Social Choice for Human Computation

Andrew Mao

Harvard University
mao @seas.harvard.edu

Abstract

Designers of human computation systems often face the need
to aggregate noisy information provided by multiple people.
While voting is often used for this purpose, the specific vot-
ing methods that are employed are typically naive. The the-
ory of social choice provides powerful tools for exactly these
settings. We conduct experiments on Amazon Mechanical
Turk which demonstrate empirically that more intricate vot-
ing rules, which are known to provide theoretical guarantees
under simple models of noisy votes, significantly outperform
basic voting rules. Our work has the potential to spark a long-
term interaction between human computation and (computa-
tional) social choice.

1 Introduction

Human computation is a fast-growing field that seeks to har-
ness the relative strengths of humans to solve problems that
are difficult for computers to solve alone. The field has re-
cently been gaining traction within the Al community, as
increasingly more deep connections between Al and human
computation are uncovered (Dai, Mausam, and Weld 2010;
Shahaf and Horvitz 2010).

Generally speaking, there are two streams of research
in human computation. The first stream focuses on games
with a purpose (von Ahn and Dabbish 2008), which are
designed to extract useful information from people as they
play an enjoyable game. While there is no need for mone-
tary incentives in such systems, the game must inevitably
be tailor-made for a very specific purpose. A prominent
group of games with a purpose are known as scientific
discovery games (Cooper et al. 2010). For example, in
EteRNA (http://eterna.cmu.edu) players collabo-
rate in folding RNA into its stable shape. Players submit
different proposals for stable designs; a subset of designs
are then synthesized in a laboratory to learn which design
is truly the most stable (and to score the players). EteRNA’s
tagline, “played by humans, scored by nature”, nicely sum-
marizes the process.

The second strand of human computation systems is
based on online labor markets. Amazon Mechanical Turk
(http://www.mturk.com) — MTurk henceforth — is

Copyright © 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Ariel D. Procaccia
Carnegie Mellon University
arielpro@cs.cmu.edu

Yiling Chen
Harvard University
yiling@seas.harvard.edu

perhaps the paradigmatic online labor market. There are two
sides to the market: requesters, who post human intelligence
tasks (HITs), and workers, who perform HITs for monetary
compensation. HITs often consist of repetitive tasks that are
simple for humans but difficult for computers, such as la-
beling pictures. By combining different types of tasks into
a process, requesters can achieve more complex objectives.
MTurk’s tagline, “artificial artificial intelligence”, cleverly
refers to the fact that requesters interact with a seemingly
intelligent software system yet some of the actual computa-
tion is ultimately carried out by humans.

The input provided by humans via human computation
systems is typically quite noisy, and in applications beyond
very simple tasks there is often a need to aggregate infor-
mation into a collective choice. A natural, common way of
doing this is by crowdsourcing this stage as well, and specif-
ically letting people vote over different proposals that were
submitted by their peers. For example, in EteRNA thousands
of designs are submitted each month, but only a small num-
ber k of them can be synthesized in the lab (as of late 2011,
k = 8). To single out k designs to be synthesized, players
vote by reporting their k favorite designs, each of which is
awarded one point. The &k designs with most points are then
synthesized. This voting rule is known as k-approval.

Voting is also frequently used on MTurk. The popu-
lar TurKit toolkit for MTurk, recently created by Little et
al. (2010b), is essentially a programming language for creat-
ing and managing tasks, and in particular provides an imple-
mentation of a voting function. This function receives two
alternatives and a threshold as input, and posts HITs ask-
ing workers to single out their preferred alternative, until the
number of votes received by one of the alternatives is greater
than the given threshold; to implement the common best-3-
out-of-5 vote, it is sufficient to elicit three votes, and elicit
more only if the first three agents do not all favor the same
alternative. The authors give an example where several sug-
gestions for things to do in New York, themselves generated
by workers, are sorted using such pairwise comparisons. Lit-
tle et al. (2010a) also demonstrate how human computation
processes can solve more complex problems using many it-
erations of voting. However, in general, ranking alternatives
according to pairwise comparisons can lead to cycles; this
phenomenon is known as the Condorcet paradox. So what
is the best method to construct a ranking of the alternatives?

