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Abstract

We put forward a new model of congestion games where agents have uncer-

tainty over the routes used by other agents. We take a non-probabilistic approach,

assuming that each agent knows that the number of agents using an edge is within

a certain range. Given this uncertainty, we model agents who either minimize

their worst-case cost (WCC) or their worst-case regret (WCR), and study implica-

tions on equilibrium existence, convergence through adaptive play, and efficiency.

Under the WCC behavior the game reduces to a modified congestion game, and

welfare improves when agents have moderate uncertainty. Under WCR behav-

ior the game is not, in general, a congestion game, but we show convergence and

efficiency bounds for a simple class of games.

1 Introduction

Congestion games Rosenthal [1973] provide a good abstraction for a wide spectrum of

scenarios where self-interested agents contest for resources, and can be conveniently

analyzed using game-theoretic tools.

Recently, more complex models of congestion games have been suggested, taking

into account the incomplete information agents may have when making a decision

(e.g. Ashlagi et al. 2009 and Piliouras et al. 2013; see Related Work). Uncertainty

may stem from multiple sources, including uncertainty about the state of nature– and

thus the cost of resources –or about other agents’ actions. We can imagine commuters

choosing routes home from work and facing uncertainty about road conditions (e.g.,

weather, roadworks) as well as about the routes selected by others.

Rather than model uncertainty through a distributional model, we adopt a non-

probabilistic approach of strict uncertainty. Indeed, extensive experimental and empiri-

cal studies have demonstrated that people have difficulties in representing probabilities,

and often adopt other heuristics in place of probabilistic reasoning Tversky and Kahneman

[1974]; Slovic et al. [1980]. With strict uncertainty, each player faces a set of possible

∗Parkes is supported in this work by the TomKat Charitable Trust.
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states, where the cost of each action depends on the (unknown) actual state, and deci-

sions take into account risk attitudes and other biases, often applying heuristics rather

than optimization. Such alternative approaches to decision making in general, and to

uncertainty in particular, have deep roots in the AI literature, largely due to the works of

Herbert Simon on bounded rationality and procedural rationality Simon [1957, 1987].

Having adopted a non-probabilistic approach, we must make two crucial model-

ing decisions. First, we must decide how each agent acts in the face of strict un-

certainty. The simplest behavior follows a minimax approach Wald [1939]; Simon

[1957], and assumes that the decision maker is trying to minimize her worst-case

cost (WCC). Another approach seeks to minimize the worst-case regret (WCR) of

the decision maker, which goes back to Savage 1951, and has been also applied to

games Hyafil and Boutilier [2004]. Both cost measures are worst-case approaches, and

suitable as an abstraction for the behavior of a rational but risk-averse agent.

Second, we need to determine which states are considered possible by the agents.

To construct the set of possible states, we adopt the recent model of distance-based

uncertainty Meir et al. [2014]. All agents share the same belief about the current “ref-

erence state” of the network (i.e., the load on every edge in a routing game), which

may be available for example from an external source such as traffic reports, or from

an agent’s previous experience. However agents vary in the accuracy they attribute to

the reference state. Each agent i has an uncertainty parameter, ri, which reflects a belief

that the actual load is within some distance ri of the reference load. A higher ri may

reflect either that an agent is less informed about the true congestion, or, alternatively,

that she is more risk-averse.

From each heuristic (WCC or WCR) we can derive a natural equilibrium concept.

Intuitively, every action profile induces a reference state s, and we consider the heuris-

tic best response of every agent to the set of possible states around s. State s is an

equilibrium if every agent minimizes her worst case cost (or regret) by keeping her

current action.

As a simple example, if in some profile 100 players are using a resource, then

agent i believes the actual load to be anywhere between 100/ri and 100ri. If ri =
1 for all agents, we get the standard complete information model as a special case:

both minimax cost and minimax regret collapse to simple cost minimization, and our

equilibrium notion coincides with Nash equilibrium.

Our contribution. We study equilibrium behavior in nonatomic congestion games,

under our strict, distance-based model of uncertainty. For simplicity and concreteness,

we focus our presentation on routing games, where resources are edges in a graph, and

valid strategies are paths from source to target.1With worst-case cost players, we show

that the game reduces to a modified, complete-information routing game with player-

specific costs. Further, if all agents have the same uncertainty level we get a potential

game.

We are interested in how equilibrium quality (measured by the price of anarchy Roughgarden and Tardos

[2004]) is affected by introducing uncertainty. For routing games with affine cost func-

tions, we show that the price of anarchy (PoA) under uncertainty decreases gradu-

1Any congestion game is equivalent to a routing game.
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ally from 4
3 (without uncertainty) to 1, and then climbs back up, proportionally to the

amount of uncertainty. We also show that in a population of agents with different un-

certainty levels, the PoA is bounded by the PoA of the worst possible uncertainty level

in symmetric affine games on parallel networks.2

With worst-case regret players the induced game is no longer a congestion game.

Yet, we show that for a simple class of games a weak potential function exists, and thus

equilibrium existence and convergence results are available. We give some preliminary

results on PoA bounds with worst-case regret players. Due to space constraints most

of our proofs are omitted, and are available in a separate Appendix.

2 Preliminaries

Nonatomic routing games. Following Roughgarden 2003 and Roughgarden and

Tardos 2004, a nonatomic routing game (NRG) is a tuple G = 〈G, c,m,u,v,n〉, where

• G = (V,E) is a directed graph;

• c = (ce)e∈E , ce(t) ≥ 0 is the cost incurred when t agents use edge e;

• m ∈ N is the number of agent types;

• u,v ∈ V m, where (ui, vi) are the source and target nodes of type i agents;

• n ∈ R
m
+ , where ni ∈ R+ is the total mass of type i agents. n =

∑

i≤m ni is the

total mass of agents.

We denote by Ai ⊆ 2E the set of all directed paths between the pair of nodes

(ui, vi) in the graph. Thus Ai is the the set of actions available to agents of type i. We

denote by A = ∪iAi the set of all directed source-target paths. We assume that the

costs ce are non-decreasing, continuous and differentiable.

A NRG is symmetric if all agents have the same source and target, i.e., Ai = A for

all i. A symmetric NRG is a resource selection game (RSG) if G is a graph of parallel

links. That is, if A = E and the action of every agent is to select a single resource

(edge).

Game states. A state (or action profile) is a vector s ∈ R
|A|×m
+ , where sf,i is the

amount of agents of type i that use path f ∈ Ai. In a valid state,
∑

f∈Ai
sf,i = ni.

The total traffic on path f ∈ A is denoted by sf =
∑m

i=1 sf,i. The load state s ∈ R
|E|
+

is a vector of aggregated edge loads derived from state s, where se =
∑

f :e∈f sf . This

is the total traffic on edge e ∈ E via all paths going through e. We also allow load

states that cannot be derived from a valid state.

Note that all the information relevant to the costs in state s is specified in the load

state s: all agents using a particular edge e suffer a cost of ce(se) in state s, and the cost

of using a path f ∈ Ai is c(f, s) =
∑

e∈f ce(se). Thus except in settings where agents’

2In the AAAI’15 published version, the last result was stated for any affine game, which is incorrect. A

counter example appears in Brown and Marden [2017]. We thank Philip Brown for pointing this issue out.
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types or exact strategies matter, we may use s and s interchangeably. The social cost

in a profile s is

SC(s) =
m
∑

i=1

∑

f∈Ai

sf,ic(f, s) =
∑

e∈E

sece(se).

The second equality is since we multiply the cost c(t) by the mass t (“number of

agents”) who experience it.

