

erties that makes it a suitable candidate for a realtime online scheduler in practical settings.

iii

Contents

Title page . i

Abstract . iii

Table of Contents . iv

List of Figures . vi

List of Tables . viii

Acknowledgments . ix

Preface . x

1 Introduction 1

1.1 Motivation . 1

1.2 Related Works . 2

1.3 Organization of this Thesis . 5

2 Theoretical Framework 6

2.1 Problem Formulation . 6

2.2 Interpretation and Generalization . 9

2.2.1 Links and Capacities . 9

2.2.2 Time and Schedule . 9

2.2.3 Interference Models . 11

2.2.4 Utility Functions . 13

2.2.5 Application Classes . 14

2.3 Complexity Results . 16

2.4 A Market Economics Interpretation . 17

iv

3 An Optimal Schedule Solver 19

3.1 Design . 19

3.2 Implementation . 19

3.3 A Stylized Example . 21

4 An Approximately Optimal Rate-Limited CSMA Scheduler 24

4.1 Design . 24

4.2 Computing Upper-bound Flow Vector . 25

4.3 Modified Rate-Limited CSMA Scheduler . 28

4.4 Effectiveness of Optimal-Rate-Limiter for CSMA 31

5 A Market-Oriented Bandwidth Allocation Protocol 33

5.1 Market Design . 34

5.2 Individual Demand Function (Single-App Optimal Flow) 40

5.3 Price Updating Algorithm . 41

5.4 Market Convergence . 43

5.4.1 Theory . 43

5.4.2 Example . 44

5.4.3 Explanations . 49

5.4.4 Convergence Detection Algorithm . 52

5.5 Price Distribution . 56

5.6 Choice of Goods Basis . 57

5.7 Summary . 61

6 Evaluation and Analysis 62

6.1 Demand Saturation - A Case Study . 62

6.2 Utility Optimization vs. Bandwidth Optimization 69

6.3 Performance Comparisons of OPT, ORL-CSMA, MARKET and NAIVE-CSMA 70

6.4 Summary . 76

7 Conclusions and Future Work 77

v

List of Figures

1.1 Relation to previous works . 4

2.1 Level-1 and Level-2 Interference Models . 12

2.2 Examples of piecewise-linear concave utility functions 14

3.1 OPT algorithm wiring diagram . 19

3.2 Integer Linear Program used in OPT . 20

3.3 Optimal schedules on a simple network with increasing number of identical

applications . 22

4.1 ORL-CSMA wiring diagram . 25

4.2 Relaxed Integer Linear Program in the first stage of ORL-CSMA. 27

4.3 Contention process in second stage of ORL-CSMA. 29

4.4 Examples of a multi-path flow-vector . 30

5.1 MARKET protocol overview . 34

5.2 An example market . 39

5.3 Evolution of Price Vector over Iterations . 46

5.4 Evolution of Demand Vector over Iterations 46

5.5 Number of occurrences for each unique demand vector during every 100

iterations . 47

5.6 Trajectory of the Market in Price-Demand-Iteration Space 48

5.7 Price and Demand Vector at initialization and equilibrium 51

5.8 Difference of Price Vector over Iterations . 55

5.9 Difference of Demand Vector over Iterations 55

vi

5.10 Distribution of price for each good, sampled over random applications . . . 56

5.11 Effect of Price Vector Choices on Output Quality and Convergence Time (1) 59

5.12 Effect of Price Vector Choices on Output Quality and Convergence Time (2) 60

6.1 A randomly generated network to carry out case study 63

6.2 Running Time and Link Usage of OPT, ORL-CSMA, MARKET and NAIVE-

CSMA . 64

6.3 Total and Average Bandwidth of OPT, ORL-CSMA, MARKET and NAIVE-

CSMA . 65

6.4 Total and Average Utility of OPT, ORL-CSMA, MARKET and NAIVE-CSMA . 66

6.5 Performance comparison in random sample 70

6.6 Comparison of OPT, ORL-CSMA, MARKET vs. NAIVE-CSMA 72

6.7 Comparison between OPT, ORL-CSMA and MARKET 73

6.8 Distribution of running time for OPT, ORL-CSMA and MARKET in random

samples . 75

vii

List of Tables

5.1 Demand Vector frequency count . 47

viii

Acknowledgments

I’d like to thank Professor David Parkes, Professor Matt Welsh and Professor Jerry

Green for providing invaluable advice and guidance in the progress towards the comple-

tion of this thesis.

ix

1

Introduction

1.1 Motivation

Traditionally, bandwidth allocation and link scheduling in wireless ad-hoc networks are

often done either in a pre-specified coordination schedule or in a simple local tiral-and-

backoff model [20]. The latter requires unnecessary overhead due to contention and col-

lision, while the former is not adaptive enough to fit real-time usage patterns. Recent

research has proposed algorithms to schedule network usage in response to specific flow

demands in order to optimize total throughput objective [8, 11, 13, 15]. However, aggre-

gate throughput does not faithfully reflect the ultimate true value of network usage since it

fails to distinguish different missions that a same amount of throughput could accomplish.

Recent development in wireless network technology has sprung up a lot of interesting

new applications supported by a large range of technology, with varying bandwidth con-

sumptions and varying levels of quality of service. Furthermore, wireless ad-hoc networks

of increasing scale are formed to support several layers of services over one network in-

frastructure. Consider an example of sensor networks deployed in hospital environment

(e.g. CodeBlue [24]). Different services such as patient tracking, doctor paging and vital

sign monitoring all have different levels of priorities and values that are not scaled lin-

early with their bandwidth consumption. Moreover, one service may be able to operate

at different bandwidth levels to provide different levels of quality or fidelity (e.g. media

streaming over a PDA-network). All these usage scenarios propose the need for the re-

source scheduler to be aware of application- and user- specific utility instead of network

level bandwidth. Hence we propose to consider the optimization of aggregate application

1

utility as the central goal of a new generation of resource schedulers.

In this thesis, we consider the introduction of utility optimization to the most-studied

complex of bandwidth allocation and link scheduling in response to flow demands in

multi-hop networks, coupled with wireless interference constraints. We will augment on

previous models of multi-hop multi-flow scheduling [13] to formulate the Optimal Util-

ity Scheduling problem. Attempts will be made to gauge and overcome the complexity of

the problem by developing several algorithms with successive relaxations and approxima-

tions.

From an economic perspective, a wireless ad-hoc networks can be viewed as a complex

market system in which a variety of users and applications act as net-utility optimizing

agents to form the demand basis while nodes and links resources become the limited sup-

ply. Wireless interference translates into complex externalizes that are idiosyncratic and

highly combinatorial in nature. The main focus of this thesis will be to present a compu-

tational market-oriented approach to solve the optimal utility scheduling problem with

approximation.

The ultimate goals of this thesis are to provide a theoretical framework for the problem

of optimal-utility allocation and scheduling in ad-hoc networks in the presence of wireless

interference, and to contribute towards a practical resource scheduler that is decentralized,

application-aware, utility-oriented and interference-friendly.

1.2 Related Works

A body of research papers have looked at the characterization of network capacity and link

scheduling problem in multi-hop networks. Some [7, 16] are concerned with the theoretical

oblivious link utilization under a range of unknown demand vectors, while in this thesis

we take specific demands as given and aim to find optimized solutions. Others mainly

explored the problem of optimizing total bandwidth or throughput in multi-hop network

given flow demands, including [8, 11, 13, 15], mostly employing LP’s to formulate the

optimization problem or develop theoretical bounds.

2

Jain et al. [13] developed the conflict graphs to model interference and used a multi-

commodity flow formulation to solve the optimal throughput problem; they also devel-

oped upper-bound and lower-bound for the optimal solution. Their work has largely in-

spired and influenced the work in this thesis. In their own formulations of the problem,

[13] and [11] showed that link scheduling to achieve optimal throughput under interfer-

ence constraints is NP-complete in general.

Radunovic and Boudec [19] argued that total throughput may not be the right objective

to optimize. They introduced a class of pseudo-utility functions as performance objectives,

which will lead to balance between performance and fairness. In this thesis, we treat utili-

ties as first class objects that by themselves are the goal of optimization, rather than serving

as a mean or proxy to achieve fairness.

The notion of utilities of application or users are also considered in many papers. An-

drews et al. [2] considered the optimal utility problem in the situation of multiple user

sharing one single radio medium. Yang and de Veciana [28] considered both user and

network utility to form a dual optimization problem, which hinted on the use of market

optimization approaches.

Market-oriented computational models have been developed to solve various resource

allocation problems such as network transportation, multi-commodity flow problem [27],

power load management[29] or any general market equilibrium problems [9]. Despite

the negative results in general equilibrium theory about the stability and convergence of

the competitive market equilibrium [4, 23], the tatonnement process tends to work quite

well in practice in certain types of computational markets. Compared to previous market-

oriented models, the distinguishing features of the market approach developed in this

thesis include: the usage of virtual goods to capture externality due to interference, the

high complexity of individual demand functions, and the difficulty of convergence in a

discrete price and demand space with complementarity of goods.

Other authors have focused on the topic of wireless interference. Although richer par-

tial interference models developed by Padhye et al. [18] model practical measurements

of link quality [1] better, we choose to assume a simpler boolean interference model con-

sidering the already high complexity of our problem. Tan and Guttag [25] discussed the

3

scheduling problem in the multiple-to-one interference setting between wireless devices

and wireless access points. Here we do not assume a central wireless access point but

instead investigate the scheduling problem in ad-hoc network formed by peer devices.

To summarize, although there are an abundance of related works in the fields of multi-

hop network routing and scheduling, wireless radio interference, utility-based optimiza-

tion, and market-oriented computations, there are very few that lie in the intersection of all

four. This thesis makes an honest attempt to consider a comprehensive problem involving

all these four elements: the application of market-oriented approaches to the problem of

bandwidth allocation and link scheduling in a wireless ad-hoc network to optimize user-

specified utility in the presence of interference.

Figure 1.1: Relation to previous works. This thesis attempts to combine research interests of
several fields. (number of papers not to scale)

4

1.3 Organization of this Thesis

In Chapter 2 we will present a general formulation of the Optimal Utility Scheduling prob-

lem and discuss its various interpretations and generalizations. Chapter 3 formulates the

problem directly as a brute-force 0-1 integer linear program, OPT, which has optimal util-

ity output but suffers from extreme complexity. Chapter 4 presents the Optimally Rate-

Limited CSMA algorithm (ORL-CSMA) that first solves a relaxation of the OPT integer pro-

gram to compute an upper-bound, and then uses a CSMA-like protocol to ensure schedu-

lability. The main focus of the thesis will be in Chapter 5, in which we develop a market

oriented allocation protocol MARKET to compute a bandwidth allocation as a rate-limiter.

We will look at the unusual characteristics of our market in comparison to classic economic

markets and previous computational market models in detail, and discuss the choices of

various components and parameters of the MARKET algorithm. In Chapter 6, we present

comparative performance analysis of the algorithms we developed in a wide range of se-

tups. The final Chapter draws conclusions from the theoretical and experimental results

and discuss future areas of research.

5

2

Theoretical Framework

In this chapter we will present a general formulation of the Optimal Utility Scheduling prob-

lem and discuss its various interpretation and generalization to encompass a large range

of setups. Then we summarize previous results regarding the complexity of the problem.

The problem formulation presented in this chapter will directly guide the development of

the optimal schedule solver presented in the next chapter.

2.1 Problem Formulation

Our formulation is based on the model of connectivity graph and conflict graph developed

by Jain et al. [13] augmented with the notions of applications and utilities.

For a given wireless network with n nodes, the connectivity graph C is a directed graph

defined by 〈N,L〉 where N = {1, 2, ..., n} is the nodes representing wireless devices and

L = {lij : there exists a link from i to j} is the set of directed links among them. Each link

has its capacity, Cap(lij), which is the maximum achievable date rate if the link li,j is active

during the entire time span T (defined later).

A set of applications A = {a1, a2, ..., am} are contending to use the network. Each

application a is defined by a tuple 〈s, d, u(.)〉, which specifies a source node s, a destination

node d and a utility function u(.) defined over the bandwidth of a flow allocated to it from

s to d. The minimum requirements for a utility function is that it passes through (0,0) and

is non-decreasing. We will discuss further restriction of utility functions such as concavity

and piecewise-linearity in later sections.

A flow f is an assignment of bandwidth traffic to each link in L. In our convention,

6

superscripting a flow denotes the index of application it belongs to and subscripting a

flow denotes the corresponding link component of the flow (i.e. fk
ij means the bandwidth

consumption on link lij for application ak). The following Flow Conservation Constraints

must be satisfied:

∀i, j ∈ N, k : ak ∈ A, fk
ij ≥ 0 (2.1)

∀i ∈ N, k : ak ∈ A,
∑

j:lji∈L

fk
ji −

∑

j:lij∈L

fk
ij =

−‖fk‖ , if i = sk;
‖fk‖ , if i = dk;
0 , otherwise.

(2.2)

Equation (2.2) states that for every application ak and every non-terminal node i (i 6= sk

and i 6= dk), the total inflow to node i must be equal to the total outflow for application ak;

whereas the source node and the destination node will have positive net outflow or posi-

tive net inflow respectively, and its magnitude is equal to the overall bandwidth of the flow,

denoted as ‖fk‖.1 The application’s utility is therefore uk(‖fk‖). Moreover, we call the

complete flow assignment for every application the flow vector, denoted fA = (f1, ..., fm)

where A = {a1, ..., am}.

To model interference, define the conflict graph of the network to be an undirected graph

F = 〈VF , EF 〉, whose vertices VF = L correspond to the links in the connectivity graph.

An edge 〈lij , lpq〉 ∈ EF means that the two links interfere with each other and cannot be

active simultaneously.2 The conflict graph is defined between links rather than between

nodes to allow a richer model of interference (discussed later in section 2.2.3). However,

unlike [18] which explores a more fine-grained partial interference model, we make the

simplifying assumption that links either interfere or they do not.

The time span T is the index set of all possible time values in an epoth, which is a typical

period of communication patterns that can be repeated over and over again. It can be either

continuous [0, 1] or discrete {1, 2, ..., t}. The former can be interpreted as a proportion of the

entire medium resource, while the later can be viewed as discrete time slots in an epoch in a

Time Division Multiple Access (TDMA) scheme. For every element in the set T , a decision

1This is not to be confused with the norm when f is considered an l-dimensional vector, where l is the
number of links.

2Note that we do not draw an edge from a vertex (link) to itself in the interference graph, but we do draw
an edge between a pair of reverse links lij and lji.

7

has to be made as to which subset of the link L will be active for which application. Or

alternatively, for every link in L a decision has to be made as to which subset of the entire

time span T it will be active, and which application’s data it will carry.

Hence, we define a schedule to be a function S : A × L 7→ {0, 1}T that assigns each

application to a certain subset of the the total time span T for every link. e.g. S(a, l) =

{1, 3, 5} means in time slots 1,3,5 link l will be active transmitting application a’s data. We

say a schedule S is feasible if the following Schedulability Constraint is satisfied:

∀lij ∈ L, ak1 , ak2 ∈ A : ak1 6= ak2

⇒ S(ak1 , lij) ∩ S(ak2 , lij) = φ (2.3)

∀lij , lpq ∈ L, ak1 , ak2 ∈ A : 〈lij , lpq〉 ∈ EF

⇒ S(ak1 , lij) ∩ S(ak2 , lpq) = φ (2.4)

Equation (2.3) states that no two applications can occupy the same link at the same time,

and (2.4) states that no two links that interfere with each other can be active at the same

time. Note that by construction, no link can be active for a time period longer than the

total time span since the value of S is always a subset of T .

We say that a schedule S implements a flow vector fA = (f1, ..., fm) iff S is feasible and

the following is satisfied:

∀i, j ∈ N, k : ak ∈ A, fk
ij ≤ Cap(lij) · ‖S(ak, lij)‖

‖T‖ (2.5)

where ‖.‖ denotes the size of a set.3 This equation means that the achieved bandwidth of

an application on a link is no more than the capacity of the link scaled by the proportion of

time the application is scheduled to occupy that link. We say a flow vector fA is feasible if

it can be implemented by some feasible schedule S.

