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Abstract

Multiattribute auctions extend traditional auction settings to allow negotiation over non-
price attributes such as weight, color, and terms-of-delivery in addition to price and promise to
improve market efficiency in markets with configurable goods.

This paper provides an iterative auction design for an important special case of the multi-
attribute allocation problem with special (preferential independent) sadditive structure on the
buyer value and seller costs. Auction ADDITIVE&DISCRETE provides a refined design for a
price-based auction in which the price feedback decomposes to an additive part with a price
for each attribute and an aggregate part that appears as a price discount for each supplier. In
addition, this design also has excellent information revelation properties which are validated
through computational experiments. The auction terminates with an outcome of a modified
Vickrey-Clarke-Groves mechanism. This paper also develops Auction NONLINEAR&DISCRETE
for the more general nonlinear case — a particularly simple design that solves the general mul-
tiattribute allocation problem, but requires that the auctioneer maintains prices on bundles of
attribute levels.
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1 Introduction

Multiattribute auctions extend the traditional auction setting to allow negotiation over price and
attributes. For example, in a procurement problem, a multiattribute auction can allow different
suppliers to compete over both attributes values and price. An iterative multiattribute auction
determines the outcome dynamically, with agents revising bids in response to feedback, and can
usefully reduce the amount of information revealed by agents in the auction. The design of iterative
multiattribute auctions forms the focus of this paper.

The use of iterative multiattribute auctions is becoming prevalent in procurement for both
services and goods. An interesting example is IT outsourcing. Such contracts need to handle
multiple attributes such as: (i) the fraction of the service that is off-shored; (ii) the one time
transition cost for the transfer of the operations, and (iii) labor rates for off-shore and onshore
services. In such auctions, the transition costs are very dependent on the fraction that is off-
shored, which together with the labor costs contributes to the total cost of a contract. Another
interesting example is the procurement of coal for electric utilities, where multiple attributes such as
the heat content (Btu/lb) and the sulphur content (1b/MBtu) directly impact the value of the coal.
Suppliers often have the option of blending different types of coals or treating coal to vary these
attributes. This allows suppliers to tradeoff these attributes, depending on their cost structure for
these treatments and the value structure of buyers.

Iterative auctions, that allow agents to revise their bids and provide incremental information
about preferences, have several advantages over one-shot auctions for procurement problems. First,
it is important for bidders to reveal as little information as possible about costs and preferences
in a strategic situation such as procurement, because participants are in a long-term competitive
relationship. Iterative auctions can elicit cost information from the suppliers on a pure “need to
know” basis, and the buyer cannot precisely infer the cost function of sellers. Iterative auctions
are also known to outperform sealed-bid auctions in settings in which costs are correlated across
sellers, because dynamic feedback provides information to help participants to revise their beliefs
about their own preferences for different outcomes (Milgrom & Weber 1982, Cramton 1998).

The primary contribution of this paper pertains to an auction design for an important spe-
cial case of the multiattribute allocation problem with special (preferential independent) additive
structure on the buyer value and seller costs. Auction ADDITIVE&DISCRETE (AD) quotes prices
in terms of an additive component, with a price for each attribute level, and an aggregate discount,

that applies to an entire bid. The aggregate discount is required whenever the best seller does not



dominate (in terms of cost) the other sellers on every attribute. The compact price space in Auction
AD provides good information revelation properties, as validated through computational experi-
ments. As a prelude to developing Auction AD, we also develop auction NONLINEAR& DISCRETE
(NLD). Auction ND is very general and does not require preferential independence, but requires
the auctioneer to maintain prices on bundles of attribute levels.

The preferential independence (PI) assumption is quite standard in multiattribute utility theory
(Keeney & Raiffa 1993). We find PI to be a compelling model for a class of multiattribute problems
in procurement. One common setting is in the context of the procurement of commodity items
such as sugar, for which an expressive market already exists (Hohner et al. 2003). In such contexts
suppliers usually place bids with the market price as a base price, and with an add-on price for
each additional attribute, such as the degree of refinement provided, the location to be delivered
to, delivery dates etc. The price is specified independently for each attribute. Another common
setting for PI is for configurable goods such as PCs. A typical desktop has many attributes such as
the memory, the processor speed, and the hard drive, each with multiple choices. A very common
price structure for these goods is a markup-based price, where configurations are priced with a base
price and an add-on price for each attribute (Bichler & Kalagnanam 2003). Auction AD applies
when PI holds, and provides particularly useful preference-elicitation properties.

We use linear-programming duality theory to design and analyze auction AD. The auction
terminates with the outcome of a modified Vickrey-Clarke-Groves (VCG) auction. From this, it
follows that straightforward strategies form an ex post Nash equilibrium for sellers, against a class
of non-adaptive (but not necessarily truthful) buyer strategies. This ez post Nash solution concept
is quite robust, because sellers do not need to be informed about the costs of other sellers to follow
their equilibrium strategy. We also provide a simple, but useful, bound on the maximal increase in
payoff that a buyer can achieve by adopting an adaptive and non-truthful strategy over a truthful
strategy. We present computational experiments that verify the information revelation properties
of the auction models. For simulated valuation and cost functions, we compare the amount of
information revealed by participants in auctions NLD and AD. The results demonstrate that the
compact additive price space in auction AD can provide a significant reduction in information
revelation over NLD, which in turn can provide a significant saving in information revelation over

a one-shot auction.



1.1 Related Work

Che (1993) first studied multiattribute auctions as a model for procurement within the supply
chain. Multiattribute auctions have also been studied in the context of bargaining over shared
resources between distributed computational agents (Kraus 1997, Jennings et al. 2001).

Early designs emphasized the design of an (buyer) optimal auction, to maximize the expected
total payoff to the buyer by leveraging beliefs about the costs of sellers. Che (1993) proposed
optimal one-shot (sealed-bid) auctions, for a model in which the cost function of sellers are defined
in terms of a single parameter unknown parameter. A buyer provides a scoring function, and sellers
respond in equilibrium by choosing to supply at a quality level that is efficient given the scoring rule
(which itself is not truthful in equilibrium). Che derives an equilibrium in which the buyer states
an optimal scoring function. Recently, Branco (1997) extends Che’s auction to the case where the
seller cost functions are correlated.

The rules in Che’s “second-score” auction are those of the one-sided VCG auction (see Section
2), that forms the basis of our iterative price-based auctions. Rather than focus on the problem
of optimal auction design, we consider the problem of efficient auction design. We consider the
goal of market efficiency to be well-suited for the design of stable long-term markets that will form
the basis for repeated trade. We expect that efficient markets will come to dominate the electronic
market landscape based on our experience with procurement auctions (Hohner et al. 2003). In
long term contract negotiations, the number of suppliers that a company interacts with is very
small (typically of the order of 5 to 10) and inefficient allocations across this pool leads suppliers to
question the credibility of the buyer to be fair. Even in business-to-business settings this emerges
as one of the most important requirements, as reported in the deployments with a large chocolate
manufacturer (Hohner et al. 2003). Buyer-optimal auctions are perhaps more appropriate for a
one-shot procurement problem, and in a setting in which the buyer has considerable market power.
Turning to efficient design also allows a more general model, in which sellers can have an arbitrary
cost function. Indeed, optimal auctions are not known even for the special-case of preferential
independence.

Iterative multiattribute auctions have been considered in prior work. Beil & Wein (2003) propose
an iterative variant on Che’s auction, for a richer class of parameterized utility functions (this time
with K parameters) with known functional forms. The buyer uses K rounds to estimate the seller
costs functions, restarting the auction with a different scoring function each time. Sellers are

modeled as naive and truthful agents, which allows the buyer to determine the exact seller cost



function. For the final K+1st round, Beil & Wein design a scoring function so as to maximize
buyer payoff by essentially reporting the same score (within €) for the top two suppliers. Vulkan
& Jennings (2000) propose a multi-round efficient auction. Their design differs from our design in
that it is not price-based, and also because there is no special optimization for the preferential-
independence special case.

A recent literature adopts a linear-programming approach for the design of iterative combina-
torial auctions, in which bidders demand different combinations of items (Parkes & Ungar 2000,
Bikhchandani et al. 2001, Bikhchandani & Ostroy 2002, de Vries et al. 2003, Mishra & Parkes 2004).
Yet, the Combinatorial Allocation Problem (CAP) and the Multiattribute Allocation Problem
(MAP) differ in important ways. First, the preferential-independence special case is well-motivated
for the MAP, but makes less sense for the CAP. Second, there is private information on both
sides of the auction in the MAP. This complicates the auction design problem, because the winner-
determination problem now depends on the preferences of the buyer in addition to the revealed bids
from sellers. An aggregate price term, in combination with linear prices, has been used previously
in Kwon et al. (2004) in the context of the CAP, with the aggregate price used to provide more

nuanced price feedback to losing bidders.

1.2 Outline

Section 2 formulates the multiattribute allocation problem, and defines a modified VCG auction
that is one-shot, but provides a normative basis to guide the design of our iterative auctions. Section
3 introduces auction NONLINEAR& DISCRETE, and presents theoretical analysis to characterize the
performance of the auction. Section 4 defines auction ADDITIVE& DISCRETE, which has a smaller
price space— composed of prices on individual attribute levels together with an aggregate discount
term —and is applicable to the special case of PI. We also examine a special case in which the
aggregate discount term is not required. Section 5 concludes with a computational study of the
information revelation properties of the iterative auctions on stylized problems. All proofs are

available in the online Appendix.

2 The Multiattribute Allocation Problem

In the Multiattribute Allocation Problem (MAP) there are n sellers, a single buyer, and the
outcome is defined in terms of levels for each of m attributes and a winning seller. Each at-

tribute j € {1,...,m} has a finite domain of discrete attribute values, ©;. For example, ©; =



{red,yellow,green}, where attribute j represents the color of an item. Let © = O; x ... X O,
denote the joint space of attributes. Discrete attribute values are reasonable for the procurement
of goods with discrete characteristics, such as processor speed, delivery date, and color. Naturally
continuous characteristics, such as weight and heat content must be discretized.

