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Abstract

Descending price auctions are adopted for goods that must be sold quickly and in private values environments, for instance in
flower, fish, and tobacco auctions. In this paper, we introduce efficient descending auctions for two environments: multiple non-
identical items and buyers with unit-demand valuations; and multiple identical items and buyers with non-increasing marginal
values. Our auctions are designed using the notion of universal competitive equilibrium (UCE) prices and they terminate with
UCE prices, from which the Vickrey payments can be determined. For the unit-demand setting, our auction maintains linear
and anonymous prices. For the homogeneous items setting, our auction maintains a single price and adopts Ausubel’s notion of
“clinching” to compute the final payments dynamically. The auctions support truthful bidding in an ex post Nash equilibrium and
terminate with an efficient allocation. In simulation, we illustrate the speed and elicitation advantages of these auctions over their
ascending price counterparts.
© 2008 Elsevier Inc. All rights reserved.

JEL classification: D44; D50; C60

1. Introduction

An iterative auction can be described as a monotonic price adjustment procedure that takes bids from buyers in each
iteration. Iterative auctions are often preferred over sealed-bid auctions, even in private value environments. The most
important reasons are those of transparency, speed, and cost of participation (by avoiding the revelation of unnecessary
valuation information through dynamic price discovery) (Cramton, 1998; Perry and Reny, 2005; Compte and Jehiel,
2007). Most of the iterative auction design literature has focused on ascending price auctions (Demange et al., 1986;
Gul and Stacchetti, 2000; Parkes and Ungar, 2000; Bikhchandani and Ostroy, 2006; Ausubel, 2004; Ausubel and
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Milgrom, 2002; de Vries et al., 2007; Mishra and Parkes, 2007). In comparison, there are few results on the design of
descending price auctions.2

Traditionally, in the descending price auction for a single item (called a Dutch auction), the seller starts the auction
from a very high price and iteratively lowers the price. The first buyer to accept the price wins the auction at that price.
The use of such auctions is popular because of its speed. Dutch auctions are used in selling flowers in Netherlands (thus
the name Dutch auction) (van den Berg et al., 2001), fish in Israel, and tobacco in Canada. This type of descending
price auction is strategically equivalent to a first-price sealed-bid auction and we can expect demand reduction and
inefficiency for asymmetric settings (Krishna, 2002).

Contrast this with the simple equilibrium bidding strategies and efficiency in ascending price auctions such as
the English auction, and its generalizations for multiple items (Demange et al., 1986; Parkes and Ungar, 2000;
Ausubel, 2004; Ausubel and Milgrom, 2002; Mishra and Parkes, 2007). In these auctions, under appropriate as-
sumptions on valuations, it is an ex post Nash equilibrium for a buyer to report his true demand set in every iteration;
i.e., straightforward bidding is an equilibrium strategy whatever the private valuations of agents. The auctions termi-
nate with the Vickrey–Clarke–Groves (VCG) outcome (Vickrey, 1961; Clarke, 1971; Groves, 1973). Not only is this
bidding strategy simple and robust to incorrect agent beliefs, but it is an ex post efficient equilibrium. One might ask
whether there exists a descending price auction counterpart of the English auction with such simple bidding as an
equilibrium strategy. The answer is “yes,” as noted by Vickrey in his seminal paper (Vickrey, 1961). For the single
item setting, Vickrey points out that the Dutch auction can be modified to run until a second buyer accepts an offer
and the first buyer to accept an offer wins but pays the price at which the second offer is accepted. Quoting Vickrey
(1961):

“On the other hand, the Dutch auction scheme is capable of being modified with advantage to a second-bid price
basis, making it logically equivalent to the second-price sealed-bid procedure . . .”

Then, he goes on to describe an apparatus that is commonly used to implement the Dutch auction and how the same
apparatus can be modified to implement this second-price auction. Quoting Vickrey (1961) again:

“There would be no particular difficulty in modifying the apparatus so that the first button pushed would merely
preselect the signal to be flashed, but there would be no overt indication until the second button is pushed, where-
upon the register would stop, indicating the price, and the signal would flash, indicating the purchaser.”

The appropriate method to extend Vickrey’s idea to more general environments appears to be a puzzle in the current
literature. For instance, in their work on the design of an ascending price auction for the homogeneous items case,
Bikhchandani and Ostroy (2006) observe the following while interpreting their auction as a primal-dual algorithm:

“The primal-dual algorithm we describe starts at a low price where there is excess demand. One could start the
primal-dual algorithm at a high price at which there would be excess supply, but it is unlikely that this would
converge to a marginal pricing equilibrium.”3

In this paper we present generalized “Vickrey–Dutch” auctions for multi-unit and multi-item private value environ-
ments which retain the speed and elicitation advantages that descending price auctions can enjoy over ascending
price auctions, while inheriting the robust and simple equilibrium properties that come from termination at the
Vickrey prices. The design of these auctions follows the methodology of universal competitive equilibrium (UCE)
prices (Mishra and Parkes, 2007) to achieve the VCG outcome. Here we demonstrate, for the first time, the role of
UCE prices in the design of auctions with simple prices.4

2 One exception is in the work of Mishra and Garg (2006), who propose a generalized Dutch auction for one-to-one assignment setting, the
setting in Demange et al. (1986), which terminates at the maximum competitive equilibrium price (approximately) if buyers bid honestly. But, this
work provides no game theoretic equilibrium analysis.

3 A marginal pricing equilibrium is a competitive equilibrium price where all buyers get their respective payoffs in the VCG mechanism.
4 Mishra and Parkes (2007) use UCE prices to design ascending-price combinatorial auctions and Lahaie et al. (2005) use UCE prices to design

elicitation protocols for combinatorial auctions. Both approaches adopt non-linear and non-anonymous prices.
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Our Vickrey–Dutch auctions maintain a single price trajectory which can pass “through” a part of the competitive
equilibrium price space, before terminating at UCE prices. This dynamics provides for enough demand revelation to
realize the VCG outcome. Truthful bidding is an ex post Nash equilibrium strategy, providing robustness to the par-
ticular distribution of agent valuations. Our auctions reduce to Vickrey’s descending price auction for the single-item
environment, while generalizing Vickrey’s apparatus to the non-identical item and multiple identical items environ-
ments.

For the unit demand environment, the auction maintains a single set of item prices and can be considered to
provide the descending analog to the ascending price auctions of Demange et al. (1986).5 For multiple identical items
and non-increasing marginal valuations we design a “clinching” auction, which provides a descending price analog
to the ascending price clinching auction of Ausubel (2004). Just as in Ausubel (2004), our auction maintains a single
price in each iteration, with the allocation and payments determined dynamically across iteration. The analysis of
the auction establishes that the price in any iteration when coupled with the history of clinching decisions up to that
iteration actually provides a concise representation of a non-linear and non-anonymous price vector that terminates at
UCE prices.

After the first version of this work, a Vickrey–Dutch auction has been described for the case of multiple hetero-
geneous items with buyers having combinatorial values in Mishra and Veeramani (2007). Just like in our auctions,
the auction in Mishra and Veeramani (2007) achieves the VCG outcome using descending prices. But their auction
does not reduce to any of our auctions when applied to the unit demand or the homogeneous items settings. This
anomaly can be explained as follows. The auction in Mishra and Veeramani (2007) searches for a non-linear and non-
anonymous UCE price vector and then adjusts from there to the VCG outcome while our auctions maintain simple
prices and terminate directly or via clinching with VCG payments. The price dynamics of the auction in Mishra and
Veeramani (2007) are therefore very different from our auctions and do not produce the same final price vector and
price adjustment as our auctions when applied in the unit demand and homogeneous items settings.

2. The model and preliminaries

To begin we introduce a general model with n heterogeneous indivisible items. In a later section we specialize this
model to consider identical items. We define competitive equilibrium and universal competitive equilibrium prices in
this model and provide a general framework for the design of iterative VCG auctions.

The set of items is denoted by A = {1, . . . , n}. There are m (� 2) buyers, denoted by B = {1, . . . ,m}. The set of all
bundles of items is denoted by Ω = {S ⊆ A}. Naturally, ∅ ∈ Ω . For every buyer i ∈ B and every bundle S ∈ Ω , the
valuation of i on bundle S is denoted by vi(S) � 0, assumed to be a non-negative integer. If S is a singleton, we write
vi(j) instead of vi({j}) for simplicity.

We assume a private values setting where each buyer knows his own valuation function and this does not depend on
the valuations or allocations of other buyers. The payoff of any buyer i ∈ B on any bundle S ∈ Ω is quasi-linear and
given by vi(S) − p, where p is the price paid by buyer i on bundle S. Also, if a buyer gets nothing and pays nothing,
then his utility is zero: vi(∅) := 0 ∀i ∈ B . We also assume that vi(S) � vi(T ) ∀i ∈ B, ∀S,T ∈ Ω with S ⊆ T . The
seller values the items at zero. His payoff (or revenue) is the total payment he receives from buyers.

Let B−i = B \ {i} be the set of buyers without buyer i. Let B = {B,B−1, . . . ,B−m}. We will denote the economy
with buyers only from set M ⊆ B as E(M). Whenever, M �= B and M ∈ B, we call economy E(M) a marginal
economy. E(B) denotes the main economy.

Let x denote a feasible allocation in economy E(M) (M ∈ B). Allocation x is both a partitioning of the set of items
and an assignment of the elements of the partition to buyers in M . Allocation x assigns bundle xi to buyer i for every
i ∈ M and for every i �= j , xi ∩ xj = ∅. The possibility of xi = ∅ is allowed. We will denote the set of all feasible
allocations of economy E(M) as F(M).

We now provide some basic definitions that are used in the design of our auction. An allocation X is efficient in
economy E(M) if

∑
i∈M vi(xi) = maxy∈F(M)

∑
i∈M vi(yi). Consider general prices, that can be both non-linear and

non-anonymous, and define the demand set of buyer i ∈ M (for some M ∈ B) at price vector p ∈ R
|M|×|Ω|
+ as

Di(p) := {
S ∈ Ω: vi(S) − pi(S) � vi(T ) − pi(T ) ∀T ∈ Ω

}

5 To be precise, our auction is a descending price analog of the variation on the auction in Demange et al. (1986) presented in Sankaran (1994).
Please cite this article in press as: D. Mishra, D.C. Parkes, Multi-item Vickrey–Dutch auctions, Games Econ. Behav. (2008),
doi:10.1016/j.geb.2008.04.007
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and the supply set of the seller at price vector p ∈ R
|M|×|Ω|
+ in economy E(M) as

L(p) :=
{
x ∈ F(M):

∑
i∈M

pi(xi) �
∑
i∈M

pi(yi) ∀y ∈ F(M)

}
.

