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Abstract

We establish PAC learnability of influence functions for three common influence
models, namely, the Linear Threshold (LT), Independent Cascade (IC) and Voter
models, and present concrete sample complexity results in each case. Our results
for the LT model are based on interesting connections with neural networks; those
for the IC model are based an interpretation of the influence function as an expec-
tation over random draw of a subgraph and use covering number arguments; and
those for the Voter model are based on a reduction to linear regression. We show
these results for the case in which the cascades are only partially observed and we
do not see the time steps in which a node has been influenced. We also provide
efficient polynomial time learning algorithms for a setting with full observation,
i.e. where the cascades also contain the time steps in which nodes are influenced.

1 Introduction

For several decades there has been much interest in understanding the manner in which ideas, lan-
guage, and information cascades spread through society. With the advent of social networking
technologies in recent years, digital traces of human interactions are becoming available, and the
problem of predicting information cascades from these traces has gained enormous practical value.
For example, this is critical in applications like viral marketing, where one needs to maximize aware-
ness about a product by selecting a small set of influential users [1].

To this end, the spread of information in networks is modeled as an influence function which maps
a set of seed nodes who initiate the cascade to (a distribution on) the set of individuals who will be
influenced as a result [2]. These models are parametrized by variables that are unknown and need
to be estimated from data. There has been much work on estimating the parameters of influence
models (or the structure of the underlying social graph) from observed cascades of influence spread,
and on using the estimated parameters to predict influence for a given seed set [3, 4, 5, 6, 7, 8].
These parameter estimation techniques make use of local influence information at each node, and
there has been a recent line of work devoted to providing sample complexity guarantees for these
local estimation techniques [9, 10, 11, 12, 13].

However, influence functions can be highly sensitive to errors in model parameters (as we shall see
with an example in the next section), and existing results do not tell us to what accuracy the individ-
ual parameters need to be estimated to obtain accurate influence predictions. If the primary goal in
an application is to predict influence accurately, it is natural to ask for learnability guarantees on the
influence function itself. A benchmark for studying such questions is the Probably Approximately
Correct (PAC) learning framework [14]:

Are influence functions PAC learnable?

While many influence models used in practice have been popularized due to their approximation
guarantees for influence maximization [2, 15, 16], PAC learnability is an equally fundamental prop-
erty that we investigate in this paper.

Part of this work was done when HN was a PhD student at the Indian Institute of Science, Bangalore.
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In particular, we establish PAC learnability for three well-studied influence models: the Linear
Threshold, the Independent Cascade, and the Voter models. We primarily consider a setting where
the cascades are partially observed, i.e. where only the nodes influenced and not the time steps at
which they are influenced are observed. This is a setting where existing local estimation techniques
cannot be applied to obtain parameter estimates. Additionally, for a fully observed setting where the
time of influence is also observed, we show polynomial time learnability; our methods here are akin
to using local estimation techniques, but come with guarantees on the global influence function.

Main results. Our learnability results are summarized below.

• Linear threshold (LT) model: Our result is based on an interesting observation that LT in-
fluence functions can be seen as multi-layer neural network classifiers, and proceed by bound-
ing their VC-dimension. The method analyzed here picks a function with zero training error.
While this can be computationally hard to implement under partial observation, we provide a
polynomial time algorithm for the full observation case using local computations.

• Independent cascade (IC) model: Our result uses an interpretation of the influence function
as an expectation over random draw of a subgraph [2]; this allows us to show that the function is
Lipschitz and invoke covering number arguments. The algorithm analyzed for partial observa-
tion is based on global maximum likelihood estimation. Under full observation (and additional
assumptions), we show polynomial time learnability using a local estimation technique.

• Voter model: Our result follows from a reduction of the learning problem to a linear regression
problem; the resulting learning algorithm can be implemented in polynomial time for both the
full and partial observation settings.

Related work. A related problem to ours is that of inferring the structure of the underlying social
graph from cascades [6]. There has been a series of results on polynomial sample complexity guar-
antees for this problem under variants of the IC model [9, 12, 10, 11]. Most of these results make
specific assumptions on the cascades/graph structure, and assume a full observation setting. On the
other hand, in our problem, the structure of the social graph is assumed to be known, and the goal
is to provably learn the underlying influence function. Our results do not depend on assumptions on
the network structure, and primarily apply to the more challenging partial observation setting.

The work that is most related to ours is that of Du et al. [13], who show polynomial sample complex-
ity results for learning influence in the LT and IC models (under partial observation). However, their
approach uses approximations to influence functions and consequently requires a strong technical
condition to hold, which is not necessarily satisfied in general. Our results for the LT and IC models
are some what orthogonal. While the authors in [13] trade-off assumptions on learnability and gain
efficient algorithms that work well in practice, our goal is to show unconditional sample complexity
for learning influence. We do this at the expense of the efficiency of the learning algorithms in the
partial observation setting. Moreover, the technical approach we take is substantially different.

There has also been work on learnability of families of discrete functions such as submodular [17]
and coverage functions [18] under both the PAC and the variant PMAC frameworks, with specific
assumptions made on the input distribution. While the IC influence function can be seen as a cov-
erage function (of an exponentially large size) [2], the PAC algorithms [18] that are applicable for
an IC target function turn out to be improper learning algorithms, i.e. do not necessarily output an
IC influence function (or even a coverage function). In contrast, our focus is on proper learning
of influence functions (see Appendix A for a discussion); this is important in applications where
the learned function needs to be subsequently used for other tasks like influence maximization that
crucially rely on the form of the function [2]. Moreover, since we look at specific function classes
(rather than general families of discrete functions), our results apply to general seed distributions
for most part. Other results relevant to our work include learnability of linear influence games [19],
where the techniques used bear some similarity to our analysis for the LT model.

2 Preliminaries

Influence models. We represent a social network as a finite graph G = (V,E), where the nodes
V = {1, . . . , n} represent a set of n individuals and edges E ⊆ V 2 represent their social links. Let
|E| = r. The graph is assumed to be directed unless otherwise specified. Each edge (u, v) ∈ E
is associated with a weight wuv ∈ R+ that indicates the strength of influence of node v on node
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u. We consider a setting where each node in the network holds an opinion in {0, 1} and opinions
disseminate in the network. This dissemination process begins with a small subset of nodes called
the seed which have opinion 1 while the rest have opinion 0, and continues in discrete time steps.
In every time step, a node may change its opinion from 0 to 1 based on the opinion of its neighbors,
and according to some local model of influence; if this happens, we say that the node is influenced.
We will use N(u) to denote the set of neighbors of node u, and At to denote the set of nodes that
are influenced at time step t. We consider three well-studied models:

• Linear threshold (LT) model: Each node u holds a threshold ru ∈ R+, and is influenced
at time t if the total incoming weight from its neighbors that were influenced at the previous
time step t − 1 exceeds the threshold:

∑
v∈N(u)∩At−1

wuv ≥ ru. Once influenced, node u
can then influence its neighbors for one time step, and never changes its opinion to 0.1

• Independent cascade (IC) model: Restricting edge weights wuv to be in [0, 1], a node u is
influenced at time t independently by each neighbor v who was influenced at time t− 1. The
node can then influence its neighbors for one time step, and never changes its opinion to 0.
• Voter model: The graph is assumed to be undirected (with self-loops); at time step t, a node
u adopts the opinion of its neighbor v with probability wuv/

∑
v∈N(u)∪{u} wuv . Unlike the

LT and IC models, here a node may change its opinion from 1 to 0 or 0 to 1 at every step.

We stress that a node is influenced at time t if it changes its opinion from 0 to 1 exactly at t. Also, in
both the LT and IC models, no node gets influenced more than once and hence an influence cascade
can last for at most n time steps. For simplicity, we shall consider in all our definitions only cascades
of length n. While revisiting the Voter model in Section 5, we will look at more general cascades.
Definition 1 (Influence function). Given an influence model, a (global) influence function F :
2V → [0, 1]n maps an initial set of nodes X ⊆ V seeded with opinion 1 to a vector of probabilities
[F1(X), . . . , Fn(X)] ∈ [0, 1]n, where the uth coordinate indicates the probability of node u ∈ V
being influenced during any time step of the corresponding influence cascades.

Note that for the LT model, the influence process is deterministic, and the influence function simply
outputs a binary vector in {0, 1}n. Let FG denote the class of all influence functions under an
influence model over G, obtained for different choices of parameters (edge weights/thresholds) in
the model. We will be interested in learning the influence function for a given parametrization of
this influence model. We shall assume that the initial set of nodes that are seeded with opinion 1 at
the start of the influence process, or the seed set, is chosen i.i.d. according to a distribution µ over
all subsets of nodes. We are given a training sample consisting of draws of initial seed sets from µ,
along with observations of nodes influenced in the corresponding influence process. Our goal is to
then learn from FG an influence function that best captures the observed influence process.

Measuring Loss. To measure quality of the learned influence function, we define a loss function
` : 2V × [0, 1]n→R+ that for any subset of influenced nodes Y ⊆ V and predicted influence
probabilities p ∈ [0, 1]n assigns a value `(Y,p) measuring discrepancy between Y and p. We define
the error of a learned function F ∈ FG for a given seed distribution µ and model parametrization as
the expected loss incurred by F :

err`[F ] = EX,Y
[
`
(
Y, F (X)

)]
,

where the above expectation is over a random draw of the seed set X from distribution µ and over
the corresponding subsets of nodes Y influenced during the cascade.

We will be particularly interested in the difference between the error of an influence function FS ∈
FG learned from a training sample S and the minimum possible error achievable over all influence
functions in FG: err`

[
FS
]
− infF∈FG

err`
[
F
]
, and would like to learn influence functions for which

this difference is guaranteed to be small (using only polynomially many training examples).

Full and partial observation. We primarily work in a setting in which we observe the nodes
influenced in a cascade, but not the time step at which they were influenced. In other words, we
assume availability of a partial observed training sample S = {(X1, Y 1) . . . , (Xm, Y m)}, where
Xi denotes the seed set of a cascade i and Y i is the set of nodes influenced in that cascade. We
will also consider a refined notion of full observation in which we are provided a training sample

1In settings where the node thresholds are unknown, it is common to assume that they are chosen randomly
by each node [2]. In our setup, the thresholds are parameters that need to be learned from cascades.
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S = {(X1, Y 1
1:n) . . . , (X

m, Y m1:n)}, where Y i1:n = {Y i1 , . . . , Y in} and Y it is the set of nodes in
cascade i who were influenced precisely at time step t. Notice that here the complete set of nodes
influenced in cascade i is given by

⋃n
t=1 Y

i
t . This setting is particularly of interest when discussing

learnability in polynomial time. The structure of the social graph is always assumed to be known.

