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ABSTRACT
Many advertisers (bidders) use Internet systems to buy ad-
vertisements on publishers’ webpages or on traditional me-
dia such as radio, TV and newsprint. They seek a simple,
online mechanism to reserve ad slots in advance. On the
other hand, media publishers (sellers) represent a vast and
varying inventory, and they too seek automatic, online mech-
anisms for pricing and allocating such reservations.

In this paper, we present and study a simple model for
auctioning such ad slots in advance. A monopolist seller
owns a set of slots that it will display at some point T in the
future. Until T , bidders arrive sequentially and place a bid,
demanding a reservation for one slot out of a set of desired
slots. The seller must decide immediately whether or not to
grant a reservation. Our model allows the seller to cancel at
any time any reservation made earlier. If the seller cancels
bidder i’s reservation, i incurs a utility loss amounting to a
fraction of its value for the reservation.

Our main result is an online mechanism with many desir-
able properties. Winners have an incentive to be honest and
bidding one’s true value dominates any lower bid. Our mech-
anism’s efficiency (respectively revenue) is within a constant
fraction of the a posteriori optimally efficient solution (re-
spectively VCG revenue). Our results make no assumptions
about the arrival order or value distribution of bids. They
still hold if the items for sale are elements of a matroid, a
more general setting than slot allocation, or if bidders have
linear (additive) value for a set of slots.

1. INTRODUCTION
Many advertisers now use Internet advertising systems.

These take the form of advertisement (ad, henceforth) place-
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ments either in response to users’ web search queries, or
at predetermined slots on publishers’ web pages. In ad-
dition, increasingly, advertisers use Internet systems that
sell ad slots on behalf of offline publishers on TV, radio or
newsprint. In sponsored search, and in some other cases, ad
slots are typically sold via real time auctions, i.e., when a
user poses a query or visits a web page, an auction is used
to determine which ads will show and where they will be
placed. On the other hand, traditionally, advertisers seek ad
slots in advance, i.e. to reserve their slots. Product releases
(such as movies, electronic gadgets, etc) and ad campaigns
(e.g., creating and testing ads, budgets) are planned ahead
of time and need to coordinate with future events that target
suitable demographics. The advertisers then do not want to
risk the vagrancies of real-time auctions and lose ad slots at
critical events; they typically like a reasonable guarantee of
ad slots at a specific time in the future.

Our motivation arises from systems that enable such ad-
vanced ad slotting. In particular, our focus is on automatic
systems that have to manage ad slots in many different pub-
lishers’ properties whose total supply may be massive. These
properties differ wildly in their traffic, targeting, price and
effectiveness. Not all publishers can estimate their inventory
accurately: traffic to websites responds to time-dependent
events, and sometimes webpages are generated dynamically
so that even the availability of a slot in the future is not
known a priori. Most web publishers are not able to es-
timate accurately a price for an ad slot, or provide sales
agents to negotiate terms and would like automatic meth-
ods to price ad slots. Thus, what is desirable is a simple,
automatic, online1 market-based mechanism to enable ad-
vanced ad slotting over such varied, massive inventory.

Inspired by these considerations, we study the problem
of mechanism design for advanced ad slotting. Our contri-
bution is to propose a simple model, to design a suitable
mechanism and to analyze its properties. In more detail,
our contributions are as follows.

(i) We propose the following simple model for advanced ad
slotting auctions. An auction starts at time 0; the seller has
a set of heterogeneous slots for sale that will be published
at time T . Bidder i arrives at some time ai < T , having a
private value v(i) for exactly one slot out of a subset of slots
N(i). Upon his arrival, i places a bid w(i) (which results
in N(i) becoming known to the seller) and requests an im-
mediate response. Bidder i is either accepted or rejected; if

1We use the word online as in online algorithm—i.e., the
input arrives over time, and the algorithm makes sequential
decisions —we do not mean “on the Internet.”



accepted, he may be removed (bumped) later by the seller.
We assume that if bumped, i incurs a loss of αv(i). At
time T , each accepted bidder i that has not been bumped is
published in one slot he was interested in (i.e. from N(i)).

This model lets the publisher accept a reservation at time
t for a slot available at a later time T , and lets the advertiser
get a reasonable guarantee. However, crucially, it lets the
publisher cancel the reservation at a later time. Cancellation
is necessary for publishers to take advantage of a spike in de-
mand and rising prices for an item and not be forced to sell
the slot below the market because of an a priori contract.
In addition, in a pragmatic sense, cancellation is crucial: for
example, a website might overestimate its inventory for a
later date and accept ads, but as time progresses, its esti-
mates may become smaller, and the publisher will not be
able to honor all the accepted ads from the past. Finally,
cancellations are very much part of the business with ad-
vance bookings, both within advertising and beyond. At
the same time, it comes at a cost, which is the bumped bid-
ders’ utility loss. The publisher benefits from the reduction
in uncertainty and can compensate bumped advertisers in
various ways. We present our model formally in Section 3.

(ii) We present an efficiently implementable mechanism Mα(γ)
for determining who is accepted, who is bumped and also the
prices and bump payments. The parameter γ represents how
much higher a new bid has to be in order to bump an older
bid. A bumped bidder will be paid an α fraction of their
bid, making up for their utility loss due to being bumped.

(iii) We show a number of important strategic as well as
efficiency- and revenue-related properties of Mα(γ):

• Mα(γ) is individually rational and winners have an in-
centive to bid truthfully while losers should bid at least
their true value.

• With respect to the bids received, the efficiency (value
of assignment) of Mα(γ) is at least a constant factor
(depending on γ and α) of the offline optimum. Under
mild player rationality assumptions, we show that our
mechanism is competitive with respect to the optimum
offline efficiency on bidders’ true values.

• We also consider the notion of effective efficiency which
interprets social welfare as the sum of the winners’ bids
minus bumped (if any) bidders’ losses. We show that
for suitable γ(α), our mechanism’s effective efficiency
matches a numerically obtained upper bound on the
effective efficiency of any deterministic algorithm.

• The revenue of Mα(γ) is at least a constant factor (de-
pendent on γ and α) of that of the Vickrey-Clarke-
Groves (VCG) mechanism on all received bids.

• We also study speculators, that is, ones who have no
interest in the items for sale but who participate in
order to earn the bump payment. We show several
game theoretic properties about the behavior of the
speculators, including bounding their overall profit.

To the best of our knowledge our results are the first about
mechanisms with strong game-theoretic properties for ad-
vanced placement of ads (more generally, online bipartite
matching) with a costly cancellation feature. We make no
assumptions on the arrival order of the bidders or on their

values. Prior work has studied advanced sale of goods with-
out cancellations, but only under a probabilistic distribution
of bidders’ values [7]. Under a worst case model like ours,
no nontrivial results are possible without making additional
assumptions; in our case, we overcome these impossibilities
by allowing cancellations. In secretary problems [2], bids
may be arbitrary but their order is assumed to be uniformly
random (cannot be specified by an adversary).