Define πs(p) := ∑
i∈M pi(xi), where x ∈ L(p), as the revenue of the seller at price vector p ∈ R

|M|×|Ω|
+ in econ-

omy E(M).

Definition 1. Price vector p ∈ R
|M|×|Ω|
+ and allocation x are a competitive equilibrium (CE) of economy E(M) for

some M ⊆ B if x ∈ L(p), and xi ∈ Di(p) for every buyer i ∈ M . Price p is called a CE price vector of economy
E(M).

If p ∈ R
|B|×|Ω|
+ , then the components of p corresponding to a set of buyers M ⊂ B will be denoted as pM (or, p−i if

M = B−i ). A component of pM to buyer i ∈ M will still be denoted as pi .

Definition 2. A price vector p is a universal competitive equilibrium (UCE) price vector if pM is a CE price vector of
economy E(M) for every M ∈ B.

A UCE price vector always exists since p := v is a (trivial) UCE price vector. UCE prices are necessary and
sufficient to realize the VCG outcome from a CE of the main economy, as shown in the following theorem6:

Theorem 1. (See Mishra and Parkes, 2007.) Let (p, x) be a CE of the main economy with p ∈ R
|B|×|Ω|
+ . The VCG

payments of every buyer can be calculated from (p, x) if and only if p is a UCE price vector. Moreover, if p is a UCE
price vector, then for every buyer i ∈ B , the VCG payment of every buyer i ∈ B is p

vcg
i = pi(xi)−[πs(p)−πs(p−i )].

We illustrate the idea of discounts discussed in Theorem 1 by an example. Consider an economy with two buyers
and two items with valuations: v1({1}) = 8, v1({2}) = 9, v1({1,2}) = 12 and v2({1}) = 6, v2({2}) = 8, v2({1,2}) =
14. Consider the following price vector: p1({1}) = 7,p1({2}) = 9,p1({1,2}) = 11 and p2({1}) = 2, p2({2}) = 4,
p2({1,2}) = 10. Verify that D1(p) = {{1}, {1,2}} and D2({p}) = {{1}, {2}, {1,2}}. Further, a revenue maximizing
allocation in the main economy is to allocate item 1 to buyer 1 and item 2 to buyer 2. Since these allocations are in the
demand sets of the respective buyers, p is a CE price vector of the main economy. Similarly, it can be checked that p

is a UCE price vector. The maximum revenue from the main economy is p1({1}) + p2({2}) = 11, from the economy
with only buyer 1 (i.e., without buyer 2) is p1({1,2}) = 11, and from the economy with only buyer 2 (i.e., without
buyer 1) is p2({1,2}) = 10. Hence, discount to buyer 1 is 11 − 10 = 1 and that to buyer 2 is 11 − 11 = 0. So, the final
payments using the formula in Theorem 1 are: p1({1}) − 1 = 7 − 1 = 6 for buyer 1 and p2({2}) − 0 = 4 for buyer 2,
which are also their respective VCG payments.

Using the idea of UCE prices, we will design our descending price auctions. It is well known that any iterative
auction that achieves the VCG outcome under truthful bidding (submission of demand sets) of the buyers has the
property that truthful bidding is an ex post equilibrium for the buyers when coupled with appropriate activity rules
(see de Vries et al., 2007; Mishra and Parkes, 2007). Therefore, we will only show that our auctions achieve the VCG
outcome under truthful bidding, and the equilibrium properties of our auctions follow from this. We omit discussions
about specific activity rules in the interest of space.

3. The unit demand environment

In this section we introduce a Vickrey–Dutch auction for the environment with heterogeneous, indivisible items
and unit-demand valuations so that each buyer is interested in buying at most one item. This is the standard assignment
problem. Our auction maintains an individual price on each item and decreases prices until supply balances demand
in the main economy and also in all marginal economies.

6 Lahaie et al. (2005) provide further support for UCE prices by establishing a strong equivalence between the informational requirements of
UCE prices and the VCG outcome for a general class of protocols.
Please cite this article in press as: D. Mishra, D.C. Parkes, Multi-item Vickrey–Dutch auctions, Games Econ. Behav. (2008),
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For convenience, we will assume that there is a dummy item, indexed 0, available such that the value of the dummy
item is zero for all buyers, and the dummy item can be allocated to any number of buyers. A feasible allocation x

assigns to every buyer i ∈ B either an item j ∈ A or the dummy item. No item is assigned more than once (but an item
may go unassigned). By a slight abuse of notation, let xi denote the item assigned to buyer i in allocation x.

Let vi(j) denote buyer i’s value for item j ∈ A. A price vector p in this section denotes linear and anonymous
prices, with p ∈ R

n+1+ and p(0) = 0. The definition of demand set is modified to restrict to include only singleton bun-
dles, with Di(p) = {j ∈ A∪{0}: vi(j)−p(j) � maxj ′∈A∪{0}[vi(j

′)−p(j ′)]}, and the definition of CE is specialized
as follows:

Definition 3. Price vector p ∈ R
n+1+ is a competitive equilibrium price vector if there exists an allocation x such that

xi ∈ Di(p) for every i ∈ B and p(j) = 0 for every item j that is not assigned in x.

If (p, x) is a CE in the assignment problem, then x is an efficient allocation, and the set of CE price vectors form a
complete lattice (Shapley and Shubik, 1972), i.e., there is a unique minimum and a unique maximum CE price vector.
Moreover, the minimum CE price vector corresponds to the VCG payments (Leonard, 1983). We obtain the following
simple but useful observation:

Proposition 1. There is a unique linear and anonymous UCE price vector in the unit-demand environment, and this
is equal to the minimum CE price vector and defines the VCG payments.

Proof. Leonard (1983) shows that the minimum CE price vector pmin corresponds to the VCG payments. By The-
orem 1, it is a UCE price vector. We show that it is the unique linear and anonymous UCE price vector in the
unit-demand environment.

Assume for contradiction p �= pmin is a linear and anonymous UCE price vector. Define S = {j ∈ N : p(j) >

pmin(j)}. Since pmin is the unique minimum CE price vector, p � pmin and S is non-empty. By definition, p(j) > 0
for all j ∈ S, and must be assigned to a buyer in a CE of the main and marginal economies. Since p is a UCE price
vector, at least |S| + 1 buyers must demand items from S at p (these are the buyers who are assigned items from S

in main and marginal economies at p). By going from p to pmin, prices of items in S fall, whereas prices other items
remain the same. So, buyers who were demanding items from S at p will demand items only from S at pmin (this is
because their payoffs from items outside S remain the same but payoffs from items in S strictly increase). So, at least
|S| + 1 buyers will demand items only from S at pmin. Since pmin is a CE, we should be able to assign every buyer
an item from his demand set at pmin. But at least |S| + 1 buyers demand items from only S at pmin, and we cannot
possibly assign these buyers items from their demand sets. This gives us a contradiction. �

This observation means that searching for a linear and anonymous UCE price vector will directly (without any
discount) give the VCG outcome.

To illustrate Proposition 1, consider the example in Table 1 with two buyers {1,2} and two items {1,2}. The
minimum CE price vector is (3,0), which also provides the VCG payments for buyers. It can be easily verified that
(3,0) is a UCE price vector (item 1 is allocated to the remaining buyer in both marginal economies). Any other CE
price vector in this example will reduce the payoff of at least one buyer below his VCG payoff, and hence it is not a
UCE price vector.

Table 1
An example in unit demand environment

1 2

v1 8 4
v2 6 3
Please cite this article in press as: D. Mishra, D.C. Parkes, Multi-item Vickrey–Dutch auctions, Games Econ. Behav. (2008),
doi:10.1016/j.geb.2008.04.007
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3.1. The Vickrey–Dutch auction (unit-demand environment)

In every iteration of the auction, the seller announces (anonymous, linear) prices pt ∈ R
n+1+ and receives demands

from each buyer. Let D(pt ) = {Di(p
t )}i∈B and D−i (p

t ) = {Dk(p
t )}k∈B−i

denote the vector of demand sets received
in iteration t from buyers in B and in B−i respectively.

Given an allocation x, the revenue is the sum of prices of all the items allocated. A buyer i is satisfied in an
allocation x at price vector p if xi ∈ Di(p). An admissible allocation x at a price vector p is an allocation such that
xi ∈ Di(p) ∪ {0}. A provisional allocation is an admissible allocation that generates the maximum revenue across all
admissible allocations, breaking ties in favor of satisfying the maximum number of buyers and then at random.

Consider the price vector (4,1) for the example in Table 1. The demand sets of the buyers are: D1(p) = {1} and
D2(p) = {1,2}. There is an admissible allocation in which buyer 1 gets item 1 and buyer 2 gets item 2. Since this
allocates both the items and both the buyers are satisfied in this allocation, this is also a provisional allocation. Another
admissible allocation is to allocate item 1 to either of the buyers and the other buyer is assigned the dummy item (item
2 is unassigned). Clearly, this is not a provisional allocation.

Let X(D(pt )) denote the set of provisional allocations at price vector pt and let X(D−i (p
t )) denote the set of

provisional allocations for economy E(B−i ). Given an allocation x, let S(x) ⊆ A denote the set of allocated items
with positive prices. The following concept plays a central role in defining the auction.

Definition 4. Item j ∈ A is universally allocated, written j ∈ U(p,D(p), x) given a price vector p, demand sets
D(p), and provisional allocation x ∈ X(D(p)), if p(j) = 0 or item j is provisionally allocated to some buyer i with
S(x) = S(y) for some y ∈ X(D−i (p)).