PAC learnability of influence functions. Let FG be the class of all influence functions under an
influence model over a n-node social network G = (V,E). We say FG is probably approximately
correct (PAC) learnable w.r.t. loss ` if there exists an algorithm s.t. the following holds for ∀ε, δ ∈
(0, 1), for all parametrizations of the model, and for all (or a subset of) distributions µ over seed sets:
when the algorithm is given a partially observed training sample S = {(X1, Y 1), . . . , (Xm, Y m)}
with m ≥ poly(1/ε, 1/δ) examples, it outputs an influence function FS ∈ FG for which

PS

(
err`
[
FS
]
− inf
F∈FG

err`
[
F
]
≥ ε

)
≤ δ,

where the above probability is over the randomness in S. Moreover, FG is efficiently PAC learnable
under this setting if the running time of the algorithm in the above definition is polynomial in m
and in the size of G. We say FG is (efficiently) PAC learnable under full observation if the above
definition holds with a fully observed training sample S = {(X1, Y 1

1:n), . . . , (X
m, Y m1:n)}.

Sensitivity of influence functions to parameter errors. A common approach to predicting influ-
ence under full observation is to estimate the model parameters using local influence information at
each node. However, an influence function can be highly sensitive to errors in estimated parameters.
E.g. consider an IC model on a chain of n nodes where all edge parameters are 1; if the parameters
have all been underestimated with a constant error of ε, the estimated probability of the last node
being influenced is (1 − ε)n, which is exponentially smaller than the true value 1 for large n. Our
results for full observation provide concrete sample complexity guarantees for learning influence
functions using local estimation, to any desired accuracy; in particular, for the above example, our
results prescribe that ε be driven below 1/n for accurate predictions (see Section 4 on IC model).
Of course, under partial observation, we do not see enough information to locally estimate the indi-
vidual model parameters, and the influence function needs to be learned directly from cascades.

3 The Linear Threshold model

We start with learnability in the Linear Threshold (LT) model. Given that the influence process is
deterministic and the influence function outputs binary values, we use the 0-1 loss for evaluation; for
any subset of nodes Y ⊆ V and predicted boolean vector q ∈ {0, 1}n, this is the fraction of nodes on
which the prediction is wrong: `0-1(Y,q) = 1

n

∑n
u=1 1(χu(Y ) 6= qu), where χu(Y ) = 1(u ∈ Y ).

Theorem 1 (PAC learnability under LT model). The class of influence functions under the LT
model is PAC learnable w.r.t. `0-1 and the corresponding sample complexity is Õ

(
ε−1(r + n)

)
. Fur-

thermore, in the full observation setting the influence functions can be learned in polynomial time.

The proof is in Appendix B and we give an outline here. Let Fw denote a LT influence function
with parameters w ∈ Rr+n (edge weights and thresholds) and let us focus on the partial observation
setting (only a node and not its time of influence is observed). Consider a simple algorithm that
outputs an influence function with zero error on training sample S = {(X1, Y 1), . . . , (Xm, Y m)}:

1

m

m∑
i=1

`0-1
(
Y i, Fw(Xi)

)
=

1

mn

m∑
i=1

n∑
u=1

1
(
χu(Y

i) 6= Fw
u (Xi)

)
. (1)

Such a function always exists as the training cascades are generated using the LT model. We will
shortly look at computational issues in implementing this algorithm. We now explain our PAC
learnability result for this algorithm. The main idea is in interpreting LT influence functions as
neural networks with linear threshold activations. The proof follows by bounding the VC-dimension
of the class of all functions Fw

u for node u, and using standard arguments in showing learnability
under finite VC-dimension [20]. We sketch the neural network (NN) construction in two steps (local
influence as a two-layer NN, and the global influence as a multilayer network; see Figure 1), where a
crucial part is in ensuring that no node gets influenced more than once during the influence process:

1. Local influence as a two-layer NN. Recall that the (local) influence at a node u for previously
influenced nodesZ is given by 1

(∑
v∈N(u)∩Z wuv ≥ ku

)
. This can be modeled as a linear (binary)

classifier, or equivalently as a two-layer NN with linear threshold activations. Here the input layer
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Figure 1: Modeling a single time step t of the influence
process Ft,u : 2V →{0, 1} as a neural network (t ≥ 2):
the portion in black computes whether or not node u is in-
fluenced in the current time step t, while that in red/blue
enforces the constraint that u does not get influenced more
than once during the influence process. Here ξt,u is 1 when
a node has been influenced previously and 0 otherwise.
The dotted red edges represent strong negative signals (has
a large negative weight) and the dotted blue edges represent
strong positive signals. The initial input to each node u in
the input layer is 1(u ∈ X), while that for the auxiliary
nodes (in red) is 0.

contains a unit for each node in the network and takes a binary value indicating whether the node
is present in Z; the output layer contains a binary unit indicating whether u is influenced after one
time step; the connections between the two layers correspond to the edges between u and other
nodes; and the threshold term on the output unit is the threshold parameter ku. Thus the first step
of the influence process can be modeled using a NN with two n-node layers (the input layer takes
information about the seed set, and the binary output indicates which nodes got influenced).

2. From local to global: the multilayer network. The two-layer NN can be extended to multiple
time steps by replicating the output layer once for each step. However, the resulting NN will allow a
node to get influenced more than once during the influence process. To avoid this, we introduce an
additional binary unit u′ for each node u in a layer, which will record whether node uwas influenced
in previous time steps. In particular, whenever node u is influenced in a layer, a strong positive signal
is sent to activate u′ in the next layer, which in turn will send out strong negative signals to ensure
u is never activated in subsequent layers2; we use additional connections to ensure that u′ remains
active there after. Note that a node u in layer t + 1 is 1 whenever u is influenced at time step t;
let Fw

t,u : 2V →{0, 1} denote this function computed at u for a given seed set. The LT influence
function Fw

u (which for seed set X is 1 whenever u is influenced in any one of the n time steps) is
then given by Fw

u (X) =
∑n
t=1 F

w
t,u(X). Clearly, Fw

u can be modeled as a NN with n+ 1 layers.

A naive application of classic VC-dimension results for NN [21] will give us that the VC-dimension
of the class of functions Fu is Õ(n(r + n)) (counting r + n parameters for each layer). Since the
same parameters are repeated across layers, we show a tighter result of Õ(r + n). The remaining
proof involves standard uniform convergence arguments [20] and a union bound over all nodes.

3.1 Efficient computation

Having established PAC learnability, we turn to efficient implementation of the prescribed algorithm.

Partial observation. In the case where the training set does not specify the time at which each
node was infected, finding an influence function with zero training error is computationally hard
in general (as this is similar to learning a recurrent neural network). In practice, however, we can
leverage the neural network construction, and solve the problem approximately by replacing linear
threshold activation functions with sigmoidal activations and the 0-1 loss with a suitable continuous
surrogate loss, and apply back-propagation based methods used for neural network learning.

Full observation. Here it turns out that the algorithm can be implemented in polynomial time using
local computations. Given a fully observed sample S = {(X1, Y 1

1:n), . . . , (X
m, Y m1:n)}, the loss of

an influence function F for any (X,Y1:n) is given by `0-1(∪nt=1Yt, F (X)) and as before measures the
fraction of mispredicted nodes. The prescribed algorithm then seeks to find parameters w for which
the corresponding training error is 0. Given that the time of influence is observed, this problem
can be decoupled into a set of linear programs (LPs) at each node; this is akin to locally estimating
the parameters at each node. In particular, let wu denote the parameters local to node u (incoming
weights and threshold), and let fu(Z;wu) = 1

(∑
v∈N(u)∩Z wuv ≥ ku

)
denote the local influence

at u for set Z of previously influence nodes. Let α̂1,u(wu) =
1
m

∑m
i=1 1

(
χu(Y

i
1 ) 6= fu(X

i;wu)
)

and α̂t,u(wu) = 1
m

∑m
i=1 1

(
χu(Y

i
t ) 6= fu(Y

i
t−1;wu)

)
, t ≥ 2, that given the set of nodes Y it−1

2By a strong signal, we mean a large positive/negative connection weight which will outweigh signals from
other connections. Indeed such connections can be created when the weights are all bounded.
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influenced at time t− 1, measures the local prediction error at time t. Since the training sample was
generated by a LT model, there always exists parameters such that α̂t,u(wu) = 0 for each t and u,
which also implies that the overall training error is 0. Such a set of parameters can be obtained by
formulating a suitable LP that can be solved in polynomial time. The details are in Appendix B.2.

4 The Independent Cascade model

We now address the question of learnability in the Independent Cascade (IC) model. Since the
influence functions here have probabilistic outputs, the proof techniques we shall use will be dif-
ferent from the previous section, and will rely on arguments based on covering numbers. In this
case, we use the squared loss which for any Y ⊆ V and q ∈ [0, 1]n, is given by: `sq(Y,q) =
1
n

∑n
u=1[χu(Y )(1− qu)2 + (1− χu(Y ))q2u]. We shall make a mild assumption that the edge prob-

abilities are bounded away from 0 and 1, i.e. w ∈ [λ, 1− λ]r for some λ ∈ (0, 0.5).
Theorem 2 (PAC learnability under IC model). The class of influence functions under the IC
model is PAC learnable w.r.t. `sq and the sample complexity is m = Õ

(
ε−2n3r

)
. Furthermore,

in the full observation setting, under additional assumptions (see Assumption 1), the influence
functions can be learned in polynomial time with sample complexity Õ(ε−2nr3).