Each seller i € {1,...,n} has a cost function, ¢;(6) > 0, for an attribute bundle § € 0, and the
buyer has a valuation function, v(6) > 0. We write c = (¢1,...,¢n),and c_; = (€1, ., Ci—1, Cit1s---,
¢p) to denote the costs without seller i. We assume a private-values model, with independently
distributed seller costs and buyer value. A private-values model provides a reasonable first approx-
imation for the procurement of goods, because seller costs can be expected to depend on her own
local manufacturing base and sellers can be expected to be well-informed about the cost of (up-
stream) raw materials. Later, in Section 4 we introduce the special case of preferential-independence
(PI) in which the costs are stated independently for each attribute.

As is standard in the auction literature, all participants are assumed to have quasilinear utility
functions, with utility u;(0,p) = p — ¢;(6) to seller i for bundle 6 at price p and utility u?(6,p) =
v(0) — p to the buyer. We assume that the buyer will source from a single seller. We focus on the
efficient multiattribute allocation, in which the objective is to clear the auction to maximize the
total value to the buyer, net the seller’s cost:

mage 303 2:(6) (0(6) ~ i(9)) [MAP(T)]

il i<n geo

st.) Y x(0) <1

i<n €O
z:(0) € {0,1}, Vi,v8

Setting z;(6) = 1 denotes that attribute bundle § and seller i is selected in the outcome. Let
II(v; ¢) = v(0*) — ¢« (0*) denote the surplus generated in the efficient outcome, (6*,i*), that solves
MAP(Z). Define the marginal product MP; = II(v; c) — II(v; c—;), as the marginal value contributed
by seller i to the economy. We will also refer to the efficient outcome (6*,7*) as the first-best
outcome, and denote the solution to MAP(Z \ i*) as (6,1), and refer to this as the second-best
outcome.

The price-based multiattribute auctions defined in this paper implement the outcome of a
modified Vickrey-Clarke-Groves (VCG) (Vickrey 1961, Clarke 1971, Groves 1973) mechanism. In
the VCG mechanism, all agents submit bids to the auctioneer, that: a) determines the efficient
trade; b) computes payments so that each bidder’s utility (with respect to her reported valuation)

is equal to her marginal product MP;, i.e. the total value that she contributes to the economy. The



VCG mechanism is strategyproof— with truthful bidding a dominant-strategy equilibrium—but it is
well understood that it is not budget-balanced in settings with two-sided private information such as
the MAP. Instead, the VCG mechanism will require a payment to the winning seller that is greater
than the payment made by the buyer. Indeed, no efficient mechanism can be budget-balanced for
the MAP (Myerson & Satterthwaite 1983, Krishna & Perry 2000).

We define a modified auction, the one-sided VCG auction, that retains incentives to support
truthful bidding on the sell-side while achieving budget-balance. Truthful bidding is no longer an
equilibrium strategy for the buyer in the one-sided auction.

One-sided VCG auction:
1. Each seller ¢ bids a cost function ¢; and the buyer bids a valuation function ©.
2. Outcome (7, é) is selected in winner-determination, to solve MAP(Z), based on bids ¢; and .

~

3. The buyer pays 9(6) — II(9;¢_;).

The payment made by the buyer is the VCG payment that the winning seller would receive in

~

the VCG mechanism for this problem, i.e. ¢(0) + (II(9;¢) — II(v;¢_;)) = #(0) — (9;¢_;). The

~

buyer’s payment in the (full) VCG mechanism would be 9(0) — II(0;¢). Here, the buyer makes
an additional payment of II(¢;¢) — II(9;¢_;). This provides budget-balance, while continuing to
support truthful bidding on the sell-side. Voluntary participation is also provided: the winning
seller’s payment is at least her reported cost, and the payment made by the buyer is no greater
than her bid price. The price of budget-balance is that the auction is not strategyproof for the
buyer. However, we can bound the maximal gain that can be achieved by the buyer in comparison

with her utility from reporting her true valuation.

Proposition 1. The ex post regret to the buyer from truthful bidding in the one-sided VCG auction,
given straightforward seller strategies, is at most the marginal product MP;«, of the efficient seller

(defined with respect to reported seller costs).

To see that this upper-bound is tight, consider an instance in which the cost of the second-best
bundle, 6, is less to the second-best seller, 7, than to the first-best seller, i*. In this case, the buyer
can bid 9(6*) = v(6*) + {II(v, ) — (v, c_s+) — max(0, ¢;(f) — c;<(9))} for the efficient bundle 6*, and
bid truthfully for all other bundles. Given this, II(9;c¢) = II(9;c_;+ ), and the efficient allocation is
implemented, with the buyer taking all the surplus.

In practice, the opportunity to the buyer is more limited because she must bid without perfect
knowledge of sellers’ bids. Instead, if the buyer has information about the distribution from which

seller’s costs are drawn, then the buyer can play a Bayesian-Nash equilibrium and aim to maximize



AucTION NONLINEAR&DISCRETE:
collect a reported valuation, ¥, from the buyer;
set high initial prices, p'(f), on each attribute bundle 6;
while (active bidding) {
collect bids on attribute bundles from sellers;
determine the provisional allocation;

decrease prices based on losing bids;

}

implement the final provisional allocation;

Figure 1: Auction NON-LINEAR& DISCRETE.

her expected utility. Trivially, the expected gain in utility over a truthful strategy in this Bayesian-
Nash equilibrium is bounded above by E.. r(;){MP;«}, where the expectation is taken with respect
to the distribution F(c) on seller costs. To see this, notice that for any particular valuation v and
costs ¢ the best-case gain for the buyer is MP;», since the sellers will continue to bid truthfully in
equilibrium. This term will be considerably less than the expected utility E..p(){IL(v; c—i)} from

truthful bidding in the usual case of strong competition.

3 Auction NLD: General Preferences

Our first auction, NONLINEAR&DISCRETE (NLD) generalizes a single-item open-outcry auction,
providing a kind of reverse English auction for the Multiattribute Allocation Problem. Prices
are non-linear, with combinations of attribute values priced explicitly, and rich enough to provide
prices on features that are contingent on the selection of other features. Auction NLD provides
a multiattribute auction for general preferences, and determines the efficient allocation without
bidders revealing their full cost functions. However, Auction AD (Section 4), is able to take
advantage of the special structure offered by preferential independence and provides a compact
price space that leads to more immediate feedback and better information-revelation properties
than Auction NLD.

A high-level description of Auction NLD is provided in Figure 1. Auction NLD proceeds in
rounds, and maintains an ask price, p'(#), on each bundle 6 € © of attribute levels. At the start of
the auction the buyer makes a claim about her valuation function, ¥ € V. The auctioneer uses this
information to solve the winner-determination problem in each round, selecting as a provisional

winner the bid that maximizes the buyer’s utility given this reported valuation. The auction starts



with high initial prices on each attribute bundle. We assume that the buyer, or the auctioneer, has
conservative prior bounds on the minimal cost for each possible configuration. Initial prices can
also just be set so as to be greater than the reported values of the buyer.! Prices decrease across
rounds, with price changes driven by bids from losing sellers.

In each round, a seller can bid at or below the ask price on one or more bundles or leave
the auction. The winning bid from the previous round is automatically retained across rounds.
For instance, if the first attribute defines color, and includes ©1 = {red, blue, green} and the
second attribute defines speed, and includes ©9 = {slow, medium, fast}, then {red,fast,$100), (blue,
fast,$120)} is a valid bid as long as these bid prices are less than or equal to the ask prices. The
new ask price, p'*1(0), for a bundle @ that receives a bid from a losing seller, is set to € below the
lowest losing bid, with € > 0 defined as the minimal bid increment in the auction. This auction
parameter determines the rate of price changes in the auction.

The auction terminates when ask prices have not changed in two consecutive rounds. In most
cases, the final price will be less than the buyer’s reported valuation, and the auction implements the
final provisional allocation with the buyer making the final payment to the winning seller. However,
when there is no efficient trade without the best seller, i.e. when II(%,¢;) < 0, then the final price
will remain above the buyer’s reported value. We handle this case by offering the provisionally
winning seller a final price of p(6*) = ©(6*) (which would be the outcome of the one-sided VCG
auction), where 6* is the bundle in the final provisional allocation. If the seller accepts this offer

then the auction closes with this outcome. Otherwise, the auction terminates with no trade.

3.1 Theoretical Analysis

Auction NLD terminates with the outcome of the modified VCG auction for sellers, which brings
straightforward bidding into an ez post Nash equilibrium. Straightforward bidding, or myopic best-

response, is defined as follow:

Definition 1. A seller’s myopic best-response (MBR) bidding strategy, mbr(é;), is to bid at the
ask price for all bundles that have non-negative utility and are within € of mazimizing her utility,

given current ask prices and for some cost function ¢;.

In straightforward bidding a seller is myopic, bidding as though the current auction prices are
final and ignoring the effect of her bid on future prices. We establish the following equivalence

between Auction NLD and the one-sided VCG auction:

!Technically, correct convergence is guaranteed whenever initial prices are at least the lowest-cost across all sellers
on the bundle plus the marginal product of the winning seller MP;+ (to support the VCG outcome).



Proposition 2. Auction NLD with straightforward bidding terminates with the efficient outcome
and the payment in the one-sided VCG auction for a truthful buyer, and as the minimal bid incre-

ment € goes to zero.

This equivalence brings straightforward bidding into an ez post Nash equilibrium for sellers, in
the sense that best-response to prices in every round is the optimal strategy for a seller whatever
the costs of other sellers and whatever the reported valuation of the buyer, as long as the other
sellers also follow a straightforward strategy. FEz post Nash is a robust solution concept because
sellers need not be informed about the costs of other sellers to compute their best-response.”

