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Chapter 1: Introduction

1.1 Mechanism Design

Mechanism design is a subfield of microeconomic theory and game theory that 

focuses on solving distributed system-wide optimization problems among a collection of 

independent, self-interested agents who have private preference information [Parkes, 

2001]. Each agent that interacts with a mechanism is assumed to have a strategy which 

dictates how the agent will act in every feasible state of the world. From a high level per-

spective, a mechanism defines the strategies that are available to each agent and provides a 

mapping from agent strategies to an outcome. Thus a mechanism can be thought of as an 

object that contains two items, a set of feasible agent strategies and a function that imple-

ments an outcome rule based on the actual strategies chosen by the agents. An instance of 

a mechanism is simply the mechanism running with a specific set of agent strategies cho-

sen from the set of feasible strategies.

Although typically the mechanism designer himself does not have control over the 

specific strategies that agents choose, he aims to create rules that allow the mechanism to 

achieve particular economic goals, such as allocative efficiency, without knowing a priori 

the specific strategies that agents will choose, only the set of feasible strategies. In a dis-

tributed system setting, the mechanism designer usually attempts to massage the distrib-

uted problem he is examining into one in which agents will be best off, given their 

strategies, by acting in a way that implements system-wide goals, such as efficiency. 

Designing mechanisms to attack tough distributed problems, such as the allocation of 
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computing resources across a distributed network, routing responsibility in a sensor net-

work [Greenberg and Naim, 2004], or the creation of a work plan among a large collection 

of independent agents, is becoming increasingly commonplace. In fact, Ng et al. argues 

that system designers must explicitly address the self-interest of individual parties in the 

new era of distributed networks if these systems are to succeed [Ng et al., 2000].

While traditional mechanism design has focused almost exclusively on the game-

theoretic properties of mechanisms, computational mechanism design examines not only 

economics issues but also issues of computational tractability. Although the traditional 

mechanism designer, ignoring computational considerations, attempts to provide eco-

nomic guarantees about a mechanism, the computational mechanism designer strives also 

for computational guarantees, and he thus is concerned not only with economic consider-

ations but also with issues of computational complexity and algorithm design. To illustrate 

the distinction between the two fundamentally different aspects of mechanism study, 

Table 1 lists a few examples of economics and computational results that are often pre-

sented in research.

Table 1: Examples of Mechanism Design Results

Economics Results Computational Results

The mechanism is allocatively efficient, 
for it chooses an allocation such that no 
other allocation can provide higher value 
across all agents. 

The allocation algorithm employed by the 
mechanism can be reduced to a certain 
problem which we know to be NP-com-
plete.

The mechanism employs a winner deter-
mination rule that makes it every agent’s 
value-maximizing strategy to bid truth-
fully.

We can use a different winner determina-
tion algorithm in this mechanism in order 
to reduce its runtime to one that is linear in 
its input.
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It is unfortunate that a great deal of research focuses on one of the two approaches 

to mechanism design while ignoring the other. Focusing solely on the economic properties 

of a mechanism is dangerous because it often leads to designs which are computationally 

infeasible for real-world use. Similarly, because achieving computational goals, such as 

tractability, often requires the designer to weaken some of the mechanism’s game-theo-

retic properties, it is risky to attempt to improve a mechanism’s computational properties 

without considering the economic ramifications of the optimizations. Since designers need 

to find the right trade-off of economic goals for computational efficiency, the study or 

construction of a mechanism needs to be tackled with the tools of both economics and 

computer science; this dual approach is the foundation of computational mechanism 

design.

1.2 Anytime Strategyproofness

One of the key challenges in computational mechanism design is to design a mech-

anism that is both strategyproof (it is the dominant strategy of every agent to submit bids 

that truthfully represent the agent’s values for goods) and tractable. By tractable, we mean 

Among all efficient and interim individu-
ally rational mechanisms, the Vickrey-
Clarke-Groves mechanism maximizes the 
expected transfers from agents.

We can place bounds on the approxima-
tion ratio, compared to an optimal algo-
rithm’s solution in this Vickrey-Clarke-
Groves-based mechanism, that this algo-
rithm provides.

This mechanism is budget balanced, so it 
does not need external funding.

No algorithm can implement this mecha-
nism and have a worst-case computational 
complexity that is linear in its input.

Table 1: Examples of Mechanism Design Results
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that the algorithms the mechanism implements in determining an instance’s outcome are 

tractable.

Mechanisms that implement combinatorial auctions have received a great deal of 

attention lately. Unlike traditional auctions, in which agents express values for and are 

rewarded individual goods, combinatorial auctions allow agents to bid on collections, or 

bundles, of goods. Combinatorial auctions are powerful because they enable bidders to 

express complementary preferences. For example, a bidder may value good A alone at $1 

and good B alone at $1, but may value them together at $20. He would not want to bid $10 

on each of them separately, for he has no guarantee that if he receives one he will receive 

the other. Yet if he could express to the auctioneer that he values them together at $20, 

another bidder that values each at $2 a piece and together at $5 would not win the two 

goods over him. This expression of complementaries is impossible with standard single-

good auctions. Traditionally, combinatorial auctions implement a winner determination 

algorithm, which dictates how the goods are to be partitioned, and who is to receive each 

partition. Unfortunately, determining the optimal allocation is NP-complete [Vries and 

Vohra, 2001]. 

Virtually all previous work on reducing the computational complexity of optimally 

solving winner determination while maintaining strategyproofness has approached the 

problem by assuming restricted domains of agent preferences. In the realm of combinato-

rial auctions, for example, Lehmann et. al. examines the special case of truthful single-

minded bidders, bidders who have a positive value for only one bundle. Mu’alem and 

Nisan propose techniques for constructing computable truthful mechanisms in the single-
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minded bidder case where the mechanism can verify that the bundle on which each agent 

places a bid is truly the one that agent is interested in, even though the mechanism does 

not know the value the agent holds for the bundle. Archer et. al. proposes an approxima-

tion that is truthful but again assumes single-mindedness. Bartal et al. moves beyond sin-

gle-mindedness, but relies on the assumption that there are several units of each good, and 

each bidder desires only a small number of units [Parkes and Schoenebeck, 2004].

Assuming single-mindedness, or restricting the domain of agent preferences in 

some other way, greatly reduces the power and usefulness of combinatorial auctions. 

Clearly, there is room for a mechanism that is able to make guarantees about truthfulness 

and has good computational properties but does not make strong assumptions about agent 

preferences or some other aspect of the system. Since determining the optimal winner is 

NP-complete, if a mechanism is to be tractable yet not make restrictions on the input 

domain, it will need to provide an approximation to the optimal solution. Ideally, the auc-

tioneer should be able to control the quality of the approximation, deciding what is an 

appropriate level of trade-off between solution quality and run time.

We propose an anytime, strategyproof (with high probability) mechanism that 

tractably approximates solutions to the winner determination problem. By anytime we 

mean that if the mechanism is stopped at any point, it will be able to return an allocation of 

goods to agents; the longer the mechanism runs, the weakly better the approximation gets. 

By strategyproof, we mean that each agent has proper incentive to elicit its true values in 

all bids it makes. Strategyproof with high probability implies that with high probability 

each agent has incentive to elicit true values. Our mechanism does not have the strong lim-
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itations on agent preferences that are imposed by the aforementioned mechanisms, and it 

does not require the designer to anticipate the complexity of the problem instance. All pre-

vious works that have proposed anytime approximation mechanisms, many of which are 

based on local search, are unfortunately not strategyproof. A contemporaneous work by 

Parkes and Schoenebeck proposes GrowRange, an anytime strategyproof mechanism; 

however, our mechanism is fundamentally different from GrowRange, and we explain this 

difference in Chapter 4.

We have written a robust, comprehensive combinatorial auction environment to 

analyze our mechanism experimentally, and we present the promising results that the 

experiments have shown. In particular, the results show that the restrictions placed on the 

mechanism’s search process to make it strategyproof do not cripple its ability to provide 

high-quality approximations quickly, and that its performance is on par with other non-

strategyproof approximation mechanisms that have been proposed.

1.3 Main Results

In this thesis, we present a number of theoretical and experimental results, which 

are summarized here:

1: Theoretically, our mechanism is strategyproof with a probability that can be fine-

tuned by the entity running it. A trade-off exists between this probability and 

approximation quality. One factor external to the mechanism and specific to the 

domain in which the auction is run, a parameter we refer to as , affects the ρ
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approximation quality without influencing the strategyproofness probability. This 

trade-off and the significance of  are confirmed experimentally.

2: Theoretically, if our mechanism is strategyproof with probability 0, it reduces to 

random walk hill-climbing. If it is strategyproof with probability 1, it reduces to 

random walk. In between these two extremes is where our mechanism can shine. 

These two flavors of random walk are confirmed experimentally.

3: Experimentally, we show that the restrictions placed on the mechanism which 

allow it to be strategyproof with high probability do not cripple its ability to pro-

vide high-quality approximations quickly, and that its performance is on par with 

other non-strategyproof approximation mechanisms that have been proposed.

4: Experimentally, we show that values of  which are suitable for many real-world 

domains allow the entity running the mechanism to choose both high probability 

of strategyproofness and good approximation quality.

1.4 Outline

Chapter 2 of this thesis explains concepts in detail from mechanism design that are 

relevant to our work. Chapter 3 presents an in-depth introduction to combinatorial auc-

tions, and Chapter 4 discusses the anytime strategyproof property for which we aim. 

Chapter 5 presents the mechanism, and chapter 6 analyzes it theoretically. In chapter 7 we 

describe our experimental setup, and in chapter 8 we present the experimental results. 

Finally, Chapter 9 concludes the thesis and describes areas of future work.

ρ

ρ
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Chapter 2: Mechanism Design

2.1 Introduction

Game theory is a way of modeling agent behavior in a system in which the agents 

interact with one another strategically. We provide here a brief discussion of terms and 

concepts from game theory that will be relevant to our later discussion. Please note that 

some of these definitions were adapted from [Parkes, 2001].

2.2 Basic Definitions

We begin with the concept of type. An agent’s type defines its preferences over 

different outcomes of a game. More formally, we let  define agent i’s type from 

the set of all possible types  that agent i can have. Intuitively,  represents the prefer-

ences that an agent has for every outcome that a game could produce. An agent’s utility 

for a particular outcome , where O is the set of all possible outcomes, can then be 

expressed by a utility function, which takes  and o as parameters and returns a numeri-

cal value. Agent i prefers outcome o1 over o2 according to utility function u if 

.

The actions that an agent performs during every point in the game are dictated by 

its strategy. We can define an agent’s strategy as its complete plan of action for every pos-

sible state of the game. An agent’s strategy is based on its type, so we can represent agent 

θi Θi∈

Θ i θi

o O∈

θi

u o1, θi( ) u o2, θi( )>
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i’s strategy as si( ). For example, in a single-item ascending auction setting, the state of 

the world for agent i can be represented by the tuple (a, b, x), where a represents the good 

for sale, b represents the current highest bid, and x is a boolean value indicating whether 

agent i is the agent that placed the current highest bid. Agent i’s strategy si( ) would 

specify the bid bid(a, b, x) that the agent should place in every possible state of the auc-

tion. One strategy could be:

According to this strategy, the agent is only interested in bidding on one particular item, a 

Paul Pierce autograph, and the agent will bid up to $100 for that item. The set s of all strat-

egies si( ) that agents choose in a mechanism is commonly referred to as the mecha-

nism’s strategy profile; thus s = {s1( ), ..., sn( )}, where n is the number of agents in 

the system.