The proof is given in Appendix C. As noted earlier, an IC influence function can be sensitive to errors
in estimated parameters. Hence before discussing our algorithms and analysis, we seek to understand
the extent to which changes in the IC parameters can produce changes in the influence function, and
in particular, check if the function is Lipschitz. For this, we use the closed-form interpretation of
the IC function as an expectation of an indicator term over a randomly drawn subset of edges from
the network (see [2]). More specifically, the IC cascade process can be seen as activating a subset
of edges in the network; since each edge can be activated at most once, the active edges can be seen
as having been chosen apriori using independent Bernoulli draws. Consider a random subgraph of
active edges obtained by choosing each edge (u, v) ∈ E independently with probability wuv . For
a given subset of such edges A ⊆ E and seed set X ⊆ V , let σu(A,X) be an indicator function
that evaluates to 1 if u is reachable from a node in X via edges in A and 0 otherwise. Then the IC
influence function can be written as an expectation of σ over random draw of the subgraph:

Fw
u (X) =

∑
A⊆E

∏
(a,b)∈A

wab
∏

(a,b)/∈A

(1− wab) σu(A,X). (2)

While the above definition involves an exponential number of terms, it can be verified that the
corresponding gradient is bounded, thus implying that the IC function is Lipschitz.3

Lemma 3. Fix X ⊆ V . For any w,w′ ∈ Rr with ‖w −w′‖1 ≤ ε,
∣∣Fw
u (X) − Fw′

u (X)
∣∣ ≤ ε.

This result tells us how small the parameter errors need to be to obtain accurate influence predictions
and will be crucially used in our learnability results. Note that for the chain example in Section 2,
this tells us that the errors need to be less than 1/n for meaningful influence predictions.

We are now ready to provide the PAC learning algorithm for the partial observation setting with
sample S = {(X1, Y 1), . . . , (Xm, Y m)}; we shall sketch the proof here. The full observation
case is outlined in Section 4.1, where we shall make use of the a different approach based on local
estimation. Let Fw denote the IC influence function with parameters w. The algorithm that we
consider for partial observation resorts to a maximum likelihood (ML) estimation of the (global) IC
function. Let χu(Y ) = 1(u ∈ Y ). Define the (global) log-likelihood for a cascade (X,Y ) as:

L(X,Y ;w) =

n∑
u=1

χu(Y ) ln
(
Fw
u (X)

)
+ (1− χu(Y )) ln

(
1− Fw

u (X)
)
,

The prescribed algorithm then solves the following optimization problem, and outputs an IC influ-
ence function Fw from the solution w obtained.

max
w∈ [λ,1−λ]r

m∑
i=1

L(Xi, Y i;w). (3)

3In practice, IC influence functions can be computed through suitable sampling approaches. Also, note that
a function class can be PAC learnable even if the individual functions cannot be computed efficiently.
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To provide learnability guarantees for the above ML based procedure, we construct a finite ε-cover
over the space of IC influence functions, i.e. show that the class can be approximated to a factor of ε
(in the infinity norm sense) by a finite set of IC influence functions. We first construct an ε-cover of
size O((r/ε)r) over the space of parameters [λ, 1− λ]r, and use Lipschitzness to translate this to an
ε-cover of same size over the IC class. Following this, standard uniform convergence arguments [20]
can be used to derive a sample complexity guarantee on the expected likelihood with a logarithmic
dependence on the cover size; this then implies the desired learnability result w.r.t. `sq:
Lemma 4 (Sample complexity guarantee on the log-likelihood objective). Fix ε, δ ∈ (0, 1) and
m = Õ

(
ε−2n3r

)
. Let w be the parameters obtained from ML estimation. Then w.p. ≥ 1− δ,

sup
w∈[λ,1−λ]r

E

[
1

n
L(X,Y ;w)

]
− E

[
1

n
L(X,Y ;w)

]
≤ ε.

Compared to results for the LT model, the sample complexity in Theorem 2 has a square dependence
on 1/ε. This is not surprising, as unlike the LT model, where the optimal 0-1 error is zero, the optimal
squared error here is non-zero in general; in fact, there are standard sample complexity lower bound
results that show that for similar settings, one cannot obtain a tighter bound in terms of 1/ε [20].

We wish to also note that the approach of Du et al. (2014) for learning influence under partial
observation [13] uses the same interpretation of the IC influence function as in Eq. (2), but rather
than learning the parameters of the model, they seek to learn the weights on the individual indicator
functions. Since there are exponentially many indicator terms, they resort to constructing approxi-
mations to the influence function, for which a strong technical condition needs to be satisfied; this
condition need not however hold in most settings. In contrast, our result applies to general settings.

4.1 Efficient computation

Partial observation. The optimization problem in Eq. (3) that we need to solve for the partial obser-
vation case is non-convex in general. Of course, in practice, this can be solved approximately using
gradient-based techniques, using sample-based gradient computations to deal with the exponential
number of terms in the definition of Fw in the objective (see Appendix C.5).

Full observation. On the other hand, when training sample S = {(X1, Y 1
1:n), . . . , (X

m, Y m1:n)}
contains fully observed cascades, we are able to show polynomial time learnability. For the LT
model, we were assured of a set of parameters that would yield zero 0-1 error on the training sample,
and hence the same procedure prescribed for partial information could be implemented under the
full observation in polynomial time by reduction to local computations. This is not the case with the
IC model, where we resort to the common approach of learning influence by estimating the model
parameters through a local maximum likelihood (ML) estimation technique. This method is similar
to the maximum likelihood procedure used in [9] for solving a different problem of recovering the
structure of an unknown network from cascades. For the purpose of showing learnability, we find it
sufficient to apply this procedure to only the first time step of the cascade.

Our analysis first provides guarantees on the estimated parameters, and uses the Lipschitz property
in Lemma 3 to translate them to guarantees on the influence function. Since we now wish to give
guarantees in the parameter space, we will require that there exists unique set of parameters that
explains the IC cascade process; for this, we will need stricter assumptions. We assume that all edges
have a minimum influence strength, and that even when all neighbors of a node u are influenced in
a time step, there is a small probability of u not being influenced in the next step; we consider a
specific seed distribution, where each node has a non-zero probability of (not) being a seed node.
Assumption 1. Let w∗ denote the parameters of the underlying IC model. Then there exists λ ≥
γ ∈ (0, 0.5) such that w∗uv ≥ λ for all (u, v) ∈ E and

∏
v∈N(u)(1−wuv) ≥ γ for all u ∈ V . Also,

each node in V is chosen independently in the initial seed set with probability κ ∈ (0, 1).

We first define the local log-likelihood for given seed set X and nodes Y1 influenced at t = 1:

L(X,Y1;β) =
∑
u/∈X

[
χu(Y1) ln

(
1− exp

(
−

∑
v∈N(u)∩X

βuv

))
− (1−χu(Y1))

∑
v∈N(u)∩X

βuv

]
,

where we have used log-transformed parameters βuv = − ln(1 − wuv), so that the objective is
concave in β. The prescribed algorithm then solves the following maximization problem over all
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parameters that satisfy Assumption 1 and constructs an IC influence function from the parameters.

max
β∈Rr

+

m∑
i=1

L(Xi, Y i1 ;β) s.t. ∀(u, v) ∈ E, βuv ≥ ln

(
1

1− λ

)
, ∀u ∈ V,

∑
v∈N(u)

βuv ≥ ln

(
1

γ

)
.

This problem breaks down into smaller convex problems and can be solved efficiently (see [9]).
Proposition 5 (PAC learnability under IC model with full observation). Under full observation
and Assumption 1, the class of IC influence functions is PAC learnable in polynomial time through
local ML estimation. The corresponding sample complexity is Õ

(
nr3(κ2(1− κ)4λ2γ2ε2)−1

)
.

The proof is provided in Appendix C.6 and proceeds through the following steps: (1) we use cover-
ing number arguments to show that the local log-likelihood for the estimated parameters is close to
the optimal value; (2) we then show that under Assumption 1, the expected log-likelihood is strongly
concave, which gives us that closeness to the true model parameters in terms of the likelihood also
implies closeness to the true parameters in the parameter space; (3) we finally use the Lipschitz
property in Lemma 3 to translate this to guarantees on the global influence function.

Note that the sample complexity here has a worse dependence on the number of edges r compared
to the partial observation case; this is due to the two-step approach of requiring guarantees on the
individual parameters, and then transferring them to the influence function. The better dependence
on the number of nodes n is a consequence of estimating parameters locally. It would be interesting
to see if tighter results can be obtained by using influence information in all time steps, and making
different assumptions on the model parameters (e.g. correlation decay assumption in [9]).

5 The Voter model

Before closing, we sketch of our learnability results for the Voter model, where unlike previous
models the graph is undirected (with self-loops). Here we shall be interested in learning influence
for a fixed number ofK time steps as the cascades can be longer than n. With the squared loss again
as the loss function, this problem almost immediately reduces to linear least squares regression.

Let W ∈ [0, 1]n×n be a matrix of normalized edge weights with Wuv = wuv/
∑
v∈N(u)∪{u} wuv

if (u, v) ∈ E and 0 otherwise. Note that W can be seen as a one-step probability transition matrix.
Then for an initial seed set Z ⊆ V , the probability of a node u being influenced under this model
after one time step can be verified to be 1>uW1X , where 1X ∈ {0, 1}n is a column vector containing
1 in entries corresponding to nodes in X , and 0 everywhere else. Similarly, for calculating the
probability of a node u being influenced after K time steps, one can use the K-step transition
matrix: Fu(X) = 1>u (W

K)1X . Now setting b = (WK)>1u, we have Fu(X) = b>1X which is
essentially a linear function parametrized by n weights.

Thus learning influence in the Voter model (for fixed cascade length) can be posed as linear regres-
sion with n2 coefficients (n coefficients for each node). This can be solved in polynomial time even
with partially observed data. We then have the following from standard results [20].
Theorem 6 (PAC learnability under Voter model). The class of influence functions under the
Voter model is PAC learnable w.r.t. `sq in polynomial time and the sample complexity is Õ

(
ε−2n2

)
.