Formally, let g(s*(c)) denote the outcome of an auction when bidders with costs ¢ = (c1,...,¢p)
follow straightforward bidding strategy s*(c) and the outcome of the auction (an allocation and

payments) is defined with outcome rule g(s(c)), given joint strategy s and costs c. Then, strategy

s* is an ez post Nash equilibrium if

ui(g(s™(c))) > ui(g(s', 5" (c—4))) (1)

for all bidders 4 and all costs c_; and all costs c;, where s’ is an arbitrary bidding strategy and

u;(g(s(c))) € R is the utility to bidder ¢ for an outcome.

Theorem 1. Truthful MBR is an ex post Nash equilibrium for sellers in Auction NLD as the

minimal bid-increment goes to zero, whatever the reported valuation © of the buyer.

We also have the following immediate corollary:

Corollary 1. Auction NLD is efficient when the buyer bids truthfully, and the mazimal benefit
to a buyer from some non-truthful strategy is no greater than the marginal product of the efficient

seller.

3.2 Competitive Equilibrium Prices

To complete the analysis of Auction NLD, we define competitive equilibrium prices and show the
auction terminates with mazimal competitive equilibrium prices that support the outcome of the
one-sided VCG auction.

As is standard, we say that prices p(f) and feasible MAP solution (¢,i') are in competitive

equilibrium (CE) if bundle ¢’ maximizes the utility for the buyer and the winning seller 7' at the

2Ex post Nash makes a weaker knowledge assumption than that required for a Bayesian-Nash equilibrium, in which
the distribution on seller costs must be common knowledge. However, ez post Nash makes a stronger knowledge
assumption than that required for the dominant-strategy equilibrium in the one-sided VCG auction, in which sellers
need not even believe that other sellers will be rational.
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prices, and the prices are less than cost on all bundles for all other sellers. It is easy to see that
CE prices always exist; for instance consider the instance of prices p(f) = min;{c;(#)}, together
with the efficient allocation. Moreover, by linear-programming duality we see that the CE prices
support an efficient outcome.

Let m; denote the mazimal payoff to seller i at prices p, defined as 7; = maxgpeo [p(0) — ci(0),0].
Let 78 denote the mazimal payoff to the buyer at prices p, defined as 78 = maxyce [v() — p(8),0].
Formally, we require 72 = v(¢') — p(8') and 7y = p(#') — ¢y (9'), with m; = 0 for all 5 # i’ in CE.

Definition 2. The mazimal CE prices, p.., mazimize the price on the efficient bundle, 8%, across

all competitive equilibrium prices.

Maximal CE prices provide the winning seller with the best-possible revenue, across all prices
that support the efficient trade in equilibrium. Intuitively, the seller cannot receive a greater
payment without some other seller being able to step in and make the buyer an offer that she will
prefer. Maximal CE prices can be constructed by adjusting CE prices to maximize p(6*) while

maintaining the conditions required for CE.

Lemma 1. Prices Pe(0*) = ¢;+(6*) + MPy, with P..(0') = min;z;«{c;(6')} on all ' # 6* are

mazximal CFE prices.

Given this characterization, the following equivalence is immediate.

Proposition 3. The payments in the one-sided VCG auction are implemented in the mazimal

competitive equilibrium.

Notice that price p(0*) = ci-(6*) + MP;« is exactly the payment to the winning seller in the
one-sided VCG auction.

In what follows, prices p are said to e-dominate prices p', if p(0) + ¢ > p'(0) for all . Also, we
define CE prices with respect to the reported 0 of the buyer.

Lemma 2. Auction NLD maintains ask prices that e-dominate the maximal CE prices when all

sellers follow a truthful MBR bidding strategy.

Auction NLD must terminate when agents are rational, because while the auction remains
open the price p’(#) falls in each round on at least one attribute bundle, #, for which a seller
has submitted a bid. To keep bidding, this seller must have ¢;(8) < p’(#), which places a lower-
bound on the minimal price that can support bids. Termination follows because we assume that
the number of agents, the number of attributes, and the number of attribute levels are all finite.

Finally, Auction NLD terminates in the maximal CE prices.

11



Lemma 3. Auction NLD terminates with mazimal CE prices when sellers follow a truthful MBR

strategy, and as the minimal bid increment goes to zero.

3.3 Number of Rounds to Terminate in Auction NLD

It is interesting to characterize the number of rounds that Auction NLD can take to reach termi-
nation. Let m denote the number of attributes, and let | = max; |©;| denote the maximal number
of discrete levels of any single attribute. The size of the attribute bundle space is O(I™). Let
Vmax = max;<p[maxgp'(8) — c;(6)], where p'(6) is the initial ask price on bundle §. The number

of rounds in NLD is polynomial in Viax, 1/€, but exponential in [ and m.

Proposition 4. Auction NLD converges in O (lmVT‘“a") rounds, with minimal bid increment € and

MBR strategies.

As a result of the exponential price space, the number of rounds is worst-case exponential in
m, the number of attributes. In contrast, auction ADDITIVE&DISCRETE, which is applicable for
the special case of preferential independence, has a linear price space and will terminate after a

number of rounds that scales as O(Im).

3.4 Adaptive Buyer Strategies

The basic version of Auction NLD, as described, requires the buyer to commit to a valuation
function ¥ € V at the start of the auction. In a simple variation, we can allow the buyer to
bid incrementally, providing the minimal amount of additional information that is needed in each
round to determine the winner and to adjust prices. For instance, the buyer could be presented
with the set of bids received from sellers, and asked which bid it prefers. Sunderam & Parkes
(2003) considered this approach, providing a proxy agent to intermediate between the bidders and
the auctioneer. A response to a new query places additional constraints on the buyer’s valuation.
The proxy can use this partial information to respond when it has enough information, and fall
back to the buyer and ask for additional information when necessary.

In practice, making the auction dynamic on the buy-side would require striking a balance
between the need to reduce information-revelation from the buyer, with a need to protect the
interests of sellers. Incremental bidding provides new opportunities for strategic behavior by buyers.
In particular, a buyer can use sellers’ bids to adapt her strategy and improve her final payoff. We
already saw in Section 2 that a well-informed buyer can do better than truth-revelation. A new

concern for sellers is that bids during the auction can reveal information that can help the buyer
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to adapt her strategy. An auction that permits dynamic buyer strategies as well as seller strategies

should at least ensure that the buyer’s revealed preference information is consistent across rounds.

4 Auction Additive&Discrete: Preferential-Independence

We now consider the special case of preferential independence, in which the cost of each seller
can be stated separately for each attribute with the total cost defined as the additive sum across
attributes. Preferential independence is quite standard in multiattribute utility theory (Keeney &
Raiffa 1993), and is relevant in our setting of procurement auctions whenever the value and cost is
separable across attributes. We provide some motivating scenarios below.

We introduce Auction ADDITIVE& DISCRETE (AD), which has a linear price space and maintains
prices on the individual level of each attribute as well as an aggregate discount price that applies
to an entire bid. The total ask price for a bundle of attribute levels is calculated as the sum
of the level prices minus this discount term. The aggregate discount term is necessary when the
efficient supplier does not dominate the other suppliers on every attribute. We interpret Auction
AD as implementing a primal-dual algorithm for the Multiattribute Allocation Problem, with
straightforward bidding leading to an efficient solution. In Section 5, we show that the auction
solves problems with less information-elicitation from participants than Auction NLD.

The outline of this section is as follows. We first define preferential independence. We then
describe the auction, state its main theoretical properties, and provide an extended example for a
simple problem. Finally, we define competitive equilibrium prices and complete the formal theo-
retical analysis, again demonstrating an equivalence between maximal CE prices and the one-sided

VCG auction.

4.1 Preferential Independence

Preferential independence (PI) imposes the additional assumption that a seller’s cost for a level of
an attribute does not depend on the levels set on the other attributes, and similarly for the value of
the buyer. We find PI compelling for a class of multiattribute problems in procurement, including;:
for commodity items, where the attributes (refinement level, location, delivery dates, etc.) can be
readily assigned independent costs and values; and for configurable goods such as PCs, where the
attributes (memory, processor speed, etc.) can be readily assigned independent costs and values.
Formally, we now define an attribute bundle 6 in terms of z = (x1,...,%.). For each attribute

4, we have z; € {0,1}/9/, and 33, zjx < 1 so that at most one level is selected. Setting z;, = 1

13



indicates that level k of attribute j is selected. The cost function for seller ¢ can now be expressed
as:
a0) =" Y cijpmin (2)
j<mk<|0;|
where c;;i is the marginal cost to seller 4 if level k of attribute j is selected. The valuation function
for the buyer can now be expressed as:
’1)(0) = Z Z 'Ujlclec (3)
J<mk<|©;]
where vj;, is the marginal value to seller ¢ if level k of attribute j is selected. With this, the MAP

problem can be formulated as:

max YY" Y (v — cije) i [MAP-PI]

s.t. Z Tijk < i, Vi,Vj (4)
k<|©;]
> u<1 (5)
i<n

Tijk,Yi € {0,1}

where y; = 1 if seller 4 is the winner, and z;;; = 1 if level k of attribute j is supplied by this seller.

We allow the buyer to opt-out of one or more attributes whenever the winning seller cannot
supply any level of that attribute at a cost below value. This is common practice in pricing schemes
used for services or configurable goods. For example, desktops have multiple attributes (memory,
processor, hard drive etc) and the most common pricing scheme is based on using a base price
and markup. In such situations the opt-out option for one or more attributes (say memory) is

equivalent to the buyer choosing the default level in the base model (e.g. 128 MB).

4.2 Auction ADDITIVE&DISCRETE

A high-level description of Auction AD is provided in Figure 2. Prices are basically linear-additive
on attribute levels but with an additional (anonymous) discount that applies to an entire bid.
Auction AD maintains prices p;-k > 0 on individual levels k of each attribute j in round ¢ > 1,
along with price discount A’ > 0 that applies to the total price on any bundle of attribute levels.
The overall ask price on bundle z = (z1,. .., Z,,) is defined as p’(z) = (ngm Zkg\@ﬂ pz'lﬁjk) — Al

The role of the discount is to support the efficient allocation in a price equilibrium when the

best seller does not dominate (in terms of buyer value and seller cost) the other sellers on every
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AucTION ADDITIVE&DISCRETE:
collect a reported valuation, ¥, from the buyer;
set high initial prices, pjl-k;
initialize price discount A! = 0;
while (active bids) {
collect bids from sellers;
determine the provisional allocation;
determine the most-preferred levels on each attribute;
decrease level prices, p;-k;

increase the discount A! if stalled;

}

implement the final provisional allocation;

Figure 2: Auction ADDITIVE& DISCRETE.

attribute. For instance, one supplier of I'T outsourcing might be preferred by the buyer on off-shore
labor rates and professional services, while another supplier might be preferred in terms of minimal
response times.