Finally, the Optimal Utility Scheduling Problem is the following: given the connectivity

graph C, the conflict graph F and a list of applications A, compute a feasible schedule S

3Or the measure of a set of continuous time range. e.g.
[0, 0.3] ∪ [0.7, 0.9]

 = 0.5.

8

that maximizes the aggregate utility of all applications:

max
fA,S

∑

k:ak∈A

uk(‖fk‖) (2.6)

s.t. fA and S satisfy (2.1)-(2.5)

2.2 Interpretation and Generalization

2.2.1 Links and Capacities

The connectivity graph and capacity vector together characterize the network topology

and link quality. The existence of a link lij in the connectivity graph only means that data

can be transmitted via a direct wireless channel from i to j, while Cap(lij) quantifies the

maximum achievable data rate if the wireless channel is dedicated only to the transmission

from i to j, free of interference from other links, during the entire time span T . A simple

idealized network model would assume that a link exists between every pair of nodes

that lie within the nominal radio range of each other, and that they all have the same

capacity as specified by the radio hardware (which we will adopt in our simulations).

In practical networks, the network topology can be formed by neighborhood discovery

techniques such as periodic beaconing, broadcast probing or traffic snooping (surveyed

in [22]). The capacity of a link can either be estimated by the nominal data rate of the

wireless hardware calibrated by some empirical formula, or experimentally determined

by measuring sustainable pairwise bandwidth with all other links inactive [1, 18].

Since links in the connectivity graph are directed, our network model does not assume

link symmetry. A pair of reverse links lij and lji do not have to exist in L simultane-

ously. Even if they do, they can have different capacity limit to constitute link asymmetry.

Furthermore, they can have interference with a different set of other links under some

interference models (see section 2.2.3).

2.2.2 Time and Schedule

The notion of time span in our model requires a little more elaboration. It is not the time

length in a normal sense as measured by seconds or milliseconds, but rather a set of values

to index a collection of individually schedulable parts of one radio resource. The choice of

9

T depends primarily on the Media Access Control (MAC) layer of the wireless network.

For example, in a Time Division Multiple Access (TDMA) scheme the time span is a

discrete set T = {1, 2, ..., t} that corresponds to t time slots in one epoch. The number of

rounds t in an epoch, and the physical time length of each epoch are parameters of the

TDMA protocol. This abstraction of time span allows us to talk about the bandwidth of

an individual application in relative magnitude as a portion of the overall raw data rate.

Consider a TDMA scheme with a raw data rate of 200kbps, 100ms epoch (frame) length,

time-slotted into 10 rounds. Then an application that has been assigned to 3 time slots on

a link will have an effective bandwidth of 200kbps × 3
10 = 60kbps . If this 3-time-slots-out-

of-10 schedule is repeated over time, then 60kbps will be the sustainable bandwidth that

the application experiences. If T is discrete, a schedule can be compactly represented as a

2-dimensional schedule table of the form L × T 7→ A or a 3-dimensional indicator array

L×A× T 7→ {0, 1}.

In the case where the medium resource is infinitely divisible (or close to that in effect),

then we may take T to be continuous, and without loss of generality let it be the unit inter-

val [0, 1]. This fits a Carrier Sense Multiple Access (CSMA) protocol, in which transmission

may begin and end at any continuous time. In this continuous case it is more complex to

represent a schedule since it has to specify the activity for every (link, application, time)

tuple. If we assume that reordering of the link assignment besides along the time axis is

irrelevant, a schedule can be expressed as a weighted linear combination of independent

sets of the conflict graph[13].4 Although the use of continuous weights seems to bring

computational relief because solving Linear Program is easier than solving Integer Pro-

gram, there are in fact an exponential number of independent sets and enumerating them

is NP-complete.

It is worth noting that the index set T can be generalized to correspond to other ways

of dividing the medium resource along the time axis. For example, if multiple frequencies

are in use and nodes are capable of operating at different frequencies simultaneously, then

letting T be the list of available frequencies will lead to a problem of scheduling applica-

4Recall that an independent set of an undirected graph is a set of vertices without any edges between any
pair among them.

10

tions over frequency channels instead of over time. A combination of frequency division

and time division can also be used (e.g. in GSM network).

2.2.3 Interference Models

In general, the conflict graph can be totally independent of the connectivity graph, and can

be measured empirically by simultaneously activating every pair of links and see whether

the transmission rates degrade. Although Padhye et al. [18] showed that realistic interfer-

ence would manifest as gradual degradation in both links’ transmission rates, their partial

interference model is unreliable to extrapolate to multi-lateral interference, and will lead

to extra complexity in our problem. Instead, we will make the simplifying assumption that

we will treat partial interference between two links as total interference and will not allow

them to become active at the same time.

When empirical interference measurements are not available, we can generate the in-

terference graph from the connectivity graph by making assumptions about the link pro-

tocols. Different models of interference can be adopted in our model by different ways

of construction. Similar to the classification of interference conditions provided by Ra-

manathan [20], we will mainly consider the following interference conditions:

• Hardware Interference: Because a wireless device cannot transmit or receive two

signals at the same time,5 two links that involve a same node in the connectivity

graph interfere with each other. Formally, i = p or i = q or j = p or j = q ⇒
〈lij , lpq〉 ∈ EF .

• Reception Interference: The most common interference in wireless networks oc-

curs when two radio signals interfere with each other and prevent the receiver from

decoding either of the two. Two links will interfere with each other if the receiver

of one link is in the range of the sender of the other link. Formally, liq ∈ L or

lpj ∈ L ⇒ 〈lij , lpq〉 ∈ EF . This condition sufficiently describes the interference re-

lationship in a protocol where only the receiver is required to be free of signal inter-

5Although this may be possible with e.g. multiple antennas, the possibility of multiple wireless channels
should be factored into the time index T as described in section 2.2.2. Thus, a node cannot handle more than
one operation at the same “time” as defined by set T .

11

ference, i.e. if the sender does not need to receive an acknowledgement (ACK) from

the receiver.

• Acknowledgement Interference: In some protocols the sender must also receive

an un-interfered ACK back from the receiver in order to complete the transmission

(otherwise it will re-transmit again). In this case, two links lij and lpq interfere if any

of the cross links exists (lip, lij , etc. are in L).

Thus we have the following sequence of increasingly restrictive interference models:

• Level-0 Interference Model: Includes only the first condition.

• Level-1 Interference Model: Includes only the first two conditions.

• Level-2 Interference Model: Includes all three interference conditions above.

Figure (2.1) illustrates whether two links lij and lpq interfere under Level-1 and Level-2

interference mode (in Level-0 interference model they do not interfere since all end-points

are different).

Figure 2.1: Level-1 and Level-2 Interference Models. The bold-arrow links will interfere with
each other if any of the dotted-arrow links exist.

12

2.2.4 Utility Functions

The addition of application utility functions is the most significant contribution of this the-

sis compared to previous research by Jain et al. [13] and etc. The utility function is a map

from bandwidth to the application’s value for being able to achieve a given average band-

width level. In an economic setting, this would be the virtual monetary value that the user

would be willing to pay in exchange for network usage at the level of the specified band-

width. Although Radunovic and Boudec [19] proposed using utility function of specific

forms such as a power function or the logarithm of the bandwidth, they merely use it as

a mean to improve fairness properties over the traditional throughput-maximizing alloca-

tion. This is not the case here – the utility reported by the applications are their ultimate

true values for network usage and optimizing aggregate utility is the end goal instead of a

mean to achieve fairness. The advantage of maximizing aggregate utility rather than ag-

gregate throughput is that it allows applications to specify rich preferences over different

bandwidth consumptions and allows the network scheduler to prioritize applications of

different importance in order to dedicate limited network resources to achieve maximum

value.

There are several properties of utility functions considered in our model: First we re-

quire that it pass through (0,0) by convention. Second it must be non-decreasing (otherwise

the application may just step down to operate at a lower bandwidth than it is allocated).

Finally we restrict it to be in the class of piecewise linear functions, including ones with

discontinuous jumps. The advantages for using piecewise linear utility functions are the

following:

• They have compact representations. One way to specify a piecewise-linear function

is to give a list of turning points (xi, yi) in ascending x coordinate, and two extra

slopes preSlope and postSlope before the first point and after the last point, which

we will use in our implementation.

• They are simple yet general enough to approximate any reasonable functions.

• Every piecewise linear function can be reduced into a collection of constraints in a

13

linear program using only linear operations, inequality operators and slack variables.

This makes it possible to incorporate piecewise linear utility functions in an (integer)

linear program to solve for the optimal schedule. The actual reduction is omitted

here since it is automatically handled by the CPLEX optimizer [12].

bandwidth

utility

1 2

10

15

bandwidth

utility

5 10

10

15

Figure 2.2: Examples of piecewise-linear concave utility functions. The first one makes
step jumps at discrete thresholds; the second one grows over a range of continuous bandwidths but
changes its slopes. The first one is considered concave only when bandwidth is discrete instead of
continuous.

Although it is not a requirement in our optimization problem for the utility functions

to be concave, practical applications usually have diminishing marginal returns on band-

width and thus have concave utility functions. Figure 2.2 shows two examples of piece-

wise linear concave utility functions. The first utility function (0,0)-(1,10)-(2,15) represents

an application with two modes of operations and a decreasing marginal utility of each

additional unit of bandwidth. We will use this typical utility function extensively in later

experimental sections.

2.2.5 Application Classes

Our model of an application is one that derives utility from sending date from one source

to one destination at a certain sustainable data rate. This suits the class of applications

that care mostly about average bandwidth, but does not quite fit other classes of appli-

cations that care about other performance metrics such as latency, accumulated traffic, or

future bandwidth reservation. Here we present a list of application scenarios, ordered by

14

decreasing compatibility with our model.

• Signal Monitoring: Applications such as vital sign monitoring in medical environ-

ment [24] are typical applications that fit our model. For example, a patient sensor

device can either report a heart rate in low bandwidth mode or record and send de-

tailed cardiography at high bandwidth mode. Furthermore, different specification of

application utilities can facilitate prioritization of urgent emergency-related applica-

tions vs routine maintenance applications.

• Voice/Video Streaming: Media Streaming applications can potentially be deployed

on high-bandwidth network such as PDA or other mobile ad-hoc network. The me-

dia player can operate at various bandwidth levels to playback at different quality,

and the user derives more utility as the sound/image resolution increases.

• File Transfer: A file transfer user is likely to say that “my utility will be U if I can

transfer S amount of data by time Y , or 0 otherwise”. In principle, the last packet

transferred by the application will carry the entire utility amount U , and since the

previous traffic carries zero utility, they will not be scheduled at all. In practice, we

can amortize the lump-sum utility onto the data and spread it over the time remain-

ing until deadline. A utility function of the form

u(b) =
{

Usr
S · b , if btr ≥ sr;

0 , otherwise.

will be appropriate, where sr is remaining size to transfer and tr is the remaining

time till deadline.

• Multi-Cast Broadcast: Since our network model assumes multi-path uni-cast trans-

mission, an advertiser application that derives utility from reaching a number of

receivers through multi-cast broadcast cannot readily fit into our model. The appli-

cation can certainly divide up the multi-cast into multiple single-casts, but it would

suffer from inefficiency because duplicate data is sent in the main trunk of the multi-

cast tree. This is a limitation of our network model because a multi-cast flow does

not satisfy the flow conservation constraint.

15

• Conference Calling: Unlike the previous class of voice/video streaming applica-

tions that derive utility by-the-seconds, a corporation may decide to hold a confer-

ence call over wireless ad-hoc network in future and requires a guaranteed level of

bandwidth over a minimum period of time (in order for its members to reach some

conclusion). Our model currently cannot support such utility that is contingent upon

future bandwidth reservation since the scheduler solves for short-term schedules

only.6

• Latency-Sensitive Applications: Since we consider the re-ordering of round-schedule

within an epoch to be irrelevant, it is possible for the links on a multi-hop path to be

activated out of order. For a multi-hop flow path of hop-count d, it may take one

package d epoches to reach its destination in the worst case when the links are acti-

vated in the exact reverse order in a schedule, whereas in the best case it takes only

d rounds when the links are activated in the correct order (for an example see sec-

tion 3.3). Because in the long run the average throughput are the same for these two

extreme cases, our optimization problem does not take latency into consideration.

Applications can only specify utility that depends on the average bandwidth level

but not latency.

Our model covers several major classes of applications and we hope to extend it to take

into account more application models in future work.

2.3 Complexity Results

Many similar scheduling problems have been shown to be NP-hard [3, 10, 21]. In particu-

lar, Jain et al. [13] established that it is NP-hard to compute the the throughput-maximizing

schedule in the presence of interference, and moreover it is NP-hard to produce an approx-

imation within a constant ratio of the optimum solution. Since their formulation of the

maximum throughput scheduling problem is a special case of our above formulation with

continuous time span and identity utility function, the Optimal Utility Scheduling problem

6Unless, of course, the epoch length is long enough to be bigger than the length of the reservation.

16

formulated above is NP-hard. Furthermore, the addition of utility function will introduce

additional complexity into the problem. Nevertheless we will still design and implement

an optimal schedule solver in the next chapter to examine the the practical (in)tractability

of this approach and also to serve as a performance benchmark for other algorithms that

we will subsequently develop.

2.4 A Market Economics Interpretation

The complexity of a wireless network, especially the supply-and-demand relationship be-

tween nodes, links and applications, closely resembles a complex economy. On a high

level, units of wireless resources can be considered as goods in the system, produced by

nodes or links and consumed by users and applications. This forms a market that’s highly

combinatorial in nature with several prominent characteristics:

• Combinatorial goods: Because most often applications will need more resources

(e.g. nodes and links) in order to form a useful flow to accomplish its goal, the con-

struction and interaction of resource bundles is very important in this market. The

dependencies between resources constitute complementarity on the lower good level,

yet the possibility to use alternative path provides substitutability on the higher flow

level.

• Non-continuous demand function: In addition to the discretization of quantities

of goods, the complementary nature of resources implies that a small change in the

prices may cause an application to change to a completely different path and lead to

big change in the demand function.

• Highly complex externality structure: Interference in wireless network leads to neg-

ative externality in this virtual market because activation of one link prevents other

interfering links from being utilized. In classic economic models externality is mostly

non-idiosyncratic (e.g. emission of pollutant). The fact that a link interferes with

some links but not others makes the externality presented in the system idiosyn-

cratic. Furthermore, because the conflict graph can be arbitrary in principle, the types

17

of externalities can be exponential in the number of links. Such complex externality

structure has not been extensively studied in economic literature.

• Fixed supply: Most resources in the wireless network (such as wireless medium,

frequency channels) have limited amount of supply in the model we consider. In

some network scenarios, the nodes may be able to adjust their energy consumption

level to produce variable amount of bandwidth. However, such a situation is outside

the scope of this thesis.

In this section, we have only scratched the surface of the market-economic interpreta-

tion of scheduling in wireless networks. In chapter 5 we will develop a market-oriented

approach to the optimal utility scheduling problem and examine many of the above issues

in greater detail.

18

3

An Optimal Schedule Solver

3.1 Design

In this section we develop an optimal schedule solver, OPT, for solving the discrete version

of the Optimal Utility Scheduling problem with time span T = {1, 2, ..., t̄}. The algorithm

takes the connectivity graph, the interference graph and a list of applications as input, and

seeks the optimal schedule directly by solving a brute-force 0-1 Mixed Integer Program

(MIP) as presented in the above problem formulation using Ilog’s CPLEX optimizer [12].

The OPT algorithm effectively combines the functions of bandwidth allocation, multi-hop

routing and link-scheduling all in one. Figure 3.1 shows its design.

OPT Solver

0,1-Integer
Program

Connectivity Graph

Conflict Graph

Applications

Optimal
TDMA
Schedule

Figure 3.1: OPT algorithm wiring diagram.