Enter social choice theory, a field that deals with the ag-
gregation of individual preferences into a collective deci-
sion. Social choice theory has been studied for centuries by
mathematicians and economists. In the last two decades, a
field which marries computer science and social choice the-
ory — computational social choice — has emerged. Most of
the work in computational social choice focuses on apply-
ing computational paradigms to social choice theory, for ex-
ample, by studying the computational complexity of winner
determination (Hemaspaandra, Hemaspaandra, and Rothe
1997; Conitzer 2006; Brandt et al. 2008) and manipula-
tion (Faliszewski and Procaccia 2010; Conitzer, Sandholm,
and Lang 2007; Procaccia and Rosenschein 2007) in elec-
tions. There is very little work that applies social choice the-
ory to computer science (see (Dwork et al. 2001) for one
exception).

Our main conceptual contribution lies in the suggestion

that the huge body of literature on social choice theory can
be leveraged to design better human computation systems.
Specifically, we suggest replacing the somewhat naive vot-
ing procedures used so far with more sophisticated voting
rules that are based on a well-studied, principled approach
to collective decision making.
Our approach and results. We are interested in settings
where there is a true ranking of several alternatives accord-
ing to quality. Each voter provides us with his own ranking
of the alternatives, and our goal is to identify either the en-
tire true ranking or its top alternative. The question is which
voting rule to use for vote aggregation. This is a slightly un-
usual setting because there are no “preferences” over alter-
natives, only rankings that reflect subjective estimates of the
quality of different alternatives. Nevertheless, this setting is
a perfect fit with the view of voting rules as maximum like-
lihood estimators. This view was proposed by the Marquis
de Condorcet as early as the 18th Century; it was picked
up by Young (1988) two centuries later, and more recently
studied by AI researchers (Conitzer and Sandholm 2005;
Conitzer, Rognlie, and Xia 2009). The premise is that the
ranking provided by each voter is a noisy estimate of the true
ranking, which is generated using a known noise model, and
a voting rule aggregates such noisy information. An ideal
voting rule then outputs the ranking (resp., alternative) that
is most likely to be the true ranking (resp., most likely to be
the true top alternative).

But do voting rules that are provably maximum likeli-
hood estimators (for certain theoretical noise models) per-
form better than naive voting rules in practical human com-
putation settings? To answer this question, we designed a
voting experiment and gathered data extensively from real
subjects on MTurk. Our core design insight allows for ad-
justment of the amount of implicit noise with which voters
perceive an underlying ground truth that is known to the ex-
perimenter. However, as the noise itself is still generated by
the voters, this allows us to compare the performance of sev-
eral voting rules in realistic conditions. Previous empirical
comparisons of voting rules, such as the one by Forsythe et
al. (1996), do not measure the accuracy of different voting
rules in teasing out an underlying truth, nor do they involve
large-scale experiments in human computation settings.

In our voting experiments, the alternatives were 8-
puzzles, each taking some minimum number of sliding
moves to reach a goal state. Workers were asked to rank a
set of four 8-puzzles according to how close they are to the
goal state. By varying how close the puzzles were (in num-
ber of moves from the goal) to each other and how far the
entire set was from the goal state, we were able to reliably
control the noise with which voters evaluated the rankings.

After collecting almost 3500 rankings at varying levels of
noise from almost 800 unique voters, we found that the Ke-
meny voting rule clearly and significantly outperforms the
simpler plurality rule that is often used (itself or close vari-
ants thereof) in human computation. We examined the power
of a voting rule to both correctly elect a single winner and
output the correct ranking of all alternatives. For both crite-
ria, Kemeny consistently made less mistakes, in the statisti-
cally significant sense, than plurality, Borda, and maximin.
Moreover, using the collected votes, we tested a trained posi-
tional scoring rule using cross-validation and also computed
an ex-post optimal positional scoring rule. To our surprise,
Kemeny consistently outperformed both the trained and the
ex-post optimal positional scoring rules.

2 Voting Rules

A typical social choice setting has a set of n voters, N' =
{1,2,...,n} and a set of m alternatives (or candidates),
A = {ay,aq9,...,an,}. Each voter i has a preference o,
which is a total order over A. In other words, each voter
ranks the alternatives. Let £ denote the set of all total orders
over A. Then, o; € L, Vi € N. A preference profile & is a
collection of the preferences of the n agents, & € L.

Social choice theorists have developed a large number of
voting rules for aggregating individual preferences. Depend-
ing on whether the output is a single winning alternative or a
preference ranking of all alternatives, a voting rule can cor-
respond to a social choice function or a social welfare func-
tion." A social choice function is a function C' : L" — A,
while a social welfare function is a function W : L™ — L.
Note that both functions receive a preference profile as input.
Clearly, any social welfare function induces a social choice
function by selecting the alternative at the first position in
the social preference ranking.