The auctioneer sets initial level prices to be some value greater than the buyer’s reported level
values, and initializes the price discount to zero. The auction is parameterized with a minimal bid
increment, € > 0, which determines the rate at which prices are decreased across rounds. At the
start of the auction the buyer provides a reported valuation function, 9, to the auctioneer.? In each
round, bids are collected from sellers, with the winning bid from the previous round resubmitted
automatically (at the previous bid price, and perhaps above the current ask price on attribute
levels and with a discount less than the current auction discount. This mimics the dynamics in the
English auction, where the current winner does not need to match the new ask price but is allowed
to let her bid stand until competing bidders match the new ask price.

Each seller can bid on one or more levels on each attribute, with a bid price that matches or
improves on the current ask price on that level. A seller can also skip an attribute altogether,
and might choose to when the price is above cost across all levels. A seller must always match, or
improve on, the current price discount asked in the auction. The full discount applies, even when
the supplier is only bidding on a subset of the attributes. A seller can also exercise a last-and-final
bid on an attribute in any round. This allows the seller to bid € above the ask price on any level

of that attribute. However, once exercised a seller cannot improve her bid on any level on that

3As in Auction NON-LINEAR&DISCRETE the auction can also be operated with incremental bidding from the buy-
side. The buyer must provide enough information in each round to guide winner-determination and price adjustment.
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attribute in future rounds, although she can still improve her bids on other attributes and she can
still offer a larger discount.

When selecting a provisional winner, the auctioneer (on behalf of the buyer), must choose a
level from within each attribute included in the bid. For instance, in a setting with a color attribute
and a speed attribute, a typical bid might state {(red,$50), (yellow, $80)}, {(fast,$100), (slow, $20)},
with discount $40. In response, the buyer might consider combining (red,slow) for a total price of
$50+$20-$40=9%$30. A prowvisional allocation is determined in each round, to maximize the buyer’s
utility given her stated valuation and given current bids. Ties are broken in favor of the current

provisional winner.

Price Update Rules. In order to describe the price-update rules we first need a language to
talk about characteristics of attributes, levels, and sellers. First, we need to distinguish between
attributes that are in-play and not in-play. To be in-play, an least one bid must be received on
the attribute at a level price below the buyer’s reported value for that level (the discount in a bid
is ignored in this characterization). We also characterize a level within an attribute as a most-
preferred level, which is a level that is within e (the price-increment in the auction) of maximizing
the buyer’s utility at the current ask prices. Finally, a seller is said to be active on an attribute if
she bids at or below the ask price on one or more levels. A seller is said to be active overall if she
is either the current winner in the auction, or she is active on one or more attributes.

Each attribute is then considered in turn, with the price-update rule selected to depend on

whether or not the attribute is in-play:

Not In-Play. Consider two sub-cases.

(not-a) If a losing seller does not bid on any most-preferred level for this attribute, then set
the ask price on that level to € below the bid price from this seller (or the current ask price,

whichever is smaller.

(not-b) If all bids from sellers include a most-preferred level and at least one losing seller is
active on the attribute, then set the new ask price on each level to € below the lowest bid

price from any seller on this attribute.

In-Play. (in) Set the new ask price on any level that receives a bid to € below the lowest bid

price received, while all active sellers are also active on this attribute.

The price-discount is also adjusted, according to the following rule:
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Discount. If ask prices on attribute levels have remained unchanged for two successive rounds,
and there are still two active sellers, then increase the discount to € above the largest discount

that was bid in the last round by a losing seller.

Rule not-a, is used to decrease prices on levels on attributes that are not in-play and that receive
bids from sellers that are not competitive on the attribute. Rules not-b and in are used to drive
competition between sellers that might be competing on different levels on an attribute. Note that
both of these rules consider bids from the provisional winner when adjusting prices. Rule not-b
requires that all bids are on most-preferred levels but does not require that all active sellers are
active on the attribute. Rule in, on the other hand, does require that all active sellers are active on
this attribute. Rule discount provides competitive price pressure between sellers that are competing
on different attributes (which precludes the use of the standard in-play rule because they would
not both be active on the same attribute).

In the usual case, the price offered by the winning seller at the end of the auction is less than
the buyer’s reported value on all attributes and the auction implements the final allocation at this
price. On the other hand, if an attribute is not in-play then the auction considers the level on which
the winner is most competitive and offers the winner a final price equal to the buyer’s reported
value on that level. The winner can either accept, or choose to opt-out of this attribute.

We define a straightforward myopic best-response strategy for a seller in the auction as:

Definition 3. A seller’s myopic best-response strategy, mbr(¢;), is to bid on all levels of each
attribute that are within € of mazimizing her utility while the total price is greater than cost, for

some fized cost ¢;.
Auction AD shares the same appealing properties that we have demonstrated for Auction NLD.

Theorem 2. Truthful MBR is an ex post Nash equilibrium for sellers in Auction AD as the min-
1mal bid-increment goes to zero, whatever the reported valuation U of the buyer, for the case of

preferential independence.

We can establish that straighforward bidding is an equilibrium by demonstrating the same equiv-
alence between the outcome of Auction AD and the outcome of the one-sided VCG auction when
sellers follow MBR strategies and when PI holds. A detailed proof of this equivalence is presented
in the online Appendix.

Moreover, Aucion AD is efficient when the buyer is truthful and we again inherit the simple

bound on the maximal gain to the buyer from some adaptive (non-truthful) strategy.
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color speed
red fast  slow
value $100 $100 $60
cost 1 $120 $80  $55
cost 2 $80 4 $40
cost 3 $60 7 $45

&L
S

&L
(e

Table 1: A simple two-attribute multiattribute allocation problem.

Corollary 2. Auction AD is efficient when the buyer bids truthfully, and the mazimal benefit to
a buyer for a non-truthful strategy in Auction AD is no greater than the marginal product of the

efficient seller, for the case of preferential independence.

4.3 Auction AD: Simple Example

It is helpful to illustrate the auction dynamics on the simple two-attribute example in Table 1.
The buyer wants a fast, red car but is also willing to settle for a slow, red car. There are three
sellers, and seller two is most competitive for this buyer: there is a potential gain from trade of
$100+$100-8$80-$40=9%80 when the buyer buys the fast, red car from seller two.

Table 2 illustrates the state of the auction in each round, and the MBR bidding strategies.
We assume a bid increment of $20, and simulate the auction for truthful MBR strategies. Level
red is most-preferred for attribute 1 in each round, because it is the only level for this attribute.
Level fast is most-preferred for attribute 2 in round one, and both fast and slow are most-preferred
in future rounds. The price on attribute 1 is held up at $100 until seller one drops out of the
auction, while sellers two and three compete down the price on attribute two. Seller one drops
out in round 7, which starts new price competition on attribute one. The price discount is used to
prevent deadlock, which would otherwise occur in this example because there are no linear prices
that support the efficient allocation.

The auction terminates with the the efficient outcome (red, fast), to seller two, and with a
payment by the buyer of $120. The payment in the one-sided VCG auction would be $120 +
$10=8130, where $120 is the cost of seller two for (red, fast) and $10 is her marginal-product (i.e.
the buyer would take $70 of the $80 gain from trade). Auction AD implements this outcome for a
small enough minimal-bid increment, e. What follows is a detailed round-by-round description of

the behavior of the auction on this example.
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Attribute 1 Attribute 2

round red fast slow discount

1 price 120 120 120 0
bid 1 2% 3 2* 1 2 3

2 not-b not-a  price 100 120 100 0
bid 1+e 24e¢ 3* || 1 2 3* 1 2+4e 3

3 - not-b price 100 100 80 0
bid 1+e€ 2* 31 2 3+e | 1 2 3+e€

4 - - price 100 100 80 0
bid 1+e€ 2* 31 2 3 1 2 3

) -mn price 100 80 60 0
bid 1+e€ 2 3* (|1 24 3* 1 2+e 3

6 - - price 100 80 60 0
bid 1+e€ 2 3* |1 2 3* 1 2 3

7 -in price 100 60 40 0
bid 2* 3 2% 3+e€ 2 3+€

8 n - price 80 60 40 0
bid 24+¢€¢ 3 2* 3+e 2 3+e

9 -- price 80 60 40 0
bid 24+¢* 3 2* 3+e 2 3+€

10 discount  price 80 60 40 20
bid 24e¢ 3* 2 3+€* 2 3+e

11 - - price 80 60 40 20
bid 2* 3 2% 3+e€ 2 3+€

12 m - price 60 60 40 20
bid 24+¢* 3 2% 3+e 2 3+e

13 - - price 60 60 40 20
bid 24+¢* 3 2* 3+e 2 3+€

14 discount  price 60 60 40 40
bid 2+¢€* 2* 2

Table 2: Auction AD on the multiattribute allocation problem in Table 1. Bid increment $20. MBR seller
strategies, truthful buyer. Prices in each round are those at the start of the round before bids are received.
Key not-a, not-b, in and discount indicates which rule was used to adjust prices from the previous round,

(1532

for attribute 1 and 2 respectively. “+¢€” indicates a bid that is € above the current ask price. indicates

the provisional allocation.

Round 1. Prices are initialized to $120 for each level, which is greater than the buyer’s reported
value. At this price, every seller bids on red, seller two bids for fast and slow (since she has the
same cost for each), and sellers one and three bid for slow, which costs less than fast but has the
same ask price. Seller two becomes the provisional winner, because the buyer’s value is higher for
fast than slow.