3.2 Implementation

The inputs of the algorithm include: the adjacency matrix of connectivity graph, link (i, j),

the link capacity vector, cap(i, j) , the adjacency matrix of the conflict graph, conflict(i, j, p, q),

the source src(a), destination dest(a) and utility u(a) for each application. The outputs in-

clude: a 4-dimensional array representation of the optimal schedule sch (a, i, j, t) and the

flow flow(a, i, j) that it implements. For clarity of presentation in this section, we will

19

follow the convention that index a always iterates through applications, i, j, p, q through

nodes and t through time periods. Figure 3.2 shows the mixed integer program used in

OPT . Though brute-force as it may seem, there appears to be no better way to write down

the problem considering its highly combinatorial nature.

max
∑

a

eval(u(a), b (a))

over variables

sch (a, i, j, t) ∈ {0, 1}, flow(a, i, j) ≥ 0, b (a) ≥ 0
for a ∈ A, i, j ∈ N , t ∈ T

subject to

(I)∀a, i, j, t : sch (a, i, j, t) ≤ link [i][j]

(II)

∀i, j, t :

∑
a sch (a, i, j, t) ≤ 1

∀i, j, p, q, t s.t. conflict(i, j, p, q) :∑
a sch (a, i, j, t) +

∑
a sch (a, p, q, t) ≤ 1

(III)

∀a, i, j : flow(a, i, j) ≤ cap(i,j)

‖T‖
∑

t sch (a, i, j, t)
∀a : b(a) =

∑
j flow(a, src(a), j) =

∑
j flow(a, j, dest(a))

∀a, i s.t. i 6= src(a), i 6= dest(a) :∑
j flow(a, j, i) =

∑
j flow(a, i, j)

Figure 3.2: Integer Linear Program used in OPT.

Block (I) encodes the schedule as sch (a, i, j, t) ∈ {0, 1}, indicating whether application

a is scheduled on link lij at time t, and restricts it according to the connectivity graph. This

provides the integer component of the linear program. A schedule indicator without the

corresponding links (link [i][j] = 0) will be forced to 0 and automatically dropped by the

CPLEX pre-solver. Block (II) encodes the schedulability constraints 2.3 and 2.4 and block

(III) encodes the flow conservation constraint 2.2. Finally we evaluate each piecewise linear

utility function u(a) at the resulting bandwidth b (a) and maximize for the overall utility.

CPLEX solver provides equivalent of eval construct and will automatically reduce them

into additional constraints to add to the MIP.

Note that cap(i,j)

‖T‖ is a constant factor that scales the number of allocated time periods

on a link to the actual achieved bandwidth. For simplicity, we will simply set this constant

20

to 1 for all links (so that every link has the same bandwidth that’s equal to the number of

time periods in some unit, and activating one link for one period of time during the entire

period will lead to one unit of bandwidth).

Our OPT program will take an instance of the optimal utility scheduling problem and

create an instance of MIP object for the CPLEX optimizer. The latter is invoked with all de-

fault parameters except for the time-out limit specified by command line and the optimality

tolerance being set to be 5%, which instructs the optimizer to stop searching for better inte-

ger solution when the candidate solution is within 5% of the optimal upper-bound, com-

puted by solving the dual as non-integer Linear Program. Because MIP is NP-complete

and requires exhaustive branch-and-search, often times there is a sizable gap between the

optimal integer solution and non-integer solution to its dual problem, in which case the

optimizer may have already found the optimum solution but has not yet proven its opti-

mality before exhausting all the rest of the possibilities. An optimality tolerance of 5% is

used to balance optimality and running time based on previous experiences with CPLEX.

3.3 A Stylized Example

Here we present a stylized example to illustrate how the OPT scheduler works and high-

light some of the advantages of utility-based maximization. Consider the simple network

topology shown in Figure 3.3 with 4 rounds in an epoch and assume the level-0 interfer-

ence model. Consider a class of identical applications arriving one after another over time,

all wishing to transmit data from node 1 to node 4 with the utility function shown in figure

2.2-(a). The network capacity can allow up to two such applications running at full band-

width (2) and achieve a total utility of 30. Due to interference constraints the route 1-3-4

and 1-2-4 will be running in opposite phase to each other. As a3 enters, the optimal strat-

egy will be to allow two applications to run at half speed, sharing one of the two possible

routes, and let the other application run at full speed. The resulting utility is 15+10+10=35.

Similarly a4 will share the same route with a2 and now all four applications are all running

at low bandwidth mode with 40 total utility. All subsequent applications will be dropped

(or alternatively all applications will have equal probabilities to be scheduled, 4 at a time).

21

4

2

3

1

1-2 apps
time 1 2 3 4
l12 a1 a1

l13 a2 a2

l24 a1 a1

l34 a2 a2

3 apps
time 1 2 3 4
l12 a1 a3

l13 a2 a2

l24 a1 a3

l34 a2 a2

4 apps
time 1 2 3 4
l12 a1 a3

l13 a2 a4

l24 a1 a3

l34 a2 a4

Figure 3.3: Optimal schedules on a simple network with increasing number of identical appli-
cations from 1 to 4.

Several interesting features of the OPT scheduler to be noted are:

• With a few applications running at high bandwidth mode, the network quickly reaches

its transmission capacity limit (at 2 apps). However, this is a pseudo-saturated stage

in the sense that although link usage and total throughput are already maximized,

more utility could be extracted as more applications enters.

• As demand increases past the pseudo-saturation stage, OPT will try to first down-

grade the quality of existing applications to accommodate new applications, if the

trade off will increase overall utility. Contrast this with traditional admission con-

trol approach which simply drops new application when the network capacity is

reached. OPT extracts more potential utilities until the network is fully saturated,

and hence utilizes link resources more efficiently.

• After utility saturation, OPT reduces to admission control and drops further appli-

cations. Additional applications will not have negative impact on the network per-

formance1. Contrast this with a naive greedy CSMA scheme where all applications

1Perhaps with the exception of increasing the complexity of the optimization problem and possibly reduc-
ing the quality of the optimal solution found when time-out limit is reached.

22

attempt to transmit at the maximum rate possible, and as a result overwhelming con-

gestion and backing-off will negatively impact the overall performance after a critical

point.

• As the total utility increases and approaches an optimum (40 in this case), the aver-

age utility dropped gradually (from 15 to 11.7 to 10). Hence OPT supports graceful

degradation and achieves good balance in quality of services.

• Although in this example the optimal utility solution also happens to be an optimal

throughput solution, this is not necessarily the case in general. Consider a hypothet-

ical example of two applications, one with 10 utility operating at bandwidth 4 and

the other with 100 utility operation at bandwidth 1 in the above network.2

• OPT does not concern with reordering the schedule to minimize latency. In the last

schedule with 4 applications, the latency for a2 and a4 appears to be 3 rounds since

information has to travel through l13 before l34.3 Although a fix-up step can be ap-

plied after the optimization stage to reduce latency (e.g. exchanging a2 and a4 for

l34 will reduce both latencies to 1 round), but latency metric does not factor into the

optimization stage. Hence applications can only specify utilities that are dependent

on the average sustained bandwidth but not on latency.

2Such an example is used to described a high-priority or urgent task vs. a backgrounded and less important
task. e.g. an Emergency Room signal vs. a security video streaming.

3To see this more clearly, concatenate two of the same schedules one after another. Say a given package for
a2 is transmitted on l13 in period 2, then it needs to wait until period 1 of the next epoch to be transmitted over
l34 – resulting a latency of 3.

23

4

An Approximately Optimal
Rate-Limited CSMA Scheduler

4.1 Design

Most of the complexity explosion in the OPT solver is due to the direct 0-1 encoding of

the full schedule. It would be nice if we could somehow compute the optimal flow-vector

directly and then construct a corresponding optimal schedule. However, [13] suggests that

it is not possible to ensure schedulability of a given flow vector without actually finding

an underlying schedule. Alternatively [13] provides methods for 1) computing the lower-

bound of the optimal flow-vector by imposing sufficient conditions of its schedulability,

assuming it is a linear combination of a non-exhaustive list of independent sets of the

conflict graph, and 2) computing the upper-bound of the optimal flow-vector by imposing

necessary conditions of schedulability by adding clique constraints and odd-hole constraints

that must be satisfied if the flow vector were schedulable). In light of this, we develop the

ORL-CSMA algorithm to compute an upper-bound solution of the flow vector, and then

make sure of schedulability by a best-effort CSMA scheme that is guided by the upper-

bound flow vector. Although it is demonstrated in [13] that the upper-bound solution

does not converge to the optimal solution as close as the lower-bound solution does, we

choose the upper-bound solution to follow because the CSMA scheduler can only reduce

the bandwidth and utility but cannot increase it.

The basic structure of ORL-CSMA is to divide the big problem into two parts – an alloca-

tor that computes an allocation in the form of a flow vector, and a scheduler that schedules

24

links with best-effort according to the intermediary flow vector (see Figure 4.1).

Aggregated
Problem

Relaxed Integer
Linear Program

Connectivity Graph

Conflict Graph

Applications

Bandwidth
Allocation

Rate-limited
CSMA

scheduler

CSMA
“Schedule”

Figure 4.1: ORL-CSMA wiring diagram. The first stage optimizer solves a relaxed aggregate
version of the original MIP. The output is an upper-bound flow vector to the full optimal problem
and may not necessarily be schedulable. In the second stage the flow vector serves as a rate-limiter
to a modified CSMA scheduler, which attempts to implement the flow vector in best-effort.

4.2 Computing Upper-bound Flow Vector

The clique constraint is the following1: A clique Q in the conflict graph is a subset of vertices

with edges between every pair of them, i.e. a set of links that mutually interfere with each

other. It is clear that at any given time period only one link in a clique can be active, and

consequently the total number of active time periods of all links in a clique must be less

than the total number of time periods. Formally, if

∀lij , lpq ∈ Q : 〈lij , lpq〉 ∈ EF

then
∑

lij∈Q

∑
a

⌈
fa

ij

‖T‖
Cap(lij)

⌉
≤ ‖T‖ (4.1)

Again the scaling factor ‖T‖
Cap(lij)

translates the bandwidth assignment to the number of time

periods used. Also it suffices to consider maximal cliques because a constraint for a non-

maximal clique Q1 are subsumed by the constraint for a maximal clique Q2 if Q1 ⊂ Q2.

Similarly, the odd-hole constraint is derived from an odd-hole H , which is a a circle of

odd number of links in the conflict graph. Since at any given time period at most half

(‖H‖2) of them can be active, the aggregate number of active time periods for all links in the

hole over the entire epoch must be smaller than
⌊‖H‖

2

⌋
· ‖T‖. Odd-holes offer non-trivial

information compared to even-holds because the number is then rounded to a smaller

1This is a restatement from [13].

25

integer value. Formally, if

H = {li0j0 , li1j1 , ..., lih−1jh−1
}

∀0 ≤ k < h : 〈likjk
, lik⊕1jk⊕1

〉 ∈ EF

where ⊕ is addition mod h, then

∑

lij∈H

∑
a

⌈
fa

ij

‖T‖
Cap(lij)

⌉
≤

⌊‖H‖
2

⌋
· ‖T‖ (4.2)

Notice that the use of the floor and ceiling function makes the constraint tighter and leads

to a more refined upper-bound.

Because enumerating all maximal cliques and maximal holes in the conflict graph is

in general NP-complete, we cannot possibly add all clique constraints and all odd-hole

constraints. In fact, even if we add all of them there is no guarantee that the upper-bound

solution approaches the optimal solution. Therefore, we employ the following randomized

process to enumerate a sufficient number of cliques by randomly growing them:

1. Pick a random link. That by definition is a trivial clique.

2. From the list of vertices that could join the current clique to form a new clique, i.e

links that interfere with every link in the current clique, pick a random one to join.

3. Repeat the above step until no more links can join. At this point we have a maximal

clique.

And similarly for odd-holes:

1. Add a random link to an initially empty list.

2. Add a random link that is not in the list and interfere with the last link in the list.

3. If the current list “wraps around”, i.e. the last link in the list interfere with the first

link in the list, and has an odd number of elements, save the list as a candidate odd-

hole.

4. Repeat steps 2 and 3 until no more link can be added.

26

5. Return an odd-hole randomly chosen from all candidates saved in step 3.

Note that we do not stop at the first odd-hole found in step 3 but rather save it for later.

This will help discover odd-holes of larger size.

Finally, we have the following optimization problem for the upper-bound flow vector

solution as the first stage of ORL-CSMA algorithm, shown in figure 4.2. Note that the

relaxation step is done by summing over the time dimension of the 0-1 representation of

the schedule to get the number of time periods assigned to each application on each link,

i.e. rounds(a, i, j) =
∑

t sch (a, i, j, t)

max
∑

a

eval(u(a), b (a))

over variables

flow(a, i, j) ≥ 0, rounds(a, i, j) ∈ {0, 1, ..., ‖T‖}, b (a) ≥ 0
for a ∈ A, i, j ∈ N

subject to

(I)∀a, i, j : rounds(a, i, j) ≤ ‖T‖ · link (i, j)

(II)

∀i, j, t :

∑
a rounds(a, i, j) ≤ ‖T‖

∀i, j, p, q s.t. conflict(i, j, p, q) :∑
a rounds(a, i, j) +

∑
a rounds(a, p, q, t) ≤ ‖T‖

(III)

∀a, i, j : flow(a, i, j) ≤ Cap(lij)
‖T‖ · rounds(a, i, j)

∀a : b (a) =
∑

j flow(a, src(a), j) =
∑

j flow(a, j, dest(a))
∀a, i s.t. i 6= src(a), i 6= dest(a) :∑

j flow(a, j, i) =
∑

j flow(a, i, j)

Repeat several times: Find a clique Q

(IV)
∑

lij∈Q

∑
a

rounds(a, i, j) ≤ ‖T‖

Repeat several times: Find an odd-hole H

(V)
∑

lij∈H

∑
a

rounds(a, i, j) ≤
⌊‖H‖

2

⌋
· ‖T‖

Figure 4.2: Relaxed Integer Linear Program in the first stage of ORL-CSMA..

The blocks (I) through (III) are the direct corollaries of the corresponding constraints in

27

OPT by summing over time dimension. Block (IV) and (V) are repeated several times to

include many clique and hole constraints.

Notice this is still an integer program because the variables rounds(a, i, j) are discrete.

A further relaxation can be done by dropping the integer constraints on the rounds vari-

ables, which will reduce the problem to a much easier non-integer Linear Program.2 In

our implementation we did not opt for such further relaxation because it will relax the

upper-bound even further. Because the integer version above already offered substantial

computational relief from the full OPT version, it is unnecessary to make further relaxation

risking an looser upper-bound.

4.3 Modified Rate-Limited CSMA Scheduler

Carrier Sense Multiple Access (CSMA) is a popular medium access control protocol used

in modern wireless communications [20]. In CSMA, a device wishing to start transmission

first listens to the radio channel to see if it is already occupied by other transmissions. If

the channel is free, it begins transmission; if not, it will back off for a period of time and try

again. Typically the back-off time limit will increase over time as a measure of congestion

control, and the transmission attempt is reported to fail when a certain time-out limit has

passed since the first attempt or after a fixed number of retries.

As a MAC protocol, CSMA only dictates how and when a transmission occurs on a

given link. It is up to the higher-level routing protocol to decide what path data should fol-

low. Since the upper-bound flow vector outputted by the first stage optimization problem

contains both routing path and bandwidth information, we will need to have a combined

routing-and-MAC layer that translates the flow vector down to a feasible schedule. There-

fore, we develop the following routing-and-scheduling algorithm that follows the routing

path of the flow vector and uses a CSMA scheme on the link level, with a rate limit equal

to the bandwidth of the corresponding link in the flow vector. We call it (Approximately)

Optimal Rate Limited CSMA. In ORL-CSMA:

• Every node will transmit data only in units that are equivalent to the time length of

2Non-integer linear program is in P.

28

one round in the TDMA schedule, we call this a “package” 3. There will be a very

short period of “contention period” at the beginning of each round during which

different nodes will perform carrier sensing and start transmission. The first node to

sense an unoccupied channel will immediately begin occupying it and subsequent

nodes will sense the activity and back off to a random time in the next contention

period. We make the simplifying assumption that the contention period is negli-

gible in length compared to the round length, and hence the beginnings and ends

of all transmissions are aligned round boundaries (more or less).4 This process of

contention and transmission is illustrated in figure 4.3.

contention period

App 1

App 2 App 2

transmission period

Application 1 first listens at time t1 and
starts transmission since the carrier is free

Application 2 first tries to transmit at time t2>t1.
Since the carrier is in use, it postpones transmission
to a random new time t3 in the next contention period.

time

Figure 4.3: Contention process in second stage of ORL-CSMA.. Two applications are ready
to transmit on two interfering links. The length of contention period in above picture is exaggerated
– in reality we assume that the length of contention period is negligible compared to the length of a
round.