6 Conclusion

We have established PAC learnability of some of the most celebrated models of influence in social
networks. Our results point towards interesting connections between learning theory and the liter-
ature on influence in networks. Beyond the practical implications of the ability to learn influence
functions from cascades, the fact that the main models of influence are PAC learnable, serves as fur-
ther evidence of their potent modeling capabilities. It would be interesting to see if our results extend
to generalizations of the LT and IC models, and to investigate sample complexity lower bounds.
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Learnability of Influence in Networks

Appendix

A Proper PAC Learning of Influence Functions

Our goal in this work is to develop algorithms that can provably learn the influence function for a
given influence model, using cascades generated from the model. In other words, we are interested in
proper PAC learnability of influence functions, and only consider algorithms that output a function
from the specified influence class. This is in contrast with previous work on learnability of coverage
functions [18]. While the influence functions in the Independent Cascade (IC) model can be seen
as coverage functions (with an exponential large universe), the PAC algorithms [18] that have a
polynomial sample complexity for this class turn out to be improper learning algorithms. In other
words, these algorithms are allowed to learn functions that do not necessarily have the functional
form of an IC influence function (the proper learning algorithms developed in [18] do not have
polynomial sample complexity guarantees for coverage functions with exponential size).4

Indeed by construction, our PAC learning algorithms for the Linear Threshold and Independent
Cascade models are proper learning algorithms, as they directly search over the parameter space
of the influence model. Our algorithm for the Voter model works slightly differently, and searches
over a transformed/aggregated parameter space based on the length of the given cascades. However,
the function learned here still has the form of a Voter influence function, except that it is defined in
terms transformed parameters. Hence, we also consider the prescribed PAC learning algorithm for
the Voter model as a proper learning algorithm.

B Proofs/Additional Material for Section 3

Recall that in the LT model, given a set of nodes Z influenced at a previous time step, the local
influence for a node u (that has not been influenced so far) is given by 1

(∑
v∈N(u)∩Z wuv ≥ ku

)
,

where w denotes a vector of edge weights and threshold parameters of the model. Let us use the
notation fwu to denote this local influence function at u (for ease of notation, we superscript f with
w though the function is defined on only a subset of indices of w relevant to u; note that the notation
here is slightly different from the one in the main text). In the following we shall sometimes overload
notation and allow influence functions to take boolean membership vector in {0, 1}n as inputs (rather
than sets) with each entry u in the vector indicating whether node u is present in the seed set. We
shall use VCdim(F) to denote the VC-dimension of a (binary) function class F . As before for any
Z ⊆ V , we use the membership indicator χu(Z) = 1(u ∈ Z).

B.1 Proof of Theorem 1

We provide here the proof for the partial observation setting. The proof for the full observation
setting is the same for most part, except that the training set contains more fine-grained information
about the set of nodes influenced in each time step of a cascade Y1, . . . , Yn, which for the purpose of
the proof can all be aggregated into one set:

⋃n
t=1 Yt. Recall that the learning algorithm here simply

picks an influence function with zero training error. To show that this procedure PAC learns from
the LT class, we start by bounding the VC-dimension of the class of LT influence functions Fw

u for
a given node u. The proof then follows from standard uniform convergence arguments for function
classes with finite VC-dimension.
Lemma 7 (VC-dimension of global LT influence functions). Fix node u. The class of all LT
influence functions Fu : 2V →{0, 1} has a VC-dimension of at most Õ(r + n).

Proof. We shall describe how the influence function Fw
u can be seen as a neural network and then

extend classic results on the VC-dimension of neural networks to derive the VC-dimension of the
class of all influence functions for node u. To build intuition, let us start with the neural network
construction for a simpler setting where a node, once influenced, can influence its neighbors in all

4In the variant of the Linear Threshold model where the threshold is chosen uniformly at random, the
influence function is a coverage function. This is not the case in our setup, where the threshold is deterministic.
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subsequent time steps. While the resulting influence process can now last for more than n steps,
we describe the construction for only n time steps. We shall then extend this network to the setting
considered in this paper where a node can influence its neighbors only once.

1. Local influence as a two-layer neural network. Recall that the (local) influence at a node
u is given by fwu (Z) = 1

(∑
v∈N(u)∩Z wuv ≥ ku

)
. This function can be modeled as a

linear (binary) classifier, or equivalently as a two-layer NN with linear threshold activations.
Here the input layer contains a unit for each node in the social network and takes a binary
value indicating whether the node is present in Z; the output layer contains a binary unit
indicating whether u is influenced after one time step; the connections between the two
layers correspond to the edges between u and other nodes; and the threshold term on the
output unit is the threshold parameter ku. Thus the first step of the influence process can be
modeled using a NN with two n-node layers (the input layer takes information about the
seed set, and output is a binary vector indicating which nodes got influenced).

2. From local to global: the multilayer network. The two-layer network can be extended
to multiple time steps by replicating the second layer described above once for each step,
along with the associated connections and thresholds. Additionally, let us add an edge
from each node u to itself with a weight that exceeds threshold ku. Thus once a node u
is activated in a layer, it remains active thereafter. The LT influence function Fw

u (which
outputs for any seed set, whether or not node u will be influenced in the corresponding
cascade) is given by the status of node u in the last layer.

Thus Fw
u can be represented as a neural network with n+1 layers, with each layer containing r+n

parameters. If we ignore for a moment that the same parameters repeat across layers, an application
of classic VC-dimension results for neural networks with n(r + n) parameters, will give us that the
VC-dimension of the class of all functions Fw

u for node u is at most O
(
(n(r + n)) log(n(r + n))

)
.

However, using a more careful analysis one can get a tighter bound of O((r + n) log(r + n)). This
is because with each new layer with the same connection weights, the ability of a neural network to
shatter a subset of points can only decrease.

To see this, let us denote by Fw
t,u : {0, 1}n→{0, 1} the function computed at node u in layer

t + 1 for a given seed set encoded as binary vector in {0, 1}n (recall that layer 1 is the input layer,
and hence we only consider layer two onwards). Clearly, the function computed in the second
layer Fw

1,u is equivalent to the local LT influence function fwu , and that computed in the (n + 1)th

layer Fw
n,u is the required global influence function Fw

u . Let Ft,u denote the class of all functions
Fw
t,u under the LT model for different parameters w ∈ Rr+n+ . It is easy to see F1,u is a class of

linear binary classifiers with r + 1 parameters, and hence we have from standard results that the
VCdim(F1,u) = r + 1. Similarly, F2,u can be seen as a class of neural networks (linear threshold
activations) with O(r + n) parameters, and we have VCdim(F2,u) = O((r + n) ln(r + n)). We
shall now prove that VCdim(Ft,u) ≤ O((r + n) ln(r + n)) for all t ≥ 3. Consider a set of points
{x1, . . . ,xN} ⊆ {0, 1}n shattered by Ft,k, t ≥ 3. In other words, consider points such that

2N = |{Fw
t,u(x1), . . . , F

w
t,u(xN ) | w ∈ Rr+n+ }|

= |{Fw
t−1,u(F

w
1,u(x1)), . . . , F

w
t−1,u(F

w
1,u(xN )) | w ∈ Rr+n+ }|

= |{Fw
t−1,u(z1), . . . , F

w
t−1,u(zN ) | w ∈ Rr+n+ }|,

where z1 = Fw
1,u(x1), . . . , zN = Fw

1,u(xN ). Since |{Fw
t−1,u(z1), . . . , F

w
t−1,u(zN ) | w ∈ Rr+n+ }| =

2N , it is necessarily the case that z1, . . . , zN are different (if not, not all binary assignments in
{0, 1}N can be realized). This implies that the set of points {z1, . . . , zN} is shattered by Ft−1,u.
Thus for any set of points of a given size shattered by Ft,u, there exists a set of points of the
same size shattered by Ft−1,u. This gives us that the VC-dimension of Ft,u is no greater than
the VC-dimension of Ft−1,u, i.e. VCdim(Ft,k) ≤ VCdim(Ft−1,u) for all t ≥ 3; applying this
argument recursively, we have VCdim(Ft,k) ≤ VCdim(F2,u) = O((r + n) ln(r + n)). Thus
VCdim(Fn,u) ≤ O((r + n) ln(r + n)).

The above result is for a simpler setting where a node, once influenced, can influence its neighbors
in all subsequent time steps. In the setting that we consider in this paper, a node gets influenced
only by neighbors who were influenced in the previous time step, and moreover, a node cannot get
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influenced more than once during a cascade. To incorporate this additional constraint in the neural
network structure, we introduce an additional binary unit u′ for each node u in a layer, which will
record whether node u was influenced in previous time steps. In particular, whenever node u is
influenced in a layer, a strong positive signal is sent to activate u′ in the next layer, which in turn will
send out strong negative signals to ensure u is never activated in subsequent layer; we use additional
connections to ensure that u′ remains active there after. In the resulting neural network, a node u
is activated in layer t + 1 whenever u is influenced exactly at time step t; a node is never activated
again in subsequent time steps (see Figure 1). Hence, if Fw

t,u : 2V →{0, 1} is the function computed
at node u in layer t+1, then the global LT influence function is given by Fw

u (X) =
∑n
t=1 F

w
t,u(X).

It can be verified that Fw
u can also be modeled as a neural network with n + 1 layers and r + n

parameters. The same analysis used above can be retraced to show that the VC-dimension of all
functions Fw

u for node u is O((r + n) ln(r + n)).5

We are now ready to prove our theorem.

Proof of Theorem 1. As before, µ denotes the distribution over the initial seed sets and w∗ de-
notes the parameters of the underlying model; note that in this setting, infw∈Rr+n

+
err0-1[Fw] =

err0-1[Fw∗ ] = 0; this also means that E
[
1(χu(Y )) 6= Fw∗

u (X)
]
= 0 ∀u ∈ V . Also, let w de-

note the parameters obtained from Eq. (1); since w minimizes the training error, we have for all u,
1
m

∑m
i=1 1

(
χu(Y

i) 6= Fw
u (Xi)

)
= 0. We also know from Lemma 7, that for each u, the class of all

influence functions Fw
u : 2V →{0, 1} has a VC-dimension ofO((r+n) ln(r+n)). We can then use

standard VC-dimension based learnability results for empirical risk minimization in settings where
there is a function in the given function class that correctly labels all examples [20]. In particular,

we have for any ε, δ ∈ (0, 1), and m = O

(
(r + n) ln(r + n) ln(1/ε) + ln(1/δ)

ε

)
, with probability

at least 1 − δ (over draw of the training sample), E
[
1(χu(Y )) 6= Fw

u (X)
]
≤ ε. Taking a union

bound over all of n nodes now gives us that when m = O

(
(r + n) ln(r + n) ln(1/ε) + ln(n/δ)

ε

)
,

with probability at least 1− δ,

err0-1[Fw] =
1

n

n∑
u=1

E
[
1
(
χu(Y ) 6= Fw

u (X)
)]
≤ ε.