In this paper, we consider the following four popular vot-
ing rules:

* Plurality: Each voter casts a single vote for his most pre-
ferred alternative. The alternative that receives the most
votes wins. If a ranking is desired, alternatives can be
ranked by the number of votes received.

* Borda: For each voter who places an alternative at posi-
tion k in his ranking o;, the alternative receives a score of
m — k. The alternative that receives the highest total score
wins. Alternatives are ranked by their total scores.

'In the computational social choice literature, the term “vot-
ing rule” sometimes coincides with social choice function, whereas
“rank aggregation rule” is equivalent to social welfare function. We
do not make this distinction here.

* Maximin: Let N(a;,a;) be the number of voters who
rank alternative a; higher than alternative a;. An alterna-
tive 4’s maximin score is its worst score in a pairwise elec-
tion, that is min;.;+; N(a;, a;). Alternatives are ranked
by their maximin scores.

* Kemeny: The Kendall-tau distance between two prefer-
ences o and ¢’ is given by

K(o,0") :% Z

(a,a’)€A2:a#a’

Ka,a’(a7 U/)7 (1)

where K, (0, 0’) equals 0 if alternatives a and o’ are in
the same order in o and ¢’ and 1 if they are in the oppo-
site order. The ranking that has the smallest total Kendall-
tau distance summed over all individual preferences is
selected. That is, W(d) = minges D ;o p K(7,04).
Although the Kemeny ranking is NP-hard to com-
pute, heuristics are available (Conitzer, Davenport, and
Kalagnanam 2006), and in cases like ours with few al-
ternatives it is a simple matter (we just enumerate all 24
rankings of four alternatives).

The plurality and Borda voting rules belong to a larger

family of voting rules called positional scoring rules. A
positional scoring rule is given by a scoring vector § =
(S1yeey Sm) With 81 > 82 > -+ > sy, and 81 > S,
An alternative receives a score of s, for each voter who
places it at position k. Alternatives are then ranked by score.
Plurality can be viewed as a positional scoring rule with
§=1(1,0,...,0), and Borda is a positional scoring rule with
§={m-1m-2,...,0).
Voting Rules as Maximum Likelihood Estimators. An in-
teresting view of the goal of voting rules is to reconstruct
an underlying true ranking of alternatives given noisy infor-
mation. Taking this perspective, there is a body of research
seeking to single out voting rules that are maximum likeli-
hood estimators (MLE) under a model of noisy votes.

More than two centuries ago, Condorcet suggested a nat-
ural noise model with an intuitive interpretation: given a true
ranking, a voter ranks each pair of alternatives correctly with
probability p > 1/2.2 Condorcet solved the case of two al-
ternatives, proving that plurality (known in this case as ma-
Jjority) is the maximum likelihood estimator. Moreover, as
the number of voters n grows, the probability that plurality
will elect the correct alternative increases; it approaches 1 as
n approaches infinity (this seems obvious today, but proba-
bility theory was in its infancy in the 18th Century).

Young (1988) extended Condorcet’s solution to the case
of more than two alternatives. He showed that, under Con-
dorcet’s natural noise model, the voting rule that is most
likely to output the correct ranking coincides with the Ke-
meny rule. Young also observed that if p is very close to 1/2
(i.e., when there is a lot of noise), the voting rule that is most
likely to select the correct winner is Borda. More formally,
for every number of voters n and number of alternatives m
there is p sufficiently close to 1/2 such that Borda is an MLE
for the top alternative. Finally, Young observed that when p

21f cyclical preferences are generated, the process is restarted.

is very close to 1, there are examples where Maximin is the
MLE for the top alternative.

Conitzer and Sandholm (2005) showed that Borda is an
MLE under a different noise model. If, for any voter, the
probability of ranking the correct winner at position k is
2(m=Fk) /(2™ _ 1), i.e., proportional to 2°* where s}, is the
Borda score at position k, then Borda elects the most likely
winner. More generally, Conitzer and Sandholm showed that
every positional scoring rule is an MLE for the true ranking,
or true top alternative, under some noise model with votes
that are independent and identically distributed.

