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Abstract

We study the social choice problem where a group
of n voters report their preferences over alterna-
tives and a voting rule is used to select an alter-
native. We show that when the preferences of
voters are positively correlated according to the
Kendall-Tau distance, the probability that any scor-
ing rule is not ex post incentive compatible (EPIC)
goes to zero exponentially fast with the number
of voters, improving over the previously known
rate of 1/

√
n for independent preferences. Moti-

vated by rank-order models from machine learning,
we introduce two examples of positively-correlated
models, namely Conditional Mallows and Condi-
tional Plackett-Luce. Conditional Mallows satisfies
Kendall-Tau correlation and fits our positive result.
We also prove that Conditional Plackett-Luce be-
comes EPIC exponentially quickly.

1 Introduction
Social choice theory studies how to aggregate preferences and
select an outcome. A canonical problem is voting, where re-
ports are preferences over a list of candidates and a voting
rule selects the winning candidate.

The problem of voting is ubiquitous systems in which mul-
tiple agents interact with each other. Several tools and ideas
from social choice theory have found applications in dif-
ferent areas of multi-agent systems including resource allo-
cation [Parkes et al., 2015], rank aggregation [Altman and
Tennenholtz, 2010], recommender systems [Pennock et al.,
2000], choosing between multiple issues [Lang and Xia,
2009], and crowdsourcing [Mao et al., 2013]. Voting also has
strong connections to rank aggregation models in machine
learning. These models view rank data as a noisy version
of a true underlying rank, and try to recover the true rank.

It is typical to ignore the possibility that data is misreported
in order to change the aggregate view. Consider, for example,
the problem of a conference review system where a reviewer
gives a ranking over a subset of submitted papers. The com-
mittee wants to aggregate truthful reports of opinion on sub-
mitted papers while different subcommunities may want to
push decisions in one direction or another.

Indeed, the problem of incentive-aligned social choice is
generally hopeless. Gibbard [1973] and Satterthwaite [1975]
prove that when the number of alternatives is at least three,
a voting rule is unanimous and strategy-proof if and only
if it is dictatorial. There are two standard ways of circum-
venting the Gibbard-Satterthwaite impossibility result. First,
the preferences of voters may arise from a restricted pref-
erence class [Barberà, 2011]. Second, some have appealed
to worst-case and average-case computational intractability
of the problem of strategic manipulation, arguing that this
provides robustness to strategic behavior ([Faliszewski and
Procaccia, 2010] and for a recent survey, see [Conitzer and
Walsh, 2016]).

However, these approaches do not consider a probabilis-
tic model of social choice, with preferences sampled from a
distribution. The relevant incentive question is to consider
the situation that each voter may have information about how
likely the preferences of other voters’ are. Our particular in-
terest is in studying the problem of incentive-aligned prefer-
ence aggregation when voters’ preferences are not necessarily
independent. Whereas it is typical to assume that individual
rank preferences of voters are independent, this is not always
true. For example, in a conference review mechanism, once a
reviewer realizes that paper A is significantly better than pa-
per B, they may be more likely to place more probability on
others thinking the same about the papers.

Majumdar and Sen [2004] initiated the study of ordinally
Bayesian incentive compatible (OBIC) voting rules for the
setting in which voters have incomplete information about
each others’ preferences. OBIC is a weaker form of strategy-
proofness, stating that truthful reporting is a Bayes-Nash
equilibrium for any cardinal utility consistent with agent pref-
erences. Later, Sen et al. [2015] prove that the Gibbard-
Satterthwaite impossibility result breaks down if beliefs are
positively correlated. These authors start with a social choice
function f satisfying certain properties and exhibit a class of
positively correlated distributions for which f is OBIC.

Instead of OBIC, we adopt the notion of ex post incentive
compatibility (EPIC). EPIC is a weaker solution concept than
strategy-proofness, and requires truth-telling to be a best re-
sponse to every preference profile of others provided they are
also truthful. Our goal is to understand the following ques-
tion: given positively correlated beliefs that are neither uni-
form nor extremely correlated, how do common voting rules,



and in particular scoring rules, perform with regard to EPIC?
We take an asymptotic view along the lines of Baharad

and Neeman [2002], who prove that when the preferences
of agents are drawn uniformly and independently at random
the probability that any scoring rule is not EPIC goes to zero
at a rate proportional to 1/

√
n for n agents.1 Their result

also holds for small, local correlations among preferences,
but fails when the correlation is global or large enough. We
first prove that positive correlation helps dramatically. Our
main result is that the probability that any scoring rule is not
EPIC goes to zero exponentially fast when an agent’s belief
is that the preferences of others are positively correlated with
his own preference order according to the Kendall-Tau dis-
tance. We also establish a general result for any condition-
ally independent and identical beliefs, showing convergence
of scoring rules to EPIC at a rate proportional to 1/

√
n.