A necessary part of any auction is the transfer of payments from agents to the 

mechanism in exchange for goods. We define the outcome space such that an outcome 

 defines a choice , where K is the set of possible choices, and a 

transfer , which is a real number, from each agent i to the mechanism, given strategy 

profile , where S is the set of all possible strategy profiles. The choice in an auction 

is typically the decision about which goods to allocate to which bidders. For example, in 

the combinatorial auction example described by Tables 2 and 3 in Chapter 3, the choice 

θi

θi

bid a, b, x( )  =  
b 1 if a = Paul Pierce autograph and x+ false and b 1 100<+=

NULL otherwise



θi

θ1 θn

o k t1 …tn, ,( )= k s( ) K∈

ti s( )

s S∈
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rule might be that the allocation which maximizes value across all agents is the one that is 

chosen, meaning that Bidder 1 is awarded no goods and Bidder 2 is awarded goods A and 

B. The transfer rule might specify that each agent pay the mechanism the agent’s value for 

the goods it is awarded, so Bidder 1 would pay the mechanism $0 ( )and Bidder 2 

would pay the mechanism $20 ( ).

As is common in mechanism design, we assume throughout this paper that agents 

have quasilinear preferences, meaning that , where  is 

the valuation function for agent i. A valuation function represents the value that an agent 

holds for allocation k based on the agent’s type.

Although we have been using the term “game” rather loosely up to this point, we 

can now define it formally. A game defines the complete set of actions that are available to 

agents, as well as a mapping from agent strategies to an outcome. Since a game maps the 

set of agent strategies to an outcome, the utility function for agent i that we defined before 

as  can be rewritten as , where n is the number of agents 

in the game and sj represents the strategy of agent j. Thus the utility of each agent defines 

its preferences over its own strategy and the strategies of the other agents in the world, 

given its type .

As an example of how an agent’s utility could depend on the strategies of other 

agents, consider a single-item auction consisting of two agents. Each agent’s strategy is to 

bid $1 over the current ask price if the agent values the good more than the current asking 

price, and not to place a bid otherwise. Agent 2 has value $100 for the item, so its strategy 

t1 $0=

t2 $20=

ui o θi,( ) vi k θi,( ) ti–= vi k θi,( )

ui o O∈ θi,( ) ui s1 s2 ... , sn θi,, ,( )

θi
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is to bid up to $100 for the item. Agent 1 has value v1 for the item. Its utility, based on its 

own strategy, the strategy of the other agent, and its value for the item (which is encapsu-

lated in ), will thus be v1 - 101 if v1 > 101, and 0 otherwise. Clearly, then, its utility 

depends on its own strategy, the strategy of agent 2, and its type.

A mechanism defines both the set of strategies available to every agent and an out-

come rule that is based on the strategies of the agents. More formally, a mechanism speci-

fies the set of strategies  that are available to the agents, where  is the set 

of strategies available to agent i and there are n agents, and provides an outcome rule 

 that is a mapping from agent strategies to outcomes. Thus, fed the 

specific strategies of the agents, g would return an outcome that is based on the strategies 

and on the outcome rule. A mechanism can thus be represented as .

The outcome rule g that the mechanism implements is based on a social choice 

function f, which maps agent types to an outcome; that is, .

Although there are many possible social choice functions, the one most relevant to 

our discussion is that of allocative efficiency. A social choice function is said to be alloca-

tively efficient in an auction environment if the total value of the resulting allocation 

across all agents cannot be larger with a different allocation. That is, if:

,

θi

Σ1 … Σn, ,{ } Σi

g: Σ1 … Σn×× O→

M Σ1 … Σn g, , ,( )=

f : Θ1 … Θn×× O→

vi x θi,( ) vi x′ θi,( )  x′ X∈∀
i 1=

n

∑≥
i 1=

n

∑
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where X is the set of all possible allocations, x is a member of X, and vi is a function repre-

senting agent i’s value for the allocation that is passed to the function, based on the type 

 that is also passed to the value function.

The mechanism design problem is typically to structure the mechanism, by defin-

ing possible strategies and making sure that the outcome rules align with the strategies, in 

such a way that the social choice function is implemented regardless of agent self-interest. 

The mechanism asks agents for their types, and uses these reported types to generate an 

outcome that is consistent with the social choice function. It is critical to note that an agent 

does not necessarily have incentive to report its true type to the mechanism, and thus an 

agent may attempt to alter the outcome by intentionally deceiving the mechanism.

2.3 Direct Revelation Mechanisms

We focus on direct-revelation mechanisms, in which the only actions that agents 

perform are the submission of direct claims about their preferences to the mechanism. 

More formally, a direct-revelation mechanism restricts the strategy set  of each agent i 

to , meaning that the strategy set of each agent becomes the set of possible preferences 

that an agent could submit. That is, the strategy of each agent i is to report type  

based on actual type ; thus . The mechanism has outcome rule 

, which maps from preferences to an outcome. Agents submit 

claims about their preferences, and g essentially takes the types of the agents, as reported 

θi

Σi

Θi

θi Θ i∈

θi Θ i∈ θi s θi( )=

g: Θ1 … Θn×× O→
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by the agents, and maps these to an outcome. That is, , where . 

Note that the reported type of agent i is not necessarily the agent’s actual type .

The most common way in which agents make claims about their preferences to a 

mechanism is through bids. The traditional open-bid ascending-price auction, in which the 

auctioneer sets the initial current bid, agents continuously raise the current bid price until 

no agent is willing to raise it further, and the item is then awarded to the bidder who bid 

the current price, is an example of a direct-revelation mechanism. It is a direct-revelation 

mechanism because the only involvement that the agents have with the mechanism is the 

revelation of claims, via bids, about their preferences.

2.4 Strategyproof Mechanisms

A truth-revealing strategy is one such that . A direct-revela-

tion mechanism is strategyproof if it is the dominant strategy of each agent to have a truth-

revealing strategy; that is, for agent i,

,

where  is the type reported by agent i and  represents the types reported by all other 

agents. In words, an agent reporting a type other than its true type cannot have higher util-

ity than that associated with reporting its true type. Since in an auction agents may have 

incentive to report types that are different from their true types, leading to an outcome that 

does not properly implement what the social choice function would have dictated if 

g θ1… θn,( ) o= o O∈

θi θi

s θi( ) θi  θi Θi∈∀=

ui g θi θ i–,( ) θi,( ) ui(g θi θ i–,( ) θi, )    θ i– θi θi≠∀,∀≥

θi θ i–
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agents’ true types were reported, strategyproofness is an important property in many auc-

tion settings.

Perhaps the most well-known family of strategyproof auction mechanisms is the 

Groves family. A groves mechanism is defined by choice rule

and transfer rules

,

where hi is an arbitrary function that is independent of the reported type of agent i. In 

words, the choice rule implements the choice that maximizes value across all agents, 

based on reported type information, and the transfer rule specifies that each agent i must 

pay the mechanism an amount equal to the reported value that all other agents hold for the 

choice subtracted from some arbitrary amount that is independent of agent i’s reported 

type. Groves (1973) proved that mechanisms of this form are strategyproof and efficient, 

and Green and Laffont (1977) showed that Groves mechanisms are the only direct-revela-

tion ones which are allocatively-efficient in a dominant strategy equilibrium.

A Vickrey-Clarke-Groves (VCG) mechanism is a Groves mechanism that defines 

the hi function as 

,

k* θ( ) arg maxk K∈ vi k θi,( )
i

∑=

ti θ( ) hi θ i–( ) vj k* θ( ) θj,( )
j i≠
∑–=

hi θ i–( ) vj k i– θj,( )
j i≠
∑=
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where . In words, hi, when incorporated into the Groves transfer 

rule, is thus enforcing that the price agent i should pay is equal to the difference between 

the value of the best allocation across all other agents if agent i were not in the system and 

the value of the actual allocation across all other agents with agent i in the system. If agent 

i enters the system and wins goods, the total value of the system’s outcome across all other 

agents is weakly reduced from the total value before the agent had entered, for if i wins 

goods then in essence the number of goods available to other agents is reduced. This pos-

sible reduction of available goods to other agents means that the total value of the outcome 

to them must be less than or equal to the value before agent i entered. This weak reduction 

of values for the other agents can be viewed as a transfer of value from them to agent i, 

and thus the VCG transfer rule dictates that agent i must pay the mechanism a payment 

equal to this transfer.

It is trivial to understand why a VCG mechanism is allocatively efficient, for the 

choice rule is in essence the definition of optimal efficiency. The proof of a VCG mecha-

nism’s strategyproofness is fairly straightforward and is omitted in the interest of space.

k i– maxk vj k θj,( )
j i≠
∑=
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Chapter 3: Combinatorial auctions

3.1 Introduction

In this chapter we define combinatorial auctions, define the COMBINATORIAL AUC-

TION  WINNER DETERMINATION problem and characterize its computational properties, 

and describe two primary classes of algorithms that attempt to approximate the optimal 

solution to a WINNER DETERMINATION problem.

3.2 Combinatorial Auctions and Winner Determination

Unlike traditional auctions, in which agents express values for and are rewarded 

individual goods, combinatorial auctions allow agents to express values for and win col-

lections, or bundles, of goods. Combinatorial auctions are powerful in that they enable 

bidders to express complementary preferences. This ability to express complementarities  

often results in a more efficient allocation of goods to bidders. For example, suppose that a 

seller decides to hold an auction for two items with two bidders, and let us assume that the 

bidders have the values for goods described in Table 2.

Table 2: Agent Values

Good A Good B Goods A and B 
Together

Bidder 1 $2 $2 $6

Bidder 2 $1 $1 $20
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In Table 3, Value represents what the mechanism would calculate as a choice’s value if it 

did not have access to the last column in Table 2, and Value  represents the value the 

mechanism would compute if it did have access to that last column. In an efficiency-max-

imizing auction, if agents could not express complementary preferences—that is, if the 

mechanism did not have access to the last column in Table 2—Bidder 1 would win both 

goods, for he would be willing to bid up to $2 for each, while Bidder 2 would only be will-

ing to pay up to $1 for each. Choice 3 would be chosen. Clearly, though, the most eco-

nomically efficient allocation corresponds to choice 4, in which both goods would be 

awarded to Bidder 2. Without the ability of bidders to express complementary prefer-

ences, the auctioneer is limited to the information in all but the last column of the two 

tables, and in this case is forced to incorrectly assume that the allocation of A and B to 

Bidder 1 is the most efficient one. Thus a combinatorial auction gives the auctioneer more 

useful information on the values of possible allocations than does a standard single-good 

auction.

Table 3: System-Wide Allocation Values

Choice Allocation Value Value

1 bidder 1: {A}
bidder 2: {B}

$3 $3

2 bidder 1: {B}
bidder 2: {A}

$3 $3

3 bidder 1: {A, B}
bidder 2: {}

$4 $6

4 bidder 1: {}
bidder 2: {A, B}

$2 $20

′

′
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More formally, in a combinatorial auction a seller has a set G of goods it wishes to 

sell, a set A of agents that can place bids on the goods, and for each agent  a valua-

tion function R+ , where . We assume free disposal of goods, meaning 

that, if S and T are bundles in which agent a is interested, . B is 

the set of all bundles for which at least one agent is interested in bidding. We can view 

every bid on a bundle b as an agent’s reported value  for that bundle; a bidding lan-

guage, then, is a formal way of expressing valuations. Accompanying well our assumption 

of free disposal, we assume in this thesis that our bidding language is an XOR bidding lan-

guage, meaning that:

(1) a bidder can submit as many bids as he wishes, but is willing to obtain at most one 

of the bundles on which he has bid.

(2) for a bundle b, an agent’s bid price must be at least the maximum value of his bid 

prices on all subsets of b on which he has also bid [Nisan, 2000].