3 Sliding puzzles

In order to empirically test the efficacy of voting rules, we
enlist the help of another usual suspect in Al The 8-puzzle
(and its larger cousin, the 15-puzzle) has a rich history in
Al research, and is often used as a test environment for var-
ious search algorithms. However, the notion of sliding puz-
zles itself is much older—it was reportedly popularized in
as early as 1880 in North America®, and has been a well-
known game for many generations ever since. Hence, this
kind of puzzle game is natural and familiar to many people.
Figure 1 shows an example of some 8-puzzle states. The
goal is to take any board state, and obtain a board state
where the numbers are correctly ordered (from top to bottom
and left to right) by sliding tiles into the empty space. Each
movement of a single tile counts as one “move”, and the gen-
eral goal of the game is to solve the puzzle in as few moves
as possible. An optimal solution to the 8-puzzle game, us-
ing the fewest number of moves, can be found by using A*
search or another search algorithm. However, when humans
play this game, they will rarely be able to find a solution in
the fewest number of moves without significant effort.
Why 8-puzzle? 8-puzzles have two main advantages from
our point of view. First, because of the game’s popularity and
simplicity, many people intuitively understand what needs
to be done without requiring elaborate instructions. Second,
we can easily configure the game’s difficulty by varying the
distance between the starting state and the goal state; this
feature will allow us to smoothly control the level of noise
in workers’ estimates. We describe in the next section how
this feature allows a collection of 8-puzzles to facilitate an
experiment that presents voters with a noisy perception of
an underlying truth.

4 Methodology

Our goal was to test how different voting rules fare when
applied to noisy collective estimates of a ground truth, and
to evaluate how their performance changes with different
amounts of noise. The design of our experiment required a
balancing act between two extremes: if the users’ percep-
tion is too noisy, all of the resulting rankings will be almost
random, with the effect that no voting rule will outperform
another except by random chance. However, if it is too clear
to users what the true ranking is, then almost everyone will
submit the true ranking and all voting rules will obtain the

3See http://en.wikipedia.org/wiki/8-puzzle.

same result. We aimed to find a middle ground where the
noise is neither too much nor too little.

We used four 8-puzzles as the alternatives in a voting
experiment, where we asked workers to submit rankings
of how far the puzzles are from the solution by the min-
imum number of moves. The ground truth of each puzzle
is the optimal number of moves to the solution as com-
puted by A* search. While it may be hard for humans to di-
rectly come up with these numbers, asking users to compare
items to each other naturally produces rankings, and col-
lects preferences more effectively than requesting absolute
judgments (Carterette et al. 2008). By making these com-
parisons, users produce perceived rankings, and by varying
the distance to the solution we can adjust the difficulty of the
task and tune the level of noise.

To collect votes at a certain level of noise, we chose a se-
quence of numbers, such as (7, 10,13, 16), and generated a
set of four random puzzles that correspond to each number
by minimum moves to solution. For example, for the above
sequence, we would generate one puzzle that is 7 moves
away from the goal (selected approximately uniformly over
all such puzzles), one puzzle that is 10 moves away, etc. We
then shuffled the puzzles randomly and presented them to
voters in a convenient interface that allowed for comparisons
with minimal effort.

We used MTurk to collect rankings over the set of puzzles

in increasing distance to the goal state. Hence, the “winning”
alternative is the puzzle that is closest to the goal. This is a
design choice we made as we believe it may be easier for
voters to identify the closest puzzle to the goal state than
the furthest. However, the same methodology can be used
to rank puzzles in decreasing distance to the goal state and
elect the one that is furthest.
Experiment Setup. After initial tests to identify puzzles
with the ideal level of noise, we focused on four sequences
of four numbers (d,d + 3,d +6,d+9), ford =5,7,9,11.
For each of these four sequences we generated 40 sets of
four puzzles at the corresponding distances from the goal.
We then collected approximately 20 preference rankings on
each set. In other words, we collected 40 preference pro-
files per sequence with 20 voters each; overall our analysis
is based on 3,200 rankings. All sets of data were gathered at
a constant rate over 24-hour periods to minimize the effect
of different types of workers throughout the day.

We paid $0.10 for each HIT, which consisted of ranking
one set of puzzles. After passing a short quiz, users were
asked to sort the set of four puzzles using a simple drag-and-
drop interface. For example, Figure 1 shows four puzzles
which are 7, 10, 13, and 16 moves away from the goal. The
puzzles were presented in randomized order in a square grid,
and users were asked to order them in a line on a different
part of the screen. Puzzles could be picked up and inserted
at any point in the line to rearrange the order.