Round 2. Before price adjustment, neither attribute is yet in-play, so consider rules not-a and
not-b. Rule not-b is used for attribute 1 because all bids are most-preferred, and the ask price on
red drops to $100. Rule not-a is used for attribute 2 because both losing bidders submitted a bid
on slow, which is not most-preferred, and the price drops to $100. Seller two’s winning bid from the
previous round is repeated (at € above the new ask price on red and on slow). Seller one submits
a last-and-final bid on attribute 1, which is now priced below her cost. Both sellers one and three
bid on both levels of attribute 2, because the price difference between fast and slow is now within
€ of their cost difference. Seller three becomes the new provisional winner, outbidding seller two.

Round 3. Attribute 1 is now in-play, but the price is not adjusted because sellers one and two,
although active in round two, were not active on attribute 1 (bidding at ¢ above the ask price).
This violates the condition for rule in. Attribute 2 is still priced above value, and not in-play. Rule
not-b is used because all levels are most-preferred, and the prices are decreased to $100 and $80, on
levels fast and slow respectively. Seller three repeats her bid from the previous round, while seller
two matches the new ask price and becomes the new provisional winner.
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Round 4. Attribute 2 is now in-play, but there are no price changes by rule in because seller
one was not active on attribute 1 and seller three was not active on attribute 2. No longer the
provisional winner, seller three improves her bids, but seller two remains the provisional winner
(ties are broken in favor of the current winner).

Round 5. All sellers were active on attribute 2 during round 4 and rule in is used to adjust prices
to $80 and $60 on levels fast and slow respectively. Seller two repeats her bids from the previous
round, while seller three matches the new ask prices and becomes the new provisional winner.

Round 6. No price changes. Seller two improves her bid, to match the ask prices. Seller three
remains the provisional winner.

Round 7. All sellers were active on attribute 2 during round 6, and rule in is used to adjust prices
to $60 and $40 on levels fast and slow respectively. Seller three repeats her bids from the previous
round, while seller two matches the new ask prices and becomes the new provisional winner. Seller
one, unable to compete on either attribute, drops out of the auction.

Round 8. The price on red is reduced to $80, with rule in, now that seller one has dropped out
of the auction. Seller two repeats her bids. Seller three matches the price change on attribute 1,
but is unable to compete on attribute 2 and submits a last-and-final bid.

Round 9. Ask prices are unchanged. Seller three is preferred on attribute 1, but seller two is
preferred on attribute 2 (and remains the provisional winner).

Round 10. Deadlock is broken by increasing the price discount. Seller two repeats her bids from
the previous round, while seller three improves her bid and matches the requested $20 discount,
becoming the new provisional winner.

Round 11. Ask prices are unchanged. Seller two improves her bid, matching the ask prices and
becoming the new provisional winner.

Round 12. Both sellers were active on attribute 1 in round 11, and so the ask price drops to
$60. Seller three improves her bid, matching this price change, but seller two remains the winner.

Round 13. Ask prices are unchanged, bids are unchanged. Seller two remains the provisional
winner.

Round 14. Deadlock is broken by increasing the price discount. Seller three drops out, unable
to compete at this new discount. Seller two repeats her previous bid and the auction terminates
with a winning bid of $80 for red, $60 for fast, with a price discount of $20 for an overall price of
$120.

4.4 Theoretical Analysis

In this section, we establish that Auction AD terminates with maximal CE prices and that these
prices correspond with the outcome of the one-sided VCG auction. The structure of the proof is

the same as for Auction NLD.
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The price space in Auction AD consists of prices on levels, together with an additive price
discount. We will provide an integral formulation of MAP-PI, from which we define dual prices

that correspond to prices in Auction AD.

max VjkTjf — CijkTijk MAP
DI SO [MAP]

Tijho LT o <0 i<n j<m k< O]
s.t. Z Tijk < Ti, Vi,Vj (6)
k<|®;]
Zyi <1 (8)
<n
> wigk > 2, Vi VE )
i<n
5 <1, Vi (10)
S S Vi )
k<|©;] i<n

B
Lijk, wjk:a LiyYi 2 0

In addition to variables z;;; and y; from formulation MAP-PI in Section 4.1, we introduce zﬁ

to define the level selected by the buyer and z; as an additional variable to indicate which seller
wins. The objective function is stated in terms of wﬁc for the levels selected by the buyer, and z;;;
to denote the levels selected by the sellers. Then, constraints (4) and (5) are restated as constraints
(6,7), with constraints (8) and (9) to model that the buyer can purchase only levels offered by a
seller. We explicitly allow ), z;jx = 0 for the efficient seller, for which y; = 1, because a seller
need not select a level for every attribute. Valid inequalities, (10) and (11) are introduced to isolate

additional dual variables with a useful economic interpretation.
Lemma 4. Linear program MAP is integral.

To construct the dual, introduce variables m;;, A;, 7B, Djk, i, and 7r]B , to correspond with
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constraints (6), (7), (8), (9), (10), and (11).

min 4y [DMAP]
Wij,Ai,ﬂ'B;pjkaWiﬂﬂ—jB i<n
st 8>S b4 A, Vi (12)
j<m
w7 > vk —pj, Vi, Vk (13)
m> Y mp - A, Vi (14)
j<m
Tij > Pjk — Cijk (15)

B B
Tijs Diy T, Djg, Wiy W5 2 0

Variables pj;, can be interpreted as the price on level k of attribute j, and variable A; can be
interpreted as the price-discount to seller 7. We show that an optimal dual solution exists in which
A; is the same for all agents, and write A; = A for all . (Variable A corresponds with the price

discount in Auction AD).

Definition 4. Prices (pjr,A) and feasible MAP solution (¢',i') are in competitive equilibrium if
bundle 0' simultaneously mazimizes the payoff to the buyer and seller i’ at the prices, and every

bundle is priced less than cost for all other sellers.

To establish that formulations MAP and DMAP characterize a competitive equilibrium, we
show that the complementary-slackness (CS) conditions between feasible dual and feasible primal
solutions correspond to conditions for competitive equilibrium.

Given prices pj; and discount A, the solution to DMAP provides the following dual values:

m; = max[( ) _ mij) — A, 0] (16)

j<m
- S — i 0 17
T4 krél%}](|[pjk Cijk, ] ( )
=Y "r’+A (18)
j<m
my = klgl‘%)j'{vjk — pjk, 0} (19)

Each dual variable now has a very natural economic interpretation: m; is the maximal payoff
to seller ¢ across all bundles at the prices; m;; is the maximal payoff to the seller across all levels of
attribute j (with the possibility of an opt-out); 7 is the maximal payoff to the buyer, and 7er is

the maximal payoff to the buyer for attribute j with the possibility of an opt-out. The interesting
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CS conditions that relate to seller 7, are:

T >0= > myp=xi,  Vi,Vj (20)
k<|©;]
m>0=>z,=1 Wi (21)
:Ci>0=>7TiZZ7TZ’j—A, Vi (22)
j<m
Tijk > 0= Tij = Pjk — Cijk; Vi, V75, VEk (23)

Note that 7; > 0 implies that the total discount-adjusted profit of a seller at the current prices
is non-negative, while m;; > 0 implies that the total profit on attribute j is non-negative considering
only the level prices on that attribute.

Given the interpretation of dual variables in (19), these state that every seller with positive
payoff for some bundle at the current prices must be a winner by CS condition (21), and that the
bundle selected in the primal solution must be exactly the bundle that maximizes the payoff of the
winning seller by CS conditions (20,22,23). The interesting CS conditions that relate to the buyer,

are:

>0= > zh =y, Vj (24)
k<|©;] i<n
>0=) yi= (25)
i<n
yi>0=>78 ="l + A, Vi (26)
j<m
B B __ .
Ty > 0= 7 =vjk —pjk, Vi, Vk (27)

Given the interpretation of dual variables in (19), these conditions state that the bundle selected
in the primal solution must be exactly the bundle that maximizes the payoff of the buyer at the

current prices. We call these “linear+discount” CE prices.

Proposition 5. Linear+discount CE prices always exist in the MAP with PI, and these prices

support the efficient allocation.

To characterize maximal CE prices we consider a restricted-dual formulation. Let W denote the
attributes for which a non-null level is selected in the efficient outcome, with * to index the winning
seller, and k; index the efficient level on attribute j € W. Then, the restricted dual is formulated

to compute prices p;;, A that maximize Zjeijk} — A, while maintaining CS conditions. The
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most important CS conditions are provided with:

Cimjky < Pjky < Ujks, ViEW (28)
<AL e 29

Constraints (28) provide CS conditions on each efficient attribute, while constraints (29) ensure
that only the winning seller has positive utility. Attributes j ¢ W and levels k # k} are priced to
provide CE conditions and maximize the payment to the winning seller. Set A* = max; ;= j gy
and set the other prices p;;, = max{0,v;; — Vjk; +ijj*.}, for j € W,k # k3, and any vji < pji <

min;4;+ ¢ for j ¢ W. Given this assignment, the problem reduces to solving for Pjk; to maximize

djew Pjk; — (max;+ Y ; mij), with the prices, pjx, on other attribute levels defined appropriately.

Proposition 6. The payments in the one-sided VCG auction are implemented in the mazimal

linear+discount CE prices in the case of preferential-independence.

Let II;; = maxy[vji, — ¢ijk, 0], i.e. the mazimal allocative surplus on attribute j from seller i. Let
i denote the second-best seller. Consider CE prices, Pik; = Uik ~ Zjs for some z; > 0 on attribute
J € W. To characterize maximal CE prices, we consider whether an increase in z; can also cause

a corresponding decrease in max;z;« ) j ijy SO that the total payment remains constant.