A universally allocated item j should either have a price of zero or be provisionally allocated to some buyer i such
that all items with positive prices (including item j ) that are allocated can also be allocated in the marginal economy
without buyer i given the current demand. In the example in Table 2, consider the price vector (4,4). Here, consider
the provisional allocation in which buyer 1 is assigned item 1 and buyer 2 is assigned the dummy item (item 2 is
unassigned). In the absence of buyer 1, we can assign buyer 2 to item 1 to get a provisional allocation in which item 1
is assigned. Hence, item 1 is universally allocated at price (4,4) given the demand sets and this provisional allocation,
but item 2 is not universally allocated. We give more examples in Section 3.2 to illustrate the idea of universally
allocated item.

The Vickrey–Dutch auction in this environment seeks prices for which all items are universally allocated and
reduces prices on items that are not universally allocated until this is achieved. We refer to the auction as the linear-
price Vickrey–Dutch (LVD) auction:

Definition 5. The linear-price Vickrey–Dutch (LVD) auction for the unit demand environment is defined as follows:

(S0) Start from a high price p0 where no buyer demands any item from A. Set t := 0.
(S1) In iteration t of the auction, with price vector pt :

(S1.1) Collect the demand sets D(pt ) of all the buyers at pt .
(S1.2) Based on the demand sets of buyers at pt , calculate a provisional allocation xt ∈ X(D(pt )).
(S1.3) Find the universally allocated set of items, U(pt ,D(pt ), xt ).
(S1.4) If U(pt ,D(pt ), xt ) = A (the set of all items), go to Step (S2). Else, set pt+1(j) := pt(j) − 1 ∀j ∈

(A \ U(pt ,D(pt ), xt )). Set t := t + 1 and repeat from Step (S1).
(S2) The auction terminates in current iteration T with price vector pT and the provisional allocation xT . If xT

i = j

for buyer i, then he pays an amount pT (j) and gets item j .

We illustrate the steps of the LVD auction for the example in Table 1. The starting price of the LVD auction is
(9,9).
Please cite this article in press as: D. Mishra, D.C. Parkes, Multi-item Vickrey–Dutch auctions, Games Econ. Behav. (2008),
doi:10.1016/j.geb.2008.04.007
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Fig. 1. Plot of price trajectory of the LVD auction and the DGS auction on the example in Table 1.

Iteration Price D1( ) D2( ) Provisional Universally
allocation allocated items

0 (9,9) {0} {0} – ∅
1 (8,8) {0,1} {0} 1 → 1 ∅
2 (7,7) {1} {0} 1 → 1 ∅
3 (6,6) {1} {0,1} 1 → 1 {1}
4 (6,5) {1} {0,1} 1 → 1 {1}
5 (6,4) {1} {0,1} 1 → 1 {1}
6 (6,3) {1} {0,1,2} 1 → 1, 2 → 2 ∅
7 (5,2) {1} {1,2} 1 → 1, 2 → 2 ∅
8 (4,1) {1} {1,2} 1 → 1, 2 → 2 ∅
9 (3,0) {1} {1,2} 1 → 1, 2 → 2 {1,2}

A CE of the main economy is achieved in iteration 6 but this is not a UCE price vector. In the final iteration, item 2
is universally allocated since its price is zero and item 1 is universally allocated since it can be allocated to buyer 2 in
the absence of buyer 1. The final price vector (3,0) is the UCE price vector identified in Proposition 1. One can also
observe that both buyers are satisfied in every iteration and that the demand set of buyer 2 monotonically increases
while he is not allocated. Note, though, that the set of universally allocated items is not monotonically increasing in
this example.

We plot the CE price vector space, price trajectory of the LVD auction, and price trajectory of the Demange et al.
(1986) (DGS) auction in Fig. 1. It is interesting to note that the price trajectory never touches the maximum CE price
vector (pmax = (7,3)). We can also see that the LVD auction price path travels through a significant portion of the
entire CE price vector space before reaching the minimum CE price vector, whereas the first CE price vector in the
DGS auction is the minimum CE price vector.

3.2. Identifying universally allocated items

The problem of finding a provisional allocation xt ∈ X(D(pt )) is a variant of the standard assignment problem and
can be solved efficiently.7 A computationally efficient procedure is also required to determine the set of universally

7 It can be solved with two linear programs (LPs). The first LP computes an admissible allocation that maximizes total revenue given demand
sets D(pt ). A second LP is then formulated to break ties in favor of maximizing the number of satisfied buyers, with the objective defined as such
and a constraint included to ensure that the revenue from the allocation is equal to that obtained in solving the first LP.
Please cite this article in press as: D. Mishra, D.C. Parkes, Multi-item Vickrey–Dutch auctions, Games Econ. Behav. (2008),
doi:10.1016/j.geb.2008.04.007



ARTICLE IN PRESS YGAME:1514
JID:YGAME AID:1514 /FLA [m3SC+; v 1.91; Prn:19/05/2008; 14:13] P.8 (1-22)

8 D. Mishra, D.C. Parkes / Games and Economic Behavior ••• (••••) •••–•••
(a) (b)

Fig. 2. Identifying universally allocated items.
Dashed line: item in demand set but not provisionally allocated. Solid line: provisional allocation. All prices are positive.

allocated items. This is used both to adjust prices and also to check for termination. Consider the examples in Fig. 2(a)
and (b), which illustrate demand sets and an allocation at two different price vectors. Suppose all prices are positive.
A solid line between a buyer and an item means that the buyer is provisionally allocated to the item. A dashed line
between a buyer and an item means that the buyer has this item in his demand set but is not provisionally allocated to
the item. Each figure represents all the information required to determine the set of universally allocated items.

In Fig. 2(a), item 3 is universally allocated: remove buyer 3 (provisionally allocated to item 3), then allocate buyer 4
to item 3 without changing the total set of allocated items. But, no other items are universally allocated. In case of
item 1, if we remove buyer 1, the only buyer that demands item 1 is buyer 2 and thus we cannot allocate item 1
without reducing the total set of provisionally allocated items. Item 2 is also not universally allocated, by symmetry.
In Fig. 2(b), all 3 items are universally allocated. Buyer 4 will take buyer 3’s item. Without buyer 1 (allocated to
item 1), we can allocate buyer 4 to item 3 and buyer 3 to item 1 without changing the total set of allocated items.
Without buyer 2, we can allocate buyer 4 to item 3, buyer 3 to item 1 and buyer 1 to item 2.

It is instructive that item 3, which is demanded by an unallocated buyer (4), is a universally allocated item and the
starting point for finding other universally allocated items. We use this idea to develop a procedure to determine the set
of universally allocated items. We first handle items with zero price. Given (p,D(p), x), let (p′,D′(p′), x′) denote
the restriction to items with positive price, with p′ = (p(j): j ∈ A,p(j) > 0), D′

i (p
′) = {j : j ∈ Di(p),p(j) > 0},

and x′
i = xi when p(xi) > 0 and x′

i = 0 otherwise. Let A0(p) = {j ∈ A,p(j) = 0} denote the items with zero price.
The proof of the following and some subsequent results are delayed until Appendix B.

Lemma 1. U(p,D(p), x) = U(p′,D′(p′), x′) ∪ A0(p) where (p′,D′(p′), x′) is the restriction of (p,D(p), x) to
items with positive price and A0(p) is the set of items with zero price.

We now formalize the intuition in the example, in which we identified a sequence of reassignments of items, starting
with a currently unallocated buyer. Given allocation x, let a well-defined chain with respect to buyer i, allocated to
item j in x, be z−i (x,D(p)) = j0i1j1 . . . icjc, with c � 1 (this is a sequence of alternating buyers and items) and with
the property that:

(i) item j0 = 0 and item jc = j ,
(ii) buyer ir , for 1 � r � c is assigned item jr−1 in allocation x,
(iii) buyer i /∈ {i1, . . . , ic},
(iv) item jr ∈ Dir (p) for all 1 � r � c.

Such a chain defines a reassignment of items, with a modified allocation x′ defined with x′
ir

= jr for all r ∈ {1, . . . , c},
x′
k = xk for all k /∈ {i1, . . . , ic} ∪ {i}, and x′

i = 0.

Lemma 2. Given a price vector p with non-zero prices for all the items, item j ∈ U(p,D(p), x) if and only if there
is a well-defined chain z−i (x,D(p)) = j0i1j1i2j2 . . . icj where buyer i is allocated j in allocation x.

In Fig. 2(a) the well-defined chain that explains item 3 is j0i1j1 = 043. In Fig. 2(b) the well-defined chain that
explains item 1 is 04331 and the chain that explains item 2 is 0433112. Let Û(p,D(p), x) = {j ′ ∈ A: j ′ ∈ D′

i (p
′) for

some i ∈ B with x′
i = 0}, where (p′,D′(p′), x′) is the restriction of (p,D(p), x) to positive prices. We can determine

the set of universally allocated items U(p,D(p), x) as follows.
Please cite this article in press as: D. Mishra, D.C. Parkes, Multi-item Vickrey–Dutch auctions, Games Econ. Behav. (2008),
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Procedure: FINDUNIVALLOCITEMS

Step 0: Initialize U(0)(p,D(p), x) = Û (p,D(p), x). Set r := 1.
Step 1: Let T (r) denote the set of buyers allocated to items in U(r−1)(p,D(p), x).
Step 2: Let W(r) = ⋃

i∈T (r) Di(p) ∩ S(x) denote the set of provisionally
allocated items with positive price demanded by buyers in T (r).

Step 3: If W(r) ⊆ U(r−1)(p,D(p), x), output U(r−1)(p,D(p), x) ∪ A0(p) and STOP.
Else, U(r)(p,D(p), x) := U(r−1)(p,D(p), x) ∪ W(r). r := r + 1.
Repeat from Step 1.

As an illustration, we apply the FINDUNIVALLOCITEMS algorithm to the example in Fig. 2(b). In the first round
of the FINDUNIVALLOCITEMS algorithm, set U(p,D(p), x) = {3}. This gives T = {3} and W = {1,3}. We update
U(p,D(p), x) = {1,3}. Now, T = {1,3} and W = {1,2,3}. We update U(p,D(p), x) = {1,2,3}. Now, T = {1,2,3}
and W = {1,2,3} and we stop because W = U(p,D(p), x).

Proposition 2. The FINDUNIVALLOCITEMS procedure determines all universally allocated items.