This completes the proof.

B.2 Formulating the learning problem as a LP under full observation

Let nu = |N(u)|. Under full observation, the problem of obtaining parameters for which the local
prediction error is zero for a given node u ∈ V can be equivalently framed as the following linear
program. Here the optimization is over wu ∈ Rnu+1

+ and over slack variables ξi,t for each cascade
i and time step t, subject to ‘margin’ constraints enforcing that the predicted influence status agrees
with the true status of a node for each time step and training cascade.

min
wu∈Rnu+1

+ , ξi,t≥0

m∑
i=1

n∑
t=1

ξi,t

(
2χu(Y

i
t )− 1

)( ∑
v∈N(u)∩Y i

t−1

wuv − ku

)
≥ 1− ξi,t, ∀ i ∈ [m], t ∈ [T ].

Let w∗ ∈ Rr+n+ denote the parameters of the LT model from which the training sample was gener-
ated and w∗u ∈ Rnu+1

+ denote the parameters corresponding to node u ∈ V . Then w∗u yields zero
prediction error for node u; this also means that there exists a scaled version of w∗u which yields
optimal slack values ξ∗i,t = 0 in the above problem. Clearly, solving the above LP will recover a
scaled version of w∗u.

5Note that even with auxiliary connections with constant weights, the VC-dimension of the given class of
neural networks is at most O((r + n) ln(r + n)).
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C Proofs/Additional Details for Section 4

Here, given a set of nodes Z ⊆ V influenced at a time step, the probability of node u (that has not
been influenced so far) being influenced in the next time step is fwu (Z) = 1−

∏
v∈N(u)∩Z(1−wuv).

As before, for any Z ⊆ V , χu(Z) = 1(u ∈ Z).

C.1 Proof of Theorem 2

We deal with the partial observation setting here. The full observation case is handled in the proof of
Proposition 5 in Section C.6. The algorithm prescribed for the partial observation setting is a global
maximum likelihood estimation described in Section 4; the specific optimization problem that needs
to be solved is given in Eq. (3).

We start with an outline of the proof:

• We first show that the IC influence function Fw
u is 1-Lipschitz w.r.t. the L1 norm (i.e. bounded

changes in parameters only produce bounded changes in the function values). This was stated
in Lemma 3 in the main text (restated below).

Lemma 3. (Lipschitzness of IC influence function w.r.t. L1 norm). Fix X ⊆ V . For any
w,w′ ∈ Rr with ‖w −w′‖1 ≤ ε,

∣∣Fw
u (X) − Fw′

u (X)
∣∣ ≤ ε.

Proof. See Section C.2.

• We then establish an ε-cover over the space of parameters [0, 1]r and translate this using the
above Lipschitz property to a ε-cover over the space of IC influence functions, thus obtaining a
bound on the covering number of this space.
Lemma 8 (Covering number of IC influence functions). The L∞ covering number of the
class of all IC influence functions Fu for radius ε is O((r/ε)r).

Proof. See Section C.3.

• Next, we appeal to standard uniform convergence arguments based on covering numbers [20] to
bound the difference between the expected log-likelihood for the estimated parameters w and
that for the true parameters w∗. This was stated in Lemma 4 in the main text (restated below).
Lemma 4 (Sample complexity guarantee on the log-likelihood objective). Fix ε, δ ∈ (0, 1)

and m = Õ
(
ε−2n3r

)
. Let w be the parameters obtained from global ML estimation. With

probability at least 1− δ (over draw of the training sample), we have that

sup
w∈[λ,1−λ]r

E

[
1

n
L(X,Y ;w)

]
− E

[
1

n
L(X,Y ;w)

]
≤ ε.

Proof. See Section C.4.

• Finally, the above guarantee is translated into a bound on the difference between the expected
squared error for w and that for w∗, as we shall see below.

Proof of Theorem 2. For PAC learnability in this setting, we need to show that errsq
[
Fw
]
−

infw∈Rr
+

errsq
[
Fw
]
= errsq

[
Fw
]
− errsq

[
Fw∗

]
can be made arbitrarily small w.h.p. Expanding

this, we have

errsq[Fw
]
− errsq[Fw∗

]
= EX,Y

[
`sq
(
Y, Fw(X)

)]
− EX,Y

[
`sq
(
Y, Fw∗(X)

)]
= EX,Y

[
`sq
(
Y, Fw(X)

)
− `sq

(
Y, Fw∗(X)

)]
,

=
1

n

n∑
u=1

EX,Y

[
χu(Y )(1− Fw

u (X))2 + (1− χu(Y ))Fw
u (X)2

− χu(Y )(1− Fw∗

u (X))2 − (1− χu(Y ))Fw∗

u (X)2
]
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=
1

n

n∑
u=1

EX

[
EY |X

[
χu(Y )(1− Fw

u (X))2 + (1− χu(Y ))Fw
u (X)2

− χu(Y )(1− Fw∗

u (X))2 − (1− χu(Y ))Fw∗

u (X)2
]]

=
1

n

n∑
u=1

EX

[
Fw∗

u (X)(1− Fw
u (X))2 + (1− Fw∗

u (X))Fw
u (X)2

− Fw∗

u (X)(1− Fw∗

u (X))2 − (1− Fw∗

u (X))Fw∗

u (X)2
]

=
1

n

n∑
u=1

EX

[(
Fw
u (X) − Fw

u (X)
)2]

, (4)

where the fifth step follows from the fact that for any X , EY [χu(Y ) |X] = Fw∗

u (X).

We already have from Lemma 4 that when the number of training examples m = Õ
(
ε−2n3r

)
, we

have with probability at least 1− δ (over draw of training sample),

EX,Y

[
1

n
L(X,Y ;w∗)

]
− EX,Y

[
1

n
L(X,Y ;w)

]
≤ ε.

Expanding the left-hand side of the above inequality,

1

n
EX,Y

[
L(X,Y ;w∗) − L(X,Y ;w)

]
=

1

n

n∑
u=1

EX,Y
[
χu(Y ) ln(Fw∗

u (X)) + (1− χu(Y )) ln(1− Fw∗

u (X))

− χu(Y ) ln(Fw
u (X)) − (1− χu(Y )) ln(1− Fw

u (X))
]

=
1

n

n∑
u=1

EX
[
Fw∗

u (X) ln(Fw∗

u (X)) + (1− Fw∗

u (X)) ln(1− Fw∗

u (X))

− Fw∗

u (X) ln(Fw
u (X)) − (1− Fw∗

u (X)) ln(1− Fw
u (X))

]
=

1

n

n∑
u=1

EX
[
Llog

(
Fw∗

u (X), Fw∗

u (X)
)
− Llog

(
Fw∗

u (X), Fw
u (X)

)]
≥ 1

n

n∑
u=1

EX
[
2
(
Fw∗

u (X)− Fw
u (X)

)2]
,

where the second equality follows from E[χu(Y )|X] = Fw∗

u (X); in the second-last step last, we
denote for any η, η′ ∈ [0, 1], Llog(η

′, η) = η′ ln
(
η
)
+(1− η′) ln

(
1− η

)
; the last step follows from

the fact Llog(η
′, η′) − Llog(η

′, η) ≥ 2(η − η′)2 (this is easy to show; see e.g. Eq. (12) in [22]).
Plugging this back into Eq. (4), the above implies that with probability at least 1− δ,

errsq[Fw
]
− inf

w∈[λ,1−λ]
errsq[Fw

]
≤ 0.5ε, as desired.

C.2 Proof of Lemma 3

Proof. We bound the L∞ norm of the gradient of Fw
u by 1, which would imply that the function is

1-Lipschitz w.r.t. the L1 norm. We have from Eq. (2), for any (c, d) ∈ E∣∣∣∣∂Fw
u (Z)

∂wcd

∣∣∣∣
=

∣∣∣∣ ∂

∂wcd

[
wcd

∑
A⊆E\{(c,d)}

∏
(a,b)∈A

wab
∏

(a,b)/∈A,(a,b) 6=(c,d)

(1− wab)σu(A ∪ {(c, d)}, Z)

+ (1− wcd)
∑

A⊆E\{(c,d)}

∏
(a,b)∈A

wab
∏

(a,b)/∈A,(a,b)6=(c,d)

(1− wab)σu(A,Z)
]∣∣∣∣
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=

∣∣∣∣ ∑
A⊆E\{(c,d)}

∏
(a,b)∈A

wab
∏

(a,b)/∈A,(a,b) 6=(c,d)

(1− wab)σu(A ∪ {(c, d)}, Z)

−
∑

A⊆E\{(c,d)}

∏
(a,b)∈A

wab
∏

(a,b)/∈A,(a,b) 6=(c,d)

(1− wab)σu(A,Z)
∣∣∣∣

≤
∣∣∣∣ ∑
A⊆E\{(c,d)}

∏
(a,b)∈A

wab
∏

(a,b)/∈A,(a,b) 6=(c,d)

(1− wab)
∣∣∣∣

= 1,

where the second last step follows from 0 ≤ σu(A,Z) ≤ 1. Clearly ‖∇wF
w
u (X)‖∞ ≤ 1, which

completes the proof of Lipschitzness of Fw
u .

C.3 Proof of Lemma 8

Proof. Note that the space of all parameters w ∈ [0, 1]r is bounded and can be covered by (r/ε)r

L1-balls of radius ε. Further, from the above lemma we known that Fw
u is 1-Lipschitz w.r.t. the L1

norm; we then have for any w,w′ ∈ [0, 1]r:

max
Z⊆V

∣∣Fw
u (Z) − Fw′

u (Z)
∣∣ ≤ ‖w −w′‖1.

This says that if the parameters of two influence functions are separated by a distance of ε in the
L1 space, the influence functions are also within an L∞ distance of ε from each other. Clearly, an
L1 cover of radius ε over the parameter space can be translated to a L∞ cover of the over the space
of all influence functions for node u. In particular, if the parameter space is covered by R L1-balls
of radius ε and centers w1, . . . ,wR, then the influence functions Fw1 , . . . , FwR form a L∞ cover
of the space of influence functions, with the same radius. Thus the number of L∞-balls of radius ε
required to cover the space of influence functions is at most O

((
r/ε
)r)

.