Lemma 5. The space of mazimal (linear+discount) CE prices are characterized by prices Pik; =

Ujk; —Zj fO’f‘j eW and A = Zj 7!';]-, with Zj < ng and Ej 7'(';]- > Mmax;4ix Zj Tij -

Note, for attributes j ¢ W, we can set any price vj; < pjr < minjz ¢

4.4.1 Primal-Dual Analysis

We demonstrate convergence of Auction AD to maximal CE prices for truthful MBR strategies.
First, we show that the auction implements a primal-dual algorithm for MAP, terminating with a
feasible primal and dual satisfying CS conditions (20) to (27). Then, we demonstrate conditions in
Lemma 5 are satisfied, and thus maximal CE prices.

Call an attribute “seller-efficient” for seller ¢ in the MAP when there is some level for that
attribute for which the buyer’s value is greater than the seller’s cost. Specifically, we refer to
the level that is surplus-maximizing for the seller and the buyer the seller-efficient level for this
attribute. To simplify the presentation, we assume that there are at least two sellers that are

seller-efficient on each attribute. All properties carry over to the more general case.
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To construct a feasible primal solution in each round, let z; and y; to correspond to the pro-
visional winner, with z;;; and sz defined to correspond with the levels that are selected in the
provisional outcome. Given ask prices (pz-k, AY), construct dual prices p;j = pE- o A = Al for all 4,

and with variables 75, m;;, m; and ﬁf implicitly defined to satisfy Equation (19).

Lemma 6. Auction AD maintains CS conditions (20,22,23,24,25) and (26) between the provisional
allocation and ask prices in each round, when sellers follow MBR strategies, with PI, and as the

minimal bid increment goes to zero.

Lemma 7. Auction AD terminates with a final allocation and prices that satisfy CS condition (21)

for MBR seller strategies, with PI, and as the minimal bid increment goes to zero.

CS condition (27) requires that the provisional allocation maximizes the buyer’s payoff, with
respect to the prices in the auction. In other words, the provisional allocation must be the best
allocation across all possible allocations at the final prices (not just across across the allocations
that are consistent with the bid from the winning seller). To establish this, we need that the winner

will bid on a most-preferred level for all attributes that are priced below value on termination.

Lemma 8. A seller bids on a monotonically-increasing set of most-preferred levels on every at-

tribute in each round while active in Auction AD and when PI holds.

Lemma 9. All sellers for which an attribute is seller-efficient bid on a most-preferred level in

Auction AD once the attribute is in-play and when PI holds.

Lemma 10. Auction AD maintains CS condition (27) between the provisional allocation and ask
prices on all attributes that are in-play when sellers follow MBR bidding strategies, with PI, and as

the minimal bid increment goes to zero.

Lemma 11. Sellers in Auction AD drop out of the auction in order of increasing allocative-surplus

in the MAP restricted to that seller alone when PI holds.

Lemma 12. Auction AD terminates with mazimal CE prices when sellers follow MBR bidding
strategies, and when PI holds.

4.5 Seller Dominance

In this section, we consider a separable special case of MAP with PI. We show that the MAP

separates across attributes when the efficient seller dominates the second-best seller on all attributes,
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and the second-best seller in turn dominates all other sellers. In this case, the MAP can be solved
with a simple iterative auction and linear CE prices exist without the aggregate discount term.
Thus, this characterization makes explicit the role of the aggregate discount in Auction AD. The
discount exists to support the efficient allocation and VCG payment when the efficient seller is not

the best seller across all attributes, and provides a compact alternative to non-anonymous prices.
Definition 5. Seller i is said to dominate seller i, written 1 > 1’ if
max|0, max v - cijk] > max|0, MAX Vjk — cijk), Vi (30)

That is, seller 7 dominates seller 7' if the maximal allocative surplus from seller 4 is better than
from seller ¢’ on all attributes. We define full dominance to refer to an auction in which the first-best

seller dominates the second-best seller who in turn dominates all other sellers.

Proposition 7. Linear and mazimal CE prices (with a zero discount term) exist in the MAP

problem if, and only if, there is both PI and full dominance.

In this case, the allocation problem is separable across attributes and a simple auction with
a separate price trajectory for each attribute is efficient and terminates with the one-sided VCG
outcome. Sellers submit independent bids for each attribute, and the winner is determined sep-
arately for each attribute, with prices pg-k adjusted on that attribute to € below the bid price of
losing bidders. No explicit coordination across the attributes is required because at the end of the
auction the efficient seller wins for every attribute, and the second-best seller sets the winning price

for every attribute.

4.6 Number of Rounds to Terminate in Auction AD

The price space in Auction AD is much smaller than in Auction NLD, and the auction converges
in a smaller (worst-case) number of rounds.

Let m denote the number of attributes, /| = max;|©;| the number of attribute-levels, and
Winax = miax[m]ax max p}k — ¢ijk), where p}k is the initial price on level k of attribute j. Auction
AD converges in rounds polynomial in [, m, Wp,y, and 1/e.

lmVIe/'max )

Proposition 8. Auction AD converges in O ( rounds, with minimal bid increment ¢, MBR

strategies and PL

Counter to this worst-case analysis, it is interesting (and somewhat surprising) that the compu-

tational analysis in the next section suggests that the average number of rounds is actually larger
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in Auction AD than in Auction NLD, even though the auction has better information-revelation

properties.

5 A Computational Analysis of Information Revelation

In this section, we provide computational results to demonstrate the useful preference-elicitation
properties of Auction AD with linear+discount prices, in the special case of MAP with PI. We
compare the information revelation that is required to compute the efficient outcome in Auction
AD with the information revelation that is required to compute the efficient outcome in Auction
NLD. These computational experiments are provided to illustrate how the use of an iterative
scheme mitigates the informational complexity associated with eliciting the complete cost and
value functions from the sellers and buyers as compared to standard one-sided VCG auction.

The results are presented for a simple simulation model in which we generate distributions over
values and costs that satisfy PI. We introduce a simple metric to measure the information revelation
in each auction in terms of the residual uncertainty about the buyer values and seller costs at the
end of the auction. The metric measures the space of possible values and costs that are ex post

consistent with the MBR strategies followed by participants when the auction terminates.

5.1 Measuring Information Revelation

To measure residual uncertainty about agent preferences when an auction terminates we assume an
additive form for the cost curves (value curves) for each attribute type. Introducing seller weights,

wij >0 (wf > 0), on attribute j, we can write the cost (value) function of a seller (buyer) as

ci(0) =) wijeij(05) (31)

Jj<m
v(6) =Y whv,(6;) (32)
Jj<m
Let w; = (w1, -- -, Wim) denote the weight vector for seller i, and w? = (w¥,...,wE) denote

the weight vector for the buyer. We normalize the weights so that Zj wij = land 0 < w; <1
for all attributes (similarly for the buyer). With this, we can encapsulate what is not known
about a seller’s preferences or a buyer’s preferences in a space of feasible weights for each attribute
type. Notice that the uncertainty is represented by the unit simplex irrespective of the form of the
functions v;(6;).

Every time a participant responds to prices we can add new constraints to the weight space.

Let p'(f) denote the ask prices on attribute bundles @ in round ¢ of the auction. In Auction AD
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these prices are defined in terms of the linear+discount price structure. Suppose that seller ¢ bids

on bundles 8* at these prices. Given a truthful MBR strategy, this implies the following constraints
on her weights:

PO = D wijeii (05) + € > p'(0)) = > wijei (6)), VO (33)

j<m j<m

Note that MBR implies that the payoff to the seller for her bid is maximal across all bundles

given the current prices, and that constraints (33) are linear in the space of weights. Additional

revealed-preference information in each iteration reduces the volume of the polytope, that is used

to represent the uncertainty in the weights. The residual volume is a measure of the information

that has not been revealed by a participant; i.e., large residual volumes indicate that there is still

considerable uncertainty about preferences. We define the normalized residual volume, Vol(C),

given a set of constraints C on weights w € [0, 1]™ as

1/m
Vol(C) = ( / . f(w)dw) (34)

where f(w) = 1 when weights w satisfy constraints C, and f(w) = 0 otherwise. We take the mth
root to normalize for the number of attributes (m) and provide a measure of the average residual
per-attribute uncertainty. A normalized volume of one represents complete uncertainty, while a
normalized volume of zero represents complete certainty and exact information.

We adopt a similar method to measure the information revelation from the buyer, via the
revealed-preference information in the solution to the winner-determination problem and in the
price updates in each round. This information revelation on the buy-side provides a measure of the
preference-elicitation cost that a buyer would face if we introduced dynamic bidding for buyers as
well as sellers (as discussed in Section 3.4).

Algorithmically, we maintain a list of constraints on weight space for each seller and the buyer,
introducing new constraints in each round. The normalized residual volume given current con-
straints is estimated using a simple Monte Carlo algorithm, in which we generate n.S uniform
random weight vectors and test whether the sample is within the feasible weight space region as
defined by the constraints. Let z(nS) denote the number of samples that are within the region.

We approximate the normalized residual volume as (z(nS)/nS)"/™.

5.2 Experimental Details

We consider a distribution on PI preferences that is parameterized by the number of bidders, n,

the number of levels, [, on each attribute, the number of attributes, m, and two constants, &® > 0
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and o® > 0. For each seller, i, we randomly select weight w;j ~ U(0,1) and then normalize so
that > j Wij = 1. Then, to generate a marginal cost function, ¢;;, for each attribute we randomly
select | values from U(0,® - 1) and sort these values to get the value of c;;(6;) evaluated at each
level 6; of attribute j. We define a weight vector for the buyer in the same way, and then generate
a marginal valuation function UJB for each attribute by selecting I values U(0,® -1). We choose
aB > o’ to model the idea that the value of the buyer is greater than the cost of the typical seller.

In our computational experiments, we assume that both the buyer and the sellers follow straight-
forward (truthful) bidding strategies. The buyer reports her true valuation function to the auction,
and the sellers follow truthful MBR strategies. By default, we set the number of sellers, the number
of attributes, and the number of attribute levels to 4, we set a® = 30 and of = 40, and we adjust
the minimal bid increment to achieve an allocative efficiency of at least 98%. We also remove from
the simulation any instances for which there is no competition and any instances in which there is
some attribute not supplied in the efficient outcome. All experimental results are averaged over 10
trials, and we performed 800 Monte Carlo samples in each round to track the information revelation
in each trial. We checked that our results are robust to performing larger numbers of Monte Carlo

samples.