Equilibrium and potential. Without uncertainty, a state s for an NRG is an equi-

librium if for every agent type i and actions f1, f2 ∈ Ai with si,f1 > 0, c(f1, s) ≤
c(f2, s). That is, if no agent can switch to a path with a lower cost. This is the analogy

of a Nash equilibrium in nonatomic games.

In nonatomic games, φ(s) is a potential function, if any (infinitesimally small) ra-

tional move, i.e., a move that decreases the cost of the moving agents, also lowers the

potential. φ(s) is a weak potential function if at any state there is at least one such move

(although some rational moves may increase φ). Any game with a potential function

is acyclic, in the sense that such “infinitesimal best responses” of self interested agents

are guaranteed to converge to a local minimum of the potential function (and an equi-

librium). A game with a weak potential may have cycles, but from any state there is

some path of rational moves that leads to an equilibrium.

It is well known that NRGs have a potential function, which is defined as (we omit

the argumentG when it is clear from the context): φ(s) = φ(G, s) = ∑

e∈E

∫ se
t=0

ce(t)dt.
Furthermore, in a NRG every local minimum of the potential is also a global mini-

mum; all equilibria have the same social cost; and in every equilibrium all agents of

type i experience the same cost Aashtiani and Magnanti [1981]; Milchtaich [2000];

Roughgarden and Tardos [2004].

Affine routing games. In an affine NRG, all cost functions take the form of a linear

function. That is, ce(t) = aet+ be for some constants ae, be ≥ 0. In an affine game G,

the social cost can be written as SC(G, s) =
∑

e∈E ae(se)
2 + bese; and the potential

as φ(G, s) = ∑

e∈E
1
2ae(se)

2 + bese. Pigou’s example is the special case of an affine

RSG with two resources, where c1(t) = 1 and c2(t) is defined with b2 = 0. We will use

variations of this example throughout the paper, and denote by GP (a2, n) the instance

where c2(t) = a2t, and there is a mass of n agents.

Potential and social cost. The social cost of every NRG can be written as the po-

tential of a suitably modified game. For this, let Ĝ be a modification of G, where

we replace every ce(t) with ĉe(t) = ce(t) + tc′e(t). Then, φ(Ĝ, s) = SC(G, s) for

all s Roughgarden [2007]. For an affine game, the modified cost function is ĉe(t) =
2aet+ be; and φ(Ĝ, s) = ∑

e∈E ae(se)
2 + bese = SC(G, s).

The price of anarchy. Let EQ(G) be the set of equilibria in game G. The price

of anarchy (PoA) of a game is the ratio between the social cost in the worst equi-

librium in EQ(G) and the optimal social cost. Since all equilibria have the same

4



cost, we can write PoA(G) = SC(s∗)
SC(OPT ) , where s

∗ is an arbitrary equilibrium of

G. In affine NRGs, it‘ is known that PoA(G) ≤ 4
3 , and this bound is attained by

GP (1, 1) Roughgarden and Tardos [2004].

3 Introducing uncertainty

In our strict uncertainty model, there is an underlying base game G, which is a NRG.

However given an action profile (state) s, each agent believes that there is some set of

possible states, and selects her action based on worst-case assumptions.

To define this set of possible states, we augment the description of every agent

type with an uncertainty parameter ri ≥ 1, and denote r = (ri)i≤m. The special

case where all ri = r is called homogeneous uncertainty. We adopt distance-based

uncertainty, so that in a given state s (where the actual load on edge e is se), a type i
agent believes that the load is anywhere in the range [se/ri, se · ri]. Consequently, the

agent believes that the cost she will suffer from using resource e is between ce(se/ri)
and ce(se · ri). Agents apply this reasoning separately to each resource, thus the load

state s
′ is considered possible in load state s by a type i agent, if s′e ∈ [se/ri, se · ri]

for all e ∈ E.3

In other words, consider the distance metric d(s, s′) = min{x ≥ 0 : ∀e ∈ E, se ≥
s′e
1+x ∧ s′e ≥ se

1+x}. Then S(s, ri) = S(s, ri) = {s′ ∈ R
|E|
+ : d(s, s′) ≤ ri − 1} is

the set of load states that a type i agent believes possible given s. Note that s′ may not

correspond to any actual state s′, e.g. the total load on all paths may not sum up to total

mass n, as an agent may not know exactly how many other agents participate.

3.1 Behavior and equilibria

Worst-case cost. Under the WCC model, each agent cares about the worst possible

cost of each action. Thus for an agent of type i, the effective cost of choosing path

(action) f ∈ Ai in state s is c∗i (f, s) = max{c(f, s′) : s′ ∈ S(s, ri)}.

Every NRG G and uncertainty vector r induce a new nonatomic game G∗(r), where

the cost functions are c∗i . That is, a type i agent playing so as to minimize her worst-

case cost in G, behaves exactly like a “rational” type i agent (minimizing exact cost)

in G∗(r). A priori, G∗(r) is not a NRG, but it has a very similar structure. For every

action f ∈ Ai, according to the WCC model,

c∗i (f, s) =
∑

e∈f

max{ce(s′e) : s′ ∈ S(s, ri)} =
∑

e∈f

ce(rise).

Since ce(rit) can be written as a player-specific cost function, c∗i,e(t), we have that

G∗(r) is a NRG with player-specific costs Milchtaich [2005], where each player type

can adopt a different cost function; e.g., for affine games c∗i,e(t) = riaet+ be.

3In the language of modal logic, we say that the s
′ is accessible from s if the above holds. Our acces-

sibility relation is symmetric, but non-transitive. While transitivity is a well accepted axiom in epistemic

models Aumann [1999], we argue that it does not make sense when there is a natural metric over states.
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c1(s1)

c2(s2)

c∗1(s1)

c∗2(s2)

c
∗
∗(e

1 ,
s)

c
∗
∗(e

2 ,
s)

Figure 1: Two resources with base costs c1(s1) = 5+ s1, c2(s2) = 2+ s2. The figure

shows the true costs for s1 = 3, s2 = 5. The dotted brackets show the range of possible

costs for r = 2, where the upper bracket is the WCC cost. The dashed lines are the

WCR costs. We can see that the better resource under WCC is e1, but e2 is better under

WCR, as c∗∗(e2, s) = 12− 6.5 = 11− 4.5 = c∗∗(e1, s).

Worst-case regret. We get a different modified game, G∗∗(r), under the WCR model.

The regret (for a type i agent) of playing action f in state s′ is defined as REGi(f, s
′) =

c(f, s′)−minf ′∈Ai
c(f ′, s′). Given this, the cost c∗∗i (f, s) in the modified game, which

is the worst-case regret a type i agent may suffer for playing f , is defined as:

c∗∗i (f, s) = max{REGi(f, s
′) : s′ ∈ S(s, ri)}.

This cost function c∗∗i (f, s) does not have a natural decomposition to edge-wise

costs, since regret depends also on the load on unused edges. An example of WCC and

WCR costs in a simple 2-resource RSG appear in Figure 1.

Equilibrium. A WCC equilibrium is a state where no agent can improve her worst-

case cost w.r.t. her uncertainty level. By definition of the cost function c∗, the WCC

equilibria of G for uncertainty values r are exactly the Nash equilibria of G∗(r). Sim-

ilarly , a WCR equilibrium is a Nash equilibrium of G∗∗(r). Since both of G∗(r) and

G∗∗(r) are special cases of nonatomic games, existence of equilibria follows from gen-

eral existence theorems Schmeidler [1973]. However the other properties of NRG, such

as the existence of a potential function, and bounds on the PoA, are not guaranteed.