There are specific examples of systems that implement
advanced booking with cancellations. For example, this is
common in the airline industry, where tickets may be booked
ahead of time, and customers may be bumped later for a
payment. In the airline case, the inventory is mostly fixed,
sophisticated models are used to calculate prices over time,
and often negotiations are involved in establishing the pay-
ment for bumping, just prior to time T . In some cases, the
bump payments may even be larger than the original bid
(price) of the customer. Likewise, in offline media such as
TV or Radio, advanced prices are negotiated by humans,
and often if the publisher does not respect the reservation
due to inventory crunch, a payment is a posteriori arranged
including possibly a better ad slot in the future. These meth-
ods are not immediately applicable to the auction-driven
automatic settings like ours.

From a technical point of view, one can view our model as
an online weighted bipartite matching problem (or more gen-
erally, an online maximum weighted independent set prob-
lem in a matroid). On one side we have slots known ahead
of time. The other side comprises advertisers whose bids
(weighted nodes) arrive online. Our goal is to find a “good”
weighted matching in the eventual graph. Each time an ad-
vertiser appears we need to decide if we should retain it or
discard it; retaining it may lead to discarding a previously
retained bidder. Our mechanism builds on such an online
matching algorithm [10] to determine a suitable bump pay-
ment and prices. It is, curiously, able to make use of such an
online algorithm previously proposed in the semi-streaming
model in the theoretical computer science literature.

All our results extend to a setting where the items for sale
are elements of a matroid, a more general setting than slot
allocation. A bidder bids on exactly one element of the ma-
troid, which is known ahead of time to the seller and may
vary across bidders. A set S of bidders is then feasible if the
set containing each bidder’s element forms an independent
set of the matroid. In the bipartite matching setting, the
seller’s matroid contains sufficiently many copies of one ele-
ment for each subset of slots. A set of bidders (elements) is
independent if the bidders can be matched to slots such that
each one receives a slot from its subset. In a different direc-
tion, our results also extend to a (strictly bipartite matching)
setting where a bidder’s value for a set S of slots is the sum
of values for each slot in S (no bidder can express substitute
slots). In this setting, the multi-slot matching problem is
actually a collection of single-slot matching problems since
bids on two different slots can never interact. We prefer the
bipartite matching setup where a bidder is interested in one
out of a set of substitute slots for clarity of exposition.

We have initiated the study of mechanisms for advanced
reservations with cancellations. A number of technical prob-
lems remain open, both within our model, as well as in its
extensions, which we describe later for future study.



2. RELATED WORK
Babaioff et al. [2] address the matroid secretary problem:

finding a competitive assignment when weighted elements
of a matroid arrive online and no cancellations are allowed.
As is common in secretary problems, while not making any
assumption on bidder valuations, they assume that all or-
ders of arrivals are equally likely. They present a log r-
competitive algorithm for general matroids where r is the
rank of the matroid (the size of the largest independent sets)
and a 4d-competitive algorithm for our setting without can-
cellations (transversal matroids) but where each bidder can
only be interested in at most d items. Both these algorithms
observe half of the input and then set a threshold price: per
item in the transversal case and uniform in the general case.
The 4d-competitive algorithm ensures truthful bidding even
when the items desired by an agent are private information.
Dimitrov and Plaxton [5] extend the 4d-algorithm and pro-
vide an algorithm with a constant competitive ratio for any
transversal matroid.

Bikhchandani et al. [3] present an ascending auction for
selling elements of a matroid that ends with an optimal al-
location (i.e. the auction is efficient). Truthful bidding is
an equilibrium of the auction. They assume however that
bidders are present throughout the auction.

Cary et al. [4] show that a random sampling profit extrac-
tion mechanism approximates a VCG-based target profit in
a procurement setting on a matroid.

Gallien and Gupta [7] analyze players’ strategies regard-
ing buyout prices in online auctions. In their model, bid-
ders’ valuations are drawn from a known distribution and
their utilities are time-discounted; furthermore there are no
cancellations and arrivals are assumed to follow a Poisson
process. They exhibit symmetric Bayes-Nash equilibria in
which bidders follow threshold strategies, which can in turn
be used by the seller (as they show) to optimize revenue.

Lavi and Nisan [9] consider online auctions for identical
goods. In their model, bidders’ values are arbitrary from the
interval [ρ, ρ] and no cancellations are possible. They present
a simple online posted-price auction based on exponential
scaling. This auction is optimal among online auctions and
achieves a Θ(log(ρ/ρ)) approximation with respect to both
efficiency and the VCG revenue.

Feige et al. [6] study an offline weighted bipartite match-
ing problem where the seller can partially satisfy a bidder’s
request at the cost of paying a proportional penalty. Ac-
cepting bidder i but not providing any items results in the
seller losing utility proportionally to i’s bid, similar to our
definition of effective efficiency in Section 4.1. Recall how-
ever that in our model it is i and not the seller who incurs
the utility loss. They show that it is NP-hard to approxi-
mate the optimal solution within any constant factor. They
propose an adaptive greedy algorithm assigning one bidder
at a time (but that inspects all unassigned bidders in decid-
ing which bidder to allocate) and that may reassign bidders.
They provide a lower bound on this algorithm’s efficiency
with respect to the optimal assignment.

Independently and concurrently, Babaioff et al. [1] study
the same problem as this paper, but from an algorithmic per-
spective only, leaving incentives and revenue considerations
aside. Their paper and ours present the same algorithm and
efficiency results. Their focus is on effective efficiency, for
which they analytically prove an upper bound on any deter-
ministic algorithm’s competitive ratio (we only present re-

sults of a numerical simulation in Fig. 1 strongly suggesting
this bound). Unlike us, they go on to study costly cancel-
lations (“buyback”) in knapsack problems. They provide an
algorithm similar to Mα(γ) and prove a bi-criterion approx-
imation result, an informative bound since they also prove
that no deterministic algorithm has a constant competitive
ratio.

3. MODEL AND MECHANISM
We first define our model and present our mechanism

which we will study in later sections.

3.1 Model Basics
There is a seller who has a finite set of slots (items), and

starts sale at time 0 and ends sale at time T .
Each bidder i is interested in exactly one slot out of a

set N(i) called i’s choice set. We denote by v(i) bidder i’s
value for any slot in N(i) and we assume that v(i) is private
information to i. Each bidder i places a bid w(i) (that may
be different than v(i)) as soon as it arrives, at time ai. As
a consequence of i bidding, i’s choice set becomes known to
the seller. When i bids, he may be accepted (i.e. promised an
item from N(i)), else rejected. If promised an allocation, he
may get bumped later, losing the reservation. Any accepted
bidder who is not bumped before time T is allocated. We
model bidder i’s utility as quasilinear in money:

λ · v(i) − x(i), where (1)

• λ equals 0 if i is rejected, 1 if i is accepted and granted
an item from N(i) and −α if i is accepted but bumped,
where 0 ≤ α < 1.

• x(i) is i’s transfer to the seller (price). It is 0 if i is
rejected, and some non-negative amount if i is accepted
and allocated. x(i) may be negative (e.g. the bump
payment the seller makes in Mα(γ)).

That is, a bidder is unaffected if rejected right away, has a
value of v(i) for being allocated, and incurs a loss amounting
to an α fraction of its value if bumped.