A partition is a splitting of goods into non-overlapping bundles. We let B’ be the 

set of all subsets of B whose members are disjoint; thus B’ is essentially the set of all fea-

sible partitions that contain only bundles in B. An allocation is an assignment of bundles 

in a partition to agents. If agents pay the mechanism a price equal to the reported values of 

the bundles they win, the revenue of an allocation  is simply

,

a A∈

Va: b → b G⊆

S T Va S( ) Va T( )≤⇒⊆

Va b( )

X B ′∈

maxa A∈ Va b( )( )
b X∈
∑
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where A is the set of all agents. The auctioneer typically aims to find the member  

that maximizes this revenue. It is interesting to note that if we define revenue in this way, 

X* is not only the partition that maximizes the auctioneer’s income but also is the partition 

that maximizes total value across all agents. Finding X* is commonly referred to as the 

COMBINATORIAL AUCTION WINNER DETERMINATION  problem. 

3.3 Solving the Winner Determination Problem

Putting incentives to one side for the moment, many approaches to solving WIN-

NER DETERMINATION have been proposed. The most straightforward method of solving 

the problem is via an exhaustive search of the partition space; that is, the mechanism looks 

at every possible partition of goods into bundles and determines the one that has the maxi-

mal value across all agents. In an auction with goods A, B, and C, the partition space, 

assuming that all goods are to be sold, would consist of the partitions [{A}{B}{C}], 

[{AB}{C}], [{A}{BC}], [{AC}{B}], and [{ABC}], where the letters in the inner curly 

braces correspond to the goods in a bundle. An exhaustive search would visit each parti-

tion, assigning each a value corresponding to its calculated revenue (based on the bids that 

the agents submit for bundles within each partition). The partition with highest value that 

the search algorithm encounters is the one that is returned. Obviously, an exhaustive 

search is computationally poor, for it is searching a space in which the number of search 

items is exponential in the number of goods.

X* B ′∈
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Unfortunately, in the worst case we cannot do much better computationally than 

exhaustive search if we hope to solve the WINNER DETERMINATION problem, for WINNER 

DETERMINATION is NP-complete, and thus any algorithms which attempt to solve it opti-

mally will require time that is exponential in the number of goods in the worst case 

(assuming NP does not equal P). It is useful to note that the COMBINATORIAL AUCTION 

WINNER DETERMINATION problem is equivalent to the WEIGHTED SET PACKING problem. 

In the WEIGHTED SET PACKING  problem, there are m objects and there exists a set S of 

sets. Each member si of S contains at most  objects, and each si has associated with 

it a weight. The goal is to find the collection C of disjoint sets that maximizes total weight. 

WEIGHTED  SET PACKING  is NP-complete, and therefore COMBINATORIAL AUCTION WIN-

NER DETERMINATION is also NP-complete [Vries and Vohra, 2001].

Although WINNER DETERMINATION is NP-complete, a number of algorithms have 

been proposed that work well in practice on particular distributions of bids. Sandholm et. 

al. proposed a structured search algorithm, a fast optimal algorithm called CABOB, which 

relies upon a depth-first branch-and-bound tree search technique that branches on bids, 

using decomposition techniques, upper and lower bounding, bid ordering heuristics, and a 

mix of structural observations [Sandholm et al., 2001]. Collins provided a fast extension to 

Sandholm’s search algorithm [Collins, 2002].

Another set of algorithms uses integer programming to solve combinatorial auc-

tions. [Andersson et al]. The WINNER DETERMINATION problem is modeled as an integer 

program which has an objective that is subject to a series of constraints. Typically, the 

objective is to determine the allocation that maximizes the sum of the values that the 

k m≤
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agents hold for the allocation, subject to the constraints that no good can appear more than 

once in an allocation and that agents cannot hold fractions of a good.

Nevertheless, because COMBINATORIAL AUCTION WINNER DETERMINATION is 

NP-complete, we know that any mechanism which attempts to find optimally the k 

defined by Groves mechanisms will be NP-complete; thus it is not necessarily ideal to 

solve the problem optimally. Some researchers have proposed using local search methods, 

like simulated annealing and Tabu search, to provide approximation mechanisms [Hoos, 

2000], [Collins, 2002], [Naim, 2003], mechanisms which implement an outcome that is an 

approximation to the optimal one by running an allocation algorithm that approximates 

the solution to WINNER DETERMINATION. A nice property about local search algorithms is 

that most are anytime; the algorithms can be stopped at any point and return the best solu-

tion, or partition, they have encountered so far. Another nice property is that the search 

direction is guided by what the mechanism has learned about the search space based on 

past bids, and thus can be expected, and has been shown, to perform better than a blind 

search. As Hoos and Boutilier explain, “[Stochastic local search] has been used in AI and 

operations research for many decision and optimization problems with great success, and 

has generally proven more successful than systemaic methods on a wide range of combi-

natorial problems...[it] can be applied with great success to the winner determination prob-

lem, finding high quality solutions much more quickly than systematic techniques and 

also finding optimal solutions” [Hoos and Boutilier, 2000].
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3.4 Local Search and Casanova In Depth

Because our Consensus Mechanism is based on local search, in this section we 

present in detail our version of directed hill-climbing local search, and then we present in 

detail Casanova, the most widely known example of a published local search approxima-

tion mechanism. Unlike Casanova and other published local-search-based techniques, our 

local search runs a linear program in each step in order to determine the values of neigh-

bors.

LP-Based Local Search 

The local search we present depends on a linear program being solved at each step. 

In our version of directed hill-climbing local search, the mechanism begins with a random 

partition , which we will refer to as the current best partition. Based on some notion of 

“neighbor” decided a priori, at each step in the local search the mechanism chooses m 

neighboring partitions of . It elicits bids from each of the participating agents for every 

bundle found in the m neighboring partitions as well as for every bundle in . Based on 

these bids, it then uses a linear program to compute the partition that has the highest total 

value across all agents, makes this partition the current best partition , and then repeats 

the process. At any point, the mechanism can be stopped and will return the current best 

partition  (often a simple auction, like a VCG one, is then run on  to determine which 

bundles to allocate to whom and at what prices).

Below is pseudocode for a basic local search algorithm.

π

π

π

π

π π
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function LocalSearch(NumberNeighborsToConsider)
{

:=RandomPartition()
m:= NumberNeighborsToConsider
while(!stopped) {

NeighborsList = GetNeighbors( , m)

 = LocalRoundWinner(NeighborsList)
}
return 

}
The GetNeighbors  function takes as input the current best partition  and the 

number of neighbors to consider, and returns a random list of neighbors of ; this list also 

includes  itself. The LocalRoundWinner function takes as input a list of partitions and 

chooses a partition to be the winner for that round; in the case of our version of local 

search, it runs a linear program to determine optimally the partition in the current neigh-

borhood that has the highest value across all agents according to the agents’ bids. The lin-

ear program it uses is presented in section 5.4. The basic local search algorithm shown 

above can be easily extended to allow for more sophisticated local search techniques, like 

stochastic local search and tabu search; these extensions would simply be incorporated 

into the LocalRoundWinner and GetNeighbors functions, leaving the skeleton code 

above essentially unchanged.

By running a linear program at each step to optimally solve the winner determina-

tion problem on the set of partitions in the current neighborhood, our local search is using 

a technique called maximal-in-range, meaning that in each step it is selecting the partition 

that yields the optimal allocation, but is doing so only over the set of partitions currently in 

π

π
π

π

π

π

π
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the neighborhood. Thus in each step our local search solves the winner determination 

problem optimally, but only for a limited range.

Casanova

The idea of applying local search to combinatorial auctions for approximating 

solutions to the winner determination problem was proposed in 2000 by Hoos and Boutil-

ier [Hoos and Boutilier, 2000]. Their Casanova algorithm has been shown to perform well 

under several different experimental settings.

The authors of Casanova define a neighbor of partition  to be one in which a bun-

dle corresponding to a bid that is not satisfied by the current partition is added to the parti-

tion and all overlapping bundles are removed. By unsatisfied, we mean that the bundle is 

not in the current partition. Using this neighbor definition, a value sc(b) can be used to 

represent the change in revenue obtained by adding the bundle b to the current partition 

and removing all overlapping bundles. Casanova employs the notion of “revenue per 

good,” meaning that these scores are normalized by the number of goods in the bundle; 

thus the scoring function is score(b) = sc(b)/length(b). Revenue per good is commonly 

used to measure the quality of a bundle in search-based approaches to combinatorial auc-

tions. Hoos and Boutilier also define the age of a bundle to be the number of steps since 

that bundle was last selected to be added to a candidate partition.

Casanova begins by collecting bids from every agent on the bundles in which each 

agent is interested. The search begins with an empty allocation, and at each step with 

probability wp selects a random unsatisfied bundle, and with probability 1 - wp selects an 

π
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unsatisfied bundle greedily by ranking all unsatisfied bundles by score. If a bundle is cho-

sen greedily by ranked score, either the highest-ranked bundle bh or the second-highest 

bundle bs is chosen as follows: if , then choose bh; otherwise, with 

probability np choose bs, and otherwise choose bh. The search proceeds for NumberSteps 

steps and is restarted with an empty allocation every NumberStepsUntilRetry steps. At the 

end of its run, Casanova returns the best allocation found at any step of the algorithm.

Clearly, unlike the flavor of local search we have presented, Casanova does not 

solve a linear program in each iteration, and thus is not maximal-in-range.

Hoos and Boutilier’s experimental results showed that local search, and in particu-

lar Casanova, was indeed a promising anytime technique. However, as described in the 

next section and in Chapter 4, the fundamental problem with local-search-based algo-

rithms like Casanova is their susceptibility to manipulation by untruthful agents. We pro-

pose a mechanism that harnesses the power of local search, yet is resilient to unilateral 

manipulation by any single agent.

3.5 Addressing Incentives

Although the local search algorithms that have been proposed do cut back on the 

computational complexity inherent in the optimal algorithms, they must do so in return for 

the introduction of an approximation. The quality of this approximation is inherently tied 

to how well the mechanism searches the partition space, and this in turn depends on how 

well the agent bids guide the mechanism. Because the search direction is determined by 

age bh( ) age bs( )≥



Edward Naim 29

the bids that agents submit, agents may have incentive to unilaterally manipulate the direc-

tion of the search, and thus the outcome of the auction, by reporting false values for bun-

dles. These local search algorithms do not provide proper incentives for agents to bid 

truthfully, and thus are not strategyproof. Because agents can mislead the mechanism, this 

absence of strategyproofness can have a devastating impact on approximation quality.

In recognition of the importance of strategyproofness, there has been a good 

amount of work on non-VCG-based strategyproof mechanisms that cut back on WINNER 

DETERMINATION’s computational complexity by assuming restricted domains of agent 

preferences. These mechanisms can also be thought of as maximal-in-range approxima-

tion mechanisms because their solutions are optimal for the subset of actual partitions they 

consider; thus each solution is an approximation of the solution for the full set of parti-

tions. For example, Lehmann et. al. examines the special case of truthful single-minded 

bidders, bidders who have a positive value for only one bundle. Mu’alem and Nisan pro-

pose techniques for constructing computable truthful mechanisms in the single-minded 

bidder case where the mechanism can verify that the bundle on which each agent places a 

bid is truly the one that the agent is interested in, even though the mechanism does not 

know the value the agent holds for the bundle. Archer et. al. proposes an approximation 

that is truthful but again assumes single-mindedness. Bartal et al. moves beyond single-

mindedness, but relies on the assumption that there are several units of each good, and 

each bidder desires only a small number of units [Parkes and Schoenebeck, 2004]. Unfor-

tunately, we believe that the restrictions these mechanisms place on agent preference 

domains are quite limiting.
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Chapter 4: Anytime Strategyproofness

4.1 Introduction

In the previous chapter we described the two primary classes of approximation 

algorithms that currently exist. Algorithms of the first use local search’s power to provide 

quality approximations. They are anytime but not strategyproof. The second are non-VCG 

mechanisms that are strategyproof, but place restrictions on agent preference domains that 

are quite limiting. We want the best of both worlds. We want a mechanism that has the 

good approximation and anytime properties of the first class, but with the strategyproof-

ness that comes with the second class, but without the limitations of the second class. This 

thesis proposes such a mechanism, one that does not have the second class’s restrictions 

on agent preferences, builds on the strengths of local-search-based algorithms to provide 

quality approximations, and is strategyproof.