4 Routing Games with WCC players

Equilibrium and convergence. For the special case of ri = r for all i ≤ m, it is not

hard to see that G∗(r) is a non player-specific NRG. This is since c∗e,i(s) = ce(r · se)

6



is only a function of se. We denote this modified cost function by cre(t). It follows

that G∗(r) is a potential game, where φ(G∗(r), s) =
∑

e

∫ se
t=0 c

r
e(t)dt. Thus G∗(r) is

acyclic, the equilibria of G∗(r) are the minima of φ(G∗(r), s), and all equilibria have

the same social cost.

The more interesting question is what properties of NRG are maintained when

agents have different uncertainty parameters. We have already noted that in G∗(r)
there is at least one equilibrium. Player-specific RSGs are known to have a weak

potential Milchtaich [1996], but this does not preclude cycles. Indeed, we show that a

cycle may occur even in an RSG where agents only differ in their uncertainty level.

Proposition 1. There is an RSG G with 3 resources, and a vector r s.t. G∗(r) contains

a cycle.

4.1 Equilibrium quality for affine games

Recall that under the WCC model, agents play as if they take part of the game G∗(r),
while their actual, realized costs are those in underlying game G. We thus define the

Price of Anarchy for WCC players with uncertainty vector r as:

C− PoA(G, r) = max
s∈EQ(G∗(r))

SC(G, s)
SC(G, OPT (G)) .

We focus our analysis on games with affine costs, and look for bounds onC− PoA(G, r).
In particular, we explore whether players with uncertainty reach better or worse social

outcomes under WCC behavior than under standard, complete information equilibria.

Homogeneous uncertainty. We start with the simplifying assumption that ri = r for

all types. Recall that in this case G∗(r) is a non player specific NRG, where the cost

of each edge is modified to cre(t) = raet + be. These modified costs can be attained

in other contexts that do not involve uncertainty. For example, this can be achieved

through taxation Cole et al. [2003]. Following the discussion in Potential and Social

Cost, an optimal taxation scheme would perturb the cost functions so that the realized

cost is ĉe(t) = ce(t)+tc′e(t), as this will guarantee that φ(Ĝ, s) = SC(G, s) for all s. In

this way, minimizing the potential of Ĝ, as happens in equilibrium, also minimizes the

social cost in G (see Section 18.3.1 in Roughgarden 2007 for a detailed explanation).

For the special case of affine games, it is easy to see that the effect of uncertainty

level r = 2 is equivalent to that of an optimal taxation scheme. That is, φ(G∗(2), s) =
SC(G, s) for all s. This means that if all agents adopt the WCC viewpoint for an un-

certainty type of r = 2, then they would play the social optimum. Unfortunately, the

value of r is not a design parameter—we cannot decide for the agents how uncertain

they should be, since this reflects their beliefs. We would therefore like to have guaran-

tees on equilibrium quality for any value of r. The next lemma provides our first result

in this direction.

We denote φr(s) = φ(G∗(r), s). It will be convenient to treat the cases r ≥ 2 and

r ≤ 2 separately.

7
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Figure 2: The solid red lines are upper- and lower-bounds on q∗(r), i.e. the maximum

PoA, across all games, for WCC players with uncertainty parameter r (the lower bound

is also exactly q∗P (r), the maximum PoA across Pigou examples). The blue dashed line

is exactly q∗∗P (r). The dotted lines mark 4/3 and 1.

Lemma 2. Let G be an affine NRG, and suppose that r ≥ 2. Then for all s, φr(s) ∈
[SC(G, s), r

2SC(G, s)].

Proposition 3. For r ≥ 2, and any affine NRG G, C− PoA(G, r) ≤ r
2 .

Proof. Let s∗ be a global optimum of φr, sO = OPT (G). By Lemma 2 SC(G, s∗) ≤
φr(s∗) ≤ φr(sO) ≤ r

2SC(G, sO).

We can similarly derive a bound of 2/r for the range r ∈ [1, 2), but we can do

better. We next show that as we increase the uncertainty level r from 1 towards 2, we

get a smooth improvement in social cost.

Theorem 4. For r ∈ [1, 2], and for any affine NRG G, C− PoA(G, r) ≤ 2− 2
r +(2r −

1)PoA(G) ≤ 2+2r
3r .

Let q∗(r) = maxG C− PoA(G, r); and q∗P (r) = maxGP
C− PoA(GP , r). The

results above give us an upper bound on q∗(r). By a careful analysis of the Pigou-type

instances, we can compute q∗P (r) exactly, which also provides us with a lower bound

on q∗(r).

Corollary 5. For r ∈ [1, 2], q∗(r) ∈ [ 4
4r−r2 ,

2+2r
3r ]. For r > 2, we have q∗(r) ∈

[ r2

4(r−1) , r/2] = [r/4 + o(1), r/2]. Also, q∗P (r) is equal to our lower bound on q∗(r).4

Note that for r = 1 and r = 2, we have q∗(r) = q∗P (r), and both are equal to the

familiar values of 4/3 and 1, respectively. See Figure 2 for a graphical comparison of

the bounds.

4Roughgarden 2003 showed that for any class of cost functions, a worst-case example for the PoA can

be constructed on an RSG with two resources. It is not clear if this is also true for the C− PoA, as in our

case the optimum and the equilibrium are computed for two different games. However if a similar result can

be proved, then our upper bounds would collapse to the lower bounds.
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Diverse population. We would like to show that if we have a population of agents

with different uncertainty levels, the social cost does not exceed that of the upper bound

we have on the worst type; i.e., that q∗(r) ≤ q∗(ri) for some type i in the mixture. We

show something very close (our bound is slightly worse when there are types both

below and above r = 2).

Let j = argmini ri, k = argmaxi ri; let αj = C− PoA(G, rj) if rj < 2 and 1
otherwise; let αk = rk

2 if rk > 2 and 1 otherwise.

Lemma 6. Let s, s′ be any two states in affine NRG G, and consider r3 ≥ r2 ≥ r1. If

φr3(s) ≥ φr3(s′) and φr2(s) ≤ φr2(s′), then φr1(s) ≤ φr1(s′) as well.

Theorem 7. Let G be a symmetric affine RSG, r be an uncertainty vector. Then

C− PoA(G, r) ≤ αj · αk.

Proof of Theorem 7 for rj ≥ 2. Let s∗ be an equilibrium of G∗(r). Let s∗i be a state

minimizing φri(s). Note that φr(s) < φr′(s) for all r < r′ and any s. By Lemma 2,

φ2(s) = SC(G, s) for any s. We next bound SC(G, s∗), dividing into cases: rj ≥ 2;

rk ≤ 2; rj < 2 < rk . We prove for rj ≥ 2.

Consider the state s
∗
k, which is an equilibrium of the game G∗(rk). If φrk(s∗) =

φrk(s∗k), then s
∗ is also an equilibrium of G∗(rk). Since G∗(rk) is an NRG, all equi-

libria have the same social cost, thus

φ2rk(s∗) = SC(G∗(rk), s
∗) = SC(G∗(rk), s

∗
k) = φ2rk(s∗k).

As 2rk > rk ≥ 2, by Lemma 6 φ2(s∗k) ≥ φ2(s∗) (in fact equal). Thus

SC(s∗) = φ2(s∗) ≤ φ2(s∗k) = SC(s∗k). (1)

Thus suppose that φrk(s∗k), φ
rk(s∗) differ. By definition, φrk(s∗k) < φrk(s∗).

There must be some (non zero measure of) agents with different actions in both states.

It cannot be that all of these agents have uncertainty rk, since the states s∗, s∗k have a

different φk potential.

Consider any such agent of type i, ri < rk , whose action under s∗ differs from the

one in s
∗
k. If φri(s∗k) < φri(s∗) then s

∗ is not an equilibrium of G∗(r), as some agents

of type i would deviate. We conclude that there is at least one type i s.t. ri < rk, and

φri(s∗k) ≥ φri(s∗).
Since rk > ri ≥ 2, and φ2(s∗k) ≥ φ2(s∗) by Lemma 6, we get Eq. (1) again. Thus

SC(s∗) ≤ SC(s∗k).
By Lemma 2, we have that C− PoA(G, r) ≤ C− PoA(G, rk) ≤ αk (note that

αj = 1).