• Source node will issue packages addressed to its neighbors at a rate and fashion

specified in the upper-bound flow-vector. In the example upper-bound flow-vector

shown in Figure 4.4, source node s will issue 1 package to a and 3 packages to b dur-

ing one epoch. It is acceptable that it simply issues those attempts at the beginning

of each epoch and lets the random contention process decide which one goes first.

3Although it could be made up of several packets in the normal sense

4An alternative interpretation is that the center scheduler in fact simulates this randomized CSMA process
and announces the simulation result as a TDMA schedule to be implemented by the nodes.

29

b

a

s

1

3 f h

g

d

1

3

2

2

2

2

Figure 4.4: Examples of a multi-path flow-vector. Node f has multiple outflows and will
forward incoming packages to g or h according to a dispatch schedule.

• Forwarding node, upon receiving successful transmission from its neighbors, will

issue an attempt to retransmit the package at a random time in the immediately

following contention period to the next downstream neighbors according to the flow-

vector. For forwarding nodes with single outflow (such as a, b, g, h) there is no

ambiguity as of where to forward next. For forwarding nodes with multiple outflows

(and perhaps multiple inflows) such as f , it uses the following rules to decide which

node to forward next:

• A dispatch schedule is maintained by each forwarding node (for every application)

as a random permutation of its outflows (e.g. one possibility of node f ’s dispatch

schedule is (g, h, g, h)) and it will forward incoming packages according to the dis-

patch schedule. The idea behind this is that we want to avoid determinism resulted

from static mapping from a unit inflow to a unit outflow. The dispatch schedule can

be fixed over time (since the order of incoming packages are already randomized) or

re-permutated every epoch. This strategy ensures that the resulting CSMA schedule

mimics the flow-vector to the best extent.

• A package will be dropped when it has not reached the destination node after a

period of expiration time (20 epochs in our code).

Implementation-wise, we simply keep a global queue of all in-transit packages, to-

gether with (round number , application , source , destination , current node , next node ,

expiration) information. The queue is prioritized by round number but the order among

packages with the same round number is random (this effectively simulates the random

back-off and contention). The simulator simply repeats processing the first element of the

30

queue, either forwarding it (round number++ ; current node = next node ; next node =

dispatch(app, next node); requeue) or backing off (round number++ ; requeue) or drop-

ping it (if round number > expiration).

At the end of the simulation, we count the number of packages that actually arrived at

the destination for each application in each epoch,5 and compute the expected bandwidth

and expected utility. The first few epochs will suffer from cold-start effect: On one hand, it

may take a package several epochs to reach the destination, which reduces throughput for

the first few epochs; on the other hand, the lack of previously stalled in-transit packages

may have the opposite effect. We run the simulation for sufficiently large number of epochs

(1000 in our code) to average out the cold-start effect and estimate the expectation in the

steady state.

4.4 Effectiveness of Optimal-Rate-Limiter for CSMA

In NAIVE-CSMA, applications will keep trying to send more packages up to the maximal

bandwidth, which causes extra collisions and contentions on the medium. As demand

over-saturates, the contention overhead is so overwhelming that the achieved bandwidth

and network usage level actually decreases over a certain critical level. The optimal rate

limiter tries to get rid of this problem. To confirm this, we compare ORL-CSMA to NAIVE-

CSMA with no rate-limit (i.e. the smaller of the the number of periods and the maximum

bandwidth level of an application is the “rate-limiter”). We will postpone presenting the

data until later sections (see figures 6.3 and 6.4 for the bandwidth and utility comparison

between ORL-CSMA and NAIVE-CSMA.)

Because our implementation of the CSMA simulator assumes perfect detection of car-

rier status, the effect of collisions is eliminated. Even so, NAIVE-CSMA suffers at high

demand compared to ORL-CSMA because link resources are used un-planned and may

have been wasted to deliver packages that are more likely to be dropped later. In practice,

when detection of carrier status is imperfect, collisions may occur when an application

5Although the choice of epoch boundary at the destination node is somewhat arbitrary, this choice does
not matter because the averaging over epochs.

31

starts transmitting when the medium is in fact in use. Under such circumstances we ex-

pect NAIVE-CSMA to suffer even more compared to ORL-CSMA.

32

5

A Market-Oriented Bandwidth
Allocation Protocol

The optimal utility allocation problem can also be viewed as a complex economic system

well suited for general equilibrium theory, which in a nutshell states the following: A col-

lection of self-interested agents (both consumers and producers) engage in an exchange

economy. Each of them has an initial endowment of goods and wealth and acts according

to the goal of maximizing its own utility, which is a function of its final consumption of

goods and wealth at the end of the exchange. A set of prices are defined over the goods

being exchanged and all agents respond to the prices by choosing demand for each good

(positive for buyers and negative for sellers). When the prices are set such that the aggre-

gate demand for each good is equal to the total initial endowment the market reaches a

general equilibrium.

Many market-oriented approaches have been derived from the general equilibrium

theory to address various resource allocation problems (see works by Cheng and Wellman

[9], Wellman [26, 27], Ygge and Akkermans [29]). Most of them employ a process called

tatonnement, whereby prices and demands respond to each other through a series of in-

terim auctions until equilibrium is reached. A list of auctioneers will each be in charge

of setting the price and monitoring the excess demand for one particular good. The price

vector starts with some arbitrary initial values. In each iteration, the current price vector

is announced and all agents response to the prices and submit their demands to the auc-

tioneers. Then one auctioneer will change its price incrementally according to some update

rule in order to drive excess demand for that good towards zero. The new price vector is

33

announced in the next iteration and the process repeats until the price vector converges

and all excess demands tend to zero.

We will adopt the tatonnement market process in our market-oriented approach to the

optimal utility bandwidth allocation problem, which will be termed MARKET. It replace

the first stage of upper-bound computation in ORL-CSMA. The resulting scheduling algo-

rithm (MARKET allocator + best-effort CSMA scheduler) will also be called MARKET when

no ambiguity arises. Figure 5.1 provides an overview of the MARKET algorithm.

Market

Connectivity Graph

Conflict Graph

Applications

Bandwidth
Allocation

Rate-limited
CSMA

scheduler

CSMA
“Schedule”

AA

A

A A

C

H

L

C
H

L

price

demand

Figure 5.1: MARKET protocol overview. A market is set up between the applications and
various types of auctioneers controlling different resources. This replaces the first stage of ORL-
CSMA. After iterative rounds of price-setting and demand-computation the market converges to
some equilibrium. The equilibrium allocation of the market is passed on to the best-effort CSMA
scheduler as the rate limiter.

5.1 Market Design

In our model, each application is naturally a consumer agent in the market, ready to con-

sume network resources in order to complete its function and maximize utility. The pro-

ducers in the market are the virtual owners of various types of resources, which will be-

come apparent after define the goods in the market.

The meaning of goods in our market is much more interesting and essential to the

design of the market. The natural definition of goods as “usage of a wireless link for one

unit of time” will not work well because the essential interference interaction between

links is loss due to the fact that different goods have their own markets and work more or

less independently of each other. We would like our notion of goods to capture not only

tangible resources like link usage, but also more importantly the less tangible resources

34

of a “free wireless medium” that is used up by interference. In light of the additional

constraints added to the first stage ORL-CSMA optimization problem to capture wireless

interference, we will consider cliques and odd-holes as goods as well.

Formally, a good in our market is defined as a set of links, which we will call an inter-

ference group. Intuitively, a good indexed by the the interference group g is a license or

permission to use any one of the links in g for one period of time. Conversely, in order

to be able to use a physical link l in the final allocation, an application has to purchase

all of the goods whose interference group l is a member of. Analogous to the taxation of

gas emissions as a way of pricing externality in economics, defining interference groups

as concrete goods in the market captures the negative externality of using a link due to

wireless interference. In this “interference licensing” scheme, the cost of preventing others

from transmitting due to interference is then internalized into the effective cost of the link

causing interference.

We will consider the following types of goods in our market:

• A Link Pair type good consists of a pair of forward and backward links L = {lij , lji}.

Since only one of them can be active during any period, the supplied quantity of this

goods is the total number of periods ‖T‖.

• A Clique type good is a set of links that form a clique Q in the interference graph.

The supplied quantity is also the number of time periods ‖T‖ since they mutually

forbids each other in every period.

• An Odd-Hole type good is a set of links that form an odd-hole H in the interference

graph. The quantity of this good
⌊‖H‖

2

⌋
· ‖T‖ since no more than half of the links can

be active at the same time.

The introduction of virtual clique and odd-hole goods in addition to the physical link-

pair goods in order to capture the effect of interference is a novice contribution of this

thesis compared to previous market-oriented solutions to the similar network transporta-

tion and multi-commodity flow problem [27]. It will turn out later that these interference-

embodying goods (clique goods in particular) are the most demanded bottleneck goods in

35

the market.

Unlike in a classical market where the producers actively choose the quantity of goods

to produce, our producers for the goods defined above will simply produce a fixed supply

of the goods as dictated by network topology and interference characteristics. We will

use si to denote the auctioneer in charge of selling good gi. We will also call them “link

auctioneer”, “clique auctioneer” and “hole auctioneer” according to the type of goods they

are selling.

Suppose there are a total of m physical links {l1, ..., lm} and k goods {g1, ..., gk},1 we

use the k-dimensional vectors p, q and x to denote the price vector, supply vector and de-

mand vector for the goods, respectively. On the other hand, because an application works

naturally by first selecting a set of physical links that it wants to use and then procuring all

the goods required to operate those links, we will also define the effective link price vector pL

and the link demand vector xL as an alternative representation of the prices and demands.

The effective link price pL
i for each link li is the sum of prices of all goods that the link is a

member of:

pL
i =

∑

1≤j≤k:li∈gj

pj (5.1)

In response to these effective link prices, each application decides how many of each link

it wants to use (in order to form a flow), which we will call the application-level link demand

vector xLa. The component xLa
i denotes the quantity of physical link li that application a

demands. The sum of xLa across all applications becomes the aggregate link demand vector,

denoted xL. The good-based demand is related to the link-based demand by:2

xj =
∑

1≤i≤m:li∈gj

xL
j (5.2)

1Note that k is not necessarily greater than m, because every pair of two directed links become one good,
and the number of clique goods and odd-holes could vary.

2Note that the directions of aggregation are opposite in the case of demand and price. i.e. Link prices
are obtained by summing over goods prices, whereas goods demands are obtained by summing over link
demands.

36

Equations (5.1) and (5.2) can be concisely written in vector notation:

pL = M · p (5.3)

x = MT · xL (5.4)

where M is an m× k matrix with Mij = 1 if li is a member of gj and 0 otherwise, and MT

is the transpose of M.

To summarize, p, x and q are the k-dimensional price, demand and supply vector de-

fined over k goods, and pL and xL are the m-dimensional effective link price and link

demand vector defined over m links. Adding superscript a to the demand (pa and pLa)

denotes application a’s contribution to the demand. In addition, since the MARKET proto-

col will consist of a sequence of iterated auctions, we will use e.g. p(t) to denote the value

of price vector at iteration t.

Finally we present a high-level description of the MARKET protocol as the following:

1. {g1, ..., gk} ← CHOOSE GOODS .

2. t ← 0, p(0) ← 0, H(0) ← φ.

3. Price vector p(t) is announced.

4. Each application responds to p(t) by doing:

(a) Translate 3 good-price p(t) to effective link price pL(t).

(b) Compute its link demand vector xLa(t) = APP DEMAND (a,pL(t)).

(c) Translate link demand xLa(t) to good demand xa(t).

(d) Submit quantity demanded for each good xa
j (t) to the auctioneer sj for good gj .

5. Each auctioneer sj sums over all bids from applications to get the aggregate demand

xj(t) for good gj .

6. If CONVERGE?(H(t),p(t),x(t)) output xLa(t) as the link allocation for each appli-

cation a.

3The translation could also take place in step 3 and pL(t) is also announced.

37

7. Otherwise one auctioneer sj is selected,4 which then updates the price for its good.

All other prices remain the same. p(t + 1) ← UPDATE PRICE(j,p(t),x(t)).

8. H(t + 1) ← H(t) ∪ {p(t),x(t)}, t ← t + 1, go to step 3.

Note that H(t) is the history of price vectors and demand vectors prior to time t. Upon

termination of the protocol, the equilibrium link demand for each application xLa becomes

the final link allocation, which specifies how many of each link every application is allowed

to use during the entire epoch of ‖T‖ rounds. Under the simplifying assumption that
Cap(li)
‖T‖ = 1 for all links, one unit of link allocation is equivalent to one unit of flow along

that link. Thus the final link allocation xL is simply a flow vector,5 which can be passed on

to the next stage CSMA scheduler as the rate-limiter.

The four main modules of the market – the initial CHOOSE GOODS function, the in-

dividual demand function APP DEMAND, the price update rule UPDATE PRICE and the

convergence condition CONVERGE? – will be discussed in greater details in the following

sections. But first, let’s begin by considering the following example market shown in Fig-

ure (5.2). In this market, the network topology is taken from a randomly generated graph

(see figure 6.1(a)) and we assume the level-0 interference model. The applications are gen-

erated with random source and destination and identical utility function (0,0)-(1,10)-(2,15)

shown in figure 2.2(a). We have included all link auctioneers (L0 to L9) and all clique auc-

tioneers (Q10 to Q16).6 The supplied quantity of each good is equal to the number of time

periods (10). For simplicity of presentation, no hole auctioneers are added.

In the initial iteration, all prices are set to zero. Each application demands the maxi-

mum units of flow from its source to its destination (2 in this case because of the domain

of the utility function). It then assembles all links along the path and demands the appro-

priate number of goods required to operate those links. For example, application 8 wants

4Only auctioneers who want to change their prices are considered. CONVERGE? should be true if no
auctioneer wants to change its price.

5Applications will choose a link demand that satisfies the flow conservation constraint, as we will explain
in the next section.

6In a small network like this it is possible to enumerate all maximum cliques, but in general it is not feasible
in a larger network.

38

App# s d

0 4 0
1 4 1
2 0 8
3 5 4
4 4 0
5 6 1
6 1 2
7 4 8
8 9 5
9 2 1
10 0 5
11 5 1
12 8 7
13 0 4
14 5 3
15 7 4
16 9 6
17 6 8
18 5 3
19 8 2

0

1

8

7
8

2 2 4
8

5

14

3
4

6

0

8
8

9

0

14
6

8

4

0

12

10

2

10

2
2

Auctioneer Type Member-links
--
Seller 0 (LINK): <0,1> <1,0>
Seller 1 (LINK): <0,7> <7,0>
Seller 2 (LINK): <2,4> <4,2>
Seller 3 (LINK): <2,7> <7,2>
Seller 4 (LINK): <3,5> <5,3>
Seller 5 (LINK): <3,6> <6,3>
Seller 6 (LINK): <3,8> <8,3>
Seller 7 (LINK): <3,9> <9,3>
Seller 8 (LINK): <4,8> <8,4>
Seller 9 (LINK): <6,9> <9,6>
Seller 10 (CLIQ): <3,6> <3,9> <6,3> <6,9>

<9,3> <9,6>
Seller 11 (CLIQ): <3,5> <3,6> <3,8> <3,9>

<5,3> <6,3> <8,3> <9,3>
Seller 12 (CLIQ): <0,7> <2,7> <7,0> <7,2>
Seller 13 (CLIQ): <3,8> <4,8> <8,3> <8,4>
Seller 14 (CLIQ): <0,1> <0,7> <1,0> <7,0>
Seller 15 (CLIQ): <2,4> <4,2> <4,8> <8,4>
Seller 16 (CLIQ): <2,4> <2,7> <4,2> <7,2>

(a) (b) (c)

Figure 5.2: An example market. (a) List of applications, with random source and destination and
utility function shown in figure 2.2(a); (b) A random network topology identical to 6.1(a), numbers
on links show the aggregate link demand at t = 0; (c) List of auctioneers (no hole-auctioneers for
simplicity).

to use 2 units of link 〈9, 3〉 and 2 units of link 〈3, 5〉 in order to form a flow of bandwidth

2 from node 9 to node 5. Link 〈9, 3〉 requires goods L7, Q10 and Q11 to operate, and link

〈3, 5〉 requires goods L4 and L11 to operate. Therefore, application 8 demands 2 units of

L4, L7, Q10 and 4 units of Q11. Note that good Q11 is requested 4 times instead of 2 be-

cause both links are members of Q11, and they must have separate licenses to block the

interference group.7

The aggregate link demands (xL) are shown directly on each links. Most demanded

links are shown in red color. It is easy to see that a congested part of the network is the

path from 4 to 0. This is due to the combination of this particular traffic shape and the

network topology (with a long-extended one-way path). A more subtle congested part of

the network is the star-shaped links around node 3. Although individual link demands are

low, the sum of them (26) far exceeds the supply for clique good L11. This demonstrates

why link goods only are insufficient to capture congestions due to interference, whereas

7This corresponds to the fact that in order to transport 2 packages from 9 to 5 along the route 9 → 3 → 5, it
must be the case that node 3 be active for 4 periods of time and therefore all other links in group Q10 must be
blocked for 4 periods.