However, before we describe our mechanism in Chapter 5, we devote this chapter 

to a further explanation of the critical property we strive for, anytime strategyproofness, 

and discuss why this property is so difficult to ensure in a local-search-based mechanism. 

This chapter also serves as a transition from the mechanisms of the previous chapter to our 

mechanism in the next chapter by presenting a contemporaneously-proposed anytime 

strategyproof mechanism, GrowRange, and highlighting the fundamental difference 

between our mechanism and GrowRange. 

We define in this chapter what we mean by a mechanism that is anytime strate-

gyproof, we explain why most approximation mechanisms based on local search are not 
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strategyproof, we describe GrowRange, and we describe what goals we have for the 

mechanism we are proposing.

4.2 Anytime Mechanisms

An anytime mechanism  is one in which the g function can be 

stopped at any point by the controller of the mechanism to return an outcome . A 

desirable feature of an anytime mechanism is that at time t+1 the outcome returned by g is 

weakly better than the one returned at time t; most anytime mechanisms are constructed to 

have this property. For example, if the social choice function aims for allocative effi-

ciency, an anytime mechanism should be designed such that the value of the outcome 

across all agents if g were stopped at time t + 1 is at least as high as, if not higher, than the 

value of the outcome if g were stopped at time t. Thus if we graph allocation value over 

time we should get a monotonic curve. It is possible that the solution returned by g after 

being stopped at a certain time is optimal.

An anytime approximation algorithm has the nice property that the entity running 

it can determine the appropriate trade-off between approximation quality and run time by 

choosing for how long to run the algorithm.

As discussed in the previous chapter, local search algorithms are well-suited to be 

anytime approximations for WINNER DETERMINATION. There have not been published 

results on the performance of maximal-in-range local search algorithms, because we 

present them for the first time here, but experimental results on non-LP-based local search 

M Σ1 … Σn g, , ,( )=

o′ O∈
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algorithms have shown the power that these algorithms have. They have been shown to 

produce quality results in most settings within a short amount of time relative to the time 

that the optimal solution takes [Hoos and Boutilier, 2000], [Naim, 2003].

4.3 Strategyproof Considerations

Although it has received attention because of its ability to quickly search the parti-

tion space, the idea of using pure local search techniques for solving or approximating the 

winner determination problem has a fundamental limitation; it ignores the issue of agent 

incentives. In reality, incentives need to be dealt with, for agents may not have incentive to 

bid their true values on certain bundles. Because in a local search the mechanism deter-

mines the value of each neighbor—and in turn determines the best neighbor—based on 

the values submitted by agents, an agent, by purposely submitting bids that do not repre-

sent its true values for certain bundles, can unilaterally manipulate the direction of the 

search, and thus the outcome of the mechanism.

The problem with such manipulation is that it can reduce the economic efficiency 

of the allocation that the mechanism returns. As an example, suppose there are three 

agents participating in a local-search-based auction. The mechanism is currently attempt-

ing to choose among three different neighboring partitions. Partition  contains bundles 

1, 2, and 3, partition  contains bundles 4, 5, and 6, and partition  contains bundles 5, 6, 

7 and 8. Table 4 shows the actual values that the three agents have for each bundle. Based 

on the table, it is clear that partition  is the best across all agents, for it has a total value 

α

β γ

α
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of 35 (agent 1 is allocated bundle 3, agent 2 is allocated bundle 2, and agent 3 is allocated 

bundle 1). Yet agent 3 has more value for partition . Suppose agents 1 and 2 submit their 

true values for the bundles. Agent 3, however, is better off by lying to the mechanism. If 

he submits bids of 0 for all bundles except 8, and submits bids of 100 for 8, the mechanism 

will choose partition  as the best partition. Suppose at this point the mechanism is 

stopped. It will thus return  rather than  as the best partition encountered, resulting in 

an allocation that is 22 units lower than it would have been if agent 3 had been truthful. 

Although agent 3 is better off by manipulating the mechanism, the system as a whole is 

worse off. This type of manipulation can occur at any point in the local search, not just at 

the end, and can thus affect the direction that the local search takes.

Clearly, the lack of strategyproofness that these mechanisms have limits their ability to 

discover allocations that truly are value-maximizing, for an agent can unilaterally fool the 

mechanism into pursuing partitions that make the agent better off but do not move the 

search in the direction of allocative efficiency.

Table 4

Bundles

1 2 3 4 5 6 7 8

A
ge

nt
s 1 5 5 15 0 0 0 0 0

2 2 10 5 0 0 0 0 0

3 10 2 1 0 1 2 3 13

γ

γ

γ α
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4.4 GrowRange: A Strategyproof Anytime Mechanism

Aiming to propose an anytime approximation algorithm that is strategyproof with 

high probability and does not place limits on agent preferences, Parkes and Schoenebeck 

have contemporaneously proposed GrowRange, an anytime VCG-based mechanism that 

is based on the principle of maximal-in-range allocations [Parkes and Schoenebeck, 

2004]. An allocation is said to be maximal-in-range for a set of bundles S if it is the best 

allocation of bundles in S to agents. We refer to the bundles in S as the range of bundles 

being considered. The GrowRange mechanism begins with a limited set, or range, of bun-

dles, and determines the value V(n) of the maximal-in-range allocation across all n agents. 

Then, for each agent i, it calculates the value V(n/i) of the allocation that is maximal-in-

range across all n agents except i. It then grows in parallel the partition associated with 

V(n) and the partition associated with each V(n/i) to include more bundles, updating the 

V(n) and V(n/i) values along the way. This process continues until the mechanism is 

stopped, at which point it returns the allocation that is currently maximal-in-range across 

all agents. The mechanism uses the V(n/i) values to determine payments from the agents 

for the allocation.

The GrowRange mechanism can be thought of as a search-based algorithm that in 

each iteration grows the current search space and then finds the maximal-in-range solution 

within the new, augmented search space. Agents cannot manipulate the direction of the 

search—that is, the way in which the search space is augmented—because the search 

space is grown randomly. Agents could manipulate the mechanism by submitting untruth-

ful bids that alter the time the mechanism takes to find the maximal-in-range solution in a 
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given round and thereby affecting the number of ranges that the mechanism visits in a 

given amount of time. However, Parkes and Schoenebeck address this problem through 

the use of a special class of functions called -consensus functions, which make time-

based manipulation infeasible with high probability. We too use -consensus functions in 

the Consensus mechanism we propose, but not to tackle time manipulation, a problem our 

mechanism does not have, but rather to prevent unilateral misguidance of the mechanism 

by an agent.

Although both our mechanism and GrowRange are anytime and strategyproof with 

high probability, and although both mechanisms depend on maximal-in-range calcula-

tions, the GrowRange mechanism is fundamentally different from ours. The two employ 

drastically different algorithms, and comparing their algorithms is like comparing apples 

to oranges. Nevertheless, we can pinpoint a single fundamental difference between the 

high-level approaches that the two take: GrowRange lacks guidance in exploring its 

search space, while the Consensus algorithm is based on directed local search. Grow-

Range does not use information it has learned from agent bids when deciding which bun-

dles to add to its range; instead, it randomly adds bundles. Although this lack of guidance 

helps the mechanism’s strategyproof property, information extracted from agent bids can 

be a good heuristic in determining which bundles not in the current range might yield allo-

cations with high value if added.

We propose a local-search-based mechanism that, like GrowRange, is anytime and 

strategyproof with high probability, but unlike GrowRange is able to have this strate-

gyproof property while also using agent bids to guide the search direction. In addition, our 

ρ
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mechanism allows the entity running it to specify the probability with which it is strate-

gyproof, enabling the appropriate level of trade-off between strategyproofness and effi-

ciency to be specified at runtime. This last property gives the mechanism a good amount 

of robustness, for it allows it to have good performance across different auction domains 

that may have different optimal trade-off levels.

GrowRange is undoubtedly a novel mechanism that has produced impressive 

experimental results. We choose to build a mechanism that is similar to GrowRange in 

that it is anytime strategyproof and relies upon maximal-in-range calculations, but funda-

mentally takes a different approach from GrowRange by attempting to employ the power 

of local search to guide its maximal-in-range search.
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Chapter 5: Consensus Mechanism

5.1 Introduction

In this chapter we discuss the details of our mechanism. Please note that for now 

incentives are ignored, and that in Chapter 6: Theoretical Analysis, we explore incentives 

and prove the probability with which the Consensus Mechanism described in this chapter 

is strategyproof.

5.2 -consensus Functions

To achieve our goal of resilience to unilateral manipulation, we employ the use of 

 functions, functions which Goldberg and Hartline proposed in a different 

context [Goldberg and Hartline]. 

We say that g: R  R is a  function at x if:

(1)  

(2) .

Thus, as defined, a  function for a number x is essentially a step func-

tion that maps x to a value g(x) that is (1) at least as large as x and that (2) is the same for 

all  between  and x. With this definition, if g is a  function for x, any 

input  that is between x/  and x yields a g( ) value that is independent of the exact 

ρ
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value of . Figure 1 illustrates this definition. In this figure, g is a  function 

for x1 but not for x2.

5.3 High-Level Overview of Consensus Mechanism

From a high-level perspective, our anytime mechanism will employ a local search 

algorithm to explore the partition space. As described before, the primary drawback to the 

local search algorithms that have been proposed in the past is their susceptibility to agent 

manipulation; an agent can control the direction that the search takes by submitting false 

bids that alter the mechanism’s evaluation of one or more neighbors that it is considering 

in a particular step. To avoid this manipulation, our mechanism, when evaluating a partic-

Figure 1: Graphical Representation of a -consensus Function

x′ ρ-consensus

ρ

x1/D x2/Dx
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x
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ular neighbor, will rely on a  function to map the value calculated for that 

neighbor based on agent bids to a numerical value that no single agent can influence with 

its bids alone. That is, the mechanism uses  functions in an attempt to map 

the total value  =   calculated for a neighbor partition  based on agent bids to 

a value  = g( ) that no agent can affect unilaterally by changing .  is then 

used by the mechanism as an estimate for the value of . When the mechanism is attempt-

ing to evaluate partition  in a particular step of the search, if it is the case that for parti-

tion  no agent can unilaterally alter  by changing , then there is said to be a 

consensus on the value of , and  is used as an estimate of the value. Otherwise, there 

is said to be no consensus on ’s value and the mechanism ignores . For the mechanism 

to perform well in its search, it is important that the entity running it choose a  that is 

suitable for the domain in which the auction is being run; the significance of the  value 

that is chosen, as well as considerations that must be taken into account in determining an 

appropriate value of , are discussed later in this chapter and in our experimental results 

presentation in Chapter 8.

5.4 Details of Consensus Mechanism

In our combinatorial auction environment, we let   =   be the total 

value of partition  for all the agents in the auction, and let  =   be the 

ρ-consensus

ρ-consensus

Vπ V π θ,( ) π

Vπ ′ Vπ Vπ Vπ′

π
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total value of  without agent i. By total value of a partition we mean the value that 

results from allocating bundles in the partition to agents in the way that maximizes the 

sum of the values of the agents for the allocation. The reader can remind himself what 

“total value” means in our combinatorial auction setting by revisiting the example 

described by Tables 2 and 3 in Chapter 3. In this example, allocation 1, for instance, has 

total value $3 and allocation 4 has total value $20. We let   =   be the 

reported total value of partition  across all agents, and  =   be the 

reported value of  without agent i. For some , it must be the case that, for all agents 

i and all partitions , , assuming  and . In 

other words, assuming that agents have bounded and positive values for bundles, there is 

some  such that no agent has values for the bundles in any  that would move the 

total value of , with the agent in the system, by greater than a factor of  from the total 

value of  without the agent in the system. 