Finally, in a RSG a small fraction of the agents with high uncertainty cannot inflict

too much damage.

Theorem 8. Let G be an affine RSG. Suppose that r is composed of two types, rk > rj .

Then C− PoA(G, r) ≤ rj
2 + nk

n O(rk).
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5 Worst-Case Regret

For what follows, we assume that ri = r for all i. In addition, we focus on RSGs, as

the analysis is non-trivial even for such simple games.

Equilibrium and convergence. In a RSG, the set of edges E is also the set of actions.

For every resource e in state s, we have

c∗∗({e}, s) = WCR(e, s) = ce(rse)−min
d 6=e

cd(sd/r).

As G is an RSG, s ∈ EQ(G∗∗(r)) if and only if WCR(e, s) is the same for

all occupied edges, and at least as high in unoccupied edges. Denote MR(s) =
maxe∈E:se>0 WCR(e, s).

Recall that every RSG with player-specific costs has a weak potential Milchtaich

[1996]. We show a similar result for an RSG played by WCR players. Our result

requires an additional technical property, but allows an explicit construction of the

potential. We say that a function z(t) is r-convex if z′(t/r)/r ≤ r · z′(r · t) for all

t, where c′ is the derivative of c. We note that r-convexity holds for convex and other

commonly used functions (see Appendix VIII).

Proposition 9. Consider an RSG G, and suppose that all cost functions are r-convex.

Then MR(s) is a weak potential function of G∗∗(r). Then if there are WCR moves,

there is a WCR move that reduces MR(s).

Equilibrium quality for Pigou instances. In the special case of the family of Pigou

instances, we have:

Proposition 10. Let q∗∗P (r) = maxGP
R-PoA(GP , r).

(1) For any r∈ [1, 2+
√
3], we have q∗∗P (r) = 16

8(r+1

r
)−(1+1

r
)2

.

(2) For any r ≥ 2 +
√
3, we have q∗∗P (r) =

(r+ 1

r
)2

8(r+ 1

r
)−16)

.

Thus R-PoA(GP , r) for r ≥ 2+
√
3 is an increasing function in r, and asymptoting

to r/8 + o(r) (see Figure 2). It remains an open question to derive an upper bound for

games over more complex networks.

6 Discussion

Related work. We focus on previous work on uncertainty (especially strict uncer-

tainty) in congestion games (CG). Strict uncertainty been considered by Ashlagi et

al. 2006; 2009. They analyze “safety-level” strategies (similar to WCC) for agents

who do not know the total number of players k, but only an upper bound on k, and

focus on proving the existence of a symmetric mixed equilibrium. For atomic RSGs,

they show that (as in our case) uncertainty improves the social welfare. Both the the
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analysis techniques and the reasoning required from agents in their setting are quite

complex, despite the focus on a simple class of games, whereas in our case the game

with WCC behavior reduces to a modified (player-specific) congestion game.

The next two papers are closer to our approach, where agents react to some noisy

variation of the current state. Meir et al. 2012 study the effect of Bayesian uncertainty

due to agents who may fail to play with some probability (in the spirit of trembling-

hand perfection). They focus mainly on RSGs and show that the PoA generally im-

proves if failure probabilities are negligible, but not if they are bounded from 0. An-

gelidakis et al. 2013 study a related model of RSGs with agents who react based on a

quantile of the cost distribution. We further discuss these two papers below.

Piliouras et al. 2013 also study CGs with strict uncertainty with motivation similar

to ours, and look at a wide range of decision-making approaches including WCC and

WCR. However, agents in their model know the actions of others exactly, and uncer-

tainty over costs stems from the unknown order in which players arrive. Our model is

more direct, and closer to the traditional view of congestion games.

Babaioff et al. 2007 study the effect of introducing a small fraction v of malicious

agents. This is related to our WCC model, where agents behave as if the load on each

edge is increased by v = (r − 1)se additional (malicious) agents. However, in our

model this added load only affects the behavior of real agents, and does not affect the

outcome directly. Babaioff et al. 2007 observe that adding some amount of malicious

agents may decrease the social cost in equilibrium; see also followup work Blum et al.

[2008]; Roth [2008].

Lastly, Halpern and Pass 2012 suggested iterated regret minimization as an expla-

nation to human behavior in many games. We emphasize that in contrast to our model,

such behavior requires agents to explicitly reason about the incentives of other agents.

Distance-based uncertainty. Our epistemic model adapts the multiplicative distance-

based uncertainty model, initially introduced in the context of voting theory Meir et al.

[2014]; Meir [2015]. There, the state was the number of votes for each candidate,

analogous to the measure of agents on each resource in the present setting. While the

epistemic model in both papers is derived from a similar approach, both the behavioral

heuristics and the techniques for analysis are quite different. For example in voting

games payoffs are highly discontinuous, so it is not a priori clear whether pure equi-

libria exist.

There may appear to be a contradiction between our notion of uncertainty and equi-

librium play: if agents converge to a particular state and play it repeatedly, then after a

while we might expect them to be certain about this state. However even in “standard”

congestion game the state (action profile) is only an abstraction of reality, where there is

noise from various sources– from players’ actions and failures, to varying costs. Thus

an equilibrium is a fixed point in the abstract model, although in reality there remain

fluctuations around the equilibrium point. Thus even in equilibrium there may be some

uncertainty about the exact loads.

Some papers model the underlying distribution explicitly (e.g.,Meir et al. [2012];

Angelidakis et al. [2013]), and assume a belief structure that is derived from this dis-

tribution. Such an approach does not necessarily provide a better description of the

11



way human players perceive the game. In our model we avoid such an explicit de-

scription, and instead use s (as an abstraction of the current state) and derive agents’

beliefs directly from this state using the distance metric. These beliefs may or may not

be consistent with the “real” underlying distribution, which may be highly complex.

This simple belief structure allows us to derive PoA bounds on a much wider class of

games.

Distance-based uncertainty can also be derived from a statistical viewpoint. Sup-

pose that an agent believes that the actual load is distributed around the reference load

se. A simple heuristic considers a confidence interval around se, with the size of the

interval modeled through ri. Under this interpretation, ri is higher for agent types

that are either more risk-averse or less-informed.5 A crucial point is that if agents

act independently the actual congestion would be highly concentrated around its ex-

pectation (that is, ri should approach 1 as the size of the population grows), and

for nonatomic agents there should be no uncertainty at all. However, experimental

work in behavioral decision making suggests people perceive uncertainty over quan-

tities as if the standard deviation is proportional to the expectation, even when this is

false Kahneman and Tversky [1974]; Tversky and Kahneman [1974].6

While in our model the uncertainty is over the actions of the other agents, an al-

ternative way is to present it as strict uncertainty over the agent’s own cost function,

also known as Knightian Uncertainty Knight [1921]. Chiesa et al. 2014 have recently

applied Knightian uncertainty to auctions, where an agent may have a valuation for

an item, but only be aware of some interval in which this valuation resides. Further

studying the conceptual and technical connection between distance-based uncertainty

and Knightian uncertainty may help to gain better understanding of both concepts.

6.1 Conclusions

Game-theoretic models should explain and predict the behavior of players in games.

Merely adding to such models uncertainty about the environment is insufficient, since

as Simon 1957 wrote: “...the state of information may as well be regarded as a char-

acteristic of the decision-maker as a characteristic of his environment.” Indeed, psy-

chological studies suggest that people are both risk-averse and avoid probabilistic cal-

culations Tversky and Kahneman [1974]; Slovic et al. [1980], and raise concerns with

standard models of rationality. We believe that our model captures these behavioral as-

sumptions, and that it is simpler than other approaches for uncertainty representation.