Motivated by rank-order models from machine learn-
ing [Marden, 1996], we introduce two examples of positively-
correlated belief systems, namely Conditional Mallows and
Conditional Plackett-Luce. These two families of belief sys-
tems span a wide range of positively correlated beliefs— from
being arbitrarily close to uniform to being extremely corre-
lated. Conditional Mallows is Kendall-Tau correlated and fits
our main positive result. Conditional Plackett-Luce model is
not, but we provide a different proof of exponential conver-
gence to EPIC for this model.

2 Setup
The set of alternatives is A = {1, . . . ,m} and the set of vot-
ers is N = {1, . . . , n}. Let P be the set of all linear orders
over A. Voter i has a preference order Pi ∈ P over the m
alternatives. Any voting rule is represented by a social choice
function f : Pn → A. We will write P−i to denote a prefer-
ence profile of all the voters other than i. We will use aPib
to denote that alternative a is preferred over alternative b ac-
cording to the preference order Pi.

Given preference Pi, let µi(P−i|Pi) denote the probability
that voter i ascribes to voters other than i having preference
profile P−i ∈ Pn−1. Note that like Sen et al. [2015], we do
not insist that the conditional probabilities µi(P−i|Pi) should
be generated from a given underlying common prior over the
entire profile of n voters. We will call a collection of condi-
tional probability distributions µ1, . . . , µn a belief system.

We adopt ex post incentive compatibility (EPIC) as a so-
lution concept. A voting rule is strategy-proof if truthful re-
porting is a dominant strategy for each voter. EPIC provides
truthful reporting as a best response to any preference profile
of others, provided they are also truthful.
Definition 2.1. A social choice function f : Pn → A is EPIC
with respect to the belief system {µi}ni=1, if for each agent i
and ∀Pi, P ′i
f(Pi, P−i)Pif(P ′i , P−i) ∀P−i in support of µi(·|Pi) (1)

For µi(·|Pi) with full support over Pn−1 for every Pi, then
f is EPIC iff it is also strategy-proof. However, EPIC and

1Although Baharad and Neeman [2002] use the term “asymp-
totic strategyproofness”, they actually consider EPIC as the notion
of equilibrium

strategy-proof social choice functions become very different
when we compute the probability that an agent can manipu-
late. Suppose agent i has preference Pi and L(Pi) = {P−i ∈
Pn−1 : ∃P ′i f(P ′i , P−i)Pif(Pi, P−i)}, the set of all pref-
erence profiles of others such that agent i wants to deviate.
Then the probability that i can manipulate in the sense of
a dominant strategy is either 0 or 1 (it is 0 if L(Pi) = ∅,
and 1 otherwise). On the other hand, the probability that i
can manipulate in the sense of an ex post Nash equilibrium is∑
P−i∈L(Pi)

µi(P−i). We are interested in showing that the
last probability becomes exponentially small in the number
of agents when the belief system is positively correlated.

2.1 Positively Correlated Preferences
Sen et al. [2015] introduce two types of correlation for a given
belief system {µi}ni=1: Top-Set correlation and Kendall-Tau
correlation. Let Bk(Pi) denote the set of top k alternatives
as ranked by Pi. A belief system is Top-Set correlated (TS-
correlated) if every voter i believes that the event where every
other voter has the same top-k set of alternatives as i is strictly
more likely than the event where every other voter has some
other subset T as their top-k set.

Definition 2.2 (Top-Set Correlated). Belief system {µi}ni=1
is TS-correlated if ∀k ∈ {1, . . . ,m − 1},∀i,∀Pi, ∀T 6=
Bk(Pi) and |T | = k:∑

{P−i: ∀j 6=i
Bk(Pj)=Bk(Pi)}

µi(P−i|Pi) >
∑

{P−i: ∀j 6=i
Bk(Pj)=T}

µi(P−i|Pi) (2)

A belief system is Kendall-Tau correlated (KT-correlated)
if every voter i believes that the preference profiles of other
voters are ordered in decreasing probability according to in-
creasing sum Kendall-Tau distance between the preferences
of others and voter i’s true preference Pi. Let d(Pi, Pj) be
the Kendall-Tau distance (i.e., the number of pairwise dis-
agreements) between preferences Pi and Pj .