Every round of the FINDUNIVALLOCITEMS procedure either finds new universally allocated items or stops, and
thus the maximum number of rounds of the FINDUNIVALLOCITEMS algorithm is n, the total number of items. The
computations in each round of LVD can therefore be done in polynomial time.

3.3. Theoretical analysis

When designing ascending price auctions it is common to construct a price trajectory such that the seller is satisfied
in every iteration and the buyers are all satisfied upon termination. In the LVD auction we establish the reverse: every
buyer is satisfied with the provisional allocation in every iteration and the seller is satisfied upon termination.

Proposition 3. In the provisional allocation in every iteration of the LVD auction, every buyer is satisfied under
truthful bidding.

Next, we show that the LVD auction terminates at the unique UCE price vector and consequently the minimum CE
price vector, and therefore collects the VCG payment.

Theorem 2. The LVD auction achieves the VCG outcome when every buyer follows the truthful bidding strategy, and
is ex post efficient.

Proof. The price is reduced on at least one item with positive price in each iteration and thus the auction must
terminate since any item with zero price is universally allocated. Upon termination, every item is universally allocated
and thus every item with positive price is allocated and the allocation is in the supply set of the seller. Taken together
with every buyer being satisfied (Proposition 3) we see that the final prices and the final provisional allocation are a
CE. We will next show that the final price vector, pT , is a UCE price vector. Consider a buyer i. Let xT

i = j . If j = 0,
then clearly (pT , xT−i ) is a CE of the marginal economy without buyer i. If j �= 0, then because this item is universally
allocated there exists an allocation yT ∈ X(D−i (p

T )) such that all items with positive price are allocated (and so it
is in the supply set), and all the buyers except i are satisfied. This is because of Lemma 2, wherein the well-defined
chain shows that upon moving from allocation xT to allocation yT , that any agent �= i allocated a non-dummy item
in xT is still allocated a non-dummy item in yT . One additional buyer, unallocated (but satisfied) in xT is now also
allocated a non-dummy item in yT . Hence, (pT , yT ) is a CE in the marginal economy without buyer i. This shows
that pT is a UCE price vector. By Proposition 1 and the payment rule of the LVD auction, the LVD auction achieves
the VCG outcome. �

The LVD auction achieves ex post efficiency in an ex post Nash equilibrium when coupled with appropriate activity
rules. See the discussion at the end of Section 2. The LVD auction may achieve a CE price vector before termination
Please cite this article in press as: D. Mishra, D.C. Parkes, Multi-item Vickrey–Dutch auctions, Games Econ. Behav. (2008),
doi:10.1016/j.geb.2008.04.007
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and has a price trajectory that traverses through the CE price vector space to reach the minimum CE price vector. This
was illustrated in Fig. 1. Losing buyers must continue to bid even after the first CE price vector has been identified, and
thus after it is known to the auction that the buyer is not a winner. We can keep buyers ignorant of this by disclosing
only the price information in each iteration and withholding information about the provisional allocation or demand
sets. When there is exactly one item for sale it is universally allocated when the number of buyers demanding the item
becomes more than one. Hence, the auction will allocate the item to the first buyer who demands it but terminate at a
price for which the item is also demanded by the buyer with the second-highest value. Clearly, this translates to the
flash-button apparatus implementation described by Vickrey, who also points to similar obfuscation.

4. The homogeneous items environment with decreasing marginal values

In this section we introduce a Vickrey–Dutch auction for selling multiple units of a homogeneous item for buyers
with marginal-decreasing values for each additional unit.

The auction maintains a single price rather than a vector of prices and provides a descending-price analog to the
ascending price “clinching” auction of Ausubel (2004): buyers also clinch items in our auction and the final payments
are determined from demand information revealed during the auction. The underlying philosophy of the design of
this auction remains the UCE price concept: all buyers are satisfied in the provisional allocation in every iteration,
and the auction eventually terminates with supply equal to demand in the main economy as well as in every marginal
economy.

In introducing the auction we first describe the auction with a non-linear and non-anonymous price dynamic. This
version of the auction serves to make the UCE framework clear and facilitate our analysis. In Section 4.3 we show
that the auction can be equivalently implemented as an auction that maintains a single price for the item in each round,
best thought of as defining the current ask price for a marginal unit over and above the units already clinched.

4.1. The clinching auction: non-linear and non-anonymous prices

In this section, we adopt n to denote the number of units for sale. Let vi(j) denote the value of buyer i for j units
of the item, assumed to be a non-negative integer. Assume that vi(0) = 0 for every buyer and consider only non-
increasing marginal values, so that vi(j) − vi(j − 1) � vi(j + 1) − vi(j) for every buyer i and every unit 1 � j < n.
An example is given in Table 2.

By a slight abuse of notation, let p ∈ R
m×(n+1)
+ denote the non-anonymous and non-linear price maintained in each

iteration. Let pi(j) denote the price to buyer i for j units. Let demand set Di(p) = {j ∈ {0,1, . . . , n}: vi(j)−pi(j) �
max0�j ′�n vi(j

′) − pi(j
′)}. Let the maximal demand of buyer i at price vector p be Di(p), defined as the maximum

number of units demanded. Allocation x, where xi denotes the number of units allocated to buyer i, is a feasible
allocation of economy E(M) for M ∈ B if

∑
i∈M xi � n. Admissible and provisional allocations are defined as

before. A feasible allocation is also admissible if xi ∈ Di(p) ∪ {0} for every i ∈ M , and a provisional allocation
maximizes the revenue over all admissible allocations, breaking ties in favor of satisfying as many buyers as possible.
As before, we denote the set of provisional allocations in economy E(M) at a price vector p as X(DM(p)).

For the example in Table 2, consider the price vector in Table 3. The prices in parentheses indicate that the buyer is
demanding a bundle with that number of units at the current prices. As an example, the demand set of buyer 1 at this
price vector is {1,2}, and his maximal demand is 2. An admissible allocation in this example is to allocate two units to
buyer 1, two units to buyer 2, and zero units to buyer 3. This generates a total revenue of p1(2)+p2(2)+p3(0) = 16.
Another admissible allocation in this example is to allocate zero units to buyer 1, two units to buyer 2, and two units to

Table 2
An example with 4 units of a homogeneous item and 3 buyers, each with non-increasing marginal values. The values in the table provide the total
value of each buyer for some number of units. The efficient allocation is depicted in bold

j 0 1 2 3 4

v1(j) 0 7 9 10 10
v2(j) 0 8 13 15 15
v3(j) 0 4 8 10 10
Please cite this article in press as: D. Mishra, D.C. Parkes, Multi-item Vickrey–Dutch auctions, Games Econ. Behav. (2008),
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Table 3
A non-linear and non-anonymous price vector for the example in Table 2

j 0 1 2 3 4

p1(j) 0 (4) (6) 9 9
p2(j) 0 6 (10) 13 14
p3(j) (0) (4) (8) (10) 11

buyer 3, which generates a total revenue of 18. Notice that buyer 1 is not satisfied in this allocation since he is allocated
zero units, which he does not demand. A provisional allocation for this example is to allocate one unit each to buyers 1
and 3 and allocate two units to buyer 2. This generates the same revenue as the previous admissible allocation but
satisfies all the buyers.

Given prices p, define α(M,p) := max(0, n − ∑
i∈M Di(p)) for all M ∈ B. Quantity α(M,p) denotes the under-

demand in economy E(M). For the example in Table 2 and the price vector in Table 3, α(M,p) = 0 for all M ∈ B.

Definition 6. The clinching auction is defined as:

(S0) Initialize prices as p0
i (j) = q0j for all i ∈ B and for all j � n, where q0 is a large integer. Set t := 0.

(S1) In iteration t of the auction with price vector pt :
(S1.1) Collect the demand sets D(pt ) of all the buyers at pt .
(S1.2) Based on the demand sets of buyers at pt , calculate the under-demand α(M,pt ) for every M ∈ B.
(S1.3) If α(M,pt ) = 0 for every M ∈ B or qt = 0 then go to Step (S2). Else, qt+1 := qt − 1 and for every

i ∈ B , set

pt+1
i (j) :=

{
pt

i (j) for all j � Di(p
t )

pt
i (Di(p

t )) + qt+1(j − Di(p
t )), otherwise.

Set t := t + 1 and repeat from Step (S1).
(S2) The auction terminates in current iteration T with price vector pT . Final allocation is xT ∈ X(D(pT )), and for

each buyer i ∈ B with xT
i > 0, his payment is pT

i (xT
i ) − [πs(pT ) − πs(pT−i )].

The initial price is set high enough that no buyer has maximal demand more than zero in the first iteration. The
only feedback provided to each buyer in each iteration is the current price vector pt

i . The parameter qt represents
the ask price in round t on each marginal unit over and above the current number of items demanded by the buyer.
The auction terminates when this marginal price is zero or when there is no under-demand. The price vector faced
by buyer i in round t is defined recursively in terms of the price in the previous round but adjusted downwards on
quantities greater than its current demand. The payment is finally determined as a discount from the prices at the end
of the auction.

We illustrate the clinching auction for the example in Table 4. The first column indicates the iteration number,
the next three columns indicate the personalized prices of each buyer for each number of units, and the last column
indicates the excess supply in economy E(M) for every M ∈ B. Parentheses around prices for a buyer indicate the
quantity of units in his demand set in each iteration. The final price vector is a UCE price vector. Also, πs(B) = 24,
πs(B−1) = 21, πs(B−2) = 17, and πs(B−3) = 22. Using discounts from UCE price as in Eq. (1), the payment of
buyer 1 can be calculated as p

vcg

1 = p1(1) − [πs(B) − πs(B−1)] = 7 − [24 − 21] = 4. Similarly, p
vcg

2 = 13 − [24 −
17] = 6, p

vcg

3 = 4 − [24 − 22] = 2. It is a simple matter to check that these are indeed the VCG payments in this
example.

4.2. Theoretical analysis: clinching auction

We first make the following observations about our clinching auction.