39

goods of bigger interference group (cliques) are apt in doing so. We will see later that the

MARKET protocol is able to effectively price the bottleneck goods that correspond precisely

to these congestions.

We will follow this example throughout the remaining sections in order to illustrate

some fine points of the internal workings of the MARKET algorithm.

5.2 Individual Demand Function (Single-App Optimal Flow)

Given the price vector pL, the sub-problem facing each application is to find the optimal

link demand in order to form a flow that gives the maximum net utility:

xLa(t) ∈ arg max
xL∈XL

ua(bw(xL))− xL · pL(t) (5.5)

Note that xL here is simply a dummy variable for the arg max operation, not to be confused

with the global aggregate link demand. bw(.) denotes the bandwidth of xL (treated as a

flow vector), and the dot-product computes the total price of the link allocation xL the

application has to pay under the current link price vector. The dual meanings of xL as

both the link demand and the corresponding flow vector are due to the assumption that

Cap(li) = ‖T‖ for all links.8

Obviously the set of all possible link demands that the application is choosing from

(XL) should be limited by the flow conservation constraints – choosing any extra links

that are not needed to form a flow will not increase the bandwidth or utility, but will

only increase the price. However, the important question becomes whether we should

impose the constraints that an application cannot demand more than the total supplied

quantities of goods (i.e. MT · xL ≤ q). It turns out that adding these supply constraints

is equivalent to imposing the clique and hole constraints from the ORL-CSMA first stage

optimization in this single-application case, since the supplied quantities of clique goods

and hole goods correspond exactly to the clique and hole constraints in ORL-CSMA. When

the clique and hole constraints are observed, the complexity of the sub-problem becomes

8In general, an arbitrary flow vector f can be translated to a link demand by scaling the component for link
li by a factor of ‖T‖

Cap(li)
and rounding up to the next integer (as done in the first stage of ORL-CSMA).

40

potentially as hard as the original global optimization problem.9 Therefore, in order to

limit the complexity of the single-application sub-problem, we will not bound the demand

function by the global supply of goods.10

If we do not add the supply constraints, it is possible for an application to request more

than the supplied quantity of some goods. This is not a problem in particular because the

price of over-demanded goods will be increased until eventually the demand is no more

than the supply (price adjustment rule will be explained in detail in the next section). Thus,

without considering the supply constraints, the single-application optimal flow problem

reduces to a classic shortest distance problem with the effective link prices pL(t) as the

distance metric. Each application will simply compute the shortest distance (minimum

cost in this case) path between its source and destination nodes, and will request multiple

units of the links along that path. The number of units request will be chosen to maximize

net utility, and in the case of concave utility function, the application will keep increasing

this number until the cost is higher than its marginal utility.

Note that under such single-application demand algorithm, an application will always

choose several units of a single minimum-cost path, and hence split-path flow will not

be induced. Although this is not as desirable as we would like, it is inevitable because

every application makes its independent response to prices without knowledge of other

applications’ demands. This is a weakness of MARKET compared to the global omniscient

optimizer in OPT or ORL-CSMA.

5.3 Price Updating Algorithm

We consider the following price updating rules

• Simple Reinforcement / Negative-Feedback Update Rule: An auctioneer will sim-

ply push the price up or down by a small increment δ depending on whether the

9Consider a reduction of the global multi-application optimization to this single-application optimization
by adding a virtual source node linking to the original source nodes of all applications, and linking all desti-
nation nodes to a new virtual destination node. With a modified utility function, we have reduced the original
global optimization problem to a single-application optimal flow problem.

10Note that the complexity of the individual demand function is not typically a concern in economic settings
or in previous works of computational market approaches.

41

goods are over-demanded or under-demanded. That is, pj(t + 1) ← pj(t) + δ if

xj(t) > qj and pj(t + 1) ← pj(t) − δ if xj(t) < qj . Proportional updates can also be

used (pj(t + 1) ← pj(t) + δ(xj(t)− qj) with smaller δ). However, in our experiments

a fixed increment tends to lead to less fluctuation, probably because proportional

changes tend to overshoot the efficient prices due to the failure to expect discontinu-

ous changes of the demands around the efficient prices.

• Gradient Descent: If we back up a step, the price-demand interaction could be

viewed as a global search problem to find a set of efficient prices p∗ to minimize

the error between the demand function and the fixed supply. Viewed as such, local

search techniques such as gradient descent can be employed to search for the opti-

mal prices. Ygge and Akkermans [29] found that a Newton-style price adjustment

rule leads to faster convergence compared to simple price updates in their market

settings. However, in our setting, because the auctioneers do not have more infor-

mation of the excess demand function other than its value at the current price levels,

the gradient of the demand function must be estimated by letting each auctioneer

explore the neighborhood prices pj(t) ± δ. The re-evaluation of the excess demand

function will add much overheads to our protocol and will also prevent its decen-

tralization. Further difficulties may arise due to the discontinuity of the demand

function because of interference and complementarity of goods. Therefore we will

not use this rule here.

The first simple update rule turns out to be quite effective empirically in terms of reach-

ing a good output quality. However, its convergence property presents a challenge, which

we will see in the next section.

42

5.4 Market Convergence

5.4.1 Theory

Ideally, we would like the market to converge to an equilibrium where supply equals de-

mand for all goods. However, such strong convergence condition is overly strict and un-

likely to be met in our market setup, because it is impossible for all goods (links, cliques,

holes) to be used up exactly as their supplies allow. Since the supplied quantities of each

link-pair is the number of time periods, demand equaling supply for all link-pair goods im-

plies that all links are active for all time,11 which is impossible due to interference. Under

the simple incremental price adjustment rule, we expect that prices for under-demanded

goods will be driven to zero over time, while prices for popular goods (or bottleneck

goods) to be non-zero. Even if we ignore zero-priced goods when considering market

clearing, the demands for non-zero-priced goods still may not converge. Hence, weaker

conditions of convergence and termination should be sought. We will consider the follow-

ing alternatives:

• Near-Convergence: One option is to relax the convergence conditions by allowing

a small range of error when considering supply “equals” demand. e.g. When a good

has quantity q of supply, the auctioneer may consider demands in the range [q− 2, q]

to be “cleared” and stop adjusting prices. This introduces an additional stable zone

to the demand-supply interaction. Note that extending the range upward is unde-

sirable since the supply quantity bound corresponds to a necessary condition of the

schedulability of the resulting flow, so violating the supply bound will guarantee a

non-schedulable flow. Extending the range downward is acceptable since the output

is just an upper-bound rate-limiter to be passed to the CSMA scheduler.

• Pseudo-Convergence: In economics theory, the general results about the stability

of price adjustment processes in general equilibrium models are negative. Scarf [23]

observed examples where the price and demand state of a market tends to form a

cycle without converging to the unique competitive equilibrium. In a discrete price

11More precisely, for every pair of connected nodes, one of the two directional links between them are active.

43

and demand space in our setting, we expect the market to fluctuate among a limited

number of states after a certain number of initial iterations. Indeed this cycling be-

havior is frequently observed in our experiments. When the market falls into a trap

and cycles through only a limited number of states, we say that it reaches pseudo-

convergence, and the set of states that it cycles through form a dynamic equilibrium.12

When the market reaches pseudo-convergence, some linear combination of the equi-

librium states, or a state randomly selected from the equilibrium states according to

their empirical distribution, can be outputted to the next stage CSMA scheduler.

5.4.2 Example

As a first attempt, we will allow our example market shown earlier to develop without

relaxing the market clearing rule. With δ = 0.02, the evolution of price vector and demand

vector are plotted in figures 5.3 and 5.4. Initially when prices start at zero, demand for most

goods is higher than the supply, thus the prices for all goods increase uniformly, causing

demand to drop. The demand for less popular goods (such as L4) first drop below the

supply line (10) and cause their prices to decrease back down to zero while other prices

continue to rise. Over time, the prices for the most-demanded goods continue to increase

and stabilize, while the prices for less popular goods fall back to zero, as we have expected.

After about 1000 iterations, the price for Q11 stays as constant because demand is exactly

equal to supply, whereas prices for Q12, Q15, Q16 follow a small “random walk” around

about 1.5 and 2.5 as the demand fluctuates above and below the supply. Notice that the

four goods with non-zero prices eventually (Q11 Q12 Q15 Q16) correspond exactly to the

congested part of the network (see figure 5.2). This demonstrates the ability of the MARKET

algorithm to effectively price bottleneck resources in the network. The initial and final

demand vectors are also plotted later in figure 5.4.3.

Compared to the price vector which is more or less stabilized over time, the demand

vector appears to be much more volatile and chaotic, even after 1000 iterations. In order

to understand the behavior of the demand vector, we list the cumulative counts of each

unique demand vector in table 5.1 and plot the composition of demand vectors for every

12The exact criteria and algorithm to detect pseudo-convergence will be discussed soon.

44

100 iterations in figure 5.5. As we can see, the initial demand vector stayed constant for

more than 100 iterations due to the slow change in prices (δ = 0.02). After that the market

transitions through several intermediary demand vectors that appear only briefly over the

course of the iterations. Interestingly, Demand Vector 3 appears to be a local attracting

point of the market state, which stayed for about 300 iterations from 600-900, but was

eventually replaced by others.13 Demand Vectors 1 and 2 become increasingly dominant

in terms of their empirical frequencies, and eventually become the final two demand states

that the market cycles through.14 Although we have only plotted the graph until iteration

2400, the two remain as the only demand vectors until the end of data collection. Therefore,

we conclude that this example market reaches pseudo-convergence with two equilibrium

demand vectors, which we will term the “Equilibrium(+)” and “Equilibrium(-)” demand

vectors.

13Such meta-stable state is to be avoided by the equilibrium detection algorithm that we shall develop.

14Although each of the two have many corresponding price vectors.

45

Evolution of Price Vector over Iterations

0

0.5

1

1.5

2

2.5

3

1 201 401 601 801 1001 1201 1401 1601 1801 2001 2201 2401

Iteration

P
ri

ce
L0

L1

L2

L3

L4

L5

L6

L7

L8

L9

Q10

Q11

Q12

Q13

Q14

Q15

Q16

Figure 5.3: Evolution of Price Vector over Iterations.

Evolution of Demand Vector over Iterations

0

5

10

15

20

25

30

35

40

45

50

1 201 401 601 801 1001 1201 1401 1601 1801 2001 2201 2401

Iteration

D
em

an
d

L0

L1

L2

L3

L4

L5

L6

L7

L8

L9

Q10

Q11

Q12

Q13

Q14

Q15

Q16

Figure 5.4: Evolution of Demand Vector over Iterations.

46

Rank Frequency Demand Vector
--

1 953 (3,6,7,8,6,1,2,1,5,2,4,10,14,7,9,12,15)
2 852 (2,2,3,4,6,1,2,1,5,2,4,10,6,7,4,8,7)
3 270 (3,6,7,8,7,2,3,2,5,2,6,14,14,8,9,12,15)
4 203 (2,2,2,3,6,1,2,1,4,2,4,10,5,6,4,6,5)
5 164 (10,20,22,24,12,4,10,2,16,2,8,28,44,26,30,38,46)
6 106 (3,7,8,9,7,2,3,2,6,2,6,14,16,9,10,14,17)
7 94 (3,6,6,7,6,1,2,1,4,2,4,10,13,6,9,10,13)
8 82 (3,7,10,10,8,2,4,2,8,2,6,16,17,12,10,18,20)
9 60 (3,7,9,9,7,2,3,2,7,2,6,14,16,10,10,16,18)
10 53 (8,17,19,21,10,3,7,2,13,2,7,22,38,20,25,32,40)
11 42 (8,16,18,20,10,3,7,2,12,2,7,22,36,19,24,30,38)
12 30 (2,2,2,3,7,2,3,2,4,2,6,14,5,7,4,6,5)
13 28 (7,12,13,15,10,3,7,2,11,2,7,22,27,18,19,24,28)
14 27 (3,6,6,7,7,2,3,2,4,2,6,14,13,7,9,10,13)
15 23 (7,15,17,19,10,3,7,2,12,2,7,22,34,19,22,29,36)
16 16 (5,9,10,12,8,2,4,2,8,2,6,16,21,12,14,18,22)
17 14 (5,10,11,13,9,2,5,2,9,2,6,18,23,14,15,20,24)
18 14 (3,6,7,8,8,2,4,2,6,2,6,16,14,10,9,13,15)
19 12 (6,11,12,14,9,3,6,2,10,2,7,20,25,16,17,22,26)
20 10 (2,2,3,4,7,2,3,2,5,2,6,14,6,8,4,8,7)
21 9 (9,19,21,23,11,4,9,2,15,2,8,26,42,24,28,36,44)
22 7 (3,7,9,9,8,2,4,2,8,2,6,16,16,12,10,17,18)
23 6 (7,12,14,16,10,3,7,2,12,2,7,22,28,19,19,26,30)
24 1 (9,18,20,22,10,4,8,2,14,2,8,24,40,22,27,34,42)

Table 5.1: Demand Vector frequency count. Total number of occurrences for each unique
demand vector appeared over the course of 3000+ iterations.

Number of Occurences of Each Unique Demand Vector for Every 100 Iterations

0

10

20

30

40

50

60

70

80

90

100

0-
99

10
0-

19
9

20
0-

29
9

30
0-

39
9

40
0-

49
9

50
0-

59
9

60
0-

69
9

70
0-

79
9

80
0-

89
9

90
0-

99
9

10
00

-1
09

9

11
00

-1
19

9

12
00

-1
29

9

13
00

-1
39

9

14
00

-1
49

9

15
00

-1
59

9

16
00

-1
69

9

17
00

-1
79

9

18
00

-1
89

9

19
00

-1
99

9

20
00

-2
09

9

21
00

-2
19

9

22
00

-2
29

9

23
00

-2
39

9

Iteration Range

N
u

m
b

er
 o

f
O

cc
u

re
n

ce
s

dv1 (**) dv2 (***) dv3 dv4 dv5 (*) dv6 dv7 dv8 dv9 dv10 dv11 dv12

dv13 dv14 dv15 dv16 dv17 dv18 dv19 dv20 dv21 dv22 dv23 dv24

(*) = Initial Demand (**) = Equilibrium (+) Demand (***) = Equilibrium (-) Demand

Figure 5.5: Number of occurrences for each unique demand vector during every 100
iterations. “Equilibrium(+)” and “Equilibrium(-)” are the two dominant demand vectors that
will eventually form a dynamic equilibrium.

47

Figure 5.6 shows a high-level visualization of the market dynamics: the x-axis and y-

axis are the L-2 norms of the 17-dimensional price vector and demand vector, respectively

(‖p(t)‖ and ‖x(t)‖); the z-axis is the number of iterations t. Thus every market state (in

R17 × R17) is mapped to a point in R2, and the trajectory of the market state is plotted in

a ‖p‖ − ‖x‖ − t cube with proper scaling. Every point is also color coded according to

t. We can clearly see the separation of the trajectory into two branches that extend along

the time axis. The projections of the trajectory onto p-t and x-t planes are also shown

in grey scale, which show that the norm of the price vector converges after about 1000

iterations, while the norm of the demand vector gradually settles on a fluctuations between

the values. Projection onto to the p-x plane closely resembles an aggregate demand curve

in economics.

0

5ÈpÈ 0

100

ÈxÈ0

1000

2000

3000

t

0

ÈpÈ

Figure 5.6: Trajectory of the Market in Price-Demand-Iteration Space.