5.3 Results

Figure 3 compares the information-revelation properties of Auction AD and Auction NLD on a
problem with 4 sellers, 4 attributes, and 4 levels per attribute. We plot the efficiency at termination
and the ratio of the buyer’s payoff at the end of the auction to the buyer’s payoff in the one-
sided VCG auction. The slight overshoot from the payoff in the VCG auction is due to the error
introduced because of the the minimal bid increment. We also plot the normalized residual volume
for three different sellers— the efficient seller, the second-best seller, and a random seller —along
with the normalized residual volume for the buyer. Recall that the normalized residual volume
provides a measure of the information that a participant has not revealed about her preferences.

The most interesting effect of moving from Auction NLD to Auction AD is on information-
revelation by the sellers. Notice that the sellers reveal complete information about costs in Auction
NLD, but are able to retain between 30-50% of their information in Auction AD. This saving does
come at some cost to the buyer, who retains around 20% of her information in Auction NLD but
must reveal all of her information in Auction AD.

Figure 4 compares the information-revelation properties between Auction NLD and Auction AD

as the number of sellers are increased. We plot the normalized residual volume, averaged across the
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Figure 3: Multiattribute Auction Problem: 4 Sellers, 4 Attributes, 4 Levels per attribute. Buyer surplus is
normalized to that of the surplus in the one-sided VCG auction. Normalized residual volume is plotted for
the buyer, and for three of the four sellers (the efficient seller, the second-best seller, and a random seller).
Results averaged over 10 trials.

buyer and the same three sellers as in the initial set of experiments, and investigate the effect of the
number of sellers on the information-revelation requirements. We see that Auction AD dominates
Auction NLD, for all numbers of sellers. It is also interesting to observe that increasing the number
of sellers seems to reduce the final information-revelation in both auctions, although the transients

in Auction AD show the opposite trend.

1 ‘ ‘ 1] : :
--- 3sellers --- 3sellers
—— 7 sellers —— 7 sellers
o8 | 15 sellers ] 0.8/ %, 15 sellers ]
— 25 sellers — 25 sellers
[0] (0]
1S S
=0.6% 30.6r
2\ 2
© ©
3 3
2 0.4r ° 0.4+
o o ==
0.2 0.2 |
5 10 15 20 25 30 35 20 40 60 80 100 120
rounds rounds
(a) Auction NLD. (b) Auction AD.

Figure 4: Multiattribute Auction Problem: 3 attributes, 3 Levels per attribute. Normalized residual volume
is averaged across the buyer, the efficient seller, the second-best seller, and another seller selected at random.
Results are averaged over 10 trials.
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Figure 5 compares the information revelation properties in Auction NLD and Auction AD
as we increase the number of levels on each attribute. As before, we take the average of the
normalized residual volume across, averaged across the buyer, and the same three sellers.* Auction
AD continues to dominate the performance of Auction NLD for all numbers of attribute levels.
Also, we see the same dichotomy in that while increasing the number of levels seems to increase

the final information-revelation in both auctions, the transients in Auction AD show the opposite

trend.
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Figure 5: Multiattribute Auction Problem: 2 attributes, 5 Sellers. Normalized residual volume is averaged
across the buyer, the efficient seller, the second-best seller, and another seller selected at random. Results
are averaged over 10 trials.

6 Conclusions

Multiattribute auctions can support the efficient procurement of configurable goods and services
through the combined use of expressive bidding languages and competition across suppliers. Ef-
ficient markets are central to procurement activity where buyers and suppliers are engaged in
long-term relationships. Allocative efficiency, rather than pure profit-maximization for the buyer,
is important to sustain the relationship in these strategic situations. In addition, due to power
asymmetry (typically big buyers and small suppliers) and due to the cost of preference elicitation
and concern about revealing value- and cost-information, it is important that these protocols solve

problems with minimal information revelation.

AThese experiments were performed with buyer valuation functions parameterized with o = 60.
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We proposed two models for iterative multiattribute procurement auctions. The auctions are
price-based and support incremental bidding from suppliers. Auction NONLINEAR& DISCRETE
solves general problems and employs a large price space while Auction ADDITIVE&DISCRETE is
optimized for the important special case of preferential independence and employs a compact linear
price space with an aggregate price discount. The auctions support straightforward bidding by sell-
ers, and bound the possible gain from manipulation to buyers. Computational results demonstrate
that Auction AD allows for a significant reduction in information-revelation over one-shot auctions,
with the average seller retaining around 50% of her cost information at termination.

Looking to future work, in considering the preference-elicitation properties of multiattribute
auctions we are interested to continue the study of accelerated auctions that was initiated in Sun-
deram & Parkes (2003). The idea is to allow multiple virtual rounds between proxy agents and
the auction, and only fall back and ask for additional bids from suppliers when no progress is
possible within the auction. Another recent idea is to use computational learning theory to gen-
erate elicitation queries (Lahaie & Parkes 2004). We also find it interesting to explore the role of
hybrid auctions (Porter et al. 2003, Ausubel & Milgrom 2004), with linear prices used in the early
stage as a method to perform elicitation, coupled with a final one-shot stage. Finally, we identified
an interesting tension between allowing adaptive buy-side strategies and providing incentives for
straightforward bidding on the sell-side. We are interested to understand how effective a proxy
agent, able to constrain a buyer to follow a bidding strategy with consistent revealed-preference

information, would be in mitigating this effect.
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Appendix: Proofs for “Models for Iterative

Multiattribute Procurement Auctions”

David C. Parkes * and Jayant Kalagnanam f

July 15, 2004

1 Full Proofs

Proposition 1. The ex post regret to the buyer from truthful bidding in the one-sided VCG auction,
given straightforward seller strategies, is at most the marginal product MP;«, of the efficient seller

(defined with respect to reported seller costs).

Proof. Given bids c1,...,c, from sellers, the buyer’s problem is to report a valuation ¢ to solve
maxgev{v(d) — (cz(é) +1II(9; ¢) =II(9;¢_;)) }, where V is the space of valuation functions and (0,1) is
the outcome of the auction. The buyer can do no better than submit a bid, 9, that still supports the
efficient outcome, while also setting TI(?,c) = II(9,c_;), so that her payment is the reported cost
of the winning seller, but no more. In doing so, the buyer makes it appear that she is indifferent
between the efficient and second-best outcomes and takes all the surplus, II(v,¢), providing an

increase in utility of II(v; c) — II(v;c_s» ) = MPys. a

Proposition 2. Auction NLD with straightforward bidding terminates with the efficient outcome
and the payment in the one-sided VCG auction for a truthful buyer, and as the minimal bid incre-

ment € goes to zero.

Proof. First, termination with the efficient allocation follows from LP duality. Second, termination
with the VCG payments follows from the equivalence between maximal CE prices and one-sided

VCG payments (Proposition 3), and from Lemma, 3. O

*parkes@eecs.harvard.edu, Division of Engineering and Applied Sciences, Harvard University, 229 Maxwell-
Dworkin, 33 Oxford Street, Cambridge, MA - 02138

fjayant@us.ibm.com, IBM Research Division, T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY -
10598



Theorem 1. Truthful MBR is an ex post Nash equilibrium for sellers in Auction NLD as the

minimal bid-increment goes to zero, whatever the reported valuation © of the buyer.

Proof. Suppose that all sellers except seller 1 follow a MBR strategy, and let ¢; denote the cost
function revealed by all sellers 7 # 1 through this strategy. For any bidding strategy, si, from
seller 1, we can construct an equivalent MBR strategy (for some cost function ¢;) that implements
the same outcome. From this, strategy s; selects the one-sided VCG outcome for report ¢;, and
truthful MBR is a best-response from the dominant-strategy truth-revelation of the one-sided VCG
auction for sellers. Consider the interesting case, when the auction terminates with seller 1 winning
some bundle § at some price p. We show that MBR with cost function & (6) < p, and & (6') = oo
for all &' # é, will select an outcome at least as good as (é, p). The seller must continue to win
with MBR, because she will always bid on bundle 6 at price p before leaving the auction, and we
know that this offer will dominate the bids from other sellers given the buyer’s reported valuation.
Also, if the seller wins, then it is at some price p > p because otherwise another seller was able to

compete at (9, D)- O

Lemma 1. Prices Po(0%) = ci+(0*) + MP;+, with D.(¢') = min;i«{c;(6")} on all &' # 6* are

mazimal CE prices.

Proof. For the buyer, we need p(6*) < v(6*) —v(0') + p(#') for all @' # 6*. For the losing sellers, we
need p(6) < miny«{cy(0)} for all . In particular, we can set p(0') = miny 2+ {cy (0"}, VO' # 6%,

and Pe(67) = min{o(6%) — maxp o i (0(0") — (@), minigie (6} = 0(6%) — (0(6) — ;(6) =
ci+(6*) + MP;+, where (0,7) denotes the second-best outcome, the solution to MAP(Z \ i*). a

Lemma 2. Auction NLD maintains ask prices that e-dominate the maximal CE prices when all

sellers follow a truthful MBR bidding strategy.

Proof. We prove p!(0) + € > P.(6) for all 6 in round ¢ > 1 by induction on ¢. The base case is
trivial as long as the initial prices are high enough. To prove the inductive case, we consider an
unsuccessful bid on some bundle ' and demonstrate that we cannot have p'(') < p,.(0'). First,
suppose that the unsuccessful bid comes from a seller ¢ # ¢*. From MBR, seller ¢ # i* only bids on
bundles 0" with pt(8") > ¢;(6"). Therefore, seller i # i* does not bid for 8’ when p(8') < P.(¢'),
because p'(0’) < Pe(0') < min; i+ ¢;('). Second, suppose the unsuccessful bid on 6 comes from
seller 7*. In this case, she will also bid for 8%, because the seller bids for * in CE and the current

price on 6* is at least as favorable in comparison to the price on &' as in equilibrium, by the induction



hypothesis. But, if the seller bids on #* and 6’ then the price on #* must be within € of p . (6*),

and the bid on 6* would be accepted and the seller successful. A contradiction. O

Lemma 3. Auction NLD terminates with mazimal CE prices when sellers follow a truthful MBR

strategy, and as the minimal bid increment goes to zero.