C.4 Proof of Lemma 4

The proof makes use of standard covering number based uniform convergence result for empirical
risk minimization (or equivalently for log-likelihood maximization) over a real-valued function class
[20]. To apply these standard results, we must ensure the log-likelihood is bounded and Lipschitz.
We shall first establish this.

We once again use nu = |N(u)|. Define for any Z ⊆ V , y ∈ {0, 1}, w ∈ [λ, 1− λ]r and u ∈ V , a
function: gu(Z, y;w) = y ln

(
Fw
u (Z)

)
+ (1− y) ln

(
1− Fw

u (Z)
)
. Note that for a cascade (X,Y ),

L(X,Y ;w) = 1
n

∑n
u=1 gu(X,χu(Y );w). In the following lemma, whenever we refer to a subset

Z ⊆ V in the context of a node u, we shall assume that u /∈ Z and that there exists a path in the
graph from a node in Z to u; cases where this assumption fails can be easily handled, but have been
ignored here to make the proof easier to follow. Below, we show that gu is bounded and Lipschitz
for any u.

Lemma 9 (Boundedness and Lipschitz continuity of log-likelihood function). Fix parameters
w ∈ [λ, 1− λ]r. Then

1. λn ≤ Fw
u (Z) ≤ 1− λn.

2. |gu(Z, y;w)| ≤ n ln(1/λ).

3. gu(Z, y;w) is 1/λn-Lipschitz in w w.r.t. the L1 norm.

Proof.
1. Starting with the lower bound, recall the interpretation of the IC influence function in

Eq. (2) as an expectation of an indicator term over random draw of a subgraph. From
this interpretation, it is clear that the probability of node u being influenced is at least the
probability that all edges in a path from a node in Z to u get activated. Since the mini-
mum probability on any edge is λ and the length of any path can be at most n, we have
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Fw
u (Z) ≥ λn. For the upper bound, note that the probability of u not being influenced

in any of n time steps for a seed set Z is at least the probability that none of the neigh-
bors of u ever influenced it (i.e. none of the incoming edges incident on u got activated):∏
v∈N(u)(1− wuv) ≥ (1− (1− λ))nu ≥ λn. Hence Fw

u (Z) ≤ 1− λn.

2. |gu(Z, y;w)| = |y ln
(
Fw
u (Z)

)
+(1−y) ln

(
1−Fw

u (Z)
)
| ≤ |y ln(λn)+(1−y) ln(λn)| ≤

n ln(λ) (from lower and upper bounds on Fw
u derived above and from λ < 1).

3. To show Lipschitzness of gu w.r.t. L1 norm, we bound the L∞ norm of its gradient. In
particular, gu(Z, y;w) = y ln

(
1− Fw

u (Z)
)
− (1− y) ln

(
Fw
u (Z)

)
and

∇w gu(Z, y;w) =

[
y

Fw
u (Z)

− 1− y
1− Fw

u (Z)

]
∇wF

w
u (Z).

Since 1− λn ≥ Fw
u (Z) ≥ λn, we have∣∣∣∣ y

Fw
u (Z)

− 1− y
1− Fw

u (Z)

∣∣∣∣ ≤ 1

λn
.

In addition, from the Lipschitz property of the IC influence function in Lemma 3, we know
its gradient norm is bounded by 1,∥∥∇w gu(Z, y;w)

∥∥
∞ ≤

1

λn
‖∇wF

w
u (Z)‖∞ ≤

1

λn
(1).

Hence gu is 1/λn-Lipschitz in w w.r.t. the L1 norm.

Proof of Lemma 4. Let w be the parameters obtained by solving Eq. (3). Similarly, let w∗ ∈ [λ, 1−
λ]r be the the underlying model parameters. Since the cascades are generated from an IC model
defined by w∗, one can verify that maximizing the expected log-likelihood EX,Y

[
L(X,Y ;w)

]
over all w ∈ [λ, 1 − λ]r yields w∗. As mentioned above, the proof involves an application of
standard covering number based uniform convergence arguments[20]; we shall make use of the
covering number result in Lemma 8 and the Lipschitzness and boundedness of the likelihood shown
in Lemma 9.

First, let us write the likelihood objective in Eq. (3) in terms of gu.

1

mn

m∑
i=1

L(Xi, Y i;w) =
1

n

n∑
u=1

1

m

m∑
i=1

gu(X,χu(Y
i);w)︸ ︷︷ ︸

Ĝu(w)

. (5)

Similarly, the expected log-likelihood can be written as

1

n
EX,Y

[
L(X,Y ;w)

]
=

1

n

n∑
u=1

EX,Y
[
gu(X,χu(Y );w)

]︸ ︷︷ ︸
Gu(w)

. (6)

We proceed by bounding the difference between the expected and empirical log-likelihood objective
for any model vector, and use this to bound the difference between the optimal likelihood and the
likelihood value of w.

We know from Lemma 9 that gu is bounded by n ln(1/λ) and is 1/λn-Lipschitz in w. We can then
invoke standard uniform convergence arguments based on the covering number result in Lemma 8,
followed by a union bound over all nodes, to bound the difference betweenGu and Ĝu. In particular,

whenm = O

(
n2 ln(1/λ)2

r ln(r/ε) + nr ln(1/λ) + ln(n/δ)

ε2

)
,with probability at least 1−δ (over

draw of training sample), for each u ∈ V and all w ∈ [λ, 1− λ]r,

|Gu(w) − Ĝu(w)| ≤ ε/2.
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Substituting this back into Eq. (5) and (6), gives us with probability at least 1 − δ, for all w ∈
[λ, 1− λ]r,∣∣∣∣EX,Y [ 1nL(X,Y ;w)

]
− 1

mn

m∑
i=1

L(Xi, Y i;w)

∣∣∣∣ ≤ 1

n

n∑
u=1

ε/2 = ε/2. (7)

The above bound will then allow us to in turn bound the difference between the optimal log-
likelihood and the log-likelihood of w, as shown below:

sup
w∈[λ,1−λ]r

EX,Y

[
1

n
L(X,Y ;w)

]
− EX,Y

[
1

n
L(X,Y ;w)

]
= EX,Y

[
1

n
L(X,Y ;w∗)

]
− EX,Y

[
1

n
L(X,Y ;w)

]
= EX,Y

[
1

n
L(X,Y ;w∗)

]
− 1

mn

m∑
i=1

L(Xi, Y i;w)

+
1

mn

m∑
i=1

L(Xi, Y i;w) − EX,Y

[
1

n
L(X,Y ;w)

]

≤
[
EX,Y

[
1

n
L(X,Y ;w∗)

]
− 1

mn

m∑
i=1

L(Xi, Y i;w∗)

]

+

[
1

mn

m∑
i=1

L(Xi, Y i;w) − EX,Y

[
1

n
L(X,Y ;w)

]]
≤ ε/2 + ε/2 = ε,

where the second-last step uses the fact that w is the empirical maximizer of the log-likelihood, and
the last step follows from Eq. (7). This completes the proof.

C.5 Gradient Computation for Likelihood in Eq. (3)

We prescribe that the optimization problem in Eq. (3) be solved using a suitable gradient-based
solver. We describe here how the gradient for the objective can be computed approximately by
sampling subgraphs from G. In particular, for any Z, Y ⊆ V , and (c, d) ∈ E

∂L(Z, Y ;w)

∂wcd
=

∂

∂wcd

[ n∑
u=1

χu(Y ) ln
(
Fw
u (X)

)
+ (1− χu(Y )) ln

(
1− Fw

u

)]

=

n∑
u=1

[
χu(Y )

Fw
u (X)

− 1− χu(Y )

1− Fw
u (X)

]
∂Fw

u (Z)

∂wcd
.

Further,

∂Fw
u (Z)

∂wcd
=

∂

∂wcd

[
wcd

∑
A⊆E\{(c,d)}

∏
(a,b)∈A

wab
∏

(a,b)/∈A, (a,b) 6=(c,d)

(1− wab)σu(A ∪ {(c, d)}, Z)

+ (1− wcd)
∑

A⊆E\{(c,d)}

∏
(a,b)∈A

wab
∏

(a,b)/∈A, (a,b) 6=(c,d)

(1− wab)σu(A,Z)
]

=
∑

A⊆E\{(c,d)}

∏
(a,b)∈A

wab
∏

(a,b)/∈A, (a,b)6=(c,d)

(1− wab)σu(A ∪ {(c, d)}, Z)

−
∑

A⊆E\{(c,d)}

∏
(a,b)∈A

wab
∏

(a,b)/∈A, (a,b)6=(c,d)

(1− wab)σu(A,Z) (8)

=
∑

A⊆E\{(c,d)}

P(c,d)[A]σu(A ∪ {(c, d)}, Z)︸ ︷︷ ︸
term1

−
∑

A⊆E\{(c,d)}

P(c,d)[A]σu(A,Z)︸ ︷︷ ︸
term2

,
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where P(c,d)[A] denotes the probability of sampling the edge subset A when each edge (u, v) 6=
(c, d) is chosen independently with probability wuv . Thus to compute the gradient of optimization
objective in Eq. (3), we will need to evaluate the values of Fw

u , term1 and term2 for every node
u and training example. While each of these involve a summation over an exponential number of
subgraphs, they can essentially be seen as expectations and estimated through suitable sampling-
based approaches.

C.6 Proof of Proposition 5

We now move to the fully observation setting. Here the algorithm that we analyze performs local
maximum likelihood estimation to estimate the parameters of the IC model (see Section 4.1). The
specific objective optimized is restated below:
m∑
i=1

L(Xi, Y i1 ;w) =

m∑
i=1

∑
u/∈Xi

[
χu(Y

i
1 ) ln

(
fwu (Xi)

)
+ (1− χu(Y i1 )) ln

(
1− fwu (Xi)

)]
=

m∑
i=1

n∑
u=1

[
χu(Y

i
1 ) ln

(
fwu (Xi)

)
+ (1− χu(Y i1 )) ln

(
1− fwu (Xi)

)]
1(u /∈ Xi),

(9)
where notice that the likelihood is not evaluated on nodes that are already present in the seed set.
Note that we did not have this issue with the partial observation case, as there the global influence
function Fu(X), by definition, would evaluate to 1 whenever X contains u (as u is influenced even
before the cascade begin; see Eq. (2)). On the other hand, the local influence function fwu (X) need
not evaluate to 1 when u ∈ X and hence this case is ignored in the above objective.