Lemma 3. In every iteration t � 0 of the clinching auction in the homogeneous items environment, we have

(a) Di(p
t+1) � Di(p

t ),
Please cite this article in press as: D. Mishra, D.C. Parkes, Multi-item Vickrey–Dutch auctions, Games Econ. Behav. (2008),
doi:10.1016/j.geb.2008.04.007



ARTICLE IN PRESS YGAME:1514
JID:YGAME AID:1514 /FLA [m3SC+; v 1.91; Prn:19/05/2008; 14:13] P.12 (1-22)

12 D. Mishra, D.C. Parkes / Games and Economic Behavior ••• (••••) •••–•••
Table 4
A non-linear and non-anonymous price trajectory in the clinching auction

# qt Buyer 1 Buyer 2 Buyer 3 α(·)
1 2 3 4 1 2 3 4 1 2 3 4 B B−1 B−2 B−3

1 9 9 18 27 36 9 18 27 36 9 18 27 36 4 4 4 4
2 8 8 16 24 32 (8) 16 24 32 8 16 24 32 3 3 4 3
3 7 (7) 14 21 28 (8) 15 22 29 7 14 21 28 2 3 3 2
4 6 (7) 13 19 25 (8) 14 20 26 6 12 18 24 2 3 3 2
5 5 (7) 12 17 22 (8) (13) 18 23 5 10 15 20 1 2 3 1

From iteration 6 onwards, we have a CE of the main economy
6 4 (7) 11 15 19 (8) (13) 17 21 (4) (8) 12 16 0 0 1 0
7 3 (7) 10 13 16 (8) (13) 17 20 (4) (8) 11 14 0 0 1 0
8 2 (7) (9) 11 13 (8) (13) 17 19 (4) (8) (10) 12 0 0 0 0

(b) Di(p
t ) = {0,1, . . . ,Di(p

t )}, and
(c) vi(j) − vi(j − 1) � pt

i (j) − pt
i (j − 1) for all 0 < j � n, for all buyers i ∈ B .

A consequence of (b) is that every admissible allocation satisfies all buyers in the clinching auction under truthful
bidding since 0 is always in the demand set of every buyer. So, under truthful bidding, a provisional allocation is an
allocation that gives the maximum revenue over all admissible allocations (one need not worry about breaking ties in
favor of number of satisfied buyers). A consequence of (c) is that when every buyer bids truthfully in the auction and
qt = 0 in some iteration t , then α(M,pt ) = 0 for all M ∈ B because of non-negative marginal values. We can now
define the marginal price of the (j +1)st unit (0 � j < n) for buyer i, given price pt in iteration t , as pt

i (j +1)−pt
i (j).

The marginal price on the (j + 1)st unit for j � Di(p
t ) is exactly qt , for every buyer and in every iteration:

Lemma 4. In every iteration t of the clinching auction and for every buyer, the marginal price of the j th unit is less
than or equal to the marginal price of (j + 1)st unit for 0 � j � n − 1. Moreover, all buyers face the same marginal
price qt for all units j greater than the maximal demand of the buyer in that iteration.

Proof. By definition of the auction, for j greater than or equal to the maximal demand of a buyer, the marginal price
of the (j + 1)st unit for that buyer is qt in iteration t . The prices of units less than maximal demand are not changed.
By Lemma 3, the maximal demand of every buyer is non-decreasing from iteration to iteration (starting at zero in
iteration 0). Hence, the marginal price of j th unit is less than or equal to the marginal price of (j + 1)st unit for
0 � j � n − 1. �

It is useful to define the provisional allocation that is associated with each iteration of the auction, even though this
is not explicit in the auction rules. For this purpose, let xt

M ∈ X(DM(pt )) denote a provisional allocation for economy
E(M). We will show that provisional allocation satisfies every buyer in every economy E(M) in every iteration, and
that upon termination these provisional allocations are also in the supply set for the seller in every economy. Thus we
have UCE prices. This resembles our analysis for the LVD auction.

Proposition 4. Suppose α(M,pt ) = 0 for economy E(M) for some M ∈ B in iteration t of the clinching auction in
the homogeneous items environment. Then every provisional allocation of economy E(M) is in the supply set of the
seller in that economy in iteration t .

Proof. Assume for contradiction that a provisional allocation x is not in the supply set of the seller in economy
E(M) in iteration t . By definition, x maximizes revenue of the seller across all admissible allocations of econ-
omy E(M) in iteration t . This means no allocation in the supply set of the seller is an admissible allocation in
economy E(M) (if there are allocations in the supply set that are admissible then one of them must be selected, be-
cause they satisfy more buyers than an allocation that is not admissible). Consider some allocation y in the supply
set of the seller in economy E(M) in iteration t . Since y is not admissible, and by Lemma 3 (which says that zero
is in demand set of every buyer throughout the auction), there is some buyer i ∈ M such that yi > Di(p

t ). Since
Please cite this article in press as: D. Mishra, D.C. Parkes, Multi-item Vickrey–Dutch auctions, Games Econ. Behav. (2008),
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α(M,pt ) = 0, there exists k ∈ M \ {i} such that yk < Dk(p
t ). Now, construct a new allocation z of economy E(M)

such that zi = yi − 1, zk = yk + 1, and zi′ = yi′ for all i′ ∈ M \ {i, k}. From Lemma 4, the revenue from z is greater
than or equal to the revenue from y because the marginal price of a unit less than the maximal demand of a buyer is
greater than the marginal price of a unit greater than maximal demand. This process of constructing a new allocation
can be repeated till we get an allocation z such that zi � Di(p

t ) for all i ∈ M . Thus, we get an admissible allocation
of economy E(M) with revenue greater than or equal to the revenue from y. This is a contradiction. �

Every provisional allocation satisfies all buyers. Further, if α(M,pt ) = 0 then every provisional allocation of
economy E(M) is in the supply set of the seller in economy E(M) by Proposition 4. This means once we have
α(M,pt ) = 0, we achieve a CE of economy E(M). These results lead to the main result of this section.

Theorem 3. Suppose every buyer follows the truthful bidding strategy. Then the clinching auction terminates at a
UCE price vector in the homogeneous items environment, achieves the VCG outcome, and is ex post efficient.

Proof. Since buyers are truthful, the maximal demand of all the buyers will be n when the marginal price reaches
zero. Thus, the zero marginal price provides a lower bound for the prices in the auction and it will terminate after a
finite number of iterations.

We have already seen that by Proposition 4 once α(M,pt ) = 0, we have a CE of economy E(M). By (a) of
Lemma 3, α(M,pt ) = 0 implies α(M,pt+1) = 0 for all M ∈ B. Hence, once a CE of an economy is achieved, the
following iterations in the auction also produce a CE of that economy. Therefore, by the terminating condition of the
auction, the final price vector is a UCE price vector.

Since the final price vector and any provisional allocation of the main economy is a CE of the main economy,
any provisional allocation of the main economy is an efficient allocation. Hence, the final allocation of the clinching
auction is an efficient allocation. From the payment rule of the clinching auction and Theorem 1, the payments of
buyers are their respective VCG payments. Thus, the clinching auction achieves the VCG outcome. �
4.3. The simple clinching auction

We now present a simple representation of the clinching auction that maintains only the marginal price qt in each
iteration and makes the clinching behavior explicit. One challenge here is that a marginal price does not correspond to
a unique non-linear and non-anonymous price vector, as seen in the prior analysis. The analysis re-parameterizes the
demand sets and under-demand in terms of this marginal price.

By Lemma 3, a buyer can report his entire demand set by revealing only his maximal demand in each iteration.
Since qt is the marginal price of a unit, the maximal demand given qt is:

Di(q
t ) =

{
0 if vi(1) − vi(0) < qt ,

maxj∈{0,1,...,n} j s.t. vi(j) − vi(j − 1) � qt otherwise.

The final payments are determined from the demand sets reported by buyers across iterations by a clinching ar-
gument. Let tm denote the first iteration in which

∑
i∈B Di(q

t ) � n, and thus for which α(B,qt ) = 0. Let xt be
the provisional allocation of the main economy in iteration t . Define the residual demand without buyer i as
r−i (q

t ) = min(xt
i ,

∑
j �=i[Dj(q

t ) − xt
j ]) for all iterations t � tm. For iterations t < tm, define r−i (q

t ) = 0 for all
i ∈ B . For iterations t � tm, this gives the number of units from xt

i that can be allocated to buyers in economy E(B−i ).
The change in residual demand from iteration tm until termination also provides enough information to define the
final payments of each buyer (see Lemma 5), discounting from the final marginal ask price.

The simple clinching auction achieves the same outcome as the earlier auction but with a simpler representation of
prices.

Definition 7. The simple clinching auction is an iterative procedure with the following steps:

(S0) Start from a high price q0. Set t := 0. Set the total number of units allocated to buyers, (x1, . . . , xm), to zero. Set
the total payments of buyers, (s1, . . . , sm), to zero.

(S1) In iteration t of the auction with price qt :
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(S1.1) Collect maximal demand Di(q
t ) of every buyer i at price qt . Impose Di(q

t ) � Di(q
t−1) for every buyer

for all t > 0.
(S1.2) If

∑
i∈B Di(q

t ) < n then xi = Di(q
t ) for all i ∈ B . Set qt+1 := qt − 1, t := t + 1, and repeat from

Step (S1.1).
(S1.3) If

∑
i∈B Di(q

t ) � n and
∑

i∈B Di(q
t−1) < n, then set tm := t and set x to be the new provisional

allocation.
(S1.4) Set si := si + qt (r−i (q

t ) − r−i (q
t−1)) for all i ∈ B .

(S1.5) If r−i (q
t ) = xi for all i ∈ B or qt = 0, then go to Step (S2). Else, set qt+1 := qt − 1, t := t + 1, and

repeat from Step (S1.1).
(S2) Final allocation is (x1, . . . , xm) and the final payment vector is (s1, . . . , sm).

The simple clinching auction maintains the marginal price of an additional unit over and above the “clinched units”
and lowers it in every iteration. Buyers clinch all units they currently demand while the total demand is less than the
total number of units. In the first period in which the total demand exceeds supply, then the history is used to determine
the provisional allocation and thus also the number of clinched units. The clinched units of a buyer are priced by
monitoring the residual demand without each buyer. The auction stops when all the clinched units of the buyers are
priced, and this occurs exactly when the residual demand without each buyer equals the number of units clinched by
that buyer, and thus exactly when supply equals demand in every economy. The computational requirements of this
auction are very light: simple linear time operations are performed in every iteration.