From an algorithmic perspective, our problem is finding
online a bipartite matching of “good” weight, when costly
cancellations of acceptances are allowed. There is a bi-
partite graph with items (respectively bidders) as “right”-
(respectively“left”-)hand side vertices. Initially, left-vertices
are revealed while right-vertices are hidden. One by one, a
right-vertex i is revealed together with its weight w(i) and
its edges (i.e. the set N(i)). A decision whether to accept it
or not must be taken immediately, although i’s acceptance
decision may be canceled at an αw(i) cost later.

Note that if the input was not manipulable by the bidders,
given that cancellations are not detrimental to the seller, the
seller could simply accept a new bidder whenever it improves
the current matching. It is well-known that the resulting as-
signment would be optimal. If α = 0, then by using the same
algorithm and charging each bidder its VCG (see Section 5)
price, truthfulness (a bid equal to one’s true value) becomes
a dominant strategy. However, in our setting bidders are
self-interested and cancellations hurt them. Thus they may
alter the input to the algorithm (their bids) if it is in their
interest to do so. Therefore we aim for a mechanism that is
competitive while bounding the bidders’ manipulations.



3.2 Our Mα(γ) Mechanism
We present our advance-booking online mechanism Mα(γ)

(allocation algorithm and payments). The allocation algo-
rithm follows the Find-Weighted-Matching algorithm in [10]2,
that uses an unconstrained improvement factor γ > 0. We
require α < γ

1+γ
i.e. γ ∈ ( α

1−α
,∞) (recall that 0 ≤ α < 1).

Denote the number of bidders by n; our mechanism is
independent of n. By relabeling bidders, assume that they
bid in order 1, 2, . . . , n; time is indexed likewise.

Definition 1. We say that a set of bidders B can be
matched if for each b ∈ B there exists an item ib ∈ N(b)
such that ib 6= ib′ , ∀ b 6= b′. We say that B is a perfect
matching if it can be matched and no item is left unmatched
(B’s cardinality must equal the number of items).

Algorithm 1 lists Mα(γ)’s pseudocode. At a high level,
Mα(γ) maintains a set of accepted bidders that form a perfect
matching. For any new arriving bidder i bidding w(i), the
algorithm looks if there exists some bidder j in the accepted

set with w(j) < w(i)
1+γ

such that i can be swapped in the
matching if j is swapped out. If so, accept i and cancel the
reservation of (bump) j∗, the lowest weight such j. Bidder
j∗ is paid the bump payment αw(j∗). Indeed, j∗ makes no
payment at all and in fact gets money for free from the seller
for being bumped. An accepted bidder who is not bumped
by time T is necessarily allocated a slot from his choice set
and pays the seller an amount we define later (Eq.(2)).

At time 0, A0 is an arbitrary matching; we introduce r
dummy bidders (each bidding 0) whose choice set is the
whole set of items, arriving before all actual bidders. This
will not affect our arguments below.3At time t, we call cur-
rently accepted bidders alive, and denote the set of alive
bidders as At. Let Xt = {b ∈ At−1 : At−1 ∪ {t} \ {b} can be
matched}; Xt is the set of alive bidders at t− 1 that can be
exchanged for t. Bidders still alive at the end (time T ) are
called survivors and S = S(w) denotes this set. We denote
the set of bumped bidders by R = R(w).

Algorithm 1 Mechanism Mα(γ) for online ad slotting with
cancellations.

Fix A0, an arbitrary perfect matching on dummy bidders.
for each i ≥ 1 bidding w(i) (with choice set N(i)) do

Let Xi = {j < i : Ai−1 ∪ {i} \ {j} can be matched}.
Let j∗ = argminj∈Xi

w(j)
if (1 + γ)w(j∗) < w(i) then

Ai = Ai−1 ∪ {i} \ {j∗}: i is accepted, j∗ is bumped
j∗ is paid αw(j∗), i.e. an α fraction of its bid

end if
end for
Charge any bidder i in S , An (i.e. survivor) as in Eq. (2).

Definition 2. Let i be a bidder and fix the bids of all
other bidders. Let wac(i) (i’s acceptance weight) be the in-
fimum of all bids that i can make such that i is accepted
2Unlike in [10], a bidder i’s value is the same for any slot
(vertices as opposed to edges are weighted). The slot cur-
rently assigned to i may vary across stages in Mα(γ).
3When bidder t arrives, assume At−1 = A ∪ D where D
only contains dummy bidders and there exists a matching
It of A ∪ {t} which matches t to some item it. By reassign-
ing dummy bidders, we can assume that actual bidders are
matched according to It. Then bidder t can bump at least
the dummy bidder d ∈ D that is matched to it in At−1.

given its arrival ai and Ni. Similarly, let wsv(i) (i’s sur-
vival weight) be the infimum of all bids that i can make such
that i is accepted and survives until time T (the end) given ai

and Ni. Clearly, wac(i) ≤ wsv(i). Let W sv =
P

i∈S wsv(i).

Note that wsv(i) always exists since it suffices to bid (1 +
γ) maxj 6=i w(j). Also, wac(i) and wsv(i) are independent
of i’s actual bid, but may depend on ai and on the other
bidders’ bids or arrivals. wac(i) can be computed by the
seller at ai whereas wsv(i) may depend on future bidders
and thus can only be computed at time T .

In summary, i is

8

>

<

>

:

rejected, if w(i) < wac(i)

bumped, if wac(i) ≤ w(i) < wsv(i)

a survivor, if wsv(i) ≤ w(i)
If i is a survivor, i’s price pi is as follows:

pi =

(

wsv(i)(1 − α) if wac(i) < wsv(i).

wsv(i) if wac(i) = wsv(i).
(2)

The common case is when wac(i) < wsv(i): i gets a dis-
count amounting to the highest refund it could have other-
wise obtained: αwsv(i). The special case of wac(i) = wsv(i)
occurs when i’s acceptance is enough for its survival (in par-
ticular if i is the last bidder). When wac(i) = wsv(i), from
the bidder’s point of view, Mα(γ) posts a price of wsv(i).

This concludes the definition of Mα(γ). We first present
an example and will then proceed to studying its properties.

Example. Let γ = 0.5 and an α < 0.5
0.5+1

. Consider
two items Ia, Ib and the following sequence of bidders: B1

bidding 6 on any of Ia and Ib, B2 bidding 4.4 on Ib, B3

bidding 10 on Ia and B4 bidding 7.5 on Ib. Bidder i arrives at
time ti and T = t4. Mα(γ) accepts B1 at t1, accepts B2 at t2,
accepts B3 and bumps B2 at t3 and then rejects B4 at t4. We
write wac(i) and wsv(i) for wac(Bi) and wsv(Bi). We have
wac(1) = 0, wac(2) = 0, wac(3) = 1.5·4.4 = 6.6 (to bump B2)
and wac(4) = 1.5 ·6 = 9 (to bump B1). wsv(1) = 7.5

1.5
= 5 (to

prevent being bumped by B4), wsv(2) = 6 (to prevent being
bumped by B3 and B4), wsv(3) = 6.6, wsv(4) = wac(4) = 9.
B1 and B3 survive: B1 pays (1 − α)wsv(1) since wac(1) <
wsv(1) and B3 pays wsv(3) since wac(3) = wsv(3). Note
that if a bidder B5 were to arrive after B4 bidding 10.5 on
Ia then only wsv(3) would change to 10.5

1.5
= 7. In this case,

B3’s price becomes (1−α) · 7 which may be lower than 6.6.
Unless a bidder i’s wsv(i) price coefficient goes from 1 to
1 − α, i’s price cannot go down if new bidders arrive.