In addition, we show that the model still permits the use of standard game-theoretic

tools such as equilibrium analysis. The model is flexible, and variations of the belief

structure (the distance metric) can be easily made. One limitation of our approach is

that distance based uncertainty (an interval) cannot capture bi-modal scenarios. For

5For example, if the noise on edge e is a normal distribution with standard deviation σ and mean 0, and

an agent of type i requires confidence of 95% (roughly two standard deviations), then this translates to a

strict uncertainty interval of [se − 2σ, se + 2σ]
6The most famous example is an experiment where subjects are told the average number of girls born

daily in a hospital is s. People believe that the probability that on a given day the number is within [(1 −

r′)s, (1 + r′)s] is fixed and does not depend on s. Kahneman and Tversky 1974 highlight the contrast with

standard, statistical analysis, where the range r′ is proportional to 1/
√
s.
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example, when congestion is usually mild, but in rare cases (an accident) congestion is

very high. This is similar to the reason that a normal distribution cannot capture such a

scenario.

Our results show that in a risk-averse population, an intermediate level of uncer-

tainty helps to align the incentives of the agents with those of the society. This mes-

sage is emphasized by showing similar results for two different interpretation of risk-

aversion, and is consistent with findings from other models of uncertainty (see Related

Work).

Finally, lab experiments with routing games show that human subjects converge

to states that are close to, but do not coincide with the Nash equilibria Rapoport et al.

[2009] (especially when looking at individual behavior rather than aggregate conges-

tion). We believe that these discrepancies might be at least partially due to bounded-

rational behavior of the agents, who may be risk-averse and/or applying simple vari-

ations of best-response heuristics. Thus our model might be able to better explain

observed outcomes in congestion games. More empirical and experimental work is

required in that respect.
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VII Proofs

Proposition 1. There is an RSG G with 3 resources, and a vector r s.t. G∗(r) contains

a cycle of (infinitesimal) best responses.

Proof. We first present the example constructed by Milchtaich 1996. There are three

resources, x, y, z, and three atomic agents. We denote by a = (e1, e2, e3) ∈ {x, y, z}3
the actions of the three agents at a given state. Milchtaich constructs three cost func-

tions for every resource such that

c∗1,z(1) < c∗1,y(1); c
∗
1,y(2) < c∗1,z(2)

c∗2,z(2) < c∗2,x(2); c
∗
2,x(1) < c∗2,z(1)

c∗3,y(1) < c∗3,x(1); c
∗
3,x(2) < c∗3,y(2),

and shows that this leads to a cycle of best-responses through the profiles (y, x, x) →
(z, x, x) → (z, z, x) → (z, z, y) → (y, z, y) → (y, x, y) and back to (y, x, x).

Our (nonatomic) RSG G has 3 types of agents, each with a mass of one unit. Let

r1 = 1, r2 = r3 = 10. Set cost functions on the three edges E = {x, y, z} so that

cz(1) < cx(1) < cy(1) < cy(2) < cz(2) < cy(10) < cx(10) < cz(10) < cz(20) < cx(20) < cy(20).

Since the only constraint is that each ce is monotone, this is always possible. We

observe that

c∗1,z(1) = cz(1) < cy(1) = c∗1,y(1); c
∗
1,y(2) = cy(2) < cz(2) = c∗1,z(2)

c∗2,z(2) = cz(20) < cx(20) = c∗2,x(2); c
∗
2,x(1) = cx(10) < cz(10) = c∗2,z(1)

c∗3,y(1) = cy(10) < cx(10) = c∗3,x(1); c
∗
3,x(2) = cx(20) < cy(20) = c∗3,y(2).

Denote by (e1, e2, e3) the state where all type i agents use resource ei ∈ {x, y, z}. We

get a similar cycle when we start from the state a
0 = (y, x, x). First, all type 1 agents

move to z, since c∗1,z(t) < c∗1,y(1 − t) for all t ≤ 1, so we get state a
1 = (z, x, x).

Then all type 2 agents move from x to y, and so on.

We need not assume that all agents of the same type move as one, that is, we can

get from a
0 to a

1 is a sequence of steps, as long as only type 1 agents move.

Lemma 2. Let G be an affine NRG, and suppose that r ≥ 2. Then for all s, φr(s) ∈
[SC(G, s), r

2SC(G, s)].

Proof.

φr(s) = φ(G∗(r), s) =
∑

e

∫ se

t=0

c∗e(t)dt =
∑

e

∫ se

t=0

ce(r · t)dt

=
∑

e

∫ se

t=0

(ae · r · t+ be)dt =
∑

e

[
r

2
ae · t2 + bet]

se
t=0

=
∑

e

se(
r

2
ae · se + be).
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Now, if r ≥ 2, then φr(s) =
∑

e se(
r
2ae · se + be) ≥

∑

e(seae · se + be) = SC(G, s);
and

φr(s) =
∑

e

se(
r

2
ae · se + be) ≤

r

2

∑

e

se(ae · se + be) =
r

2
SC(G, s).

Theorem 4. For r ∈ [1, 2], and for any affine NRG G, C− PoA(G, r) ≤ 2 −
2
r + (2r − 1)PoA(G). Taking the worst upper bound over all affine games, we get

C− PoA(G, r) ≤ 2+2r
3r .

Proof. Let s′ and s
′′ be equilibrium points of G and G∗(2), respectively. Recall that

s
′ = argmin

s
φ(G, s), i.e., it minimizes the potential function of G over all real vectors

s, subject to some feasibility constraints.

Taking the derivative of the potential function φ(G, s) w.r.t. se, we get

ge(s) =
∂φ(G, s)

∂se
= aese + be.

Similarly, for a game G∗(r), we get that

hr
e(s) =

∂φr(G, s)
∂se

= r · aese + be,

and in particular h2
e(s) = 2aese + be.

We define s∗ = βs′′+(1−β)s′, where β = 2r−2
r (in particular s∗e = βs′′e+(1−β)s′e

for all e). Thus for r = 1, r = 2 we get s∗ = s
′ and s

∗ = s
′′, respectively. We claim

that s∗ is an equilibrium of G∗(r). As for feasibility, since s∗ is the convex combination

of two valid states, and all feasibility constraints are linear, s∗ is also a feasible state.

We next show that for r ∈ [1, 2], hr
e(s

∗
e) = 0 for all e. That is, that s∗ is the

minimum of φr(s) (and thus an equilibrium of G∗(r).

hr
e(s

∗) = r · aes∗e + be

= r · ae(βs′′e + (1− β)s′e) + be

= r · ae(βs′′e + (1− β)s′e) + (be)(r − 1) + (be)(2 − r)

= βr · aes′′e + (be + de)(r − 1) + (1− β)r · aes′e + (be)(2 − r)

=
2r − 2

r
r · aes′′e + (be)(r − 1) +

2− r

r
r · aes′e + (be)(2 − r)

= 2(r − 1)aes
′′
e + (be)(r − 1) + (2− r) · aes′e + (be)(2 − r)

= (r − 1)(2aes
′′
e + be) + (2 − r)(aes

′
e + be)

= (r − 1)h2
e(s

′′
e ) + (2− r)ge(s

′
e) = 0 + 0 = 0.
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We next bound the social cost at s∗:

SC(G, s∗) = SC(G, βs′′ + (1 − β)s′)

≤ βSC(G, s′′) + (1− β)SC(G, s′) (convexity of SC)

= βOPT (G) + (1 − β)SC(G, s′) (s′′ is optimal in G)

=
2r − 2

r
OPT (G) + 2− r

r
OPT (G)PoA(G)

=

(

2r − 2

r
+

2− r

r
PoA(G)

)

OPT (G),

thus C− PoA(G, r) ≤ 2r−2
r + 2−r

r PoA(G).
Finally, since PoA(G) ≤ 4

3 for any affine game,

C− PoA(G, r) ≤ 2r − 2

r
+

2− r

r

4

3
=

3(2r − 2) + (2 − r)4

3r
=

2 + 2r

3r
,

which concludes the proof.