48

5.4.3 Explanations

Here are some factors that may contribute to the pseudo-convergence of the market, in

order of decreasing importance:

• Complementarity of goods: The general stability and convergence property of a

competitive market equilibrium has been shown to reply upon certain strong as-

sumptions [6, 9]. Of particular importance is the result demonstrated by Arrow and

Hurwicz [4, 5] that gross substitutability is a sufficient condition for a tatonnement

process to be globally stable. Gross substitutability means that when the price for a

good increases, aggregate demands for other goods does not decrease. This condi-

tion does not hold when there is complementarity between goods, as is the case in

our market. An increase in a good’s price will lead to an increase of the unit cost of a

path that requires that good, and will possibly force an application to choose a com-

pletely different path and thus the demand for goods along the original path may

decrease. To illustrate this point, we have plotted the final two equilibrium demand

vectors and two of their corresponding price vectors in figures 5.4.3. As we can see,

a small change in price around the efficient prices will lead to a big change in the

demand vector.

• Discrete price and demand space: Since our prices are discretized by the increment

δ, it is also plausible that the true equilibrium price lies between two step values

separated by δ. This effect can be mitigated by reducing the price increment δ, either

globally or gradually over time. The discreteness of demands is inevitable in the

model with discrete time span.

• Identical application utility functions: The fact that all applications share the same

utility function in our example market may have exacerbated the problem of big

demand changes around the equilibrium, because several applications constrained

by one particular good may change their demand at exactly the same price level. In

practice when the utility of applications are more diverse this effect is eliminated.

We can also add some small random noise on top of an identical utility functions to

49

reduce this effect.

• Specifics of network topology and interference characteristics: It is plausible that

some special characteristics of this particular network topology and interference graph

is causing an ill-behaved aggregate demand function. However, the phenomenon of

cycling equilibrium appears to be common over a wide range of setups with vary-

ing network topology, interference model and application profiles. In the experi-

ments presented in section 6.2, 619 cases out of 1125 market instances end in pseudo-

convergence (55%), while the others reaches an ideal equilibrium with strictly equal

supply and demand for non-zero-priced goods. A general observation is that simpler

markets are more likely to reach perfect convergence while more complex markets

are more likely to reach pseudo-convergence.

50

Initial and Equilibrium Price Vector

0

0.5

1

1.5

2

2.5

3

L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 Q10 Q11 Q12 Q13 Q14 Q15 Q16

D
em

an
d

Initial Price Vector Equilibrium(+) Price Equilibrium(-) Price

Initial and Equilibrium Demand Vector

0

5

10

15

20

25

30

35

40

45

50

L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 Q10 Q11 Q12 Q13 Q14 Q15 Q16

D
em

an
d

Initial Demand Vector Equilibrium(+) Demand Equilibrium(-) Demand

Figure 5.7: Price and Demand Vector at initialization and equilibrium. Note that: a) The
initial prices are all zero; b) the horizontal line in the demand graph represents a fixed supply of 10
units for each good; c) most demanded goods at the beginning are also goods with positive prices at
equilibrium; d) A small increase in the price for Q12 in the equilibrium prices leads to a big decrease
in the demands for Q12 and several other goods.

51

5.4.4 Convergence Detection Algorithm

Although by looking at the empirical frequencies of all unique demand vectors we are able

to tell that the market eventually fluctuates between several states, such an approach may

not be useful programmatically because the number of unique demand vectors grows in

the order of O((ar)g) where a is the number of applications, r is the number of time periods

and g is the number of goods. Furthermore, more sophisticated clustering algorithms

may be required to identify the fluctuation of prices, which may take on more possible

values. Instead, we use the following simple algorithm to detect convergence of prices and

demands.15 The basic idea is that we track the magnitude of the first order difference of the

price vector and demand vector. If it tends to zero, the system reaches ideal convergence;16

if it stabilizes around a certain value, the system is fluctuating between a relatively stable

set of states.

Formally, we define the following Exponentially Weighted Moving Average (EWA) filter

with parameter α for any scalar or vector variable x:

E∗
α[x](t) = αE∗

α[x](t− 1) + (1− α)x(t) (5.6)

Using this, we define the average price vector at time t to be an exponentially weighted

moving average of historical price vectors:

p̃(t) = E∗
α[p](t) = αp̃(t− 1) + (1− α)p(t) (5.7)

The scalar first order difference of the price vector is defined as the L-2 norm of the difference

between the current price vector and the average price vector:17

∆p(t) = ‖p(t)− p̃(t)‖ (5.8)

15Since this algorithm is made up in an ad-hoc fashion, I may be re-inventing some well-known signal
processing techniques but in a wrong way. Anyway, it seems to detect pseudo-convergence quite well in
experiments.

16Since ideal convergence can be detected much easier when no auctioneer wants to change its price. The
presented algorithm will be more useful in detecting pseudo-convergence.

17We did not use the natural choice of ‖p(t) − p(t − 1)‖ because it will always be δ because of the simple
incremental price adjustment rule.

52

The value of ∆p(t) is plotted with blue dots in figure 5.8. Because this is still very volatile,

we apply another EWA filter on it to obtain the average price vector difference (avgPVd, plot-

ted in red line):

∆̃p(t) = E∗
β[∆p](t) (5.9)

Finally the algorithm detects a pseudo-convergence in price vector when ∆̃p(t) stabilizes,

i.e. its “moving standard deviation” is less than a certain percent of its moving average.

Std∗γ [∆̃p](t)

E∗
γ [∆̃p](t)

≤ ε (5.10)

where Std∗γ is the traditional standard deviation with the expectation operators replaced

by E∗
γ :

Std∗γ [x](t) =
√

E∗
γ [x2](t)− (E∗

γ [x](t))2 (5.11)

Similar quantities are defined for the demand vector x(t) and the algorithm determines

that the market reaches a pseudo-convergence when condition 5.10 and its counterpart for

demand vector are both met.

The weights (α, β, γ, ε) in the range (0,1) are the parameters of the detection algorithm

and determine how sensitive it is to fluctuations and final stabilization. In general, the

smaller they are, the long it takes for the algorithm to detect convergence.18 They are cho-

sen empirically to be (0.90, 0.95, 0.95, 0.05) in the final implementation, which is able to

detect pseudo-convergence in all test cases we experiment on. Although the three rounds

of EWA smoothing filters seem excessive, they are actually useful necessary due to the

high fluctuation of the price and demand vectors. With these parameters, the algorithm

detects pseudo-convergence in the example market at iteration 1102 (with ε = 0.03 it de-

tects convergence at iteration 3075).

In figure 5.8 we plotted the three quantities ∆p(t), ∆̃p(t) and Std∗γ∆̃p(t).19 The corre-

sponding versions of the demand vector are shown in figure 5.9. Notice the contrasting

behavior of the price and demand vector difference at around iteration 1000: while the

18Some choices may not lead to detection of convergence at all because the criterion is too strict.

19Note that the initial high value of the blue and green line is due to the initialization of the moving average
to some high value and is insignificant.

53

price vector difference drops significantly and stabilizes at a lower level, the demand vec-

tor difference rises and stabilizes at a higher level. These behaviors correspond to a phase

shift from the all-price-increasing stage of the market to a dynamic-equilibrium stage of the

market equilibrium prices (5.3). In the first stage, prices increase more or less uniformly,

hence the price vector differences are at a higher and less volatile level, while the demand

vector difference only spikes occasionally when prices reach some critical boundary. When

the market falls into a dynamic equilibrium, the price vector fluctuates around a center of

equilibrium and the price vector difference appear to be at lower level but more volatile.

Because the responses of the demand vector around the efficient prices are extremely dis-

continuous, this leads to a higher level of demand vector difference in the equilibrium

stage. Note that had we simply sought the first order convergence condition (∆p(t) → 0

and ∆p(t) → 0), we would never find convergence in the market. Also had we used a

version of condition 5.10 with absolute rather than relative magnitude, we would have dis-

covered “convergence” prematurely at around iteration 900, at a single meta-stable state

as shown in 5.5.

When MARKET algorithm detects pseudo-convergence, it simply outputs the last mar-

ket state to the next stage CSMA scheduler. Because of the randomness in the market state,

the distribution of the last market state is then roughly equal to the empirical distribution

of component states in the dynamic equilibrium. It may be interesting to see if there is any

consistent correlation between the choice of which state to output among the equilibrium

states and the final utility metric. It may be the case that the lower demand states will

lead to less congestion in the CSMA scheduler and thus a better outcome, or the opposite

because the optimism in the higher demand states actually helps in CSMA. Due to time

constraints, we did not investigate this problem fully, but simply report that in our exam-

ple market Equilibrium(-) demand seems to perform better than Equilibrium(+) demand

in terms of final achieved total utility after the CSMA stage (140 vs 130.5, or 1.08x).

54

Differences of Price Vector over Iterations

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

1 201 401 601 801 1001 1201 1401 1601 1801 2001 2201 2401

Iteration

D
if

fe
re

n
ce

 o
f

P
ri

ce

Price Vector Difference (PVd) PVd Moving Average (avgPVd) Standard Deviation of avgPVd

Figure 5.8: Difference of Price Vector over Iterations.

Changes of Demand Vector over Iterations

0

2

4

6

8

10

12

14

16

1 201 401 601 801 1001 1201 1401 1601 1801 2001 2201 2401

Iteration

D
if

fe
re

n
ce

 o
f

D
em

an
d

Demand Vector Difference (DVd) DVd Moving Average (avgDVd) Standard Deviation of avgDVd

Figure 5.9: Difference of Demand Vector over Iterations.

55

5.5 Price Distribution

In this section, we investigate the distribution of prices for a given good over a varying

demand profile. Again, we fix the network topology, interference model, the choice of

goods, the number of simultaneous applications and application utility function (see 5.2)

but sample over random source and destination nodes of the application. We have added

additional 10 odd-hole goods (H17-H26), chosen probabilistically as described in section

4.2, to the set of goods. We sample over 1000 test cases (each with 20 application with

random source and destination), and report the price distribution for each good, shown in

figure 5.10. The list of 1000 prices for each good is sorted in increasing order and plotted

with (percentile,price) pairs. Note that two points on two series with the same x coordinate

do not have to be from the same test instance.

Distribution of Good Prices

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 0.2 0.4 0.6 0.8 1

Percentile within each good

P
ri

ce

L0

L1

L2

L3

L4

L5

L6

L7

L8

L9

Q10

Q11

Q12

Q13

Q14

Q15

Q16

H17

H18

H19

H20

H21

H22

H23

H24

H25

H26

0

0.5

1

1.5

2

0.98 0.99 1

Figure 5.10: Distribution of price for each good, sampled over random applications.

It seems that only clique goods are priced consistently at non-negligible prices. The

amplification of the lower right corner shows that holes are price slightly higher than links

56

though both of them are significantly less likely to be priced at a non-zero level compared

to clique goods (holes are priced only 10% of the time, and links are priced only 5% of

the time). One lesson we can draw from this is that cliques are the important goods that

correspond to limited resources due to heavy interference in MARKET algorithm.

5.6 Choice of Goods Basis

Since it is infeasible to enumerate all cliques and all odd-holes in general, we will choose

some set of cliques and odd-holes to form the goods basis at the beginning of the proto-

col. The generation process is probabilistic (see section 4.2) and we will now investigate

the effect of goods basis choices on the convergence time and the output quality of the

algorithm.

In the following experiment, we compare a class of MARKET algorithms parameter-

ized by the number of cliques (C) and the number of holes (H) in the goods basis. For

each particular parameter (C,H), we run the algorithm through 20 test cases and measure

the average of the normalized final achieved utility and the average number of iterations

to convergence. The normalized final achieved utility is the ratio of the final achieved

utility of the MARKET algorithm to that of the ORL-CSMA algorithm on the same input.

Results on example network in figure 6.1(a) are presented in figure 5.11. Some important

observations are:

1. (U < 1) The normalized performance of MARKET is always than 1, which means

MARKET performs worse than ORL-CSMA on average.

2. (∆U/∆C > 0 at H = 0) When no holes are present, the effect of adding cliques on

output quality is positive and significant (compare different lines at H=0).

3. (∆U/∆H > 0 at C = 0) When no cliques are present, the effect of adding holes is

positive but moderate (compare points on C=0 line).

4. (∆U/∆H < 0 when C is big) However, when all cliques are added (C=7), adding

more holes seems to have a negative effect on the output quality, which is quite sur-

prising.

57

5. The number of iterations to convergence does not grow significantly as the number

of goods grows. This is consistent with the observation of “non-catastrophic scaling

of equilibration process with the number of goods” by Wellman [26].

6. (∆t/∆H < 0) In the example network, increasing the number of holes actually de-

creases the number of iterations rather than increasing them.

7. (∆t/∆C ≈ 0) The number of cliques has no apparent effect on the number of itera-

tions to convergence.

The validity of some of these observations may depend on the specifics to this particu-

lar network topology and interference model. As a robustness test, we perform the same

experiment on a different network topology20 and level-2 interference model. Results are

shown in figure 5.12. In this second experiment, observations 1, 2 and 5 are reinforced;

observations 3, 4 and 6 are present but weaker; observation 7 is not true. Instead, adding

cliques increases the number of iterations significantly, which is what we would expect.

From these two example, we draw the following lessons to guide the choice of the

goods basis in our next experimental section:

• Adding cliques has a significantly positive impact on output quality, though the in-

crease in convergent time is acceptable. Thus we will add as many cliques as possible

to the market.

• Adding holes has a moderate and ambivalent effect on output quality and small

effect on number of iterations. Thus we will simply not add any holes.

Although these lessens may be over-generalizing, they are the only available guide-

lines for fine-tuning the performance of MARKET algorithm in our experimental settings.

Further investigation into the effect of goods basis may be carried out in future work.

20A new topology is generated by means of section 6.1 with longer link range (l=0.4).

58

Normalized Total Achieved Utility vs. Number of Cliques and Holes

0.75

0.8

0.85

0.9

0.95

1

H=0 H=50 H=100 H=150 H=200 H=250 H=300 H=350 H=400 H=450 H=500 H=550 H=600

N
o

rm
al

iz
ed

 T
o

ta
l A

ch
ie

ve
d

 U
ti

lit
y

(A
ve

ra
g

ed
 o

ve
r

20
 t

es
ts

)

C=0

C=1

C=2

C=3

C=4

C=5

C=6

C=7

Number of Iterations to Convergence vs. Number of Cliques and Holes

0

200

400

600

800

1000

1200

H=0 H=50 H=100 H=150 H=200 H=250 H=300 H=350 H=400 H=450 H=500 H=550 H=600

N
u

m
b

er
 o

f
it

er
at

io
n

 n
ee

d
 t

o
 r

ea
ch

 c
o

n
ve

rg
en

ce
 (

A
ve

ra
g

ed
 o

ve
r

20
 t

es
ts

)

C=0

C=1

C=2

C=3

C=4

C=5

C=6

C=7

Figure 5.11: Effect of Price Vector Choices on Output Quality and Convergence Time (1).
Top graph shows the normalized total achieved utility, which is the ratio of total final achieved utility
of MARKET to that of ORL-CSMA on the same input. Each point in both graphs corresponds to
an average over 20 test cases, each of which consists 10 applications with homogeneous utility
and random sources and destinations. Bottom graph shows the average number required to reach
convergence.

59

Normalized Total Achieved Utility vs. Number of Cliques and Holes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H=0 H=50 H=100 H=150 H=200 H=250 H=300 H=350 H=400 H=450 H=500 H=550 H=600

N
o

rm
al

iz
ed

 T
o

ta
l A

ch
ie

ve
d

 U
ti

lit
y

(A
ve

ra
g

ed
 o

ve
r

20
 t

es
ts

)

C=0

C=1

C=2

C=3

C=4

C=5

Number of Iterations to Convergence vs. Number of Cliques and Holes

0

200

400

600

800

1000

1200

H=0 H=50 H=100 H=150 H=200 H=250 H=300 H=350 H=400 H=450 H=500 H=550 H=600

N
u

m
b

er
 o

f
it

er
at

io
n

 n
ee

d
 t

o
 r

ea
ch

 c
o

n
ve

rg
en

ce
 (

A
ve

ra
g

ed
 o

ve
r

20
 t

es
ts

)

C=0

C=1

C=2

C=3

C=4

C=5

Figure 5.12: Effect of Price Vector Choices on Output Quality and Convergence Time (2).
Same experiment as Figure (5.11) but with different network topology and interference model.