The task interface was designed to minimize the effect of
laziness or difficulty of communication on the results. By
randomizing the initial set of puzzles and arranging them in
a square, we prevented lazy workers from dragging puzzles
straight to their closest possible positions in the ranking line.
The drag-and-drop interface also allowed voters to express

Drag these down to the gray area below.

5172 7| 4|6
8 | 1t | 3| |1 2
4 |6 8 | 5| 3
A 5
7|5 |1
2|3 |6
8 | | 4

c
Drop here! Continue to rearrange the order by dragging and dropping until you're satisfied.

2 4 B
7 5
8 1 6 ‘

D

Closest to solution Furthest from solution
(Fewest moves) (Most moves)

Figure 1: The experiment interface. Voters see a randomly
shuffled set of four puzzles in a square, which they must ar-
range into a sequence from “closest to solution” to “furthest
from solution”. We use a drag and drop interface to minimize
the effort for elicitation.

their preferences with very little effort.

Each set of data collected over a 24-hour period enforced
a limit of 5 HITs per user, and ensured that no user saw
the same set of puzzles twice. We used the maximum of
5 HITs in order to increase the rate of data collection, but
to avoid situations where workers become lazy from doing
many HITs repeatedly.

5 Results

We tested the accuracy of the common voting rules de-
scribed above in teasing out the correct top alternative and
ranking. In addition, we tested optimized positional scoring
rules using mixed integer linear programs that compute a
positional score vector given a set of preference profiles. For
first-place mistakes, the optimized rule first minimizes the
number of flips between the correct first-place alternatives
and all other alternatives, then maximizes the sum of min-
imum differences between the total score for the first-place
alternative and all other total scores (for non-flipped pairs)
across all preference profiles. For total mistakes, the opti-
mized rule first minimizes the total number of flips to the
correct ranking, then maximizes the sum of minimum dif-
ferences between all correctly ranked (relative to each other)
pairs across all preference profiles. The secondary objectives
here are implemented using appropriate normalization and
used to reduce generalization error.

The optimized positional scoring rules are trained in two
ways: by using leave-one-out cross-validation (and aver-
aged), and also by using the entire data set, which produces
an ex-post optimal positional scoring rule. The rules trained
using cross-validation are practical, and should be viewed as
competing on the same ground as the other voting rules. In
our results below, there appears to be some room to improve

the trained positional scoring rules to be closer to the ex-post
optimum.

In the case of the ex-post optimal positional scoring rule
the generalization error is irrelevant, but its performance is
still subject to limits. Clearly a voting rule that returns the
right ranking for each of the forty preference profiles would
make no mistakes. However, due to the constraint imposed
by the specific way positional scoring rules aggregate votes,
even omniscience about the true rankings does not lead to
a positional scoring rule that makes no mistakes. While the
ex-post optimal positional scoring rule is not practical, we
think of it as providing a very competitive benchmark.

Our results were computed by averaging the number of

mistakes (first-place or total) made over 100 random subsets
of 10 votes on each of 40 preference profiles for each se-
quence. In other words, the voting rules are applied to pref-
erence profiles consisting of 10 voters, each ranking the four
alternatives. The same random subsets were used to evaluate
each voting rule. This approach, using subset bootstrap sam-
pling, not only simulates the effect of having fewer voters
(and therefore more noise) in an election setting, but reduces
the amount of statistical variance by computing an average
number of mistakes on each set of puzzles. In addition, aver-
aging brings the differences in number of mistakes closer to
a normal distribution, which justifies using a paired t-test for
different voting rules on the same preference profiles to test
for statistical significance. The results computed using entire
preference profiles of 20 voters (instead of subsets of size
10) are qualitatively similar. However, they make it slightly
harder to establish statistical significance as strongly due to
the increased variance.
First-place mistakes. To evaluate the voting rules’ perfor-
mance as a social choice function, which elects a single win-
ner, we use the metric of first-place mistakes, i.e., the num-
ber of preference profiles where a voting rule fails to rank
the puzzle that is closest to the goal state at the first position.
For voting rules that compute score for alternatives, we use
the expected number of mistakes in random tie-breaking: 1/2
a mistake if two alternatives are tied for first place, and 2/3
a mistake if three alternatives are tied for first place, etc.*

Figure 2a plots the first-place mistakes computed over
random subsets, and averaged over 40 preference profiles for
4 common voting rules. It also includes the average error for
the global (ex-post) optimal positional scoring rule, which
minimizes the number of first-place mistakes given knowl-
edge of the true winner, and the average cross-validation er-
ror for our trained positional scoring rule.