Although later in this chapter we will make more precise the way in which we 

derive the neighbors of a partition, for the moment assume that the mechanism has a 

blackbox function which takes as input a partition and returns a list of m neighboring par-

titions. This list of m neighbors is a subset of the full set of neighbors that the partition has. 

Because the consensus mechanism is local-search-based, at each step in the search the 

mechanism must derive a list of neighbors of the highest-valued partition it has found thus 

far, and choose as the best partition the neighbor with the highest value (or keep the cur-

π
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rent partition as the best one if it has higher value than the neighbors at which it has 

looked). If the mechanism needs to evaluate partition  in a particular step of the local 

search, it determines if g is a  function for ’s value by checking that 

g( ) = g( ) . If g is in fact a  function for ’s value, then the 

value associated with  is g( ). If g is not a  function for it, the mecha-

nism ignores  in this step.

We now need to define g. We let , where q is the desired probability of 

consensus and u is chosen uniformly from [0,1]. By “probability of consensus” we mean 

the probability that g will be a  for the value of a partition  chosen at ran-

dom. Following Goldberg and Hartline, we define

to be our  function. In words,  chooses and returns the minimum 

value  such that j is an integer and .

We now give the pseudocode for our algorithm:

function Main(NumberNeighborsToConsider, rho, q)
{

 = RandomPartition()
 = NULL

m = NumberNeighborsToConsider
u = RandomDouble(0.0, 1.0)
while (!stopped) {

NeighborsList = GetNeighbors( , m)

 = LocalConsensusWinner(NeighborsList, u, rho, q)
if (g(Value( ),u,rho,q) >= g(Value( ),u,rho,q)) {

π
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 = 
} 

}

run VCG( ) and return resulting allocation
}

function LocalConsensusWinner(NeighborsList, u, rho, q)
{

CurrentBestVal = 0
ConsensusNeighbors = {}

for each Neighbor in NeighborsList {

// if there is a consensus on this lot
if for all i (g(ValueWithoutI(Neighbor,i),u,rho,q) == 
            g(Value(Neighbor),u,rho,q)) {

if (g(Value(Neighbor)) > CurrentBestValue) {
CurrentBestValue = g(Value(Neighbor))
ConsensusNeighbors.Clear()
ConsensusNeighbors.Add(Neighbor)

} else if (g(Value(Neighbor)) == CurrentBestVal){
ConsensusNeighbors.Add(Neighbor)

} else {
// discard the neighbor--do nothing with it

}
}

}
if (ConsensusNeighbors == {}) {

return random Neighbor from NeighborsList
} else {

return random Neighbor from ConsensusNeighbors
}

}

function g(x, u, rho, q)
{

c = rho ^ (1 / (1 - q))
j = 0
current_min = 0

// keep going until find x <= c^(u+j), in which case return
// c^(u+j)
do {

current_min = c^(u+j)
j = j +1

π π′

π



Edward Naim 43

} while (current_min < x)

return current_min
}

The GetNeighbors  function returns a list of m random neighbors of the partition 

 that is passed to it. The Main function chooses u uniformly from [0,1], begins with a 

random partition, and repeatedly generates random neighbors of , updating  in each 

loop to be what is returned by the LocalConsensusWinner function if what is returned 

has a higher consensus value than the current . The LocalConsensusWinner function 

performs the brunt of the work. For each neighbor in the list that is passed to it, the func-

tion determines whether or not there is a -consensus on the value of the neighbor. There 

is a -consensus on the value of the neighbor if, for every agent i, g passed the neighbor 

value without i yields the same value; that is, g( ) = g( ) . The LocalCon-

sensusWinner  returns the neighbor that has the highest consensus value, or, if two or 

more neighbors are tied for having the highest consensus value, the function breaks ties 

randomly. If none of the neighbors has a consensus value, the function returns a member 

of NeighborsList at random.

We assume that the Value function has access to agent bids. The value of a parti-

tion, based on the bids submitted by agents, is the revenue-maximizing allocation of bun-

dles in the partition to agents. According to how we defined revenue in section 3.2, we 

know that the revenue-maximizing allocation is equivalent to the allocation that maxi-

mizes system-wide value. If we let B be the total number of bundles in the partition, let A 

be the total number of agents, let the binary variable xij represent whether or not agent i 

π

π π

π

ρ

ρ
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gets good j, and let vij represent agent i’s value for good j, the value of a partition is mod-

elled by the following linear program:

maximize

subject to (1)

(2)

{0, 1} (3)

The first constraint ensures that only one agent can hold good j. The second mandates that 

no agent can hold more than one bundle. The third specifies that xij is a binary variable. 

The ValueWithoutI function is the same as the Value function, except it computes the 

solution to the above linear program without agent i.

The g function simply returns the value that it maps input x to according to the 

definition , where . As illustrated by 

the pseudocode, g’s runtime is linear in its input x. 

At the end of the Main function, we run a VCG auction on the partition that the 

mechanism has chosen. This VCG auction allocates the bundles in the partition chosen by 

the mechanism to agents and calculates the transfers required from agents to the mecha-

nism. The details of VCG auctions are given in Chapter 2.

xijvij
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We choose to define a neighboring partition as one that is generated by the follow-

ing process: A neighbor  of partition  is generated by choosing a random bundle b’ 

not in , adding b’ to the initially empty , and then adding every bundle in  that does 

not overlap (has no overlapping goods) with b’ to .

π′ π

π π′ π

π′
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Chapter 6: Theoretical Analysis

6.1 Introduction

We aim in this chapter to analyze and prove the incentive properties of the consen-

sus mechanism that we described in Chapter 5, and we also analyze the trade-offs that the 

entity running the consensus mechanism must make between strategyproofness and 

approximation quality.

6.2 Strategyproof Analysis

Although the previous chapter describes how the mechanism works, it may not be 

clear to the reader why with high probability this mechanism cannot be manipulated uni-

laterally. This chapter analyzes the properties of the mechanism that ensure its non-manip-

ulability.

For convenience, we again state what it means for a function to be a  

function for a number. We say that g: R  R is a  function for x if:

(1)  

(2) .

It is important first to note that no function works as a consensus estimator for all x 

for the simple reason that if any such function did exist it would need to be constant to sat-

ρ-consensus

  → 0≥ ρ-consensus

g x( ) x  x ∀≥

g x( ) g x′( )   x′ s.t. x
ρ
--- x′ x for some ρ 1>≤ ≤∀=
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isfy the second criterion in the definition above, but the function cannot be constant 

according to the first criterion.

We define Gx to be the distribution from which our g functions, as we defined 

them, can be drawn.

Lemma 1

The probability that g(x) drawn from the distribution Gx is a consensus for x is con-

stant for all x; the probability is .

Proof taken directly from [Parkes and Schoenebeck, 2004]

We fix an x and integrate over the possible values of u that give us a  

function. Without loss of generality, we assume that  for some integer j. 

Then . It is important to note that  iff this function 

is not a  function.

. QED.

Claim 1

If the value of u chosen at runtime is hidden from the agents, no agent can unilater-

ally affect whether or not a given partition  has a consensus on its value.

1 logcρ–
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Proof

From Lemma 1, we know that if we choose our g function uniformly from Gx, the 

probability that there is a consensus on input x is constant for all x. If an agent does 

not know the value of u chosen by the mechanism, then it does not know which g 

function was chosen from Gx. Thus, from the agent’s perspective, any value that is 

fed to the g function has an equal probability of being deemed a consensus value. 

Thus an agent cannot hope to affect whether there is a consensus on the reported 

value  of partition  by changing the reported value to , for the probability 

that there is a consensus on  is the same as the probability that there is a consen-

sus on . QED.

Claim 1 implies that the mechanism can discard all partitions for which it is not the 

case that g is a consensus for , yet still not be manipulable by agents. After all, since 

agents do not know the g function ahead of time (because u is chosen randomly at run 

time), they cannot purposely attempt to influence whether or not there is a consensus on 

the value of the neighbor by manipulating , for the probability that the g function that 

is chosen by the mechanism is a consensus for  is constant for all .

Even though the proof of Claim 1 shows that an agent cannot influence whether or 

not there is a -consensus on the reported value of a partition, it nevertheless is a bit diffi-

cult to understand conceptually how the -consensus functions handle the case of an ill-

intentioned agent that tries to manipulate the auction by bidding extreme values on certain 

bundles in a partition that the agent would like thrown out (and hence would like to force 

v′ π v″

v′

v″

V π( )

V π( )

V π( ) V π( )

ρ
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the partition’s value to not have a consensus). In understanding why the -consensus 

functions are resilient to such manipulation, we must remember that the value  is chosen 

such that for all agents i and all partitions , . Recall that  is 

external to the mechanism and is chosen by the entity running the mechanism as a value 

appropriate for the domain in which the auction is run. For example, if the bids in an auc-

tion fall into a particular distribution of bids in which it is infeasible for the bids of a single 

agent to move the value of a partition by more than a factor of 2 from the value of the par-

tition across all other agents, 2 would be a suitable value for . We present in our experi-

mental results chapter concrete examples of suitable  values for a variety of auction 

settings. Because  is chosen as appropriate for the domain in which the auction is run, 

agents are not able to bid extreme values that would yield a non-consensus, for a bid that 

could throw off whether a partition is a consensus or not would be infeasible according to 

the domain-specific value of . The value of  that is fed to the mechanism should be 

chosen to make the bounds  on  as tight as possible.

 Because c is simply a constant, note that the proof of Claim 1 is independent of the 

value of c that is chosen. Our mechanism is thus free to choose a c, so we decide to choose 

one that, building on the results of Claim 1, allows the probability of consensus to be a 

parameter on which c is based. Since the probability of consensus q is , we see 

that:

q = 

ρ

ρ
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.

Hence, for a given , we can fine-tune c by adjusting the probability that g will be a 

 function for any input x.

Claim 2

When we have a consensus, the value g( ) cannot be unilaterally influenced 

by a single agent.

Proof

A consensus implies that for every agent i, , meaning that 

no single agent could have submitted bids that influenced the consensus value 

g( ). QED.

Thus far we have analyzed the incentive properties of some individual components 

of our mechanism, but it is necessary at this point to put these individual pieces together to 

show what guarantees the mechanism as a whole can make about its strategyproofness.

Claim 3

The consensus mechanism is non-manipulable with probability , 

where n is the number of neighbors that the mechanism considers in each iteration 

of the local search.

q 1– logcρ–=

1 q– logcρ=
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Proof

Our mechanism includes the Main, LocalConsensusWinner, g, VCG, and Get-

Neighbors functions. We will examine the manipulability claims we can make 

about the objects returned by each of these. We know that the allocation returned 

by the VCG function is non-manipulable because of the VCG auction’s strate-

gyproof property that we discussed in Chapter 2. The list of neighbors that the 

GetNeighbors function returns is not susceptible to manipulation because this 

function simply returns a list of random neighbors of the partition it is fed. Because 

the g function simply maps an input to an output, and because the value that the 

input is mapped to is based entirely on the u, rho, and q parameters, which no 

agent can affect, g is not susceptible to manipulation.

In our LocalConsensusWinner function, because the u value is chosen in the 

Main function at runtime and is not known to the agents, we know from Claim 1 

that no agent can affect whether there is a consensus on a particular partition, so no 

agent can affect whether or not the algorithm passes the first if statement. If the 

code within the first if statement’s body is executed, the only items that can be 

updated are the CurrentBestValue  variable and ConsensusNeighbors array. 

However, the decisions about whether to update these two items and if so with 

what values are dictated by the value returned by the g function; so the only way 

an agent could alter these two objects is by altering the g value. Yet we know that 

there is a consensus value for the partition we are considering if we are executing 

the code in this if statement’s body, and we know from Claim 2 that as a result the 
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g value cannot be manipulated; thus no agent can affect whether or not these two 

objects are updated and to what values they are updated. Since the only times in 

which we update the only two objects in the LocalConsensusWinner function, 

CurrentBestValue and ConsensusNeighbors , are within this first if state-

ment, and since we now know that the decisions made within this if statement are 

not susceptible to manipulation, we know the values of CurrentBestValue and 

ConsensusNeighbors cannot be influenced by a single agent. The last if state-

ment simply decides what to return based on these two objects, and since these two 

objects cannot be manipulated, the item returned by the LocalConsensusWin-

ner function cannot be manipulated.