3.3 Basic Incentive Properties
The following theorem summarizes our mechanism’s fa-

vorable incentive properties.

Theorem 1. The Mα(γ) mechanism is individually ratio-
nal. Bidding one’s true value (weakly) dominates any lower
bid. If honest, any survivor is (weakly) best-responding.

The proof follows from the two lemmas below.
Note that with bump payments (“money for nothing”),

anyone with zero value for any slot can attempt to exploit
the mechanism and get a bump payment by making an ap-
propriate (untruthful) bid. It is still possible that other
types of truthful competitive allocation mechanisms exist.

Lemma 1. Bidding less than one’s true value is domi-
nated by bidding one’s true value. A survivor’s (weakly)
best-response is to be honest. A bumped bidder’s best re-
sponse may however be to bid more than its true value.



Proof. If wac(i) < wsv(i), bidder i’s highest possible
bump payment is αwsv(i). The price of (1 − α)wsv(i) has
been chosen such that i prefers winning to being paid αwsv(i)
if and only if v(i) ≥ wsv(i). That is, the best bid i can make
(i’s best-response) is to bid just below wsv(i) if v(i) < wsv(i)
and to bid its true value otherwise.

If wac(i) = wsv(i), then i can never get a bump payment
and i simply faces a take-it-or-leave-it offer of wsv(i).

Mα(γ) is individually rational:

Lemma 2. If bidder i bids its true value v(i), then i’s
utility after participating in the mechanism is non-negative.

Proof. When surviving, i pays at most wsv(i) ≤ v(i). If
i is not accepted then i’s utility is 0. If i is accepted and
then bumped, i’s utility is −αv(i) + αv(i) = 0.

In the following two sections we show that apart from
favorable incentive properties, Mα(γ) is also competitive with
respect to revenue and efficiency.

4. EFFICIENCY OF Mα(γ)

Definition 3. For any vector w′ = (w′(1), . . . , w′(n)) of
bids, we let OPT[w′] be the optimal matching, or its weight
when there is no confusion (recall that the seller is revealed
any bidder’s choice set). If B is a set of bidders, we will
denote w′(B) =

P

b∈B w′(b). Unless specified otherwise,
w = (w(1), . . . , w(n)) denotes the input bids and v denotes
the true values. We will denote by OPT = OPT[w].

From an algorithmic perspective, our mechanism is a 1 +
γ approximation to the optimum assignment (Lemma 4).
However, if incentives are not aligned then bidders may want
to significantly alter the input to the algorithm (their bids).
The allocation may then be a poor choice considering bid-
ders’ true values. We show that this is not the case, in
Theorem 2, our main result regarding Mα(γ)’s efficiency: the
assignment output by our mechanism is a constant factor
(depending on α and γ) approximation to the offline opti-
mum on bidders’ true values if bids are ”reasonable”.

Theorem 2. Let w be a set of bids such that each bidder
bids at least its true value, that is w(i) ≥ v(i)∀ i, and the
sum of all bidders’ utilities is non-negative. When run on
w, Mα(γ)’s efficiency with respect to the true values v is:

X

i∈S(w)

v(i) ≥
1 − α − α

γ

(2 − α − α
γ
)(1 + γ)

· OPT[v].

Note that if all bidders are truthful then the right-hand side
constant can be increased to 1

1+γ
(see Lemma 4 below).

Recall the impossibility of making truthfulness a domi-
nant strategy due to the use of bump payments. Theorem 2’s
assumption allows for some bidders to have negative utility
and therefore fail to best-respond (Lemma 2 shows that sim-
ply by being truthful, a bidder’s utility is at least 0) as long
as overall, gains outweigh losses in utility. The assumption
fails when, for example, bidders with value 0 for any slot
(the “speculators” of Section 6) grossly overestimate the ac-
tual bids and end up being allocated and having to pay due
to bidding too high. In such a scenario, the true value of
the allocation may be small, possibly 0. Section 6 provides
a detailed discussion on how speculators affect incentives.

We now proceed to proving Theorem 2, establishing a few
other important results along the way. The following bid
vector will prove useful:

w̃S(i) =

(

wsv(i), if i ∈ S

w(i)/(1 + γ), if i /∈ S
.

Note that if i /∈ S then wsv(i) > w(i) > w(i)/(1 + γ).
Lemma 3 is our core technical result, being used for both

efficiency and revenue claims. It states that the set of sur-
vivors given bids w is the optimal offline assignment on w̃S .
Its proof is more involved and we defer it to the Appendix.

Lemma 3. S(w) = OPT[w̃S ].

The following result provides an upper bound on the sum
of bumped bidders’ bids and shows that S is a 1+γ approx-
imation to the optimal offline matching given the same set
of bids. Recall that R is the set of bumped bidders.

Lemma 4. We have w(R) ≤ W sv/γ ≤ w(S)/γ. Also,
OPT ≤ (1 + γ)w(S).

Proof. For each s ∈ S, let d1, . . . , dJ = s be a chain such
that: dj+1 bumps dj , ∀ 1 ≤ j ≤ J −1. To simplify notation,
assume d1 = 1, . . . , dJ−1 = J − 1. We will show that

J−1
X

j=1

w(j) ≤ wsv(s)/γ

The claim will follow since the set of bidders is the disjoint
union of survivors’ chains.

Since s bumped J −1, we have wJ−1 ≤ wsv(s)
1+γ

. Since j +1

bumps j, ∀ 1 ≤ j ≤ J − 2, wj ≤ wj+1

1+γ
. Thus by induction,

wj ≤ wsv(s)(1 + γ)j−J , ∀ 1 ≤ j ≤ J − 1. We get

J−1
X

j=1

wj ≤ wsv(s)

J−1
X

j=1

(1 + γ)j−J ≤ wsv(s)/γ

We have w(S) ≥ w̃S(S) = OPT[w̃S ] ≥ OPT[w]/(1 +
γ). Each inequality is implied by the fact that no bidder’s
contribution decreases when going from the left hand side to
the right hand side. The equality follows from Lemma 3: S is
an optimal assignment for w̃S , i.e. w̃S(S) = OPT[w̃S ].

An analogous lemma can be found in [10]. Our constants
are tighter because in our model, a bidder’s value for any
slot is the same, and all edges incident to a bidder arrive
simultaneously. These bounds are almost tight:

Example 1. Consider k + 2 truthful bidders competing
on one item; bidder i is the i-th to arrive and has value
(1 + γ)i−1 unless i = k + 2, whose value is (1 + γ)k+1 − ε.
Bidder i + 1 bumps i, ∀ 1 ≤ i ≤ k. Only the k + 1-st bidder
survives. The bumped bidders have total weight

Pk−1
i=0 (1 +

γ)i = ((1 + γ)k − 1)/γ. OPT is (1 + γ)k+1 − ε.