The mean first-place mistakes for all rules increases as
the minimal distance from the goal state of a sequence in-
creases. This confirms our premise that varying the distance
to the goal state changes the noisiness of the votes collected.
According to Figure 2a, Borda consistently has among the
highest number of first-place mistakes, while Kemeny con-
sistently has the lowest number of first-place mistakes and
beats other rules by a relatively large margin. Strikingly,
Kemeny even outperforms the (omniscient) global optimal

“Ties between rankings under Kemeny, which are rare, are bro-
ken arbitrarily.

scoring rule.

We performed two-sided paired t-tests on the average
first-place mistakes over 40 preference profiles by pairing
the average number of mistakes by different voting rules on
the same profiles. The difference in first-place mistakes be-
tween Kemeny and any other rule is highly statistically sig-
nificant (p < 0.003) for all four sequences. Table 1 contains
the pairwise p-values for each voting rule we tested, cor-
responding to the different values along the z-axis in Fig-
ure 2a.

p-values Plurality Borda Kemeny Maximin Glob.Opt Train
0.9266 <0.0001 0.3700 0.0149 0.9551
<0.0001 0.2234 <0.0001 0.7643

Plurality
Borda 0.1028

Kemeny 0.0021 <0.0001 <0.0001 0.0001 <0.0001
Maximin 0.8176 0.0246 <0.0001 0.0066 0.1670
Global Opt. ~ 0.1175 0.0005 0.0007 0.0981 <0.0001
Trained 0.5321 0.0256 0.0001 0.9102 <0.0001

(a) d = 5 (lower triangle) and d = 7 (upper triangle)

p-values Plurality Borda Kemeny Maximin Glob.Opt Train
0.7212 0.0002 0.6856 0.0177 0.8858

Plurality

Borda 0.5810 <0.0001 0.9656 <0.0001 0.0134
Kemeny <0.0001 <0.0001 <0.0001 0.0002 <0.0001
Maximin 0.7064 0.5992 <0.0001 0.0001 0.3312
Global Opt. ~ 0.0115 0.0003 0.0002 0.0005 <0.0001

Trained 0.4858 0.7681 <0.0001 0.6854 <0.0001

(b) d = 9 (lower triangle) and d = 11 (upper triangle)

Table 1: Table of p-values for paired, two-sided t-tests on
first-place mistakes averaged over 100 samples, correspond-
ing to z-values in Figure 2a.

All mistakes/Kendall-tau distance. To evaluate how well
voting rules perform as social welfare functions, we are in-
terested in how the aggregate ranking stacks up against the
ground truth. The standard, most natural way to measure the
difference between two rankings is using the Kendall-tau
distance, given in Equation (1). The Kendall-tau distance
between two rankings is simply the total number of pairs
on which the rankings disagree, or when compared to the
ground truth, the number of pairwise mistakes. Once again,
count the number of mistakes for ties in rankings as 1/2,
equal to the expected value for random tie-breaking.

Figure 2b shows the mean Kendall-tau distance between
the voting rules we tested and the ground truth. It also shows
the globally optimal positional scoring rule that ex-post min-
imizes the total number of mistakes given all preference
profiles, as well as the average number of mistakes when
trained using cross-validation. Once again, we see that the
total number of mistakes for all voting rules rise as the se-
quence moves further from the goal, confirming that we can
control the level of noise in this way.

Similarly to the analysis of first-place mistakes, we see
that Kemeny definitively beats all other voting rules, and
even the global optimal positional scoring rule. Moreover,
the stratification of the voting rules stays the same even as
the noise levels change, so that the voting rules perform the
same relative to each other at different noise levels.

We omit the table of statistical significance for this case,

0.5F

— Plurality

% Borda

—©— Kemeny

=% - Maximin

- &~ GlobalOpt
Trained

0.1F

Mean first—place mistakes over random subsets

O5 7 9 1

Sequence beginning atd =

(a) First-place mistakes.

Plurality
% Borda

Mean total mistakes over random subsets

0.51 —©— Kemeny
- -Maximin
- &~ GlobalOpt
Trained
0 L L L L
5 7 9 11

Sequence beginning atd =

(b) Total mistakes (Kendall-tau distance to ground truth.)

Figure 2: First-place and total mistakes at different noise levels using random subset averaging.

as it is similar to the previous one (in fact the p-values are in
general even smaller, and distinguish between any rules that
are visibly separate in Figure 2b).