We now examine the Main function. The Main function repeatedly calls the 

LocalConsensusWinner function and compares the g value of the partition  

returned by that function with the g value of . We know that as long as there is a 

consensus on the value fed to the g function that the output of the g function is not 

susceptible to manipulation. Thus, whenever the LocalConsensusWinner 

returns a  for which there is a consensus on its value, the g value of  will be 

non-manipulable, and thus the comparison that the Main function makes between 

the g values of  and  is not susceptible to manipulation. However, if the 

LocalConsensusWinner function returns a partition  that does not have a 

consensus value, then the comparison the Main function makes between the g val-

ues can be manipulated. We know that the only way in which the LocalConsen-
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susWinner function would return a partition that does not have a consensus on its 

reported value is if no neighbor it considered had a consensus on its reported value, 

in which case LocalConsensusWinner returns a random neighbor that does not 

have a consensus. We know that with probability q a particular neighbor that is 

being considered will have a consensus on its reported value, and with probability 

1 - q it will not have a consensus. Thus, if the LocalConsensusWinner function 

evaluates n neighbors, with probability  no neighbor will have a consen-

sus on its reported value, so with probability  it will not be the case 

that no neighbor has a consensus on its reported value (i.e., at least one neighbor 

will have a consensus on its reported value). Thus with probability  the 

comparison that the Main function makes can be manipulated. Thus with probabil-

ity  an agent can change the direction of the search at a given step, so with 

probability  no agent can change the direction of the search in a given 

step. Thus with probability  the mechanism is non-manipulable. QED.

It follows from Claim 3 that only when q = 1 (which is impossible because this 

case would result in division by 0 when calculating c) is the mechanism completely 

manipulation-free. The reader may at this point wonder why it is not to the mechanism 

designer’s advantage to set q as close as possible to 1 in order to have the mechanism be 

non-manipulable with as high probability as possible. We will see in the following sec-

tion, however, that the value of q affects the quality of the approximation that the mecha-
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1 1 q–( )n–
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nism returns, and that for this reason it is not always advantageous to set q as high as 

possible.

6.3 Performance Analysis

For a given , c grows as the probability q of consensus grows. Thus as the proba-

bility that g will be a  function for a random value x increases, so do the step 

sizes in the step function g. Intuitively, this linkage between consensus probability and 

step size makes sense, for the larger the steps in g, the higher is the probability that the 

region between  and x will fit on the same step. As c increases, though, the accuracy of 

the estimates that g produces decreases, for as step size increases, g maps more input val-

ues to the same step, meaning that the value returned by g is less meaningful in determin-

ing which partitions are more valuable. Although increasing the probability of consensus 

is good because it means that the mechanism discards fewer partitions and thus has a 

smaller chance of throwing away valuable partitions, increasing the accuracy is also good 

because it means that for the partitions that do have a consensus, the g function more accu-

rately maps the partitions to their actual values, and thus there is a smaller chance that par-

tition B, which is less valuable than partition A, is chosen over A because both mapped to 

the same value and B was randomly chosen instead of A.

It is interesting to observe that as we move toward the extreme ends of the spec-

trum that has accuracy on one end and consensus probability on the other, we in essence 

move toward a random walk algorithm. As accuracy falls (probability of consensus rises), 

ρ

ρ-consensus

x
ρ
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the algorithm moves closer to a random walk, for more partitions are mapped to the step 

which has the highest-valued partition, and thus more partitions are chosen at random by 

the consensus algorithm; in the extreme case, where there is only one step, the mechanism 

reduces to a random walk, for it simply chooses a random partition at each iteration in the 

search. Yet as accuracy increases (probability of consensus decreases), the algorithm 

again moves closer to a random walk, for the smaller step sizes mean that there is a lower 

chance of consensus, implying that valuable partitions have an increasing chance of being 

discarded and thus less valuable ones have a greater chance of being selected; in the 

extreme case, the steps are so small that because there is no consensus for any input x a 

partition is chosen at random in each iteration of the search, and again the algorithm 

reduces to random walk. Figure 2 illustrates our observations.

We note, though, that the flavor of random walk at the lefthand side of the spec-

trum is different from that at the righthand side. Even though with both q = 0 and q = 1 the 

LocalConsensusWinner function returns a random partition, there is a difference 

Figure 2

ac
cu

ra
cy

consensus
probability

q=0 q=1q=.25 q=.5 q=.75

Random Walk

Step Size



Edward Naim 56

between the two in what happens with this returned partition in the Main function. When 

the probability of consensus is 0, the g function is highly accurate, but when the probabil-

ity is 1 it is perfectly inaccurate (in the sense that every input maps to the same output). 

Since in both cases the Main function will be able to find a consensus for neither  nor 

, it will rely on the g value returned by the LocalConsensusWinner function to 

determine if the most recently returned partition is the best one seen so far. Since when q = 

1 the g function returns the same value on every input, the Main function at each iteration 

simply selects the last partition randomly chosen by LocalConsensusWinner to be the 

best partition seen , for g(Value( ),u,rho,q) >= g(Value( ),u,rho,q) will 

always be true, and thus  will always replace . In essence, then, the algorithm is acting 

as a non-hill-climbing random walk, for at each step it makes a random partition the best 

one, regardless of how it compares value-wise to previously seen partitions. On the other 

hand, when q = 0, the performance of the consensus algorithm is essentially the same as 

random walk hill-climbing, for the highly accurate g function maps every input to a sepa-

rate output such that if x > x’ then g(x) > g(x’); in essence, then, the algorithm is perform-

ing hill-climbing random walk. Because when q = 1 the information returned by g, which 

is based on the reported value of agents, is not used at all in determining which partition to 

make the current best, the non-hill-climbing random walk is completely non-manipulable. 

However, when q = 0, the algorithm completely reduces to hill-climbing random walk, 

which means that its entire decision on which partition to move to is based on the reported 

values of agents, for g maps every input to a unique output that maintains that if x > x’ 

then g(x) > g(x’). Thus, as we move from the left hand side of the spectrum to the right-
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hand side, as we move from hill-climbing random walk to non-hill climbing random walk, 

we move from completely manipulable to completely non-manipulable, which is con-

firmed by our earlier observation that the algorithm is non-manipulable with probability 

, where n is the number of neighbors the local search considers in each itera-

tion. 

This inherent tension between accuracy and probability of consensus means that it 

is important to determine an appropriate q for a given value of : that is, a q that effec-

tively balances accuracy and consensus probability, coming close to maximizing the value 

of the allocation that is returned by the mechanism while still yielding a high strategyproof 

probability. There is a nice middleground between the two ends of the spectrum that 

allows the mechanism to avoid the ignorance of random walk, and we show in our experi-

mental results chapter the impact that varying q has on the search’s success.

It is important to note that the value of  that is fed to the mechanism should be 

chosen so that  is as small as possible while maintaining that . As 

 increases for a given q, the value of c gets larger, meaning that the accuracy of the esti-

mate falls. However, c rising for a given q means we get a dip in accuracy without a com-

pensating increase in consensus probability; the step sizes are larger, meaning that more 

inputs get mapped to the same g output, yet the consensus probability stays the same 

because the region between  and x grows with the step size. Thus accuracy falls yet we 

do not get the benefits of an increase in consensus probability (we do not get a decrease in 

1 1 q–( )n–

ρ

ρ
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ρ

------------ V i– π( ) V π( )≤≤

ρ

x
ρ
---



Edward Naim 58

our chances of discarding a valuable partition). Thus the larger that  gets, the closer we 

move to the ignorance of random walk, for accuracy is lower while all else stays the same. 

This negative effect of increasing  implies that  should be made as small as possible, 

given the realities of the domain in which the auction is run. We show in our experimental 

results the effect of increasing  while keeping all else the same.

ρ

ρ ρ

ρ
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Chapter 7: Experimental Setup

7.1 Introduction

Although we have shown that our consensus algorithm adequately addresses 

incentive issues, an important question we need to explore is how well the mechanism per-

forms from the perspective of allocative efficiency. The main goal of shaping our mecha-

nism’s winner determination process in the form of a local search algorithm is that these 

algorithms, ignoring issues of agent incentives, are known to provide good approxima-

tions; yet we need to feel confident that the modifications and constraints we have added 

to basic local search through our use of consensus functions is not too limiting from an 

efficiency viewpoint. Even if the proposed mechanism has desirable incentive properties, 

it is quite useless if it does a poor job of approximating the optimal solution. For this rea-

son, we built a robust combinatorial auction simulator which allowed us experimentally to 

evaluate our mechanism’s efficiency.

7.2 Algorithms Used as Benchmarks

A study of the quality of our algorithm’s approximations is quite meaningless 

unless we examine its quality in comparison to other algorithms’ performance. We chose 

to implement three other local-search-based algorithms to use as benchmarks against our 

consensus approximation: LP-based directed hill climbing, LP-based random walk hill 

climbing, and Casanova. Pseudocode together with a description of the directed hill 
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climbing algorithm was given earlier (directed hill climbing was earlier referred to as 

basic hill climbing or basic local search). A description of Casanova was also given ear-

lier. The random walk hill climbing mechanism simply starts off with a random partition 

 and determines its value across all agents based on agent bids by running the linear pro-

gram we described earlier. It then chooses a random partition  and determines its value 

across all agents based on bids by running the linear program. If it is the case that  has a 

higher reported value than , then  becomes . Otherwise  stays the same. A new  

is then chosen at random, and the process repeats. This simple process continues until the 

algorithm is stopped.

We chose LP-based directed hill climbing because it is essentially identical to our 

algorithm, except it does not employ consensus functions and is not strategyproof. We can 

thus view directed hill climbing as our algorithm but with the “incentive-compatible 

switch” turned off. We selected LP-based random walk hill climbing because its lack of 

direction helps illustrate the value of guidance in a local search’s productivity; because 

our algorithm has tendencies toward random walk as q goes to 0 and q goes to 1, we want 

to show what our algorithm reducing to random walk—and thus losing all guidance—

would mean. Finally, we decided to use Casanova as a benchmark because it is the most 

widely-known published example of an approximation mechanism based on local search.

In our simulation, the mechanism has access to the true values of participating 

agents. We must keep in mind that because none of the three benchmark algorithms is 

strategyproof, yet in our experiments we are intrinsically assuming truthful bidding by 

giving the mechanism access to agents’ true values, we expect the benchmark algorithms 

π

π′

π′

π π′ π π π′
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to give their best-case approximations. In general, the approximations of a non-strate-

gyproof mechanism in a truthful setting will be better than in a non-truthful setting, 

because the search direction is guided by more “accurate” information. That is, agents are 

not attempting to manipulate the mechanism by feeding it information that is false. 

Because the search is directed by more accurate information, it is expected to perform bet-

ter; in essence this desire for accurate information is the primary reason that strategyproof-

ness is such a desirable property. Since we are comparing the consensus algorithm’s 

performance to the best-case performance of the other algorithms, we are setting a high 

standard for our algorithm.

Because our simulation tracks efficiency, it is necessary to calculate the optimal 

solution for any problem on which the algorithms are run; our code thus runs a mixed inte-

ger program which optimally solves the winner determination problem.

7.3 Inputs to Simulation

In addition to specifying which, if not all, of the four algorithms should be run in a 

particular experiment, the user is able to specify problem types on which the algorithms 

are run, fine-tune parameters that are fed to the algorithms, indicate distributions in which 

agent valuation functions fall, and dictate halting conditions. All inputs fed to the simula-

tion are stored in input files. To ensure that the simulation could support different file for-

mats, all input data is parsed by a “manager” program which sends input parameters to the 

actual simulator. All data is output to files; the data from each algorithm is stored in a sep-
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arate file, in a directory specific to the experimental run. Table 7 in the appendix lists what 

can be specified at run time.