The maximal demand reported by buyers across all iterations can be used to determine the provisional allocation.
Consider the main economy and iteration t . If α(B,qt ) > 0 then determine the provisional allocation by assigning
Di(q

t ) to each buyer i ∈ B . In the first period t in which α(B,qt ) = 0, allocate Di(q
t−1), i.e. the maximal demand

in iteration t − 1, to each buyer i ∈ B and complete the provisional allocation by assigning the n − ∑
i∈B Di(q

t−1)

additional units to buyers at random such that no buyers gets more than his maximal demand. It is easy to see that this
allocation is admissible, and one can use arguments similar to Proposition 4 to show that it maximizes revenue across
all admissible allocations and is therefore a provisional allocation.

Consider the example in Table 2 and suppose there is a marginal price of 6 in some iteration. Then, the maximal
demands of buyers 1 and 2 are one, and that of buyer 3 is zero. Hence, α(B,6) > 0, and the provisional allocation
allocates every buyer his maximal demand. Consider marginal prices of 5 and 4 in two consecutive iterations. The
maximal demand vector of buyers for marginal price 5 is (1,2,0) and that for marginal price 4 is (1,2,2). In the
iteration when the marginal price is 4, we have α(B,4) = 0. The provisional allocation initially allocates one unit
to buyer 1, two units to buyer 2, and zero units to buyer 3, with the remaining one unit given to buyer 3 since he
is the only buyer whose maximal demand has increased over these two iterations. To illustrate the idea of residual
demand, consider the same iteration in which the marginal price is 4 and the maximal demand vector is (1,2,2). If
we remove buyer 1, we can allocate a maximum of four units among buyers 2 and 3, whereas buyers 2 and 3 are
allocated three units in the provisional allocation. Hence, residual demand without buyer 1 is 4 − 3 = 1. Similarly, if
we remove buyer 2, we can allocate a maximum of three units to buyers 1 and 3, whereas buyers 1 and 3 are allocated
two units in the provisional allocation. Hence, residual demand without buyer 2 is also 1. Similarly, one can check
that the residual demand without buyer 3 is zero.

By definition, in iterations t � tm, α(B−i , q
t ) = 0 if and only if r−i (q

t ) = xt
i for all buyers i ∈ B , where xt is

the provisional allocation. Thus, the residual demand information also provides a termination condition: the auction
terminates when t � tm and either ri(q

t ) = xt
i for all i or qt = 0.

We illustrate the steps of the auction in Table 5. Buyers clinch units as soon as they demand them while there is
available supply. For instance, in iteration 2, buyer 2 demands a unit and clinches it as there are 4 units of supply
available in the main economy (and no other demand). In iteration 6 the total demand in economy E(B−1) is 4 units
and buyers in B−1 have clinched 3 units. This means there is a residual demand of 1 unit without buyer 1 and the single
unit clinched by buyer 1 is priced at the current price, which is 4. Similarly, the total demand in economy E(B−2) is
3 units and buyers in B−2 have clinched 2 units, creating a residual demand without buyer 2 of 1 unit. Thus, only one
of the two units clinched by buyer 2 can be priced at the current price of 4. The next change in residual demand occurs
in iteration 8, when the remaining units are priced and the auction terminates.
Please cite this article in press as: D. Mishra, D.C. Parkes, Multi-item Vickrey–Dutch auctions, Games Econ. Behav. (2008),
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Table 5
Marginal price trajectory in the simple clinching auction

t Price Demand Units clinched Residual demand Payments

qt κt
1 κt

2 κt
3 x1 x2 x3 rt

1 rt
2 rt

3 s1 s2 s3

1 9 0 0 0 0 0 0 0 0 0 0 0 0
2 8 0 1 0 0 1 0 0 0 0 0 0 0
3 7 1 1 0 1 1 0 0 0 0 0 0 0
4 6 1 1 0 1 1 0 0 0 0 0 0 0
5 5 1 2 0 1 2 0 0 0 0 0 0 0

From iteration 6 onwards, we have a CE of the main economy
6 4 1 2 2 1 2 1 1 1 0 4 4 0
7 3 1 2 2 1 2 1 1 1 0 4 4 0
8 2 2 3 3 1 2 1 1 2 1 4 4 + 2 2

Lemma 5. In the simple clinching auction in the homogeneous items environment, the final payment of buyer i is
equal to

∑
t�tm[qt (r−i (q

t ) − r−i (q
t−1))].

Proof. Let pT be the final price vector in the clinching auction defined on non-linear and non-anonymous prices. Let
x and y be efficient allocations of the main economy and the marginal economy corresponding to buyer i respectively.
The VCG payment of buyer i when all buyers are truthful is:

p
vcg
i =

∑
k∈B−i

[
vk(yk) − vk(xk)

] =
∑

k∈B−i

[
pT

k (yk) − pT
k (xk)

]
. (From Lemma 3)

The above expression for the VCG payment of buyer i can be rewritten as

p
vcg
i =

∑
k �=i

[[
pT

k (yk) − pT
k (yk − 1)

] + · · · + [
pT

k (xk + 1) − pT
k (xk)

]]
. (1)

For any k ∈ B−i and for any j ∈ {xk, . . . , yk − 1}, the marginal price of (j + 1)st unit in the final iteration, pT
k (j +

1) − pT
k (j), is the marginal price of (j + 1)st unit in the iteration in which the maximal demand of k increased from

j to j + 1. Since every buyer sees the same marginal price in any iteration of our auction, we can monitor the change
in maximal demand of all buyers in B−i simultaneously in every iteration after iteration tm to compute the VCG
payment of buyer i. The change in residual demand without buyer i in an iteration t � tm reflects the total change in
maximal demand of buyers in B−i . The price of these units get fixed after this. Hence qt (r−i (q

t ) − r−i (q
t−1)) is the

price component of buyer i for r−i (q
t ) − r−i (q

t−1) units in Eq. (1). Adding over all the iterations after iteration tm

gives the VCG payment of buyer i, i.e., p
vcg
i = ∑

t�tm qt (r−i (q
t ) − r−i (q

t−1)). �
We have now established the following result.

Theorem 4. Suppose every buyer follows the truthful bidding strategy. Then the simple clinching auction achieves the
VCG outcome and is ex post efficient.

The simple clinching auction achieves ex post efficiency in an ex post Nash equilibrium when coupled with ap-
propriate activity rules. See the discussion at the end of Section 2. Consider now the special case of unit-demand
preferences, so that each buyer demands a single unit of the item. The maximal demand of a buyer never exceeds one
except for the trivial case when qt is zero and a buyer is awarded a unit as soon as it is demanded. So, the number of
clinched units of a buyer does not exceed one as long as qt > 0 and the residual demand without any buyer cannot
exceed one. The residual demand without a buyer who has clinched a unit becomes equal to one exactly when the
number of buyers demanding a unit is greater than the number of units. In that iteration, all the allocated buyers are
priced—the payment of every allocated buyer is simply the marginal price in that iteration. Notice that the terminating
condition in this case requires all units to be allocated in an economy without a buyer, which is equivalent to the
universally allocated item condition of the LVD auction. Moreover, the simple clinching auction translates to the well
Please cite this article in press as: D. Mishra, D.C. Parkes, Multi-item Vickrey–Dutch auctions, Games Econ. Behav. (2008),
doi:10.1016/j.geb.2008.04.007
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known uniform second-price auction for multiple units, where buyers pay the (same) price of the highest losing buyer.
When there is exactly one unit for auction (i.e., n = 1), the auction stops as soon as a second buyer demands the unit,
translating again to Vickrey’s flash-button apparatus.

5. Conclusions

We introduce ex post efficient Vickrey–Dutch auctions for environments with unit demand and with multiple ho-
mogeneous items and non-decreasing marginal values. These auctions are designed within the framework of universal
competitive equilibrium prices. The auctions in both settings maintain simple prices and terminate with the VCG
outcome. In the appendix, we demonstrate using simulations that their preference elicitation properties and speed, es-
pecially in environments with high competition, are superior to their ascending auction counterparts. These properties
make them very attractive for practical use in private value settings. Identifying additional valuation domains where
“simple” prices can provide ex post efficient, descending price auctions provides an interesting direction for future
work.
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Appendix A. An experimental analysis of speed and preference elicitation

In this section, we compare the speed and preference elicitation properties of our auctions with their ascending price
counterparts. Our analysis is based on computer simulations. For speed, our metric for comparison is the number of
iterations in the auction. For preference elicitation, we define a new metric (the uncertainty index), which provides a
measure of the accuracy with which agent valuations are revealed to the auction.

In our computer simulations the input parameters are the number of buyers, the number of items (or units), and
the density. In the unit-demand setting the density is a real number between 0 and 1, and reflects the probability with
which a buyer will have positive value on an item: a higher density means that more buyers have positive value on
items. In the homogeneous item setting, a higher density reflects a higher probability that a buyer has positive marginal
value for a unit. All values are integers and the bid decrement in both auctions is set to one throughout. All results
are averaged over 100 trials. The results depend on the starting prices in the auctions. Our choice here is to simply
set the starting price in the ascending auctions to the minimal possible value for an item and the starting price in the
descending auctions to the maximal possible value.

A.1. The LVD auction: unit demand

We simulate the LVD auction and the DGS auction8 using a computer program and with agents following the
truthful equilibrium. Valuations of buyers for items are drawn from a uniform distribution with range [0,100] and
assigned according to the density. The starting price on every item in the LVD auction is 100 (the upper limit of
valuation) and zero in the DGS auction (the lower limit of valuation). Thus, this is completely symmetric for the
two different auctions. Before presenting the simulation results, we propose a novel way of measuring preference
elicitation in iterative auctions.9

8 The ascending price auction in Demange et al. (1986) has been modified in Sankaran (1994). This modification has a computationally faster
price adjustment procedure than the original ascending price auction of Demange et al. (1986), and is suitable for practical implementation. We
refer to the auction of Demange et al. (1986), as modified by Sankaran (1994), as the DGS auction.