Proof of Theorem 2. For any s ∈ S, let p(s) be s’s
payment. By assumption, bidders’ total utility is non-negative:

X

s∈S

(v(s) − p(s)) +
X

r∈R

(αw(r) − αv(r)) ≥ 0 or

X

s∈S

(v(s) − (1 − α)wsv(s)) +
X

r∈R

αw(r) ≥ 0



since p(s) ≥ (1 − α)wsv(s) (see Eq. (2)). We have from
Lemma 4 that

P

r∈R w(r) ≤ P

s∈S wsv(s)/γ. We prove that
X

s∈S

(v(s) + wsv(s)) ≥ OPT[v]/(1 + γ).

The theorem then follows by algebraic manipulation.

Let w′(x) :=

(

max(v(x), wsv(x)), if x ∈ S

w(x), if x /∈ S
.

Clearly, v(s) + wsv(s) ≥ w′(s)∀ s ∈ S. S(w) = S(w′)
since only survivors in S(w) change their bid, still bidding
above their survival thresholds. By Lemma 4,

P

s∈S w′(s) ≥
OPT[w′]/(1+γ). The claim follows by noting that OPT[w′] ≥
OPT[v] since w′(x) = w(x) ≥ v(x), ∀x /∈ S.

4.1 Effective Efficiency
Efficiency is usually measured as the sum of winning bid-

ders’ values. An alternative definition which also takes into
account the losses of bumped bidders and may be more ap-
propriate when cancellations are allowed is the following:

Definition 4. Let w be a sequence of bids and A an on-
line allocation algorithm, possibly with cancellations. Let
SA(w) (resp. RA(w)) be the set of winners (resp. bumped
bidders) when A is run on w. We define the effective effi-
ciency of A on w as

uA(w) =
P

s∈SA(w) w(s) − α
P

r∈RA(w) w(r)

A’s effective efficiency competitive ratio is inf
w

u(w)

OPT[w]

We present an upper bound (obtained numerically) on
the effective efficiency competitive ratio of any deterministic

algorithm. For α <
√

5−1
2

≃ 0.618 and a certain γα, Mα(γα)
matches this upper bound.

For a fixed α, let n ≥ 2 a positive integer and c ∈ (0, 1):
we aim for n bidders and a competitive ratio of c. Consider
one item and a sequence of bids {ak(c)}1≤k≤n on it (bidder
k bids ak) such that a1 = 1, a2 = 1

c
> 1 and

cak+1(c) = ak(c) − α

k−1
X

j=1

aj(c) ∀ k ≥ 2 implying

cak+1 = (1 + c)ak − (1 + α)ak−1 ∀ k ≥ 2 (3)

We will look for a c = cn such that

an(c) − α

n−1
X

j=1

aj(c) = can(c) ⇐⇒ an = (1 + α)an−1 (4)

E.g. c2 =
1

1 + α
> c3 =

1

1 + 2α
> c4 = 2

1+3α+
√

(1+5α)(1+α)
.

Unfortunately, cn does not have a nice closed form for n ≥ 4
(in addition, cn may be not be unique - the smallest cn ∈
[0, 1] is then of interest). Furthermore, for certain c and n
no such sequence may exist.

Theorem 3. Fix n and α. Let cn be the lowest number
(if any) in [0, 1] for which Eqs. (3) and (4) simultaneously
hold. Then no deterministic algorithm can have an effective
efficiency competitive ratio higher than cn.

Proof. On any input, the offline optimum with respect
to effective efficiency is simply the highest weight assign-
ment, and it results in bumping no bidders.

Suppose towards a contradiction that there was a de-
terministic algorithm A with a competitive ratio c′ > cn.
Assume that the bids that arrive are a1, . . . , ak0

for some
1 ≤ k0 ≤ n. Then at each k, the algorithm A must accept
ak, or its competitive ratio will be smaller than cn when
k = k0. This is clear for k = 1. Fix k ∈ [2, n − 1]. Let
Mk be the highest (i.e. the offline optimum) of a1, . . . , ak.
If A does not accept k then the competitive ratio on input
a1, . . . , ak will be at most

ak−1(cn) − α
Pk−2

j=1 aj(cn)

Mk(cn)
=

cnak(cn)

Mk(cn)
≤ cn

where the equality follows from Eq. (3). Now we claim that
whether or not A accepts an, its competitive ratio will be at
most cn. If an is accepted, α

Pn−1
j=1 aj has been lost due to

bumping bidders 1, . . . , n − 1; if an is rejected the effective
efficiency is an−1 − α

Pn−2
j=1 aj . By Eqs. (3) and (4), both

quantities are a cn fraction of an, which in turn is at most
Mn, the optimal (effective) efficiency.

Figure 1 strongly suggests that the competitive ratio of
any algorithm cannot be higher than 2α+1−2α0.5(α+1)0.5,
shown as squares in the figure. Note that for this c the
characteristic equation of Eq. (3) has a double root.

The triangles plot the minimum c found for the corre-
sponding α for different values of n (we used Fibonacci val-
ues up to rank 12, i.e. largest n was 144). The c values were
found via binary search. It was true in general, although not
always, that the higher n, the lower cn. We suspect that one
can always find an increasing sequence of integers {ni}i≥1

such that a solution cni to Eqs. (3) and (4) converges from
above to 2α + 1 − 2α0.5(α + 1)0.5 as i → ∞.

Lemma 4 implies that for our algorithm Mα(γ)

u = w(S) − αw(R) ≥ w(S) − αw(S)/γ ≥ OPT

1 + γ

„

1 − α

γ

«

.

Let u(γ) = 1
1+γ

“

1 − α
γ

”

. Subject to the constraint α ≤
γ

γ+1
, u(γ) is maximized for γ0 = max{α +

√
α2 + α, α

1−α
}.

u(γ0) is displayed in Fig. 1 by circles. The value 0.618 (the
golden ratio) is where α

1−α
becomes higher than α+

√
α2 + α.

If α < 0.618, u(γ0) = 2α+1−2α0.5(α+1)0.5, which matches
the numerical upper bound. Recall that this is just a worst-
case lower bound on the effective efficiency, but likewise, so
are the upper bounds. The top curve plots c3 = 1/(1 + 2α).

Recall that when α = 0 all bidders can be tentatively
accepted (by letting γ = 0) since they incur no loss and do
not have to be refunded. Then, the optimal matching can
be found via a one-shot (offline) algorithm at time T .

5. REVENUE OF Mα(γ)

We show that apart from favorable incentive and efficiency
properties, Mα(γ) is also competitive with respect to revenue.

As a revenue benchmark, we consider the offline Vickrey-
Clarke-Groves (VCG) mechanism because it generates the
highest revenue among truthful efficient allocation mecha-
nisms [8]. We show that our mechanism is competitive with
respect to revenue with VCG on bidders’ true values.

Let w′ be a sequence of bids - when defining VCG on w′

we will assume that all bids are received at once by VCG.
Let w′

−i denote the set of all bids in w′ except bidder i’s.
The VCG mechanism implements an efficient allocation and
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Figure 1: Effective efficiency competitive ratio
(EECR) bounds as a function of α. The top curve
is c3 = 1/(1 + 2α). The middle curve is a numerical
upper bound (c = cn of Eq. (4)) on any determinis-
tic algorithm’s EECR. The bottom curve shows (a
lower bound on) our algorithm’s EECR for the best
γα: it matches the upper bound for α < 0.618. Our
choice of γ is constrained by α < γ/(γ + 1); if it were
not, the bounds would match for all α.

thus the matching it outputs is optimal. If i ∈ OPT[w′] then
VCG charges bidder i its externality on the other bidders:

X

k∈OPT[w′
−i

]

w′(k) −
X

j 6=i,j∈OPT[w′]

w′(j) (5)

We will use the following known (see e.g. [4], Fact 3.2)
combinatorial property of our setting: ∀ i 6= x, if x ∈ OPT[w′]
then x ∈ OPT[w′

−i].