7.4 How the Value of a Partition is Determined

For the directed hill climbing local search, random walk, and consensus algo-

rithms, we need to determine the values of partitions in each search step; to do this, it is 

necessary to solve the linear program presented in Section 5.4. To solve this linear pro-

gram, we used the mixed integer programming functionality of CPLEX, a commercial lin-

ear program solver (http://www.cplex.com). We also used CPLEX to solve every auction 

optimally; recall that we need to solve each auction optimally in order to determine the 

efficiency of the allocations returned by the approximation algorithms.

7.5 Agent Valuation Functions

We abstractly think of the values an agent places on bundles as a valuation func-

tion; on input b, where b is a bundle, an agent’s valuation function will return 0 if the 

agent is not interested in the bundle, or will return the value the agent holds for the bundle 

if it is interested. Our simulation needs to construct valuation functions for each agent.

The number of bundles in which each agent is interested is a parameter passed to 

the simulator. The specific bundles in which each agent is interested, and the values that 

each agent places on such bundles, are dependent on the chosen distribution. We employ 
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the four distributions that Sandholm [Sandholm, 1999] proposed as appropriate for run-

ning combinatorial auction experiments, allowing the user to specify m and :

• Random: For each bundle, pick the number of goods randomly from {1, 2, ..., m}. 

Randomly choose that many goods. Pick the value of the bundle randomly from [0,1].

• Weighted random: Like random, but pick the value between 0 and the number of 

goods in the bundle.

• Uniform: Draw the same number of randomly chosen goods for each bundle. Pick the 

value of each bundle from [0,1].

• Decay: Start off with one random good. Then repeatedly add a new random good with 

probability  until a good is not added or the bundle includes all m goods. Pick the 

value of each bundle between 0 and the number of goods in the bundle.

We should note one subtlety inherent in constructing agent valuation functions. Care must 

be taken to ensure that if an agent values a particular bundle b at value v, all other bundles 

in which it is interested that are a superset of b (i.e. contain all the goods that b contains) 

must have a value of at least v. Our simulator uses a combination of hash tables and lists of 

linked lists to ensure that this constraint does not have too significant an impact on the per-

formance of valuation function construction.

7.6 Experimental Details

We define an instance of an auction to be a set of agents, goods, and valuation 

functions, independent of the actual winner determination procedure that is run. In each 

α

α
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trial run, the simulator begins by generating an auction instance, and then feeds this same 

instance to each of the four winner determination algorithms; thus the algorithms are com-

pared on the same problems.

The simulator was written in C++ and run on a Windows XP Professional PC with 

a 2.52 GHz Pentium IV processor and 512 MB of RAM.

A tremendous amount of time was spent optimizing the mechanism code and the 

code for each of the algorithms so that the experimental results would be as true to the 

inherent characteristics of the algorithms as possible. A large amount of data is stored in 

efficient lookup structures like hash tables and linked lists of arrays, and significant por-

tions of the simulator were rewritten several times to improve performance.

The simulator source code spans forty-four files, and due to its enormous size is 

not included with this document. Interested parties may contact the author if they would 

like access to the source.
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Chapter 8: Results

8.1 Introduction

Our goal in experimentally evaluating our mechanism was to compare the perfor-

mance of the consensus-based approximation mechanism to non-strategyproof anytime 

approximation mechanisms that are also based on local search. As described in the previ-

ous chapter, the three other algorithms to which we compare ours are LP-based directed 

hill-climbing, LP-based random-walk hill-climbing, and Casanova. We compared in five 

problem sizes the performance of the four winner determination algorithms across the four 

distributions. The five problem sizes we chose are listed in Table 5.

We attempted through this selection of problems to cover a broad range of problem sizes: 

auctions with lots of agents, ones with few agents, ones with lots of goods, ones with few 

goods, ones with lots of bundles, and so on. The first four problems were ones chosen by 

Parkes and Schoenebeck in their GrowRange paper [Parkes and Schoenebeck, 2004]. The 

run time for each problem was chosen based on test results; whenever we felt it was useful 

Table 5

Agents Goods Bundles distribution 
m

Run Time 
(s)

80 160 320 5 30

80 320 480 5 115

100 200 600 5 60

40 80 480 5 30

10 100 600 15 30
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to expand our time window, we did so. Each of the problems was run separately on each 

of the four valuation distributions. Unless stated otherwise, all data is for ten runs and we 

used a  value of 1.1 and a q value that was determined experimentally to be near-opti-

mal.

We also aimed in our experiments to evaluate intrinsic aspects of our approxima-

tion mechanism. We thus chose to show the effects that different  values have on effi-

ciency, the effect of varying q for a given , the factor across the four distributions by 

which a single agent who bids maximally can unilaterally change the value of the optimal 

allocation for a given problem size (to show what are appropriate values of ), and how 

the marginal effect of a single agent is influenced by the number of agents in the system.

We summarize some of the conclusions we derive from our experimental results:

h The restrictions placed on the mechanism which allow it to be strategyproof with 

high probability do not cripple its ability to provide high-quality approximations 

quickly. We see this is the case by observing our mechanism’s performance rela-

tive to the three non-strategyproof mechanisms on different problem sizes across 

the four distributions.

h We see that values of  which are suitable for many real-world domains are suffi-

ciently low to allow the entity running the mechanism to choose both high proba-

bility of strategyproofness and good approximation quality. We also examine the 

robustness of our determination of an appropriate  value by showing how the 

number of agents in the system affects this value.

ρ

ρ

ρ

ρ

ρ

ρ
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h We see first-hand the trade-off between consensus probability and approximation 

quality as we observe how efficiency varies with q.

h We observe that a lower  does indeed result in a better approximation.

h We see that as  increases the optimal value of q falls.

h We see that our theoretical observation that q = 0 results in random walk hill-

climbing and q = 1 results in random walk holds true experimentally.

8.2 Comparison with Other Local Search Algorithms

80 agents, 160 goods, 320 bundles

Figure 3 shows the relative efficiency over time of the four algorithms for prob-

lems with 80 agents, 160 goods, and 320 bundles. The results in the random and weighted 

random distributions are fairly comparable. In both, at the end of the 30 seconds directed 

hill-climbing has found an allocation with higher efficiency than the three other algo-

rithms. However, the results confirm that, as suggested by the Hoos and Boutilier paper, 

Casanova at first does a better job than directed hill-climbing, only being surpassed by 

hill-climbing after around 8 seconds. This result indicates that Casanova is better able than 

directed hill-climbing to find a good approximation quickly. Random walk surprisingly is 

able to outperform the other algorithms within the first few seconds, but improves little as 

time progresses. The recorded performance of random walk suggests that its inherent ran-

domness allows for the quick discovery of a better allocation than the others, because it is 

able to jump in one step to a point on the hill, whereas the directed local searches must 

ρ

ρ
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step-by-step climb the hill. Nevertheless, as the results show, the lack of direction inherent 

in random walk means that it is unable to benefit from the lucky jumps it takes by continu-

ing up a hill on which it has found a good allocation; although its random nature allows it 

to get “lucky” quickly, this luck takes the algorithm only so far, for it is unable to use the 

knowledge it acquired in guessing luckily to find a better neighboring partition.

What is most relevant to our discussion is the performance of the Consensus algo-

rithm. Surprisingly, in the random and weighted random distributions, the consensus algo-

rithm performs rather well relative to the non-strategyproof directed hill-climbing and 

Casanova algorithms. In fact, in the random distribution, the Casanova and Consensus 

Figure 3: 80 agents, 160 goods, 320 bundles
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algorithms are essentially neck-and-neck. The fact that Consensus performs well relative 

to Casanova and directed hill-climbing is surprising because these two, as a result of their 

ignorance of incentives, are able to “use” fully all of the information presented to them by 

agent bids, whereas the consensus algorithm must throw out some of this information. The 

results thus favorably show that the fact that the consensus algorithm throws out some 

information is not detrimental to its performance; the impact of this lesser amount of 

information was the primary concern we had on the consensus algorithm’s performance, 

and therefore the results help alleviate some of our concerns.

The decay distribution produced results pretty similar to those of the random dis-

tribution.

The most striking results are in the uniform distribution. While the three non-strat-

egyproof algorithms consistently performed remarkably well, the consensus algorithm’s 

efficiency near .5 speaks to the high variability of its results across the individual auction 

instances. It is easy to understand why the other three did well. In a uniform distribution, 

all bundles are of the same size. That means that, unlike in other distributions, no bundle’s 

value is inherently tied to the value of a subset or superset bundle, for no bundle is a subset 

of another. This means that the value of every bundle is completely random and indepen-

dent of the value of any other bundle. As a result, the values of all partitions are indepen-

dent and uniformly distributed between [0, optimal value], and as a result it would be 

expected that directed hill-climbing local searches will act randomly, for in essence neigh-

bor values are truly random. It is thus unsurprising that directed hill climbing and 

Casanova performed comparably to random walk hill-climbing. Random walk hill-climb-
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ing would be expected to perform well because the uniform distribution of partition val-

ues, coupled with the fact that there are many partitions with 320 bundles of size 5 and 160 

goods, means that there are many partitions with high values, and as a result a random 

walk will eventually stumble upon one of these iterations (in fact, within 10 iterations it 

should be expected to find at least one partition with a value within .9 of optimal). 

Because there are many iterations within one second of run time, and thus many partitions 

are visited within a second, it is thus unsurprising that random walk (and directed hill-

climbing and Casanova, which are in this case reduced to random walk) consistently 

found good partitions within a second. In the uniform case, though, consensus’s incentive-

compatible constraints are limiting, as illustrated by the results, for they prevent the con-

sensus algorithm from reducing to random walk as in the directed hill-climbing and 

Casanova. We noted before that as the value of q becomes 0 or 1, the consensus algo-

rithm’s performance more closely matches that of random walk, for in these two cases the 

consensus algorithm is explicitly forced to perform like random walk; however, we did 

not graph its performance when q is near 0 or near 1 because we already know what the 

results of these two cases would be and thus did not feel that they were interesting to 

graph.

80 agents, 320 goods, 480 bundles

Figure 4 graphs the average performance of the four algorithms on problems with 

80 agents, 320 goods, and 480 bundles. In the random, weighted random, uniform, and 

decay distributions, the relative performance of the consensus, directed hill-climbing, and 
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random walk algorithms is similar to the performance in problems with 80 agents, 160 

goods, and 320 bundles. However, Casanova is not performing relatively as well as in the 

previous problem on the random, weighted random, and decay distributions, suggesting 

that as the number of goods rises relative to the number of bundles, and thus as the number 

of feasible partitions relative to the number of bundles rises (because a smaller percentage 

of bundles overlap), Casanova’s performance takes a dip. It is important to note that these 

algorithms take longer than in the previous problem to find partitions of comparable effi-

ciency, probably because of this increase in the number of feasible partitions. In general, a 

larger search space means that on average a particular search algorithm will take longer to 

Figure 4: 80 agents, 320 goods, 480 bundles
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find a specific partition previous algorithms; in our domain, this means it will take longer 

to find a partition of high value.

100 agents, 200 goods, 600 bundles

Figure 5 shows the results of the four algorithms with 100 agents, 200 goods, and 

600 bundles. In this problem, there are fewer goods relative to the number of bundles than 

in the previous problems, which means that, compared to the previous problems, a larger 

percentage of bundles overlap and hence there are a smaller number of partitions relative 

Figure 5: 100 agents, 200 goods, 600 bundles
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to the number of bundles. We notice in this case that all four of the algorithms have rela-

tive performance similar to that of the previous problems, but the absolute performance of 

all four falls, and the speed with which the hills are climbed in the consensus, directed hill 

climbing, and Casanova algorithms falls; this observation makes sense because although 

there are fewer partitions relative to the number of bundles, in absolute terms there are 

more partitions than in the previous problems because there are significantly more bun-

dles, so we have a larger search space.