Definition 2.3 (Kendall-Tau Correlated). Belief system
{µi}ni=1 is KT-correlated if for all Pi, P−i, P ′−i,

µi(P−i|Pi) > µi(P
′
−i|Pi) if

∑
j 6=i

d(Pj , Pi) <
∑
j 6=i

d(P ′j , Pi).

We use D(P−i|Pi) in place of
∑
j 6=i d(Pj , Pi). It is easy

to show that any KT-correlated belief system is also TS-
correlated, but not vice-versa. [Bhargava et al., 2011]

Definition 2.4. A belief system {µ}ni=1 is conditionally in-
dependent and identically distributed (c.i.i.d.) if

∀i, ∀Pi, ∀P−i : µi(P−i|Pi) =
∏
j 6=i

ν(Pj |Pi) (3)

where ν(·|Pi) is a probability distribution over orders P.

We work with c.i.i.d. belief systems. We will see examples
of different families of positively correlated and c.i.i.d. belief
systems in Section 4.



3 Scoring Rules
Scoring rules [Young, 1975] are defined in the following way.
Fix a non-decreasing sequence of real numbers, s1 ≥ s2 ≥
. . . ≥ sm, such that s1 > sm. If a voter ranks an alterna-
tive x at position j then x gets a score of sj . We will write
sc(j, Pi) to denote the score of an alternative j according to
the preference Pi. The score of an alternative is the sum of
the scores received from all the voters. The alternative with
the highest score is chosen as the outcome of the election. In
case there is a tie, a winning alternative is selected according
to some tie-breaking rule. We insist that s1 > sm, other-
wise if s1 = sm, every alternative receives the same score
and the resulting social choice function just depends on the
tie-breaking rule. Some popular scoring rules are: Plural-
ity (1, 0, 0, . . . , 0), Borda (m − 1,m − 2, . . . , 1, 0) and Veto
(1, 1, 1, . . . , 1, 0).

Baharad and Neeman [2002] prove that the probability that
any scoring rule is not EPIC goes to zero at rate of 1/

√
nwith

the number of agents n. They consider the following setting:
(1) each voter is equally likely to have any preference order,
i.e. the marginal distribution is uniform, and (2) the pref-
erences of the voters are locally correlated, i.e. the voters
can be numbered in a sequence such that the further they are
apart, the more independent their preferences become. In an
independent work, Slinko [2002] shows that the number of
manipulable preference profiles (profiles where some agent
can benefit by deviating unilaterally) goes to zero at a rate
of 1/

√
n for any scoring rule. This result also proves the

same rate of convergence to EPIC for uniform i.i.d. pref-
erences. We prove that when the preferences of the voters
are KT-correlated and c.i.i.d., the probability that any given
scoring rule is not EPIC goes to zero exponentially fast. Our
result strengthens what is known about the asymptotic non-
manipulability of scoring rules.

3.1 EPIC Convergence for KT-correlation
Suppose {µi}ni=1 is a c.i.i.d. belief system, that is, for all i, we
have µi(P−i|Pi) =

∏
j 6=i ν(Pj |Pi). Consider any preference

Pi ∈ P and any two alternatives a and b such that aPib. Let
µa,b(Pi) = EP∼ν(·|Pi) [sc(a, Pi)− sc(b, Pi)] (4)

denote the expected difference of scores between alternatives
a and b for a random preference order of some other agent,
this preference drawn according to the conditional distribu-
tion ν(·|Pi). Let σ2

a,b(Pi) denote the variance of the differ-
ence in score between a and b. We now state our main result.
Theorem 1. Suppose a belief system {µi}ni=1 is c.i.i.d. and
KT-correlated. Then the probability that any given scoring
rule is not EPIC w.r.t. {µi}ni=1 goes to zero at a rate propor-
tional to O (e−cn), for some constant c > 0.

A useful lemma establishes that µa,b(Pi) > 0, for any pref-
erence Pi and alternatives a, b such that aPib.
Lemma 2. Suppose the belief system {µi}ni=1 is c.i.i.d. and
KT-correlated. Consider a preference ordering Pi, and alter-
natives a and b such that aPib. Then µa,b(Pi) > 0.