Lemma 5. A winning bidder’s VCG payment is a losing
bid. Also, the VCG revenue can only increase if some bids
in w′ are increased.

On bids w′ we denote the VCG revenue by REVvcg[w
′] and

the net revenue of Mα(γ) (payments from survivors minus
bump payments) by REVγ,α[w′].

Theorem 4. Assume w(i) ≥ v(i) ∀ i, i.e. no one bids
below their true value, since that would be dominated. Then

REVγ,α[w] ≥ 1 − α − α/γ

1 + γ
REVvcg[w]

This theorem shows the tradeoff between γ, the improve-
ment factor required for bumping an accepted bidder and α,
the fraction returned as the bump payment. For instance,
for α = 0.25 (refund of 1/4th the bid), if we choose γ = 1
then the constant in Theorem 4 becomes 0.25, i.e. our mech-
anism obtains at least a quarter of the VCG revenue.

We will now prove Theorem 4.
Lemma 4 implies that payments received by Mα(γ) are at

least W sv(1 − α) (since only survivors pay) and that bump

payments sum to at most W sv α

γ
. It will suffice to show that

W sv ≥ REVvcg[w]/(1 + γ).

Let u(i) =

(

max(wsv(i), w(i)/(1 + γ)), if i ∈ S
w(i)
1+γ

, if i /∈ S
.

Lemma 3 states that ∀ s ∈ S, s ∈ OPT[w̃S ]. Since on w̃S

VCG payments cannot be higher than its efficiency, W sv ≥
REVvcg[w̃S ]. Also, Lemma 5 implies

REVvcg[w̃S ] = REVvcg[u] ≥ REVvcg[w]/(1 + γ),

since when going from w̃S to u only VCG winners may in-
crease their bid, and for all i, u(i) ≥ w(i)/(1 + γ).

Note that unlike the analogous efficiency result (Theo-
rem 2), this result makes no assumption on bidders’ utilities.

6. SPECULATORS
Since money is given away, speculators, that is, bidders

without interest in any item are likely to enter the mecha-
nism looking for bump payments. For a speculator i, utility
is also given by Eq. (1), but with v(i) = 0. Speculators may
bid (under false identities) more than once or collude. Their
bids can effectively induce reserve prices, since actual bid-
ders will have to bid a 1 + γ factor higher than a competing
speculator. If speculators bid judiciously on high-demand
items, they can garner payment from the auctioneer, who
gets even more revenue via larger prices for high-value bid-
ders. So, it is clear that speculators are impactful.

We now address the question of how speculators affect the
mechanism. In Section 6.1, we show two positive results

• We show that the Mα(γ) algorithm has good overall ef-
ficiency, as long as the speculators have positive overall
surplus and the survivors are best-responding.

• We prove a bound on the overall revenue that specu-
lators can obtain.

In Section 6.2 we give a more detailed discussion of specu-
lator strategy. Along the way, we show that many natural
simplifying assumptions regarding speculators’ or bidders’
strategies are unfortunately false. Specifically, we show that:

• the profits available for speculators may depend on the
arrival order of actual bidders (Example 2);

• there may be no pure Nash equilibrium for actual bid-
ders or speculators (Example 2);

• speculators may prefer to induce a suboptimal perfect
matching of actual bidders (Example 3);

• a colluding set of speculators may be able to get higher
bump payments if some of them survive (Example 4).

6.1 Impact on Efficiency and Revenue
The following result gives a competitive ratio of our al-

gorithm’s efficiency with respect to the optimum efficiency
given bidders’ true values. It only requires that total specu-
lator utility is non-negative: this is particularly applicable if
speculators are coordinated and can make monetary trans-
fers between them.

Proposition 1. Let w be a set of bids such that actual
survivors are best-responding and total speculator surplus,



i.e. the sum of speculators’ payments minus the sum of spec-
ulators’ prices, is non-negative. Then the Mα(γ) algorithm
with true values v has efficiency

X

i actual,i∈S

v(i) ≥
1 − α − α

γ

(1 − α)(1 + γ)
· OPT[v]

The proof is mostly algebraic and deferred to the Appendix.
This result is a strengthening of Theorem 2: Prop. 1’s con-
stant is larger and its preconditions are less general. Note
that Prop. 1 requires that actual survivors best-respond; a
speculator’s best response cannot induce it to survive.

Next we prove an upper bound on speculators’ profit:

Proposition 2. Speculators’ total profit is at most αOPT/γ.

Proof. Let Σ be the sum of survival weights for spec-
ulators that have survived. Denote speculators’ profit by
Π ≤ −(1−α)Σ + αw(R), where R are the participants who
obtain bump payments (some may be true bidders).

By Lemma 4, w(R) ≤ (Σ + A)/γ, where A is the total
weight of survivors that are actual bidders. We get

Π ≤ −(1 − α − α

γ
)Σ +

α

γ
A

The claim follows since (1−α− α
γ
)Σ ≥ 0 and A ≤ OPT.

6.2 Speculator Strategies
At first glance, it would seem that it is in the speculators’

best interest to induce an assignment of actual bidders of
weight as high as possible in the survivor set, since then
overall bump payments would be maximized. This is true
in some cases but not always (Example 3). The reason for
such a distinction is that the order of bidders arriving also
influences the maximum refunds attainable by speculators
as shown below.

Example 2. Consider two bidders, one bidding 1, the
other C > 1, on two items and assume that speculators can-
not collude. If C arrives first, no speculator can have higher
revenue if bumped than when bidding 1/(1+γ) on both items:
this is actually a Nash equilibrium (NE) for them. If 1 how-
ever arrives first, then speculators could participate with two
identities bidding 1/(1 + γ) and C/(1 + γ) on both items,
both being bumped. One can show via a case analysis that
there is no pure strategy NE for speculators.

This example also shows that there may not be a pure strat-
egy NE when only actual bidders participate: if two bidders
with low values arrive, followed by the 1 bidder and after
that the C bidder, then the two low value bidders are essen-
tially speculators and the argument in the example applies.

Observe that a speculator who is bumped with a bid of
x could have obtained more bump payment by entering an
earlier bid of at most x/(1 + γ); likewise, he could have
obtained yet more by bidding earlier x/(1 + γ)2; and so on.
This is formalized as follows.

Definition 5. Let x > 0. We say that the speculator σ
is an x-geometric speculator with choice set N(i) if σ places
bids as follows on choice set N(i). Let ε be the minimum
strictly positive bid that can be made and

l = 1+

—

log(x/ε)

log(1 + γ)

�

i.e. l ∈ Z &
x

(1 + γ)l
≥ ε >

x

(1 + γ)l+1

Then σ participates with l + 1 different identities, placing
consecutive bids of x

(1+γ)l ,
x

(1+γ)l−1 , . . . , x
(1+γ)

, x on N(i).