Proposition 11. For any Pigou instanceGP (a2, n), and any r ≥ 2, we haveC− PoA(G, r) ≤
r2

4(r−1) , and this bound is tight.

Proof. We denote a = a2, and a′ = ar. We denote the optimal state by s
′ (which is

the equilibrium for r′ = 2). For r > 2 we always have s∗1 ≥ s′1 as the cost of e2 has

more effect on agents with higher uncertainty.

The game G∗(r) has a unique equilibrium, where either one of the resources has no

agents, or a2rs2 = c2(rs2) = c1(rs1) = 1. Also, it is easy to check that s∗2 > 0, and

that if s∗1 = 0, then s
∗ = a

′ and is thus optimal. Thus s∗2 = 1
ar , s

∗
1 = n− 1

ar The social

welfare in s
∗ can be written as

SC(s∗) = (n− 1

ar
)1 +

1

ar
a
1

ar
= n− 1

ar
+

1

ar2
.

Suppose first that s′1 = 0. Thus s′2 = n, and SC(s′) = n2a. Thus

C− PoA(G, r) = SC(s∗)

SC(s′)
=

n− 1
ar + 1

ar2

n2a
= r

n− 1
a′

+ 1
a′r

n2a′

= r(
1

na′
− 1

(na′)2
+

1

(na′)2r
) (denote x = 1

na′
)

= r(x − x2 + x2/r) = r(x − x2β), (for β = 1− 1
r )

The last expression is maximized for x = 1
2β , thus

C− PoA(G, r) ≤ r(
1

2β
− 1

4β
) =

r

4β
=

r

4(1− 1
r )
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Next, suppose that s′1 > 0. Then s′2 = 1
2a , s

′
1 = n− 1

2a , and SC(s′) = n− 1
2a+

1
4a .

Note that this entails n > s′2 = 1
2a . In this case

C− PoA(G, r) = SC(s∗)

SC(s′)
=

n− 1
ar + 1

ar2

n− 1
2a + 1

4a

≤
1
2a − 1

ar + 1
ar2

1
2a − 1

2a + 1
4a

(by our bound on n)

= 4a(
1

2a
− 1

ar
+

1

ar2
) = 2− 4

r
+

4

r2
< 2.

Thus in the second case we only get a constant price of anarchy.

For tightness, it is sufficient to look at GP (a, n) for any a, n s.t. an = 1
r−1 . Then

the inequality we had in the first case becomes an equality.

Proposition 12. For any Pigou instance GP (a2, n), and any r ∈ [1, 2], we have

C− PoA(G, r) ≤ 4
4r−r2 , and this bound is tight.

Proof. We denote the equilibrium and the optimum by s
∗, s′, respectively. For r ≤ 2

we always have s∗1 ≤ s′1, by a symmetric argument to the one above. We consider three

cases.

Case I: If s′1 = 0 then s∗1 = 0 as well. Then s
∗ = s

′ and C− PoA(G, r) = 1.

Case II: Suppose that s∗1 > 0 and s′1 > 0. This is similar to the same case in the

previous proof, except we use the fact that n > s∗2 = 1
ar . Thus

C− PoA(G, r) = SC(s∗)

SC(s′)
=

n− 1
ar + 1

ar2

n− 1
4a

<
1
ar − 1

ar + 1
ar2

1
ar − 1

4a

(by our bound on n)

=
1

ar2( 1
ar − 1

4a )
=

1

r − r2

4

=
4

4r − r2
.

Case III: Suppose that s∗1 = 0, s′1 > 0. Then SC(s∗) = n2a and SC(s′) = n− 1
4a

as above. Thus n = s∗2 ≤ 1
ar . Also

C− PoA(G, r) = n2a

n− 1
4a

= 4a
n2a

4an− 1
= 4

(an)2

4an− 1

= 4
x2

4x− 1
(for x = an)

≤ 4
1
r2

4/r − 1
=

4

4r − r2

To see why the inequality holds, note the following: Note that x = an ≥ 1
2 , and the

function is increasing in x in this range (attains a minimum at x = 1
2 ). Thus we can

replace x by its upper bound 1
r

For tightness we can take any GP (a, n), as long as an = 1
r . Then the inequality in

Case III becomes an equality.
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Lemma 6. Let s, s′ be any two states in affine NRG G with three uncertainty types,

and consider r3 ≥ r2 ≥ r1. If φr3(s) ≥ φr3(s′) and φr2(s) ≤ φr2(s′), then φr1(s) ≤
φr1(s′) as well.

Proof. Intuitively, we show that every from one state to another induces a cutoff point

r∗ over types, such that either all agents with ri > r∗ gain and the others lose, or vice

versa.

Given the two states s, s′, define the function z(r) = φr(s)− φr(s′). Observe that

z(r) = φr(s)− φr(s′) =
r

2

∑

e

ae((se)
2 − (s′e)

2) +
∑

e

be(se − s′e) = rZ1 + Z2

for some constants Z1, Z2. Thus z(r) is monotone in r (either non-increasing or non-

decreasing).

By the premise of the lemma, z(r3) > 0, z(r2) ≤ 0, thus z(r) is strictly decreasing.

We conclude that z(r1) ≤ 0, which completes the proof.

Theorem 7. Let G be a symmetric affine RSG, r be an uncertainty vector. Then

C− PoA(G, r) ≤ αj · αk.

Completion of the proof. Case II: rk ≤ 2. By a symmetric proof, we get that C− PoA(G, r) ≤
C− PoA(G, rj) = αj .

Case III: rj < 2 < rk . We repeat a similar argument to Case II, only using rk
instead of 2, to get that φrk(s∗) ≤ φrk(s∗j ). Thus by Lemma 2,

SC(s∗) ≤ φrk(s∗) ≤ φrk(s∗j ) ≤
rk
2
SC(s∗j ) ≤

rk
2
αjSC(OPT ),

which completes the proof. Also note that αj ≤ 2 so in any case s
∗ is at most as

bad as rk · SC(OPT ).

Theorem 8. Let G be an affine RSG. Suppose that r is composed of two types, rk > rj .

Then C− PoA(G, r) ≤ rj
2 + nk

n O(rk).

Proof. Let s∗ be an equilibrium of G∗(r). Note that in the load state s
∗, every edge

load is composed of two parts s∗e = s∗j,e + s∗k,e. Let Ei = {e ∈ E : s∗i,e >
0}.Denote by Nj , Nk the actual sets of all type j and type k agents. We can sum the

costs of the two agent types independently, so that SC(G, s∗) = ∑

e∈Ek
s∗k,ece(s

∗
e) +

∑

e∈Ej
s∗j,ece(s

∗
e). Let OPT be an optimal state for G.

Suppose we turn all the type k agents to type j agents, and check if there are any

moves from the state s∗. Note that there can be no moves from Ej to other edges (since

then there are type j agents in s
∗ with an improvement move). Thus the “new” type j

agent can only hurt the existing ones. Formally, if we continue until convergence to

s
∗j (the equilibrium of G∗(rj)) then all agents in Nj have a cost in s

∗j that is at least

as high as in s
∗:

∑

e∈Ej

s∗j,ece(s
∗
e) ≤

∑

e∈Ej

s∗je ce(s
∗j
e ) ≤ SC(G, s∗j) ≤ rj

2
SC(OPT ).
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Similarly,
∑

e∈Ek

s∗k,ece(s
∗
e) ≤

∑

e∈Ek

s∗k,ece(s
∗k
e ).