60

5.7 Summary

We conclude this chapter by highlighting the main contributions and limitations of this

chapter:

• We formulated and implemented a computational market algorithm using a taton-

nement process with simple incremental price adjustments and greedy application

demand functions.

• The usage of virtual goods (cliques and holes) to capture externality due to interfer-

ence constraints in the network is an invention of this thesis compared to previous

market-oriented approaches to the various resource allocation problems in [9, 27, 29].

• The convergence property of the market presents a challenge due to complementar-

ity of goods and discrete prices and demand space. A simple yet effective algorithm

using exponential moving averages is presented to detect pseudo-convergence.

• MARKET algorithm is able to adapt to network topology and traffic profile to effec-

tively price bottleneck goods (cliques in particular) that correspond to congestions in

the network, while ignoring non-limiting resources such as links.

• Empirical study of the effect of goods choices on output quality and convergence

time suggests that including more cliques and less holes in the set of goods tends to

lead to better results.

• MARKET algorithm with CSMA scheduler tends to approximate the result of ORL-

CSMA at about 90% with further reduced complexity. It has the potential of becoming

a real-time online scheduling algorithm. Detailed comparison of the performance

metrics will be presented in the next chapter.

• Studies presented in this chapter are primarily based on a limited number of problem

setups. Robustness of the results need to be further tested in future work.

61

6

Evaluation and Analysis

6.1 Demand Saturation - A Case Study

To characterize the performance of the four algorithms (OPT, ORL-CSMA, MARKET and

NAIVE-CSMA) as demand increases, we perform a case study on a specific instance of a

randomly generated network shown in Figure 6.1. We assume links have identical capac-

ity 10 which is also equal to the number of time periods (so that numerically the band-

width equals the number of time slots scheduled). We generate a list of homogeneous

applications with random sources and destinations and our typical (0,0)-(1,10)-(2,15) util-

ity function in Figure 2.2(a). We include them, in order, to form a sequence of test cases to

be scheduled by each algorithm.1 To ensure comparability, we impose the constraints that

applications cannot operate at a bandwidth higher than the maximum bandwidth speci-

fied in the utility function.2 We have chosen to fix the network and the list of applications

in this experiment to ensure comparability across the application axis – we will allow their

randomization in the next section.

In our initial experiment with the more appealing l=0.4 network and level-1 interfer-

ence, it is demonstrated that the amount of computation required by OPT is extremely

prohibitive. We are only able to collect data up to 20 applications with a time limit of 1

hour. Hence, in order to gather enough data points over a wider range of demand level,

1So that the 20 applications in test instance #20 are the same as the first 20 applications in test instance #100.
They can be interpreted as arriving one after another over time.

2Otherwise NAIVE-CSMA may appear to devote all available bandwidth (up to 10) to an application that
does not gain any additional utility beyond a bandwidth level 2. This may cause confusion in the bandwidth
comparison graph.

62

0
1

2

3

4

5
6

7

8

9

0
1

2

3

4

5
6

7

8

9

Figure 6.1: A randomly generated network to carry out case study. 10 nodes are placed
uniformly at random in the unit square, with symmetric directional links connecting every pair of
nodes within distance l. (l=0.3 for left and 0.4 for right.)

we run the same experiment on the simpler l=0.3 network with level-0 interference. In

Figures 6.2 to 6.4 we report the running time, average link usage,3 total and average band-

width and utility on all test runs. In addition, we also show the first stage upper-bound

solution obtained by ORL-CSMA as an absolute upper-bound on the maximum extractable

utility.4 Since data points are taken more sparsely as the number of applications increases,

the x-axis has been compressed by a factor of 4 in the right half of each graph for better

visual presentation.5 Some important observation from these results are:

• All three algorithms outperform NAIVE-CSMA significantly in both bandwidth

and utility. All three algorithms that we develop seem to outperform NAIVE-CSMA

by a significant margin in both bandwidth and utility level. Furthermore, the gap

widens as the number of applications increases (from about 30% improvement at 10

applications to almost 100% improvement in 100 applications). After 20 applications

NAIVE-CSMA is almost flat, while others continue to increase marginally. This shows

that NAIVE-CSMA suffers from overwhelming contention in high demand and has

degrading performance.6 ORL-CSMA does not suffer from the same problem due to

the effectiveness of the upper-bound rate-limit computed in the first stage.

3The link usage for each period is defined as the number of active links divided by half of the total number
of (directed) links. A hypothetical link usage of 1.0 means one link out of each reverse link-pair is active. In
practice this ratio will be much lower due to interference.

4Note that the bandwidth line of csma-ub is not necessarily a strict upper-bound because the first stage
ORL-CSMA optimizes for utility rather than bandwidth.

5Note that lines in the right half of each graph appears to be 4x as steep.

6In practice this degradation will be even worse due to collision, which is not modelled in our simulator.

63

 0.01

 0.1

 1

 10

 100

 1000

 2 4 6 8 10 12 14 16 18 20

Running time (sec) vs. # Apps (logscale)

 20 30 40 50 60 70 80 90 100

csma-sim
csma-ub

opt
market-c100-h0

naive

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 2 4 6 8 10 12 14 16 18 20

Average Link Usage vs. # Apps

csma-sim
csma-ub

opt
market-c100-h0

naive

 20 30 40 50 60 70 80 90 100

Figure 6.2: Running Time and Link Usage of OPT, ORL-CSMA, MARKET and NAIVE-
CSMA. Note that the right half of each graph is compressed by a factor of 4 along the x-axis.

64

 0

 10

 20

 30

 40

 50

 2 4 6 8 10 12 14 16 18 20

Total Bandwidth vs. # Apps

csma-sim
csma-ub

opt
market-c100-h0

naive

 20 30 40 50 60 70 80 90 100

 0

 0.5

 1

 1.5

 2

 2 4 6 8 10 12 14 16 18 20

Average Bandwidth vs. # Apps

csma-sim
csma-ub

opt
market-c100-h0

naive

 20 30 40 50 60 70 80 90 100

Figure 6.3: Total and Average Bandwidth of OPT, ORL-CSMA, MARKET and NAIVE-
CSMA. Note that the right half of each graph is compressed by a factor of 4 along the x-axis.

65

 0

 50

 100

 150

 200

 250

 300

 2 4 6 8 10 12 14 16 18 20

Total Utility vs. # Apps

csma-sim
csma-ub

opt
market-c100-h0

naive

 20 30 40 50 60 70 80 90 100

 0

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16 18 20

Average Utility vs. # Apps

csma-sim
csma-ub

opt
market-c100-h0

naive

 20 30 40 50 60 70 80 90 100

Figure 6.4: Total and Average Utility of OPT, ORL-CSMA, MARKET and NAIVE-CSMA.
Note that the right half of each graph is compressed by a factor of 4 along the x-axis.

66

• Run-time complexity OPTÀORL-CSMAÀMARKET. The running time of OPT grows

worse than exponentially in the number of applications (note the time axis is in log-

scale). ORL-CSMA grows approximately exponentially in the number of applications

and also hits the upper time limit after 20 applications. The running time of MAR-

KET does not seem to grow much as the number of application increases. There is an

initial jump from 2 to 3 applications of MARKET because prior to 3 applications, the

demand is so low even at all zero prices that the market terminates immediately. The

“running time” of NAIVE-CSMA is not plotted because it does not require prior com-

putation.7 The regularity of OPT line after 12 applications and ORL-CSMA line after

20 applications is due to a manually-scaled timeout limit. Thus, OPT and ORL-CSMA

are computationally constrained after that point and may not find the optimum so-

lution in their linear programs.

• Link Usage very similar, with NAIVE-CSMA slightly worse. The percentage of ac-

tive links is very similar in all four algorithms, with NAIVE-CSMA appearing to be

the worst since it tends to waste a lot of bandwidth in delivering messages that will

get dropped later. Note that the average link usage converges to about 0.4. In fact

the absolute upper-bound on link usage is 0.5 because, as shown in figure 6.1, at

most 5 links can be active simultaneously under the level-0 interference model (e.g.

0->1, 7->2, 8->4, 3->5, 6->9). Consequently, an absolute upper-bound would be

10*10*0.5=50 for bandwidth and 500 for the utility in the best case scenario where

there are a sufficient number of non-interfering one-hop demands.

• Bandwidth OPT≈ORL-CSMA≈MARKET. Although the three algorithms are not

geared towards bandwidth maximization, it makes sense that bandwidth must be

roughly maximized in order to achieve maximum utility. The Bandwidth character-

istics of the three algorithms are virtually indistinguishable, with MARKET slightly

lower than OPT and ORL-CSMA before they hit computational limit.

• Utility OPT>ORL-CSMA>MARKET but close. Despite similar usage of bandwidth

7Although the running time of the simulator grows roughly linearly because the number of inbound pack-
ages in the simulator queue scales linearly with the number of applications.

67

resources, the utility levels show real differences in performance. In low demand

when computational constraint is not yet harsh for OPT, ORL-CSMA tracks OPT very

closely (about 95%) while MARKET only tracks about 80%-90% of OPT’s utility.

• Computationally constrained OPT under-performs ORL-CSMA in high demand.

Similarly for ORL-CSMA and MARKET. After OPT hits the computational bound,

ORL-CSMA begins to outperform OPT with demand higher than 20 applications.

Similarly after ORL-CSMA hits the computational bound in extreme high demand

(>70 apps) MARKET catches up. Because the time limit we set is extremely generous

(30 minutes to 1 hour), we expect that MARKET would be the most scalable algorithm

in practical settings.

• ORL-CSMA upper-bound is not strict. As shown in [13], the first stage ORL-CSMA

upper-bound need not converge to the optimal solution even when all clique and

hole constraints are added. We can see in the utility graph that the ORL-CSMA upper-

bound (csma-ub) coincides with the optimal solution in low demands until 18 appli-

cations.8 After that the upper-bound and the OPT solution diverge. At 70 and 80

applications the csma-ub line is actually lower than OPT line because both of them

are computationally constrained and thus the order of the two is unpredictable.9

8Although it may also be the case that OPT would have found the optimal solution given sufficient time.

9In CPLEX the first stage ORL-CSMA returns a feasible solution when it runs out of time. We should
probably have let it return the bound from the dual optimization problem.

68

6.2 Utility Optimization vs. Bandwidth Optimization

In order to highlight the difference between traditional throughput optimization and our

utility optimization algorithms, we will compare OPT, ORL-CSMA, and their bandwidth-

optimizing counterparts OPT-B and ORL-CSMA-B. The bandwidth-maximizing version

of each algorithm can be trivially obtained by supplying the algorithm with an identity

function as the utility function for all applications.

In this experiment, we randomize the network as well as the applications. In each test

case, a network is generated in the fashion of previous sections with a random number

of nodes (5-15) and a nominal range l chosen from (0.3, 0.4). A random number (5-20) of

applications with random sources, destinations and randomly generated utility functions

will enter. A utility function is generated by first choosing the maximum bandwidth level

m, then choosing m random utility values from {0,5,10,15,20} and finally assigning them

to each bandwidth level sorted in ascending order.10 We fix the number of rounds at 10

and use the level-1 interference model. Each test case will run for at most 10 minutes by

each algorithm.

In Figure 6.5, the first two graphs show that on average OPT extracts about 1.083x of

the utility of OPT-B although only consuming 0.89x of the bandwidth. This means OPT uti-

lizes bandwidth resources more efficiently to achieve applications’ utility. The third graph

shows that ORL-CSMA approximates about 95.3% of OPT’s optimal utility (when both of

them finish in time). The data points in the opt-vs-csma graph exhibit interesting gather-

ing in two groups: the majority lie around and below the diagonal, while a couple spread

across the csma-axis at low value of opt. This is perhaps due to the fact that OPT tends

to return a trivial and poor feasible solution when it runs out of time. ORL-CSMA-B and

OPT-B are statistically indistinguishable in terms of their achieved bandwidth objective,

which is an indication that utility optimization is a more difficult task than bandwidth

optimization.

10This ensures that the utility function is non-decreasing. Concavity is not guaranteed (e.g. if the values
chosen are 0,5,20).

69

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14

op
t-

b

opt

average utility x=opt vs y=optb

x=1.083y

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.5 1 1.5 2 2.5

op
t-

b

opt

average bandwidth x=opt vs y=optb

x=0.890y

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14

cs
m

a

opt

average utility x=opt vs y=csma

y=0.952x

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.5 1 1.5 2 2.5

cs
m

a-
b

opt-b

average bandwidth x=optb vs y=csmab

y=0.998x

Figure 6.5: Performance comparison in random sample. Each point represents a unique test
instance to which both algorithms in question provide a solution within 600 seconds.

6.3 Performance Comparisons of OPT, ORL-CSMA, MARKET and
NAIVE-CSMA

Finally, we extend the experiment in the previous section to compare all four algorithms by

looking at several performance metrics. In addition to running time, average bandwidth,

average utility and link usage, we also look at additional fairness metrics using the Jain’s

Fairness Index [14] on bandwidth and utility vectors. The Jain’s Fairness Index for a vector

70

x with dimension n is defined as:11

fairness(x) =
(
∑

xi)2

n ·∑x2
i

(6.1)

We run MARKET and NAIVE-CSMA on the same test instances run by OPT and ORL-

CSMA in the previous section, and report the pairwise comparison of each performance

metric in figure 6.6 and 6.7.

Using NAIVE-CSMA as a baseline, we see that OPT, ORL-CSMA and MARKET achieves

1.20x, 1.22x and 1.13x the utility while only using 0.86x, 0.95x and 0.89x of the bandwidth,

respectively.12 In terms of bandwidth and utility fairness, OPT has much poorer fairness

property compared to NAIVE-CSMA (as the fairness plots for opt-vs-naive mostly lie below

the x-y line). Relatively speaking, ORL-CSMA and MARKET has slightly better bandwidth

fairness and utility fairness than OPT. This is probably due to the fact that OPT computes

and fixes a TDMA schedule once and for all, while the CSMA-brand algorithms have the

second stage best-effort scheduler that contribute to a mixing and smoothing of bandwidth

(and utility) across applications. In terms of utility fairness, ORL-CSMA and MARKET does

not lose much compared to NAIVE-CSMA.

In the scatter plots between each pair of OPT, ORL-CSMA and MARKET, we observe

the following: In most test cases OPT is better than ORL-CSMA and MARKET in terms of

utility. However, the computational problem of OPT manifests itself as occasionally OPT

achieves extremely low bandwidth and utility (see several outlier points in the utility opt-

vs-orl-csma and opt-vs-market that have very low opt-axis values). As a result, on average

OPT ties with ORL-CSMA in average utility metric and is only 5% better than MARKET

in our sample average. On the contrary, ORL-CSMA and MARKET have more consistent

performance (since points the csma-vs-market are less scattered). In terms of bandwidth

and utility fairness, we can see clearly that the CSMA-brand algorithms achieve better

fairness index than OPT.

11A value closer to 1 mean more fairness.

12Note that less bandwidth is viewed as a positive here because the objective is to maximize utility. If an
algorithm uses less bandwidth to achieve the same or more utility of another algorithm, then it uses bandwidth
resources more efficiently.