If speculators have full information on bidders’ values and
bidders in OPT arrive in increasing order of their values, the
outcome has many desirable properties:

Lemma 6. Fix a set of actual bids such that OPT[v] bids
arrive in increasing order. Suppose that speculators collude
and want to maximize their joint revenue. Then optimal
speculator bidding has the following consequences:

• no speculator survives, no actual bidder is bumped; all
OPT bidders and only them are accepted.

• speculators can achieve the highest payoff possible as
given by Proposition 2.

• truthful bidding is a NE for all actual bidders.

This is a further strengthening of Theorem 2. Optimal spec-
ulator bidding in this case is as follows. For each bidder
i ∈ OPT with choice set N(i) there will be one w(i)/(1+γ)-
geometric speculator σi with the same choice set. The proof
is deferred to the full version.

This result has an appealing interpretation. If very well
informed, speculators can overcome the efficiency loss due
to late bidders not being able to improve by a 1 + γ factor
over their earlier competitors.

In general however, speculators may prefer to induce a
suboptimal perfect matching:

Example 3. Consider two items {i1, i2} and three bid-
ders b1, b2, b3 arriving in this order; bidder k is interested
in item ik, k = 1, 2, while bidder 3 is interested in any of i1
or i2. Note that any matching that does not match all three
bidders is valid. Assume that w(b1) < w(b3) < (1 + γ)w(b1)
and w(b2) > 2w(b3). The following analysis shows that spec-
ulators prefer the suboptimal set of actual bidders b1 and b2

to the optimal one with b2 and b3.

• If both b2 and b3 survive, then speculators’ profit is at
most 2w(b3)/γ: the speculator bumped by b2 must have
a lower weight than the one bumped by b3, which is at
most w(b3)/(1+γ). Even if speculators are geometric,
speculator profit can only go as high as 2w(b3)/γ.

• If however b1 and b2 are alive when b3 arrives, b3 can-
not bump b1. By simply having one geometric w(b2)/(1+
γ)-speculator which is bumped by b2, speculator profit
is w(b2)/γ > 2w(b3)/γ.

The following example shows that speculators may be able
to make more money if they “sacrifice”, i.e. some of them
intentionally survive so that others obtain high refunds:

Example 4. Let there be k items, k − 1 actual bidders
bidding C > 1 all arriving before an actual bidder bidding
1; all k bidders bid on all the items. If speculators coordi-
nate and participate with k identities as C/(1+γ)-geometric
speculators on all the items then total speculator payoff is

(k − 1)αC/γ − (1 − α)C/γ = (kα − 1)C/γ

since k−1 will be bumped, but one will survive. If no specu-
lator survives, the most money speculators can make is k/γ,
by participating as k 1/(1 + γ)-geometric speculators. For
any α > 1/k, for a large enough C, speculators’ profit is
higher when one of them is sacrificed.



7. OTHER GAME-THEORETIC CLAIMS
We will now show that several appealing statements re-

garding incentives in our algorithm are false.
The algorithm may be more appealing for incentive pur-

poses if we paid a bumped bidder αwsv(i) instead of αw(i)
as bump payment. This, however, may result in a deficit:

Example 5. Fix α and consider an early bidder e bidding
1 and a late bidder ℓ bidding L on one item where L >
(1 + γ)2/α. Bidder ℓ survives and pays (1 + γ). If we were
to refund e an α fraction of wsv(e), e would get αL/(1+ γ).
The choice of L ensures that e is paid more than ℓ pays, i.e.
the mechanism runs a deficit.

We assumed throughout that as soon as a bidder arrives,
its choice set is known. If however that is private information
as well, incentives become weaker: in Example 6, no bid by
B∗ on its true choice set {i1, i2} is a best-response if bidding
on different item(s) instead is allowed. This example also
suggests why a naive generalization of Mα(γ) to the setting
where bidders have a different value for each of several items
would not be able to incentivize bidders to bid at least their
true value for each item.

Example 6. Consider two items i1, i2 and the following
set of three bidders (arriving in this order): B−3/2with value

(1 + γ)−3/2 for any of i1, i2 (only demanding one of them),

B∗ who has value x < α(1 + γ)−3/2 for item i2 and B1

bidding 1 on item i1. Assume B−3/2and B1 bid truthfully.
We will show that, whenever B∗ bids on {i1, i2}, it can do
strictly better by bidding on i1 only.

We claim that if B∗ bids on {i1, i2} then its utility is at

most α(1+γ)−3/2. This is clear if it survives. If it is bumped

by B1, then its bid cannot be higher than (1+γ)−3/2 (B−3/2’s

bid), since B1 can replace any of B−3/2 and B∗. But then

B∗’s compensation is at most α(1+γ)−3/2. Let 0 < ε < 1/2.
By bidding (1 + γ)−1−ε on i1 only and being bumped by B1,

B∗ can get utility α(1 + γ)−1−ε > α(1 + γ)−3/2.

We have however the following conjecture: if a bidder
prefers surviving to being refunded, they are better off bid-
ding on their true choice set.

We have an example (omitted for space) showing that, if
bidders myopically and simultaneously best-respond (over
sequences of instances of Mα(γ)), then bid vectors where the
sum of utilities is negative may be obtained. This example
does not preclude good performance for other dynamics.

8. CONCLUDING REMARKS
Advertisers seek a mechanism to reserve ad slots in ad-

vance, while the publishers present a large inventory of ad
slots with varying characteristics and seek automatic, online
methods for pricing and allocation of reservations. In this
paper, we present a simple model for auctioning such ad slots
in advance, which allows canceling allocations at the cost of
a bump payment. We present an efficiently implementable
online mechanism to derive prices and bump payments that
has many desirable properties of incentives, revenue and ef-
ficiency. These properties hold even though we may have
speculators who are in the game for earning bump payments
only. Our results make no assumptions about order of ar-
rival of bids or the value distribution of bidders.

Our work leaves open several technical and modeling di-
rections to study in the future. From a technical point of

view, the main questions are about designing mechanisms
with improved revenue and efficiency, perhaps under ad-
ditional assumptions about value distributions and bid ar-
rivals. Also, mechanisms that limit further the role of spec-
ulators will be of interest. In addition, there are other mod-
els that may be applicable as well. Interesting directions
for future research include allowing bidders to pay more for
higher γ (making it harder for future bidders to displace this
bidder) or higher α (being refunded more in case of being
bumped). Other mechanisms may allow α to be a function
of time between the acceptance and bumping. Accepted ad-
vertisers may be allowed to withdraw their bid at any time.
There may be a secondary market where bidders may buy in-
surance against cancellations. Finally, advertisers may want
a bundle of slots, say many impressions at multiple websites
simultaneously, which will result in combinatorial extension
of the auctions we study here. We believe that there is a
rich collection of such mechanism design and analysis issues
of interest which will need to inform any online system for
advanced ad slotting with cancellations.
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APPENDIX

A.1 Proof of Prop. 1
Assume that actual survivors bid honestly: w(i) = v(i) ∀ i;

at the end of the proof we will eliminate this assumption.

Let w′(i) =

(

wsv(i), if i ∈ S and i is a speculator

w(i), otherwise
.