Our analysis involves first showing guarantees on the estimated parameters, and transferring them
to guarantees on the global IC influence function. Unlike the partial observation case, here we seek
to derive optimality guarantees on the parameters themselves, and require stricter assumptions.

Discussion on Assumption 1 In particular, the following are the assumptions we make:

1. All edges have a minimum influence strength of λ. Note that the graph can still contain a
node that has no influence on its neighbor, by not having an edge between the two nodes.

2. Even when all neighbors of a node are influenced in a time step, there is a small probability
γ > 0 of the node not being influenced in the next step. Thus expect for the case where
none of a node’s neighbors are present in the seed set, there is always a small probability
of the node not being influenced in the first time step.

3. The seed distribution is such that each node is chosen independently with probability κ ∈
(0, 1).

The first and second assumptions ensure that the IC influence function and hence the log-likelihood
function is bounded, a property which is crucial to guarantee learnability. The third assumption
avoids pathological cases where the support of the seed distribution only covers a subset of nodes
(in which case, we will not be able to learn anything about the remaining nodes), or has its entire
probability mass concentrated on the full set V (in which case, we again learn nothing about the
individual edge probabilities). Indeed our analysis will go through if in place of the second assump-
tion, we just restricted the edge probabilities to be upper bounded by a value below 1, and the third
assumption allows for more general distributions with appropriate support. We have retained these
slightly stricter assumptions so that analysis is cleaner and easier to follow.

We begin rewriting the local influence functions fwu in terms of transformed parameters βuv =
− ln(1−wuv): fβu (Z) = 1− exp

(
−
∑
v∈N(u)∩Z βuv

)
, where σ(s) = 1− exp(−s). Let us use the

notation βu to denote the vector of parameters βuv , v ∈ N(u). Also, recall that the prescribed local
estimation procedure solves an optimization over all parameters that satisfy Assumption 1. Due to
this, in our analysis, we can safely assume that the parameters are bounded in a certain range. In
particular, it is clear that for all (u, v) ∈ E, wuv ≥ λ. One can also derive an upper bound from
Assumption 1 as follows: for any (u, v) ∈ E, wuv = 1− (1−wuv) ≤ 1−

∏
v′∈N(u)(1−wuv′) ≤

1− γ. Translating these bounds to the log-transformed space, we conclude that the log-transformed
parameters β ∈ Rr+ satisfy: − ln(1− λ) ≤ βuv ≤ − ln(γ).

18



We are now ready to sketch the proof of Proposition 5. Let w be the parameters obtained by local
ML estimation. We shall show guarantees on w and translate them to guarantees on Fw.

• We first establish an ε-cover of local IC influence functions fβu or fwu , and obtain a bound on the
covering number of this space.
Lemma 10 (Covering number of local IC influence functions). Under Assumption 1, the
L∞ covering number of the class of all local IC influence functions fβu for a node u with nu
parameters and radius ε is O((ln(1/γ)/ε)nu).

Proof. See Section C.7.

• The covering number result allows us to invoke standard uniform convergence arguments to
prove that the log-likelihood of the w can be taken arbitrarily close to the optimal value. But,
this does not imply that the estimated parameters are themselves close to the optimal parameters.
For this, we show that under Assumption 1, the expected log-likelihood objective is strongly
concave in the IC parameters, or equivalently that the negative likelihood is strongly convex,
which then implies the desired result.
Lemma 11 (Guarantees on parameters obtained by local ML estimation). Let w∗ ∈ [0, 1]r

be the true IC parameters and wuv = 1 − exp(−βuv) be obtained by local ML estimation. Fix
ε, δ ∈ (0, 1). Under Assumption 1, if m = Õ(nr(κ2(1− κ)4λ2γ2ε2)−1), with probability at
least 1− δ (over draw of the training sample), ∀(u, v) ∈ E, ‖w∗ − w‖22 ≤ ε.

Proof. See Section C.8.

• Given that that the global IC influence function is Lipschitz (see Lemma 3), the above guarantees
translate to the following sample complexity guarantee on the IC influence function.
Lemma 12 (Translation to global influence function). Under the statement of Lemma 11, we
have with probability at least 1− δ,

(
Fw∗

u (X) − Fw
u (X)

)2 ≤ rε, ∀u ∈ V, X ⊆ V .

Proof. See Section C.9

Proposition 5 then directly follows from the above sequence of results.

Proof of Proposition 5. Let w∗ ∈ Rr+ be the parameters of the underlying IC model satisfying
Assumption 1. Fix ε, δ ∈ (0, 1), and let w be the parameters obtained from the local max-
imum likelihood estimation. From Lemma 12, when the number of training examples m =

Õ(nr(κ2(1− κ)4λ2γ2ε2)−1),we have with probability at least 1−δ (over draw of training sample),
for each node u ∈ V , and seed set X ⊆ V :(

Fw∗

u (X) − Fw
u (X)

)2 ≤ rε,

As in the proof of Theorem 2 (see Eq. (4)), we can show from this that with probability at least 1−δ,

errsq[Fw
]
− inf

w∈Rr
+

errsq[Fw
]
≤ 1

n

n∑
u=1

EX [rε] ≤ rε.

Absorbing r on the right hand side into the sample complexity bound, gives us the desired result.

C.7 Proof of Lemma 10

Proof. The local IC influence function for any Z ⊆ V is fβu (Z) = 1−exp
(
−
∑
v∈N(u)∩Z βuv

)
=

σ(
∑
v∈N(u)∩Z βuv), which is a linear function composed with link function σ(s) = 1 − exp(−s).

It is well-known that the class of all linear functions with nu parameters in a bounded range [a, b],
can be covered with at most O(((b − a)/ε)nu) L1-balls of radius ε [20]. In our case, each βuv ∈
[− ln(1− λ),− ln(γ)], and the number of L1-balls to cover the space of all linear functions defined
by parameters in this range is at most O((ln(1/γ)/ε)n) as 1 − λ < 1. Let a1, . . . ,aR be the
corresponding centers. Now, since σ is 1-Lipschitz on the positive real-line (follows from σ′(s) =
exp(−s) ≤ 1 for all s ≥ 0), a set of L∞-balls of radius ε with centers fa1

u , . . . , faR
u would then

constitute an ε-cover over the class of all local IC influence functions. Thus the L∞ covering number
of this function class for radius ε is at most O

((
ln(1/γ)/ε

)nu
)
.

19



C.8 Proof of Lemma 11

As with the partial observation setting, the proof makes use of standard covering number based
uniform convergence result for empirical risk minimization (or equivalently for log-likelihood max-
imization) over a real-valued function class [20]. To apply these standard results, we must ensure
the local log-likelihood is bounded and Lipschitz. We do this below.

As before, let nu = |N(u)| and define for any Z ⊆ V , y ∈ {0, 1}, and u ∈ V , the local log-
likelihood gu for parameters β as gu(Z, y;β) =

[
y ln

(
fβu (Z)

)
+(1−y) ln

(
1−fβu (Z)

)]
1(u /∈ Z);

the indicator term automatically ignore cases where u is already present in seed set Z. Note that for
a cascade (X,Y ), the local log-likelihood L(X,Y1;β) = 1

n

∑n
u=1 gu(X,χu(Y1);β). Whenever

we refer to a subset Z ⊆ V in the context of a node u, we shall assume that Z contains a neighbor
of u; cases where this assumption fails can be easily handled, but have been ignored here to make
the proof more accessible. Below, we show that gu is bounded and Lipschitz for any u.
Lemma 13 (Boundedness and Lipschitz continuity of log-likelihood function). Let β be ob-
tained from edge weights that satisfy Assumption 1. Then

1. λ ≤ fβu (Z) ≤ 1− γ.

2. |gu(Z, y;β)| ≤ ln(1/γ).

3. gu(Z, y;β) is 1/λ-Lipschitz in βu w.r.t. the L1 norm.

Proof.

1. Starting with the upper bound, we have fβu (Z) = 1 − exp
(
−
∑
v∈N(u)∩Z βuv

)
≤ 1 −

exp
(
−
∑
v∈N(u) βuv

)
≤ 1 − γ (by Assumption 1). For the lower bound, fβu (Z) =

1− exp
(
−
∑
v∈N(u)∩Z βuv

)
≥ 1− exp

(
− βuv′

)
≥ λ, where u′ is some neighbor of u

in Z, which we have assumed exists.

2. Using the above result, |gu(Z, y;β)| ≤ |y ln
(
fβu (Z)

)
+ (1 − y) ln

(
1 − fβu (Z)

)
| ≤

|y ln(λ) + (1− y) ln(γ)| ≤ | ln(γ)| = ln(1/γ), where we have used 0 < γ ≤ λ < 0.5.

3. To show Lipschitzness of gu w.r.t. L1 norm, we bound the L∞ norm of its gradient w.r.t.
βu. Let Z̃ ∈ {0, 1}nu be a boolean vector whose entries are 1(v ∈ Z) for each neighbor
v ∈ N(u). Then gu(Z, y;β) =

[
y ln

(
1− exp(−Z̃>βu)

)
− (1− y)Z̃>βu

]
1(u /∈ Z) and

∇βu

[
gu(Z, y;β)

]
= 1(u /∈ Z)

[
y exp(−Z̃>βu)

1− exp(−Z̃>βu)
− (1− y)

]
Z̃

= 1(u /∈ Z)
[
y
(
1− fβu (Z))
fβu (Z)

− (1− y)
]
Z̃.

Then we have,∥∥∇βu

[
gu(Z, y;β)

]∥∥
∞ ≤

1− fβu (Z))
fβu (Z)

max
v∈N(u)

1(v ∈ Z) ≤ 1

λ
,

where the numerator is upper bounded by 1, and in the denominator we have used the lower
bound on fβu shown in the part 1. Hence gu is 1/λ-Lipschitz in βu w.r.t. the L1 norm.