9 See Parkes and Kalagnanam (2005) for a related, but different, approach in which the probability mass that is consistent with the revealed
information is adopted as a metric of the remaining uncertainty about preferences.
Please cite this article in press as: D. Mishra, D.C. Parkes, Multi-item Vickrey–Dutch auctions, Games Econ. Behav. (2008),
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A.1.1. A preference elicitation measure
We propose a metric that measures the amount of revealed preference information that is implied by the bids placed

by buyers in response to increasing or decreasing prices. In the equilibrium of both the DGS and the LVD auctions,
the demand set reported by a buyer in a round implies constraints on an agent’s valuation. Let T be a finite set of
iterations in an auction. A valuation function v̂i is a consistent valuation in iteration t for buyer i if for all t ′ ∈ T and
for all j ∈ Di(p

t ′) we have that

v̂i (j) − pt ′(j) = v̂i (k) − pt ′(k) ∀k ∈ Di

(
pt ′), (2)

v̂i (j) − pt ′(j) = v̂i (k) − pt ′(k) + 1 ∀k /∈ Di

(
pt ′). (3)

The size of the set of consistent valuations at the end of an auction indicates the amount of information revealed:
a large set corresponds with considerable uncertainty about valuations and a small set corresponding to little uncer-
tainty. The consistent valuations in the LVD and DGS auctions form a lattice, which leads to a natural metric for
preference elicitation. The proof of the following appears in Appendix B.

Theorem 5. Suppose the valuation of every buyer is drawn from a distribution with finite support. Then the set of
consistent valuations of every buyer in the LVD auction and the DGS auction forms a complete lattice.

The previous theorem says that for every buyer i and for all histories there exists a unique greatest consistent
valuation, vmax

i , and a unique least consistent valuation, vmin
i . We define the uncertainty index UIi for buyer i as:

UIi =
∑
j∈Ai

[vmax
i (j) − vmin

i (j)]
100 × |Ai | , (4)

where Ai = {j ∈ A: vi(j) > 0}. This is the sum of the difference between the greatest and smallest consistent values
on items for which the buyer has non-zero value. We normalize this by the size of the domain from which the valua-
tions are drawn (here, 100 − 0 = 100) and the number of items on which it has non-zero value. The UI metric ignores
the items for which a buyer’s value is zero because we choose to model a buyer as finding it easy to identify items for
which he has no value.10

The uncertainty index (UI) of an auction is the average uncertainty index across all buyers and then averaged over
a number of instances.11 Note that the index captures the amount of preference information not elicited and thus a
large index is better than a small index.

A.1.2. Simulation results: unit demand
We fix the number of items at 5, the density at 0.75 (i.e. on average, every buyer has non-zero value for 75% of

the items), and vary the number of buyers from 5 to 50. A comparison of the speed of the LVD auction and the DGS
auction is shown in Fig. 3(a), while a comparison of preference elicitation (using the uncertainty index) is shown in
Fig. 3(b). We also plot the average market clearing price, defined as the ratio between the total payments made by the
bidders and the total number of items in the market (and normalized in Fig. 3(a), (b)); this provides a measure of the
overall level of competition in the market.

When the number of buyers is relatively low the DGS auction has better speed and preference elicitation properties.
As the number of buyers increase, the LVD auction does better in terms of both speed and preference elicitation. It

10 The results that we present are qualitatively unchanged if the uncertainty index is defined as the average residual value uncertainty across all
items.
11 To illustrate the idea of UI, we give an example of auctioning a single item. Suppose there are four buyers with values 10, 8, 6, and 4 respectively,
drawn from a uniform distribution with range [0,10]. Suppose the starting price in the Vickrey–Dutch auction is 10 and that in the English auction
is 0. Both the Vickrey–Dutch auction and the English auction will terminate at price 8. All buyers except the first buyer will reveal their valuations
in the English auction, whereas the final price gives a lower bound of 9 on the valuation of the first buyer. So, the least consistent valuation profile
and the greatest consistent valuation profile in the English auction are (9,8,6,4) and (10,8,6,4) respectively, and the UI is the average of UI of all
the buyers, i.e., 1+0+0+0

4×10 = 0.025. In the Vickrey–Dutch auction, the first and second buyers reveal their valuations. The final price gives an upper
bound of 7 on the valuations of the third and fourth buyers. So, the greatest consistent valuation profile and the least consistent valuation profile in
the Vickrey–Dutch auction are (10,8,7,7) and (10,8,0,0) respectively. So, the UI of the Vickrey–Dutch auction is 0+0+7+7

4×10 = 0.35.
Please cite this article in press as: D. Mishra, D.C. Parkes, Multi-item Vickrey–Dutch auctions, Games Econ. Behav. (2008),
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(a) (b)

Fig. 3. The speed and average uncertainty index in the LVD and the DGS auction.

is nice to observe that the cross-over point, beyond which the LVD auction dominates the DGS auction, occurs for
prices around 50 which is the mean of the domain of values on items (0, 100) in this environment (note that 0 and 100
also represent the initial prices in the DGS and LVD auctions respectively). Indeed, the number of iterations in the
DGS auction tracks the clearing price while the number of iterations in the LVD auction tracks 100 minus the clearing
price.

In terms of the average uncertainty index, the LVD auction is able to achieve approaching 90% UI for a large num-
ber of buyers. This is a significant improvement over the DGS auction for a large range of the number of buyers.12,13

A.2. The clinching Vickrey–Dutch auction: homogeneous items

Turning to the environment with multiple units of a homogeneous item we define a distribution on valuations that
satisfy the non-increasing marginal value requirement. The marginal value of the first unit is drawn uniformly from
the integers on the range [50,100]. For buyer i and k > 1, if v̂k−1

i is the marginal value of the (k − 1)st unit, then the
marginal value of the kth unit is drawn uniformly from integers in the range [v̂k−1

i /2, v̂k−1
i ] with probability equal to

density, where density is an input to our simulations. With probability equal to (1-density), we set the marginal value
of kth (k > 1) unit of buyer i at zero (and zero value on future units as well).

Before presenting the simulation results, we describe how we measure preference elicitation in this setting. The
revealed preference information implicit in the demand sets in the equilibrium of the clinching and AUS auctions
in this environment provides information about the marginal value on each unit rather than the absolute value. This
is because the prices in these auctions define the price on a marginal unit relative to the number of units already
clinched. For this reason, the uncertainty index is defined here in terms of information about the marginal valuations,
but is otherwise unchanged: we measure the difference between the greatest consistent marginal valuation and the least
consistent marginal valuation, normalized by dividing it over 100, and considering only those units whose marginal
value is non-zero.14

12 One surprising observation from this simulation is that although the UI for the DGS auction initially decreases with the number of buyers, it is
approximately steady (and even slightly improving) as the number of buyers increases from 10 towards 50. We expect that this results from two
factors: (a) the number of iterations in DGS is fairly constant (and large) on this range; (b) as the clearing prices become higher on this range more
buyers are “priced-out” and stop revealing information.
13 We also run simulations with (a) a fixed density and number of buyers and varying the number of items and (b) a fixed number of buyers and
items and varying the density. In both these experiments, we see very similar effects: at high average market clearing prices the LVD auction does
better than the DGS auction but at low market clearing prices the DGS auction does better than the LVD auction. The cross-over point occurs
consistently around an average clearing price of 50.
14 The consistent marginal valuations form a lattice in both auctions. This can be verified along the lines of proof of Theorem 5, and is omitted in
the interest of space.
Please cite this article in press as: D. Mishra, D.C. Parkes, Multi-item Vickrey–Dutch auctions, Games Econ. Behav. (2008),
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(a) (b)

Fig. 4. The average number of iterations and preference elicitation in the clinching (CVD) and the AUS auctions.

A.2.1. Simulation results: homogeneous items
We fix the number of units at 20, the density at 0.75, and vary the number of buyers from 5 to 50. The plots for

speed and for preference elicitation are shown in Fig. 4(a) and (b). We continue to include the average market clearing
price, defined here as the total payment made by the bidders divided by the number of units, and again normalized by
dividing by 100 in the preference elicitation plot.

We again see an excellent correspondence between the average clearing price and the number of iterations, with the
clinching auction (labeled CVD) converging more quickly than AUS for a large number of buyers, with the crossover
corresponding to an average clearing price of 50. The descending auction also enjoys better preference elicitation
properties than the ascending auction for a large number of buyers. In this simulation the index of the AUS auction
continues to decrease as the number of buyers increases, apparently trending towards 100% elicitation for a large
number of buyers. The preference elicitation properties of the clinching auction are significantly better than the AUS
auction for a moderate to large number of buyers.15

Appendix B. Proofs

Lemma 1. U(p,D(p), x) = U(p′,D′(p′), x′) ∪ A0(p) where (p′,D′(p′), x′) is the restriction of (p,D(p), x) to
items with positive price and A0(p) is the set of items with zero price.

Proof. To show U(p,D(p), x) ⊇ U(p′,D′(p′), x′) ∪ A0(p), if j ∈ A0(p) then j ∈ U(p,D(p), x) by definition. If
j ∈ U(p′,D′(p′), x′) then j is allocated in x′ and thus also in x, and moreover there is some y′ ∈ X(D′−i (p

′)) (where
j is allocated to i in x) with S(y′) = S(x′). Now, consider z ∈ X(D−i (p)). Clearly, S(z) = S(y′) because z must
allocate as many items with positive price as y′ for it to be a provisional allocation. Since S(y′) = S(x′) = S(x), we
have S(z) = S(x). To show U(p′,D′(p′), x′) ∪ A0(p) ⊇ U(p,D(p), x), consider j ∈ U(p,D(p), x). If p(j) = 0
then j ∈ A0(p). If p(j) �= 0 then j is allocated in x, to say i. Then, there is some y ∈ X(D−i (p)) with S(y) = S(x).
Construct y′ ∈ X(D′−i (p

′)) with S(y′) = S(x′) = S(x) by assigning the dummy item to any agent k �= i allocated to
an item with zero price in allocation y. Thus, item j ∈ U(p′,D−i (p

′), x′). �
Lemma 2. Given a price vector p with non-zero prices for all the items, item j ∈ U(p,D(p), x) if and only if there
is a well-defined chain z−i (x,D(p)) = j0i1j1i2j2 . . . icj where buyer i is allocated j in allocation x.