Observations and user heuristics. Our entire dataset, in-
cluding the initial exploratory data, consists of 3,435 indi-
vidual rankings from 789 unique voters.> At 10 cents per
ranking, this was an extremely economical way to collect
a large amount of data from a very diverse population. This
large amount of data allowed us to obtain very precise results
when combined with bootstrap sampling and averaging.

We collected data from users about how they approached
comparing puzzles. While the individual heuristics users
used do not affect how the voting rules perform, we thought
it was rather interesting how approaches were different.
Some results were close to spam. As expected, the majority
of users compared puzzles mentally and did the task quickly,
but many also tried to solve the puzzle on pencil-and-paper,
or went even further by cutting out the 8-puzzle on paper
and sliding the pieces around. Some computed what was es-
sentially the Manhattan distance heuristic for each puzzle
(we point out that this is admissible and often used for A*
search). A few workers actually went all the way and wrote
programs to solve each puzzle and entered in the minimum
number of moves in their comments, even though this was
far beyond what we requested. These varying user effort lev-
els are only natural when it comes to human computation
settings.

6 Discussion

Our results indicate that in realistic human computation set-
tings, sophisticated voting rules—especially Kemeny—are
considerably more accurate in aggregating people’s noisy
estimates compared to naive voting rules such as plurality.
Note that our results focus on the relative performance of

SWe are happy to share this collected preference data for others
who would like to test social choice and rank aggregation methods.

different voting rules, not on whether we were able to solve
8-puzzles well in absolute terms. Although our experimen-
tal platform is specific to 8-puzzles (for reasons discussed
above), we believe that the implications of our results are
quite general for voting in any noisy setting. At the very
least, we argue that designers of human computation sys-
tems that involve voting should be aware of the different op-
tions, and consider ranked voting and more advanced voting
rules.

As an alternative to our approach, one can consider

employing machine learning techniques (Adali, Magdon-
Ismail, and Marshall 2007; Sculley 2007; Welinder et al.
2010). For example, given enough data, it may be possible
to learn the parameters of the noise model (Lu and Boutilier
2011), and analytically pinpoint the alternative or ranking
that is most likely to be correct. This approach requires a
significant amount of data, work, knowledge, and computa-
tional resources. In contrast, given that a human computation
system already employs voting, switching between voting
rules is almost effortless.
Long-term implications. Despite its great appeal, many
economists seem to believe that social choice theory has not
achieved its full potential. One of the main reasons is that
it is extremely difficult to change a political system, even to
an alternative system that is clearly superior. A recent ex-
ample is the referendum held in the UK in 2011 on whether
to change the voting system (from plurality to a preferential
system called IRV—instant-runoff voting). Although most
academics agree that IRV is superior to plurality voting, the
successful No campaign played on the unpopularity of Nick
Clegg—the leader of the Liberal Democrats—who would
have benefited politically from changing the system.

Therefore, human computation systems provide an excit-
ing testbed for the principles of social choice. Indeed, the
designer of a human computation system is free to employ
any method of collective decision making. By informing the
construction of real-world systems, the scope and impact of

social choice theory may greatly increase.

We also believe that the study of human computation can
inform social choice theory, by motivating fundamentally
new theoretical models. For example, voting in EteRNA is
special in that the alternatives are situated in a metric space,
and the quality of close alternatives is correlated. Hence,
when a set of alternatives is selected, it is often best to avoid
selecting two close alternatives. Even if this consideration
is reflected in each individual vote, a naive aggregation of
the votes (using k-approval, as is the case today) can easily
select close alternatives.

To summarize, we envision a future where there is a mu-
tually beneficial interaction between (computational) social
choice and human computation. We hope that our work, in
addition to its more immediate practical implications, will
spark this long-term interaction between the two fields.

Acknowledgements.

This material is based upon work supported by NSF Grant
No. CCF-0915016 and Xerox Foundation. We would like to
thank Haoqi Zhang for his implementation of the 8-puzzle
in Javascript, which we modified for our experiments.

References

Adali, S.; Magdon-Ismail, M.; and Marshall, B. 2007. A
classification algorithm for finding the optimal rank aggre-
gation method. In Proceedings of the 22nd International
Symposium on Computer and Information Sciences (ISCIS),
1-6.

Brandt, E.; Fischer, F.; Harrenstein, P.; and Mair, M. 2008. A
computational analysis of the Tournament Equilibrium Set.
In Proceedings of the 23rd AAAI Conference on Artificial
Intelligence (AAAI), 38-43.