Proof. (Case II(v;c;) > 0). From Lemma 2, sellers ¢* and 7 bid in every round, because c;+(6*) —
pH(0%) > ¢« (0%) —Pee(0*) > 0 and c;(é) —pt(0) > Pe.(0) = q(é) At termination we must have p'(6)
equal (within €) to P (#), otherwise the second-best seller is still actively bidding. From this, we
must also have p!(6*) equal (within €) to P.(6*), because otherwise the buyer will select the bid
from seller 7 instead of seller ¢* because the buyer is exactly indifferent between these two bundles
at the maximal CE prices. (Case II(v;c;) < 0). We must have that the price p(6*) > v(0*) when

seller ¢ drops out. Thus, the efficient seller is offered a price p(8*) = v(#*), which is the maximal

CE price. 0

Proposition 4. Auction NLD converges in O (lmVT‘na") rounds, with minimal bid increment € and

MBR strategies.

Proof. The maximal number of rounds that seller i can be unsuccessful in the auction and still have
non-negative surplus at the prices is N; = [I" maxy(p' (9) — c;i(6)) /€], assuming the seller bids for a
single attribute in each round. After Ny, = max;{N;} rounds, at most Np,y valid price decreases
remain, one for each provisional winner in each round. Running for a further Ny, rounds must

take care of this. O
Lemma 4. Linear program MAP is integral.

Proof. Ignore redundant constraints (10) and (11), which are implied by constraints (8), (7), (9),
and (6). Note that acJBk = >, Tij in the optimal solution. Let u;;; = v;; — ci;x and suppose, w.o.l.g.,
an ordering over k s.t. u;j1 > u;j2 > ..., for all 4, j. Then, the optimal setting is z;;1 = z; = y; when
uij1 > 0, for all 4, j, with z;;; = 0 otherwise, and x;;; = 0 for allk # 1, all 4, j. Taking the interesting
case, that z;;; = y; for all y;, the problem now reduces to max,, » (Z y Uz’jl) vi = »; Viyi, where

Vi =>_;uiji- Integrality of y;, z;;x, and :z;fk, follows. 0

Proposition 5. Linear+discount CE prices always exist in the MAP with PI, and these prices

support the efficient allocation.



Proof. Efficiency follows from the integrality of the primal formulation, and the correspondence
between CS conditions and the definition of CE prices. For existence, consider prices p;; = v;; and
discount A = II(v, c_4~), where ¢* is the efficient seller. The efficient allocation trivially satisfies all

CS conditions given these prices. ad

Proposition 6. The payments in the one-sided VCG auction are implemented in the mazimal

linear+discount CE prices in the case of preferential-independence.

Proof. Consider prices pj; = vj), for all attributes j, and all levels k, with A* = max;4; ) | i Tij =
II(v,c—4~). These prices are maximal because prices Pjk; are maximal w.r.t. constraints (28), and
maX;£i Y, ; ij can increase by at most ¢ for every increase in § to a price on the efficient level
of some attribute and so the net effect on revenue is always at worst neutral. The total payment,

v(0*) — (v, c;), is exactly that in the one-sided VCG auction. O

Lemma 5. The space of mazimal (linear+discount) CE prices are characterized by prices Pjk; =

vjkr — zj for j €W and A =3 my;, with z; <TI;; and 35 m;; > maXiz- ) mij.

Proof. As z; increases, the total Zj ;5 decreases by ) zj, because z; < H;j and so the price
to seller ¢ on her most-preferred attribute level remains greater than her cost with prices set as,
pjr = max{0,vj; — Vjk -I—pjk;}, for j € W,k # k. In addition, we have Zj T;; > MaXiy Z]- Tij,
and so the total payment remains constant because the total fall in level prices on the efficient

bundle is exactly counterbalanced by a fall in the discount, A = >_ T O

Lemma 6. Auction AD maintains CS conditions (20,22,23,24,25) and (26) between the provisional
allocation and ask prices in each round, when sellers follow MBR strategies, with PI, and as the

minimal bid increment goes to zero.

Proof. CS conditions (20,24) and (25) hold trivially, because values are assigned to primal variables
Ti, Tijk,Yi to make their right-hand sides true. Similarly, CS condition (26) holds trivially, by the
definition of 7 in Equation (19). Constraints (22) and (23) follow from seller MBR, and from the

construction of the provisional allocation. O

Lemma 7. Auction AD terminates with a final allocation and prices that satisfy CS condition (21)

for MBR seller strategies, with PI, and as the minimal bid increment goes to zero.

Proof. The auction terminates when the only active seller is winning in the provisional allocation,

at which point (21) holds by seller MBR. O



Lemma 8. A seller bids on a monotonically-increasing set of most-preferred levels on every at-

tribute in each round while active in Auction AD and when PI holds.

Proof. First, rules not-b and in drop the price on all attribute levels that receive bids from a seller,
but not by so far that a seller’s utility from one of these levels would come to be dominated by her
utility for a level on which it is not bidding.! Second, rule not-a drops the price on levels that are

not most-preferred, making them less attractive relative to most-preferred levels. ad

Lemma 9. All sellers for which an attribute is seller-efficient bid on a most-preferred level in

Auction AD once the attribute is in-play and when PI holds.

Proof. By contradiction, assume an attribute comes into play in round ¢ but that seller 1 does not
bid on a most-preferred level. Clearly, seller 1 did not bid on a most-preferred level in the previous
round either (by Lemma 8). So, we must have used rule not-a. But, rule not-a cannot adjust the
price on an attribute to bring it in-play because the buyer preferred other levels, but they were not

priced low enough to be in-play. O

Lemma 10. Auction AD maintains CS condition (27) between the provisional allocation and ask
prices on all attributes that are in-play when sellers follow MBR bidding strategies, with PI, and as

the minimal bid increment goes to zero.

Proof. We demonstrate that CS condition (27) holds whichever active seller is the provisional
winner. Once an attribute j is in-play, either this attribute is seller-efficient and a seller bids on
a most-preferred level by Lemma 9, and we have (27). Alternatively, when an attribute is not
seller-efficient but the seller remains active, then price rule in prevents the price from falling more

than e below the buyer’s reported value on any level of this attribute and we have (27). a

Lemma 11. Sellers in Auction AD drop out of the auction in order of increasing allocative-surplus

in the MAP restricted to that seller alone when PI holds.

Proof. Only price rules not-b and discount can price a seller out of the auction. Rule not-b requires
that all sellers are bidding on a most-preferred level, and the discount rule is only used when the

auction stalls, which can only occur when every attribute is in-play. Recall from Lemma 10 that CS

!For instance, if a seller bids on level k; in attribute 1 in round ¢, then there can be no level k' # k1 for which
Pt —cip > p‘i}'c'll —citk, +e€, because even if pit! = pi,, then this gives pl, —ciipr > Piy, —€—citk, +€ = pix, —Citky,
which would imply that the seller should have also bid for &’ in round ¢. Similarly, if a seller bids on multiple attribute
levels in round ¢, then the seller cannot now bid only on one of these levels in the next round because the price on

both levels increases.



condition (27) holds once an attribute is in play, for any seller. So, whenever a seller drops out of
the auction, every seller bids on her seller-efficient level for all seller-efficient attributes (or at least
her “most competitive” level for other attributes). Also, because seller bids on a most-preferred
level, then the buyer has the same payoff from the bids from each seller. Let 7n?(¢) denote this
payoff in round ¢. Finally, the utility to every seller still active is II(v,c;) — 72(t), and sellers

drop-out in order of increasing II(v, ¢;). a

Lemma 12. Auction AD terminates with mazimal CE prices when sellers follow MBR bidding
strategies, and when PI holds.

Proof. First, all attributes are in-play before termination as long as there are at least two sellers for
which an attribute is seller-efficient, for every attribute. To see this, notice that either rule not-a or
rule not-b must fire when there is a losing seller that remains active but an attribute is not in-play.
Second, from Lemmas 6, 7, and 10 the auction terminates with CE prices. Third, from Lemma 11,
the last seller to drop out is the second-best seller 7. So, as € — 0, we have A = Z]- L because
the second-best seller is pivotal, with utility equal to zero when the auction terminations. Also,
we have A = 37, T;; 2 MaXiz >_j Tij, since the other sellers already dropped out. Finally, the
second-best seller remains active on all attributes that are in her seller-efficient outcome by Lemma
9. This provides p i > c; e for second-best seller 7 and seller-efficient level l~cj, which together
with Vjky — Pjk; R Uk~ Pk (since both the efficient- and second-best seller bid on most-preferred
levels), also provides Pjks = Vjks = Zj with z; < T3 (Notice that if attribute j is not selected in
the efficient outcome then vjj ~ Djk; by rule in. ) Putting this together, the final prices satisfy

the characteristics in Lemma 5, and are maximal-CE prices. ad

Proposition 7. Linear and mazimal CE prices (with a zero discount term) exist in the MAP

problem if, and only if, there is both PI and full dominance.

Proof. Let m;; = max[0, maxy v — Cij &), Where 1 is the second-best seller. We need to adjust prices
Pjk; from Vjkr 10 vk — 2, by zj = m;; for all attributes j, so that A = V(T \i) - Zj zj = 0. By
Lemma 5, this is feasible if and only if m;; > m;; for all i # {i*,7} and all j (in other words 7 > 1),

and z; < Vjk: — Citjk; (in other words i* >> 1). O

lmVL’max )

Proposition 8. Auction AD converges in O ( rounds, with minimal bid increment ¢, MBR

strategies and PL



Proof. The proof follows the structure of the proof for Auction NLD. Here, notice that any unsuc-

cessful seller still bidding in the auction faces a smaller overall price on the bundle in her current

bid in the next round, either through a lower pz-;gl or a higher discount At!, O
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