Proof. Select two preference orderings Pj and P ′j such that
d(Pj , Pi) < d(P ′j , Pi). Now consider the following two pref-
erence profiles for voters other then i:

1. P 1
−i = (Pi, . . . , Pi, Pj , Pi, . . . , Pi)

2. P 2
−i = (Pi, . . . , Pi, P

′
j , Pi, . . . , Pi)

ThenD(P 1
−i, Pi) = d(Pj , Pi) < d(P ′j , Pi) = D(P 2

−i, Pi).
Since {µi}ni=1 is KT-correlated, we have µi(P

1
−i|Pi) >

µi(P
2
−i|Pi). Furthermore, {µi}ni=1 is c.i.i.d., therefore there

exists a function ν such that µi(P−i|Pi) =
∏
j 6=i ν(Pj |Pi).

µi(P
1
−i|Pi) > µ(P 2

−i|Pi) implies

ν(Pi|Pi)n−2ν(Pj |Pi) > ν(Pi|Pi)n−2ν(P ′j |Pi).

Therefore, we have d(Pj , Pi) < d(P ′j , Pi) implies
ν(Pj |Pi) > ν(P ′j |Pi). Now, partition the set of all preference
orderings P into Pa�b and Pb�a. Every preference ordering
P in Pa�b ranks a above b and vice versa for Pb�a. Note that
there exists a one-to-one mapping f : Pa�b → Pb�a, namely
f(P ) be the same as P except positions of alternatives a and
b exchanged. Then

µa,b(Pi) =
∑
P∈P

(sc(a, P )− sc(b, P ))ν(P |Pi)

=
∑

P∈Pa�b

(sc(a, P )− sc(b, P ))(ν(P |Pi)− ν(f(P )|Pi)).

Now for all P ∈ Pa�b, d(P, Pi) < d(f(P ), Pi) and there-
fore ν(P |Pi) > ν(f(P )|Pi). Moreover there exists at least
one P such that sc(a, P ) > sc(b, P ) (e.g. when P places a
at top and b at bottom). This proves that µa,b(Pi) > 0.

We will also use the Chernoff-Hoeffding inequality for
bounded random variables.
Lemma 3. (Theorem 2,[Hoeffding, 1963]) Let
X1, X2, . . . , Xn be independent and for all i, ai ≤ Xi ≤ bi.
Let X̄n = 1

n

∑n
i=1Xi and µ = E

[
1
n

∑n
i=1Xi

]
. Then

Pr
[
X̄n ≤ µ− t

]
≤ exp

{
− 2n2t2∑n

i=1(bi − ai)2

}
.

Proof. (of Theorem 1.) Suppose voter 1 observes a prefer-
ence order x1. Let Xi be the random variable corresponding
to the preference ordering seen by agent i. Conditioned on
the eventX1 = x1, voter 1 believes that the random variables
X2, X3, . . . are i.i.d. with distribution ν(·|x1).

Fix any two alternatives a and b such that a x1 b. We show
that the probability that agent 1 can improve the ordering of a
vs b in the social ranking, through making some misreport of
his preference order, falls exponentially quickly in the num-
ber of agents n. For i = 2, 3, . . . , let Zia,b = sc(a,Xi) −
sc(b,Xi) be the difference of scores between alternatives
a and b assigned by voter i’s true preference Xi. Since
X2, X3, . . . are i.i.d., so are Z2

a,b, Z
3
a,b, . . .. As introduced

earlier, E
[
Zia,b

]
= µa,b(x1) and Var(Zia,b) = σ2

a,b(x1). De-

fine Zna,b =
∑n+1
i=2 Z

i
a,b (where voters 2 through n + 1 each

have c.i.i.d. preferences).
Now voter 1 wants to manipulate and report a prefer-

ence ordering different from x1 only if sm − s1 ≤ Zna,b ≤



sc(b, x1) − sc(a, x1). To see this, first suppose Zna,b <
sm − s1 < 0. Then even by placing a at top and b at bot-
tom, voter 1 can increase the difference in scores between a
and b by at most s1 − sm and this still fails to cause a to rank
higher than b. So, in this case, voter 1 is happy to report x1.

On the other hand, suppose Zna,b > sc(b, x1)−sc(a, x1). If
1 reports truthfully then the net difference of scores between
a and b is Zna,b + sc(a, x1) − sc(b, x1) > 0 and a and b are
already ordered according to 1’s preferences.