In s
∗k, all agents have the same experienced cost cf (rks

∗k) = F . Thus SC(G, s∗k) ≤
SC(G∗(rk), s

∗k) = nF .

In particular, the total experienced cost of Nk in s
∗k is nkF (and this is higher than

the actual cost). We have that

nF = SC(G∗(rk), s
∗k) ≤ 4

3
SC(G∗(rk), OPT ) ≤ 4rk

3
SC(G, OPT ),

thus

∑

e∈Ek

s∗k,ece(s
∗
e) ≤

∑

e∈Ek

s∗k,ece(s
∗k
e ) ≤ nkF =

nk

n
nF ≤ nk

n

4rk
3

SC(OPT ) ⇒

SC(s∗) ≤ rj
2
SC(OPT ) +

nk

n

4rk
3

SC(OPT ) = (
rj
2

+
nk

n
O(rk))SC(OPT ).

This shows that C− PoA(GG, r) ≤ rj
2 + nk

n O(rk).

VIII Regret minimization

Lemma 13. Any convex function z(t) is r-convex for any r ≥ 1.

Proof. For any convex function, z′(t) is a non-decreasing function. Thus z′(t/r)/r ≤
z′(t/r) ≤ z′(tr) ≤ rz′(tr).

Lemma 14. Any polynomial function z(t) is r-convex for any r ≥ 1.

Proof. We write z(t) =
∑J

j=1 ajt
bj , where bj ≥ 0 for all j. Then z′(t) =

∑J
j=1 jajt

bj−1.

z′(t/r)/r =
1

r

J
∑

j=1

jaj(t/r)
bj−1 = r−1

J
∑

j=1

jajt
bj−1r1−bj

=

J
∑

j=1

jajt
bj−1r−bj ≤

J
∑

j=1

jajt
bj−1rbj = r

J
∑

j=1

jajt
bj−1rbj−1 = z′(rt)r

Proposition 9. Consider an RSG G, and suppose that all cost functions are r-convex.

Then MR(s) is a weak potential function of G∗∗(r). That is with WCR moves the

game is weakly acyclic- there is always some WCR move that reduces MR(s).

Proof. Let y ∈ argmine∈M WCR(e, s), i.e. a resource where the WCR is minimum.

Let X = {e ∈ M : WCR(e, s) = MR(s), se > 0}, i.e., the set of resources in the

support of s of which WCR is maximum.
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If y ∈ X then we are done, as no agent can improve her WCR utility. Otherwise,

we have that MR(s) > WCR(y, s). We will show that there is a rational move to a

state s
+ (that is, the utility of all involved agents strictly improves in s

+), that reduces

MR(s+) < MR(s).
Let w be the resource with the lowest minimal cost cw(sw/r), and let w′ be the

resource with the second lowest minimal cost (ordered arbitrarily if there is a tie).

Note that for any e 6= w, WCR(e, s) = ce(rse) − cw(sw/r), and WCR(w, s) =
cw(rsw)− cw′(sw′/r).

Intuitively, moving some agents from e ∈ X to y reduces WCR(e, s), but may

increase WCR(e′, s) for some other e′ ∈ X , and thus increase MR(s). Hence we

divide into three cases: (a) w /∈ X ; (b) w ∈ X but w′ /∈ X ; and (c) w,w′ ∈ X .

In case (a), take a mass of ǫ of all e ∈ X and move it to y /∈ X . This decreases

ce(rse) for all e 6= y (strictly decreases for all e ∈ X), and does not decrease cw(sw/r),
since sw either increases or remains unchanged. Thus WCR(e, s+) ≤ WCR(e, s) for

all e ∈ M \ {y}, with a strict inequality for e ∈ X . The only resource where WCR

possibly increases is y. Since WCR(y, s) < MR(s), then by continuity there is a

sufficiently small ǫ s.t. WCR(y, s+) ≤ MR(s+) < MR(s).
In case (b), take a mass of ǫ from every e ∈ X \ {w}, and move it to w′. As in case

(a), the WCR of all resources e ∈ X \ {w} strictly decreases. As for w, we have

WCR(w, s+) = cw(rs
+
w)− cw′(s+w′/r) = cw(rsw)− cw′((sw′ + ǫ(|X | − 1))/r)

< cw(rsw)− cw′(sw′/r) = WCR(w, s).

So once again for a sufficiently small ǫ, MR(s+) < MR(s).
Case (c) is the most complicated case. We denote the derivative of the cost function

ce(t) at point t by c′e(t). Since t may itself be a function of se, we define ĉe(t(se)) =
∂ce(t(se))

∂se
. Note that for a constant α, ĉe(αse) = αc′e(αse).

Since cost functions have a bounded derivative in the relevant range, then for some

small ǫ we have

ce(α(se + ǫ)) ∼= ce(αse) + ǫĉe(αse) = ce(αse) + ǫαc′e(αse).

By convexity, c′e(se/r) ≤ c′e(rse), and since r ≥ 1, we have

ĉe(rse) = rc′e(rse) ≥
1

r
c′(se/r) = ĉe(se/r)

for all e (with strict inequality for r > 1), and in particular for w and w′.

Case (c.1): Suppose that ĉw′(sw′/r) < ĉw(rsw) and ĉw(sw/r) < ĉe(rse) for all

e ∈ X \ {w}, then we can still take ǫ of all resources in X and move it to y /∈ X (as in

case (a)). We get that in the new state s
+, for some sufficiently small ǫ:

WCR(w, s+) = cw(rs
+
w)− cw′(s+w′/r) ∼= (cw(rsw)− ǫrc′w(rsw))− (cw′(sw′/r)− ǫ

1

r
c′w′(sw′/r))

= WCR(w, s) + ǫ(ĉw′(sw′/r)− ĉw(rsw)) < WCR(w, s).

For any e ∈ X \ {w},

WCR(e, s+) = ce(rs
+
e )− cw(s

+
w/r)

∼= (ce(rse)− ǫrc′e(rse))− (cw(sw/r)− ǫ
1

r
c′w(sw/r))

= WCR(e, s) + ǫ(ĉw(sw/r)− ĉe(rse)) < WCR(e, s).
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So as in case (a) we have MR(s+) < MR(s).
Case (c.2): Suppose that some of the inequalities for X are violated. For Every

e ∈ X s.t. ĉw(sw/r) ≥ ĉe(rse) define δe strictly between
ĉw(sw/r)
ĉe(rse)

and
ĉw(swr)
ĉe(se/r)

For

e ∈ X where the inequality was not violated, set δe = 1.

We move a mass of ǫ from w to y, and a mass of δeǫ > ǫ from all e ∈ X \ {w}
(including w′) also to y. Thus we get:

WCR(w, s+) = cw(rs
+
w)− cw′(s+w′/r) ∼= (cw(rsw)− ǫtĉw(rsw))− (cw′(sw′/r)− δw′ǫ

1

r
ĉw′(sw′/r))

= WCR(w, s) + ǫ(
1

r
δw′ ĉw′(sw′/r)− rĉw(swr))

< WCR(w, s) + ǫ(
1

r
ĉw(swr) − rĉw(swr)) < WCR(w, s),

whereas for all e ∈ X \ {w} for which δe > 1 (possibly including w′),

WCR(e, s+) = ce(rs
+
e )− cw(s

+
w/r)

∼= (ce(rse)− δeǫrĉe(rse))− (cw(sw/r)− ǫ
1

r
ĉw(sw/r))

= WCR(e, s) + ǫ(
1

r
ĉw(sw/r)− rδe ĉe(rse))

= WCR(e, s) + ǫ(
1

r
ĉw(sw/r)− rδe ĉe(rse))

≤ WCR(e, s) + ǫ(
1

r
ĉw(sw/r)− rĉw(rsw)) < WCR(e, s).