Carterette, B.; Bennett, P. N.; Chickering, D. M.; and Du-
mais, S. T. 2008. Here or there: Preference judgments for
relevance. In Proceedings of the 30th European Conference
on Information Retrieval (ECIR), 16-27.

Conitzer, V., and Sandholm, T. 2005. Common voting rules
as maximum likelihood estimators. In Proceedings of the
21st Annual Conference on Uncertainty in Artificial Intelli-
gence (UAI), 145-152.

Conitzer, V.; Davenport, A.; and Kalagnanam, H. 2006. Im-
proved bounds for computing Kemeny rankings. In Pro-
ceedings of the 21st AAAI Conference on Artificial Intelli-
gence (AAAI), 620-626.

Conitzer, V.; Rognlie, M.; and Xia, L. 2009. Preference
functions that score rankings and maximum likelihood esti-
mation. In Proceedings of the 21st International Joint Con-
ference on Artificial Intelligence (IJCAI), 109-115.
Conitzer, V.; Sandholm, T.; and Lang, J. 2007. When are
elections with few candidates hard to manipulate? Journal
of the ACM 54(3):1-33.

Conitzer, V. 2006. Computing Slater rankings using simi-
larities among candidates. In Proceedings of the 21st AAAI
Conference on Artificial Intelligence (AAAI), 613-619.
Cooper, S.; Khatib, F.; Treuille, A.; Barbero, J.; Lee, J.; Bee-
nen, M.; Leaver-Fay, A.; Baker, D.; and Popovi¢, Z. 2010.

Predicting protein structures with a multiplayer online game.
Nature 466:756-760.

Dai, P.; Mausam; and Weld, D. S. 2010. Decision-theoretic
control of crowd-sourced workflows. In Proceedings of
the 24th AAAI Conference on Artificial Intelligence (AAAI),
1168-1174.

Dwork, C.; Kumar, R.; Naor, M.; and Sivakumar, D. 2001.
Rank aggregation methods for the web. In Proceedings of
the 10th International World Wide Web Conference (WWW),
613-622.

Faliszewski, P., and Procaccia, A. D. 2010. AI’s war on
manipulation: Are we winning? Al Magazine 31(4):53-64.

Forsythe, R.; Rietz, T.; Myerson, R.; and Weber, R. 1996.
An experimental study of voting rules and polls in three-
candidate elections. International Journal of Game Theory
25(3):355-383.

Hemaspaandra, E.; Hemaspaandra, L. A.; and Rothe, J.
1997. Exact analysis of Dodgson elections: Lewis Carroll’s

1876 voting system is complete for parallel access to NP.
Journal of the ACM 44(6):806-825.

Little, G.; Chilton, L. B.; Goldman, M.; and Miller, R. C.
2010a. Exploring iterative and paralle] human computation
processes. In Proceedings of the 2nd Human Computation
Workshop (HCOMP).

Little, G.; Chilton, L. B.; Goldman, M.; and Miller, R. C.
2010b. Turkit: Human computation algorithms on Mechan-
ical Turk. In Proceedings of the 23rd Annual ACM sym-
posium on User interface software and technology (UIST),
57-66.

Lu, T., and Boutilier, C. 2011. Learning Mallows models
with pairwise preferences. In Proceedings of the 28th In-
ternational Conference on Machine Learning (ICML), 145—
152.

Procaccia, A. D., and Rosenschein, J. S. 2007. Junta dis-
tributions and the average-case complexity of manipulat-
ing elections. Journal of Artificial Intelligence Research
28:157-181.

Sculley, D. 2007. Rank aggregation for similar items. In
Proceedings of the 7th SIAM International Conference on
Data Mining (SDM), 587-592.

Shahaf, D., and Horvitz, E. 2010. Generalized task mar-
kets for human and machine computation. In Proceedings of
the 24th AAAI Conference on Artificial Intelligence (AAAI),
986-993.

von Ahn, L., and Dabbish, L. 2008. Designing games with
a purpose. Communications of the ACM 51(8):58-67.
Welinder, P.; Branson, S.; Belongie, S.; and Perona, P. 2010.
The multidimensional wisdom of crowds. In Proceedings of
the 24th Annual Conference on Neural Information Process-
ing Systems (NIPS), 2424-2432.

Young, H. P. 1988. Condorcet’s theory of voting. The Amer-
ican Political Science Review 82(4):1231-1244.