40 agents, 80 goods, 480 bundles

Figure 6 presents the average results of auctions containing 40 agents, 80 goods, 

and 480 bundles. Among the four algorithms, we see relative performance similar to that 

of the first two problems, but significantly better absolute performance for consensus, ran-

dom walk hill-climbing, and directed hill-climbing. Because the number of goods relative 

to the number of bundles is significantly smaller in this problem, the number of feasible 

partitions is also smaller, for a greater percentage of bundles overlap. Also, since the num-

ber of agents is at least half of the number in the previous problems, the number of feasible 

allocations for each partition is also smaller (meaning that the linear program that is 

solved in each step takes less time, so the number of steps for a given unit of time is larger, 

so the search process is quicker). Because the search process is quicker and there is a 

smaller space in which to search, it is not surprising that the algorithms have better abso-

lute performance, for they are able to more quickly find a particular partition.
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10 agents, 100 goods, 600 bundles 

Figure 7 illustrates the average performance of the four algorithms on auctions 

with 10 agents, 100 goods, and 600 bundles. The performance of the consensus algorithm 

on auctions of this type is important because it is the auctions with a small number of 

agents that can lead to drastic manipulations, for the small number means that each agent 

has a high degree of power in altering value calculations. As shown, in all distributions 

except for uniform, the consensus algorithm performs remarkably well. It should be noted 

that the other three algorithms, because they are susceptible to manipulation, would in 

Figure 6: 40 agents, 80 goods, 480 bundles
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reality perform a lot worse than illustrated if a single agent decides to manipulate, because 

if there are only ten agents participating, and hence a single agent can have a significant 

impact on value calculations, a single agent can greatly alter the performance of a manipu-

lable algorithm.

8.3 The effect  has on efficiency

In our theoretical analysis chapter, we explained why a smaller value of  for a 

given q produces better results, for as  rises for a given q the consensus algorithm 

Figure 7: 10 agents, 100 goods, 600 bundles
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becomes less accurate, and this loss in accuracy can be thought of as a reduction in the 

information that is fed to the consensus algorithm to guide its search. To illustrate experi-

mentally what this loss of information means, we ran the consensus algorithm for 45 sec-

onds on a problem consisting of 30 agents, 20 goods, and 600 bundles for  = 1.1 and  = 

1.6 with near-optimal q values. Figure 8 shows the average efficiency results over 40 runs.

It is clear from the graph that an increase in  results in a decrease in the performance of 

the consensus algorithm. We emphasize again that  is a domain property and not some-

thing that the mechanism can be designed for.

Figure 8: Approximation quality for  = 1.1 and 1.6
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8.4 Varying q for a Given 

Our theoretical section also discussed the effect that the value of q has, for a given 

, on the performance of the consensus algorithm. We decided experimentally to examine 

this effect. On a problem with 8 agents, 20 goods, and 40 bundles, we graphed how aver-

age efficiency after 3 seconds in 100 runs is affected as q moves from 0 to 1 in increments 

of .05 for  values of 1.05, 1.1, 1.25, 1.6, 2.0, and 3.0. Figure 9 shows the results, with a 

polynomial trend line of degree 3 added to each graph. Based on the trend lines, we 

graphed, in figure 10, the efficiency-maximizing value of q as  varies. We observe that 

the optimal q value appears to decrease as  increases. We notice also that varying q has a 

less drastic effect as  increases.

We may wonder why in the graphs of Figure 9 the efficiency at q = 0 is higher than 

at q = 1, for, according to the theoretical analysis, the consensus algorithm reduces to ran-

dom walk for both values. However, as also explained by our theoretical analysis, the rea-

son that the consensus algorithm is able to better perform with 0 probability of consensus 

than with 1 is that when q = 0 the algorithm is performing hill-climbing random walk, 

while when q = 1 it is performing a completely random walk. It is no surprise that hill-

climbing random walk performs better than non-hill-climbing random walk, since hill-

climbing returns the best partition seen across all iterations whereas non-hill-climbing 

returns a completely random partition; for this reason the performance at q = 0 is better 

than that at q = 1, confirming our theoretical analysis of which q value would result in a 

more efficient mechanism.
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Figure 9: Varying q for a given 
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8.5 The Marginal Effect of an Agent

A Fixed Problem

In attempting to get a sense of appropriate  values for specific domains, it helps 

to examine the marginal effect that a bidder who bids values that are the highest possible 

in a particular domain can have on the calculated value of a partition. We attempted 

through experimentation to get a sense of this marginal effect on a problem with 80 

agents, 320 goods, and 400 bundles. In this set of experiments, we assigned all agents 

except for agent 0 valuation functions according to the distribution in which the experi-

ment was run, and gave agent 0 for each bundle the maximum value allowed under that 

distribution; for example, for a random distribution a value of 1 for every bundle, and for a 

weighted random distribution a value for each bundle equal to the number of goods in that 

bundle. Over 100 runs for each distribution, we recorded the ratio of the value of a random 

Figure 10: Efficiency-maximizing value of q as  variesρ
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partition with agent 0 in the system to the value of the same partition without agent 0. 

Table 6 lists the average, median, maximum, and minimum ratios encountered for each of 

the distributions.

The results suggest that, for example, a value of 1.1 for  in this problem is more than 

realistic, for even the maximum factors by which a single agent can feasibly influence the 

value of a random partition are nowhere near 1.1.

Scaling the Number of Agents

We also wanted to get a sense of the maximum marginal effect that an agent, bidding 

within the realm of feasible bids, can have as we scale the number of agents. Thus, for a 

problem with 200 goods, we scaled the number of agents from 10 to 80 in increments of 

10, adding 5 bundles for every agent added. Like before, our experiments assigned all 

agents except for agent 0 valuation functions according to the distribution in which the 

experiment was run, and gave agent 0 for each bundle the maximum value allowed under 

that distribution. Our experiments calculated, over 100 runs per problem, the average ratio 

of the value of a random partition with agent 0 in the system to the value of the same par-

Table 6

Average Median Max Min

Random 1.016183 1.016748 1.01831 1.009009

Weighted 
Random

1.015738 1.015197 1.028962 1.00347

Uniform 1.002188 1.001322 1.009056 1

Decay 1.017999 1.015598 1.049795 1.010332

ρ
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tition without agent 0. The results for the random and weighted random distributions are 

shown in Figure 11. The results show that, for example, with 80 agents in the random dis-

tribution, agent 0 on average increases the calculated value of a partition by a factor less 

than 1.02 of the value without agent 0, suggesting that a  value of 1.1 is more than safe 

for that particular problem. As expected, as the number of agents falls, the marginal effect 

that agent 0 can have grows, for agent 0’s bids make up a greater fraction of the overall 

value assigned to a partition as the number of agents decreases. Thus, for a given problem, 

as the number of agents increases, the minimum value of a suitable  decreases.

Figure 11: The marginal effect of an agent as the number of agents scales

random weighted random

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

10 20 30 40 50 60 70 80

agents

0.9

0.95

1

1.05

1.1

1.15

1.2

10 20 30 40 50 60 70 80

agents

ρ

ρ



Edward Naim 82

Chapter 9: Conclusion

We have presented a local-search-based approximation mechanism that is strate-

gyproof with high probability.

Prior to this work, two primary classes of approximation algorithms existed. The 

first, based on local search, used local search’s power to provide quality approximations; 

unfortunately, they were not strategyproof. The second were non-VCG mechanisms that 

were strategyproof, but placed restrictions on agent preference domains that were quite 

limiting. The first had a major advantage over the second in that they were anytime. We 

wanted to construct a mechanism that has the good approximation and anytime properties 

of the first class, but with the strategyproofness that comes with the second class, but with-

out the limitations of the second class. We proposed such a mechanism, one that does not 

have the second class’s restrictions on agent preferences, builds on the strengths of local-

search-based algorithms to provide quality anytime approximations, and is strategyproof.

Our Consensus mechanism is anytime and strategyproof with high probability, and 

is able to have this strategyproof property while also using agent bids to guide the search 

direction. Furthermore, our mechanism allows the entity running it to specify the probabil-

ity with which the mechanism is strategyproof, enabling the appropriate level of trade-off 

between strategyproofness and efficiency to be specified at runtime.

We built a robust combinatorial auction environment to ensure that the modifica-

tions and constraints we added to basic local search through our use of consensus func-

tions were not too limiting from an efficiency viewpoint. Comparing our Consensus 
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algorithm across several different problem sizes to three benchmark algorithms that 

ignored incentives, we were quite pleased—almost surprised—by how well it performed 

in spite of the restrictions we placed upon it. We also wanted to see experimental evidence 

of how q and  fit into the mix, and our results confirmed our theoretical analysis of the 

trade-off between approximation quality and strategyproof probability, of the different fla-

vors of random walk local search that extreme values of q (near 0 and near 1) produce, and 

of the importance in making  as small as possible. We also discovered experimentally 

that values of  which are realistic for the distributions we considered allow our mecha-

nism to have both high strategyproof probability and high approximation quality.

All-in-all, we are pleased with the theoretical and experimental results of our con-

sensus mechanism. We are excited about what we have seen so far and would love to 

explore the mechanism further, hoping most of all that the contributions we have made 

will aid others in discovering more anytime strategyproof approximation algorithms that 

quickly provide approximations of even higher quality.

Future work

We are quite excited about our Consensus mechanism idea and about the theoreti-

cal and experimental results we have presented. We hope to continue exploring the idea in 

more depth on several fronts. Firstly, we would like to compare our mechanism to more 

mechanisms based on non-strategyproof approximation algorithms, like tabu search, in 

order to get an even better sense of how well the mechanism does in relation to other non-

ρ
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strategyproof ones that have been proposed. Along the same lines, we would like to test 

the Consensus mechanism experimentally on more problem sizes and distributions in 

order to make our benchmarking comparisons more robust.

We also would like to compare our mechanism experimentally to the performance 

of GrowRange to determine on which bid distributions each is better suited. 
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Appendix
.

Table 7: Inputs to Combinatorial Auction Environment

Input Description

num_agents The number of bidders in the system.

num_goods The number of goods being sold in each auc-
tion.

bundles_per_agent The number of bundles in which any one agent 
is interested in bidding.

num_neighbors The number of neighbors to consider in each 
round of a local search (used in directed hill 
climbing and consensus algorithms).

time_per_auction The amount of time (in milliseconds) for 
which each auction should run. If set to 0, the 
auction runs for as long as the optimal algo-
rithm took to solve.

num_auctions The number of auction instances that are run. 

lp_type The linear program that is used. If set to 1, then 
an agent can be awarded at most one bundle in 
any allocation. If set to 0, there is no limit on 
the number of bundles an agent can be allo-
cated.

rho_value The  value used by the consensus algorithm.

consensus_pr The q value used by the consensus algorithm.

wp The wp value fed to casanova.

np The np value fed to casanova.

distribution_type If 1, then a random distribution is used. If 2, a 
weighted random. If 3, a uniform. If 4, a decay.

distribution_m The value of m used in the distributions.

distribution_alpha The value of  used in the decay distribution.

ρ
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output_increments The increments, in seconds, for which the effi-
ciency of the current best allocation deter-
mined by a given algorithm should be output to 
a file. If set to 0, only outputs the data from a 
algorithm after it has halted.

time_tracking If set to 1, will write to a file the amount of 
time for which optimal and the four other algo-
rithms ran.

consensus If set to 1, the consensus algorithm will run.

directed_hill_climbing If set to 1, the directed hill climbing algorithm 
will run.

random_walk If set to 1, random walk hill climbing will run.

casanova If set to 1, casanova will run.

Table 7: Inputs to Combinatorial Auction Environment
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