Let ∆a,b = sc(b, x1) − sc(a, x1). Note that, ∆a,b ≤ 0
since a x1 b. Then the probability of manipulation by voter
1 is bounded by Pr

[
sm − s1 ≤ Zna,b ≤ ∆a,b

]
, which we

bound using Chernoff-Hoeffding inequality (Lemma 3) as
follows :

Pr
[
sm − s1 ≤ Zna,b ≤ ∆a,b

]
≤ Pr

[
Zna,b ≤ ∆a,b

]
= Pr

[
1

n

n+1∑
i=2

Zia,b ≤
1

n
∆a,b

]

= Pr

[
1

n

n+1∑
i=2

Zia,b ≤ µa,b(x1)− t

]
.

Where t = µa,b(x1)− 1
n∆a,b. Since Zia,b is the difference

of scores between alternatives a and b according to Xi, we
have Zia,b ∈ [sm − s1, s1 − sm]. Now applying Chernoff-
Hoeffding inequality we get an upper bound of

exp

{
− 2n2t2

4n(s1 − sm)2

}
= exp

{
−n

2

(
µa,b(x1)

s1 − sm

)2

+
µa,b(x1)∆a,b

(s1 − sm)2
− 1

2n

(
∆a,b

s1 − sm

)2
}
.

As n goes to infinity, e−γ/n goes to 1 for any constant γ >
0. Therefore, for large enough n, the probability of manip-

ulation is O
(
e−ca,b(x1)n

)
where ca,b(x1) = 1

2

(
µa,b(x1)
s1−sm

)2

.
Since the preference ordering x1 and the alternatives a and b
can arbitrary, using a union bound we get the actual proba-
bility of manipulation is e−cn where the constant c takes the
worst-case, and

c = min
x∈P

min
a x1 b

1

2

(
µa,b(x1)

s1 − sm

)2

. (5)

Lemma 2 proves that for any KT-correlated and c.i.i.d. belief
system, µa,b(x1) > 0 for any x1 and any a and b such that
a x1 b. This proves that c > 0, and finishes the proof.

3.2 EPIC Convergence for TS-correlation
Lemma 2 need not be true for a TS-correlated belief system.
Here is a counter-example. Consider a situation with 2 vot-
ers, 3 alternatives, and Borda scoring rule (2, 1, 0). Suppose
voter 1’s preference ordering is 1 P1 2 P1 3 (in short 123).
We now construct a TS-correlated belief system for which
µ1,2(123) = EX2∼ν(·|123)

[
Z2

1,2

]
< 0.

Any TS-correlated belief system needs to satisfy the fol-
lowing system of inequalities (we drop the conditioning on
preference ordering 123 for notational convenience):

µ1(123) + µ1(132) > µ1(213) + µ1(231)

µ1(123) + µ1(132) > µ1(312) + µ1(321)

µ1(123) + µ1(213) > µ1(132) + µ1(312)

µ1(123) + µ1(213) > µ1(231) + µ1(321)

Let us choose the following distribution: µ1(123) =
1 − 6ε, µ1(132) = µ1(213) = µ1(312) = µ(321) =
ε, µ1(231) = 2ε. It can be easily verified that µ1 satisfies
the inequalities above as long as ε < 1/8. Now µ1,2(123) =
1 − 9ε < 0 if ε > 1/9. To get a counter-example, one can
choose any ε ∈ (1/9, 1/8).

However, we now prove that the rate of convergence is not
worse thanO (1/

√
n) for any c.i.i.d. belief system. Our proof

uses the Berry-Esseen theorem which quantifies the rate of
convergence of the central limit theorem.
Lemma 4. (Berry-Esseen) Let X1, X2, . . . , Xn be i.i.d. with
E [Xi] = 0,E

[
X2
i

]
= σ2,E

[
|Xi|3

]
= ρ < ∞. If Fn(x) is

the distribution function of (X1+. . .+Xn)/σ
√
n and Φ(x) is

the distribution function of standard normal random variable
then, ∀x ∈ R,

|Fn(x)− Φ(x)| ≤ 3ρ

σ3
√
n
.

See [Durrett, 2010] (Theorem 3.4.9) for a proof.
Theorem 5. Suppose a belief system {µi}ni=1 is c.i.i.d. Then
the probability that any given scoring rule is not EPIC w.r.t.
{µi}ni=1 goes to zero at a rate proportional to O

(
1√
n

)
.