Proof. Given such a chain z−i (x,D(p)), the modified allocation x′ induced by the chain when applied to x satisfies
x′ ∈ X(D−i (p)) and S(x′) = S(x) by definition. Now, consider some j ∈ U(p,D(p), x). We construct a well-defined

15 We also experimented with (a) fixing the density and the number of buyers and varying the number of units; (b) fixing the number of items
and the number of buyers and varying the density. In both these experiments, we found similar conclusions: at higher market clearing prices the
clinching auction performs better than the AUS auction in terms of both speed and preference elicitation, with the cross-over occurring at an average
market price of around 50.
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chain z−i (x,D(p)), where i is the buyer assigned j in x. Consider allocation y ∈ X(D−i (p)) with S(y) = S(x). Let
i(1) denote the buyer assigned to j in y (such a buyer must exist). Let j (1) denote the item assigned to buyer i(1) in x.
If j (1) = 0 then the chain is 0i(1)j . Otherwise, let i(2) denote the buyer assigned to j (1) in y and let j (2) denote the
item assigned to this buyer in x. Now, if j (2) = 0 then the chain is 0i(2)j (1)i(1)j . Eventually, for some q � n there
must be a buyer i(q) assigned item j (q−1) in y but unallocated in x and this completes the chain 0i(q)j (q−1) . . . i(1)j .
Such a buyer must exist because y must allocate to at least one buyer not allocated in x since S(y) = S(x). �
Proposition 2. The FINDUNIVALLOCITEMS procedure determines all universally allocated items.

Proof. Each repetition of steps 1–3 in procedure FINDUNIVALLOCITEMS is referred to as a round, indexed r =
1,2, . . . . By Lemma 1, we can reduce the problem of determining the set of universally allocated items to that of
finding the set U(p′,D′(p′), x′) where (p′,D′(p′), x′) is restricted to items with positive prices. For these, we know
from Lemma 2 that an item j is universally allocated if and only if there is a well-defined chain, starting from an
unallocated agent in x′ and terminating with the item j . The FINDUNIVALLOCITEMS procedure completes the closure
of all items reachable by any well-defined chain, first initializing U(p,D(p), x) to the set of items demanded by an
agent unallocated in x′ (and thus reachable by a chain of length 1), and then in each round r = 1,2, . . . identifying all
allocated items W reachable by some chain of length r + 1. The items with zero price A0(p) are finally added to the
set of universally allocated items. �
Proposition 3. In the provisional allocation in every iteration of the LVD auction, every buyer is satisfied under
truthful bidding.

Proof. The proof is by induction on the iteration t � 0 of the auction. The base case is easy because every buyer
demands only the dummy item. Now, suppose the claim holds in iteration t − 1 and consider iteration t > 0. Let
xt−1 ∈ X(D(pt−1)). By assumption all buyers are satisfied in xt−1.

We will first show that xt−1 remains admissible, so that every buyer is still satisfied with provisional allocation
xt−1 in iteration t . Consider a buyer i and three possible cases.

Case 1. Buyer i is unallocated in iteration t − 1. Since i is satisfied, 0 ∈ Di(p
t−1) and for all j ∈ Di(p

t−1) \ {0}
then j is universally allocated in iteration t − 1 by Lemma 2. Thus, the price is unchanged in iteration t on all items
in the demand set of i, while the price falls by at most 1 on all other items. This implies Di(p

t ) ⊇ Di(p
t−1).

Case 2. Buyer i is allocated item j �= 0, but j is not universally allocated in iteration t − 1. Thus, the price on this
item falls in iteration t and since the price on no other item falls by more than this, j ∈ Di(p

t ).
Case 3. Buyer i is allocated item j �= 0 that is universally allocated. We show that for every j ′ ∈ Di(p

t−1), we
have j ′ ∈ U(pt−1,D(pt−1), xt−1). Consider the interesting case that pt−1(j ′) > 0 and suppose that j ′ is not allocated
in xt−1. But, the auction could have then achieved more revenue in iteration t − 1 with allocation y ∈ D−i (p

t−1)

such that S(y) = S(x) (which exists since j is universally allocated) and then augmenting allocation y to assign
item j ′ to agent i. Thus, this would contradict with xt−1 being a provisional allocation. Now consider the chain
z−i (x

t−1,D(pt−1) = 0i1j1 . . . icj) that establishes that item j is universally allocated. If buyer i′, allocated to item j ′
in xt−1, is not represented in the chain then the well-defined chain 0i1j1 . . . icj ij ′ establishes that j ′ is also universally
allocated. On the other hand, if i′ is in the chain, for instance z−i (x

t−1,D(pt−1)) = 0i1j1i2j
′i′j3 . . . icj then consider

truncated chain 0i1j1i2j
′ which is well-defined for z−i′(xt−1,D(pt−1)) and establishes that j ′ is universally allocated.

Since all items in Di(p
t−1) are universally allocated, the price of every item remains unchanged in pt while the price

on other items falls by at most 1 on any other item. This implies Di(p
t ) ⊇ Di(p

t−1).
Second, we show that a provisional allocation xt exists in iteration t that satisfies every buyer. We provide a

sequence of transformations to construct such a provisional allocation from any provisional allocation x̂t in iteration t

(i.e. x̂t may assign the dummy item to some agents that do not have it in their demand sets). Initialize B(0) to the
set of buyers not satisfied in x̂t and initialize A(0) = ∅, to denote the set of items whose assignment is fixed. Pick
any i ∈ B(0) and consider item j allocated to i in xt−1. By the above reasoning we know that j ∈ Di(p

t ), and thus
we construct admissible allocation x(1) by assigning item j to buyer i and assigning the buyer assigned to j in x̂t

to the dummy item. Set A(1) = {j} to indicate that the allocation of item j is now fixed. The revenue achieved by
the seller in x(1) is the same as in x(0). Define B(1) as the buyers not satisfied in allocation x(1). Continue, picking a
Please cite this article in press as: D. Mishra, D.C. Parkes, Multi-item Vickrey–Dutch auctions, Games Econ. Behav. (2008),
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buyer i ∈ B(1), fixing the allocation of another item, and so on. Since this process assigns buyers to their assignments
in xt−1, eventually an admissible allocation is achieved with the same revenue as x̂t that satisfies every buyer. �
Lemma 3. In every iteration t � 0 of the clinching auction in the homogeneous items environment, we have

(a) Di(p
t+1) � Di(p

t ),
(b) Di(p

t ) = {0,1, . . . ,Di(p
t )}, and

(c) vi(j) − vi(j − 1) � pt
i (j) − pt

i (j − 1) for all 0 < j � n, for all buyers i ∈ B .

Proof. Consider any buyer i ∈ B . The base case for t = 0 is easy because the prices are initially high and Di(p
0) = 0

(and thus Di(p
1) � Di(p

0)), Di(p
0) = {0, . . . ,Di(p

0)} and vi(j) − vi(j − 1) � q0 for all 0 < j � n. For iteration
t > 0, consider the interesting case that Di(p

t−1) < n. Otherwise the prices are unchanged. By the inductive hypoth-
esis (b) and the price change rule, we have vi(j) − vi(j − 1) = pt−1

i (j) − pt−1
i (j − 1) = pt

i (j) − pt
i (j − 1) for all

0 < j � Di(p
t−1), and vi(Di(p

t−1) + 1) − vi(Di(p
t−1)) < pt−1

i (D(pt−1) + 1) − pt−1
i (D(pt−1)) = qt−1. By non-

increasing marginal values, vi(j)−vi(j −1) � vi(Di(p
t−1)+1)−vi(Di(p

t−1)) < pt−1(j)−pt−1(j −1) = qt−1 =
qt + 1 for all Di(p

t−1) < j � n. This implies that vi(j) − vi(j − 1) � qt = pt
i (j) − pt

i (j) for all Di(p
t−1) < j � n,

where the last equality follows from the price change rule. This establishes inductive hypothesis (c) for iteration t .
Property (a) is true since Di(p

t ) � Di(p
t−1), and the price on marginal unit Di(p

t−1) + 1 falls while the price on all
units � Di(p

t−1) is unchanged. Finally, for inductive hypothesis (b), assume j ∈ Di(p
t ). If j > 0, then we will show

that j −1 ∈ Di(p
t ). Since j ∈ Di(p

t ), vi(j)−vi(j −1) � pt
i (j)−pt

i (j −1). From (c), which was proved earlier, we
have vi(j) − vi(j − 1) � pt

i (j) − pt
i (j − 1). Together, it gives vi(j) − vi(j − 1) = pt

i (j) − pt
i (j − 1). This implies

j − 1 ∈ Di(p
t ). Hence (b) holds. �

Theorem 5. Suppose the valuation of every buyer is drawn from a distribution with finite support. Then the set of
consistent valuations of every buyer in the LVD auction and the DGS auction forms a complete lattice.

Proof. Let v1
i and v2

i be two consistent valuations of buyer i in the LVD auction. Define v3
i := min(v1

i , v
2
i ) and

v4
i := max(v1

i , v
2
i ). Consider an iteration t of the LVD auction. We will show that v3

i satisfies Eqs. (2) and (3) in
iteration t . Consider j ∈ Di(p

t ). Suppose v3
i (j) = v1

i (j). Consider the case when k ∈ Di(p
t ). If v3

i (k) = v1
i (k), then

v3
i (j) − v3

i (k) = v1
i (j) − v1

i (k) = pt
j − pt

k . Else, v1
i (k) > v2

i (k). This gives, v1
i (j) − v1

i (k) < v2
i (j) − v2

i (k). But,

v1
i (j) − v1

i (k) = v2
i (j) − v2

i (k) = pt
j − pt

k . This gives a contradiction, implying that v3
i (k) = v1

i (k) and v3
i (j) −

v3
i (k) = v1

i (j)− v1
i (k) = pt

j −pt
k . Now, consider the case when k /∈ Di(p

t ). Suppose v3
i (j) = v1

i (j). v3
i (j)− v3

i (k) =
v1
i (j) − v3

i (k) � v1
i (j) − v1

i (k) = pt
j − pt

k . Thus, Eqs. (2) and (3) are satisfied by valuation function v3
i . So, v3

i is a

consistent valuation. Similar arguments show that v4
i is a consistent valuation. This shows that the set of consistent

valuations is a lattice in the LVD auction. A similar proof follows for the DGS auction. Since the valuations are drawn
from a distribution with finite support, this lattice is complete. �
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