The above boundedness and Lipschitzness properties of the log-likelihood function will enable us
to apply standard covering number arguments to show that the log-likelihood of the estimated pa-
rameters can be taken close to the optimal value. This does not however imply that the estimated
parameters themselves converge to the optimal parameters; in order to show this, we will need the
(negative) likelihood objective to additional be strongly convex. We next show that under Assump-
tion 1, the expected (negative) log-likelihood is strongly convex. In particular, define for any Z ⊆ V
and η ∈ [0, 1], g̃u(Z, η;β) =

[
η ln

(
fβu (Z)

)
+(1−η) ln

(
1−fβu (Z)

)]
1(u /∈ Z); again the indicator

term automatically ignore cases where u is present in seed set Z. Then we have:
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Lemma 14 (Strong convexity of negative expected log-likelihood). Let µ be a distribution over
subsets of nodes in V and β∗ be underlying IC parameters, both satisfying Assumption 1.Let η :
2V → [0, 1] with η(Z) ≥ λ. Then EZ∼µ

[
− g̃u

(
Z, η(Z);β

)]
is strongly convex in βu and the strong

convexity parameter is at least γλκ(1− κ)2.

Proof. As in the previous lemma, we use Z̃ ∈ {0, 1}nu to denote a boolean vector whose entries
are 1(v ∈ Z) for each neighbor v ∈ N(u). To show strong convexity of −EZ

[
g̃u
(
Z, η(Z);β

)]
,

we compute its Hessian w.r.t. βu and show that the Hessian is well-conditioned or that its smallest
Eigen value is bounded above zero. The Hessian is given by:

∇2
βu

[
−EZ

[
g̃u
(
Z, η(Z);β

)]]
= ∇2

βu

[
−EZ

[
1(u /∈ Z)

[
η(Z) ln

(
fβu (Z)

)
+(1− η(Z)) ln

(
1− fβu (Z)

)]]]
= EZ

[
1(u /∈ Z) η(Z) exp(−Z̃

>βu)(
1− exp(−Z̃>βu)

)2 Z̃Z̃>]

= EZ

[
1(u /∈ Z)

η(Z)
(
1− fβu (Z))
fβu (Z)2

Z̃Z̃>
]
.

The following can then be verified to be the smallest Eigen value of the Hessian. Here x ∈ Rnu and
we have used for any Z ⊆ V and u ∈ V , Zu = 1(u ∈ Z):

inf
x>x=1

EZ

[
η(Z)

(
1− fβu (Z))
fβu (Z)2

(
Z̃>x

)2
1(u /∈ Z)

]
≥ γ inf

x>x=1
EZ
[
η(Z)

(
Z̃>x

)2
1(u /∈ Z)

]
= γ(1− κ) inf

x>x=1
EZ
[
η(Z)

(
Z̃>x

)2 ∣∣u /∈ Z]
= γ(1− κ) inf

x>x=1
EZ

[
η(Z)

∑
v∈N(u)

Zvx
2
v + η(Z)

∑
v∈N(u)

∑
k∈N(u)

ZuZkxvxk

∣∣∣∣u /∈ Z]

= γ(1− κ) inf
x>x=1

[ ∑
v∈N(u)

EZ
[
η(Z)Zv

∣∣u /∈ Z]x2v +
∑

v∈N(u)

∑
k∈N(u)

EZ
[
η(Z)ZvZk

∣∣u /∈ Z]xvxk]

≥ γ(1− κ) inf
x>x=1

[ ∑
v∈N(u)

λP
(
v ∈ Z

∣∣u /∈ Z)x2v +
∑

v∈N(u)

∑
k∈N(u)

λP
(
v ∈ Z, k ∈ Z

∣∣u /∈ Z)xvxk]

= γλ(1− κ) inf
x>x=1

[
κ
∑

v∈N(u)

x2v + κ2
∑

v∈N(u)

∑
k∈N(u)

xvxk

]

= γλ(1− κ) inf
x>x=1

[
(κ− κ2)

∑
v∈N(u)

x2v + κ2
( ∑
v∈N(u)

xv

)2]
≥ γλ(1− κ)

[
(κ− κ2)(1) + 0

]
≥ γλκ(1− κ)2,

where the first step follows from fβu (Z) ≤ 1 − γ < 1, the second and sixth step follow from Z
being drawn from a distribution that satisfies Assumption 1 (i.e. a distribution where each element
in V is chosen independently w.p. κ ∈ (0, 1)), and the fifth step follows from η(Z) ≥ λ. Thus the
given expected log-likelihood is strongly convex in βu under the given assumptions, and the strong
convexity parameter is at least γλκ(1− κ)2.

We now make use of both the above results to prove Lemma 11.

Proof of Lemma 11. For the parameters w obtained by from local ML estimation, define log-
transformed parameters βuv = − ln(1 − wuv) (these parameters satisfy Assumption 1 due to the
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way we have framed the optimization problem). Similarly, let β∗ ∈ Rr+ be the transformed version
of the underlying model parameters w∗ (satisfying Assumption 1). We shall begin by making use
of standard uniform convergence result based on covering numbers [20] and show that the expected
log-likelihood of the obtained parameters β is close to that of the true parameters β∗; here we will
use the covering number result in Lemmas 10 and the boundedness/Lipschitz properties in Lemma
13. We will then exploit the strong convexity of the expected (negative) log-likelihood (shown in
Lemma 14) to translate these bounds to guarantees on the parameters themselves.

First, let us write the empirical (local) log-likelihood objective for the first step optimized by the
prescribed procedure (shown in Eq. (9)) in terms of gu.

1

mn

m∑
i=1

L(Xi, Y i1 ;β) =
1

n

n∑
u=1

1

m

m∑
i=1

gu(X
i, χu(Y

i
1 );β)︸ ︷︷ ︸

Ĝu(βu)

.

Since each Ĝu involves a different set of parameters, they can be essentially maximized indepen-
dently. The maximizer of the above empirical log-likelihood is then simply a concatenation of the
maximizers βu ∈ Rnu

+ of each Ĝu. Similarly, one can write down the expected log-likelihood in
terms of gu:

1

n
EX,Y1

[
L(X,Y1;β)

]
=

1

n

n∑
u=1

EX,Y1

[
gu(X,χu(Y1);β)︸ ︷︷ ︸

Gu(βu)

]
.

Again each Gu can be maximized independently; the optimal parameters β∗ for the above objective
is given by a concatenation of the optimal parameters β∗u for each Gu.

Now from the properties stated in Lemma 13, we have that gu is bounded by ln(1/γ) and is 1/λ-
Lipschitz in β. We then have based on the covering number result in Lemma 10 for the class of
local influence functions, followed by an application of a union bound over all nodes in V , that

when m = O

(
nu ln(1/γ)

2 ln(ln(1/γ)/λε) + ln(n/δ)

ε2

)
, with probability at least 1− δ (over draw

of training sample), for each u ∈ V

|Gu(βu) − Ĝu(βu)| ≤ ε,

where nu = |N(u)|. Equivalently, when m = O

(
ln(1/γ)2

ln(ln(1/γ)/λε
√
nu) + ln(n/δ)

ε2

)
, with

probability at least 1− δ (over draw of training sample), for each u ∈ V

|Gu(βu) − Ĝu(βu)| ≤ ε
√
nu,

which will further give us using straight-forward algebra (see proof of Theorem 2) that with proba-
bility at least 1− δ,

Gu(β
∗
u) − Gu(βu) ≤ ε

√
nu. (10)

Thus, β∗u and β are close in terms of their likelihood value. The rest of the proof involves using
strong convexity of the (negative) expected log-likelihood (in Lemma 14) to show that similar guar-
antees hold for the parameters themselves. In particular, we shall use the fact that if the negative of
a function h : Rd→R is q-strongly convex with z∗ = argmaxz∈Rdh(z) the following is true for any
z ∈ Rd: h(z∗)− h(z) ≥ q

2‖z− z∗‖22.

Expanding the left-hand side of the above inequality,

Gu(β
∗
u) − Ĝu(βu) = EX,Y1

[
gu(X,χu(Y1);β

∗) − gu(X,χu(Y1);β)
]

= EX,Y1

[
1(u /∈ X)

[
χu(Y1) ln(f

β∗

u (X)) + (1− χu(Y1)) ln(1− fβ
∗

u (X))

− χu(Y1) ln(f
β
u (X)) − (1− χu(Y1)) ln(1− fβu (X))

]]
= EX

[
1(u /∈ X)

[
fβ
∗

u (X) ln(fβ
∗

u (X)) + (1− fβ
∗

u (X)) ln(1− fβ
∗

u (X))

− fβ
∗

u (X) ln(fβu (X)) − (1− fβ
∗

u (X)) ln(1− fβu (X))
]]
f
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= EX
[
g̃u
(
X, fβ

∗

u ;β∗
)
− g̃u

(
X, fβ

∗

u ;β
)]

≥ λγκ(1− κ)2

2
‖β∗u − βu‖22,

where the second equality follows from E[χu(Y1)|X] = fβ
∗

u (X), and the fourth step follows from
the strong convexity result in Lemma 13 with η = fβ

∗

u . Substituting this back in Eq. (10), we have
with probability at least 1− δ (over draw of the training sample), for each u

‖β∗u − βu‖22 ≤
2ε
√
nu

λγκ(1− κ)2
.

In other words, if m = O

(
ln(1/γ)2

ln(ln(1/γ)/λε
√
n) + ln(n/δ)

κ2(1− κ)4λ2γ2ε2

)
, then w.p. at least 1− δ,

‖β∗u − βu‖22 ≤ ε
√
nu.

Summing this over all u ∈ V ,

‖β∗ − β‖22 ≤ ε

n∑
u=1

√
nu ≤ ε

√√√√n

n∑
u=1

nu = ε
√
nr,

where the second last step follows from Jensen’s inequality given that the square-root is a concave
function. We thus have guarantees on the log-transformed parameters. It is straight-forward to
show that the same guarantees also hold in the original parameter space, i.e. w.p. at least 1 − δ,
‖w∗ − w‖22 ≤ ε

√
nr. Absorbing the term

√
nr into the sample complexity bound completes the

proof.

C.9 Proof of Lemma 12

Proof. Recall from the Lemma 3 that Fw
u is 1-Lipschitz in w w.r.t. the `1 norm. So if ‖w∗−w‖22 ≤ ε

for all (u, v) ∈ E, then
∣∣Fw∗

u (X)− Fw
u (X)

∣∣2 ≤ ‖w∗−w‖21 ≤ r‖w∗−w‖22 ≤ rε. This, together
with the result in Lemma 11, leads to the desired guarantee on Fw

u .
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