Proof. As proved in Theorem 1, the probability of manip-
ulation is bounded by Pr

[
sm − s1 ≤ Zna,b ≤ ∆a,b

]
. Now,

we use the central limit theorem instead of Chernoff-
Hoeffding inequality to bound the probability of manipula-
tion. Z2

a,b, Z
3
a,b, . . . are iid with mean µa,b(x1) and variance

σ2
a,b(x1). Therefore, by the central limit theorem

Zna,b − nµa,b(x1)

σa,b(x1)
√
n

d−→ N (0, 1). (6)

Let us write Tn =
Zna,b−nµa,b(x1)

σa,b(x1)
√
n

. Then

Pr
[
sm − s1 ≤ Zna,b ≤ ∆a,b

]
= Pr

[
sm − s1 − nµa,b(x1)

σa,b(x1)
√
n

≤ Tn ≤
∆a,b − nµa,b(x1)

σa,b(x1)
√
n

]
= FTn

(
∆a,b − nµa,b(x1)

σa,b(x1)
√
n

)
− FTn

(
sm − s1 − nµa,b(x1)

σa,b(x1)
√
n

)
Here FTn is the distribution function of Tn. Now we use

the following relation :

∀l ≤ u, FTn(u)− FTn(l) ≤ |FTn(u)− FTn(l)|
≤ |FTn(u)− Φ(u)|+ |Φ(u)− Φ(l)|+ |Φ(l)− FTn(l)| .
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Figure 1: The blue regions determine the probability of manipulation. For a KT-correlated belief (1a) we use the tail probability
and for any general c.i.i.d. belief (1b) we use the area of the surrounding rectangle.

We can bound the first and the third term by the Berry-
Esseen Theorem (Lemma 4) (since Zia,b is a discrete distribu-
tion, its third absolute moment ρa,b(x1) is finite) to get

FTn(u)− FTn(l) ≤ 6ρa,b(x1)

σ3
a,b(x1)

√
n

+

∫ u

l

φ(t)dt. (7)

Using the last relation, we can finally prove the following
bound on probability of manipulation :

6ρa,b(x1)

σ3
a,b(x1)

√
n

+

∫ ∆a,b−nµa,b(x1)

σa,b(x1)
√
n

sm−s1−nµa,b(x1)

σa,b(x1)
√
n

1√
2π
e−t

2/2dt

Since e−t
2/2 ≤ 1, the last integral can be bounded above

by 1√
2π

∆a,b+s1−sm
σa,b(x1)

√
n

. This proves that the probability of ma-
nipulation is O (1/

√
n).

4 Rank-Order Models
Now we present some examples of belief systems that are
c.i.i.d. and positively correlated. Our main source of exam-
ples is the rank-order models from machine learning.

Mallows Model
The Mallows [1957] model was originally defined with re-
spect to a fixed (latent) preference ordering σ and a dispersion
parameter r ∈ (0, 1]. Let π be any preference ordering, then
the Mallows model specifies Pr [π|σ, r] ∝ rd(π,σ), i.e. the
probability of observing the ordering π decays exponentially
with its Kendall-Tau distance from σ. We are not aware of
any adaptation of the Mallows model for a conditional belief
system. However any such adaptation should capture the idea
that once a voter i observes a preference ordering Pi, then she
believes that the preference ordering of any other agent is a
noisy version of Pi, with its probability decaying exponen-
tially with the Kendall-Tau distance from Pi. This motivates
the following belief system:

Definition 4.1. A belief system {µi}ni=1 is a Conditional
Mallows model if ∃r ∈ (0, 1] such that

µi(P−i|Pi) ∝ r
∑
j 6=i d(Pj ,Pi). (8)

Theorem 6. Every Conditional Mallows model is c.i.i.d. and
KT-correlated.

The proof is trivial since if {µi}ni=1 is a conditional belief
system then ν(Pj |Pi) ∝ rd(Pj ,Pi). As a consequence of The-
orem 6, if {µi}ni=1 is a conditional Mallows model, then any
scoring rule becomes EPIC at a rate proportional to O (e−cn)
where c is as defined in Equation (5).