71

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.5 1 1.5 2 2.5 3

y
=

 O
pt

x = Naive CSMA

Average Bandwidth, Opt vs Naive CSMA

y=x
y=0.859615 x

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.5 1 1.5 2 2.5 3

y
=

 O
rl-

C
sm

a

x = Naive CSMA

Average Bandwidth, Orl-Csma vs Naive CSMA

y=x
y=0.954387 x

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.5 1 1.5 2 2.5 3

y
=

 M
ar

ke
t

x = Naive CSMA

Average Bandwidth, Market vs Naive CSMA

y=x
y=0.88955 x

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14

y
=

 O
pt

x = Naive CSMA

Average Utility, Opt vs Naive CSMA

y=x
y=1.2033 x

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14

y
=

 O
rl-

C
sm

a

x = Naive CSMA

Average Utility, Orl-Csma vs Naive CSMA

y=x
y=1.22376 x

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14

y
=

 M
ar

ke
t

x = Naive CSMA

Average Utility, Market vs Naive CSMA

y=x
y=1.12319 x

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.1 0.2 0.3 0.4 0.5

y
=

 O
pt

x = Naive CSMA

Link Utilization, Opt vs Naive CSMA

y=x
y=0.970796 x

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.1 0.2 0.3 0.4 0.5

y
=

 O
rl-

C
sm

a

x = Naive CSMA

Link Utilization, Orl-Csma vs Naive CSMA

y=x
y=1.04363 x

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.1 0.2 0.3 0.4 0.5

y
=

 M
ar

ke
t

x = Naive CSMA

Link Utilization, Market vs Naive CSMA

y=x
y=0.8873 x

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

y
=

 O
pt

x = Naive CSMA

Bandwidth Fairness, Opt vs Naive CSMA

y=x
y=0.76115 x

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

y
=

 O
rl-

C
sm

a

x = Naive CSMA

Bandwidth Fairness, Orl-Csma vs Naive CSMA

y=x
y=0.83507 x

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

y
=

 M
ar

ke
t

x = Naive CSMA

Bandwidth Fairness, Market vs Naive CSMA

y=x
y=0.884047 x

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

y
=

 O
pt

x = Naive CSMA

Utility Fairness, Opt vs Naive CSMA

y=x
y=0.890942 x

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

y
=

 O
rl-

C
sm

a

x = Naive CSMA

Utility Fairness, Orl-Csma vs Naive CSMA

y=x
y=0.985751 x

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

y
=

 M
ar

ke
t

x = Naive CSMA

Utility Fairness, Market vs Naive CSMA

y=x
y=0.994487 x

Figure 6.6: Comparison of OPT, ORL-CSMA, MARKET vs. NAIVE-CSMA. The performance
metrics include: average bandwidth, average utility, link usage, Jain’s fairness index on bandwidth
vector and utility vector.

72

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.5 1 1.5 2 2.5 3

y
=

 O
pt

x = Orl-Csma

Average Bandwidth, Opt vs Orl-Csma

y=x
y=0.902736 x

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.5 1 1.5 2 2.5 3

y
=

 O
rl-

C
sm

a

x = Market

Average Bandwidth, Orl-Csma vs Market

y=x
y=1.05857 x

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.5 1 1.5 2 2.5 3

y
=

 O
pt

x = Market

Average Bandwidth, Opt vs Market

y=x
y=0.956453 x

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14

y
=

 O
pt

x = Orl-Csma

Average Utility, Opt vs Orl-Csma

y=x
y=0.983715 x

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14

y
=

 O
rl-

C
sm

a

x = Market

Average Utility, Orl-Csma vs Market

y=x
y=1.06498 x

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14

y
=

 O
pt

x = Market

Average Utility, Opt vs Market

y=x
y=1.04576 x

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.1 0.2 0.3 0.4 0.5

y
=

 O
pt

x = Orl-Csma

Link Utilization, Opt vs Orl-Csma

y=x
y=0.918105 x

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.1 0.2 0.3 0.4 0.5

y
=

 O
rl-

C
sm

a

x = Market

Link Utilization, Orl-Csma vs Market

y=x
y=1.16057 x

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.1 0.2 0.3 0.4 0.5

y
=

 O
pt

x = Market

Link Utilization, Opt vs Market

y=x
y=1.08429 x

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

y
=

 O
pt

x = Orl-Csma

Bandwidth Fairness, Opt vs Orl-Csma

y=x
y=0.914021 x

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

y
=

 O
rl-

C
sm

a

x = Market

Bandwidth Fairness, Orl-Csma vs Market

y=x
y=0.941472 x

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

y
=

 O
pt

x = Market

Bandwidth Fairness, Opt vs Market

y=x
y=0.867847 x

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

y
=

 O
pt

x = Orl-Csma

Utility Fairness, Opt vs Orl-Csma

y=x
y=0.904504 x

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

y
=

 O
rl-

C
sm

a

x = Market

Utility Fairness, Orl-Csma vs Market

y=x
y=0.985331 x

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

y
=

 O
pt

x = Market

Utility Fairness, Opt vs Market

y=x
y=0.891373 x

Figure 6.7: Comparison between OPT, ORL-CSMA and MARKET. The performance metrics
include: average bandwidth, average utility, link usage, Jain’s fairness index on bandwidth vector
and utility vector.

73

Figure 6.8 shows the distribution of running time across these 1125 test instances for

all three algorithms. Note that the timeout limit on the optimization steps for OPT and

ORL-CSMA is 10 minutes. A value of 700 seconds denotes time-out. Out of the total 1125

test cases, OPT finishes optimization in 580 (51.5%) cases, runs out of time and returns a

best feasible solution in 437 (38.8%) cases and fails to even find a feasible schedule for the

rest 108 cases (9.6%), whereas ORL-CSMA finishes all in time. MARKET runs for under

5 seconds for all of them. Thus we can see the complexity reduction from OPT to ORL-

CSMA is substantial, and even further in MARKET. Considering that the size of problems

in our random sample is not too large, and that our time limit of 10 minutes is still quite

generous for scheduling around 10-20 applications, we shall recommend using ORL-CSMA

or MARKET in a practical setting with more stringent time constraints. In particular, if the

time limits were set at a more realistic value of 5 seconds under conditions of online real-

time scheduling, MARKET would be the recommended implementation to offer a good

balance between output quality and running time.

74

Distribution of Running Time for 1125 Test Cases

0

100

200

300

400

500

600

700

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Percentile

T
im

e
(s

ec
)

OPT CSMA MKT

Distribution of Running Time for 1125 Test Cases, under 5 secs

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Percentile

T
im

e
(s

ec
)

OPT CSMA MKT

Figure 6.8: Distribution of running time for OPT, ORL-CSMA and MARKET in random
samples. The time limit for the optimization step is 600 seconds. A value of 700 in the top graph
denotes a “timeout”. The lower graph shows the portion of the top graph under 5 seconds.

75

6.4 Summary

The main results from our experimental studies can be summarized as:

• All three OPT, ORL-CSMA and MARKET algorithms performs significantly better

than NAIVE-CSMA(by 20% in normal demand and up to 100% in high demand).

• When computational constraints are not harsh, OPT extracts the maximum utility.

ORL-CSMA approximates about 95% of the optimal utility. MARKET approximates

about 80%-90%.

• In our random samples of problem instances, the utility performance of the three

is roughly OPT: ORL-CSMA: MARKET= 1.00 : 1.02 : 0.96. OPT is lower than ORL-

CSMA mostly due to returning very poor solutions under computational constraints

on large problems.

• Runtime complexity of OPT grows catastrophically as demand increases and shall

not be used in practice.

• In low to medium demand, ORL-CSMA offers a good balance of running time and

approximation quality. However, complexity of ORL-CSMA also grows rapidly as

demand further increases to high range.

• Although with a slightly worse approximation than ORL-CSMA, MARKET has much

better scalability and is the best choice under high demand or stringent time con-

straints.

76

7

Conclusions and Future Work

We have presented a research project attempting to address the open problem of optimiz-

ing aggregate user utility in wireless ad-hoc networks under the constraints of wireless

interference. We identified motivations for utility-based scheduling in several key usage

scenarios, formulated a general model for the Optimal Utility Scheduling problem, then

developed a brute-force OPT optimizer and a hybrid ORL-CSMA scheduling algorithm

guided by the relaxed upper-bound solution. Moreover we developed a market-oriented

approach MARKET with a tatonnement process and demonstrated its ability to effectively

price bottleneck resource in the network and thereby approximate the optimal solution

with substantially reduced complexity. We met and solved several interesting challenges

in our market setup, including complementarity of goods, discontinuous demand func-

tions, complex externality structures and pseudo-convergence. Our experimental results

have shown that the computational intractability of the complete solver OPT renders it

practically unusable; ORL-CSMA offers a compromise between reduced complexity and

a very good approximation (about 95%) of the optimal solution. However, ORL-CSMA

still requires solving an integer linear program in a centralized fashion, whereas MAR-

KET provides further relaxation and approximation (at about 90% level of the optimal).

MARKET’s better scalability and possible decentralization makes it more appropriate for

realistic online realtime scheduling settings. We conclude by sketching out an outline for

further research directions:

• Towards a decentralized online realtime scheduling Protocol: It is conceivable that

MARKET allocation coupled with CSMA scheduler could become an online realtime

77

scheduling protocol. The demand response in the market could be continuously

fed to the second stage CSMA scheduler without waiting to settle down on a par-

ticular stable state (which may not exist). Instead the dynamic equilibrium of the

market will translate to dynamic outcomes in the CSMA schedule. Moreover, our

market protocol is already decentralized on the agent level and the auctioneer level.

A distributed and decentralized implementation can be achieved by delegating each

auctioneer onto some individual nodes, and propagating the price information and

bid information by piggy-backing. The exact details of the implementation has to be

figured out in future research.

• Further testing of empirical results on a wider range of setups: Most studies in

this thesis are performed in a limited number of problem setups. Further robustness

of the empirical results need to established by testing on a wider range of different

network topology, interference model and demand profiles.

• Practical implementation and deployment on real wireless networks: Due to space

and time constraints of this thesis, we did not have the opportunity to implement

and deploy our algorithms on real-life wireless network test beds such as the Mote-

Lab [17]. Further complication may arise due to realistic wireless behaviors such

as collision and partial interference that’s not captured by our model or simulator.

When time allows, we shall implement our algorithms in TinyOS and measure rele-

vant performance metrics in real-life experiments.

78

References

[1] Daniel Aguayo, John Bicket, Sanjit Biswas, Glenn Judd, and Robert Mor-

ris. Link-level measurements from an 802.11b mesh network. URL

citeseer.ist.psu.edu/aguayo04linklevel.html.

[2] Matthew Andrews, Lijun Qian, and Alexander Stolyar. Optimal utility based

multi-user throughput allocation subject to throughput constraints. URL

citeseer.ist.psu.edu/730790.html.

[3] Erdal Arikan. Some complexity results about packet radio networks. IEEE Transac-

tions on Information Theory, 30(4):681–, 1984.

[4] K. J. Arrow and L. Hurwicz. On the stability of the competitive equilibrium i. Econo-

metrica, 26:no. 4, 522–552, 1958.

[5] K. J. Arrow and L. Hurwicz. On the stability of the competitive equilibrium ii. Econo-

metrica, 27:82–109, 1959.

[6] Kenneth Joseph Arrow. General Competitive Analysis. Holden-Day, 1971., San Fran-

cisco.

[7] Yossi Azar, Edith Cohen, Amos Fiat, Haim Kaplan, and Harald Racke. Optimal oblivi-

ous routing in polynomial time. In STOC ’03: Proceedings of the thirty-fifth annual ACM

symposium on Theory of computing, pages 383–388, New York, NY, USA, 2003. ACM

Press. ISBN 1-58113-674-9. doi: http://doi.acm.org/10.1145/780542.780599.

[8] Randeep Bhatia and Li (Erran) Li. Characterizing achievable multicast rates

in multi-hop wireless networks. In MobiHoc ’05: Proceedings of the 6th ACM

79

international symposium on Mobile ad hoc networking and computing, pages 133–

144, New York, NY, USA, 2005. ACM Press. ISBN 1-59593-004-3. doi:

http://doi.acm.org/10.1145/1062689.1062708.

[9] J. Cheng and M. Wellman. The walras algorithm: A convergent dis-

tributed implementation of general-equilibrium outcomes, 1996. URL

citeseer.ist.psu.edu/cheng96walras.html.

[10] S. Even, O. Goldreich, S. Moran, and P. Tong. On the NP-completeness of certain

network testing problems. Networks, 14:1–24, 1984.

[11] Bruce E. Hajek and Galen H. Sasaki. Link scheduling in polynomial time. IEEE Trans-

actions on Information Theory, 34(5):910–917, 1988.

[12] Ilog, Inc. CPLEX solver, 2006. URL http://www.ilog.com/products/cplex/.

(accessed 10 March 2006).

[13] Kamal Jain, Jitendra Padhye, Venkata N. Padmanabhan, and Lili Qiu. Impact of

interference on multi-hop wireless network performance. In MobiCom ’03: Pro-

ceedings of the 9th annual international conference on Mobile computing and networking,

pages 66–80, New York, NY, USA, 2003. ACM Press. ISBN 1-58113-753-2. doi:

http://doi.acm.org/10.1145/938985.938993.

[14] R. Jain, A. Durresi, and G. Babic. Throughput fairness index: An explanation. In ATM

Forum, pages 99–0045, 1999.

[15] V. S. Anil Kumar, Madhav V. Marathe, Srinivasan Parthasarathy, and Aravind Srini-

vasan. Algorithmic aspects of capacity in wireless networks. In SIGMETRICS ’05:

Proceedings of the 2005 ACM SIGMETRICS international conference on Measurement and

modeling of computer systems, pages 133–144, New York, NY, USA, 2005. ACM Press.

ISBN 1-59593-022-1. doi: http://doi.acm.org/10.1145/1064212.1064228.

[16] Yuxi Li, Janelle Harms, and Robert Holte. Traffic-oblivious energy-aware

routing for multihop wireless networks. In TR05-24, University of Alberta,

80

September 2005. Dept. of Computing Science, University of Alberta. URL

http://www.cs.ualberta.ca/ yuxi/.

[17] motelab. Harvard sensor network testbed. web. http://motelab.eecs.harvard.edu.

[18] Jitendra Padhye, Sharad Agarwal, Venkata N. Padmanabhan, Lili Qiu, Ananth Rao,

and Brian Zill. Estimation of link interference in static multi-hop wireless networks.

In IMC ’05: Proceedings of the 4th ACM SIGCOMM conference on Internet measurement,

New York, NY, USA, 2005. ACM Press.

[19] Bozidar Radunovic and Jean-Yves Le Boudec. Rate performance objectives of multi-

hop wireless networks. IEEE Trans. Mob. Comput., 3(4):334–349, 2004.

[20] S. Ramanathan. A unified framework and algorithm for channel assignment

in wireless networks. Wirel. Netw., 5(2):81–94, 1999. ISSN 1022-0038. doi:

http://dx.doi.org/10.1023/A:1019126406181.

[21] S. Ramanathan and Errol L. Lloyd. Scheduling algorithms for multi-hop radio net-

works. In SIGCOMM ’92: Conference proceedings on Communications architectures &

protocols, pages 211–222, New York, NY, USA, 1992. ACM Press. ISBN 0-89791-525-9.

doi: http://doi.acm.org/10.1145/144179.144283.

[22] E. Royer and C. Toh. A review of current routing protocols for ad-hoc mobile wireless

networks, 1999. URL citeseer.ist.psu.edu/royer99review.html.

[23] Herbert E. Scarf. Some examples of global instability of the competitive equilibrium.

Cowles Foundation Discussion Papers 79, Cowles Foundation, Yale University, 1959.

available at http://ideas.repec.org/p/cwl/cwldpp/79.html.

[24] Victor Shnayder, Bor rong Chen, Konrad Lorincz, Thaddeus R. F. Fulford Jones,

and Matt Welsh. Sensor networks for medical care. In SenSys ’05: Proceed-

ings of the 3rd international conference on Embedded networked sensor systems, pages

314–314, New York, NY, USA, 2005. ACM Press. ISBN 1-59593-054-X. doi:

http://doi.acm.org/10.1145/1098918.1098979.

81

[25] Godfrey Tan and John Guttag. Capacity Allocation in Wireless LANs. Number 973,

Cambridge, MA, November 2004.

[26] Michael P. Wellman. Market-oriented programming: Some early lessons.

In Scott Clearwater, editor, Market-Based Control: A Paradigm for Distributed

Resource Allocation. World Scientific, River Edge, New Jersey, 1996. URL

citeseer.ist.psu.edu/wellman95marketoriented.html.

[27] Michael P. Wellman. A market-oriented programming environ-

ment and its application to distributed multicommodity flow prob-

lems. Journal of Artificial Intelligence Research, 1:1–23, 1993. URL

citeseer.ist.psu.edu/wellman93marketoriented.html.

[28] Shanchieh Jay Yang and Gustavo de Veciana. Enhancing both network and user per-

formance for networks supporting best effort traffic. IEEE/ACM Trans. Netw., 12(2):

349–360, 2004. ISSN 1063-6692. doi: http://dx.doi.org/10.1109/TNET.2004.826280.

[29] F. Ygge and H. Akkermans. Duality in multi-commodity market computations, 1997.

URL citeseer.ist.psu.edu/article/ygge97duality.html.

82