As wsv(i) can only be (1 + γ)w(k) if i bumps k or w(i′) if
i′ is bumped instead of i, the set of survivors will still be S
if the mechanism is run on w′ instead of w. We have

w′(S) =
P

i∈S w′(i) ≥ OPT[w′]

1 + γ
≥ OPT[v]

1 + γ
(6)

The first inequality follows from Lemma 4. Each actual
bidder i bids at least its true value: w′(i) ≥ v(i) and there
is the additional competition of speculators; this fact yields
the second inequality. Also,

γw(R) ≤ W sv ≤
X

i actual
i∈S

w(i) +
X

i speculator
i∈S

wsv(i) = w′(S)

Again, the first inequality follows from Lemma 4. By as-
sumption, speculator payments (a (1 − α) fraction of their
survival weights) cannot be higher than speculator refunds:

(1 − α)
X

i spec.
i∈S

wsv(i) ≤
X

i spec.
i∈R

αw(i) ≤
X

i∈R

αw(i) = αw(R)

By combining the last two relationships, we get

(1 − α)
X

i spec.,i∈S

wsv(i) ≤ α

γ
w′(S)

Adding (1 − α)
P

i actual,i∈S w(i) to both sides we get

(1 − α)w′(S) ≤ α

γ
w′(S) + (1 − α)

X

i actual,i∈S

w(i) i.e.

1 − α − α
γ

1 − α
w′(S) ≤

X

i actual,i∈S

w(i) =
X

i actual,i∈S

v(i)

The last equality follows since actual survivors are bidding
truthfully. This last inequality, together with Eq. (6) imply
the proposition’s claim.

Lemma 1 shows that bidding truthfully is a (weak) best-
response for survivors. Let i be an actual survivor. Any
bid above its true value is also a best-response for i. In the
claim, as we increase i’s bid, the right-hand side quantity
increases (if at all) at a constant rate which is less than 1,
the left-hand side quantity’s increase rate.

A.2 Proof of Lemma 3
Recall that bidder i arrives at time i. We will denote by

wsv
≤t(b) the minimum bid bidder b must make in order to

survive up to and including time t. Then wac(b) = wsv
≤b(b)

and wsv(b) = wsv
≤T (b). It is clear that wsv

≤t(b) ≤ wsv
≤t+1(b).

Definition 6. Let B be a set of bidders. We say that B
is tight for a bidder i at time t if all bidders in B are alive at
t, B can be matched but B∪{i} cannot be matched. We say
that B w̃S-dominates a bidder i at time t in the algorithm
if B is tight for i at t and ∀ b ∈ B, wsv

≤t(b) ≥ w(i)/(1 + γ).

Lemma 7. Xt is tight for t at t.

Proof. Xt can be matched since Xt ⊆ At−1.
Suppose for a contradiction that Xt∪{t} can be matched.

Then Xt 6= At−1 since At−1 is a perfect matching by as-
sumption. Therefore there exists X ⊂ At−1 \ Xt, |X| =
|At−1| − |Xt| − 1 such that Xt ∪ {t} ∪ X can be matched.
There exists exactly one bidder {y} = At−1 \ (Xt ∪ X) and
we have that Xt ∪ {t} ∪ X = At−1 ∪ {t} \ {y} is a perfect
matching, implying y ∈ Xt, contradiction.

Let i∗ be the time step when i ceases to be alive (i.e. i if
i is not accepted or the time i is bumped if i was accepted).
We inductively construct a sequence {Bt}i∗≤t≤n as follows:
if i is not accepted, Bi = Xi; if i is bumped by i∗ then
Bi∗ = Xi∗ ∪ {i∗} \ {i}. At time t ≥ i∗ + 1,

• if no bidder in Bt−1 is bumped, then we let Bt = Bt−1.

• if t bumps some b ∈ Bt−1 then we let Bt = (Bt−1 ∪
Xt ∪ {t}) \ {b}

We will prove inductively on t that

Lemma 8. Bt w̃S-dominates i at time t.

Proof of Lemma 8. Note that by definition, all bidders
in Bt are alive at t.
Base case t = i∗:

If i is not accepted (i∗ = i), i cannot bump any bidder in
Xi: therefore ∀ b ∈ Xi, w

sv
≤i(b) ≥ w(i)/(1 + γ). Xi is tight

for i at i by Lemma 7.
If i is bumped, then w(i) ≤ wsv

≤i∗(r), ∀ r ∈ Xi∗ . Bi∗ =
Xi∗ ∪ {i∗} \ {i} can be matched since they are all alive at
i∗. Xi∗ ∪ {i∗} cannot be matched since otherwise i∗ would
not need to bump i ∈ Xi∗ .
Inductive step: Assume that Bt−1 w̃S-dominates i at t−1.
If at time t, no bidder in Bt−1 is bumped, then the claim
obviously holds by the induction hypothesis. Otherwise, let
b ∈ Bt−1 be the bidder that is bumped by t.

Clearly, (Bt−1 ∪Xt ∪{t})\{b} can be matched since they
are alive at t. Suppose for a contradiction that Bt ∪ {i} =
(Bt−1 ∪Xt ∪ {t})∪ {i} \ {b} could be matched. i /∈ Bt since
i is no longer alive. Bt−1 ∪ Xt can be matched since they
are all alive at t− 1. As |Bt−1 ∪Xt| = |Bt ∪ {i}| − 1, either
Bt−1 ∪ Xt ∪ {i} or Bt−1 ∪ Xt ∪ {t} can be matched. The
first case is not possible since a subset, Bt−1 ∪ {i}, cannot
be matched (by the induction hypothesis); the second case
is not possible since Xt∪{t} cannot be matched (Lemma 7).
We have reached a contradiction, so Bt must be tight for i.

By the induction hypothesis, ∀ b′ ∈ Bt−1, wsv(b′)≤t−1 ≥
w(i)/(1 + γ). As noted before, survival thresholds can only
increase from t − 1 to t and w(t) ≥ (1 + γ)w(b).

We are ready for

Proof of Lemma 3. Let V be the OPT[w̃S ] assignment
(where ties are broken in favor of bidders in S). Suppose for
a contradiction that there exists a non-survivor i ∈ V . By
Lemma 8 for time n, i is dominated by a set Bn ⊆ S at time
n. Since i /∈ S, but Bn ⊆ S, in w̃S any bidder in Bn has a
higher weight than i.

Since V is a perfect matching and Bn can be matched
there must exist V ′ ⊂ V \ Bn, |V ′| = |V | − |Bn| (V ′ = ∅
if Bn is a perfect matching) such that Bn ∪ V ′ is a (per-
fect) matching. We know that Bn ∪{i} cannot be matched,
therefore i /∈ V ′. However, i ∈ V therefore i ∈ V \ V ′.
V \{i} can be matched and has size |V |−1. Therefore there
∃b ∈ Bn ∪ V ′, b /∈ V \ {i} such that V ∪ {b} \ {i} can be
matched. That implies b ∈ Bn ⊆ S, i.e. w̃S(b) ≥ w̃S(i).
But then V ∪{b}\{i} is a perfect matching of higher weight
than V , contradiction.

That is, V \ S = ∅, i.e. V = S since both are perfect
matchings.