Plackett-Luce Model
The Plackett-Luce model [Plackett, 1975; Luce, 1959] on a
set of alternatives {1, . . . ,m} has m parameters: γj > 0 for
each alternative j, such that

∑m
j=1 γj = 1. For a permutation

π of the m alternatives, let π[k] denote the alternative placed
at position k. The probability of permutation π is given as:

Pr
[
π|{γj}mj=1

]
=

γπ[1]

γπ[1] + . . .+ γπ[m]
·

γπ[2]

γπ[2] + . . .+ γπ[m]

. . .
γπ[m−1]

γπ[m−1] + γπ[m]
·
γπ[m]

γπ[m]
. (9)

We propose the following belief system {µi}ni=1 based on
the Plackett-Luce Model.
Definition 4.2. A belief system {µi}ni=1 is a Conditional
Plackett-Luce model if there exists m parameters γ1 > γ2 >
. . . > γm and

∑m
l=1 γl = 1 such that µi(P−i|Pi) =∏

j 6=i ν(Pj |Pi), where

ν(Pj |Pi) = Pr
[
Pj |{γPi[l]}

m
l=1

]
. (10)

To compute ν(Pj |Pi), we first permute the m parameters
{γl}ml=1 according to Pi so that γPi[1] > γPi[2] > . . . >
γPi[m], and then use the standard Plackett-Luce model.

The Conditional Plackett-Luce model is not KT-correlated.
Suppose there are two voters (n = 2) and four alternatives
(m = 4). We will write 1234 to denote the preference order-
ing 1 P1 2 P1 3 P1 4. We now construct a set of parameters
{γl}4l=1 such that µ1(1342 | 1234) > µ1(2134 | 1234). Since
d(1342, 1234) = 2 > 1 = d(2134, 1234), µ1(·) is not KT-
correlated. Let γ1 = 1 − 6ε, γ2 = 3ε, γ3 = 2ε, γ4 = ε. For,
γ1 > γ2, we require 1− 6ε > 3ε or ε < 1/9. Now,
µ1(1342 | 1234) > µ1(2134 | 1234)

⇔ γ1
γ3

γ3 + γ4 + γ2

γ4

γ4 + γ2
> γ2

γ1

γ1 + γ3 + γ4

γ3

γ3 + γ4

⇔ 1/12 > 2ε/(1− 3ε)⇔ ε < 1/27.

Therefore, as long as ε < 1/27, the belief system fails
to be KT-correlated. However, we now prove that the Con-
ditional PL model is TS-correlated. We use the following
lemma about the likelihoods in the Conditional PL model.



Lemma 7. For all k, all 1 ≤ k ≤ m, such that
l1, . . . , lk distinct,

∑
π:π[1]=l1,...,π[k]=lk

Pr [π|{γl}ml=1] =

γl1
γl2

1−γl1
. . .

γlk
1−γl1−...γlk−1

.

See Hunter [2004] for an outline of the proof.
Theorem 8. Every Conditional PL Model is TS-correlated.

Proof. Let {µi}ni=1 be a Conditional PL belief system with
parameters {γl}ml=1 where γ1 > γ2 > . . . > γm > 0 and∑m
l=1 γl = 1. For any set T of size k (1 ≤ k ≤ m− 1),

∑
{P−i : Bk(Pj)=T

∀j 6=i}

µi(P−i|Pi) =

 ∑
{P :Bk(P )=T}

ν(P |Pi)

n−1

.

This follows from two observations : (1) {µi}ni=1 is c.i.i.d., so
µi(P−i|Pi) =

∏
j 6=i ν(Pj |Pi), and (2) Using the multinomial

expansion,
(∑

{P :Bk(P )=T} ν(P |Pi)
)n−1

can be written as∑
∀j 6=i Pj∈{P :Bk(P )=T}

∏
j 6=i

ν(Pj |Pi) (11)

Now, from the definition of a TS-correlated
belief system (2), it is enough to show that∑
P :Bk(P )=Bk(Pi)

ν(P |Pi) >
∑
P :Bk(P )=T ν(P |Pi).

Without loss of generality, we can assume that Pi places
i-th alternative at position i. Let T = {t1, . . . , tk} such that
γt1 > γt2 > . . . > γtk . We will write S ([k]) to denote the
set of all permutations over the set {1, . . . , k}. We have:∑
P :Bk(P )=Bk(Pi)

ν(P |Pi) >
∑

P :Bk(P )=T

ν(P |Pi)

⇔
∑

π∈S([k])

∑
P :P [j]=π[j], 1≤j≤k

Pr [P |{γl}ml=1] >

∑
π∈S([k])

∑
P :P [j]=tπ[j], 1≤j≤k

Pr [P |{γl}ml=1]

{using Lemma 7}

⇔
∑

π∈S([k])

{
γπ[1]

γπ[2]

1− γπ[1]
. . .