For e ∈ X where δe = 1,

WCR(e, s+) = ce(rs
+
e )− cw(s

+
w/r)

∼= (ce(rse)− δeǫrĉe(rse))− (cw(sw/r)− ǫ
1

r
ĉw(sw/r))

= WCR(e, s) + ǫ(
1

r
ĉw(sw/r)− rĉe(rse)) < WCR(e, s).

Thus as in the previous cases, the WCR cost goes down for all X , which means

MR(s+) < MR(s).

Proposition 10. Consider any Pigou instance GP (a2, n).

1. For any r ∈ [1, 2 +
√
3], we have R-PoA(GP , r) ≤ 16

8(r+1/r)−(1+1/r)2 , and this

bound is tight.

2. For any r ≥ 2 +
√
3, we have R-PoA(GP , r) ≤ (r+1/r)2

8(r+1/r)−16) = 1
8r + o(r), and

this bound is tight.

Proof. We denote a = a2. We denote the optimal state by s
′.

The game G∗(r) has a unique equilibrium, If all agents use e2, then SC(s∗) = n2a.

This occurs if and only if ran − 1 = c∗∗2 (0, n) ≤ c∗∗1 (0, n) = an/r − 1, i.e. iff

n ≤ 2
a(r+1/r) .
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Otherwise, we have c∗∗2 (s∗) = c∗∗1 (s∗).

ras∗2 − 1 = 1− as∗2/r ⇐⇒
(r + 1/r)as∗2 = 2 ⇐⇒

s∗2 =
2

a(r + 1/r)
, s∗1 = n− 2

a(r + 1/r)
.

Thus the social cost in equilibrium is

SC(s∗) = (n− 2

a(r + 1/r)
) + (

2

a(r + 1/r)
)2a = n− 2

a(r + 1/r)
+

4

a(r + 1/r)2
.

For the optimal outcome we already know that s′2 = 1
2a , SC(s′) = 1− 1

4a if n ≥ 1
2a

and s′2 = n, SC(s′) = n2a otherwise.

Note that the cutoff value of r is when 1
2a = 2

a(r+1/r) . If r is lower than the

threshold value, then s∗1 ≤ s′1, and otherwise s∗1 ≥ s′1. By solving we find that the

threshold value is 2 +
√
3 (recall that the threshold for WCC was 2, and that for this

value we got the optimal allocation in equilibrium). Clearly, if r = 2+
√
3 then s

∗ = s
′

and thus R-PoA(GP , r) = 1.

Now, suppose that r ≥ 2 +
√
3, and thus s∗1 ≥ s′1. Suppose first that s′1 = 0, i.e.

2
a(r+1/r) ≤ n ≤ 1

2a . Denote x = 1
na , then

r+1/r
2 ≥ x ≥ 2.

R-PoA(GP , r) =
n− 2

a(r+1/r) +
4

a(r+1/r)2

n2a
=

1

an
− 2

a2n2(r + 1/r)
+

4

a2n2(r + 1/r)2

= x+ (
4

(r + 1/r)2
− 2

r + 1/r
)x2 = x+

4− 2(r + 1/r)

(r + 1/r)2
x2 = x+Ax2

for A = 4−2(r+1/r)
(r+1/r)2 (note that A is negative). The expression above is maximized for

x = − 1
2A , which gives us

R-PoA(GP , r) ≤ − 1

4A
=

(r + 1/r)2

8(r + 1/r)− 16
.

The other case is when s′1 > 0, and thus n ≥ 1
2a . Note that − 2

(r+1/r) +
4

(r+1/r)2 ≥
−1/4. Thus

R-PoA(GP , r) =
n− 2

a(r+1/r) +
4

a(r+1/r)2

n− 1
4a

≤
1
2a − 2

a(r+1/r) +
4

a(r+1/r)2

1
2a − 1

4a

(use lower bound on n)

= 4a(
1

2a
− 2

a(r + 1/r)
+

4

a(r + 1/r)2
) = 2− 8

r + 1/r)
+

16

(r + 1/r)2
.

It can be verified that this bound is never larger than our previous bound
(r+1/r)2

8(r+1/r)−16

(and it is also bounded by a constant).
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Thus R-PoA(GP , r) is an increasing function in r (for r ≥ 2 +
√
3), that is equal

to r/8 + o(r). For comparison recall that under WCC costs we had an increase at

approximate rate r/4.

For tightness, it is sufficient to look at GP (a, n) for any a, n s.t. an = (r+1/r)2

2−(r+1/r) .

Then the inequality we had in the first case becomes an equality.

Next, suppose that r ≤ 2 +
√
3, and thus s∗1 ≤ s′1. The first case is when s∗1 =

0, s′1 = 1
2a . Then n ≤ 2

a(r+1/r) , and

R-PoA(GP , r) =
n2a

n− 1
4a

=
4a2n2

4na− 1
=

4x2

4x− 1
.

The above expression is increasing in x = na in the range x ≤ 2
r+1/r . Thus

R-PoA(GP , r) ≤
4( 2

r+1/r )
2

4 2
r+1/r − 1

=
16

8(r + 1/r)− (r + 1/r)2
.

If s∗1 > 0, then s∗2 = 2
a(r+1/r) and na ≥ 2

r+1/r . Thus

R-PoA(GP , r) =
n− 2

a(r+1/r) +
4

a(r+1/r)2

n− 1
4a

≤
2

a(r+1/r) − 2
a(r+1/r) +

4
a(r+1/r)2

2
a(r+1/r) − 1

4a

=
4

a(r + 1/r)2( 2
a(r+1/r) − 1

4a )
=

16

8(r + 1/r)− (r + 1/r)2
.

That is, we get the same bound in either case. For tightness, it is sufficient to set a, n
s.t. an = 2

r+1/r .

IX Confidence intervals of the Poisson distribution

Suppose that t is a sample from a Poisson distribution with an unknown mean s′e (the

true load). Then for a required confidence level α, it holds that s′e is within the confi-

dence interval [x1, x2], where x1, x2 are the solutions to the equation (t − x)2/t = z
(z is a constant that depends on α).

Thus x = t + c/2 ± √
c
√

t+ c/4. We argue that there is an r s.t. x1
∼= t/r and

x2
∼= t · r.

We have

x1x2 = t2 + tc− c(t+ c/4) = t2 − c2/4 ∼= t2,

That is, approximation gets better as t becomes larger. Thus if we set r =
√

x2/x1,

(tr)2 = t2
x2

x1

∼= x1x2
x2

x1
= (x2)

2,

and

(t/r)2 = t2
x1

x2

∼= x1x2
x1

x2
= (x1)

2.
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So we get that x1
∼= t/r, x2

∼= tr.

To see that this is indeed a good approximation, here are the 95% confidence inter-

vals for various values of t:

t r x1 t/r x2 tr
1 5.6653111 0.1765 0.1765128 5.6649 5.6653111
2 3.6464040 0.5485 0.5484855 7.293 7.2928081
3 2.9403558 1.0203 1.0202846 8.8212 8.8210675
4 2.5714977 1.5555 1.5555137 10.2859 10.285990
5 2.3411563 2.1357 2.1356967 11.7058 11.705781
6 2.1819154 2.7499 2.7498774 13.0916 13.091492

From the table we see that the “correct” value of r for a given confidence level

depends on the load t. However recall that people ignore this and consider the standard

deviation (and thus r) as a fixed fraction from t, see Footnote 6.
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