γπ[k]

1− γπ[1] − . . . γπ[k−1]

− γtπ[1]

γtπ[2]

1− γtπ[1]

. . .
γtπ[k]

1− γtπ[1]
− . . . γtπ[k−1]

}
> 0 (12)

Since T is different from Bk(P ), the set of top-k alterna-
tives in preference ordering P , we have for any π ∈ S ([k]),
γπ[j] ≥ γtπ[j]

for j = 1, . . . , k and ∃t γπ[t] > γtπ[t]
. This

implies that for all l ≥ t
γπ[l]

1− γπ[1] − . . .− γπ[l−1]
>

γtπ[l]

1− γtπ[1]
− . . .− γtπ[l−1]

,

which is sufficient to guarantee (12).

Since the Conditional PL model is not KT-correlated, we
cannot use Theorem 1 to claim exponential EPIC conver-
gence of any scoring rule under this model. However, the
next theorem shows that the convergence is indeed exponen-
tial, and that this is true for any scoring rule.

Theorem 9. The probability that any scoring rule is not
EPIC w.r.t. a Conditional Plackett-Luce model goes to zero
at a rate proportional to O (e−cn), for some constant c > 0.

Proof. Let the belief system {µi}ni=1 be a Conditional
Plackett-Luce model with parameters {γl}ml=1 where γ1 >
γ2 > . . . > γm > 0 and

∑m
l=1 γl = 1.

Consider a voter i with preference ordering Pi and two al-
ternatives a and b such that aPib. As we have argued in Theo-
rem 1, it is sufficient to show that µa,b(Pi) > 0. Without loss
of generality we can assume that Pi places the i-th alternative
at position i. We have:

µa,b(Pi) = EXj∼ν(·|Pi) [sc(a,Xj)− sc(b,Xj)]

=
∑
l1<l2

(sl1 − sl2) {Pr [Xj [l1] = a,Xj [l2] = b|{γt}mt=1]

−Pr [Xj [l1] = b,Xj [l2] = a|{γt}mt=1]}

Therefore, it is enough to show that for any
l2 > l1, Pr [Xj [l1] = a,Xj [l2] = b|{γl}ml=1] >
Pr [Xj [l1] = b,Xj [l2] = a|{γl}ml=1]. Now, suppose al-
ternatives a and b are placed respectively at positions r and s
of Pi. Therefore, γr > γs. Then by Lemma 7 we have,

Pr [Xj [l1] = a,Xj [l2] = b|{γl}ml=1]

=
∑

i1,...,il2−2∈[m]\{a,b}

∑
σ∈S({i1,...,il2−2})

f(γσ[i1], . . . , γσ[il1−1], γr, γσ[il1 ], . . . , γσ[il2−2], γs) where

f(λ1, . . . , λk) = λ1
λ2

1− λ1
. . .

λk
1− λ1 − . . .− λk−1

.

It is easy to see that γr > γs implies
f(γσ[i1], . . . , γσ[il1−1], γr, γσ[il1 ], . . . , γσ[il2−2], γs) >

f(γσ[i1], . . . , γσ[il1−1], γs, γσ[il1 ], . . . , γσ[il2−2], γr), as
γrγs cancels out from both sides, and for all j such that
l1 ≤ j ≤ l2− 2, we have (1−γσ[i1]− . . .−γσ[ij ]−γr)−1 >

(1− γσ[i1] − . . .− γσ[ij ] − γs)−1.

5 Conclusion
We have provided a positive result for incentive-aligned so-
cial choice in the presence of correlation between voter pref-
erences. When the beliefs of agents are positively correlated
in terms of Kendall-Tau distance, we show that all scoring
rules become EPIC exponentially quickly in the number of
voters. We have instantiated the general framework to con-
ditional variations on the popular Mallows and Plackett-Luce
models for rank aggregation. One question for future work
is whether exponential, EPIC convergence holds for corre-
lated distributions that are not conditionally independent and
identical. We also leave open the question of closing the gap
between exponential convergence and 1/

√
n for the class of

TS-correlated beliefs.

6 Acknowledgements
This work is supported in part by NSF grant CCF-1301976
and a grant from the FLI. We also thank Yang Liu for techni-
cal feedback on an earlier version.



References
[Altman and Tennenholtz, 2010] Alon Altman and Moshe

Tennenholtz. An Axiomatic Approach to Personalized
Ranking Systems. J. ACM, 57(4), 2010.

[Baharad and Neeman, 2002] Eyal Baharad and Zvika Nee-
man. The Asymptotic Strategyproofness of Scoring and
Condorcet Consistent Rules. Review of Economic Design,
7(3):331–340, 2002.
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